1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 4 Copyright (C) 2014 Intel Corporation 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License version 2 as 8 published by the Free Software Foundation; 9 10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 21 SOFTWARE IS DISCLAIMED. 22 */ 23 24 #include <linux/sched/signal.h> 25 26 #include <net/bluetooth/bluetooth.h> 27 #include <net/bluetooth/hci_core.h> 28 #include <net/bluetooth/mgmt.h> 29 30 #include "smp.h" 31 #include "hci_request.h" 32 33 #define HCI_REQ_DONE 0 34 #define HCI_REQ_PEND 1 35 #define HCI_REQ_CANCELED 2 36 37 void hci_req_init(struct hci_request *req, struct hci_dev *hdev) 38 { 39 skb_queue_head_init(&req->cmd_q); 40 req->hdev = hdev; 41 req->err = 0; 42 } 43 44 void hci_req_purge(struct hci_request *req) 45 { 46 skb_queue_purge(&req->cmd_q); 47 } 48 49 bool hci_req_status_pend(struct hci_dev *hdev) 50 { 51 return hdev->req_status == HCI_REQ_PEND; 52 } 53 54 static int req_run(struct hci_request *req, hci_req_complete_t complete, 55 hci_req_complete_skb_t complete_skb) 56 { 57 struct hci_dev *hdev = req->hdev; 58 struct sk_buff *skb; 59 unsigned long flags; 60 61 BT_DBG("length %u", skb_queue_len(&req->cmd_q)); 62 63 /* If an error occurred during request building, remove all HCI 64 * commands queued on the HCI request queue. 65 */ 66 if (req->err) { 67 skb_queue_purge(&req->cmd_q); 68 return req->err; 69 } 70 71 /* Do not allow empty requests */ 72 if (skb_queue_empty(&req->cmd_q)) 73 return -ENODATA; 74 75 skb = skb_peek_tail(&req->cmd_q); 76 if (complete) { 77 bt_cb(skb)->hci.req_complete = complete; 78 } else if (complete_skb) { 79 bt_cb(skb)->hci.req_complete_skb = complete_skb; 80 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; 81 } 82 83 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 84 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); 85 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 86 87 queue_work(hdev->workqueue, &hdev->cmd_work); 88 89 return 0; 90 } 91 92 int hci_req_run(struct hci_request *req, hci_req_complete_t complete) 93 { 94 return req_run(req, complete, NULL); 95 } 96 97 int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete) 98 { 99 return req_run(req, NULL, complete); 100 } 101 102 static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, 103 struct sk_buff *skb) 104 { 105 BT_DBG("%s result 0x%2.2x", hdev->name, result); 106 107 if (hdev->req_status == HCI_REQ_PEND) { 108 hdev->req_result = result; 109 hdev->req_status = HCI_REQ_DONE; 110 if (skb) 111 hdev->req_skb = skb_get(skb); 112 wake_up_interruptible(&hdev->req_wait_q); 113 } 114 } 115 116 void hci_req_sync_cancel(struct hci_dev *hdev, int err) 117 { 118 BT_DBG("%s err 0x%2.2x", hdev->name, err); 119 120 if (hdev->req_status == HCI_REQ_PEND) { 121 hdev->req_result = err; 122 hdev->req_status = HCI_REQ_CANCELED; 123 wake_up_interruptible(&hdev->req_wait_q); 124 } 125 } 126 127 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 128 const void *param, u8 event, u32 timeout) 129 { 130 struct hci_request req; 131 struct sk_buff *skb; 132 int err = 0; 133 134 BT_DBG("%s", hdev->name); 135 136 hci_req_init(&req, hdev); 137 138 hci_req_add_ev(&req, opcode, plen, param, event); 139 140 hdev->req_status = HCI_REQ_PEND; 141 142 err = hci_req_run_skb(&req, hci_req_sync_complete); 143 if (err < 0) 144 return ERR_PTR(err); 145 146 err = wait_event_interruptible_timeout(hdev->req_wait_q, 147 hdev->req_status != HCI_REQ_PEND, timeout); 148 149 if (err == -ERESTARTSYS) 150 return ERR_PTR(-EINTR); 151 152 switch (hdev->req_status) { 153 case HCI_REQ_DONE: 154 err = -bt_to_errno(hdev->req_result); 155 break; 156 157 case HCI_REQ_CANCELED: 158 err = -hdev->req_result; 159 break; 160 161 default: 162 err = -ETIMEDOUT; 163 break; 164 } 165 166 hdev->req_status = hdev->req_result = 0; 167 skb = hdev->req_skb; 168 hdev->req_skb = NULL; 169 170 BT_DBG("%s end: err %d", hdev->name, err); 171 172 if (err < 0) { 173 kfree_skb(skb); 174 return ERR_PTR(err); 175 } 176 177 if (!skb) 178 return ERR_PTR(-ENODATA); 179 180 return skb; 181 } 182 EXPORT_SYMBOL(__hci_cmd_sync_ev); 183 184 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 185 const void *param, u32 timeout) 186 { 187 return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout); 188 } 189 EXPORT_SYMBOL(__hci_cmd_sync); 190 191 /* Execute request and wait for completion. */ 192 int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req, 193 unsigned long opt), 194 unsigned long opt, u32 timeout, u8 *hci_status) 195 { 196 struct hci_request req; 197 int err = 0; 198 199 BT_DBG("%s start", hdev->name); 200 201 hci_req_init(&req, hdev); 202 203 hdev->req_status = HCI_REQ_PEND; 204 205 err = func(&req, opt); 206 if (err) { 207 if (hci_status) 208 *hci_status = HCI_ERROR_UNSPECIFIED; 209 return err; 210 } 211 212 err = hci_req_run_skb(&req, hci_req_sync_complete); 213 if (err < 0) { 214 hdev->req_status = 0; 215 216 /* ENODATA means the HCI request command queue is empty. 217 * This can happen when a request with conditionals doesn't 218 * trigger any commands to be sent. This is normal behavior 219 * and should not trigger an error return. 220 */ 221 if (err == -ENODATA) { 222 if (hci_status) 223 *hci_status = 0; 224 return 0; 225 } 226 227 if (hci_status) 228 *hci_status = HCI_ERROR_UNSPECIFIED; 229 230 return err; 231 } 232 233 err = wait_event_interruptible_timeout(hdev->req_wait_q, 234 hdev->req_status != HCI_REQ_PEND, timeout); 235 236 if (err == -ERESTARTSYS) 237 return -EINTR; 238 239 switch (hdev->req_status) { 240 case HCI_REQ_DONE: 241 err = -bt_to_errno(hdev->req_result); 242 if (hci_status) 243 *hci_status = hdev->req_result; 244 break; 245 246 case HCI_REQ_CANCELED: 247 err = -hdev->req_result; 248 if (hci_status) 249 *hci_status = HCI_ERROR_UNSPECIFIED; 250 break; 251 252 default: 253 err = -ETIMEDOUT; 254 if (hci_status) 255 *hci_status = HCI_ERROR_UNSPECIFIED; 256 break; 257 } 258 259 kfree_skb(hdev->req_skb); 260 hdev->req_skb = NULL; 261 hdev->req_status = hdev->req_result = 0; 262 263 BT_DBG("%s end: err %d", hdev->name, err); 264 265 return err; 266 } 267 268 int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req, 269 unsigned long opt), 270 unsigned long opt, u32 timeout, u8 *hci_status) 271 { 272 int ret; 273 274 if (!test_bit(HCI_UP, &hdev->flags)) 275 return -ENETDOWN; 276 277 /* Serialize all requests */ 278 hci_req_sync_lock(hdev); 279 ret = __hci_req_sync(hdev, req, opt, timeout, hci_status); 280 hci_req_sync_unlock(hdev); 281 282 return ret; 283 } 284 285 struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen, 286 const void *param) 287 { 288 int len = HCI_COMMAND_HDR_SIZE + plen; 289 struct hci_command_hdr *hdr; 290 struct sk_buff *skb; 291 292 skb = bt_skb_alloc(len, GFP_ATOMIC); 293 if (!skb) 294 return NULL; 295 296 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); 297 hdr->opcode = cpu_to_le16(opcode); 298 hdr->plen = plen; 299 300 if (plen) 301 skb_put_data(skb, param, plen); 302 303 BT_DBG("skb len %d", skb->len); 304 305 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 306 hci_skb_opcode(skb) = opcode; 307 308 return skb; 309 } 310 311 /* Queue a command to an asynchronous HCI request */ 312 void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen, 313 const void *param, u8 event) 314 { 315 struct hci_dev *hdev = req->hdev; 316 struct sk_buff *skb; 317 318 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen); 319 320 /* If an error occurred during request building, there is no point in 321 * queueing the HCI command. We can simply return. 322 */ 323 if (req->err) 324 return; 325 326 skb = hci_prepare_cmd(hdev, opcode, plen, param); 327 if (!skb) { 328 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 329 opcode); 330 req->err = -ENOMEM; 331 return; 332 } 333 334 if (skb_queue_empty(&req->cmd_q)) 335 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 336 337 bt_cb(skb)->hci.req_event = event; 338 339 skb_queue_tail(&req->cmd_q, skb); 340 } 341 342 void hci_req_add(struct hci_request *req, u16 opcode, u32 plen, 343 const void *param) 344 { 345 hci_req_add_ev(req, opcode, plen, param, 0); 346 } 347 348 void __hci_req_write_fast_connectable(struct hci_request *req, bool enable) 349 { 350 struct hci_dev *hdev = req->hdev; 351 struct hci_cp_write_page_scan_activity acp; 352 u8 type; 353 354 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 355 return; 356 357 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 358 return; 359 360 if (enable) { 361 type = PAGE_SCAN_TYPE_INTERLACED; 362 363 /* 160 msec page scan interval */ 364 acp.interval = cpu_to_le16(0x0100); 365 } else { 366 type = PAGE_SCAN_TYPE_STANDARD; /* default */ 367 368 /* default 1.28 sec page scan */ 369 acp.interval = cpu_to_le16(0x0800); 370 } 371 372 acp.window = cpu_to_le16(0x0012); 373 374 if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval || 375 __cpu_to_le16(hdev->page_scan_window) != acp.window) 376 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 377 sizeof(acp), &acp); 378 379 if (hdev->page_scan_type != type) 380 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type); 381 } 382 383 /* This function controls the background scanning based on hdev->pend_le_conns 384 * list. If there are pending LE connection we start the background scanning, 385 * otherwise we stop it. 386 * 387 * This function requires the caller holds hdev->lock. 388 */ 389 static void __hci_update_background_scan(struct hci_request *req) 390 { 391 struct hci_dev *hdev = req->hdev; 392 393 if (!test_bit(HCI_UP, &hdev->flags) || 394 test_bit(HCI_INIT, &hdev->flags) || 395 hci_dev_test_flag(hdev, HCI_SETUP) || 396 hci_dev_test_flag(hdev, HCI_CONFIG) || 397 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 398 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 399 return; 400 401 /* No point in doing scanning if LE support hasn't been enabled */ 402 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 403 return; 404 405 /* If discovery is active don't interfere with it */ 406 if (hdev->discovery.state != DISCOVERY_STOPPED) 407 return; 408 409 /* Reset RSSI and UUID filters when starting background scanning 410 * since these filters are meant for service discovery only. 411 * 412 * The Start Discovery and Start Service Discovery operations 413 * ensure to set proper values for RSSI threshold and UUID 414 * filter list. So it is safe to just reset them here. 415 */ 416 hci_discovery_filter_clear(hdev); 417 418 if (list_empty(&hdev->pend_le_conns) && 419 list_empty(&hdev->pend_le_reports)) { 420 /* If there is no pending LE connections or devices 421 * to be scanned for, we should stop the background 422 * scanning. 423 */ 424 425 /* If controller is not scanning we are done. */ 426 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 427 return; 428 429 hci_req_add_le_scan_disable(req); 430 431 BT_DBG("%s stopping background scanning", hdev->name); 432 } else { 433 /* If there is at least one pending LE connection, we should 434 * keep the background scan running. 435 */ 436 437 /* If controller is connecting, we should not start scanning 438 * since some controllers are not able to scan and connect at 439 * the same time. 440 */ 441 if (hci_lookup_le_connect(hdev)) 442 return; 443 444 /* If controller is currently scanning, we stop it to ensure we 445 * don't miss any advertising (due to duplicates filter). 446 */ 447 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) 448 hci_req_add_le_scan_disable(req); 449 450 hci_req_add_le_passive_scan(req); 451 452 BT_DBG("%s starting background scanning", hdev->name); 453 } 454 } 455 456 void __hci_req_update_name(struct hci_request *req) 457 { 458 struct hci_dev *hdev = req->hdev; 459 struct hci_cp_write_local_name cp; 460 461 memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); 462 463 hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp); 464 } 465 466 #define PNP_INFO_SVCLASS_ID 0x1200 467 468 static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len) 469 { 470 u8 *ptr = data, *uuids_start = NULL; 471 struct bt_uuid *uuid; 472 473 if (len < 4) 474 return ptr; 475 476 list_for_each_entry(uuid, &hdev->uuids, list) { 477 u16 uuid16; 478 479 if (uuid->size != 16) 480 continue; 481 482 uuid16 = get_unaligned_le16(&uuid->uuid[12]); 483 if (uuid16 < 0x1100) 484 continue; 485 486 if (uuid16 == PNP_INFO_SVCLASS_ID) 487 continue; 488 489 if (!uuids_start) { 490 uuids_start = ptr; 491 uuids_start[0] = 1; 492 uuids_start[1] = EIR_UUID16_ALL; 493 ptr += 2; 494 } 495 496 /* Stop if not enough space to put next UUID */ 497 if ((ptr - data) + sizeof(u16) > len) { 498 uuids_start[1] = EIR_UUID16_SOME; 499 break; 500 } 501 502 *ptr++ = (uuid16 & 0x00ff); 503 *ptr++ = (uuid16 & 0xff00) >> 8; 504 uuids_start[0] += sizeof(uuid16); 505 } 506 507 return ptr; 508 } 509 510 static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len) 511 { 512 u8 *ptr = data, *uuids_start = NULL; 513 struct bt_uuid *uuid; 514 515 if (len < 6) 516 return ptr; 517 518 list_for_each_entry(uuid, &hdev->uuids, list) { 519 if (uuid->size != 32) 520 continue; 521 522 if (!uuids_start) { 523 uuids_start = ptr; 524 uuids_start[0] = 1; 525 uuids_start[1] = EIR_UUID32_ALL; 526 ptr += 2; 527 } 528 529 /* Stop if not enough space to put next UUID */ 530 if ((ptr - data) + sizeof(u32) > len) { 531 uuids_start[1] = EIR_UUID32_SOME; 532 break; 533 } 534 535 memcpy(ptr, &uuid->uuid[12], sizeof(u32)); 536 ptr += sizeof(u32); 537 uuids_start[0] += sizeof(u32); 538 } 539 540 return ptr; 541 } 542 543 static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len) 544 { 545 u8 *ptr = data, *uuids_start = NULL; 546 struct bt_uuid *uuid; 547 548 if (len < 18) 549 return ptr; 550 551 list_for_each_entry(uuid, &hdev->uuids, list) { 552 if (uuid->size != 128) 553 continue; 554 555 if (!uuids_start) { 556 uuids_start = ptr; 557 uuids_start[0] = 1; 558 uuids_start[1] = EIR_UUID128_ALL; 559 ptr += 2; 560 } 561 562 /* Stop if not enough space to put next UUID */ 563 if ((ptr - data) + 16 > len) { 564 uuids_start[1] = EIR_UUID128_SOME; 565 break; 566 } 567 568 memcpy(ptr, uuid->uuid, 16); 569 ptr += 16; 570 uuids_start[0] += 16; 571 } 572 573 return ptr; 574 } 575 576 static void create_eir(struct hci_dev *hdev, u8 *data) 577 { 578 u8 *ptr = data; 579 size_t name_len; 580 581 name_len = strlen(hdev->dev_name); 582 583 if (name_len > 0) { 584 /* EIR Data type */ 585 if (name_len > 48) { 586 name_len = 48; 587 ptr[1] = EIR_NAME_SHORT; 588 } else 589 ptr[1] = EIR_NAME_COMPLETE; 590 591 /* EIR Data length */ 592 ptr[0] = name_len + 1; 593 594 memcpy(ptr + 2, hdev->dev_name, name_len); 595 596 ptr += (name_len + 2); 597 } 598 599 if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) { 600 ptr[0] = 2; 601 ptr[1] = EIR_TX_POWER; 602 ptr[2] = (u8) hdev->inq_tx_power; 603 604 ptr += 3; 605 } 606 607 if (hdev->devid_source > 0) { 608 ptr[0] = 9; 609 ptr[1] = EIR_DEVICE_ID; 610 611 put_unaligned_le16(hdev->devid_source, ptr + 2); 612 put_unaligned_le16(hdev->devid_vendor, ptr + 4); 613 put_unaligned_le16(hdev->devid_product, ptr + 6); 614 put_unaligned_le16(hdev->devid_version, ptr + 8); 615 616 ptr += 10; 617 } 618 619 ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data)); 620 ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data)); 621 ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data)); 622 } 623 624 void __hci_req_update_eir(struct hci_request *req) 625 { 626 struct hci_dev *hdev = req->hdev; 627 struct hci_cp_write_eir cp; 628 629 if (!hdev_is_powered(hdev)) 630 return; 631 632 if (!lmp_ext_inq_capable(hdev)) 633 return; 634 635 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 636 return; 637 638 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 639 return; 640 641 memset(&cp, 0, sizeof(cp)); 642 643 create_eir(hdev, cp.data); 644 645 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) 646 return; 647 648 memcpy(hdev->eir, cp.data, sizeof(cp.data)); 649 650 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp); 651 } 652 653 void hci_req_add_le_scan_disable(struct hci_request *req) 654 { 655 struct hci_dev *hdev = req->hdev; 656 657 if (use_ext_scan(hdev)) { 658 struct hci_cp_le_set_ext_scan_enable cp; 659 660 memset(&cp, 0, sizeof(cp)); 661 cp.enable = LE_SCAN_DISABLE; 662 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp), 663 &cp); 664 } else { 665 struct hci_cp_le_set_scan_enable cp; 666 667 memset(&cp, 0, sizeof(cp)); 668 cp.enable = LE_SCAN_DISABLE; 669 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp); 670 } 671 } 672 673 static void add_to_white_list(struct hci_request *req, 674 struct hci_conn_params *params) 675 { 676 struct hci_cp_le_add_to_white_list cp; 677 678 cp.bdaddr_type = params->addr_type; 679 bacpy(&cp.bdaddr, ¶ms->addr); 680 681 hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp); 682 } 683 684 static u8 update_white_list(struct hci_request *req) 685 { 686 struct hci_dev *hdev = req->hdev; 687 struct hci_conn_params *params; 688 struct bdaddr_list *b; 689 uint8_t white_list_entries = 0; 690 691 /* Go through the current white list programmed into the 692 * controller one by one and check if that address is still 693 * in the list of pending connections or list of devices to 694 * report. If not present in either list, then queue the 695 * command to remove it from the controller. 696 */ 697 list_for_each_entry(b, &hdev->le_white_list, list) { 698 /* If the device is neither in pend_le_conns nor 699 * pend_le_reports then remove it from the whitelist. 700 */ 701 if (!hci_pend_le_action_lookup(&hdev->pend_le_conns, 702 &b->bdaddr, b->bdaddr_type) && 703 !hci_pend_le_action_lookup(&hdev->pend_le_reports, 704 &b->bdaddr, b->bdaddr_type)) { 705 struct hci_cp_le_del_from_white_list cp; 706 707 cp.bdaddr_type = b->bdaddr_type; 708 bacpy(&cp.bdaddr, &b->bdaddr); 709 710 hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST, 711 sizeof(cp), &cp); 712 continue; 713 } 714 715 if (hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) { 716 /* White list can not be used with RPAs */ 717 return 0x00; 718 } 719 720 white_list_entries++; 721 } 722 723 /* Since all no longer valid white list entries have been 724 * removed, walk through the list of pending connections 725 * and ensure that any new device gets programmed into 726 * the controller. 727 * 728 * If the list of the devices is larger than the list of 729 * available white list entries in the controller, then 730 * just abort and return filer policy value to not use the 731 * white list. 732 */ 733 list_for_each_entry(params, &hdev->pend_le_conns, action) { 734 if (hci_bdaddr_list_lookup(&hdev->le_white_list, 735 ¶ms->addr, params->addr_type)) 736 continue; 737 738 if (white_list_entries >= hdev->le_white_list_size) { 739 /* Select filter policy to accept all advertising */ 740 return 0x00; 741 } 742 743 if (hci_find_irk_by_addr(hdev, ¶ms->addr, 744 params->addr_type)) { 745 /* White list can not be used with RPAs */ 746 return 0x00; 747 } 748 749 white_list_entries++; 750 add_to_white_list(req, params); 751 } 752 753 /* After adding all new pending connections, walk through 754 * the list of pending reports and also add these to the 755 * white list if there is still space. 756 */ 757 list_for_each_entry(params, &hdev->pend_le_reports, action) { 758 if (hci_bdaddr_list_lookup(&hdev->le_white_list, 759 ¶ms->addr, params->addr_type)) 760 continue; 761 762 if (white_list_entries >= hdev->le_white_list_size) { 763 /* Select filter policy to accept all advertising */ 764 return 0x00; 765 } 766 767 if (hci_find_irk_by_addr(hdev, ¶ms->addr, 768 params->addr_type)) { 769 /* White list can not be used with RPAs */ 770 return 0x00; 771 } 772 773 white_list_entries++; 774 add_to_white_list(req, params); 775 } 776 777 /* Select filter policy to use white list */ 778 return 0x01; 779 } 780 781 static bool scan_use_rpa(struct hci_dev *hdev) 782 { 783 return hci_dev_test_flag(hdev, HCI_PRIVACY); 784 } 785 786 static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval, 787 u16 window, u8 own_addr_type, u8 filter_policy) 788 { 789 struct hci_dev *hdev = req->hdev; 790 791 /* Use ext scanning if set ext scan param and ext scan enable is 792 * supported 793 */ 794 if (use_ext_scan(hdev)) { 795 struct hci_cp_le_set_ext_scan_params *ext_param_cp; 796 struct hci_cp_le_set_ext_scan_enable ext_enable_cp; 797 struct hci_cp_le_scan_phy_params *phy_params; 798 u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2]; 799 u32 plen; 800 801 ext_param_cp = (void *)data; 802 phy_params = (void *)ext_param_cp->data; 803 804 memset(ext_param_cp, 0, sizeof(*ext_param_cp)); 805 ext_param_cp->own_addr_type = own_addr_type; 806 ext_param_cp->filter_policy = filter_policy; 807 808 plen = sizeof(*ext_param_cp); 809 810 if (scan_1m(hdev) || scan_2m(hdev)) { 811 ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M; 812 813 memset(phy_params, 0, sizeof(*phy_params)); 814 phy_params->type = type; 815 phy_params->interval = cpu_to_le16(interval); 816 phy_params->window = cpu_to_le16(window); 817 818 plen += sizeof(*phy_params); 819 phy_params++; 820 } 821 822 if (scan_coded(hdev)) { 823 ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED; 824 825 memset(phy_params, 0, sizeof(*phy_params)); 826 phy_params->type = type; 827 phy_params->interval = cpu_to_le16(interval); 828 phy_params->window = cpu_to_le16(window); 829 830 plen += sizeof(*phy_params); 831 phy_params++; 832 } 833 834 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS, 835 plen, ext_param_cp); 836 837 memset(&ext_enable_cp, 0, sizeof(ext_enable_cp)); 838 ext_enable_cp.enable = LE_SCAN_ENABLE; 839 ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 840 841 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 842 sizeof(ext_enable_cp), &ext_enable_cp); 843 } else { 844 struct hci_cp_le_set_scan_param param_cp; 845 struct hci_cp_le_set_scan_enable enable_cp; 846 847 memset(¶m_cp, 0, sizeof(param_cp)); 848 param_cp.type = type; 849 param_cp.interval = cpu_to_le16(interval); 850 param_cp.window = cpu_to_le16(window); 851 param_cp.own_address_type = own_addr_type; 852 param_cp.filter_policy = filter_policy; 853 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp), 854 ¶m_cp); 855 856 memset(&enable_cp, 0, sizeof(enable_cp)); 857 enable_cp.enable = LE_SCAN_ENABLE; 858 enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 859 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp), 860 &enable_cp); 861 } 862 } 863 864 void hci_req_add_le_passive_scan(struct hci_request *req) 865 { 866 struct hci_dev *hdev = req->hdev; 867 u8 own_addr_type; 868 u8 filter_policy; 869 870 /* Set require_privacy to false since no SCAN_REQ are send 871 * during passive scanning. Not using an non-resolvable address 872 * here is important so that peer devices using direct 873 * advertising with our address will be correctly reported 874 * by the controller. 875 */ 876 if (hci_update_random_address(req, false, scan_use_rpa(hdev), 877 &own_addr_type)) 878 return; 879 880 /* Adding or removing entries from the white list must 881 * happen before enabling scanning. The controller does 882 * not allow white list modification while scanning. 883 */ 884 filter_policy = update_white_list(req); 885 886 /* When the controller is using random resolvable addresses and 887 * with that having LE privacy enabled, then controllers with 888 * Extended Scanner Filter Policies support can now enable support 889 * for handling directed advertising. 890 * 891 * So instead of using filter polices 0x00 (no whitelist) 892 * and 0x01 (whitelist enabled) use the new filter policies 893 * 0x02 (no whitelist) and 0x03 (whitelist enabled). 894 */ 895 if (hci_dev_test_flag(hdev, HCI_PRIVACY) && 896 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) 897 filter_policy |= 0x02; 898 899 hci_req_start_scan(req, LE_SCAN_PASSIVE, hdev->le_scan_interval, 900 hdev->le_scan_window, own_addr_type, filter_policy); 901 } 902 903 static u8 get_adv_instance_scan_rsp_len(struct hci_dev *hdev, u8 instance) 904 { 905 struct adv_info *adv_instance; 906 907 /* Ignore instance 0 */ 908 if (instance == 0x00) 909 return 0; 910 911 adv_instance = hci_find_adv_instance(hdev, instance); 912 if (!adv_instance) 913 return 0; 914 915 /* TODO: Take into account the "appearance" and "local-name" flags here. 916 * These are currently being ignored as they are not supported. 917 */ 918 return adv_instance->scan_rsp_len; 919 } 920 921 static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev) 922 { 923 u8 instance = hdev->cur_adv_instance; 924 struct adv_info *adv_instance; 925 926 /* Ignore instance 0 */ 927 if (instance == 0x00) 928 return 0; 929 930 adv_instance = hci_find_adv_instance(hdev, instance); 931 if (!adv_instance) 932 return 0; 933 934 /* TODO: Take into account the "appearance" and "local-name" flags here. 935 * These are currently being ignored as they are not supported. 936 */ 937 return adv_instance->scan_rsp_len; 938 } 939 940 void __hci_req_disable_advertising(struct hci_request *req) 941 { 942 if (ext_adv_capable(req->hdev)) { 943 struct hci_cp_le_set_ext_adv_enable cp; 944 945 cp.enable = 0x00; 946 /* Disable all sets since we only support one set at the moment */ 947 cp.num_of_sets = 0x00; 948 949 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp), &cp); 950 } else { 951 u8 enable = 0x00; 952 953 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable); 954 } 955 } 956 957 static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance) 958 { 959 u32 flags; 960 struct adv_info *adv_instance; 961 962 if (instance == 0x00) { 963 /* Instance 0 always manages the "Tx Power" and "Flags" 964 * fields 965 */ 966 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS; 967 968 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting 969 * corresponds to the "connectable" instance flag. 970 */ 971 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE)) 972 flags |= MGMT_ADV_FLAG_CONNECTABLE; 973 974 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 975 flags |= MGMT_ADV_FLAG_LIMITED_DISCOV; 976 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 977 flags |= MGMT_ADV_FLAG_DISCOV; 978 979 return flags; 980 } 981 982 adv_instance = hci_find_adv_instance(hdev, instance); 983 984 /* Return 0 when we got an invalid instance identifier. */ 985 if (!adv_instance) 986 return 0; 987 988 return adv_instance->flags; 989 } 990 991 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) 992 { 993 /* If privacy is not enabled don't use RPA */ 994 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 995 return false; 996 997 /* If basic privacy mode is enabled use RPA */ 998 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 999 return true; 1000 1001 /* If limited privacy mode is enabled don't use RPA if we're 1002 * both discoverable and bondable. 1003 */ 1004 if ((flags & MGMT_ADV_FLAG_DISCOV) && 1005 hci_dev_test_flag(hdev, HCI_BONDABLE)) 1006 return false; 1007 1008 /* We're neither bondable nor discoverable in the limited 1009 * privacy mode, therefore use RPA. 1010 */ 1011 return true; 1012 } 1013 1014 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) 1015 { 1016 /* If there is no connection we are OK to advertise. */ 1017 if (hci_conn_num(hdev, LE_LINK) == 0) 1018 return true; 1019 1020 /* Check le_states if there is any connection in slave role. */ 1021 if (hdev->conn_hash.le_num_slave > 0) { 1022 /* Slave connection state and non connectable mode bit 20. */ 1023 if (!connectable && !(hdev->le_states[2] & 0x10)) 1024 return false; 1025 1026 /* Slave connection state and connectable mode bit 38 1027 * and scannable bit 21. 1028 */ 1029 if (connectable && (!(hdev->le_states[4] & 0x40) || 1030 !(hdev->le_states[2] & 0x20))) 1031 return false; 1032 } 1033 1034 /* Check le_states if there is any connection in master role. */ 1035 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_slave) { 1036 /* Master connection state and non connectable mode bit 18. */ 1037 if (!connectable && !(hdev->le_states[2] & 0x02)) 1038 return false; 1039 1040 /* Master connection state and connectable mode bit 35 and 1041 * scannable 19. 1042 */ 1043 if (connectable && (!(hdev->le_states[4] & 0x08) || 1044 !(hdev->le_states[2] & 0x08))) 1045 return false; 1046 } 1047 1048 return true; 1049 } 1050 1051 void __hci_req_enable_advertising(struct hci_request *req) 1052 { 1053 struct hci_dev *hdev = req->hdev; 1054 struct hci_cp_le_set_adv_param cp; 1055 u8 own_addr_type, enable = 0x01; 1056 bool connectable; 1057 u32 flags; 1058 1059 flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance); 1060 1061 /* If the "connectable" instance flag was not set, then choose between 1062 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1063 */ 1064 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1065 mgmt_get_connectable(hdev); 1066 1067 if (!is_advertising_allowed(hdev, connectable)) 1068 return; 1069 1070 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) 1071 __hci_req_disable_advertising(req); 1072 1073 /* Clear the HCI_LE_ADV bit temporarily so that the 1074 * hci_update_random_address knows that it's safe to go ahead 1075 * and write a new random address. The flag will be set back on 1076 * as soon as the SET_ADV_ENABLE HCI command completes. 1077 */ 1078 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1079 1080 /* Set require_privacy to true only when non-connectable 1081 * advertising is used. In that case it is fine to use a 1082 * non-resolvable private address. 1083 */ 1084 if (hci_update_random_address(req, !connectable, 1085 adv_use_rpa(hdev, flags), 1086 &own_addr_type) < 0) 1087 return; 1088 1089 memset(&cp, 0, sizeof(cp)); 1090 cp.min_interval = cpu_to_le16(hdev->le_adv_min_interval); 1091 cp.max_interval = cpu_to_le16(hdev->le_adv_max_interval); 1092 1093 if (connectable) 1094 cp.type = LE_ADV_IND; 1095 else if (get_cur_adv_instance_scan_rsp_len(hdev)) 1096 cp.type = LE_ADV_SCAN_IND; 1097 else 1098 cp.type = LE_ADV_NONCONN_IND; 1099 1100 cp.own_address_type = own_addr_type; 1101 cp.channel_map = hdev->le_adv_channel_map; 1102 1103 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp); 1104 1105 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable); 1106 } 1107 1108 u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len) 1109 { 1110 size_t short_len; 1111 size_t complete_len; 1112 1113 /* no space left for name (+ NULL + type + len) */ 1114 if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3) 1115 return ad_len; 1116 1117 /* use complete name if present and fits */ 1118 complete_len = strlen(hdev->dev_name); 1119 if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH) 1120 return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE, 1121 hdev->dev_name, complete_len + 1); 1122 1123 /* use short name if present */ 1124 short_len = strlen(hdev->short_name); 1125 if (short_len) 1126 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, 1127 hdev->short_name, short_len + 1); 1128 1129 /* use shortened full name if present, we already know that name 1130 * is longer then HCI_MAX_SHORT_NAME_LENGTH 1131 */ 1132 if (complete_len) { 1133 u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1]; 1134 1135 memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH); 1136 name[HCI_MAX_SHORT_NAME_LENGTH] = '\0'; 1137 1138 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name, 1139 sizeof(name)); 1140 } 1141 1142 return ad_len; 1143 } 1144 1145 static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len) 1146 { 1147 return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance); 1148 } 1149 1150 static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr) 1151 { 1152 u8 scan_rsp_len = 0; 1153 1154 if (hdev->appearance) { 1155 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len); 1156 } 1157 1158 return append_local_name(hdev, ptr, scan_rsp_len); 1159 } 1160 1161 static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance, 1162 u8 *ptr) 1163 { 1164 struct adv_info *adv_instance; 1165 u32 instance_flags; 1166 u8 scan_rsp_len = 0; 1167 1168 adv_instance = hci_find_adv_instance(hdev, instance); 1169 if (!adv_instance) 1170 return 0; 1171 1172 instance_flags = adv_instance->flags; 1173 1174 if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) { 1175 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len); 1176 } 1177 1178 memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data, 1179 adv_instance->scan_rsp_len); 1180 1181 scan_rsp_len += adv_instance->scan_rsp_len; 1182 1183 if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME) 1184 scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len); 1185 1186 return scan_rsp_len; 1187 } 1188 1189 void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance) 1190 { 1191 struct hci_dev *hdev = req->hdev; 1192 u8 len; 1193 1194 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1195 return; 1196 1197 if (ext_adv_capable(hdev)) { 1198 struct hci_cp_le_set_ext_scan_rsp_data cp; 1199 1200 memset(&cp, 0, sizeof(cp)); 1201 1202 if (instance) 1203 len = create_instance_scan_rsp_data(hdev, instance, 1204 cp.data); 1205 else 1206 len = create_default_scan_rsp_data(hdev, cp.data); 1207 1208 if (hdev->scan_rsp_data_len == len && 1209 !memcmp(cp.data, hdev->scan_rsp_data, len)) 1210 return; 1211 1212 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 1213 hdev->scan_rsp_data_len = len; 1214 1215 cp.handle = 0; 1216 cp.length = len; 1217 cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1218 cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1219 1220 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, sizeof(cp), 1221 &cp); 1222 } else { 1223 struct hci_cp_le_set_scan_rsp_data cp; 1224 1225 memset(&cp, 0, sizeof(cp)); 1226 1227 if (instance) 1228 len = create_instance_scan_rsp_data(hdev, instance, 1229 cp.data); 1230 else 1231 len = create_default_scan_rsp_data(hdev, cp.data); 1232 1233 if (hdev->scan_rsp_data_len == len && 1234 !memcmp(cp.data, hdev->scan_rsp_data, len)) 1235 return; 1236 1237 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 1238 hdev->scan_rsp_data_len = len; 1239 1240 cp.length = len; 1241 1242 hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp); 1243 } 1244 } 1245 1246 static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr) 1247 { 1248 struct adv_info *adv_instance = NULL; 1249 u8 ad_len = 0, flags = 0; 1250 u32 instance_flags; 1251 1252 /* Return 0 when the current instance identifier is invalid. */ 1253 if (instance) { 1254 adv_instance = hci_find_adv_instance(hdev, instance); 1255 if (!adv_instance) 1256 return 0; 1257 } 1258 1259 instance_flags = get_adv_instance_flags(hdev, instance); 1260 1261 /* The Add Advertising command allows userspace to set both the general 1262 * and limited discoverable flags. 1263 */ 1264 if (instance_flags & MGMT_ADV_FLAG_DISCOV) 1265 flags |= LE_AD_GENERAL; 1266 1267 if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV) 1268 flags |= LE_AD_LIMITED; 1269 1270 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 1271 flags |= LE_AD_NO_BREDR; 1272 1273 if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) { 1274 /* If a discovery flag wasn't provided, simply use the global 1275 * settings. 1276 */ 1277 if (!flags) 1278 flags |= mgmt_get_adv_discov_flags(hdev); 1279 1280 /* If flags would still be empty, then there is no need to 1281 * include the "Flags" AD field". 1282 */ 1283 if (flags) { 1284 ptr[0] = 0x02; 1285 ptr[1] = EIR_FLAGS; 1286 ptr[2] = flags; 1287 1288 ad_len += 3; 1289 ptr += 3; 1290 } 1291 } 1292 1293 if (adv_instance) { 1294 memcpy(ptr, adv_instance->adv_data, 1295 adv_instance->adv_data_len); 1296 ad_len += adv_instance->adv_data_len; 1297 ptr += adv_instance->adv_data_len; 1298 } 1299 1300 if (instance_flags & MGMT_ADV_FLAG_TX_POWER) { 1301 s8 adv_tx_power; 1302 1303 if (ext_adv_capable(hdev)) { 1304 if (adv_instance) 1305 adv_tx_power = adv_instance->tx_power; 1306 else 1307 adv_tx_power = hdev->adv_tx_power; 1308 } else { 1309 adv_tx_power = hdev->adv_tx_power; 1310 } 1311 1312 /* Provide Tx Power only if we can provide a valid value for it */ 1313 if (adv_tx_power != HCI_TX_POWER_INVALID) { 1314 ptr[0] = 0x02; 1315 ptr[1] = EIR_TX_POWER; 1316 ptr[2] = (u8)adv_tx_power; 1317 1318 ad_len += 3; 1319 ptr += 3; 1320 } 1321 } 1322 1323 return ad_len; 1324 } 1325 1326 void __hci_req_update_adv_data(struct hci_request *req, u8 instance) 1327 { 1328 struct hci_dev *hdev = req->hdev; 1329 u8 len; 1330 1331 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1332 return; 1333 1334 if (ext_adv_capable(hdev)) { 1335 struct hci_cp_le_set_ext_adv_data cp; 1336 1337 memset(&cp, 0, sizeof(cp)); 1338 1339 len = create_instance_adv_data(hdev, instance, cp.data); 1340 1341 /* There's nothing to do if the data hasn't changed */ 1342 if (hdev->adv_data_len == len && 1343 memcmp(cp.data, hdev->adv_data, len) == 0) 1344 return; 1345 1346 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1347 hdev->adv_data_len = len; 1348 1349 cp.length = len; 1350 cp.handle = 0; 1351 cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1352 cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1353 1354 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA, sizeof(cp), &cp); 1355 } else { 1356 struct hci_cp_le_set_adv_data cp; 1357 1358 memset(&cp, 0, sizeof(cp)); 1359 1360 len = create_instance_adv_data(hdev, instance, cp.data); 1361 1362 /* There's nothing to do if the data hasn't changed */ 1363 if (hdev->adv_data_len == len && 1364 memcmp(cp.data, hdev->adv_data, len) == 0) 1365 return; 1366 1367 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1368 hdev->adv_data_len = len; 1369 1370 cp.length = len; 1371 1372 hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp); 1373 } 1374 } 1375 1376 int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance) 1377 { 1378 struct hci_request req; 1379 1380 hci_req_init(&req, hdev); 1381 __hci_req_update_adv_data(&req, instance); 1382 1383 return hci_req_run(&req, NULL); 1384 } 1385 1386 static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode) 1387 { 1388 BT_DBG("%s status %u", hdev->name, status); 1389 } 1390 1391 void hci_req_reenable_advertising(struct hci_dev *hdev) 1392 { 1393 struct hci_request req; 1394 1395 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 1396 list_empty(&hdev->adv_instances)) 1397 return; 1398 1399 hci_req_init(&req, hdev); 1400 1401 if (hdev->cur_adv_instance) { 1402 __hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance, 1403 true); 1404 } else { 1405 if (ext_adv_capable(hdev)) { 1406 __hci_req_start_ext_adv(&req, 0x00); 1407 } else { 1408 __hci_req_update_adv_data(&req, 0x00); 1409 __hci_req_update_scan_rsp_data(&req, 0x00); 1410 __hci_req_enable_advertising(&req); 1411 } 1412 } 1413 1414 hci_req_run(&req, adv_enable_complete); 1415 } 1416 1417 static void adv_timeout_expire(struct work_struct *work) 1418 { 1419 struct hci_dev *hdev = container_of(work, struct hci_dev, 1420 adv_instance_expire.work); 1421 1422 struct hci_request req; 1423 u8 instance; 1424 1425 BT_DBG("%s", hdev->name); 1426 1427 hci_dev_lock(hdev); 1428 1429 hdev->adv_instance_timeout = 0; 1430 1431 instance = hdev->cur_adv_instance; 1432 if (instance == 0x00) 1433 goto unlock; 1434 1435 hci_req_init(&req, hdev); 1436 1437 hci_req_clear_adv_instance(hdev, NULL, &req, instance, false); 1438 1439 if (list_empty(&hdev->adv_instances)) 1440 __hci_req_disable_advertising(&req); 1441 1442 hci_req_run(&req, NULL); 1443 1444 unlock: 1445 hci_dev_unlock(hdev); 1446 } 1447 1448 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy, 1449 bool use_rpa, struct adv_info *adv_instance, 1450 u8 *own_addr_type, bdaddr_t *rand_addr) 1451 { 1452 int err; 1453 1454 bacpy(rand_addr, BDADDR_ANY); 1455 1456 /* If privacy is enabled use a resolvable private address. If 1457 * current RPA has expired then generate a new one. 1458 */ 1459 if (use_rpa) { 1460 int to; 1461 1462 *own_addr_type = ADDR_LE_DEV_RANDOM; 1463 1464 if (adv_instance) { 1465 if (!adv_instance->rpa_expired && 1466 !bacmp(&adv_instance->random_addr, &hdev->rpa)) 1467 return 0; 1468 1469 adv_instance->rpa_expired = false; 1470 } else { 1471 if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) && 1472 !bacmp(&hdev->random_addr, &hdev->rpa)) 1473 return 0; 1474 } 1475 1476 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 1477 if (err < 0) { 1478 BT_ERR("%s failed to generate new RPA", hdev->name); 1479 return err; 1480 } 1481 1482 bacpy(rand_addr, &hdev->rpa); 1483 1484 to = msecs_to_jiffies(hdev->rpa_timeout * 1000); 1485 if (adv_instance) 1486 queue_delayed_work(hdev->workqueue, 1487 &adv_instance->rpa_expired_cb, to); 1488 else 1489 queue_delayed_work(hdev->workqueue, 1490 &hdev->rpa_expired, to); 1491 1492 return 0; 1493 } 1494 1495 /* In case of required privacy without resolvable private address, 1496 * use an non-resolvable private address. This is useful for 1497 * non-connectable advertising. 1498 */ 1499 if (require_privacy) { 1500 bdaddr_t nrpa; 1501 1502 while (true) { 1503 /* The non-resolvable private address is generated 1504 * from random six bytes with the two most significant 1505 * bits cleared. 1506 */ 1507 get_random_bytes(&nrpa, 6); 1508 nrpa.b[5] &= 0x3f; 1509 1510 /* The non-resolvable private address shall not be 1511 * equal to the public address. 1512 */ 1513 if (bacmp(&hdev->bdaddr, &nrpa)) 1514 break; 1515 } 1516 1517 *own_addr_type = ADDR_LE_DEV_RANDOM; 1518 bacpy(rand_addr, &nrpa); 1519 1520 return 0; 1521 } 1522 1523 /* No privacy so use a public address. */ 1524 *own_addr_type = ADDR_LE_DEV_PUBLIC; 1525 1526 return 0; 1527 } 1528 1529 void __hci_req_clear_ext_adv_sets(struct hci_request *req) 1530 { 1531 hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL); 1532 } 1533 1534 int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance) 1535 { 1536 struct hci_cp_le_set_ext_adv_params cp; 1537 struct hci_dev *hdev = req->hdev; 1538 bool connectable; 1539 u32 flags; 1540 bdaddr_t random_addr; 1541 u8 own_addr_type; 1542 int err; 1543 struct adv_info *adv_instance; 1544 bool secondary_adv; 1545 /* In ext adv set param interval is 3 octets */ 1546 const u8 adv_interval[3] = { 0x00, 0x08, 0x00 }; 1547 1548 if (instance > 0) { 1549 adv_instance = hci_find_adv_instance(hdev, instance); 1550 if (!adv_instance) 1551 return -EINVAL; 1552 } else { 1553 adv_instance = NULL; 1554 } 1555 1556 flags = get_adv_instance_flags(hdev, instance); 1557 1558 /* If the "connectable" instance flag was not set, then choose between 1559 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1560 */ 1561 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1562 mgmt_get_connectable(hdev); 1563 1564 if (!is_advertising_allowed(hdev, connectable)) 1565 return -EPERM; 1566 1567 /* Set require_privacy to true only when non-connectable 1568 * advertising is used. In that case it is fine to use a 1569 * non-resolvable private address. 1570 */ 1571 err = hci_get_random_address(hdev, !connectable, 1572 adv_use_rpa(hdev, flags), adv_instance, 1573 &own_addr_type, &random_addr); 1574 if (err < 0) 1575 return err; 1576 1577 memset(&cp, 0, sizeof(cp)); 1578 1579 memcpy(cp.min_interval, adv_interval, sizeof(cp.min_interval)); 1580 memcpy(cp.max_interval, adv_interval, sizeof(cp.max_interval)); 1581 1582 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); 1583 1584 if (connectable) { 1585 if (secondary_adv) 1586 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); 1587 else 1588 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); 1589 } else if (get_adv_instance_scan_rsp_len(hdev, instance)) { 1590 if (secondary_adv) 1591 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); 1592 else 1593 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); 1594 } else { 1595 if (secondary_adv) 1596 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); 1597 else 1598 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); 1599 } 1600 1601 cp.own_addr_type = own_addr_type; 1602 cp.channel_map = hdev->le_adv_channel_map; 1603 cp.tx_power = 127; 1604 cp.handle = instance; 1605 1606 if (flags & MGMT_ADV_FLAG_SEC_2M) { 1607 cp.primary_phy = HCI_ADV_PHY_1M; 1608 cp.secondary_phy = HCI_ADV_PHY_2M; 1609 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) { 1610 cp.primary_phy = HCI_ADV_PHY_CODED; 1611 cp.secondary_phy = HCI_ADV_PHY_CODED; 1612 } else { 1613 /* In all other cases use 1M */ 1614 cp.primary_phy = HCI_ADV_PHY_1M; 1615 cp.secondary_phy = HCI_ADV_PHY_1M; 1616 } 1617 1618 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp); 1619 1620 if (own_addr_type == ADDR_LE_DEV_RANDOM && 1621 bacmp(&random_addr, BDADDR_ANY)) { 1622 struct hci_cp_le_set_adv_set_rand_addr cp; 1623 1624 /* Check if random address need to be updated */ 1625 if (adv_instance) { 1626 if (!bacmp(&random_addr, &adv_instance->random_addr)) 1627 return 0; 1628 } else { 1629 if (!bacmp(&random_addr, &hdev->random_addr)) 1630 return 0; 1631 } 1632 1633 memset(&cp, 0, sizeof(cp)); 1634 1635 cp.handle = 0; 1636 bacpy(&cp.bdaddr, &random_addr); 1637 1638 hci_req_add(req, 1639 HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 1640 sizeof(cp), &cp); 1641 } 1642 1643 return 0; 1644 } 1645 1646 int __hci_req_enable_ext_advertising(struct hci_request *req, u8 instance) 1647 { 1648 struct hci_dev *hdev = req->hdev; 1649 struct hci_cp_le_set_ext_adv_enable *cp; 1650 struct hci_cp_ext_adv_set *adv_set; 1651 u8 data[sizeof(*cp) + sizeof(*adv_set) * 1]; 1652 struct adv_info *adv_instance; 1653 1654 if (instance > 0) { 1655 adv_instance = hci_find_adv_instance(hdev, instance); 1656 if (!adv_instance) 1657 return -EINVAL; 1658 } else { 1659 adv_instance = NULL; 1660 } 1661 1662 cp = (void *) data; 1663 adv_set = (void *) cp->data; 1664 1665 memset(cp, 0, sizeof(*cp)); 1666 1667 cp->enable = 0x01; 1668 cp->num_of_sets = 0x01; 1669 1670 memset(adv_set, 0, sizeof(*adv_set)); 1671 1672 adv_set->handle = instance; 1673 1674 /* Set duration per instance since controller is responsible for 1675 * scheduling it. 1676 */ 1677 if (adv_instance && adv_instance->duration) { 1678 u16 duration = adv_instance->duration * MSEC_PER_SEC; 1679 1680 /* Time = N * 10 ms */ 1681 adv_set->duration = cpu_to_le16(duration / 10); 1682 } 1683 1684 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1685 sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets, 1686 data); 1687 1688 return 0; 1689 } 1690 1691 int __hci_req_start_ext_adv(struct hci_request *req, u8 instance) 1692 { 1693 struct hci_dev *hdev = req->hdev; 1694 int err; 1695 1696 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) 1697 __hci_req_disable_advertising(req); 1698 1699 err = __hci_req_setup_ext_adv_instance(req, instance); 1700 if (err < 0) 1701 return err; 1702 1703 __hci_req_update_scan_rsp_data(req, instance); 1704 __hci_req_enable_ext_advertising(req, instance); 1705 1706 return 0; 1707 } 1708 1709 int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance, 1710 bool force) 1711 { 1712 struct hci_dev *hdev = req->hdev; 1713 struct adv_info *adv_instance = NULL; 1714 u16 timeout; 1715 1716 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 1717 list_empty(&hdev->adv_instances)) 1718 return -EPERM; 1719 1720 if (hdev->adv_instance_timeout) 1721 return -EBUSY; 1722 1723 adv_instance = hci_find_adv_instance(hdev, instance); 1724 if (!adv_instance) 1725 return -ENOENT; 1726 1727 /* A zero timeout means unlimited advertising. As long as there is 1728 * only one instance, duration should be ignored. We still set a timeout 1729 * in case further instances are being added later on. 1730 * 1731 * If the remaining lifetime of the instance is more than the duration 1732 * then the timeout corresponds to the duration, otherwise it will be 1733 * reduced to the remaining instance lifetime. 1734 */ 1735 if (adv_instance->timeout == 0 || 1736 adv_instance->duration <= adv_instance->remaining_time) 1737 timeout = adv_instance->duration; 1738 else 1739 timeout = adv_instance->remaining_time; 1740 1741 /* The remaining time is being reduced unless the instance is being 1742 * advertised without time limit. 1743 */ 1744 if (adv_instance->timeout) 1745 adv_instance->remaining_time = 1746 adv_instance->remaining_time - timeout; 1747 1748 /* Only use work for scheduling instances with legacy advertising */ 1749 if (!ext_adv_capable(hdev)) { 1750 hdev->adv_instance_timeout = timeout; 1751 queue_delayed_work(hdev->req_workqueue, 1752 &hdev->adv_instance_expire, 1753 msecs_to_jiffies(timeout * 1000)); 1754 } 1755 1756 /* If we're just re-scheduling the same instance again then do not 1757 * execute any HCI commands. This happens when a single instance is 1758 * being advertised. 1759 */ 1760 if (!force && hdev->cur_adv_instance == instance && 1761 hci_dev_test_flag(hdev, HCI_LE_ADV)) 1762 return 0; 1763 1764 hdev->cur_adv_instance = instance; 1765 if (ext_adv_capable(hdev)) { 1766 __hci_req_start_ext_adv(req, instance); 1767 } else { 1768 __hci_req_update_adv_data(req, instance); 1769 __hci_req_update_scan_rsp_data(req, instance); 1770 __hci_req_enable_advertising(req); 1771 } 1772 1773 return 0; 1774 } 1775 1776 static void cancel_adv_timeout(struct hci_dev *hdev) 1777 { 1778 if (hdev->adv_instance_timeout) { 1779 hdev->adv_instance_timeout = 0; 1780 cancel_delayed_work(&hdev->adv_instance_expire); 1781 } 1782 } 1783 1784 /* For a single instance: 1785 * - force == true: The instance will be removed even when its remaining 1786 * lifetime is not zero. 1787 * - force == false: the instance will be deactivated but kept stored unless 1788 * the remaining lifetime is zero. 1789 * 1790 * For instance == 0x00: 1791 * - force == true: All instances will be removed regardless of their timeout 1792 * setting. 1793 * - force == false: Only instances that have a timeout will be removed. 1794 */ 1795 void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk, 1796 struct hci_request *req, u8 instance, 1797 bool force) 1798 { 1799 struct adv_info *adv_instance, *n, *next_instance = NULL; 1800 int err; 1801 u8 rem_inst; 1802 1803 /* Cancel any timeout concerning the removed instance(s). */ 1804 if (!instance || hdev->cur_adv_instance == instance) 1805 cancel_adv_timeout(hdev); 1806 1807 /* Get the next instance to advertise BEFORE we remove 1808 * the current one. This can be the same instance again 1809 * if there is only one instance. 1810 */ 1811 if (instance && hdev->cur_adv_instance == instance) 1812 next_instance = hci_get_next_instance(hdev, instance); 1813 1814 if (instance == 0x00) { 1815 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, 1816 list) { 1817 if (!(force || adv_instance->timeout)) 1818 continue; 1819 1820 rem_inst = adv_instance->instance; 1821 err = hci_remove_adv_instance(hdev, rem_inst); 1822 if (!err) 1823 mgmt_advertising_removed(sk, hdev, rem_inst); 1824 } 1825 } else { 1826 adv_instance = hci_find_adv_instance(hdev, instance); 1827 1828 if (force || (adv_instance && adv_instance->timeout && 1829 !adv_instance->remaining_time)) { 1830 /* Don't advertise a removed instance. */ 1831 if (next_instance && 1832 next_instance->instance == instance) 1833 next_instance = NULL; 1834 1835 err = hci_remove_adv_instance(hdev, instance); 1836 if (!err) 1837 mgmt_advertising_removed(sk, hdev, instance); 1838 } 1839 } 1840 1841 if (!req || !hdev_is_powered(hdev) || 1842 hci_dev_test_flag(hdev, HCI_ADVERTISING)) 1843 return; 1844 1845 if (next_instance) 1846 __hci_req_schedule_adv_instance(req, next_instance->instance, 1847 false); 1848 } 1849 1850 static void set_random_addr(struct hci_request *req, bdaddr_t *rpa) 1851 { 1852 struct hci_dev *hdev = req->hdev; 1853 1854 /* If we're advertising or initiating an LE connection we can't 1855 * go ahead and change the random address at this time. This is 1856 * because the eventual initiator address used for the 1857 * subsequently created connection will be undefined (some 1858 * controllers use the new address and others the one we had 1859 * when the operation started). 1860 * 1861 * In this kind of scenario skip the update and let the random 1862 * address be updated at the next cycle. 1863 */ 1864 if (hci_dev_test_flag(hdev, HCI_LE_ADV) || 1865 hci_lookup_le_connect(hdev)) { 1866 BT_DBG("Deferring random address update"); 1867 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 1868 return; 1869 } 1870 1871 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa); 1872 } 1873 1874 int hci_update_random_address(struct hci_request *req, bool require_privacy, 1875 bool use_rpa, u8 *own_addr_type) 1876 { 1877 struct hci_dev *hdev = req->hdev; 1878 int err; 1879 1880 /* If privacy is enabled use a resolvable private address. If 1881 * current RPA has expired or there is something else than 1882 * the current RPA in use, then generate a new one. 1883 */ 1884 if (use_rpa) { 1885 int to; 1886 1887 *own_addr_type = ADDR_LE_DEV_RANDOM; 1888 1889 if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) && 1890 !bacmp(&hdev->random_addr, &hdev->rpa)) 1891 return 0; 1892 1893 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 1894 if (err < 0) { 1895 bt_dev_err(hdev, "failed to generate new RPA"); 1896 return err; 1897 } 1898 1899 set_random_addr(req, &hdev->rpa); 1900 1901 to = msecs_to_jiffies(hdev->rpa_timeout * 1000); 1902 queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to); 1903 1904 return 0; 1905 } 1906 1907 /* In case of required privacy without resolvable private address, 1908 * use an non-resolvable private address. This is useful for active 1909 * scanning and non-connectable advertising. 1910 */ 1911 if (require_privacy) { 1912 bdaddr_t nrpa; 1913 1914 while (true) { 1915 /* The non-resolvable private address is generated 1916 * from random six bytes with the two most significant 1917 * bits cleared. 1918 */ 1919 get_random_bytes(&nrpa, 6); 1920 nrpa.b[5] &= 0x3f; 1921 1922 /* The non-resolvable private address shall not be 1923 * equal to the public address. 1924 */ 1925 if (bacmp(&hdev->bdaddr, &nrpa)) 1926 break; 1927 } 1928 1929 *own_addr_type = ADDR_LE_DEV_RANDOM; 1930 set_random_addr(req, &nrpa); 1931 return 0; 1932 } 1933 1934 /* If forcing static address is in use or there is no public 1935 * address use the static address as random address (but skip 1936 * the HCI command if the current random address is already the 1937 * static one. 1938 * 1939 * In case BR/EDR has been disabled on a dual-mode controller 1940 * and a static address has been configured, then use that 1941 * address instead of the public BR/EDR address. 1942 */ 1943 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 1944 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 1945 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 1946 bacmp(&hdev->static_addr, BDADDR_ANY))) { 1947 *own_addr_type = ADDR_LE_DEV_RANDOM; 1948 if (bacmp(&hdev->static_addr, &hdev->random_addr)) 1949 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, 1950 &hdev->static_addr); 1951 return 0; 1952 } 1953 1954 /* Neither privacy nor static address is being used so use a 1955 * public address. 1956 */ 1957 *own_addr_type = ADDR_LE_DEV_PUBLIC; 1958 1959 return 0; 1960 } 1961 1962 static bool disconnected_whitelist_entries(struct hci_dev *hdev) 1963 { 1964 struct bdaddr_list *b; 1965 1966 list_for_each_entry(b, &hdev->whitelist, list) { 1967 struct hci_conn *conn; 1968 1969 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); 1970 if (!conn) 1971 return true; 1972 1973 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 1974 return true; 1975 } 1976 1977 return false; 1978 } 1979 1980 void __hci_req_update_scan(struct hci_request *req) 1981 { 1982 struct hci_dev *hdev = req->hdev; 1983 u8 scan; 1984 1985 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 1986 return; 1987 1988 if (!hdev_is_powered(hdev)) 1989 return; 1990 1991 if (mgmt_powering_down(hdev)) 1992 return; 1993 1994 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || 1995 disconnected_whitelist_entries(hdev)) 1996 scan = SCAN_PAGE; 1997 else 1998 scan = SCAN_DISABLED; 1999 2000 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 2001 scan |= SCAN_INQUIRY; 2002 2003 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && 2004 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) 2005 return; 2006 2007 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); 2008 } 2009 2010 static int update_scan(struct hci_request *req, unsigned long opt) 2011 { 2012 hci_dev_lock(req->hdev); 2013 __hci_req_update_scan(req); 2014 hci_dev_unlock(req->hdev); 2015 return 0; 2016 } 2017 2018 static void scan_update_work(struct work_struct *work) 2019 { 2020 struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update); 2021 2022 hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL); 2023 } 2024 2025 static int connectable_update(struct hci_request *req, unsigned long opt) 2026 { 2027 struct hci_dev *hdev = req->hdev; 2028 2029 hci_dev_lock(hdev); 2030 2031 __hci_req_update_scan(req); 2032 2033 /* If BR/EDR is not enabled and we disable advertising as a 2034 * by-product of disabling connectable, we need to update the 2035 * advertising flags. 2036 */ 2037 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 2038 __hci_req_update_adv_data(req, hdev->cur_adv_instance); 2039 2040 /* Update the advertising parameters if necessary */ 2041 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 2042 !list_empty(&hdev->adv_instances)) { 2043 if (ext_adv_capable(hdev)) 2044 __hci_req_start_ext_adv(req, hdev->cur_adv_instance); 2045 else 2046 __hci_req_enable_advertising(req); 2047 } 2048 2049 __hci_update_background_scan(req); 2050 2051 hci_dev_unlock(hdev); 2052 2053 return 0; 2054 } 2055 2056 static void connectable_update_work(struct work_struct *work) 2057 { 2058 struct hci_dev *hdev = container_of(work, struct hci_dev, 2059 connectable_update); 2060 u8 status; 2061 2062 hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status); 2063 mgmt_set_connectable_complete(hdev, status); 2064 } 2065 2066 static u8 get_service_classes(struct hci_dev *hdev) 2067 { 2068 struct bt_uuid *uuid; 2069 u8 val = 0; 2070 2071 list_for_each_entry(uuid, &hdev->uuids, list) 2072 val |= uuid->svc_hint; 2073 2074 return val; 2075 } 2076 2077 void __hci_req_update_class(struct hci_request *req) 2078 { 2079 struct hci_dev *hdev = req->hdev; 2080 u8 cod[3]; 2081 2082 BT_DBG("%s", hdev->name); 2083 2084 if (!hdev_is_powered(hdev)) 2085 return; 2086 2087 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 2088 return; 2089 2090 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 2091 return; 2092 2093 cod[0] = hdev->minor_class; 2094 cod[1] = hdev->major_class; 2095 cod[2] = get_service_classes(hdev); 2096 2097 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 2098 cod[1] |= 0x20; 2099 2100 if (memcmp(cod, hdev->dev_class, 3) == 0) 2101 return; 2102 2103 hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod); 2104 } 2105 2106 static void write_iac(struct hci_request *req) 2107 { 2108 struct hci_dev *hdev = req->hdev; 2109 struct hci_cp_write_current_iac_lap cp; 2110 2111 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 2112 return; 2113 2114 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 2115 /* Limited discoverable mode */ 2116 cp.num_iac = min_t(u8, hdev->num_iac, 2); 2117 cp.iac_lap[0] = 0x00; /* LIAC */ 2118 cp.iac_lap[1] = 0x8b; 2119 cp.iac_lap[2] = 0x9e; 2120 cp.iac_lap[3] = 0x33; /* GIAC */ 2121 cp.iac_lap[4] = 0x8b; 2122 cp.iac_lap[5] = 0x9e; 2123 } else { 2124 /* General discoverable mode */ 2125 cp.num_iac = 1; 2126 cp.iac_lap[0] = 0x33; /* GIAC */ 2127 cp.iac_lap[1] = 0x8b; 2128 cp.iac_lap[2] = 0x9e; 2129 } 2130 2131 hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP, 2132 (cp.num_iac * 3) + 1, &cp); 2133 } 2134 2135 static int discoverable_update(struct hci_request *req, unsigned long opt) 2136 { 2137 struct hci_dev *hdev = req->hdev; 2138 2139 hci_dev_lock(hdev); 2140 2141 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 2142 write_iac(req); 2143 __hci_req_update_scan(req); 2144 __hci_req_update_class(req); 2145 } 2146 2147 /* Advertising instances don't use the global discoverable setting, so 2148 * only update AD if advertising was enabled using Set Advertising. 2149 */ 2150 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 2151 __hci_req_update_adv_data(req, 0x00); 2152 2153 /* Discoverable mode affects the local advertising 2154 * address in limited privacy mode. 2155 */ 2156 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { 2157 if (ext_adv_capable(hdev)) 2158 __hci_req_start_ext_adv(req, 0x00); 2159 else 2160 __hci_req_enable_advertising(req); 2161 } 2162 } 2163 2164 hci_dev_unlock(hdev); 2165 2166 return 0; 2167 } 2168 2169 static void discoverable_update_work(struct work_struct *work) 2170 { 2171 struct hci_dev *hdev = container_of(work, struct hci_dev, 2172 discoverable_update); 2173 u8 status; 2174 2175 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status); 2176 mgmt_set_discoverable_complete(hdev, status); 2177 } 2178 2179 void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn, 2180 u8 reason) 2181 { 2182 switch (conn->state) { 2183 case BT_CONNECTED: 2184 case BT_CONFIG: 2185 if (conn->type == AMP_LINK) { 2186 struct hci_cp_disconn_phy_link cp; 2187 2188 cp.phy_handle = HCI_PHY_HANDLE(conn->handle); 2189 cp.reason = reason; 2190 hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp), 2191 &cp); 2192 } else { 2193 struct hci_cp_disconnect dc; 2194 2195 dc.handle = cpu_to_le16(conn->handle); 2196 dc.reason = reason; 2197 hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc); 2198 } 2199 2200 conn->state = BT_DISCONN; 2201 2202 break; 2203 case BT_CONNECT: 2204 if (conn->type == LE_LINK) { 2205 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 2206 break; 2207 hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL, 2208 0, NULL); 2209 } else if (conn->type == ACL_LINK) { 2210 if (req->hdev->hci_ver < BLUETOOTH_VER_1_2) 2211 break; 2212 hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL, 2213 6, &conn->dst); 2214 } 2215 break; 2216 case BT_CONNECT2: 2217 if (conn->type == ACL_LINK) { 2218 struct hci_cp_reject_conn_req rej; 2219 2220 bacpy(&rej.bdaddr, &conn->dst); 2221 rej.reason = reason; 2222 2223 hci_req_add(req, HCI_OP_REJECT_CONN_REQ, 2224 sizeof(rej), &rej); 2225 } else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) { 2226 struct hci_cp_reject_sync_conn_req rej; 2227 2228 bacpy(&rej.bdaddr, &conn->dst); 2229 2230 /* SCO rejection has its own limited set of 2231 * allowed error values (0x0D-0x0F) which isn't 2232 * compatible with most values passed to this 2233 * function. To be safe hard-code one of the 2234 * values that's suitable for SCO. 2235 */ 2236 rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; 2237 2238 hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ, 2239 sizeof(rej), &rej); 2240 } 2241 break; 2242 default: 2243 conn->state = BT_CLOSED; 2244 break; 2245 } 2246 } 2247 2248 static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode) 2249 { 2250 if (status) 2251 BT_DBG("Failed to abort connection: status 0x%2.2x", status); 2252 } 2253 2254 int hci_abort_conn(struct hci_conn *conn, u8 reason) 2255 { 2256 struct hci_request req; 2257 int err; 2258 2259 hci_req_init(&req, conn->hdev); 2260 2261 __hci_abort_conn(&req, conn, reason); 2262 2263 err = hci_req_run(&req, abort_conn_complete); 2264 if (err && err != -ENODATA) { 2265 bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err); 2266 return err; 2267 } 2268 2269 return 0; 2270 } 2271 2272 static int update_bg_scan(struct hci_request *req, unsigned long opt) 2273 { 2274 hci_dev_lock(req->hdev); 2275 __hci_update_background_scan(req); 2276 hci_dev_unlock(req->hdev); 2277 return 0; 2278 } 2279 2280 static void bg_scan_update(struct work_struct *work) 2281 { 2282 struct hci_dev *hdev = container_of(work, struct hci_dev, 2283 bg_scan_update); 2284 struct hci_conn *conn; 2285 u8 status; 2286 int err; 2287 2288 err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status); 2289 if (!err) 2290 return; 2291 2292 hci_dev_lock(hdev); 2293 2294 conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT); 2295 if (conn) 2296 hci_le_conn_failed(conn, status); 2297 2298 hci_dev_unlock(hdev); 2299 } 2300 2301 static int le_scan_disable(struct hci_request *req, unsigned long opt) 2302 { 2303 hci_req_add_le_scan_disable(req); 2304 return 0; 2305 } 2306 2307 static int bredr_inquiry(struct hci_request *req, unsigned long opt) 2308 { 2309 u8 length = opt; 2310 const u8 giac[3] = { 0x33, 0x8b, 0x9e }; 2311 const u8 liac[3] = { 0x00, 0x8b, 0x9e }; 2312 struct hci_cp_inquiry cp; 2313 2314 BT_DBG("%s", req->hdev->name); 2315 2316 hci_dev_lock(req->hdev); 2317 hci_inquiry_cache_flush(req->hdev); 2318 hci_dev_unlock(req->hdev); 2319 2320 memset(&cp, 0, sizeof(cp)); 2321 2322 if (req->hdev->discovery.limited) 2323 memcpy(&cp.lap, liac, sizeof(cp.lap)); 2324 else 2325 memcpy(&cp.lap, giac, sizeof(cp.lap)); 2326 2327 cp.length = length; 2328 2329 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp); 2330 2331 return 0; 2332 } 2333 2334 static void le_scan_disable_work(struct work_struct *work) 2335 { 2336 struct hci_dev *hdev = container_of(work, struct hci_dev, 2337 le_scan_disable.work); 2338 u8 status; 2339 2340 BT_DBG("%s", hdev->name); 2341 2342 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 2343 return; 2344 2345 cancel_delayed_work(&hdev->le_scan_restart); 2346 2347 hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status); 2348 if (status) { 2349 bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x", 2350 status); 2351 return; 2352 } 2353 2354 hdev->discovery.scan_start = 0; 2355 2356 /* If we were running LE only scan, change discovery state. If 2357 * we were running both LE and BR/EDR inquiry simultaneously, 2358 * and BR/EDR inquiry is already finished, stop discovery, 2359 * otherwise BR/EDR inquiry will stop discovery when finished. 2360 * If we will resolve remote device name, do not change 2361 * discovery state. 2362 */ 2363 2364 if (hdev->discovery.type == DISCOV_TYPE_LE) 2365 goto discov_stopped; 2366 2367 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED) 2368 return; 2369 2370 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) { 2371 if (!test_bit(HCI_INQUIRY, &hdev->flags) && 2372 hdev->discovery.state != DISCOVERY_RESOLVING) 2373 goto discov_stopped; 2374 2375 return; 2376 } 2377 2378 hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN, 2379 HCI_CMD_TIMEOUT, &status); 2380 if (status) { 2381 bt_dev_err(hdev, "inquiry failed: status 0x%02x", status); 2382 goto discov_stopped; 2383 } 2384 2385 return; 2386 2387 discov_stopped: 2388 hci_dev_lock(hdev); 2389 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 2390 hci_dev_unlock(hdev); 2391 } 2392 2393 static int le_scan_restart(struct hci_request *req, unsigned long opt) 2394 { 2395 struct hci_dev *hdev = req->hdev; 2396 2397 /* If controller is not scanning we are done. */ 2398 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 2399 return 0; 2400 2401 hci_req_add_le_scan_disable(req); 2402 2403 if (use_ext_scan(hdev)) { 2404 struct hci_cp_le_set_ext_scan_enable ext_enable_cp; 2405 2406 memset(&ext_enable_cp, 0, sizeof(ext_enable_cp)); 2407 ext_enable_cp.enable = LE_SCAN_ENABLE; 2408 ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 2409 2410 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 2411 sizeof(ext_enable_cp), &ext_enable_cp); 2412 } else { 2413 struct hci_cp_le_set_scan_enable cp; 2414 2415 memset(&cp, 0, sizeof(cp)); 2416 cp.enable = LE_SCAN_ENABLE; 2417 cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 2418 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp); 2419 } 2420 2421 return 0; 2422 } 2423 2424 static void le_scan_restart_work(struct work_struct *work) 2425 { 2426 struct hci_dev *hdev = container_of(work, struct hci_dev, 2427 le_scan_restart.work); 2428 unsigned long timeout, duration, scan_start, now; 2429 u8 status; 2430 2431 BT_DBG("%s", hdev->name); 2432 2433 hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status); 2434 if (status) { 2435 bt_dev_err(hdev, "failed to restart LE scan: status %d", 2436 status); 2437 return; 2438 } 2439 2440 hci_dev_lock(hdev); 2441 2442 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) || 2443 !hdev->discovery.scan_start) 2444 goto unlock; 2445 2446 /* When the scan was started, hdev->le_scan_disable has been queued 2447 * after duration from scan_start. During scan restart this job 2448 * has been canceled, and we need to queue it again after proper 2449 * timeout, to make sure that scan does not run indefinitely. 2450 */ 2451 duration = hdev->discovery.scan_duration; 2452 scan_start = hdev->discovery.scan_start; 2453 now = jiffies; 2454 if (now - scan_start <= duration) { 2455 int elapsed; 2456 2457 if (now >= scan_start) 2458 elapsed = now - scan_start; 2459 else 2460 elapsed = ULONG_MAX - scan_start + now; 2461 2462 timeout = duration - elapsed; 2463 } else { 2464 timeout = 0; 2465 } 2466 2467 queue_delayed_work(hdev->req_workqueue, 2468 &hdev->le_scan_disable, timeout); 2469 2470 unlock: 2471 hci_dev_unlock(hdev); 2472 } 2473 2474 static int active_scan(struct hci_request *req, unsigned long opt) 2475 { 2476 uint16_t interval = opt; 2477 struct hci_dev *hdev = req->hdev; 2478 u8 own_addr_type; 2479 int err; 2480 2481 BT_DBG("%s", hdev->name); 2482 2483 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) { 2484 hci_dev_lock(hdev); 2485 2486 /* Don't let discovery abort an outgoing connection attempt 2487 * that's using directed advertising. 2488 */ 2489 if (hci_lookup_le_connect(hdev)) { 2490 hci_dev_unlock(hdev); 2491 return -EBUSY; 2492 } 2493 2494 cancel_adv_timeout(hdev); 2495 hci_dev_unlock(hdev); 2496 2497 __hci_req_disable_advertising(req); 2498 } 2499 2500 /* If controller is scanning, it means the background scanning is 2501 * running. Thus, we should temporarily stop it in order to set the 2502 * discovery scanning parameters. 2503 */ 2504 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) 2505 hci_req_add_le_scan_disable(req); 2506 2507 /* All active scans will be done with either a resolvable private 2508 * address (when privacy feature has been enabled) or non-resolvable 2509 * private address. 2510 */ 2511 err = hci_update_random_address(req, true, scan_use_rpa(hdev), 2512 &own_addr_type); 2513 if (err < 0) 2514 own_addr_type = ADDR_LE_DEV_PUBLIC; 2515 2516 hci_req_start_scan(req, LE_SCAN_ACTIVE, interval, DISCOV_LE_SCAN_WIN, 2517 own_addr_type, 0); 2518 return 0; 2519 } 2520 2521 static int interleaved_discov(struct hci_request *req, unsigned long opt) 2522 { 2523 int err; 2524 2525 BT_DBG("%s", req->hdev->name); 2526 2527 err = active_scan(req, opt); 2528 if (err) 2529 return err; 2530 2531 return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN); 2532 } 2533 2534 static void start_discovery(struct hci_dev *hdev, u8 *status) 2535 { 2536 unsigned long timeout; 2537 2538 BT_DBG("%s type %u", hdev->name, hdev->discovery.type); 2539 2540 switch (hdev->discovery.type) { 2541 case DISCOV_TYPE_BREDR: 2542 if (!hci_dev_test_flag(hdev, HCI_INQUIRY)) 2543 hci_req_sync(hdev, bredr_inquiry, 2544 DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT, 2545 status); 2546 return; 2547 case DISCOV_TYPE_INTERLEAVED: 2548 /* When running simultaneous discovery, the LE scanning time 2549 * should occupy the whole discovery time sine BR/EDR inquiry 2550 * and LE scanning are scheduled by the controller. 2551 * 2552 * For interleaving discovery in comparison, BR/EDR inquiry 2553 * and LE scanning are done sequentially with separate 2554 * timeouts. 2555 */ 2556 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, 2557 &hdev->quirks)) { 2558 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 2559 /* During simultaneous discovery, we double LE scan 2560 * interval. We must leave some time for the controller 2561 * to do BR/EDR inquiry. 2562 */ 2563 hci_req_sync(hdev, interleaved_discov, 2564 DISCOV_LE_SCAN_INT * 2, HCI_CMD_TIMEOUT, 2565 status); 2566 break; 2567 } 2568 2569 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); 2570 hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT, 2571 HCI_CMD_TIMEOUT, status); 2572 break; 2573 case DISCOV_TYPE_LE: 2574 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 2575 hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT, 2576 HCI_CMD_TIMEOUT, status); 2577 break; 2578 default: 2579 *status = HCI_ERROR_UNSPECIFIED; 2580 return; 2581 } 2582 2583 if (*status) 2584 return; 2585 2586 BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout)); 2587 2588 /* When service discovery is used and the controller has a 2589 * strict duplicate filter, it is important to remember the 2590 * start and duration of the scan. This is required for 2591 * restarting scanning during the discovery phase. 2592 */ 2593 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && 2594 hdev->discovery.result_filtering) { 2595 hdev->discovery.scan_start = jiffies; 2596 hdev->discovery.scan_duration = timeout; 2597 } 2598 2599 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, 2600 timeout); 2601 } 2602 2603 bool hci_req_stop_discovery(struct hci_request *req) 2604 { 2605 struct hci_dev *hdev = req->hdev; 2606 struct discovery_state *d = &hdev->discovery; 2607 struct hci_cp_remote_name_req_cancel cp; 2608 struct inquiry_entry *e; 2609 bool ret = false; 2610 2611 BT_DBG("%s state %u", hdev->name, hdev->discovery.state); 2612 2613 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { 2614 if (test_bit(HCI_INQUIRY, &hdev->flags)) 2615 hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL); 2616 2617 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 2618 cancel_delayed_work(&hdev->le_scan_disable); 2619 hci_req_add_le_scan_disable(req); 2620 } 2621 2622 ret = true; 2623 } else { 2624 /* Passive scanning */ 2625 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 2626 hci_req_add_le_scan_disable(req); 2627 ret = true; 2628 } 2629 } 2630 2631 /* No further actions needed for LE-only discovery */ 2632 if (d->type == DISCOV_TYPE_LE) 2633 return ret; 2634 2635 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { 2636 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, 2637 NAME_PENDING); 2638 if (!e) 2639 return ret; 2640 2641 bacpy(&cp.bdaddr, &e->data.bdaddr); 2642 hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp), 2643 &cp); 2644 ret = true; 2645 } 2646 2647 return ret; 2648 } 2649 2650 static int stop_discovery(struct hci_request *req, unsigned long opt) 2651 { 2652 hci_dev_lock(req->hdev); 2653 hci_req_stop_discovery(req); 2654 hci_dev_unlock(req->hdev); 2655 2656 return 0; 2657 } 2658 2659 static void discov_update(struct work_struct *work) 2660 { 2661 struct hci_dev *hdev = container_of(work, struct hci_dev, 2662 discov_update); 2663 u8 status = 0; 2664 2665 switch (hdev->discovery.state) { 2666 case DISCOVERY_STARTING: 2667 start_discovery(hdev, &status); 2668 mgmt_start_discovery_complete(hdev, status); 2669 if (status) 2670 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 2671 else 2672 hci_discovery_set_state(hdev, DISCOVERY_FINDING); 2673 break; 2674 case DISCOVERY_STOPPING: 2675 hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status); 2676 mgmt_stop_discovery_complete(hdev, status); 2677 if (!status) 2678 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 2679 break; 2680 case DISCOVERY_STOPPED: 2681 default: 2682 return; 2683 } 2684 } 2685 2686 static void discov_off(struct work_struct *work) 2687 { 2688 struct hci_dev *hdev = container_of(work, struct hci_dev, 2689 discov_off.work); 2690 2691 BT_DBG("%s", hdev->name); 2692 2693 hci_dev_lock(hdev); 2694 2695 /* When discoverable timeout triggers, then just make sure 2696 * the limited discoverable flag is cleared. Even in the case 2697 * of a timeout triggered from general discoverable, it is 2698 * safe to unconditionally clear the flag. 2699 */ 2700 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 2701 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 2702 hdev->discov_timeout = 0; 2703 2704 hci_dev_unlock(hdev); 2705 2706 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL); 2707 mgmt_new_settings(hdev); 2708 } 2709 2710 static int powered_update_hci(struct hci_request *req, unsigned long opt) 2711 { 2712 struct hci_dev *hdev = req->hdev; 2713 u8 link_sec; 2714 2715 hci_dev_lock(hdev); 2716 2717 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) && 2718 !lmp_host_ssp_capable(hdev)) { 2719 u8 mode = 0x01; 2720 2721 hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode); 2722 2723 if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) { 2724 u8 support = 0x01; 2725 2726 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT, 2727 sizeof(support), &support); 2728 } 2729 } 2730 2731 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) && 2732 lmp_bredr_capable(hdev)) { 2733 struct hci_cp_write_le_host_supported cp; 2734 2735 cp.le = 0x01; 2736 cp.simul = 0x00; 2737 2738 /* Check first if we already have the right 2739 * host state (host features set) 2740 */ 2741 if (cp.le != lmp_host_le_capable(hdev) || 2742 cp.simul != lmp_host_le_br_capable(hdev)) 2743 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, 2744 sizeof(cp), &cp); 2745 } 2746 2747 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 2748 /* Make sure the controller has a good default for 2749 * advertising data. This also applies to the case 2750 * where BR/EDR was toggled during the AUTO_OFF phase. 2751 */ 2752 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 2753 list_empty(&hdev->adv_instances)) { 2754 int err; 2755 2756 if (ext_adv_capable(hdev)) { 2757 err = __hci_req_setup_ext_adv_instance(req, 2758 0x00); 2759 if (!err) 2760 __hci_req_update_scan_rsp_data(req, 2761 0x00); 2762 } else { 2763 err = 0; 2764 __hci_req_update_adv_data(req, 0x00); 2765 __hci_req_update_scan_rsp_data(req, 0x00); 2766 } 2767 2768 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 2769 if (!ext_adv_capable(hdev)) 2770 __hci_req_enable_advertising(req); 2771 else if (!err) 2772 __hci_req_enable_ext_advertising(req, 2773 0x00); 2774 } 2775 } else if (!list_empty(&hdev->adv_instances)) { 2776 struct adv_info *adv_instance; 2777 2778 adv_instance = list_first_entry(&hdev->adv_instances, 2779 struct adv_info, list); 2780 __hci_req_schedule_adv_instance(req, 2781 adv_instance->instance, 2782 true); 2783 } 2784 } 2785 2786 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); 2787 if (link_sec != test_bit(HCI_AUTH, &hdev->flags)) 2788 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 2789 sizeof(link_sec), &link_sec); 2790 2791 if (lmp_bredr_capable(hdev)) { 2792 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) 2793 __hci_req_write_fast_connectable(req, true); 2794 else 2795 __hci_req_write_fast_connectable(req, false); 2796 __hci_req_update_scan(req); 2797 __hci_req_update_class(req); 2798 __hci_req_update_name(req); 2799 __hci_req_update_eir(req); 2800 } 2801 2802 hci_dev_unlock(hdev); 2803 return 0; 2804 } 2805 2806 int __hci_req_hci_power_on(struct hci_dev *hdev) 2807 { 2808 /* Register the available SMP channels (BR/EDR and LE) only when 2809 * successfully powering on the controller. This late 2810 * registration is required so that LE SMP can clearly decide if 2811 * the public address or static address is used. 2812 */ 2813 smp_register(hdev); 2814 2815 return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT, 2816 NULL); 2817 } 2818 2819 void hci_request_setup(struct hci_dev *hdev) 2820 { 2821 INIT_WORK(&hdev->discov_update, discov_update); 2822 INIT_WORK(&hdev->bg_scan_update, bg_scan_update); 2823 INIT_WORK(&hdev->scan_update, scan_update_work); 2824 INIT_WORK(&hdev->connectable_update, connectable_update_work); 2825 INIT_WORK(&hdev->discoverable_update, discoverable_update_work); 2826 INIT_DELAYED_WORK(&hdev->discov_off, discov_off); 2827 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work); 2828 INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work); 2829 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire); 2830 } 2831 2832 void hci_request_cancel_all(struct hci_dev *hdev) 2833 { 2834 hci_req_sync_cancel(hdev, ENODEV); 2835 2836 cancel_work_sync(&hdev->discov_update); 2837 cancel_work_sync(&hdev->bg_scan_update); 2838 cancel_work_sync(&hdev->scan_update); 2839 cancel_work_sync(&hdev->connectable_update); 2840 cancel_work_sync(&hdev->discoverable_update); 2841 cancel_delayed_work_sync(&hdev->discov_off); 2842 cancel_delayed_work_sync(&hdev->le_scan_disable); 2843 cancel_delayed_work_sync(&hdev->le_scan_restart); 2844 2845 if (hdev->adv_instance_timeout) { 2846 cancel_delayed_work_sync(&hdev->adv_instance_expire); 2847 hdev->adv_instance_timeout = 0; 2848 } 2849 } 2850