xref: /openbmc/linux/net/bluetooth/hci_sock.c (revision 2d68bb26)
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4 
5    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License version 2 as
9    published by the Free Software Foundation;
10 
11    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 
20    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22    SOFTWARE IS DISCLAIMED.
23 */
24 
25 /* Bluetooth HCI sockets. */
26 #include <linux/compat.h>
27 #include <linux/export.h>
28 #include <linux/utsname.h>
29 #include <linux/sched.h>
30 #include <asm/unaligned.h>
31 
32 #include <net/bluetooth/bluetooth.h>
33 #include <net/bluetooth/hci_core.h>
34 #include <net/bluetooth/hci_mon.h>
35 #include <net/bluetooth/mgmt.h>
36 
37 #include "mgmt_util.h"
38 
39 static LIST_HEAD(mgmt_chan_list);
40 static DEFINE_MUTEX(mgmt_chan_list_lock);
41 
42 static DEFINE_IDA(sock_cookie_ida);
43 
44 static atomic_t monitor_promisc = ATOMIC_INIT(0);
45 
46 /* ----- HCI socket interface ----- */
47 
48 /* Socket info */
49 #define hci_pi(sk) ((struct hci_pinfo *) sk)
50 
51 struct hci_pinfo {
52 	struct bt_sock    bt;
53 	struct hci_dev    *hdev;
54 	struct hci_filter filter;
55 	__u32             cmsg_mask;
56 	unsigned short    channel;
57 	unsigned long     flags;
58 	__u32             cookie;
59 	char              comm[TASK_COMM_LEN];
60 };
61 
62 void hci_sock_set_flag(struct sock *sk, int nr)
63 {
64 	set_bit(nr, &hci_pi(sk)->flags);
65 }
66 
67 void hci_sock_clear_flag(struct sock *sk, int nr)
68 {
69 	clear_bit(nr, &hci_pi(sk)->flags);
70 }
71 
72 int hci_sock_test_flag(struct sock *sk, int nr)
73 {
74 	return test_bit(nr, &hci_pi(sk)->flags);
75 }
76 
77 unsigned short hci_sock_get_channel(struct sock *sk)
78 {
79 	return hci_pi(sk)->channel;
80 }
81 
82 u32 hci_sock_get_cookie(struct sock *sk)
83 {
84 	return hci_pi(sk)->cookie;
85 }
86 
87 static bool hci_sock_gen_cookie(struct sock *sk)
88 {
89 	int id = hci_pi(sk)->cookie;
90 
91 	if (!id) {
92 		id = ida_simple_get(&sock_cookie_ida, 1, 0, GFP_KERNEL);
93 		if (id < 0)
94 			id = 0xffffffff;
95 
96 		hci_pi(sk)->cookie = id;
97 		get_task_comm(hci_pi(sk)->comm, current);
98 		return true;
99 	}
100 
101 	return false;
102 }
103 
104 static void hci_sock_free_cookie(struct sock *sk)
105 {
106 	int id = hci_pi(sk)->cookie;
107 
108 	if (id) {
109 		hci_pi(sk)->cookie = 0xffffffff;
110 		ida_simple_remove(&sock_cookie_ida, id);
111 	}
112 }
113 
114 static inline int hci_test_bit(int nr, const void *addr)
115 {
116 	return *((const __u32 *) addr + (nr >> 5)) & ((__u32) 1 << (nr & 31));
117 }
118 
119 /* Security filter */
120 #define HCI_SFLT_MAX_OGF  5
121 
122 struct hci_sec_filter {
123 	__u32 type_mask;
124 	__u32 event_mask[2];
125 	__u32 ocf_mask[HCI_SFLT_MAX_OGF + 1][4];
126 };
127 
128 static const struct hci_sec_filter hci_sec_filter = {
129 	/* Packet types */
130 	0x10,
131 	/* Events */
132 	{ 0x1000d9fe, 0x0000b00c },
133 	/* Commands */
134 	{
135 		{ 0x0 },
136 		/* OGF_LINK_CTL */
137 		{ 0xbe000006, 0x00000001, 0x00000000, 0x00 },
138 		/* OGF_LINK_POLICY */
139 		{ 0x00005200, 0x00000000, 0x00000000, 0x00 },
140 		/* OGF_HOST_CTL */
141 		{ 0xaab00200, 0x2b402aaa, 0x05220154, 0x00 },
142 		/* OGF_INFO_PARAM */
143 		{ 0x000002be, 0x00000000, 0x00000000, 0x00 },
144 		/* OGF_STATUS_PARAM */
145 		{ 0x000000ea, 0x00000000, 0x00000000, 0x00 }
146 	}
147 };
148 
149 static struct bt_sock_list hci_sk_list = {
150 	.lock = __RW_LOCK_UNLOCKED(hci_sk_list.lock)
151 };
152 
153 static bool is_filtered_packet(struct sock *sk, struct sk_buff *skb)
154 {
155 	struct hci_filter *flt;
156 	int flt_type, flt_event;
157 
158 	/* Apply filter */
159 	flt = &hci_pi(sk)->filter;
160 
161 	flt_type = hci_skb_pkt_type(skb) & HCI_FLT_TYPE_BITS;
162 
163 	if (!test_bit(flt_type, &flt->type_mask))
164 		return true;
165 
166 	/* Extra filter for event packets only */
167 	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT)
168 		return false;
169 
170 	flt_event = (*(__u8 *)skb->data & HCI_FLT_EVENT_BITS);
171 
172 	if (!hci_test_bit(flt_event, &flt->event_mask))
173 		return true;
174 
175 	/* Check filter only when opcode is set */
176 	if (!flt->opcode)
177 		return false;
178 
179 	if (flt_event == HCI_EV_CMD_COMPLETE &&
180 	    flt->opcode != get_unaligned((__le16 *)(skb->data + 3)))
181 		return true;
182 
183 	if (flt_event == HCI_EV_CMD_STATUS &&
184 	    flt->opcode != get_unaligned((__le16 *)(skb->data + 4)))
185 		return true;
186 
187 	return false;
188 }
189 
190 /* Send frame to RAW socket */
191 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb)
192 {
193 	struct sock *sk;
194 	struct sk_buff *skb_copy = NULL;
195 
196 	BT_DBG("hdev %p len %d", hdev, skb->len);
197 
198 	read_lock(&hci_sk_list.lock);
199 
200 	sk_for_each(sk, &hci_sk_list.head) {
201 		struct sk_buff *nskb;
202 
203 		if (sk->sk_state != BT_BOUND || hci_pi(sk)->hdev != hdev)
204 			continue;
205 
206 		/* Don't send frame to the socket it came from */
207 		if (skb->sk == sk)
208 			continue;
209 
210 		if (hci_pi(sk)->channel == HCI_CHANNEL_RAW) {
211 			if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT &&
212 			    hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
213 			    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
214 			    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT)
215 				continue;
216 			if (is_filtered_packet(sk, skb))
217 				continue;
218 		} else if (hci_pi(sk)->channel == HCI_CHANNEL_USER) {
219 			if (!bt_cb(skb)->incoming)
220 				continue;
221 			if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
222 			    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
223 			    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT)
224 				continue;
225 		} else {
226 			/* Don't send frame to other channel types */
227 			continue;
228 		}
229 
230 		if (!skb_copy) {
231 			/* Create a private copy with headroom */
232 			skb_copy = __pskb_copy_fclone(skb, 1, GFP_ATOMIC, true);
233 			if (!skb_copy)
234 				continue;
235 
236 			/* Put type byte before the data */
237 			memcpy(skb_push(skb_copy, 1), &hci_skb_pkt_type(skb), 1);
238 		}
239 
240 		nskb = skb_clone(skb_copy, GFP_ATOMIC);
241 		if (!nskb)
242 			continue;
243 
244 		if (sock_queue_rcv_skb(sk, nskb))
245 			kfree_skb(nskb);
246 	}
247 
248 	read_unlock(&hci_sk_list.lock);
249 
250 	kfree_skb(skb_copy);
251 }
252 
253 /* Send frame to sockets with specific channel */
254 static void __hci_send_to_channel(unsigned short channel, struct sk_buff *skb,
255 				  int flag, struct sock *skip_sk)
256 {
257 	struct sock *sk;
258 
259 	BT_DBG("channel %u len %d", channel, skb->len);
260 
261 	sk_for_each(sk, &hci_sk_list.head) {
262 		struct sk_buff *nskb;
263 
264 		/* Ignore socket without the flag set */
265 		if (!hci_sock_test_flag(sk, flag))
266 			continue;
267 
268 		/* Skip the original socket */
269 		if (sk == skip_sk)
270 			continue;
271 
272 		if (sk->sk_state != BT_BOUND)
273 			continue;
274 
275 		if (hci_pi(sk)->channel != channel)
276 			continue;
277 
278 		nskb = skb_clone(skb, GFP_ATOMIC);
279 		if (!nskb)
280 			continue;
281 
282 		if (sock_queue_rcv_skb(sk, nskb))
283 			kfree_skb(nskb);
284 	}
285 
286 }
287 
288 void hci_send_to_channel(unsigned short channel, struct sk_buff *skb,
289 			 int flag, struct sock *skip_sk)
290 {
291 	read_lock(&hci_sk_list.lock);
292 	__hci_send_to_channel(channel, skb, flag, skip_sk);
293 	read_unlock(&hci_sk_list.lock);
294 }
295 
296 /* Send frame to monitor socket */
297 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb)
298 {
299 	struct sk_buff *skb_copy = NULL;
300 	struct hci_mon_hdr *hdr;
301 	__le16 opcode;
302 
303 	if (!atomic_read(&monitor_promisc))
304 		return;
305 
306 	BT_DBG("hdev %p len %d", hdev, skb->len);
307 
308 	switch (hci_skb_pkt_type(skb)) {
309 	case HCI_COMMAND_PKT:
310 		opcode = cpu_to_le16(HCI_MON_COMMAND_PKT);
311 		break;
312 	case HCI_EVENT_PKT:
313 		opcode = cpu_to_le16(HCI_MON_EVENT_PKT);
314 		break;
315 	case HCI_ACLDATA_PKT:
316 		if (bt_cb(skb)->incoming)
317 			opcode = cpu_to_le16(HCI_MON_ACL_RX_PKT);
318 		else
319 			opcode = cpu_to_le16(HCI_MON_ACL_TX_PKT);
320 		break;
321 	case HCI_SCODATA_PKT:
322 		if (bt_cb(skb)->incoming)
323 			opcode = cpu_to_le16(HCI_MON_SCO_RX_PKT);
324 		else
325 			opcode = cpu_to_le16(HCI_MON_SCO_TX_PKT);
326 		break;
327 	case HCI_DIAG_PKT:
328 		opcode = cpu_to_le16(HCI_MON_VENDOR_DIAG);
329 		break;
330 	default:
331 		return;
332 	}
333 
334 	/* Create a private copy with headroom */
335 	skb_copy = __pskb_copy_fclone(skb, HCI_MON_HDR_SIZE, GFP_ATOMIC, true);
336 	if (!skb_copy)
337 		return;
338 
339 	/* Put header before the data */
340 	hdr = skb_push(skb_copy, HCI_MON_HDR_SIZE);
341 	hdr->opcode = opcode;
342 	hdr->index = cpu_to_le16(hdev->id);
343 	hdr->len = cpu_to_le16(skb->len);
344 
345 	hci_send_to_channel(HCI_CHANNEL_MONITOR, skb_copy,
346 			    HCI_SOCK_TRUSTED, NULL);
347 	kfree_skb(skb_copy);
348 }
349 
350 void hci_send_monitor_ctrl_event(struct hci_dev *hdev, u16 event,
351 				 void *data, u16 data_len, ktime_t tstamp,
352 				 int flag, struct sock *skip_sk)
353 {
354 	struct sock *sk;
355 	__le16 index;
356 
357 	if (hdev)
358 		index = cpu_to_le16(hdev->id);
359 	else
360 		index = cpu_to_le16(MGMT_INDEX_NONE);
361 
362 	read_lock(&hci_sk_list.lock);
363 
364 	sk_for_each(sk, &hci_sk_list.head) {
365 		struct hci_mon_hdr *hdr;
366 		struct sk_buff *skb;
367 
368 		if (hci_pi(sk)->channel != HCI_CHANNEL_CONTROL)
369 			continue;
370 
371 		/* Ignore socket without the flag set */
372 		if (!hci_sock_test_flag(sk, flag))
373 			continue;
374 
375 		/* Skip the original socket */
376 		if (sk == skip_sk)
377 			continue;
378 
379 		skb = bt_skb_alloc(6 + data_len, GFP_ATOMIC);
380 		if (!skb)
381 			continue;
382 
383 		put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
384 		put_unaligned_le16(event, skb_put(skb, 2));
385 
386 		if (data)
387 			skb_put_data(skb, data, data_len);
388 
389 		skb->tstamp = tstamp;
390 
391 		hdr = skb_push(skb, HCI_MON_HDR_SIZE);
392 		hdr->opcode = cpu_to_le16(HCI_MON_CTRL_EVENT);
393 		hdr->index = index;
394 		hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
395 
396 		__hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
397 				      HCI_SOCK_TRUSTED, NULL);
398 		kfree_skb(skb);
399 	}
400 
401 	read_unlock(&hci_sk_list.lock);
402 }
403 
404 static struct sk_buff *create_monitor_event(struct hci_dev *hdev, int event)
405 {
406 	struct hci_mon_hdr *hdr;
407 	struct hci_mon_new_index *ni;
408 	struct hci_mon_index_info *ii;
409 	struct sk_buff *skb;
410 	__le16 opcode;
411 
412 	switch (event) {
413 	case HCI_DEV_REG:
414 		skb = bt_skb_alloc(HCI_MON_NEW_INDEX_SIZE, GFP_ATOMIC);
415 		if (!skb)
416 			return NULL;
417 
418 		ni = skb_put(skb, HCI_MON_NEW_INDEX_SIZE);
419 		ni->type = hdev->dev_type;
420 		ni->bus = hdev->bus;
421 		bacpy(&ni->bdaddr, &hdev->bdaddr);
422 		memcpy(ni->name, hdev->name, 8);
423 
424 		opcode = cpu_to_le16(HCI_MON_NEW_INDEX);
425 		break;
426 
427 	case HCI_DEV_UNREG:
428 		skb = bt_skb_alloc(0, GFP_ATOMIC);
429 		if (!skb)
430 			return NULL;
431 
432 		opcode = cpu_to_le16(HCI_MON_DEL_INDEX);
433 		break;
434 
435 	case HCI_DEV_SETUP:
436 		if (hdev->manufacturer == 0xffff)
437 			return NULL;
438 
439 		/* fall through */
440 
441 	case HCI_DEV_UP:
442 		skb = bt_skb_alloc(HCI_MON_INDEX_INFO_SIZE, GFP_ATOMIC);
443 		if (!skb)
444 			return NULL;
445 
446 		ii = skb_put(skb, HCI_MON_INDEX_INFO_SIZE);
447 		bacpy(&ii->bdaddr, &hdev->bdaddr);
448 		ii->manufacturer = cpu_to_le16(hdev->manufacturer);
449 
450 		opcode = cpu_to_le16(HCI_MON_INDEX_INFO);
451 		break;
452 
453 	case HCI_DEV_OPEN:
454 		skb = bt_skb_alloc(0, GFP_ATOMIC);
455 		if (!skb)
456 			return NULL;
457 
458 		opcode = cpu_to_le16(HCI_MON_OPEN_INDEX);
459 		break;
460 
461 	case HCI_DEV_CLOSE:
462 		skb = bt_skb_alloc(0, GFP_ATOMIC);
463 		if (!skb)
464 			return NULL;
465 
466 		opcode = cpu_to_le16(HCI_MON_CLOSE_INDEX);
467 		break;
468 
469 	default:
470 		return NULL;
471 	}
472 
473 	__net_timestamp(skb);
474 
475 	hdr = skb_push(skb, HCI_MON_HDR_SIZE);
476 	hdr->opcode = opcode;
477 	hdr->index = cpu_to_le16(hdev->id);
478 	hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
479 
480 	return skb;
481 }
482 
483 static struct sk_buff *create_monitor_ctrl_open(struct sock *sk)
484 {
485 	struct hci_mon_hdr *hdr;
486 	struct sk_buff *skb;
487 	u16 format;
488 	u8 ver[3];
489 	u32 flags;
490 
491 	/* No message needed when cookie is not present */
492 	if (!hci_pi(sk)->cookie)
493 		return NULL;
494 
495 	switch (hci_pi(sk)->channel) {
496 	case HCI_CHANNEL_RAW:
497 		format = 0x0000;
498 		ver[0] = BT_SUBSYS_VERSION;
499 		put_unaligned_le16(BT_SUBSYS_REVISION, ver + 1);
500 		break;
501 	case HCI_CHANNEL_USER:
502 		format = 0x0001;
503 		ver[0] = BT_SUBSYS_VERSION;
504 		put_unaligned_le16(BT_SUBSYS_REVISION, ver + 1);
505 		break;
506 	case HCI_CHANNEL_CONTROL:
507 		format = 0x0002;
508 		mgmt_fill_version_info(ver);
509 		break;
510 	default:
511 		/* No message for unsupported format */
512 		return NULL;
513 	}
514 
515 	skb = bt_skb_alloc(14 + TASK_COMM_LEN , GFP_ATOMIC);
516 	if (!skb)
517 		return NULL;
518 
519 	flags = hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) ? 0x1 : 0x0;
520 
521 	put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
522 	put_unaligned_le16(format, skb_put(skb, 2));
523 	skb_put_data(skb, ver, sizeof(ver));
524 	put_unaligned_le32(flags, skb_put(skb, 4));
525 	skb_put_u8(skb, TASK_COMM_LEN);
526 	skb_put_data(skb, hci_pi(sk)->comm, TASK_COMM_LEN);
527 
528 	__net_timestamp(skb);
529 
530 	hdr = skb_push(skb, HCI_MON_HDR_SIZE);
531 	hdr->opcode = cpu_to_le16(HCI_MON_CTRL_OPEN);
532 	if (hci_pi(sk)->hdev)
533 		hdr->index = cpu_to_le16(hci_pi(sk)->hdev->id);
534 	else
535 		hdr->index = cpu_to_le16(HCI_DEV_NONE);
536 	hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
537 
538 	return skb;
539 }
540 
541 static struct sk_buff *create_monitor_ctrl_close(struct sock *sk)
542 {
543 	struct hci_mon_hdr *hdr;
544 	struct sk_buff *skb;
545 
546 	/* No message needed when cookie is not present */
547 	if (!hci_pi(sk)->cookie)
548 		return NULL;
549 
550 	switch (hci_pi(sk)->channel) {
551 	case HCI_CHANNEL_RAW:
552 	case HCI_CHANNEL_USER:
553 	case HCI_CHANNEL_CONTROL:
554 		break;
555 	default:
556 		/* No message for unsupported format */
557 		return NULL;
558 	}
559 
560 	skb = bt_skb_alloc(4, GFP_ATOMIC);
561 	if (!skb)
562 		return NULL;
563 
564 	put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
565 
566 	__net_timestamp(skb);
567 
568 	hdr = skb_push(skb, HCI_MON_HDR_SIZE);
569 	hdr->opcode = cpu_to_le16(HCI_MON_CTRL_CLOSE);
570 	if (hci_pi(sk)->hdev)
571 		hdr->index = cpu_to_le16(hci_pi(sk)->hdev->id);
572 	else
573 		hdr->index = cpu_to_le16(HCI_DEV_NONE);
574 	hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
575 
576 	return skb;
577 }
578 
579 static struct sk_buff *create_monitor_ctrl_command(struct sock *sk, u16 index,
580 						   u16 opcode, u16 len,
581 						   const void *buf)
582 {
583 	struct hci_mon_hdr *hdr;
584 	struct sk_buff *skb;
585 
586 	skb = bt_skb_alloc(6 + len, GFP_ATOMIC);
587 	if (!skb)
588 		return NULL;
589 
590 	put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
591 	put_unaligned_le16(opcode, skb_put(skb, 2));
592 
593 	if (buf)
594 		skb_put_data(skb, buf, len);
595 
596 	__net_timestamp(skb);
597 
598 	hdr = skb_push(skb, HCI_MON_HDR_SIZE);
599 	hdr->opcode = cpu_to_le16(HCI_MON_CTRL_COMMAND);
600 	hdr->index = cpu_to_le16(index);
601 	hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
602 
603 	return skb;
604 }
605 
606 static void __printf(2, 3)
607 send_monitor_note(struct sock *sk, const char *fmt, ...)
608 {
609 	size_t len;
610 	struct hci_mon_hdr *hdr;
611 	struct sk_buff *skb;
612 	va_list args;
613 
614 	va_start(args, fmt);
615 	len = vsnprintf(NULL, 0, fmt, args);
616 	va_end(args);
617 
618 	skb = bt_skb_alloc(len + 1, GFP_ATOMIC);
619 	if (!skb)
620 		return;
621 
622 	va_start(args, fmt);
623 	vsprintf(skb_put(skb, len), fmt, args);
624 	*(u8 *)skb_put(skb, 1) = 0;
625 	va_end(args);
626 
627 	__net_timestamp(skb);
628 
629 	hdr = (void *)skb_push(skb, HCI_MON_HDR_SIZE);
630 	hdr->opcode = cpu_to_le16(HCI_MON_SYSTEM_NOTE);
631 	hdr->index = cpu_to_le16(HCI_DEV_NONE);
632 	hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
633 
634 	if (sock_queue_rcv_skb(sk, skb))
635 		kfree_skb(skb);
636 }
637 
638 static void send_monitor_replay(struct sock *sk)
639 {
640 	struct hci_dev *hdev;
641 
642 	read_lock(&hci_dev_list_lock);
643 
644 	list_for_each_entry(hdev, &hci_dev_list, list) {
645 		struct sk_buff *skb;
646 
647 		skb = create_monitor_event(hdev, HCI_DEV_REG);
648 		if (!skb)
649 			continue;
650 
651 		if (sock_queue_rcv_skb(sk, skb))
652 			kfree_skb(skb);
653 
654 		if (!test_bit(HCI_RUNNING, &hdev->flags))
655 			continue;
656 
657 		skb = create_monitor_event(hdev, HCI_DEV_OPEN);
658 		if (!skb)
659 			continue;
660 
661 		if (sock_queue_rcv_skb(sk, skb))
662 			kfree_skb(skb);
663 
664 		if (test_bit(HCI_UP, &hdev->flags))
665 			skb = create_monitor_event(hdev, HCI_DEV_UP);
666 		else if (hci_dev_test_flag(hdev, HCI_SETUP))
667 			skb = create_monitor_event(hdev, HCI_DEV_SETUP);
668 		else
669 			skb = NULL;
670 
671 		if (skb) {
672 			if (sock_queue_rcv_skb(sk, skb))
673 				kfree_skb(skb);
674 		}
675 	}
676 
677 	read_unlock(&hci_dev_list_lock);
678 }
679 
680 static void send_monitor_control_replay(struct sock *mon_sk)
681 {
682 	struct sock *sk;
683 
684 	read_lock(&hci_sk_list.lock);
685 
686 	sk_for_each(sk, &hci_sk_list.head) {
687 		struct sk_buff *skb;
688 
689 		skb = create_monitor_ctrl_open(sk);
690 		if (!skb)
691 			continue;
692 
693 		if (sock_queue_rcv_skb(mon_sk, skb))
694 			kfree_skb(skb);
695 	}
696 
697 	read_unlock(&hci_sk_list.lock);
698 }
699 
700 /* Generate internal stack event */
701 static void hci_si_event(struct hci_dev *hdev, int type, int dlen, void *data)
702 {
703 	struct hci_event_hdr *hdr;
704 	struct hci_ev_stack_internal *ev;
705 	struct sk_buff *skb;
706 
707 	skb = bt_skb_alloc(HCI_EVENT_HDR_SIZE + sizeof(*ev) + dlen, GFP_ATOMIC);
708 	if (!skb)
709 		return;
710 
711 	hdr = skb_put(skb, HCI_EVENT_HDR_SIZE);
712 	hdr->evt  = HCI_EV_STACK_INTERNAL;
713 	hdr->plen = sizeof(*ev) + dlen;
714 
715 	ev = skb_put(skb, sizeof(*ev) + dlen);
716 	ev->type = type;
717 	memcpy(ev->data, data, dlen);
718 
719 	bt_cb(skb)->incoming = 1;
720 	__net_timestamp(skb);
721 
722 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
723 	hci_send_to_sock(hdev, skb);
724 	kfree_skb(skb);
725 }
726 
727 void hci_sock_dev_event(struct hci_dev *hdev, int event)
728 {
729 	BT_DBG("hdev %s event %d", hdev->name, event);
730 
731 	if (atomic_read(&monitor_promisc)) {
732 		struct sk_buff *skb;
733 
734 		/* Send event to monitor */
735 		skb = create_monitor_event(hdev, event);
736 		if (skb) {
737 			hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
738 					    HCI_SOCK_TRUSTED, NULL);
739 			kfree_skb(skb);
740 		}
741 	}
742 
743 	if (event <= HCI_DEV_DOWN) {
744 		struct hci_ev_si_device ev;
745 
746 		/* Send event to sockets */
747 		ev.event  = event;
748 		ev.dev_id = hdev->id;
749 		hci_si_event(NULL, HCI_EV_SI_DEVICE, sizeof(ev), &ev);
750 	}
751 
752 	if (event == HCI_DEV_UNREG) {
753 		struct sock *sk;
754 
755 		/* Detach sockets from device */
756 		read_lock(&hci_sk_list.lock);
757 		sk_for_each(sk, &hci_sk_list.head) {
758 			bh_lock_sock_nested(sk);
759 			if (hci_pi(sk)->hdev == hdev) {
760 				hci_pi(sk)->hdev = NULL;
761 				sk->sk_err = EPIPE;
762 				sk->sk_state = BT_OPEN;
763 				sk->sk_state_change(sk);
764 
765 				hci_dev_put(hdev);
766 			}
767 			bh_unlock_sock(sk);
768 		}
769 		read_unlock(&hci_sk_list.lock);
770 	}
771 }
772 
773 static struct hci_mgmt_chan *__hci_mgmt_chan_find(unsigned short channel)
774 {
775 	struct hci_mgmt_chan *c;
776 
777 	list_for_each_entry(c, &mgmt_chan_list, list) {
778 		if (c->channel == channel)
779 			return c;
780 	}
781 
782 	return NULL;
783 }
784 
785 static struct hci_mgmt_chan *hci_mgmt_chan_find(unsigned short channel)
786 {
787 	struct hci_mgmt_chan *c;
788 
789 	mutex_lock(&mgmt_chan_list_lock);
790 	c = __hci_mgmt_chan_find(channel);
791 	mutex_unlock(&mgmt_chan_list_lock);
792 
793 	return c;
794 }
795 
796 int hci_mgmt_chan_register(struct hci_mgmt_chan *c)
797 {
798 	if (c->channel < HCI_CHANNEL_CONTROL)
799 		return -EINVAL;
800 
801 	mutex_lock(&mgmt_chan_list_lock);
802 	if (__hci_mgmt_chan_find(c->channel)) {
803 		mutex_unlock(&mgmt_chan_list_lock);
804 		return -EALREADY;
805 	}
806 
807 	list_add_tail(&c->list, &mgmt_chan_list);
808 
809 	mutex_unlock(&mgmt_chan_list_lock);
810 
811 	return 0;
812 }
813 EXPORT_SYMBOL(hci_mgmt_chan_register);
814 
815 void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c)
816 {
817 	mutex_lock(&mgmt_chan_list_lock);
818 	list_del(&c->list);
819 	mutex_unlock(&mgmt_chan_list_lock);
820 }
821 EXPORT_SYMBOL(hci_mgmt_chan_unregister);
822 
823 static int hci_sock_release(struct socket *sock)
824 {
825 	struct sock *sk = sock->sk;
826 	struct hci_dev *hdev;
827 	struct sk_buff *skb;
828 
829 	BT_DBG("sock %p sk %p", sock, sk);
830 
831 	if (!sk)
832 		return 0;
833 
834 	switch (hci_pi(sk)->channel) {
835 	case HCI_CHANNEL_MONITOR:
836 		atomic_dec(&monitor_promisc);
837 		break;
838 	case HCI_CHANNEL_RAW:
839 	case HCI_CHANNEL_USER:
840 	case HCI_CHANNEL_CONTROL:
841 		/* Send event to monitor */
842 		skb = create_monitor_ctrl_close(sk);
843 		if (skb) {
844 			hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
845 					    HCI_SOCK_TRUSTED, NULL);
846 			kfree_skb(skb);
847 		}
848 
849 		hci_sock_free_cookie(sk);
850 		break;
851 	}
852 
853 	bt_sock_unlink(&hci_sk_list, sk);
854 
855 	hdev = hci_pi(sk)->hdev;
856 	if (hdev) {
857 		if (hci_pi(sk)->channel == HCI_CHANNEL_USER) {
858 			/* When releasing a user channel exclusive access,
859 			 * call hci_dev_do_close directly instead of calling
860 			 * hci_dev_close to ensure the exclusive access will
861 			 * be released and the controller brought back down.
862 			 *
863 			 * The checking of HCI_AUTO_OFF is not needed in this
864 			 * case since it will have been cleared already when
865 			 * opening the user channel.
866 			 */
867 			hci_dev_do_close(hdev);
868 			hci_dev_clear_flag(hdev, HCI_USER_CHANNEL);
869 			mgmt_index_added(hdev);
870 		}
871 
872 		atomic_dec(&hdev->promisc);
873 		hci_dev_put(hdev);
874 	}
875 
876 	sock_orphan(sk);
877 
878 	skb_queue_purge(&sk->sk_receive_queue);
879 	skb_queue_purge(&sk->sk_write_queue);
880 
881 	sock_put(sk);
882 	return 0;
883 }
884 
885 static int hci_sock_blacklist_add(struct hci_dev *hdev, void __user *arg)
886 {
887 	bdaddr_t bdaddr;
888 	int err;
889 
890 	if (copy_from_user(&bdaddr, arg, sizeof(bdaddr)))
891 		return -EFAULT;
892 
893 	hci_dev_lock(hdev);
894 
895 	err = hci_bdaddr_list_add(&hdev->blacklist, &bdaddr, BDADDR_BREDR);
896 
897 	hci_dev_unlock(hdev);
898 
899 	return err;
900 }
901 
902 static int hci_sock_blacklist_del(struct hci_dev *hdev, void __user *arg)
903 {
904 	bdaddr_t bdaddr;
905 	int err;
906 
907 	if (copy_from_user(&bdaddr, arg, sizeof(bdaddr)))
908 		return -EFAULT;
909 
910 	hci_dev_lock(hdev);
911 
912 	err = hci_bdaddr_list_del(&hdev->blacklist, &bdaddr, BDADDR_BREDR);
913 
914 	hci_dev_unlock(hdev);
915 
916 	return err;
917 }
918 
919 /* Ioctls that require bound socket */
920 static int hci_sock_bound_ioctl(struct sock *sk, unsigned int cmd,
921 				unsigned long arg)
922 {
923 	struct hci_dev *hdev = hci_pi(sk)->hdev;
924 
925 	if (!hdev)
926 		return -EBADFD;
927 
928 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
929 		return -EBUSY;
930 
931 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
932 		return -EOPNOTSUPP;
933 
934 	if (hdev->dev_type != HCI_PRIMARY)
935 		return -EOPNOTSUPP;
936 
937 	switch (cmd) {
938 	case HCISETRAW:
939 		if (!capable(CAP_NET_ADMIN))
940 			return -EPERM;
941 		return -EOPNOTSUPP;
942 
943 	case HCIGETCONNINFO:
944 		return hci_get_conn_info(hdev, (void __user *)arg);
945 
946 	case HCIGETAUTHINFO:
947 		return hci_get_auth_info(hdev, (void __user *)arg);
948 
949 	case HCIBLOCKADDR:
950 		if (!capable(CAP_NET_ADMIN))
951 			return -EPERM;
952 		return hci_sock_blacklist_add(hdev, (void __user *)arg);
953 
954 	case HCIUNBLOCKADDR:
955 		if (!capable(CAP_NET_ADMIN))
956 			return -EPERM;
957 		return hci_sock_blacklist_del(hdev, (void __user *)arg);
958 	}
959 
960 	return -ENOIOCTLCMD;
961 }
962 
963 static int hci_sock_ioctl(struct socket *sock, unsigned int cmd,
964 			  unsigned long arg)
965 {
966 	void __user *argp = (void __user *)arg;
967 	struct sock *sk = sock->sk;
968 	int err;
969 
970 	BT_DBG("cmd %x arg %lx", cmd, arg);
971 
972 	lock_sock(sk);
973 
974 	if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) {
975 		err = -EBADFD;
976 		goto done;
977 	}
978 
979 	/* When calling an ioctl on an unbound raw socket, then ensure
980 	 * that the monitor gets informed. Ensure that the resulting event
981 	 * is only send once by checking if the cookie exists or not. The
982 	 * socket cookie will be only ever generated once for the lifetime
983 	 * of a given socket.
984 	 */
985 	if (hci_sock_gen_cookie(sk)) {
986 		struct sk_buff *skb;
987 
988 		if (capable(CAP_NET_ADMIN))
989 			hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
990 
991 		/* Send event to monitor */
992 		skb = create_monitor_ctrl_open(sk);
993 		if (skb) {
994 			hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
995 					    HCI_SOCK_TRUSTED, NULL);
996 			kfree_skb(skb);
997 		}
998 	}
999 
1000 	release_sock(sk);
1001 
1002 	switch (cmd) {
1003 	case HCIGETDEVLIST:
1004 		return hci_get_dev_list(argp);
1005 
1006 	case HCIGETDEVINFO:
1007 		return hci_get_dev_info(argp);
1008 
1009 	case HCIGETCONNLIST:
1010 		return hci_get_conn_list(argp);
1011 
1012 	case HCIDEVUP:
1013 		if (!capable(CAP_NET_ADMIN))
1014 			return -EPERM;
1015 		return hci_dev_open(arg);
1016 
1017 	case HCIDEVDOWN:
1018 		if (!capable(CAP_NET_ADMIN))
1019 			return -EPERM;
1020 		return hci_dev_close(arg);
1021 
1022 	case HCIDEVRESET:
1023 		if (!capable(CAP_NET_ADMIN))
1024 			return -EPERM;
1025 		return hci_dev_reset(arg);
1026 
1027 	case HCIDEVRESTAT:
1028 		if (!capable(CAP_NET_ADMIN))
1029 			return -EPERM;
1030 		return hci_dev_reset_stat(arg);
1031 
1032 	case HCISETSCAN:
1033 	case HCISETAUTH:
1034 	case HCISETENCRYPT:
1035 	case HCISETPTYPE:
1036 	case HCISETLINKPOL:
1037 	case HCISETLINKMODE:
1038 	case HCISETACLMTU:
1039 	case HCISETSCOMTU:
1040 		if (!capable(CAP_NET_ADMIN))
1041 			return -EPERM;
1042 		return hci_dev_cmd(cmd, argp);
1043 
1044 	case HCIINQUIRY:
1045 		return hci_inquiry(argp);
1046 	}
1047 
1048 	lock_sock(sk);
1049 
1050 	err = hci_sock_bound_ioctl(sk, cmd, arg);
1051 
1052 done:
1053 	release_sock(sk);
1054 	return err;
1055 }
1056 
1057 #ifdef CONFIG_COMPAT
1058 static int hci_sock_compat_ioctl(struct socket *sock, unsigned int cmd,
1059 				 unsigned long arg)
1060 {
1061 	switch (cmd) {
1062 	case HCIDEVUP:
1063 	case HCIDEVDOWN:
1064 	case HCIDEVRESET:
1065 	case HCIDEVRESTAT:
1066 		return hci_sock_ioctl(sock, cmd, arg);
1067 	}
1068 
1069 	return hci_sock_ioctl(sock, cmd, (unsigned long)compat_ptr(arg));
1070 }
1071 #endif
1072 
1073 static int hci_sock_bind(struct socket *sock, struct sockaddr *addr,
1074 			 int addr_len)
1075 {
1076 	struct sockaddr_hci haddr;
1077 	struct sock *sk = sock->sk;
1078 	struct hci_dev *hdev = NULL;
1079 	struct sk_buff *skb;
1080 	int len, err = 0;
1081 
1082 	BT_DBG("sock %p sk %p", sock, sk);
1083 
1084 	if (!addr)
1085 		return -EINVAL;
1086 
1087 	memset(&haddr, 0, sizeof(haddr));
1088 	len = min_t(unsigned int, sizeof(haddr), addr_len);
1089 	memcpy(&haddr, addr, len);
1090 
1091 	if (haddr.hci_family != AF_BLUETOOTH)
1092 		return -EINVAL;
1093 
1094 	lock_sock(sk);
1095 
1096 	if (sk->sk_state == BT_BOUND) {
1097 		err = -EALREADY;
1098 		goto done;
1099 	}
1100 
1101 	switch (haddr.hci_channel) {
1102 	case HCI_CHANNEL_RAW:
1103 		if (hci_pi(sk)->hdev) {
1104 			err = -EALREADY;
1105 			goto done;
1106 		}
1107 
1108 		if (haddr.hci_dev != HCI_DEV_NONE) {
1109 			hdev = hci_dev_get(haddr.hci_dev);
1110 			if (!hdev) {
1111 				err = -ENODEV;
1112 				goto done;
1113 			}
1114 
1115 			atomic_inc(&hdev->promisc);
1116 		}
1117 
1118 		hci_pi(sk)->channel = haddr.hci_channel;
1119 
1120 		if (!hci_sock_gen_cookie(sk)) {
1121 			/* In the case when a cookie has already been assigned,
1122 			 * then there has been already an ioctl issued against
1123 			 * an unbound socket and with that triggerd an open
1124 			 * notification. Send a close notification first to
1125 			 * allow the state transition to bounded.
1126 			 */
1127 			skb = create_monitor_ctrl_close(sk);
1128 			if (skb) {
1129 				hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1130 						    HCI_SOCK_TRUSTED, NULL);
1131 				kfree_skb(skb);
1132 			}
1133 		}
1134 
1135 		if (capable(CAP_NET_ADMIN))
1136 			hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1137 
1138 		hci_pi(sk)->hdev = hdev;
1139 
1140 		/* Send event to monitor */
1141 		skb = create_monitor_ctrl_open(sk);
1142 		if (skb) {
1143 			hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1144 					    HCI_SOCK_TRUSTED, NULL);
1145 			kfree_skb(skb);
1146 		}
1147 		break;
1148 
1149 	case HCI_CHANNEL_USER:
1150 		if (hci_pi(sk)->hdev) {
1151 			err = -EALREADY;
1152 			goto done;
1153 		}
1154 
1155 		if (haddr.hci_dev == HCI_DEV_NONE) {
1156 			err = -EINVAL;
1157 			goto done;
1158 		}
1159 
1160 		if (!capable(CAP_NET_ADMIN)) {
1161 			err = -EPERM;
1162 			goto done;
1163 		}
1164 
1165 		hdev = hci_dev_get(haddr.hci_dev);
1166 		if (!hdev) {
1167 			err = -ENODEV;
1168 			goto done;
1169 		}
1170 
1171 		if (test_bit(HCI_INIT, &hdev->flags) ||
1172 		    hci_dev_test_flag(hdev, HCI_SETUP) ||
1173 		    hci_dev_test_flag(hdev, HCI_CONFIG) ||
1174 		    (!hci_dev_test_flag(hdev, HCI_AUTO_OFF) &&
1175 		     test_bit(HCI_UP, &hdev->flags))) {
1176 			err = -EBUSY;
1177 			hci_dev_put(hdev);
1178 			goto done;
1179 		}
1180 
1181 		if (hci_dev_test_and_set_flag(hdev, HCI_USER_CHANNEL)) {
1182 			err = -EUSERS;
1183 			hci_dev_put(hdev);
1184 			goto done;
1185 		}
1186 
1187 		mgmt_index_removed(hdev);
1188 
1189 		err = hci_dev_open(hdev->id);
1190 		if (err) {
1191 			if (err == -EALREADY) {
1192 				/* In case the transport is already up and
1193 				 * running, clear the error here.
1194 				 *
1195 				 * This can happen when opening a user
1196 				 * channel and HCI_AUTO_OFF grace period
1197 				 * is still active.
1198 				 */
1199 				err = 0;
1200 			} else {
1201 				hci_dev_clear_flag(hdev, HCI_USER_CHANNEL);
1202 				mgmt_index_added(hdev);
1203 				hci_dev_put(hdev);
1204 				goto done;
1205 			}
1206 		}
1207 
1208 		hci_pi(sk)->channel = haddr.hci_channel;
1209 
1210 		if (!hci_sock_gen_cookie(sk)) {
1211 			/* In the case when a cookie has already been assigned,
1212 			 * this socket will transition from a raw socket into
1213 			 * a user channel socket. For a clean transition, send
1214 			 * the close notification first.
1215 			 */
1216 			skb = create_monitor_ctrl_close(sk);
1217 			if (skb) {
1218 				hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1219 						    HCI_SOCK_TRUSTED, NULL);
1220 				kfree_skb(skb);
1221 			}
1222 		}
1223 
1224 		/* The user channel is restricted to CAP_NET_ADMIN
1225 		 * capabilities and with that implicitly trusted.
1226 		 */
1227 		hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1228 
1229 		hci_pi(sk)->hdev = hdev;
1230 
1231 		/* Send event to monitor */
1232 		skb = create_monitor_ctrl_open(sk);
1233 		if (skb) {
1234 			hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1235 					    HCI_SOCK_TRUSTED, NULL);
1236 			kfree_skb(skb);
1237 		}
1238 
1239 		atomic_inc(&hdev->promisc);
1240 		break;
1241 
1242 	case HCI_CHANNEL_MONITOR:
1243 		if (haddr.hci_dev != HCI_DEV_NONE) {
1244 			err = -EINVAL;
1245 			goto done;
1246 		}
1247 
1248 		if (!capable(CAP_NET_RAW)) {
1249 			err = -EPERM;
1250 			goto done;
1251 		}
1252 
1253 		hci_pi(sk)->channel = haddr.hci_channel;
1254 
1255 		/* The monitor interface is restricted to CAP_NET_RAW
1256 		 * capabilities and with that implicitly trusted.
1257 		 */
1258 		hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1259 
1260 		send_monitor_note(sk, "Linux version %s (%s)",
1261 				  init_utsname()->release,
1262 				  init_utsname()->machine);
1263 		send_monitor_note(sk, "Bluetooth subsystem version %u.%u",
1264 				  BT_SUBSYS_VERSION, BT_SUBSYS_REVISION);
1265 		send_monitor_replay(sk);
1266 		send_monitor_control_replay(sk);
1267 
1268 		atomic_inc(&monitor_promisc);
1269 		break;
1270 
1271 	case HCI_CHANNEL_LOGGING:
1272 		if (haddr.hci_dev != HCI_DEV_NONE) {
1273 			err = -EINVAL;
1274 			goto done;
1275 		}
1276 
1277 		if (!capable(CAP_NET_ADMIN)) {
1278 			err = -EPERM;
1279 			goto done;
1280 		}
1281 
1282 		hci_pi(sk)->channel = haddr.hci_channel;
1283 		break;
1284 
1285 	default:
1286 		if (!hci_mgmt_chan_find(haddr.hci_channel)) {
1287 			err = -EINVAL;
1288 			goto done;
1289 		}
1290 
1291 		if (haddr.hci_dev != HCI_DEV_NONE) {
1292 			err = -EINVAL;
1293 			goto done;
1294 		}
1295 
1296 		/* Users with CAP_NET_ADMIN capabilities are allowed
1297 		 * access to all management commands and events. For
1298 		 * untrusted users the interface is restricted and
1299 		 * also only untrusted events are sent.
1300 		 */
1301 		if (capable(CAP_NET_ADMIN))
1302 			hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1303 
1304 		hci_pi(sk)->channel = haddr.hci_channel;
1305 
1306 		/* At the moment the index and unconfigured index events
1307 		 * are enabled unconditionally. Setting them on each
1308 		 * socket when binding keeps this functionality. They
1309 		 * however might be cleared later and then sending of these
1310 		 * events will be disabled, but that is then intentional.
1311 		 *
1312 		 * This also enables generic events that are safe to be
1313 		 * received by untrusted users. Example for such events
1314 		 * are changes to settings, class of device, name etc.
1315 		 */
1316 		if (hci_pi(sk)->channel == HCI_CHANNEL_CONTROL) {
1317 			if (!hci_sock_gen_cookie(sk)) {
1318 				/* In the case when a cookie has already been
1319 				 * assigned, this socket will transtion from
1320 				 * a raw socket into a control socket. To
1321 				 * allow for a clean transtion, send the
1322 				 * close notification first.
1323 				 */
1324 				skb = create_monitor_ctrl_close(sk);
1325 				if (skb) {
1326 					hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1327 							    HCI_SOCK_TRUSTED, NULL);
1328 					kfree_skb(skb);
1329 				}
1330 			}
1331 
1332 			/* Send event to monitor */
1333 			skb = create_monitor_ctrl_open(sk);
1334 			if (skb) {
1335 				hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1336 						    HCI_SOCK_TRUSTED, NULL);
1337 				kfree_skb(skb);
1338 			}
1339 
1340 			hci_sock_set_flag(sk, HCI_MGMT_INDEX_EVENTS);
1341 			hci_sock_set_flag(sk, HCI_MGMT_UNCONF_INDEX_EVENTS);
1342 			hci_sock_set_flag(sk, HCI_MGMT_OPTION_EVENTS);
1343 			hci_sock_set_flag(sk, HCI_MGMT_SETTING_EVENTS);
1344 			hci_sock_set_flag(sk, HCI_MGMT_DEV_CLASS_EVENTS);
1345 			hci_sock_set_flag(sk, HCI_MGMT_LOCAL_NAME_EVENTS);
1346 		}
1347 		break;
1348 	}
1349 
1350 	sk->sk_state = BT_BOUND;
1351 
1352 done:
1353 	release_sock(sk);
1354 	return err;
1355 }
1356 
1357 static int hci_sock_getname(struct socket *sock, struct sockaddr *addr,
1358 			    int peer)
1359 {
1360 	struct sockaddr_hci *haddr = (struct sockaddr_hci *)addr;
1361 	struct sock *sk = sock->sk;
1362 	struct hci_dev *hdev;
1363 	int err = 0;
1364 
1365 	BT_DBG("sock %p sk %p", sock, sk);
1366 
1367 	if (peer)
1368 		return -EOPNOTSUPP;
1369 
1370 	lock_sock(sk);
1371 
1372 	hdev = hci_pi(sk)->hdev;
1373 	if (!hdev) {
1374 		err = -EBADFD;
1375 		goto done;
1376 	}
1377 
1378 	haddr->hci_family = AF_BLUETOOTH;
1379 	haddr->hci_dev    = hdev->id;
1380 	haddr->hci_channel= hci_pi(sk)->channel;
1381 	err = sizeof(*haddr);
1382 
1383 done:
1384 	release_sock(sk);
1385 	return err;
1386 }
1387 
1388 static void hci_sock_cmsg(struct sock *sk, struct msghdr *msg,
1389 			  struct sk_buff *skb)
1390 {
1391 	__u32 mask = hci_pi(sk)->cmsg_mask;
1392 
1393 	if (mask & HCI_CMSG_DIR) {
1394 		int incoming = bt_cb(skb)->incoming;
1395 		put_cmsg(msg, SOL_HCI, HCI_CMSG_DIR, sizeof(incoming),
1396 			 &incoming);
1397 	}
1398 
1399 	if (mask & HCI_CMSG_TSTAMP) {
1400 #ifdef CONFIG_COMPAT
1401 		struct old_timeval32 ctv;
1402 #endif
1403 		struct __kernel_old_timeval tv;
1404 		void *data;
1405 		int len;
1406 
1407 		skb_get_timestamp(skb, &tv);
1408 
1409 		data = &tv;
1410 		len = sizeof(tv);
1411 #ifdef CONFIG_COMPAT
1412 		if (!COMPAT_USE_64BIT_TIME &&
1413 		    (msg->msg_flags & MSG_CMSG_COMPAT)) {
1414 			ctv.tv_sec = tv.tv_sec;
1415 			ctv.tv_usec = tv.tv_usec;
1416 			data = &ctv;
1417 			len = sizeof(ctv);
1418 		}
1419 #endif
1420 
1421 		put_cmsg(msg, SOL_HCI, HCI_CMSG_TSTAMP, len, data);
1422 	}
1423 }
1424 
1425 static int hci_sock_recvmsg(struct socket *sock, struct msghdr *msg,
1426 			    size_t len, int flags)
1427 {
1428 	int noblock = flags & MSG_DONTWAIT;
1429 	struct sock *sk = sock->sk;
1430 	struct sk_buff *skb;
1431 	int copied, err;
1432 	unsigned int skblen;
1433 
1434 	BT_DBG("sock %p, sk %p", sock, sk);
1435 
1436 	if (flags & MSG_OOB)
1437 		return -EOPNOTSUPP;
1438 
1439 	if (hci_pi(sk)->channel == HCI_CHANNEL_LOGGING)
1440 		return -EOPNOTSUPP;
1441 
1442 	if (sk->sk_state == BT_CLOSED)
1443 		return 0;
1444 
1445 	skb = skb_recv_datagram(sk, flags, noblock, &err);
1446 	if (!skb)
1447 		return err;
1448 
1449 	skblen = skb->len;
1450 	copied = skb->len;
1451 	if (len < copied) {
1452 		msg->msg_flags |= MSG_TRUNC;
1453 		copied = len;
1454 	}
1455 
1456 	skb_reset_transport_header(skb);
1457 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
1458 
1459 	switch (hci_pi(sk)->channel) {
1460 	case HCI_CHANNEL_RAW:
1461 		hci_sock_cmsg(sk, msg, skb);
1462 		break;
1463 	case HCI_CHANNEL_USER:
1464 	case HCI_CHANNEL_MONITOR:
1465 		sock_recv_timestamp(msg, sk, skb);
1466 		break;
1467 	default:
1468 		if (hci_mgmt_chan_find(hci_pi(sk)->channel))
1469 			sock_recv_timestamp(msg, sk, skb);
1470 		break;
1471 	}
1472 
1473 	skb_free_datagram(sk, skb);
1474 
1475 	if (flags & MSG_TRUNC)
1476 		copied = skblen;
1477 
1478 	return err ? : copied;
1479 }
1480 
1481 static int hci_mgmt_cmd(struct hci_mgmt_chan *chan, struct sock *sk,
1482 			struct msghdr *msg, size_t msglen)
1483 {
1484 	void *buf;
1485 	u8 *cp;
1486 	struct mgmt_hdr *hdr;
1487 	u16 opcode, index, len;
1488 	struct hci_dev *hdev = NULL;
1489 	const struct hci_mgmt_handler *handler;
1490 	bool var_len, no_hdev;
1491 	int err;
1492 
1493 	BT_DBG("got %zu bytes", msglen);
1494 
1495 	if (msglen < sizeof(*hdr))
1496 		return -EINVAL;
1497 
1498 	buf = kmalloc(msglen, GFP_KERNEL);
1499 	if (!buf)
1500 		return -ENOMEM;
1501 
1502 	if (memcpy_from_msg(buf, msg, msglen)) {
1503 		err = -EFAULT;
1504 		goto done;
1505 	}
1506 
1507 	hdr = buf;
1508 	opcode = __le16_to_cpu(hdr->opcode);
1509 	index = __le16_to_cpu(hdr->index);
1510 	len = __le16_to_cpu(hdr->len);
1511 
1512 	if (len != msglen - sizeof(*hdr)) {
1513 		err = -EINVAL;
1514 		goto done;
1515 	}
1516 
1517 	if (chan->channel == HCI_CHANNEL_CONTROL) {
1518 		struct sk_buff *skb;
1519 
1520 		/* Send event to monitor */
1521 		skb = create_monitor_ctrl_command(sk, index, opcode, len,
1522 						  buf + sizeof(*hdr));
1523 		if (skb) {
1524 			hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1525 					    HCI_SOCK_TRUSTED, NULL);
1526 			kfree_skb(skb);
1527 		}
1528 	}
1529 
1530 	if (opcode >= chan->handler_count ||
1531 	    chan->handlers[opcode].func == NULL) {
1532 		BT_DBG("Unknown op %u", opcode);
1533 		err = mgmt_cmd_status(sk, index, opcode,
1534 				      MGMT_STATUS_UNKNOWN_COMMAND);
1535 		goto done;
1536 	}
1537 
1538 	handler = &chan->handlers[opcode];
1539 
1540 	if (!hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) &&
1541 	    !(handler->flags & HCI_MGMT_UNTRUSTED)) {
1542 		err = mgmt_cmd_status(sk, index, opcode,
1543 				      MGMT_STATUS_PERMISSION_DENIED);
1544 		goto done;
1545 	}
1546 
1547 	if (index != MGMT_INDEX_NONE) {
1548 		hdev = hci_dev_get(index);
1549 		if (!hdev) {
1550 			err = mgmt_cmd_status(sk, index, opcode,
1551 					      MGMT_STATUS_INVALID_INDEX);
1552 			goto done;
1553 		}
1554 
1555 		if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1556 		    hci_dev_test_flag(hdev, HCI_CONFIG) ||
1557 		    hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1558 			err = mgmt_cmd_status(sk, index, opcode,
1559 					      MGMT_STATUS_INVALID_INDEX);
1560 			goto done;
1561 		}
1562 
1563 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1564 		    !(handler->flags & HCI_MGMT_UNCONFIGURED)) {
1565 			err = mgmt_cmd_status(sk, index, opcode,
1566 					      MGMT_STATUS_INVALID_INDEX);
1567 			goto done;
1568 		}
1569 	}
1570 
1571 	no_hdev = (handler->flags & HCI_MGMT_NO_HDEV);
1572 	if (no_hdev != !hdev) {
1573 		err = mgmt_cmd_status(sk, index, opcode,
1574 				      MGMT_STATUS_INVALID_INDEX);
1575 		goto done;
1576 	}
1577 
1578 	var_len = (handler->flags & HCI_MGMT_VAR_LEN);
1579 	if ((var_len && len < handler->data_len) ||
1580 	    (!var_len && len != handler->data_len)) {
1581 		err = mgmt_cmd_status(sk, index, opcode,
1582 				      MGMT_STATUS_INVALID_PARAMS);
1583 		goto done;
1584 	}
1585 
1586 	if (hdev && chan->hdev_init)
1587 		chan->hdev_init(sk, hdev);
1588 
1589 	cp = buf + sizeof(*hdr);
1590 
1591 	err = handler->func(sk, hdev, cp, len);
1592 	if (err < 0)
1593 		goto done;
1594 
1595 	err = msglen;
1596 
1597 done:
1598 	if (hdev)
1599 		hci_dev_put(hdev);
1600 
1601 	kfree(buf);
1602 	return err;
1603 }
1604 
1605 static int hci_logging_frame(struct sock *sk, struct msghdr *msg, int len)
1606 {
1607 	struct hci_mon_hdr *hdr;
1608 	struct sk_buff *skb;
1609 	struct hci_dev *hdev;
1610 	u16 index;
1611 	int err;
1612 
1613 	/* The logging frame consists at minimum of the standard header,
1614 	 * the priority byte, the ident length byte and at least one string
1615 	 * terminator NUL byte. Anything shorter are invalid packets.
1616 	 */
1617 	if (len < sizeof(*hdr) + 3)
1618 		return -EINVAL;
1619 
1620 	skb = bt_skb_send_alloc(sk, len, msg->msg_flags & MSG_DONTWAIT, &err);
1621 	if (!skb)
1622 		return err;
1623 
1624 	if (memcpy_from_msg(skb_put(skb, len), msg, len)) {
1625 		err = -EFAULT;
1626 		goto drop;
1627 	}
1628 
1629 	hdr = (void *)skb->data;
1630 
1631 	if (__le16_to_cpu(hdr->len) != len - sizeof(*hdr)) {
1632 		err = -EINVAL;
1633 		goto drop;
1634 	}
1635 
1636 	if (__le16_to_cpu(hdr->opcode) == 0x0000) {
1637 		__u8 priority = skb->data[sizeof(*hdr)];
1638 		__u8 ident_len = skb->data[sizeof(*hdr) + 1];
1639 
1640 		/* Only the priorities 0-7 are valid and with that any other
1641 		 * value results in an invalid packet.
1642 		 *
1643 		 * The priority byte is followed by an ident length byte and
1644 		 * the NUL terminated ident string. Check that the ident
1645 		 * length is not overflowing the packet and also that the
1646 		 * ident string itself is NUL terminated. In case the ident
1647 		 * length is zero, the length value actually doubles as NUL
1648 		 * terminator identifier.
1649 		 *
1650 		 * The message follows the ident string (if present) and
1651 		 * must be NUL terminated. Otherwise it is not a valid packet.
1652 		 */
1653 		if (priority > 7 || skb->data[len - 1] != 0x00 ||
1654 		    ident_len > len - sizeof(*hdr) - 3 ||
1655 		    skb->data[sizeof(*hdr) + ident_len + 1] != 0x00) {
1656 			err = -EINVAL;
1657 			goto drop;
1658 		}
1659 	} else {
1660 		err = -EINVAL;
1661 		goto drop;
1662 	}
1663 
1664 	index = __le16_to_cpu(hdr->index);
1665 
1666 	if (index != MGMT_INDEX_NONE) {
1667 		hdev = hci_dev_get(index);
1668 		if (!hdev) {
1669 			err = -ENODEV;
1670 			goto drop;
1671 		}
1672 	} else {
1673 		hdev = NULL;
1674 	}
1675 
1676 	hdr->opcode = cpu_to_le16(HCI_MON_USER_LOGGING);
1677 
1678 	hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, HCI_SOCK_TRUSTED, NULL);
1679 	err = len;
1680 
1681 	if (hdev)
1682 		hci_dev_put(hdev);
1683 
1684 drop:
1685 	kfree_skb(skb);
1686 	return err;
1687 }
1688 
1689 static int hci_sock_sendmsg(struct socket *sock, struct msghdr *msg,
1690 			    size_t len)
1691 {
1692 	struct sock *sk = sock->sk;
1693 	struct hci_mgmt_chan *chan;
1694 	struct hci_dev *hdev;
1695 	struct sk_buff *skb;
1696 	int err;
1697 
1698 	BT_DBG("sock %p sk %p", sock, sk);
1699 
1700 	if (msg->msg_flags & MSG_OOB)
1701 		return -EOPNOTSUPP;
1702 
1703 	if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_NOSIGNAL|MSG_ERRQUEUE|
1704 			       MSG_CMSG_COMPAT))
1705 		return -EINVAL;
1706 
1707 	if (len < 4 || len > HCI_MAX_FRAME_SIZE)
1708 		return -EINVAL;
1709 
1710 	lock_sock(sk);
1711 
1712 	switch (hci_pi(sk)->channel) {
1713 	case HCI_CHANNEL_RAW:
1714 	case HCI_CHANNEL_USER:
1715 		break;
1716 	case HCI_CHANNEL_MONITOR:
1717 		err = -EOPNOTSUPP;
1718 		goto done;
1719 	case HCI_CHANNEL_LOGGING:
1720 		err = hci_logging_frame(sk, msg, len);
1721 		goto done;
1722 	default:
1723 		mutex_lock(&mgmt_chan_list_lock);
1724 		chan = __hci_mgmt_chan_find(hci_pi(sk)->channel);
1725 		if (chan)
1726 			err = hci_mgmt_cmd(chan, sk, msg, len);
1727 		else
1728 			err = -EINVAL;
1729 
1730 		mutex_unlock(&mgmt_chan_list_lock);
1731 		goto done;
1732 	}
1733 
1734 	hdev = hci_pi(sk)->hdev;
1735 	if (!hdev) {
1736 		err = -EBADFD;
1737 		goto done;
1738 	}
1739 
1740 	if (!test_bit(HCI_UP, &hdev->flags)) {
1741 		err = -ENETDOWN;
1742 		goto done;
1743 	}
1744 
1745 	skb = bt_skb_send_alloc(sk, len, msg->msg_flags & MSG_DONTWAIT, &err);
1746 	if (!skb)
1747 		goto done;
1748 
1749 	if (memcpy_from_msg(skb_put(skb, len), msg, len)) {
1750 		err = -EFAULT;
1751 		goto drop;
1752 	}
1753 
1754 	hci_skb_pkt_type(skb) = skb->data[0];
1755 	skb_pull(skb, 1);
1756 
1757 	if (hci_pi(sk)->channel == HCI_CHANNEL_USER) {
1758 		/* No permission check is needed for user channel
1759 		 * since that gets enforced when binding the socket.
1760 		 *
1761 		 * However check that the packet type is valid.
1762 		 */
1763 		if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT &&
1764 		    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
1765 		    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
1766 			err = -EINVAL;
1767 			goto drop;
1768 		}
1769 
1770 		skb_queue_tail(&hdev->raw_q, skb);
1771 		queue_work(hdev->workqueue, &hdev->tx_work);
1772 	} else if (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT) {
1773 		u16 opcode = get_unaligned_le16(skb->data);
1774 		u16 ogf = hci_opcode_ogf(opcode);
1775 		u16 ocf = hci_opcode_ocf(opcode);
1776 
1777 		if (((ogf > HCI_SFLT_MAX_OGF) ||
1778 		     !hci_test_bit(ocf & HCI_FLT_OCF_BITS,
1779 				   &hci_sec_filter.ocf_mask[ogf])) &&
1780 		    !capable(CAP_NET_RAW)) {
1781 			err = -EPERM;
1782 			goto drop;
1783 		}
1784 
1785 		/* Since the opcode has already been extracted here, store
1786 		 * a copy of the value for later use by the drivers.
1787 		 */
1788 		hci_skb_opcode(skb) = opcode;
1789 
1790 		if (ogf == 0x3f) {
1791 			skb_queue_tail(&hdev->raw_q, skb);
1792 			queue_work(hdev->workqueue, &hdev->tx_work);
1793 		} else {
1794 			/* Stand-alone HCI commands must be flagged as
1795 			 * single-command requests.
1796 			 */
1797 			bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
1798 
1799 			skb_queue_tail(&hdev->cmd_q, skb);
1800 			queue_work(hdev->workqueue, &hdev->cmd_work);
1801 		}
1802 	} else {
1803 		if (!capable(CAP_NET_RAW)) {
1804 			err = -EPERM;
1805 			goto drop;
1806 		}
1807 
1808 		if (hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
1809 		    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
1810 			err = -EINVAL;
1811 			goto drop;
1812 		}
1813 
1814 		skb_queue_tail(&hdev->raw_q, skb);
1815 		queue_work(hdev->workqueue, &hdev->tx_work);
1816 	}
1817 
1818 	err = len;
1819 
1820 done:
1821 	release_sock(sk);
1822 	return err;
1823 
1824 drop:
1825 	kfree_skb(skb);
1826 	goto done;
1827 }
1828 
1829 static int hci_sock_setsockopt(struct socket *sock, int level, int optname,
1830 			       char __user *optval, unsigned int len)
1831 {
1832 	struct hci_ufilter uf = { .opcode = 0 };
1833 	struct sock *sk = sock->sk;
1834 	int err = 0, opt = 0;
1835 
1836 	BT_DBG("sk %p, opt %d", sk, optname);
1837 
1838 	if (level != SOL_HCI)
1839 		return -ENOPROTOOPT;
1840 
1841 	lock_sock(sk);
1842 
1843 	if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) {
1844 		err = -EBADFD;
1845 		goto done;
1846 	}
1847 
1848 	switch (optname) {
1849 	case HCI_DATA_DIR:
1850 		if (get_user(opt, (int __user *)optval)) {
1851 			err = -EFAULT;
1852 			break;
1853 		}
1854 
1855 		if (opt)
1856 			hci_pi(sk)->cmsg_mask |= HCI_CMSG_DIR;
1857 		else
1858 			hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_DIR;
1859 		break;
1860 
1861 	case HCI_TIME_STAMP:
1862 		if (get_user(opt, (int __user *)optval)) {
1863 			err = -EFAULT;
1864 			break;
1865 		}
1866 
1867 		if (opt)
1868 			hci_pi(sk)->cmsg_mask |= HCI_CMSG_TSTAMP;
1869 		else
1870 			hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_TSTAMP;
1871 		break;
1872 
1873 	case HCI_FILTER:
1874 		{
1875 			struct hci_filter *f = &hci_pi(sk)->filter;
1876 
1877 			uf.type_mask = f->type_mask;
1878 			uf.opcode    = f->opcode;
1879 			uf.event_mask[0] = *((u32 *) f->event_mask + 0);
1880 			uf.event_mask[1] = *((u32 *) f->event_mask + 1);
1881 		}
1882 
1883 		len = min_t(unsigned int, len, sizeof(uf));
1884 		if (copy_from_user(&uf, optval, len)) {
1885 			err = -EFAULT;
1886 			break;
1887 		}
1888 
1889 		if (!capable(CAP_NET_RAW)) {
1890 			uf.type_mask &= hci_sec_filter.type_mask;
1891 			uf.event_mask[0] &= *((u32 *) hci_sec_filter.event_mask + 0);
1892 			uf.event_mask[1] &= *((u32 *) hci_sec_filter.event_mask + 1);
1893 		}
1894 
1895 		{
1896 			struct hci_filter *f = &hci_pi(sk)->filter;
1897 
1898 			f->type_mask = uf.type_mask;
1899 			f->opcode    = uf.opcode;
1900 			*((u32 *) f->event_mask + 0) = uf.event_mask[0];
1901 			*((u32 *) f->event_mask + 1) = uf.event_mask[1];
1902 		}
1903 		break;
1904 
1905 	default:
1906 		err = -ENOPROTOOPT;
1907 		break;
1908 	}
1909 
1910 done:
1911 	release_sock(sk);
1912 	return err;
1913 }
1914 
1915 static int hci_sock_getsockopt(struct socket *sock, int level, int optname,
1916 			       char __user *optval, int __user *optlen)
1917 {
1918 	struct hci_ufilter uf;
1919 	struct sock *sk = sock->sk;
1920 	int len, opt, err = 0;
1921 
1922 	BT_DBG("sk %p, opt %d", sk, optname);
1923 
1924 	if (level != SOL_HCI)
1925 		return -ENOPROTOOPT;
1926 
1927 	if (get_user(len, optlen))
1928 		return -EFAULT;
1929 
1930 	lock_sock(sk);
1931 
1932 	if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) {
1933 		err = -EBADFD;
1934 		goto done;
1935 	}
1936 
1937 	switch (optname) {
1938 	case HCI_DATA_DIR:
1939 		if (hci_pi(sk)->cmsg_mask & HCI_CMSG_DIR)
1940 			opt = 1;
1941 		else
1942 			opt = 0;
1943 
1944 		if (put_user(opt, optval))
1945 			err = -EFAULT;
1946 		break;
1947 
1948 	case HCI_TIME_STAMP:
1949 		if (hci_pi(sk)->cmsg_mask & HCI_CMSG_TSTAMP)
1950 			opt = 1;
1951 		else
1952 			opt = 0;
1953 
1954 		if (put_user(opt, optval))
1955 			err = -EFAULT;
1956 		break;
1957 
1958 	case HCI_FILTER:
1959 		{
1960 			struct hci_filter *f = &hci_pi(sk)->filter;
1961 
1962 			memset(&uf, 0, sizeof(uf));
1963 			uf.type_mask = f->type_mask;
1964 			uf.opcode    = f->opcode;
1965 			uf.event_mask[0] = *((u32 *) f->event_mask + 0);
1966 			uf.event_mask[1] = *((u32 *) f->event_mask + 1);
1967 		}
1968 
1969 		len = min_t(unsigned int, len, sizeof(uf));
1970 		if (copy_to_user(optval, &uf, len))
1971 			err = -EFAULT;
1972 		break;
1973 
1974 	default:
1975 		err = -ENOPROTOOPT;
1976 		break;
1977 	}
1978 
1979 done:
1980 	release_sock(sk);
1981 	return err;
1982 }
1983 
1984 static const struct proto_ops hci_sock_ops = {
1985 	.family		= PF_BLUETOOTH,
1986 	.owner		= THIS_MODULE,
1987 	.release	= hci_sock_release,
1988 	.bind		= hci_sock_bind,
1989 	.getname	= hci_sock_getname,
1990 	.sendmsg	= hci_sock_sendmsg,
1991 	.recvmsg	= hci_sock_recvmsg,
1992 	.ioctl		= hci_sock_ioctl,
1993 #ifdef CONFIG_COMPAT
1994 	.compat_ioctl	= hci_sock_compat_ioctl,
1995 #endif
1996 	.poll		= datagram_poll,
1997 	.listen		= sock_no_listen,
1998 	.shutdown	= sock_no_shutdown,
1999 	.setsockopt	= hci_sock_setsockopt,
2000 	.getsockopt	= hci_sock_getsockopt,
2001 	.connect	= sock_no_connect,
2002 	.socketpair	= sock_no_socketpair,
2003 	.accept		= sock_no_accept,
2004 	.mmap		= sock_no_mmap
2005 };
2006 
2007 static struct proto hci_sk_proto = {
2008 	.name		= "HCI",
2009 	.owner		= THIS_MODULE,
2010 	.obj_size	= sizeof(struct hci_pinfo)
2011 };
2012 
2013 static int hci_sock_create(struct net *net, struct socket *sock, int protocol,
2014 			   int kern)
2015 {
2016 	struct sock *sk;
2017 
2018 	BT_DBG("sock %p", sock);
2019 
2020 	if (sock->type != SOCK_RAW)
2021 		return -ESOCKTNOSUPPORT;
2022 
2023 	sock->ops = &hci_sock_ops;
2024 
2025 	sk = sk_alloc(net, PF_BLUETOOTH, GFP_ATOMIC, &hci_sk_proto, kern);
2026 	if (!sk)
2027 		return -ENOMEM;
2028 
2029 	sock_init_data(sock, sk);
2030 
2031 	sock_reset_flag(sk, SOCK_ZAPPED);
2032 
2033 	sk->sk_protocol = protocol;
2034 
2035 	sock->state = SS_UNCONNECTED;
2036 	sk->sk_state = BT_OPEN;
2037 
2038 	bt_sock_link(&hci_sk_list, sk);
2039 	return 0;
2040 }
2041 
2042 static const struct net_proto_family hci_sock_family_ops = {
2043 	.family	= PF_BLUETOOTH,
2044 	.owner	= THIS_MODULE,
2045 	.create	= hci_sock_create,
2046 };
2047 
2048 int __init hci_sock_init(void)
2049 {
2050 	int err;
2051 
2052 	BUILD_BUG_ON(sizeof(struct sockaddr_hci) > sizeof(struct sockaddr));
2053 
2054 	err = proto_register(&hci_sk_proto, 0);
2055 	if (err < 0)
2056 		return err;
2057 
2058 	err = bt_sock_register(BTPROTO_HCI, &hci_sock_family_ops);
2059 	if (err < 0) {
2060 		BT_ERR("HCI socket registration failed");
2061 		goto error;
2062 	}
2063 
2064 	err = bt_procfs_init(&init_net, "hci", &hci_sk_list, NULL);
2065 	if (err < 0) {
2066 		BT_ERR("Failed to create HCI proc file");
2067 		bt_sock_unregister(BTPROTO_HCI);
2068 		goto error;
2069 	}
2070 
2071 	BT_INFO("HCI socket layer initialized");
2072 
2073 	return 0;
2074 
2075 error:
2076 	proto_unregister(&hci_sk_proto);
2077 	return err;
2078 }
2079 
2080 void hci_sock_cleanup(void)
2081 {
2082 	bt_procfs_cleanup(&init_net, "hci");
2083 	bt_sock_unregister(BTPROTO_HCI);
2084 	proto_unregister(&hci_sk_proto);
2085 }
2086