1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (C) 2000-2001 Qualcomm Incorporated 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 /* Bluetooth HCI sockets. */ 26 #include <linux/compat.h> 27 #include <linux/export.h> 28 #include <linux/utsname.h> 29 #include <linux/sched.h> 30 #include <asm/unaligned.h> 31 32 #include <net/bluetooth/bluetooth.h> 33 #include <net/bluetooth/hci_core.h> 34 #include <net/bluetooth/hci_mon.h> 35 #include <net/bluetooth/mgmt.h> 36 37 #include "mgmt_util.h" 38 39 static LIST_HEAD(mgmt_chan_list); 40 static DEFINE_MUTEX(mgmt_chan_list_lock); 41 42 static DEFINE_IDA(sock_cookie_ida); 43 44 static atomic_t monitor_promisc = ATOMIC_INIT(0); 45 46 /* ----- HCI socket interface ----- */ 47 48 /* Socket info */ 49 #define hci_pi(sk) ((struct hci_pinfo *) sk) 50 51 struct hci_pinfo { 52 struct bt_sock bt; 53 struct hci_dev *hdev; 54 struct hci_filter filter; 55 __u8 cmsg_mask; 56 unsigned short channel; 57 unsigned long flags; 58 __u32 cookie; 59 char comm[TASK_COMM_LEN]; 60 }; 61 62 static struct hci_dev *hci_hdev_from_sock(struct sock *sk) 63 { 64 struct hci_dev *hdev = hci_pi(sk)->hdev; 65 66 if (!hdev) 67 return ERR_PTR(-EBADFD); 68 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) 69 return ERR_PTR(-EPIPE); 70 return hdev; 71 } 72 73 void hci_sock_set_flag(struct sock *sk, int nr) 74 { 75 set_bit(nr, &hci_pi(sk)->flags); 76 } 77 78 void hci_sock_clear_flag(struct sock *sk, int nr) 79 { 80 clear_bit(nr, &hci_pi(sk)->flags); 81 } 82 83 int hci_sock_test_flag(struct sock *sk, int nr) 84 { 85 return test_bit(nr, &hci_pi(sk)->flags); 86 } 87 88 unsigned short hci_sock_get_channel(struct sock *sk) 89 { 90 return hci_pi(sk)->channel; 91 } 92 93 u32 hci_sock_get_cookie(struct sock *sk) 94 { 95 return hci_pi(sk)->cookie; 96 } 97 98 static bool hci_sock_gen_cookie(struct sock *sk) 99 { 100 int id = hci_pi(sk)->cookie; 101 102 if (!id) { 103 id = ida_simple_get(&sock_cookie_ida, 1, 0, GFP_KERNEL); 104 if (id < 0) 105 id = 0xffffffff; 106 107 hci_pi(sk)->cookie = id; 108 get_task_comm(hci_pi(sk)->comm, current); 109 return true; 110 } 111 112 return false; 113 } 114 115 static void hci_sock_free_cookie(struct sock *sk) 116 { 117 int id = hci_pi(sk)->cookie; 118 119 if (id) { 120 hci_pi(sk)->cookie = 0xffffffff; 121 ida_simple_remove(&sock_cookie_ida, id); 122 } 123 } 124 125 static inline int hci_test_bit(int nr, const void *addr) 126 { 127 return *((const __u32 *) addr + (nr >> 5)) & ((__u32) 1 << (nr & 31)); 128 } 129 130 /* Security filter */ 131 #define HCI_SFLT_MAX_OGF 5 132 133 struct hci_sec_filter { 134 __u32 type_mask; 135 __u32 event_mask[2]; 136 __u32 ocf_mask[HCI_SFLT_MAX_OGF + 1][4]; 137 }; 138 139 static const struct hci_sec_filter hci_sec_filter = { 140 /* Packet types */ 141 0x10, 142 /* Events */ 143 { 0x1000d9fe, 0x0000b00c }, 144 /* Commands */ 145 { 146 { 0x0 }, 147 /* OGF_LINK_CTL */ 148 { 0xbe000006, 0x00000001, 0x00000000, 0x00 }, 149 /* OGF_LINK_POLICY */ 150 { 0x00005200, 0x00000000, 0x00000000, 0x00 }, 151 /* OGF_HOST_CTL */ 152 { 0xaab00200, 0x2b402aaa, 0x05220154, 0x00 }, 153 /* OGF_INFO_PARAM */ 154 { 0x000002be, 0x00000000, 0x00000000, 0x00 }, 155 /* OGF_STATUS_PARAM */ 156 { 0x000000ea, 0x00000000, 0x00000000, 0x00 } 157 } 158 }; 159 160 static struct bt_sock_list hci_sk_list = { 161 .lock = __RW_LOCK_UNLOCKED(hci_sk_list.lock) 162 }; 163 164 static bool is_filtered_packet(struct sock *sk, struct sk_buff *skb) 165 { 166 struct hci_filter *flt; 167 int flt_type, flt_event; 168 169 /* Apply filter */ 170 flt = &hci_pi(sk)->filter; 171 172 flt_type = hci_skb_pkt_type(skb) & HCI_FLT_TYPE_BITS; 173 174 if (!test_bit(flt_type, &flt->type_mask)) 175 return true; 176 177 /* Extra filter for event packets only */ 178 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT) 179 return false; 180 181 flt_event = (*(__u8 *)skb->data & HCI_FLT_EVENT_BITS); 182 183 if (!hci_test_bit(flt_event, &flt->event_mask)) 184 return true; 185 186 /* Check filter only when opcode is set */ 187 if (!flt->opcode) 188 return false; 189 190 if (flt_event == HCI_EV_CMD_COMPLETE && 191 flt->opcode != get_unaligned((__le16 *)(skb->data + 3))) 192 return true; 193 194 if (flt_event == HCI_EV_CMD_STATUS && 195 flt->opcode != get_unaligned((__le16 *)(skb->data + 4))) 196 return true; 197 198 return false; 199 } 200 201 /* Send frame to RAW socket */ 202 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb) 203 { 204 struct sock *sk; 205 struct sk_buff *skb_copy = NULL; 206 207 BT_DBG("hdev %p len %d", hdev, skb->len); 208 209 read_lock(&hci_sk_list.lock); 210 211 sk_for_each(sk, &hci_sk_list.head) { 212 struct sk_buff *nskb; 213 214 if (sk->sk_state != BT_BOUND || hci_pi(sk)->hdev != hdev) 215 continue; 216 217 /* Don't send frame to the socket it came from */ 218 if (skb->sk == sk) 219 continue; 220 221 if (hci_pi(sk)->channel == HCI_CHANNEL_RAW) { 222 if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT && 223 hci_skb_pkt_type(skb) != HCI_EVENT_PKT && 224 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 225 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT && 226 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) 227 continue; 228 if (is_filtered_packet(sk, skb)) 229 continue; 230 } else if (hci_pi(sk)->channel == HCI_CHANNEL_USER) { 231 if (!bt_cb(skb)->incoming) 232 continue; 233 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT && 234 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 235 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT && 236 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) 237 continue; 238 } else { 239 /* Don't send frame to other channel types */ 240 continue; 241 } 242 243 if (!skb_copy) { 244 /* Create a private copy with headroom */ 245 skb_copy = __pskb_copy_fclone(skb, 1, GFP_ATOMIC, true); 246 if (!skb_copy) 247 continue; 248 249 /* Put type byte before the data */ 250 memcpy(skb_push(skb_copy, 1), &hci_skb_pkt_type(skb), 1); 251 } 252 253 nskb = skb_clone(skb_copy, GFP_ATOMIC); 254 if (!nskb) 255 continue; 256 257 if (sock_queue_rcv_skb(sk, nskb)) 258 kfree_skb(nskb); 259 } 260 261 read_unlock(&hci_sk_list.lock); 262 263 kfree_skb(skb_copy); 264 } 265 266 /* Send frame to sockets with specific channel */ 267 static void __hci_send_to_channel(unsigned short channel, struct sk_buff *skb, 268 int flag, struct sock *skip_sk) 269 { 270 struct sock *sk; 271 272 BT_DBG("channel %u len %d", channel, skb->len); 273 274 sk_for_each(sk, &hci_sk_list.head) { 275 struct sk_buff *nskb; 276 277 /* Ignore socket without the flag set */ 278 if (!hci_sock_test_flag(sk, flag)) 279 continue; 280 281 /* Skip the original socket */ 282 if (sk == skip_sk) 283 continue; 284 285 if (sk->sk_state != BT_BOUND) 286 continue; 287 288 if (hci_pi(sk)->channel != channel) 289 continue; 290 291 nskb = skb_clone(skb, GFP_ATOMIC); 292 if (!nskb) 293 continue; 294 295 if (sock_queue_rcv_skb(sk, nskb)) 296 kfree_skb(nskb); 297 } 298 299 } 300 301 void hci_send_to_channel(unsigned short channel, struct sk_buff *skb, 302 int flag, struct sock *skip_sk) 303 { 304 read_lock(&hci_sk_list.lock); 305 __hci_send_to_channel(channel, skb, flag, skip_sk); 306 read_unlock(&hci_sk_list.lock); 307 } 308 309 /* Send frame to monitor socket */ 310 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb) 311 { 312 struct sk_buff *skb_copy = NULL; 313 struct hci_mon_hdr *hdr; 314 __le16 opcode; 315 316 if (!atomic_read(&monitor_promisc)) 317 return; 318 319 BT_DBG("hdev %p len %d", hdev, skb->len); 320 321 switch (hci_skb_pkt_type(skb)) { 322 case HCI_COMMAND_PKT: 323 opcode = cpu_to_le16(HCI_MON_COMMAND_PKT); 324 break; 325 case HCI_EVENT_PKT: 326 opcode = cpu_to_le16(HCI_MON_EVENT_PKT); 327 break; 328 case HCI_ACLDATA_PKT: 329 if (bt_cb(skb)->incoming) 330 opcode = cpu_to_le16(HCI_MON_ACL_RX_PKT); 331 else 332 opcode = cpu_to_le16(HCI_MON_ACL_TX_PKT); 333 break; 334 case HCI_SCODATA_PKT: 335 if (bt_cb(skb)->incoming) 336 opcode = cpu_to_le16(HCI_MON_SCO_RX_PKT); 337 else 338 opcode = cpu_to_le16(HCI_MON_SCO_TX_PKT); 339 break; 340 case HCI_ISODATA_PKT: 341 if (bt_cb(skb)->incoming) 342 opcode = cpu_to_le16(HCI_MON_ISO_RX_PKT); 343 else 344 opcode = cpu_to_le16(HCI_MON_ISO_TX_PKT); 345 break; 346 case HCI_DIAG_PKT: 347 opcode = cpu_to_le16(HCI_MON_VENDOR_DIAG); 348 break; 349 default: 350 return; 351 } 352 353 /* Create a private copy with headroom */ 354 skb_copy = __pskb_copy_fclone(skb, HCI_MON_HDR_SIZE, GFP_ATOMIC, true); 355 if (!skb_copy) 356 return; 357 358 /* Put header before the data */ 359 hdr = skb_push(skb_copy, HCI_MON_HDR_SIZE); 360 hdr->opcode = opcode; 361 hdr->index = cpu_to_le16(hdev->id); 362 hdr->len = cpu_to_le16(skb->len); 363 364 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb_copy, 365 HCI_SOCK_TRUSTED, NULL); 366 kfree_skb(skb_copy); 367 } 368 369 void hci_send_monitor_ctrl_event(struct hci_dev *hdev, u16 event, 370 void *data, u16 data_len, ktime_t tstamp, 371 int flag, struct sock *skip_sk) 372 { 373 struct sock *sk; 374 __le16 index; 375 376 if (hdev) 377 index = cpu_to_le16(hdev->id); 378 else 379 index = cpu_to_le16(MGMT_INDEX_NONE); 380 381 read_lock(&hci_sk_list.lock); 382 383 sk_for_each(sk, &hci_sk_list.head) { 384 struct hci_mon_hdr *hdr; 385 struct sk_buff *skb; 386 387 if (hci_pi(sk)->channel != HCI_CHANNEL_CONTROL) 388 continue; 389 390 /* Ignore socket without the flag set */ 391 if (!hci_sock_test_flag(sk, flag)) 392 continue; 393 394 /* Skip the original socket */ 395 if (sk == skip_sk) 396 continue; 397 398 skb = bt_skb_alloc(6 + data_len, GFP_ATOMIC); 399 if (!skb) 400 continue; 401 402 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4)); 403 put_unaligned_le16(event, skb_put(skb, 2)); 404 405 if (data) 406 skb_put_data(skb, data, data_len); 407 408 skb->tstamp = tstamp; 409 410 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 411 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_EVENT); 412 hdr->index = index; 413 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 414 415 __hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 416 HCI_SOCK_TRUSTED, NULL); 417 kfree_skb(skb); 418 } 419 420 read_unlock(&hci_sk_list.lock); 421 } 422 423 static struct sk_buff *create_monitor_event(struct hci_dev *hdev, int event) 424 { 425 struct hci_mon_hdr *hdr; 426 struct hci_mon_new_index *ni; 427 struct hci_mon_index_info *ii; 428 struct sk_buff *skb; 429 __le16 opcode; 430 431 switch (event) { 432 case HCI_DEV_REG: 433 skb = bt_skb_alloc(HCI_MON_NEW_INDEX_SIZE, GFP_ATOMIC); 434 if (!skb) 435 return NULL; 436 437 ni = skb_put(skb, HCI_MON_NEW_INDEX_SIZE); 438 ni->type = hdev->dev_type; 439 ni->bus = hdev->bus; 440 bacpy(&ni->bdaddr, &hdev->bdaddr); 441 memcpy(ni->name, hdev->name, 8); 442 443 opcode = cpu_to_le16(HCI_MON_NEW_INDEX); 444 break; 445 446 case HCI_DEV_UNREG: 447 skb = bt_skb_alloc(0, GFP_ATOMIC); 448 if (!skb) 449 return NULL; 450 451 opcode = cpu_to_le16(HCI_MON_DEL_INDEX); 452 break; 453 454 case HCI_DEV_SETUP: 455 if (hdev->manufacturer == 0xffff) 456 return NULL; 457 fallthrough; 458 459 case HCI_DEV_UP: 460 skb = bt_skb_alloc(HCI_MON_INDEX_INFO_SIZE, GFP_ATOMIC); 461 if (!skb) 462 return NULL; 463 464 ii = skb_put(skb, HCI_MON_INDEX_INFO_SIZE); 465 bacpy(&ii->bdaddr, &hdev->bdaddr); 466 ii->manufacturer = cpu_to_le16(hdev->manufacturer); 467 468 opcode = cpu_to_le16(HCI_MON_INDEX_INFO); 469 break; 470 471 case HCI_DEV_OPEN: 472 skb = bt_skb_alloc(0, GFP_ATOMIC); 473 if (!skb) 474 return NULL; 475 476 opcode = cpu_to_le16(HCI_MON_OPEN_INDEX); 477 break; 478 479 case HCI_DEV_CLOSE: 480 skb = bt_skb_alloc(0, GFP_ATOMIC); 481 if (!skb) 482 return NULL; 483 484 opcode = cpu_to_le16(HCI_MON_CLOSE_INDEX); 485 break; 486 487 default: 488 return NULL; 489 } 490 491 __net_timestamp(skb); 492 493 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 494 hdr->opcode = opcode; 495 hdr->index = cpu_to_le16(hdev->id); 496 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 497 498 return skb; 499 } 500 501 static struct sk_buff *create_monitor_ctrl_open(struct sock *sk) 502 { 503 struct hci_mon_hdr *hdr; 504 struct sk_buff *skb; 505 u16 format; 506 u8 ver[3]; 507 u32 flags; 508 509 /* No message needed when cookie is not present */ 510 if (!hci_pi(sk)->cookie) 511 return NULL; 512 513 switch (hci_pi(sk)->channel) { 514 case HCI_CHANNEL_RAW: 515 format = 0x0000; 516 ver[0] = BT_SUBSYS_VERSION; 517 put_unaligned_le16(BT_SUBSYS_REVISION, ver + 1); 518 break; 519 case HCI_CHANNEL_USER: 520 format = 0x0001; 521 ver[0] = BT_SUBSYS_VERSION; 522 put_unaligned_le16(BT_SUBSYS_REVISION, ver + 1); 523 break; 524 case HCI_CHANNEL_CONTROL: 525 format = 0x0002; 526 mgmt_fill_version_info(ver); 527 break; 528 default: 529 /* No message for unsupported format */ 530 return NULL; 531 } 532 533 skb = bt_skb_alloc(14 + TASK_COMM_LEN , GFP_ATOMIC); 534 if (!skb) 535 return NULL; 536 537 flags = hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) ? 0x1 : 0x0; 538 539 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4)); 540 put_unaligned_le16(format, skb_put(skb, 2)); 541 skb_put_data(skb, ver, sizeof(ver)); 542 put_unaligned_le32(flags, skb_put(skb, 4)); 543 skb_put_u8(skb, TASK_COMM_LEN); 544 skb_put_data(skb, hci_pi(sk)->comm, TASK_COMM_LEN); 545 546 __net_timestamp(skb); 547 548 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 549 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_OPEN); 550 if (hci_pi(sk)->hdev) 551 hdr->index = cpu_to_le16(hci_pi(sk)->hdev->id); 552 else 553 hdr->index = cpu_to_le16(HCI_DEV_NONE); 554 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 555 556 return skb; 557 } 558 559 static struct sk_buff *create_monitor_ctrl_close(struct sock *sk) 560 { 561 struct hci_mon_hdr *hdr; 562 struct sk_buff *skb; 563 564 /* No message needed when cookie is not present */ 565 if (!hci_pi(sk)->cookie) 566 return NULL; 567 568 switch (hci_pi(sk)->channel) { 569 case HCI_CHANNEL_RAW: 570 case HCI_CHANNEL_USER: 571 case HCI_CHANNEL_CONTROL: 572 break; 573 default: 574 /* No message for unsupported format */ 575 return NULL; 576 } 577 578 skb = bt_skb_alloc(4, GFP_ATOMIC); 579 if (!skb) 580 return NULL; 581 582 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4)); 583 584 __net_timestamp(skb); 585 586 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 587 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_CLOSE); 588 if (hci_pi(sk)->hdev) 589 hdr->index = cpu_to_le16(hci_pi(sk)->hdev->id); 590 else 591 hdr->index = cpu_to_le16(HCI_DEV_NONE); 592 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 593 594 return skb; 595 } 596 597 static struct sk_buff *create_monitor_ctrl_command(struct sock *sk, u16 index, 598 u16 opcode, u16 len, 599 const void *buf) 600 { 601 struct hci_mon_hdr *hdr; 602 struct sk_buff *skb; 603 604 skb = bt_skb_alloc(6 + len, GFP_ATOMIC); 605 if (!skb) 606 return NULL; 607 608 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4)); 609 put_unaligned_le16(opcode, skb_put(skb, 2)); 610 611 if (buf) 612 skb_put_data(skb, buf, len); 613 614 __net_timestamp(skb); 615 616 hdr = skb_push(skb, HCI_MON_HDR_SIZE); 617 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_COMMAND); 618 hdr->index = cpu_to_le16(index); 619 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 620 621 return skb; 622 } 623 624 static void __printf(2, 3) 625 send_monitor_note(struct sock *sk, const char *fmt, ...) 626 { 627 size_t len; 628 struct hci_mon_hdr *hdr; 629 struct sk_buff *skb; 630 va_list args; 631 632 va_start(args, fmt); 633 len = vsnprintf(NULL, 0, fmt, args); 634 va_end(args); 635 636 skb = bt_skb_alloc(len + 1, GFP_ATOMIC); 637 if (!skb) 638 return; 639 640 va_start(args, fmt); 641 vsprintf(skb_put(skb, len), fmt, args); 642 *(u8 *)skb_put(skb, 1) = 0; 643 va_end(args); 644 645 __net_timestamp(skb); 646 647 hdr = (void *)skb_push(skb, HCI_MON_HDR_SIZE); 648 hdr->opcode = cpu_to_le16(HCI_MON_SYSTEM_NOTE); 649 hdr->index = cpu_to_le16(HCI_DEV_NONE); 650 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE); 651 652 if (sock_queue_rcv_skb(sk, skb)) 653 kfree_skb(skb); 654 } 655 656 static void send_monitor_replay(struct sock *sk) 657 { 658 struct hci_dev *hdev; 659 660 read_lock(&hci_dev_list_lock); 661 662 list_for_each_entry(hdev, &hci_dev_list, list) { 663 struct sk_buff *skb; 664 665 skb = create_monitor_event(hdev, HCI_DEV_REG); 666 if (!skb) 667 continue; 668 669 if (sock_queue_rcv_skb(sk, skb)) 670 kfree_skb(skb); 671 672 if (!test_bit(HCI_RUNNING, &hdev->flags)) 673 continue; 674 675 skb = create_monitor_event(hdev, HCI_DEV_OPEN); 676 if (!skb) 677 continue; 678 679 if (sock_queue_rcv_skb(sk, skb)) 680 kfree_skb(skb); 681 682 if (test_bit(HCI_UP, &hdev->flags)) 683 skb = create_monitor_event(hdev, HCI_DEV_UP); 684 else if (hci_dev_test_flag(hdev, HCI_SETUP)) 685 skb = create_monitor_event(hdev, HCI_DEV_SETUP); 686 else 687 skb = NULL; 688 689 if (skb) { 690 if (sock_queue_rcv_skb(sk, skb)) 691 kfree_skb(skb); 692 } 693 } 694 695 read_unlock(&hci_dev_list_lock); 696 } 697 698 static void send_monitor_control_replay(struct sock *mon_sk) 699 { 700 struct sock *sk; 701 702 read_lock(&hci_sk_list.lock); 703 704 sk_for_each(sk, &hci_sk_list.head) { 705 struct sk_buff *skb; 706 707 skb = create_monitor_ctrl_open(sk); 708 if (!skb) 709 continue; 710 711 if (sock_queue_rcv_skb(mon_sk, skb)) 712 kfree_skb(skb); 713 } 714 715 read_unlock(&hci_sk_list.lock); 716 } 717 718 /* Generate internal stack event */ 719 static void hci_si_event(struct hci_dev *hdev, int type, int dlen, void *data) 720 { 721 struct hci_event_hdr *hdr; 722 struct hci_ev_stack_internal *ev; 723 struct sk_buff *skb; 724 725 skb = bt_skb_alloc(HCI_EVENT_HDR_SIZE + sizeof(*ev) + dlen, GFP_ATOMIC); 726 if (!skb) 727 return; 728 729 hdr = skb_put(skb, HCI_EVENT_HDR_SIZE); 730 hdr->evt = HCI_EV_STACK_INTERNAL; 731 hdr->plen = sizeof(*ev) + dlen; 732 733 ev = skb_put(skb, sizeof(*ev) + dlen); 734 ev->type = type; 735 memcpy(ev->data, data, dlen); 736 737 bt_cb(skb)->incoming = 1; 738 __net_timestamp(skb); 739 740 hci_skb_pkt_type(skb) = HCI_EVENT_PKT; 741 hci_send_to_sock(hdev, skb); 742 kfree_skb(skb); 743 } 744 745 void hci_sock_dev_event(struct hci_dev *hdev, int event) 746 { 747 BT_DBG("hdev %s event %d", hdev->name, event); 748 749 if (atomic_read(&monitor_promisc)) { 750 struct sk_buff *skb; 751 752 /* Send event to monitor */ 753 skb = create_monitor_event(hdev, event); 754 if (skb) { 755 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 756 HCI_SOCK_TRUSTED, NULL); 757 kfree_skb(skb); 758 } 759 } 760 761 if (event <= HCI_DEV_DOWN) { 762 struct hci_ev_si_device ev; 763 764 /* Send event to sockets */ 765 ev.event = event; 766 ev.dev_id = hdev->id; 767 hci_si_event(NULL, HCI_EV_SI_DEVICE, sizeof(ev), &ev); 768 } 769 770 if (event == HCI_DEV_UNREG) { 771 struct sock *sk; 772 773 /* Wake up sockets using this dead device */ 774 read_lock(&hci_sk_list.lock); 775 sk_for_each(sk, &hci_sk_list.head) { 776 if (hci_pi(sk)->hdev == hdev) { 777 sk->sk_err = EPIPE; 778 sk->sk_state_change(sk); 779 } 780 } 781 read_unlock(&hci_sk_list.lock); 782 } 783 } 784 785 static struct hci_mgmt_chan *__hci_mgmt_chan_find(unsigned short channel) 786 { 787 struct hci_mgmt_chan *c; 788 789 list_for_each_entry(c, &mgmt_chan_list, list) { 790 if (c->channel == channel) 791 return c; 792 } 793 794 return NULL; 795 } 796 797 static struct hci_mgmt_chan *hci_mgmt_chan_find(unsigned short channel) 798 { 799 struct hci_mgmt_chan *c; 800 801 mutex_lock(&mgmt_chan_list_lock); 802 c = __hci_mgmt_chan_find(channel); 803 mutex_unlock(&mgmt_chan_list_lock); 804 805 return c; 806 } 807 808 int hci_mgmt_chan_register(struct hci_mgmt_chan *c) 809 { 810 if (c->channel < HCI_CHANNEL_CONTROL) 811 return -EINVAL; 812 813 mutex_lock(&mgmt_chan_list_lock); 814 if (__hci_mgmt_chan_find(c->channel)) { 815 mutex_unlock(&mgmt_chan_list_lock); 816 return -EALREADY; 817 } 818 819 list_add_tail(&c->list, &mgmt_chan_list); 820 821 mutex_unlock(&mgmt_chan_list_lock); 822 823 return 0; 824 } 825 EXPORT_SYMBOL(hci_mgmt_chan_register); 826 827 void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c) 828 { 829 mutex_lock(&mgmt_chan_list_lock); 830 list_del(&c->list); 831 mutex_unlock(&mgmt_chan_list_lock); 832 } 833 EXPORT_SYMBOL(hci_mgmt_chan_unregister); 834 835 static int hci_sock_release(struct socket *sock) 836 { 837 struct sock *sk = sock->sk; 838 struct hci_dev *hdev; 839 struct sk_buff *skb; 840 841 BT_DBG("sock %p sk %p", sock, sk); 842 843 if (!sk) 844 return 0; 845 846 lock_sock(sk); 847 848 switch (hci_pi(sk)->channel) { 849 case HCI_CHANNEL_MONITOR: 850 atomic_dec(&monitor_promisc); 851 break; 852 case HCI_CHANNEL_RAW: 853 case HCI_CHANNEL_USER: 854 case HCI_CHANNEL_CONTROL: 855 /* Send event to monitor */ 856 skb = create_monitor_ctrl_close(sk); 857 if (skb) { 858 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 859 HCI_SOCK_TRUSTED, NULL); 860 kfree_skb(skb); 861 } 862 863 hci_sock_free_cookie(sk); 864 break; 865 } 866 867 bt_sock_unlink(&hci_sk_list, sk); 868 869 hdev = hci_pi(sk)->hdev; 870 if (hdev) { 871 if (hci_pi(sk)->channel == HCI_CHANNEL_USER) { 872 /* When releasing a user channel exclusive access, 873 * call hci_dev_do_close directly instead of calling 874 * hci_dev_close to ensure the exclusive access will 875 * be released and the controller brought back down. 876 * 877 * The checking of HCI_AUTO_OFF is not needed in this 878 * case since it will have been cleared already when 879 * opening the user channel. 880 */ 881 hci_dev_do_close(hdev); 882 hci_dev_clear_flag(hdev, HCI_USER_CHANNEL); 883 mgmt_index_added(hdev); 884 } 885 886 atomic_dec(&hdev->promisc); 887 hci_dev_put(hdev); 888 } 889 890 sock_orphan(sk); 891 892 skb_queue_purge(&sk->sk_receive_queue); 893 skb_queue_purge(&sk->sk_write_queue); 894 895 release_sock(sk); 896 sock_put(sk); 897 return 0; 898 } 899 900 static int hci_sock_reject_list_add(struct hci_dev *hdev, void __user *arg) 901 { 902 bdaddr_t bdaddr; 903 int err; 904 905 if (copy_from_user(&bdaddr, arg, sizeof(bdaddr))) 906 return -EFAULT; 907 908 hci_dev_lock(hdev); 909 910 err = hci_bdaddr_list_add(&hdev->reject_list, &bdaddr, BDADDR_BREDR); 911 912 hci_dev_unlock(hdev); 913 914 return err; 915 } 916 917 static int hci_sock_reject_list_del(struct hci_dev *hdev, void __user *arg) 918 { 919 bdaddr_t bdaddr; 920 int err; 921 922 if (copy_from_user(&bdaddr, arg, sizeof(bdaddr))) 923 return -EFAULT; 924 925 hci_dev_lock(hdev); 926 927 err = hci_bdaddr_list_del(&hdev->reject_list, &bdaddr, BDADDR_BREDR); 928 929 hci_dev_unlock(hdev); 930 931 return err; 932 } 933 934 /* Ioctls that require bound socket */ 935 static int hci_sock_bound_ioctl(struct sock *sk, unsigned int cmd, 936 unsigned long arg) 937 { 938 struct hci_dev *hdev = hci_hdev_from_sock(sk); 939 940 if (IS_ERR(hdev)) 941 return PTR_ERR(hdev); 942 943 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) 944 return -EBUSY; 945 946 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 947 return -EOPNOTSUPP; 948 949 if (hdev->dev_type != HCI_PRIMARY) 950 return -EOPNOTSUPP; 951 952 switch (cmd) { 953 case HCISETRAW: 954 if (!capable(CAP_NET_ADMIN)) 955 return -EPERM; 956 return -EOPNOTSUPP; 957 958 case HCIGETCONNINFO: 959 return hci_get_conn_info(hdev, (void __user *)arg); 960 961 case HCIGETAUTHINFO: 962 return hci_get_auth_info(hdev, (void __user *)arg); 963 964 case HCIBLOCKADDR: 965 if (!capable(CAP_NET_ADMIN)) 966 return -EPERM; 967 return hci_sock_reject_list_add(hdev, (void __user *)arg); 968 969 case HCIUNBLOCKADDR: 970 if (!capable(CAP_NET_ADMIN)) 971 return -EPERM; 972 return hci_sock_reject_list_del(hdev, (void __user *)arg); 973 } 974 975 return -ENOIOCTLCMD; 976 } 977 978 static int hci_sock_ioctl(struct socket *sock, unsigned int cmd, 979 unsigned long arg) 980 { 981 void __user *argp = (void __user *)arg; 982 struct sock *sk = sock->sk; 983 int err; 984 985 BT_DBG("cmd %x arg %lx", cmd, arg); 986 987 lock_sock(sk); 988 989 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) { 990 err = -EBADFD; 991 goto done; 992 } 993 994 /* When calling an ioctl on an unbound raw socket, then ensure 995 * that the monitor gets informed. Ensure that the resulting event 996 * is only send once by checking if the cookie exists or not. The 997 * socket cookie will be only ever generated once for the lifetime 998 * of a given socket. 999 */ 1000 if (hci_sock_gen_cookie(sk)) { 1001 struct sk_buff *skb; 1002 1003 if (capable(CAP_NET_ADMIN)) 1004 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 1005 1006 /* Send event to monitor */ 1007 skb = create_monitor_ctrl_open(sk); 1008 if (skb) { 1009 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1010 HCI_SOCK_TRUSTED, NULL); 1011 kfree_skb(skb); 1012 } 1013 } 1014 1015 release_sock(sk); 1016 1017 switch (cmd) { 1018 case HCIGETDEVLIST: 1019 return hci_get_dev_list(argp); 1020 1021 case HCIGETDEVINFO: 1022 return hci_get_dev_info(argp); 1023 1024 case HCIGETCONNLIST: 1025 return hci_get_conn_list(argp); 1026 1027 case HCIDEVUP: 1028 if (!capable(CAP_NET_ADMIN)) 1029 return -EPERM; 1030 return hci_dev_open(arg); 1031 1032 case HCIDEVDOWN: 1033 if (!capable(CAP_NET_ADMIN)) 1034 return -EPERM; 1035 return hci_dev_close(arg); 1036 1037 case HCIDEVRESET: 1038 if (!capable(CAP_NET_ADMIN)) 1039 return -EPERM; 1040 return hci_dev_reset(arg); 1041 1042 case HCIDEVRESTAT: 1043 if (!capable(CAP_NET_ADMIN)) 1044 return -EPERM; 1045 return hci_dev_reset_stat(arg); 1046 1047 case HCISETSCAN: 1048 case HCISETAUTH: 1049 case HCISETENCRYPT: 1050 case HCISETPTYPE: 1051 case HCISETLINKPOL: 1052 case HCISETLINKMODE: 1053 case HCISETACLMTU: 1054 case HCISETSCOMTU: 1055 if (!capable(CAP_NET_ADMIN)) 1056 return -EPERM; 1057 return hci_dev_cmd(cmd, argp); 1058 1059 case HCIINQUIRY: 1060 return hci_inquiry(argp); 1061 } 1062 1063 lock_sock(sk); 1064 1065 err = hci_sock_bound_ioctl(sk, cmd, arg); 1066 1067 done: 1068 release_sock(sk); 1069 return err; 1070 } 1071 1072 #ifdef CONFIG_COMPAT 1073 static int hci_sock_compat_ioctl(struct socket *sock, unsigned int cmd, 1074 unsigned long arg) 1075 { 1076 switch (cmd) { 1077 case HCIDEVUP: 1078 case HCIDEVDOWN: 1079 case HCIDEVRESET: 1080 case HCIDEVRESTAT: 1081 return hci_sock_ioctl(sock, cmd, arg); 1082 } 1083 1084 return hci_sock_ioctl(sock, cmd, (unsigned long)compat_ptr(arg)); 1085 } 1086 #endif 1087 1088 static int hci_sock_bind(struct socket *sock, struct sockaddr *addr, 1089 int addr_len) 1090 { 1091 struct sockaddr_hci haddr; 1092 struct sock *sk = sock->sk; 1093 struct hci_dev *hdev = NULL; 1094 struct sk_buff *skb; 1095 int len, err = 0; 1096 1097 BT_DBG("sock %p sk %p", sock, sk); 1098 1099 if (!addr) 1100 return -EINVAL; 1101 1102 memset(&haddr, 0, sizeof(haddr)); 1103 len = min_t(unsigned int, sizeof(haddr), addr_len); 1104 memcpy(&haddr, addr, len); 1105 1106 if (haddr.hci_family != AF_BLUETOOTH) 1107 return -EINVAL; 1108 1109 lock_sock(sk); 1110 1111 /* Allow detaching from dead device and attaching to alive device, if 1112 * the caller wants to re-bind (instead of close) this socket in 1113 * response to hci_sock_dev_event(HCI_DEV_UNREG) notification. 1114 */ 1115 hdev = hci_pi(sk)->hdev; 1116 if (hdev && hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 1117 hci_pi(sk)->hdev = NULL; 1118 sk->sk_state = BT_OPEN; 1119 hci_dev_put(hdev); 1120 } 1121 hdev = NULL; 1122 1123 if (sk->sk_state == BT_BOUND) { 1124 err = -EALREADY; 1125 goto done; 1126 } 1127 1128 switch (haddr.hci_channel) { 1129 case HCI_CHANNEL_RAW: 1130 if (hci_pi(sk)->hdev) { 1131 err = -EALREADY; 1132 goto done; 1133 } 1134 1135 if (haddr.hci_dev != HCI_DEV_NONE) { 1136 hdev = hci_dev_get(haddr.hci_dev); 1137 if (!hdev) { 1138 err = -ENODEV; 1139 goto done; 1140 } 1141 1142 atomic_inc(&hdev->promisc); 1143 } 1144 1145 hci_pi(sk)->channel = haddr.hci_channel; 1146 1147 if (!hci_sock_gen_cookie(sk)) { 1148 /* In the case when a cookie has already been assigned, 1149 * then there has been already an ioctl issued against 1150 * an unbound socket and with that triggered an open 1151 * notification. Send a close notification first to 1152 * allow the state transition to bounded. 1153 */ 1154 skb = create_monitor_ctrl_close(sk); 1155 if (skb) { 1156 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1157 HCI_SOCK_TRUSTED, NULL); 1158 kfree_skb(skb); 1159 } 1160 } 1161 1162 if (capable(CAP_NET_ADMIN)) 1163 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 1164 1165 hci_pi(sk)->hdev = hdev; 1166 1167 /* Send event to monitor */ 1168 skb = create_monitor_ctrl_open(sk); 1169 if (skb) { 1170 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1171 HCI_SOCK_TRUSTED, NULL); 1172 kfree_skb(skb); 1173 } 1174 break; 1175 1176 case HCI_CHANNEL_USER: 1177 if (hci_pi(sk)->hdev) { 1178 err = -EALREADY; 1179 goto done; 1180 } 1181 1182 if (haddr.hci_dev == HCI_DEV_NONE) { 1183 err = -EINVAL; 1184 goto done; 1185 } 1186 1187 if (!capable(CAP_NET_ADMIN)) { 1188 err = -EPERM; 1189 goto done; 1190 } 1191 1192 hdev = hci_dev_get(haddr.hci_dev); 1193 if (!hdev) { 1194 err = -ENODEV; 1195 goto done; 1196 } 1197 1198 if (test_bit(HCI_INIT, &hdev->flags) || 1199 hci_dev_test_flag(hdev, HCI_SETUP) || 1200 hci_dev_test_flag(hdev, HCI_CONFIG) || 1201 (!hci_dev_test_flag(hdev, HCI_AUTO_OFF) && 1202 test_bit(HCI_UP, &hdev->flags))) { 1203 err = -EBUSY; 1204 hci_dev_put(hdev); 1205 goto done; 1206 } 1207 1208 if (hci_dev_test_and_set_flag(hdev, HCI_USER_CHANNEL)) { 1209 err = -EUSERS; 1210 hci_dev_put(hdev); 1211 goto done; 1212 } 1213 1214 mgmt_index_removed(hdev); 1215 1216 err = hci_dev_open(hdev->id); 1217 if (err) { 1218 if (err == -EALREADY) { 1219 /* In case the transport is already up and 1220 * running, clear the error here. 1221 * 1222 * This can happen when opening a user 1223 * channel and HCI_AUTO_OFF grace period 1224 * is still active. 1225 */ 1226 err = 0; 1227 } else { 1228 hci_dev_clear_flag(hdev, HCI_USER_CHANNEL); 1229 mgmt_index_added(hdev); 1230 hci_dev_put(hdev); 1231 goto done; 1232 } 1233 } 1234 1235 hci_pi(sk)->channel = haddr.hci_channel; 1236 1237 if (!hci_sock_gen_cookie(sk)) { 1238 /* In the case when a cookie has already been assigned, 1239 * this socket will transition from a raw socket into 1240 * a user channel socket. For a clean transition, send 1241 * the close notification first. 1242 */ 1243 skb = create_monitor_ctrl_close(sk); 1244 if (skb) { 1245 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1246 HCI_SOCK_TRUSTED, NULL); 1247 kfree_skb(skb); 1248 } 1249 } 1250 1251 /* The user channel is restricted to CAP_NET_ADMIN 1252 * capabilities and with that implicitly trusted. 1253 */ 1254 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 1255 1256 hci_pi(sk)->hdev = hdev; 1257 1258 /* Send event to monitor */ 1259 skb = create_monitor_ctrl_open(sk); 1260 if (skb) { 1261 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1262 HCI_SOCK_TRUSTED, NULL); 1263 kfree_skb(skb); 1264 } 1265 1266 atomic_inc(&hdev->promisc); 1267 break; 1268 1269 case HCI_CHANNEL_MONITOR: 1270 if (haddr.hci_dev != HCI_DEV_NONE) { 1271 err = -EINVAL; 1272 goto done; 1273 } 1274 1275 if (!capable(CAP_NET_RAW)) { 1276 err = -EPERM; 1277 goto done; 1278 } 1279 1280 hci_pi(sk)->channel = haddr.hci_channel; 1281 1282 /* The monitor interface is restricted to CAP_NET_RAW 1283 * capabilities and with that implicitly trusted. 1284 */ 1285 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 1286 1287 send_monitor_note(sk, "Linux version %s (%s)", 1288 init_utsname()->release, 1289 init_utsname()->machine); 1290 send_monitor_note(sk, "Bluetooth subsystem version %u.%u", 1291 BT_SUBSYS_VERSION, BT_SUBSYS_REVISION); 1292 send_monitor_replay(sk); 1293 send_monitor_control_replay(sk); 1294 1295 atomic_inc(&monitor_promisc); 1296 break; 1297 1298 case HCI_CHANNEL_LOGGING: 1299 if (haddr.hci_dev != HCI_DEV_NONE) { 1300 err = -EINVAL; 1301 goto done; 1302 } 1303 1304 if (!capable(CAP_NET_ADMIN)) { 1305 err = -EPERM; 1306 goto done; 1307 } 1308 1309 hci_pi(sk)->channel = haddr.hci_channel; 1310 break; 1311 1312 default: 1313 if (!hci_mgmt_chan_find(haddr.hci_channel)) { 1314 err = -EINVAL; 1315 goto done; 1316 } 1317 1318 if (haddr.hci_dev != HCI_DEV_NONE) { 1319 err = -EINVAL; 1320 goto done; 1321 } 1322 1323 /* Users with CAP_NET_ADMIN capabilities are allowed 1324 * access to all management commands and events. For 1325 * untrusted users the interface is restricted and 1326 * also only untrusted events are sent. 1327 */ 1328 if (capable(CAP_NET_ADMIN)) 1329 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED); 1330 1331 hci_pi(sk)->channel = haddr.hci_channel; 1332 1333 /* At the moment the index and unconfigured index events 1334 * are enabled unconditionally. Setting them on each 1335 * socket when binding keeps this functionality. They 1336 * however might be cleared later and then sending of these 1337 * events will be disabled, but that is then intentional. 1338 * 1339 * This also enables generic events that are safe to be 1340 * received by untrusted users. Example for such events 1341 * are changes to settings, class of device, name etc. 1342 */ 1343 if (hci_pi(sk)->channel == HCI_CHANNEL_CONTROL) { 1344 if (!hci_sock_gen_cookie(sk)) { 1345 /* In the case when a cookie has already been 1346 * assigned, this socket will transition from 1347 * a raw socket into a control socket. To 1348 * allow for a clean transition, send the 1349 * close notification first. 1350 */ 1351 skb = create_monitor_ctrl_close(sk); 1352 if (skb) { 1353 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1354 HCI_SOCK_TRUSTED, NULL); 1355 kfree_skb(skb); 1356 } 1357 } 1358 1359 /* Send event to monitor */ 1360 skb = create_monitor_ctrl_open(sk); 1361 if (skb) { 1362 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1363 HCI_SOCK_TRUSTED, NULL); 1364 kfree_skb(skb); 1365 } 1366 1367 hci_sock_set_flag(sk, HCI_MGMT_INDEX_EVENTS); 1368 hci_sock_set_flag(sk, HCI_MGMT_UNCONF_INDEX_EVENTS); 1369 hci_sock_set_flag(sk, HCI_MGMT_OPTION_EVENTS); 1370 hci_sock_set_flag(sk, HCI_MGMT_SETTING_EVENTS); 1371 hci_sock_set_flag(sk, HCI_MGMT_DEV_CLASS_EVENTS); 1372 hci_sock_set_flag(sk, HCI_MGMT_LOCAL_NAME_EVENTS); 1373 } 1374 break; 1375 } 1376 1377 sk->sk_state = BT_BOUND; 1378 1379 done: 1380 release_sock(sk); 1381 return err; 1382 } 1383 1384 static int hci_sock_getname(struct socket *sock, struct sockaddr *addr, 1385 int peer) 1386 { 1387 struct sockaddr_hci *haddr = (struct sockaddr_hci *)addr; 1388 struct sock *sk = sock->sk; 1389 struct hci_dev *hdev; 1390 int err = 0; 1391 1392 BT_DBG("sock %p sk %p", sock, sk); 1393 1394 if (peer) 1395 return -EOPNOTSUPP; 1396 1397 lock_sock(sk); 1398 1399 hdev = hci_hdev_from_sock(sk); 1400 if (IS_ERR(hdev)) { 1401 err = PTR_ERR(hdev); 1402 goto done; 1403 } 1404 1405 haddr->hci_family = AF_BLUETOOTH; 1406 haddr->hci_dev = hdev->id; 1407 haddr->hci_channel= hci_pi(sk)->channel; 1408 err = sizeof(*haddr); 1409 1410 done: 1411 release_sock(sk); 1412 return err; 1413 } 1414 1415 static void hci_sock_cmsg(struct sock *sk, struct msghdr *msg, 1416 struct sk_buff *skb) 1417 { 1418 __u8 mask = hci_pi(sk)->cmsg_mask; 1419 1420 if (mask & HCI_CMSG_DIR) { 1421 int incoming = bt_cb(skb)->incoming; 1422 put_cmsg(msg, SOL_HCI, HCI_CMSG_DIR, sizeof(incoming), 1423 &incoming); 1424 } 1425 1426 if (mask & HCI_CMSG_TSTAMP) { 1427 #ifdef CONFIG_COMPAT 1428 struct old_timeval32 ctv; 1429 #endif 1430 struct __kernel_old_timeval tv; 1431 void *data; 1432 int len; 1433 1434 skb_get_timestamp(skb, &tv); 1435 1436 data = &tv; 1437 len = sizeof(tv); 1438 #ifdef CONFIG_COMPAT 1439 if (!COMPAT_USE_64BIT_TIME && 1440 (msg->msg_flags & MSG_CMSG_COMPAT)) { 1441 ctv.tv_sec = tv.tv_sec; 1442 ctv.tv_usec = tv.tv_usec; 1443 data = &ctv; 1444 len = sizeof(ctv); 1445 } 1446 #endif 1447 1448 put_cmsg(msg, SOL_HCI, HCI_CMSG_TSTAMP, len, data); 1449 } 1450 } 1451 1452 static int hci_sock_recvmsg(struct socket *sock, struct msghdr *msg, 1453 size_t len, int flags) 1454 { 1455 int noblock = flags & MSG_DONTWAIT; 1456 struct sock *sk = sock->sk; 1457 struct sk_buff *skb; 1458 int copied, err; 1459 unsigned int skblen; 1460 1461 BT_DBG("sock %p, sk %p", sock, sk); 1462 1463 if (flags & MSG_OOB) 1464 return -EOPNOTSUPP; 1465 1466 if (hci_pi(sk)->channel == HCI_CHANNEL_LOGGING) 1467 return -EOPNOTSUPP; 1468 1469 if (sk->sk_state == BT_CLOSED) 1470 return 0; 1471 1472 skb = skb_recv_datagram(sk, flags, noblock, &err); 1473 if (!skb) 1474 return err; 1475 1476 skblen = skb->len; 1477 copied = skb->len; 1478 if (len < copied) { 1479 msg->msg_flags |= MSG_TRUNC; 1480 copied = len; 1481 } 1482 1483 skb_reset_transport_header(skb); 1484 err = skb_copy_datagram_msg(skb, 0, msg, copied); 1485 1486 switch (hci_pi(sk)->channel) { 1487 case HCI_CHANNEL_RAW: 1488 hci_sock_cmsg(sk, msg, skb); 1489 break; 1490 case HCI_CHANNEL_USER: 1491 case HCI_CHANNEL_MONITOR: 1492 sock_recv_timestamp(msg, sk, skb); 1493 break; 1494 default: 1495 if (hci_mgmt_chan_find(hci_pi(sk)->channel)) 1496 sock_recv_timestamp(msg, sk, skb); 1497 break; 1498 } 1499 1500 skb_free_datagram(sk, skb); 1501 1502 if (flags & MSG_TRUNC) 1503 copied = skblen; 1504 1505 return err ? : copied; 1506 } 1507 1508 static int hci_mgmt_cmd(struct hci_mgmt_chan *chan, struct sock *sk, 1509 struct msghdr *msg, size_t msglen) 1510 { 1511 void *buf; 1512 u8 *cp; 1513 struct mgmt_hdr *hdr; 1514 u16 opcode, index, len; 1515 struct hci_dev *hdev = NULL; 1516 const struct hci_mgmt_handler *handler; 1517 bool var_len, no_hdev; 1518 int err; 1519 1520 BT_DBG("got %zu bytes", msglen); 1521 1522 if (msglen < sizeof(*hdr)) 1523 return -EINVAL; 1524 1525 buf = kmalloc(msglen, GFP_KERNEL); 1526 if (!buf) 1527 return -ENOMEM; 1528 1529 if (memcpy_from_msg(buf, msg, msglen)) { 1530 err = -EFAULT; 1531 goto done; 1532 } 1533 1534 hdr = buf; 1535 opcode = __le16_to_cpu(hdr->opcode); 1536 index = __le16_to_cpu(hdr->index); 1537 len = __le16_to_cpu(hdr->len); 1538 1539 if (len != msglen - sizeof(*hdr)) { 1540 err = -EINVAL; 1541 goto done; 1542 } 1543 1544 if (chan->channel == HCI_CHANNEL_CONTROL) { 1545 struct sk_buff *skb; 1546 1547 /* Send event to monitor */ 1548 skb = create_monitor_ctrl_command(sk, index, opcode, len, 1549 buf + sizeof(*hdr)); 1550 if (skb) { 1551 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, 1552 HCI_SOCK_TRUSTED, NULL); 1553 kfree_skb(skb); 1554 } 1555 } 1556 1557 if (opcode >= chan->handler_count || 1558 chan->handlers[opcode].func == NULL) { 1559 BT_DBG("Unknown op %u", opcode); 1560 err = mgmt_cmd_status(sk, index, opcode, 1561 MGMT_STATUS_UNKNOWN_COMMAND); 1562 goto done; 1563 } 1564 1565 handler = &chan->handlers[opcode]; 1566 1567 if (!hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) && 1568 !(handler->flags & HCI_MGMT_UNTRUSTED)) { 1569 err = mgmt_cmd_status(sk, index, opcode, 1570 MGMT_STATUS_PERMISSION_DENIED); 1571 goto done; 1572 } 1573 1574 if (index != MGMT_INDEX_NONE) { 1575 hdev = hci_dev_get(index); 1576 if (!hdev) { 1577 err = mgmt_cmd_status(sk, index, opcode, 1578 MGMT_STATUS_INVALID_INDEX); 1579 goto done; 1580 } 1581 1582 if (hci_dev_test_flag(hdev, HCI_SETUP) || 1583 hci_dev_test_flag(hdev, HCI_CONFIG) || 1584 hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1585 err = mgmt_cmd_status(sk, index, opcode, 1586 MGMT_STATUS_INVALID_INDEX); 1587 goto done; 1588 } 1589 1590 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 1591 !(handler->flags & HCI_MGMT_UNCONFIGURED)) { 1592 err = mgmt_cmd_status(sk, index, opcode, 1593 MGMT_STATUS_INVALID_INDEX); 1594 goto done; 1595 } 1596 } 1597 1598 if (!(handler->flags & HCI_MGMT_HDEV_OPTIONAL)) { 1599 no_hdev = (handler->flags & HCI_MGMT_NO_HDEV); 1600 if (no_hdev != !hdev) { 1601 err = mgmt_cmd_status(sk, index, opcode, 1602 MGMT_STATUS_INVALID_INDEX); 1603 goto done; 1604 } 1605 } 1606 1607 var_len = (handler->flags & HCI_MGMT_VAR_LEN); 1608 if ((var_len && len < handler->data_len) || 1609 (!var_len && len != handler->data_len)) { 1610 err = mgmt_cmd_status(sk, index, opcode, 1611 MGMT_STATUS_INVALID_PARAMS); 1612 goto done; 1613 } 1614 1615 if (hdev && chan->hdev_init) 1616 chan->hdev_init(sk, hdev); 1617 1618 cp = buf + sizeof(*hdr); 1619 1620 err = handler->func(sk, hdev, cp, len); 1621 if (err < 0) 1622 goto done; 1623 1624 err = msglen; 1625 1626 done: 1627 if (hdev) 1628 hci_dev_put(hdev); 1629 1630 kfree(buf); 1631 return err; 1632 } 1633 1634 static int hci_logging_frame(struct sock *sk, struct msghdr *msg, int len) 1635 { 1636 struct hci_mon_hdr *hdr; 1637 struct sk_buff *skb; 1638 struct hci_dev *hdev; 1639 u16 index; 1640 int err; 1641 1642 /* The logging frame consists at minimum of the standard header, 1643 * the priority byte, the ident length byte and at least one string 1644 * terminator NUL byte. Anything shorter are invalid packets. 1645 */ 1646 if (len < sizeof(*hdr) + 3) 1647 return -EINVAL; 1648 1649 skb = bt_skb_send_alloc(sk, len, msg->msg_flags & MSG_DONTWAIT, &err); 1650 if (!skb) 1651 return err; 1652 1653 if (memcpy_from_msg(skb_put(skb, len), msg, len)) { 1654 err = -EFAULT; 1655 goto drop; 1656 } 1657 1658 hdr = (void *)skb->data; 1659 1660 if (__le16_to_cpu(hdr->len) != len - sizeof(*hdr)) { 1661 err = -EINVAL; 1662 goto drop; 1663 } 1664 1665 if (__le16_to_cpu(hdr->opcode) == 0x0000) { 1666 __u8 priority = skb->data[sizeof(*hdr)]; 1667 __u8 ident_len = skb->data[sizeof(*hdr) + 1]; 1668 1669 /* Only the priorities 0-7 are valid and with that any other 1670 * value results in an invalid packet. 1671 * 1672 * The priority byte is followed by an ident length byte and 1673 * the NUL terminated ident string. Check that the ident 1674 * length is not overflowing the packet and also that the 1675 * ident string itself is NUL terminated. In case the ident 1676 * length is zero, the length value actually doubles as NUL 1677 * terminator identifier. 1678 * 1679 * The message follows the ident string (if present) and 1680 * must be NUL terminated. Otherwise it is not a valid packet. 1681 */ 1682 if (priority > 7 || skb->data[len - 1] != 0x00 || 1683 ident_len > len - sizeof(*hdr) - 3 || 1684 skb->data[sizeof(*hdr) + ident_len + 1] != 0x00) { 1685 err = -EINVAL; 1686 goto drop; 1687 } 1688 } else { 1689 err = -EINVAL; 1690 goto drop; 1691 } 1692 1693 index = __le16_to_cpu(hdr->index); 1694 1695 if (index != MGMT_INDEX_NONE) { 1696 hdev = hci_dev_get(index); 1697 if (!hdev) { 1698 err = -ENODEV; 1699 goto drop; 1700 } 1701 } else { 1702 hdev = NULL; 1703 } 1704 1705 hdr->opcode = cpu_to_le16(HCI_MON_USER_LOGGING); 1706 1707 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, HCI_SOCK_TRUSTED, NULL); 1708 err = len; 1709 1710 if (hdev) 1711 hci_dev_put(hdev); 1712 1713 drop: 1714 kfree_skb(skb); 1715 return err; 1716 } 1717 1718 static int hci_sock_sendmsg(struct socket *sock, struct msghdr *msg, 1719 size_t len) 1720 { 1721 struct sock *sk = sock->sk; 1722 struct hci_mgmt_chan *chan; 1723 struct hci_dev *hdev; 1724 struct sk_buff *skb; 1725 int err; 1726 1727 BT_DBG("sock %p sk %p", sock, sk); 1728 1729 if (msg->msg_flags & MSG_OOB) 1730 return -EOPNOTSUPP; 1731 1732 if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_NOSIGNAL|MSG_ERRQUEUE| 1733 MSG_CMSG_COMPAT)) 1734 return -EINVAL; 1735 1736 if (len < 4 || len > HCI_MAX_FRAME_SIZE) 1737 return -EINVAL; 1738 1739 lock_sock(sk); 1740 1741 switch (hci_pi(sk)->channel) { 1742 case HCI_CHANNEL_RAW: 1743 case HCI_CHANNEL_USER: 1744 break; 1745 case HCI_CHANNEL_MONITOR: 1746 err = -EOPNOTSUPP; 1747 goto done; 1748 case HCI_CHANNEL_LOGGING: 1749 err = hci_logging_frame(sk, msg, len); 1750 goto done; 1751 default: 1752 mutex_lock(&mgmt_chan_list_lock); 1753 chan = __hci_mgmt_chan_find(hci_pi(sk)->channel); 1754 if (chan) 1755 err = hci_mgmt_cmd(chan, sk, msg, len); 1756 else 1757 err = -EINVAL; 1758 1759 mutex_unlock(&mgmt_chan_list_lock); 1760 goto done; 1761 } 1762 1763 hdev = hci_hdev_from_sock(sk); 1764 if (IS_ERR(hdev)) { 1765 err = PTR_ERR(hdev); 1766 goto done; 1767 } 1768 1769 if (!test_bit(HCI_UP, &hdev->flags)) { 1770 err = -ENETDOWN; 1771 goto done; 1772 } 1773 1774 skb = bt_skb_send_alloc(sk, len, msg->msg_flags & MSG_DONTWAIT, &err); 1775 if (!skb) 1776 goto done; 1777 1778 if (memcpy_from_msg(skb_put(skb, len), msg, len)) { 1779 err = -EFAULT; 1780 goto drop; 1781 } 1782 1783 hci_skb_pkt_type(skb) = skb->data[0]; 1784 skb_pull(skb, 1); 1785 1786 if (hci_pi(sk)->channel == HCI_CHANNEL_USER) { 1787 /* No permission check is needed for user channel 1788 * since that gets enforced when binding the socket. 1789 * 1790 * However check that the packet type is valid. 1791 */ 1792 if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT && 1793 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 1794 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT && 1795 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) { 1796 err = -EINVAL; 1797 goto drop; 1798 } 1799 1800 skb_queue_tail(&hdev->raw_q, skb); 1801 queue_work(hdev->workqueue, &hdev->tx_work); 1802 } else if (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT) { 1803 u16 opcode = get_unaligned_le16(skb->data); 1804 u16 ogf = hci_opcode_ogf(opcode); 1805 u16 ocf = hci_opcode_ocf(opcode); 1806 1807 if (((ogf > HCI_SFLT_MAX_OGF) || 1808 !hci_test_bit(ocf & HCI_FLT_OCF_BITS, 1809 &hci_sec_filter.ocf_mask[ogf])) && 1810 !capable(CAP_NET_RAW)) { 1811 err = -EPERM; 1812 goto drop; 1813 } 1814 1815 /* Since the opcode has already been extracted here, store 1816 * a copy of the value for later use by the drivers. 1817 */ 1818 hci_skb_opcode(skb) = opcode; 1819 1820 if (ogf == 0x3f) { 1821 skb_queue_tail(&hdev->raw_q, skb); 1822 queue_work(hdev->workqueue, &hdev->tx_work); 1823 } else { 1824 /* Stand-alone HCI commands must be flagged as 1825 * single-command requests. 1826 */ 1827 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 1828 1829 skb_queue_tail(&hdev->cmd_q, skb); 1830 queue_work(hdev->workqueue, &hdev->cmd_work); 1831 } 1832 } else { 1833 if (!capable(CAP_NET_RAW)) { 1834 err = -EPERM; 1835 goto drop; 1836 } 1837 1838 if (hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 1839 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT && 1840 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) { 1841 err = -EINVAL; 1842 goto drop; 1843 } 1844 1845 skb_queue_tail(&hdev->raw_q, skb); 1846 queue_work(hdev->workqueue, &hdev->tx_work); 1847 } 1848 1849 err = len; 1850 1851 done: 1852 release_sock(sk); 1853 return err; 1854 1855 drop: 1856 kfree_skb(skb); 1857 goto done; 1858 } 1859 1860 static int hci_sock_setsockopt(struct socket *sock, int level, int optname, 1861 sockptr_t optval, unsigned int len) 1862 { 1863 struct hci_ufilter uf = { .opcode = 0 }; 1864 struct sock *sk = sock->sk; 1865 int err = 0, opt = 0; 1866 1867 BT_DBG("sk %p, opt %d", sk, optname); 1868 1869 if (level != SOL_HCI) 1870 return -ENOPROTOOPT; 1871 1872 lock_sock(sk); 1873 1874 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) { 1875 err = -EBADFD; 1876 goto done; 1877 } 1878 1879 switch (optname) { 1880 case HCI_DATA_DIR: 1881 if (copy_from_sockptr(&opt, optval, sizeof(opt))) { 1882 err = -EFAULT; 1883 break; 1884 } 1885 1886 if (opt) 1887 hci_pi(sk)->cmsg_mask |= HCI_CMSG_DIR; 1888 else 1889 hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_DIR; 1890 break; 1891 1892 case HCI_TIME_STAMP: 1893 if (copy_from_sockptr(&opt, optval, sizeof(opt))) { 1894 err = -EFAULT; 1895 break; 1896 } 1897 1898 if (opt) 1899 hci_pi(sk)->cmsg_mask |= HCI_CMSG_TSTAMP; 1900 else 1901 hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_TSTAMP; 1902 break; 1903 1904 case HCI_FILTER: 1905 { 1906 struct hci_filter *f = &hci_pi(sk)->filter; 1907 1908 uf.type_mask = f->type_mask; 1909 uf.opcode = f->opcode; 1910 uf.event_mask[0] = *((u32 *) f->event_mask + 0); 1911 uf.event_mask[1] = *((u32 *) f->event_mask + 1); 1912 } 1913 1914 len = min_t(unsigned int, len, sizeof(uf)); 1915 if (copy_from_sockptr(&uf, optval, len)) { 1916 err = -EFAULT; 1917 break; 1918 } 1919 1920 if (!capable(CAP_NET_RAW)) { 1921 uf.type_mask &= hci_sec_filter.type_mask; 1922 uf.event_mask[0] &= *((u32 *) hci_sec_filter.event_mask + 0); 1923 uf.event_mask[1] &= *((u32 *) hci_sec_filter.event_mask + 1); 1924 } 1925 1926 { 1927 struct hci_filter *f = &hci_pi(sk)->filter; 1928 1929 f->type_mask = uf.type_mask; 1930 f->opcode = uf.opcode; 1931 *((u32 *) f->event_mask + 0) = uf.event_mask[0]; 1932 *((u32 *) f->event_mask + 1) = uf.event_mask[1]; 1933 } 1934 break; 1935 1936 default: 1937 err = -ENOPROTOOPT; 1938 break; 1939 } 1940 1941 done: 1942 release_sock(sk); 1943 return err; 1944 } 1945 1946 static int hci_sock_getsockopt(struct socket *sock, int level, int optname, 1947 char __user *optval, int __user *optlen) 1948 { 1949 struct hci_ufilter uf; 1950 struct sock *sk = sock->sk; 1951 int len, opt, err = 0; 1952 1953 BT_DBG("sk %p, opt %d", sk, optname); 1954 1955 if (level != SOL_HCI) 1956 return -ENOPROTOOPT; 1957 1958 if (get_user(len, optlen)) 1959 return -EFAULT; 1960 1961 lock_sock(sk); 1962 1963 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) { 1964 err = -EBADFD; 1965 goto done; 1966 } 1967 1968 switch (optname) { 1969 case HCI_DATA_DIR: 1970 if (hci_pi(sk)->cmsg_mask & HCI_CMSG_DIR) 1971 opt = 1; 1972 else 1973 opt = 0; 1974 1975 if (put_user(opt, optval)) 1976 err = -EFAULT; 1977 break; 1978 1979 case HCI_TIME_STAMP: 1980 if (hci_pi(sk)->cmsg_mask & HCI_CMSG_TSTAMP) 1981 opt = 1; 1982 else 1983 opt = 0; 1984 1985 if (put_user(opt, optval)) 1986 err = -EFAULT; 1987 break; 1988 1989 case HCI_FILTER: 1990 { 1991 struct hci_filter *f = &hci_pi(sk)->filter; 1992 1993 memset(&uf, 0, sizeof(uf)); 1994 uf.type_mask = f->type_mask; 1995 uf.opcode = f->opcode; 1996 uf.event_mask[0] = *((u32 *) f->event_mask + 0); 1997 uf.event_mask[1] = *((u32 *) f->event_mask + 1); 1998 } 1999 2000 len = min_t(unsigned int, len, sizeof(uf)); 2001 if (copy_to_user(optval, &uf, len)) 2002 err = -EFAULT; 2003 break; 2004 2005 default: 2006 err = -ENOPROTOOPT; 2007 break; 2008 } 2009 2010 done: 2011 release_sock(sk); 2012 return err; 2013 } 2014 2015 static const struct proto_ops hci_sock_ops = { 2016 .family = PF_BLUETOOTH, 2017 .owner = THIS_MODULE, 2018 .release = hci_sock_release, 2019 .bind = hci_sock_bind, 2020 .getname = hci_sock_getname, 2021 .sendmsg = hci_sock_sendmsg, 2022 .recvmsg = hci_sock_recvmsg, 2023 .ioctl = hci_sock_ioctl, 2024 #ifdef CONFIG_COMPAT 2025 .compat_ioctl = hci_sock_compat_ioctl, 2026 #endif 2027 .poll = datagram_poll, 2028 .listen = sock_no_listen, 2029 .shutdown = sock_no_shutdown, 2030 .setsockopt = hci_sock_setsockopt, 2031 .getsockopt = hci_sock_getsockopt, 2032 .connect = sock_no_connect, 2033 .socketpair = sock_no_socketpair, 2034 .accept = sock_no_accept, 2035 .mmap = sock_no_mmap 2036 }; 2037 2038 static struct proto hci_sk_proto = { 2039 .name = "HCI", 2040 .owner = THIS_MODULE, 2041 .obj_size = sizeof(struct hci_pinfo) 2042 }; 2043 2044 static int hci_sock_create(struct net *net, struct socket *sock, int protocol, 2045 int kern) 2046 { 2047 struct sock *sk; 2048 2049 BT_DBG("sock %p", sock); 2050 2051 if (sock->type != SOCK_RAW) 2052 return -ESOCKTNOSUPPORT; 2053 2054 sock->ops = &hci_sock_ops; 2055 2056 sk = sk_alloc(net, PF_BLUETOOTH, GFP_ATOMIC, &hci_sk_proto, kern); 2057 if (!sk) 2058 return -ENOMEM; 2059 2060 sock_init_data(sock, sk); 2061 2062 sock_reset_flag(sk, SOCK_ZAPPED); 2063 2064 sk->sk_protocol = protocol; 2065 2066 sock->state = SS_UNCONNECTED; 2067 sk->sk_state = BT_OPEN; 2068 2069 bt_sock_link(&hci_sk_list, sk); 2070 return 0; 2071 } 2072 2073 static const struct net_proto_family hci_sock_family_ops = { 2074 .family = PF_BLUETOOTH, 2075 .owner = THIS_MODULE, 2076 .create = hci_sock_create, 2077 }; 2078 2079 int __init hci_sock_init(void) 2080 { 2081 int err; 2082 2083 BUILD_BUG_ON(sizeof(struct sockaddr_hci) > sizeof(struct sockaddr)); 2084 2085 err = proto_register(&hci_sk_proto, 0); 2086 if (err < 0) 2087 return err; 2088 2089 err = bt_sock_register(BTPROTO_HCI, &hci_sock_family_ops); 2090 if (err < 0) { 2091 BT_ERR("HCI socket registration failed"); 2092 goto error; 2093 } 2094 2095 err = bt_procfs_init(&init_net, "hci", &hci_sk_list, NULL); 2096 if (err < 0) { 2097 BT_ERR("Failed to create HCI proc file"); 2098 bt_sock_unregister(BTPROTO_HCI); 2099 goto error; 2100 } 2101 2102 BT_INFO("HCI socket layer initialized"); 2103 2104 return 0; 2105 2106 error: 2107 proto_unregister(&hci_sk_proto); 2108 return err; 2109 } 2110 2111 void hci_sock_cleanup(void) 2112 { 2113 bt_procfs_cleanup(&init_net, "hci"); 2114 bt_sock_unregister(BTPROTO_HCI); 2115 proto_unregister(&hci_sk_proto); 2116 } 2117