1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 4 Copyright (C) 2014 Intel Corporation 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License version 2 as 8 published by the Free Software Foundation; 9 10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 21 SOFTWARE IS DISCLAIMED. 22 */ 23 24 #include <linux/sched/signal.h> 25 26 #include <net/bluetooth/bluetooth.h> 27 #include <net/bluetooth/hci_core.h> 28 #include <net/bluetooth/mgmt.h> 29 30 #include "smp.h" 31 #include "hci_request.h" 32 33 #define HCI_REQ_DONE 0 34 #define HCI_REQ_PEND 1 35 #define HCI_REQ_CANCELED 2 36 37 void hci_req_init(struct hci_request *req, struct hci_dev *hdev) 38 { 39 skb_queue_head_init(&req->cmd_q); 40 req->hdev = hdev; 41 req->err = 0; 42 } 43 44 void hci_req_purge(struct hci_request *req) 45 { 46 skb_queue_purge(&req->cmd_q); 47 } 48 49 bool hci_req_status_pend(struct hci_dev *hdev) 50 { 51 return hdev->req_status == HCI_REQ_PEND; 52 } 53 54 static int req_run(struct hci_request *req, hci_req_complete_t complete, 55 hci_req_complete_skb_t complete_skb) 56 { 57 struct hci_dev *hdev = req->hdev; 58 struct sk_buff *skb; 59 unsigned long flags; 60 61 BT_DBG("length %u", skb_queue_len(&req->cmd_q)); 62 63 /* If an error occurred during request building, remove all HCI 64 * commands queued on the HCI request queue. 65 */ 66 if (req->err) { 67 skb_queue_purge(&req->cmd_q); 68 return req->err; 69 } 70 71 /* Do not allow empty requests */ 72 if (skb_queue_empty(&req->cmd_q)) 73 return -ENODATA; 74 75 skb = skb_peek_tail(&req->cmd_q); 76 if (complete) { 77 bt_cb(skb)->hci.req_complete = complete; 78 } else if (complete_skb) { 79 bt_cb(skb)->hci.req_complete_skb = complete_skb; 80 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; 81 } 82 83 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 84 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); 85 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 86 87 queue_work(hdev->workqueue, &hdev->cmd_work); 88 89 return 0; 90 } 91 92 int hci_req_run(struct hci_request *req, hci_req_complete_t complete) 93 { 94 return req_run(req, complete, NULL); 95 } 96 97 int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete) 98 { 99 return req_run(req, NULL, complete); 100 } 101 102 static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, 103 struct sk_buff *skb) 104 { 105 BT_DBG("%s result 0x%2.2x", hdev->name, result); 106 107 if (hdev->req_status == HCI_REQ_PEND) { 108 hdev->req_result = result; 109 hdev->req_status = HCI_REQ_DONE; 110 if (skb) 111 hdev->req_skb = skb_get(skb); 112 wake_up_interruptible(&hdev->req_wait_q); 113 } 114 } 115 116 void hci_req_sync_cancel(struct hci_dev *hdev, int err) 117 { 118 BT_DBG("%s err 0x%2.2x", hdev->name, err); 119 120 if (hdev->req_status == HCI_REQ_PEND) { 121 hdev->req_result = err; 122 hdev->req_status = HCI_REQ_CANCELED; 123 wake_up_interruptible(&hdev->req_wait_q); 124 } 125 } 126 127 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 128 const void *param, u8 event, u32 timeout) 129 { 130 struct hci_request req; 131 struct sk_buff *skb; 132 int err = 0; 133 134 BT_DBG("%s", hdev->name); 135 136 hci_req_init(&req, hdev); 137 138 hci_req_add_ev(&req, opcode, plen, param, event); 139 140 hdev->req_status = HCI_REQ_PEND; 141 142 err = hci_req_run_skb(&req, hci_req_sync_complete); 143 if (err < 0) 144 return ERR_PTR(err); 145 146 err = wait_event_interruptible_timeout(hdev->req_wait_q, 147 hdev->req_status != HCI_REQ_PEND, timeout); 148 149 if (err == -ERESTARTSYS) 150 return ERR_PTR(-EINTR); 151 152 switch (hdev->req_status) { 153 case HCI_REQ_DONE: 154 err = -bt_to_errno(hdev->req_result); 155 break; 156 157 case HCI_REQ_CANCELED: 158 err = -hdev->req_result; 159 break; 160 161 default: 162 err = -ETIMEDOUT; 163 break; 164 } 165 166 hdev->req_status = hdev->req_result = 0; 167 skb = hdev->req_skb; 168 hdev->req_skb = NULL; 169 170 BT_DBG("%s end: err %d", hdev->name, err); 171 172 if (err < 0) { 173 kfree_skb(skb); 174 return ERR_PTR(err); 175 } 176 177 if (!skb) 178 return ERR_PTR(-ENODATA); 179 180 return skb; 181 } 182 EXPORT_SYMBOL(__hci_cmd_sync_ev); 183 184 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 185 const void *param, u32 timeout) 186 { 187 return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout); 188 } 189 EXPORT_SYMBOL(__hci_cmd_sync); 190 191 /* Execute request and wait for completion. */ 192 int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req, 193 unsigned long opt), 194 unsigned long opt, u32 timeout, u8 *hci_status) 195 { 196 struct hci_request req; 197 int err = 0; 198 199 BT_DBG("%s start", hdev->name); 200 201 hci_req_init(&req, hdev); 202 203 hdev->req_status = HCI_REQ_PEND; 204 205 err = func(&req, opt); 206 if (err) { 207 if (hci_status) 208 *hci_status = HCI_ERROR_UNSPECIFIED; 209 return err; 210 } 211 212 err = hci_req_run_skb(&req, hci_req_sync_complete); 213 if (err < 0) { 214 hdev->req_status = 0; 215 216 /* ENODATA means the HCI request command queue is empty. 217 * This can happen when a request with conditionals doesn't 218 * trigger any commands to be sent. This is normal behavior 219 * and should not trigger an error return. 220 */ 221 if (err == -ENODATA) { 222 if (hci_status) 223 *hci_status = 0; 224 return 0; 225 } 226 227 if (hci_status) 228 *hci_status = HCI_ERROR_UNSPECIFIED; 229 230 return err; 231 } 232 233 err = wait_event_interruptible_timeout(hdev->req_wait_q, 234 hdev->req_status != HCI_REQ_PEND, timeout); 235 236 if (err == -ERESTARTSYS) 237 return -EINTR; 238 239 switch (hdev->req_status) { 240 case HCI_REQ_DONE: 241 err = -bt_to_errno(hdev->req_result); 242 if (hci_status) 243 *hci_status = hdev->req_result; 244 break; 245 246 case HCI_REQ_CANCELED: 247 err = -hdev->req_result; 248 if (hci_status) 249 *hci_status = HCI_ERROR_UNSPECIFIED; 250 break; 251 252 default: 253 err = -ETIMEDOUT; 254 if (hci_status) 255 *hci_status = HCI_ERROR_UNSPECIFIED; 256 break; 257 } 258 259 kfree_skb(hdev->req_skb); 260 hdev->req_skb = NULL; 261 hdev->req_status = hdev->req_result = 0; 262 263 BT_DBG("%s end: err %d", hdev->name, err); 264 265 return err; 266 } 267 268 int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req, 269 unsigned long opt), 270 unsigned long opt, u32 timeout, u8 *hci_status) 271 { 272 int ret; 273 274 if (!test_bit(HCI_UP, &hdev->flags)) 275 return -ENETDOWN; 276 277 /* Serialize all requests */ 278 hci_req_sync_lock(hdev); 279 ret = __hci_req_sync(hdev, req, opt, timeout, hci_status); 280 hci_req_sync_unlock(hdev); 281 282 return ret; 283 } 284 285 struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen, 286 const void *param) 287 { 288 int len = HCI_COMMAND_HDR_SIZE + plen; 289 struct hci_command_hdr *hdr; 290 struct sk_buff *skb; 291 292 skb = bt_skb_alloc(len, GFP_ATOMIC); 293 if (!skb) 294 return NULL; 295 296 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); 297 hdr->opcode = cpu_to_le16(opcode); 298 hdr->plen = plen; 299 300 if (plen) 301 skb_put_data(skb, param, plen); 302 303 BT_DBG("skb len %d", skb->len); 304 305 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 306 hci_skb_opcode(skb) = opcode; 307 308 return skb; 309 } 310 311 /* Queue a command to an asynchronous HCI request */ 312 void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen, 313 const void *param, u8 event) 314 { 315 struct hci_dev *hdev = req->hdev; 316 struct sk_buff *skb; 317 318 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen); 319 320 /* If an error occurred during request building, there is no point in 321 * queueing the HCI command. We can simply return. 322 */ 323 if (req->err) 324 return; 325 326 skb = hci_prepare_cmd(hdev, opcode, plen, param); 327 if (!skb) { 328 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 329 opcode); 330 req->err = -ENOMEM; 331 return; 332 } 333 334 if (skb_queue_empty(&req->cmd_q)) 335 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 336 337 bt_cb(skb)->hci.req_event = event; 338 339 skb_queue_tail(&req->cmd_q, skb); 340 } 341 342 void hci_req_add(struct hci_request *req, u16 opcode, u32 plen, 343 const void *param) 344 { 345 hci_req_add_ev(req, opcode, plen, param, 0); 346 } 347 348 void __hci_req_write_fast_connectable(struct hci_request *req, bool enable) 349 { 350 struct hci_dev *hdev = req->hdev; 351 struct hci_cp_write_page_scan_activity acp; 352 u8 type; 353 354 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 355 return; 356 357 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 358 return; 359 360 if (enable) { 361 type = PAGE_SCAN_TYPE_INTERLACED; 362 363 /* 160 msec page scan interval */ 364 acp.interval = cpu_to_le16(0x0100); 365 } else { 366 type = hdev->def_page_scan_type; 367 acp.interval = cpu_to_le16(hdev->def_page_scan_int); 368 } 369 370 acp.window = cpu_to_le16(hdev->def_page_scan_window); 371 372 if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval || 373 __cpu_to_le16(hdev->page_scan_window) != acp.window) 374 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 375 sizeof(acp), &acp); 376 377 if (hdev->page_scan_type != type) 378 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type); 379 } 380 381 /* This function controls the background scanning based on hdev->pend_le_conns 382 * list. If there are pending LE connection we start the background scanning, 383 * otherwise we stop it. 384 * 385 * This function requires the caller holds hdev->lock. 386 */ 387 static void __hci_update_background_scan(struct hci_request *req) 388 { 389 struct hci_dev *hdev = req->hdev; 390 391 if (!test_bit(HCI_UP, &hdev->flags) || 392 test_bit(HCI_INIT, &hdev->flags) || 393 hci_dev_test_flag(hdev, HCI_SETUP) || 394 hci_dev_test_flag(hdev, HCI_CONFIG) || 395 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 396 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 397 return; 398 399 /* No point in doing scanning if LE support hasn't been enabled */ 400 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 401 return; 402 403 /* If discovery is active don't interfere with it */ 404 if (hdev->discovery.state != DISCOVERY_STOPPED) 405 return; 406 407 /* Reset RSSI and UUID filters when starting background scanning 408 * since these filters are meant for service discovery only. 409 * 410 * The Start Discovery and Start Service Discovery operations 411 * ensure to set proper values for RSSI threshold and UUID 412 * filter list. So it is safe to just reset them here. 413 */ 414 hci_discovery_filter_clear(hdev); 415 416 BT_DBG("%s ADV monitoring is %s", hdev->name, 417 hci_is_adv_monitoring(hdev) ? "on" : "off"); 418 419 if (list_empty(&hdev->pend_le_conns) && 420 list_empty(&hdev->pend_le_reports) && 421 !hci_is_adv_monitoring(hdev)) { 422 /* If there is no pending LE connections or devices 423 * to be scanned for or no ADV monitors, we should stop the 424 * background scanning. 425 */ 426 427 /* If controller is not scanning we are done. */ 428 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 429 return; 430 431 hci_req_add_le_scan_disable(req, false); 432 433 BT_DBG("%s stopping background scanning", hdev->name); 434 } else { 435 /* If there is at least one pending LE connection, we should 436 * keep the background scan running. 437 */ 438 439 /* If controller is connecting, we should not start scanning 440 * since some controllers are not able to scan and connect at 441 * the same time. 442 */ 443 if (hci_lookup_le_connect(hdev)) 444 return; 445 446 /* If controller is currently scanning, we stop it to ensure we 447 * don't miss any advertising (due to duplicates filter). 448 */ 449 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) 450 hci_req_add_le_scan_disable(req, false); 451 452 hci_req_add_le_passive_scan(req); 453 454 BT_DBG("%s starting background scanning", hdev->name); 455 } 456 } 457 458 void __hci_req_update_name(struct hci_request *req) 459 { 460 struct hci_dev *hdev = req->hdev; 461 struct hci_cp_write_local_name cp; 462 463 memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); 464 465 hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp); 466 } 467 468 #define PNP_INFO_SVCLASS_ID 0x1200 469 470 static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len) 471 { 472 u8 *ptr = data, *uuids_start = NULL; 473 struct bt_uuid *uuid; 474 475 if (len < 4) 476 return ptr; 477 478 list_for_each_entry(uuid, &hdev->uuids, list) { 479 u16 uuid16; 480 481 if (uuid->size != 16) 482 continue; 483 484 uuid16 = get_unaligned_le16(&uuid->uuid[12]); 485 if (uuid16 < 0x1100) 486 continue; 487 488 if (uuid16 == PNP_INFO_SVCLASS_ID) 489 continue; 490 491 if (!uuids_start) { 492 uuids_start = ptr; 493 uuids_start[0] = 1; 494 uuids_start[1] = EIR_UUID16_ALL; 495 ptr += 2; 496 } 497 498 /* Stop if not enough space to put next UUID */ 499 if ((ptr - data) + sizeof(u16) > len) { 500 uuids_start[1] = EIR_UUID16_SOME; 501 break; 502 } 503 504 *ptr++ = (uuid16 & 0x00ff); 505 *ptr++ = (uuid16 & 0xff00) >> 8; 506 uuids_start[0] += sizeof(uuid16); 507 } 508 509 return ptr; 510 } 511 512 static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len) 513 { 514 u8 *ptr = data, *uuids_start = NULL; 515 struct bt_uuid *uuid; 516 517 if (len < 6) 518 return ptr; 519 520 list_for_each_entry(uuid, &hdev->uuids, list) { 521 if (uuid->size != 32) 522 continue; 523 524 if (!uuids_start) { 525 uuids_start = ptr; 526 uuids_start[0] = 1; 527 uuids_start[1] = EIR_UUID32_ALL; 528 ptr += 2; 529 } 530 531 /* Stop if not enough space to put next UUID */ 532 if ((ptr - data) + sizeof(u32) > len) { 533 uuids_start[1] = EIR_UUID32_SOME; 534 break; 535 } 536 537 memcpy(ptr, &uuid->uuid[12], sizeof(u32)); 538 ptr += sizeof(u32); 539 uuids_start[0] += sizeof(u32); 540 } 541 542 return ptr; 543 } 544 545 static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len) 546 { 547 u8 *ptr = data, *uuids_start = NULL; 548 struct bt_uuid *uuid; 549 550 if (len < 18) 551 return ptr; 552 553 list_for_each_entry(uuid, &hdev->uuids, list) { 554 if (uuid->size != 128) 555 continue; 556 557 if (!uuids_start) { 558 uuids_start = ptr; 559 uuids_start[0] = 1; 560 uuids_start[1] = EIR_UUID128_ALL; 561 ptr += 2; 562 } 563 564 /* Stop if not enough space to put next UUID */ 565 if ((ptr - data) + 16 > len) { 566 uuids_start[1] = EIR_UUID128_SOME; 567 break; 568 } 569 570 memcpy(ptr, uuid->uuid, 16); 571 ptr += 16; 572 uuids_start[0] += 16; 573 } 574 575 return ptr; 576 } 577 578 static void create_eir(struct hci_dev *hdev, u8 *data) 579 { 580 u8 *ptr = data; 581 size_t name_len; 582 583 name_len = strlen(hdev->dev_name); 584 585 if (name_len > 0) { 586 /* EIR Data type */ 587 if (name_len > 48) { 588 name_len = 48; 589 ptr[1] = EIR_NAME_SHORT; 590 } else 591 ptr[1] = EIR_NAME_COMPLETE; 592 593 /* EIR Data length */ 594 ptr[0] = name_len + 1; 595 596 memcpy(ptr + 2, hdev->dev_name, name_len); 597 598 ptr += (name_len + 2); 599 } 600 601 if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) { 602 ptr[0] = 2; 603 ptr[1] = EIR_TX_POWER; 604 ptr[2] = (u8) hdev->inq_tx_power; 605 606 ptr += 3; 607 } 608 609 if (hdev->devid_source > 0) { 610 ptr[0] = 9; 611 ptr[1] = EIR_DEVICE_ID; 612 613 put_unaligned_le16(hdev->devid_source, ptr + 2); 614 put_unaligned_le16(hdev->devid_vendor, ptr + 4); 615 put_unaligned_le16(hdev->devid_product, ptr + 6); 616 put_unaligned_le16(hdev->devid_version, ptr + 8); 617 618 ptr += 10; 619 } 620 621 ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data)); 622 ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data)); 623 ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data)); 624 } 625 626 void __hci_req_update_eir(struct hci_request *req) 627 { 628 struct hci_dev *hdev = req->hdev; 629 struct hci_cp_write_eir cp; 630 631 if (!hdev_is_powered(hdev)) 632 return; 633 634 if (!lmp_ext_inq_capable(hdev)) 635 return; 636 637 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 638 return; 639 640 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 641 return; 642 643 memset(&cp, 0, sizeof(cp)); 644 645 create_eir(hdev, cp.data); 646 647 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) 648 return; 649 650 memcpy(hdev->eir, cp.data, sizeof(cp.data)); 651 652 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp); 653 } 654 655 void hci_req_add_le_scan_disable(struct hci_request *req, bool rpa_le_conn) 656 { 657 struct hci_dev *hdev = req->hdev; 658 659 if (hdev->scanning_paused) { 660 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 661 return; 662 } 663 664 if (use_ext_scan(hdev)) { 665 struct hci_cp_le_set_ext_scan_enable cp; 666 667 memset(&cp, 0, sizeof(cp)); 668 cp.enable = LE_SCAN_DISABLE; 669 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp), 670 &cp); 671 } else { 672 struct hci_cp_le_set_scan_enable cp; 673 674 memset(&cp, 0, sizeof(cp)); 675 cp.enable = LE_SCAN_DISABLE; 676 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp); 677 } 678 679 /* Disable address resolution */ 680 if (use_ll_privacy(hdev) && 681 hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) && 682 hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION) && !rpa_le_conn) { 683 __u8 enable = 0x00; 684 685 hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable); 686 } 687 } 688 689 static void del_from_white_list(struct hci_request *req, bdaddr_t *bdaddr, 690 u8 bdaddr_type) 691 { 692 struct hci_cp_le_del_from_white_list cp; 693 694 cp.bdaddr_type = bdaddr_type; 695 bacpy(&cp.bdaddr, bdaddr); 696 697 bt_dev_dbg(req->hdev, "Remove %pMR (0x%x) from whitelist", &cp.bdaddr, 698 cp.bdaddr_type); 699 hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST, sizeof(cp), &cp); 700 701 if (use_ll_privacy(req->hdev)) { 702 struct smp_irk *irk; 703 704 irk = hci_find_irk_by_addr(req->hdev, bdaddr, bdaddr_type); 705 if (irk) { 706 struct hci_cp_le_del_from_resolv_list cp; 707 708 cp.bdaddr_type = bdaddr_type; 709 bacpy(&cp.bdaddr, bdaddr); 710 711 hci_req_add(req, HCI_OP_LE_DEL_FROM_RESOLV_LIST, 712 sizeof(cp), &cp); 713 } 714 } 715 } 716 717 /* Adds connection to white list if needed. On error, returns -1. */ 718 static int add_to_white_list(struct hci_request *req, 719 struct hci_conn_params *params, u8 *num_entries, 720 bool allow_rpa) 721 { 722 struct hci_cp_le_add_to_white_list cp; 723 struct hci_dev *hdev = req->hdev; 724 725 /* Already in white list */ 726 if (hci_bdaddr_list_lookup(&hdev->le_white_list, ¶ms->addr, 727 params->addr_type)) 728 return 0; 729 730 /* Select filter policy to accept all advertising */ 731 if (*num_entries >= hdev->le_white_list_size) 732 return -1; 733 734 /* White list can not be used with RPAs */ 735 if (!allow_rpa && !use_ll_privacy(hdev) && 736 hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type)) { 737 return -1; 738 } 739 740 /* During suspend, only wakeable devices can be in whitelist */ 741 if (hdev->suspended && !hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP, 742 params->current_flags)) 743 return 0; 744 745 *num_entries += 1; 746 cp.bdaddr_type = params->addr_type; 747 bacpy(&cp.bdaddr, ¶ms->addr); 748 749 bt_dev_dbg(hdev, "Add %pMR (0x%x) to whitelist", &cp.bdaddr, 750 cp.bdaddr_type); 751 hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp); 752 753 if (use_ll_privacy(hdev)) { 754 struct smp_irk *irk; 755 756 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, 757 params->addr_type); 758 if (irk) { 759 struct hci_cp_le_add_to_resolv_list cp; 760 761 cp.bdaddr_type = params->addr_type; 762 bacpy(&cp.bdaddr, ¶ms->addr); 763 memcpy(cp.peer_irk, irk->val, 16); 764 765 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) 766 memcpy(cp.local_irk, hdev->irk, 16); 767 else 768 memset(cp.local_irk, 0, 16); 769 770 hci_req_add(req, HCI_OP_LE_ADD_TO_RESOLV_LIST, 771 sizeof(cp), &cp); 772 } 773 } 774 775 return 0; 776 } 777 778 static u8 update_white_list(struct hci_request *req) 779 { 780 struct hci_dev *hdev = req->hdev; 781 struct hci_conn_params *params; 782 struct bdaddr_list *b; 783 u8 num_entries = 0; 784 bool pend_conn, pend_report; 785 /* We allow whitelisting even with RPAs in suspend. In the worst case, 786 * we won't be able to wake from devices that use the privacy1.2 787 * features. Additionally, once we support privacy1.2 and IRK 788 * offloading, we can update this to also check for those conditions. 789 */ 790 bool allow_rpa = hdev->suspended; 791 792 /* Go through the current white list programmed into the 793 * controller one by one and check if that address is still 794 * in the list of pending connections or list of devices to 795 * report. If not present in either list, then queue the 796 * command to remove it from the controller. 797 */ 798 list_for_each_entry(b, &hdev->le_white_list, list) { 799 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns, 800 &b->bdaddr, 801 b->bdaddr_type); 802 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports, 803 &b->bdaddr, 804 b->bdaddr_type); 805 806 /* If the device is not likely to connect or report, 807 * remove it from the whitelist. 808 */ 809 if (!pend_conn && !pend_report) { 810 del_from_white_list(req, &b->bdaddr, b->bdaddr_type); 811 continue; 812 } 813 814 /* White list can not be used with RPAs */ 815 if (!allow_rpa && !use_ll_privacy(hdev) && 816 hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) { 817 return 0x00; 818 } 819 820 num_entries++; 821 } 822 823 /* Since all no longer valid white list entries have been 824 * removed, walk through the list of pending connections 825 * and ensure that any new device gets programmed into 826 * the controller. 827 * 828 * If the list of the devices is larger than the list of 829 * available white list entries in the controller, then 830 * just abort and return filer policy value to not use the 831 * white list. 832 */ 833 list_for_each_entry(params, &hdev->pend_le_conns, action) { 834 if (add_to_white_list(req, params, &num_entries, allow_rpa)) 835 return 0x00; 836 } 837 838 /* After adding all new pending connections, walk through 839 * the list of pending reports and also add these to the 840 * white list if there is still space. Abort if space runs out. 841 */ 842 list_for_each_entry(params, &hdev->pend_le_reports, action) { 843 if (add_to_white_list(req, params, &num_entries, allow_rpa)) 844 return 0x00; 845 } 846 847 /* Once the controller offloading of advertisement monitor is in place, 848 * the if condition should include the support of MSFT extension 849 * support. If suspend is ongoing, whitelist should be the default to 850 * prevent waking by random advertisements. 851 */ 852 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended) 853 return 0x00; 854 855 /* Select filter policy to use white list */ 856 return 0x01; 857 } 858 859 static bool scan_use_rpa(struct hci_dev *hdev) 860 { 861 return hci_dev_test_flag(hdev, HCI_PRIVACY); 862 } 863 864 static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval, 865 u16 window, u8 own_addr_type, u8 filter_policy, 866 bool addr_resolv) 867 { 868 struct hci_dev *hdev = req->hdev; 869 870 if (hdev->scanning_paused) { 871 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 872 return; 873 } 874 875 if (use_ll_privacy(hdev) && 876 hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) && 877 addr_resolv) { 878 u8 enable = 0x01; 879 880 hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable); 881 } 882 883 /* Use ext scanning if set ext scan param and ext scan enable is 884 * supported 885 */ 886 if (use_ext_scan(hdev)) { 887 struct hci_cp_le_set_ext_scan_params *ext_param_cp; 888 struct hci_cp_le_set_ext_scan_enable ext_enable_cp; 889 struct hci_cp_le_scan_phy_params *phy_params; 890 u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2]; 891 u32 plen; 892 893 ext_param_cp = (void *)data; 894 phy_params = (void *)ext_param_cp->data; 895 896 memset(ext_param_cp, 0, sizeof(*ext_param_cp)); 897 ext_param_cp->own_addr_type = own_addr_type; 898 ext_param_cp->filter_policy = filter_policy; 899 900 plen = sizeof(*ext_param_cp); 901 902 if (scan_1m(hdev) || scan_2m(hdev)) { 903 ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M; 904 905 memset(phy_params, 0, sizeof(*phy_params)); 906 phy_params->type = type; 907 phy_params->interval = cpu_to_le16(interval); 908 phy_params->window = cpu_to_le16(window); 909 910 plen += sizeof(*phy_params); 911 phy_params++; 912 } 913 914 if (scan_coded(hdev)) { 915 ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED; 916 917 memset(phy_params, 0, sizeof(*phy_params)); 918 phy_params->type = type; 919 phy_params->interval = cpu_to_le16(interval); 920 phy_params->window = cpu_to_le16(window); 921 922 plen += sizeof(*phy_params); 923 phy_params++; 924 } 925 926 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS, 927 plen, ext_param_cp); 928 929 memset(&ext_enable_cp, 0, sizeof(ext_enable_cp)); 930 ext_enable_cp.enable = LE_SCAN_ENABLE; 931 ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 932 933 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 934 sizeof(ext_enable_cp), &ext_enable_cp); 935 } else { 936 struct hci_cp_le_set_scan_param param_cp; 937 struct hci_cp_le_set_scan_enable enable_cp; 938 939 memset(¶m_cp, 0, sizeof(param_cp)); 940 param_cp.type = type; 941 param_cp.interval = cpu_to_le16(interval); 942 param_cp.window = cpu_to_le16(window); 943 param_cp.own_address_type = own_addr_type; 944 param_cp.filter_policy = filter_policy; 945 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp), 946 ¶m_cp); 947 948 memset(&enable_cp, 0, sizeof(enable_cp)); 949 enable_cp.enable = LE_SCAN_ENABLE; 950 enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 951 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp), 952 &enable_cp); 953 } 954 } 955 956 /* Returns true if an le connection is in the scanning state */ 957 static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev) 958 { 959 struct hci_conn_hash *h = &hdev->conn_hash; 960 struct hci_conn *c; 961 962 rcu_read_lock(); 963 964 list_for_each_entry_rcu(c, &h->list, list) { 965 if (c->type == LE_LINK && c->state == BT_CONNECT && 966 test_bit(HCI_CONN_SCANNING, &c->flags)) { 967 rcu_read_unlock(); 968 return true; 969 } 970 } 971 972 rcu_read_unlock(); 973 974 return false; 975 } 976 977 /* Ensure to call hci_req_add_le_scan_disable() first to disable the 978 * controller based address resolution to be able to reconfigure 979 * resolving list. 980 */ 981 void hci_req_add_le_passive_scan(struct hci_request *req) 982 { 983 struct hci_dev *hdev = req->hdev; 984 u8 own_addr_type; 985 u8 filter_policy; 986 u16 window, interval; 987 /* Background scanning should run with address resolution */ 988 bool addr_resolv = true; 989 990 if (hdev->scanning_paused) { 991 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 992 return; 993 } 994 995 /* Set require_privacy to false since no SCAN_REQ are send 996 * during passive scanning. Not using an non-resolvable address 997 * here is important so that peer devices using direct 998 * advertising with our address will be correctly reported 999 * by the controller. 1000 */ 1001 if (hci_update_random_address(req, false, scan_use_rpa(hdev), 1002 &own_addr_type)) 1003 return; 1004 1005 /* Adding or removing entries from the white list must 1006 * happen before enabling scanning. The controller does 1007 * not allow white list modification while scanning. 1008 */ 1009 filter_policy = update_white_list(req); 1010 1011 /* When the controller is using random resolvable addresses and 1012 * with that having LE privacy enabled, then controllers with 1013 * Extended Scanner Filter Policies support can now enable support 1014 * for handling directed advertising. 1015 * 1016 * So instead of using filter polices 0x00 (no whitelist) 1017 * and 0x01 (whitelist enabled) use the new filter policies 1018 * 0x02 (no whitelist) and 0x03 (whitelist enabled). 1019 */ 1020 if (hci_dev_test_flag(hdev, HCI_PRIVACY) && 1021 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) 1022 filter_policy |= 0x02; 1023 1024 if (hdev->suspended) { 1025 window = hdev->le_scan_window_suspend; 1026 interval = hdev->le_scan_int_suspend; 1027 } else if (hci_is_le_conn_scanning(hdev)) { 1028 window = hdev->le_scan_window_connect; 1029 interval = hdev->le_scan_int_connect; 1030 } else { 1031 window = hdev->le_scan_window; 1032 interval = hdev->le_scan_interval; 1033 } 1034 1035 bt_dev_dbg(hdev, "LE passive scan with whitelist = %d", filter_policy); 1036 hci_req_start_scan(req, LE_SCAN_PASSIVE, interval, window, 1037 own_addr_type, filter_policy, addr_resolv); 1038 } 1039 1040 static u8 get_adv_instance_scan_rsp_len(struct hci_dev *hdev, u8 instance) 1041 { 1042 struct adv_info *adv_instance; 1043 1044 /* Instance 0x00 always set local name */ 1045 if (instance == 0x00) 1046 return 1; 1047 1048 adv_instance = hci_find_adv_instance(hdev, instance); 1049 if (!adv_instance) 1050 return 0; 1051 1052 /* TODO: Take into account the "appearance" and "local-name" flags here. 1053 * These are currently being ignored as they are not supported. 1054 */ 1055 return adv_instance->scan_rsp_len; 1056 } 1057 1058 static void hci_req_clear_event_filter(struct hci_request *req) 1059 { 1060 struct hci_cp_set_event_filter f; 1061 1062 memset(&f, 0, sizeof(f)); 1063 f.flt_type = HCI_FLT_CLEAR_ALL; 1064 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &f); 1065 1066 /* Update page scan state (since we may have modified it when setting 1067 * the event filter). 1068 */ 1069 __hci_req_update_scan(req); 1070 } 1071 1072 static void hci_req_set_event_filter(struct hci_request *req) 1073 { 1074 struct bdaddr_list_with_flags *b; 1075 struct hci_cp_set_event_filter f; 1076 struct hci_dev *hdev = req->hdev; 1077 u8 scan = SCAN_DISABLED; 1078 1079 /* Always clear event filter when starting */ 1080 hci_req_clear_event_filter(req); 1081 1082 list_for_each_entry(b, &hdev->whitelist, list) { 1083 if (!hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP, 1084 b->current_flags)) 1085 continue; 1086 1087 memset(&f, 0, sizeof(f)); 1088 bacpy(&f.addr_conn_flt.bdaddr, &b->bdaddr); 1089 f.flt_type = HCI_FLT_CONN_SETUP; 1090 f.cond_type = HCI_CONN_SETUP_ALLOW_BDADDR; 1091 f.addr_conn_flt.auto_accept = HCI_CONN_SETUP_AUTO_ON; 1092 1093 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr); 1094 hci_req_add(req, HCI_OP_SET_EVENT_FLT, sizeof(f), &f); 1095 scan = SCAN_PAGE; 1096 } 1097 1098 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); 1099 } 1100 1101 static void hci_req_config_le_suspend_scan(struct hci_request *req) 1102 { 1103 /* Before changing params disable scan if enabled */ 1104 if (hci_dev_test_flag(req->hdev, HCI_LE_SCAN)) 1105 hci_req_add_le_scan_disable(req, false); 1106 1107 /* Configure params and enable scanning */ 1108 hci_req_add_le_passive_scan(req); 1109 1110 /* Block suspend notifier on response */ 1111 set_bit(SUSPEND_SCAN_ENABLE, req->hdev->suspend_tasks); 1112 } 1113 1114 static void suspend_req_complete(struct hci_dev *hdev, u8 status, u16 opcode) 1115 { 1116 bt_dev_dbg(hdev, "Request complete opcode=0x%x, status=0x%x", opcode, 1117 status); 1118 if (test_and_clear_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks) || 1119 test_and_clear_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks)) { 1120 wake_up(&hdev->suspend_wait_q); 1121 } 1122 } 1123 1124 /* Call with hci_dev_lock */ 1125 void hci_req_prepare_suspend(struct hci_dev *hdev, enum suspended_state next) 1126 { 1127 int old_state; 1128 struct hci_conn *conn; 1129 struct hci_request req; 1130 u8 page_scan; 1131 int disconnect_counter; 1132 1133 if (next == hdev->suspend_state) { 1134 bt_dev_dbg(hdev, "Same state before and after: %d", next); 1135 goto done; 1136 } 1137 1138 hdev->suspend_state = next; 1139 hci_req_init(&req, hdev); 1140 1141 if (next == BT_SUSPEND_DISCONNECT) { 1142 /* Mark device as suspended */ 1143 hdev->suspended = true; 1144 1145 /* Pause discovery if not already stopped */ 1146 old_state = hdev->discovery.state; 1147 if (old_state != DISCOVERY_STOPPED) { 1148 set_bit(SUSPEND_PAUSE_DISCOVERY, hdev->suspend_tasks); 1149 hci_discovery_set_state(hdev, DISCOVERY_STOPPING); 1150 queue_work(hdev->req_workqueue, &hdev->discov_update); 1151 } 1152 1153 hdev->discovery_paused = true; 1154 hdev->discovery_old_state = old_state; 1155 1156 /* Stop advertising */ 1157 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING); 1158 if (old_state) { 1159 set_bit(SUSPEND_PAUSE_ADVERTISING, hdev->suspend_tasks); 1160 cancel_delayed_work(&hdev->discov_off); 1161 queue_delayed_work(hdev->req_workqueue, 1162 &hdev->discov_off, 0); 1163 } 1164 1165 hdev->advertising_paused = true; 1166 hdev->advertising_old_state = old_state; 1167 /* Disable page scan */ 1168 page_scan = SCAN_DISABLED; 1169 hci_req_add(&req, HCI_OP_WRITE_SCAN_ENABLE, 1, &page_scan); 1170 1171 /* Disable LE passive scan if enabled */ 1172 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) 1173 hci_req_add_le_scan_disable(&req, false); 1174 1175 /* Mark task needing completion */ 1176 set_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks); 1177 1178 /* Prevent disconnects from causing scanning to be re-enabled */ 1179 hdev->scanning_paused = true; 1180 1181 /* Run commands before disconnecting */ 1182 hci_req_run(&req, suspend_req_complete); 1183 1184 disconnect_counter = 0; 1185 /* Soft disconnect everything (power off) */ 1186 list_for_each_entry(conn, &hdev->conn_hash.list, list) { 1187 hci_disconnect(conn, HCI_ERROR_REMOTE_POWER_OFF); 1188 disconnect_counter++; 1189 } 1190 1191 if (disconnect_counter > 0) { 1192 bt_dev_dbg(hdev, 1193 "Had %d disconnects. Will wait on them", 1194 disconnect_counter); 1195 set_bit(SUSPEND_DISCONNECTING, hdev->suspend_tasks); 1196 } 1197 } else if (next == BT_SUSPEND_CONFIGURE_WAKE) { 1198 /* Unpause to take care of updating scanning params */ 1199 hdev->scanning_paused = false; 1200 /* Enable event filter for paired devices */ 1201 hci_req_set_event_filter(&req); 1202 /* Enable passive scan at lower duty cycle */ 1203 hci_req_config_le_suspend_scan(&req); 1204 /* Pause scan changes again. */ 1205 hdev->scanning_paused = true; 1206 hci_req_run(&req, suspend_req_complete); 1207 } else { 1208 hdev->suspended = false; 1209 hdev->scanning_paused = false; 1210 1211 hci_req_clear_event_filter(&req); 1212 /* Reset passive/background scanning to normal */ 1213 hci_req_config_le_suspend_scan(&req); 1214 1215 /* Unpause advertising */ 1216 hdev->advertising_paused = false; 1217 if (hdev->advertising_old_state) { 1218 set_bit(SUSPEND_UNPAUSE_ADVERTISING, 1219 hdev->suspend_tasks); 1220 hci_dev_set_flag(hdev, HCI_ADVERTISING); 1221 queue_work(hdev->req_workqueue, 1222 &hdev->discoverable_update); 1223 hdev->advertising_old_state = 0; 1224 } 1225 1226 /* Unpause discovery */ 1227 hdev->discovery_paused = false; 1228 if (hdev->discovery_old_state != DISCOVERY_STOPPED && 1229 hdev->discovery_old_state != DISCOVERY_STOPPING) { 1230 set_bit(SUSPEND_UNPAUSE_DISCOVERY, hdev->suspend_tasks); 1231 hci_discovery_set_state(hdev, DISCOVERY_STARTING); 1232 queue_work(hdev->req_workqueue, &hdev->discov_update); 1233 } 1234 1235 hci_req_run(&req, suspend_req_complete); 1236 } 1237 1238 hdev->suspend_state = next; 1239 1240 done: 1241 clear_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks); 1242 wake_up(&hdev->suspend_wait_q); 1243 } 1244 1245 static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev) 1246 { 1247 u8 instance = hdev->cur_adv_instance; 1248 struct adv_info *adv_instance; 1249 1250 /* Instance 0x00 always set local name */ 1251 if (instance == 0x00) 1252 return 1; 1253 1254 adv_instance = hci_find_adv_instance(hdev, instance); 1255 if (!adv_instance) 1256 return 0; 1257 1258 /* TODO: Take into account the "appearance" and "local-name" flags here. 1259 * These are currently being ignored as they are not supported. 1260 */ 1261 return adv_instance->scan_rsp_len; 1262 } 1263 1264 void __hci_req_disable_advertising(struct hci_request *req) 1265 { 1266 if (ext_adv_capable(req->hdev)) { 1267 __hci_req_disable_ext_adv_instance(req, 0x00); 1268 1269 } else { 1270 u8 enable = 0x00; 1271 1272 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable); 1273 } 1274 } 1275 1276 static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance) 1277 { 1278 u32 flags; 1279 struct adv_info *adv_instance; 1280 1281 if (instance == 0x00) { 1282 /* Instance 0 always manages the "Tx Power" and "Flags" 1283 * fields 1284 */ 1285 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS; 1286 1287 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting 1288 * corresponds to the "connectable" instance flag. 1289 */ 1290 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE)) 1291 flags |= MGMT_ADV_FLAG_CONNECTABLE; 1292 1293 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 1294 flags |= MGMT_ADV_FLAG_LIMITED_DISCOV; 1295 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 1296 flags |= MGMT_ADV_FLAG_DISCOV; 1297 1298 return flags; 1299 } 1300 1301 adv_instance = hci_find_adv_instance(hdev, instance); 1302 1303 /* Return 0 when we got an invalid instance identifier. */ 1304 if (!adv_instance) 1305 return 0; 1306 1307 return adv_instance->flags; 1308 } 1309 1310 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) 1311 { 1312 /* If privacy is not enabled don't use RPA */ 1313 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 1314 return false; 1315 1316 /* If basic privacy mode is enabled use RPA */ 1317 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 1318 return true; 1319 1320 /* If limited privacy mode is enabled don't use RPA if we're 1321 * both discoverable and bondable. 1322 */ 1323 if ((flags & MGMT_ADV_FLAG_DISCOV) && 1324 hci_dev_test_flag(hdev, HCI_BONDABLE)) 1325 return false; 1326 1327 /* We're neither bondable nor discoverable in the limited 1328 * privacy mode, therefore use RPA. 1329 */ 1330 return true; 1331 } 1332 1333 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) 1334 { 1335 /* If there is no connection we are OK to advertise. */ 1336 if (hci_conn_num(hdev, LE_LINK) == 0) 1337 return true; 1338 1339 /* Check le_states if there is any connection in slave role. */ 1340 if (hdev->conn_hash.le_num_slave > 0) { 1341 /* Slave connection state and non connectable mode bit 20. */ 1342 if (!connectable && !(hdev->le_states[2] & 0x10)) 1343 return false; 1344 1345 /* Slave connection state and connectable mode bit 38 1346 * and scannable bit 21. 1347 */ 1348 if (connectable && (!(hdev->le_states[4] & 0x40) || 1349 !(hdev->le_states[2] & 0x20))) 1350 return false; 1351 } 1352 1353 /* Check le_states if there is any connection in master role. */ 1354 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_slave) { 1355 /* Master connection state and non connectable mode bit 18. */ 1356 if (!connectable && !(hdev->le_states[2] & 0x02)) 1357 return false; 1358 1359 /* Master connection state and connectable mode bit 35 and 1360 * scannable 19. 1361 */ 1362 if (connectable && (!(hdev->le_states[4] & 0x08) || 1363 !(hdev->le_states[2] & 0x08))) 1364 return false; 1365 } 1366 1367 return true; 1368 } 1369 1370 void __hci_req_enable_advertising(struct hci_request *req) 1371 { 1372 struct hci_dev *hdev = req->hdev; 1373 struct hci_cp_le_set_adv_param cp; 1374 u8 own_addr_type, enable = 0x01; 1375 bool connectable; 1376 u16 adv_min_interval, adv_max_interval; 1377 u32 flags; 1378 1379 flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance); 1380 1381 /* If the "connectable" instance flag was not set, then choose between 1382 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1383 */ 1384 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1385 mgmt_get_connectable(hdev); 1386 1387 if (!is_advertising_allowed(hdev, connectable)) 1388 return; 1389 1390 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) 1391 __hci_req_disable_advertising(req); 1392 1393 /* Clear the HCI_LE_ADV bit temporarily so that the 1394 * hci_update_random_address knows that it's safe to go ahead 1395 * and write a new random address. The flag will be set back on 1396 * as soon as the SET_ADV_ENABLE HCI command completes. 1397 */ 1398 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1399 1400 /* Set require_privacy to true only when non-connectable 1401 * advertising is used. In that case it is fine to use a 1402 * non-resolvable private address. 1403 */ 1404 if (hci_update_random_address(req, !connectable, 1405 adv_use_rpa(hdev, flags), 1406 &own_addr_type) < 0) 1407 return; 1408 1409 memset(&cp, 0, sizeof(cp)); 1410 1411 if (connectable) { 1412 cp.type = LE_ADV_IND; 1413 1414 adv_min_interval = hdev->le_adv_min_interval; 1415 adv_max_interval = hdev->le_adv_max_interval; 1416 } else { 1417 if (get_cur_adv_instance_scan_rsp_len(hdev)) 1418 cp.type = LE_ADV_SCAN_IND; 1419 else 1420 cp.type = LE_ADV_NONCONN_IND; 1421 1422 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) || 1423 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 1424 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN; 1425 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX; 1426 } else { 1427 adv_min_interval = hdev->le_adv_min_interval; 1428 adv_max_interval = hdev->le_adv_max_interval; 1429 } 1430 } 1431 1432 cp.min_interval = cpu_to_le16(adv_min_interval); 1433 cp.max_interval = cpu_to_le16(adv_max_interval); 1434 cp.own_address_type = own_addr_type; 1435 cp.channel_map = hdev->le_adv_channel_map; 1436 1437 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp); 1438 1439 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable); 1440 } 1441 1442 u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len) 1443 { 1444 size_t short_len; 1445 size_t complete_len; 1446 1447 /* no space left for name (+ NULL + type + len) */ 1448 if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3) 1449 return ad_len; 1450 1451 /* use complete name if present and fits */ 1452 complete_len = strlen(hdev->dev_name); 1453 if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH) 1454 return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE, 1455 hdev->dev_name, complete_len + 1); 1456 1457 /* use short name if present */ 1458 short_len = strlen(hdev->short_name); 1459 if (short_len) 1460 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, 1461 hdev->short_name, short_len + 1); 1462 1463 /* use shortened full name if present, we already know that name 1464 * is longer then HCI_MAX_SHORT_NAME_LENGTH 1465 */ 1466 if (complete_len) { 1467 u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1]; 1468 1469 memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH); 1470 name[HCI_MAX_SHORT_NAME_LENGTH] = '\0'; 1471 1472 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name, 1473 sizeof(name)); 1474 } 1475 1476 return ad_len; 1477 } 1478 1479 static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len) 1480 { 1481 return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance); 1482 } 1483 1484 static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr) 1485 { 1486 u8 scan_rsp_len = 0; 1487 1488 if (hdev->appearance) { 1489 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len); 1490 } 1491 1492 return append_local_name(hdev, ptr, scan_rsp_len); 1493 } 1494 1495 static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance, 1496 u8 *ptr) 1497 { 1498 struct adv_info *adv_instance; 1499 u32 instance_flags; 1500 u8 scan_rsp_len = 0; 1501 1502 adv_instance = hci_find_adv_instance(hdev, instance); 1503 if (!adv_instance) 1504 return 0; 1505 1506 instance_flags = adv_instance->flags; 1507 1508 if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) { 1509 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len); 1510 } 1511 1512 memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data, 1513 adv_instance->scan_rsp_len); 1514 1515 scan_rsp_len += adv_instance->scan_rsp_len; 1516 1517 if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME) 1518 scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len); 1519 1520 return scan_rsp_len; 1521 } 1522 1523 void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance) 1524 { 1525 struct hci_dev *hdev = req->hdev; 1526 u8 len; 1527 1528 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1529 return; 1530 1531 if (ext_adv_capable(hdev)) { 1532 struct hci_cp_le_set_ext_scan_rsp_data cp; 1533 1534 memset(&cp, 0, sizeof(cp)); 1535 1536 if (instance) 1537 len = create_instance_scan_rsp_data(hdev, instance, 1538 cp.data); 1539 else 1540 len = create_default_scan_rsp_data(hdev, cp.data); 1541 1542 if (hdev->scan_rsp_data_len == len && 1543 !memcmp(cp.data, hdev->scan_rsp_data, len)) 1544 return; 1545 1546 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 1547 hdev->scan_rsp_data_len = len; 1548 1549 cp.handle = instance; 1550 cp.length = len; 1551 cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1552 cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1553 1554 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, sizeof(cp), 1555 &cp); 1556 } else { 1557 struct hci_cp_le_set_scan_rsp_data cp; 1558 1559 memset(&cp, 0, sizeof(cp)); 1560 1561 if (instance) 1562 len = create_instance_scan_rsp_data(hdev, instance, 1563 cp.data); 1564 else 1565 len = create_default_scan_rsp_data(hdev, cp.data); 1566 1567 if (hdev->scan_rsp_data_len == len && 1568 !memcmp(cp.data, hdev->scan_rsp_data, len)) 1569 return; 1570 1571 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 1572 hdev->scan_rsp_data_len = len; 1573 1574 cp.length = len; 1575 1576 hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp); 1577 } 1578 } 1579 1580 static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr) 1581 { 1582 struct adv_info *adv_instance = NULL; 1583 u8 ad_len = 0, flags = 0; 1584 u32 instance_flags; 1585 1586 /* Return 0 when the current instance identifier is invalid. */ 1587 if (instance) { 1588 adv_instance = hci_find_adv_instance(hdev, instance); 1589 if (!adv_instance) 1590 return 0; 1591 } 1592 1593 instance_flags = get_adv_instance_flags(hdev, instance); 1594 1595 /* If instance already has the flags set skip adding it once 1596 * again. 1597 */ 1598 if (adv_instance && eir_get_data(adv_instance->adv_data, 1599 adv_instance->adv_data_len, EIR_FLAGS, 1600 NULL)) 1601 goto skip_flags; 1602 1603 /* The Add Advertising command allows userspace to set both the general 1604 * and limited discoverable flags. 1605 */ 1606 if (instance_flags & MGMT_ADV_FLAG_DISCOV) 1607 flags |= LE_AD_GENERAL; 1608 1609 if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV) 1610 flags |= LE_AD_LIMITED; 1611 1612 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 1613 flags |= LE_AD_NO_BREDR; 1614 1615 if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) { 1616 /* If a discovery flag wasn't provided, simply use the global 1617 * settings. 1618 */ 1619 if (!flags) 1620 flags |= mgmt_get_adv_discov_flags(hdev); 1621 1622 /* If flags would still be empty, then there is no need to 1623 * include the "Flags" AD field". 1624 */ 1625 if (flags) { 1626 ptr[0] = 0x02; 1627 ptr[1] = EIR_FLAGS; 1628 ptr[2] = flags; 1629 1630 ad_len += 3; 1631 ptr += 3; 1632 } 1633 } 1634 1635 skip_flags: 1636 if (adv_instance) { 1637 memcpy(ptr, adv_instance->adv_data, 1638 adv_instance->adv_data_len); 1639 ad_len += adv_instance->adv_data_len; 1640 ptr += adv_instance->adv_data_len; 1641 } 1642 1643 if (instance_flags & MGMT_ADV_FLAG_TX_POWER) { 1644 s8 adv_tx_power; 1645 1646 if (ext_adv_capable(hdev)) { 1647 if (adv_instance) 1648 adv_tx_power = adv_instance->tx_power; 1649 else 1650 adv_tx_power = hdev->adv_tx_power; 1651 } else { 1652 adv_tx_power = hdev->adv_tx_power; 1653 } 1654 1655 /* Provide Tx Power only if we can provide a valid value for it */ 1656 if (adv_tx_power != HCI_TX_POWER_INVALID) { 1657 ptr[0] = 0x02; 1658 ptr[1] = EIR_TX_POWER; 1659 ptr[2] = (u8)adv_tx_power; 1660 1661 ad_len += 3; 1662 ptr += 3; 1663 } 1664 } 1665 1666 return ad_len; 1667 } 1668 1669 void __hci_req_update_adv_data(struct hci_request *req, u8 instance) 1670 { 1671 struct hci_dev *hdev = req->hdev; 1672 u8 len; 1673 1674 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1675 return; 1676 1677 if (ext_adv_capable(hdev)) { 1678 struct hci_cp_le_set_ext_adv_data cp; 1679 1680 memset(&cp, 0, sizeof(cp)); 1681 1682 len = create_instance_adv_data(hdev, instance, cp.data); 1683 1684 /* There's nothing to do if the data hasn't changed */ 1685 if (hdev->adv_data_len == len && 1686 memcmp(cp.data, hdev->adv_data, len) == 0) 1687 return; 1688 1689 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1690 hdev->adv_data_len = len; 1691 1692 cp.length = len; 1693 cp.handle = instance; 1694 cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1695 cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1696 1697 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA, sizeof(cp), &cp); 1698 } else { 1699 struct hci_cp_le_set_adv_data cp; 1700 1701 memset(&cp, 0, sizeof(cp)); 1702 1703 len = create_instance_adv_data(hdev, instance, cp.data); 1704 1705 /* There's nothing to do if the data hasn't changed */ 1706 if (hdev->adv_data_len == len && 1707 memcmp(cp.data, hdev->adv_data, len) == 0) 1708 return; 1709 1710 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1711 hdev->adv_data_len = len; 1712 1713 cp.length = len; 1714 1715 hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp); 1716 } 1717 } 1718 1719 int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance) 1720 { 1721 struct hci_request req; 1722 1723 hci_req_init(&req, hdev); 1724 __hci_req_update_adv_data(&req, instance); 1725 1726 return hci_req_run(&req, NULL); 1727 } 1728 1729 static void enable_addr_resolution_complete(struct hci_dev *hdev, u8 status, 1730 u16 opcode) 1731 { 1732 BT_DBG("%s status %u", hdev->name, status); 1733 } 1734 1735 void hci_req_disable_address_resolution(struct hci_dev *hdev) 1736 { 1737 struct hci_request req; 1738 __u8 enable = 0x00; 1739 1740 if (!use_ll_privacy(hdev) && 1741 !hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 1742 return; 1743 1744 hci_req_init(&req, hdev); 1745 1746 hci_req_add(&req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable); 1747 1748 hci_req_run(&req, enable_addr_resolution_complete); 1749 } 1750 1751 static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode) 1752 { 1753 BT_DBG("%s status %u", hdev->name, status); 1754 } 1755 1756 void hci_req_reenable_advertising(struct hci_dev *hdev) 1757 { 1758 struct hci_request req; 1759 1760 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 1761 list_empty(&hdev->adv_instances)) 1762 return; 1763 1764 hci_req_init(&req, hdev); 1765 1766 if (hdev->cur_adv_instance) { 1767 __hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance, 1768 true); 1769 } else { 1770 if (ext_adv_capable(hdev)) { 1771 __hci_req_start_ext_adv(&req, 0x00); 1772 } else { 1773 __hci_req_update_adv_data(&req, 0x00); 1774 __hci_req_update_scan_rsp_data(&req, 0x00); 1775 __hci_req_enable_advertising(&req); 1776 } 1777 } 1778 1779 hci_req_run(&req, adv_enable_complete); 1780 } 1781 1782 static void adv_timeout_expire(struct work_struct *work) 1783 { 1784 struct hci_dev *hdev = container_of(work, struct hci_dev, 1785 adv_instance_expire.work); 1786 1787 struct hci_request req; 1788 u8 instance; 1789 1790 BT_DBG("%s", hdev->name); 1791 1792 hci_dev_lock(hdev); 1793 1794 hdev->adv_instance_timeout = 0; 1795 1796 instance = hdev->cur_adv_instance; 1797 if (instance == 0x00) 1798 goto unlock; 1799 1800 hci_req_init(&req, hdev); 1801 1802 hci_req_clear_adv_instance(hdev, NULL, &req, instance, false); 1803 1804 if (list_empty(&hdev->adv_instances)) 1805 __hci_req_disable_advertising(&req); 1806 1807 hci_req_run(&req, NULL); 1808 1809 unlock: 1810 hci_dev_unlock(hdev); 1811 } 1812 1813 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy, 1814 bool use_rpa, struct adv_info *adv_instance, 1815 u8 *own_addr_type, bdaddr_t *rand_addr) 1816 { 1817 int err; 1818 1819 bacpy(rand_addr, BDADDR_ANY); 1820 1821 /* If privacy is enabled use a resolvable private address. If 1822 * current RPA has expired then generate a new one. 1823 */ 1824 if (use_rpa) { 1825 int to; 1826 1827 *own_addr_type = ADDR_LE_DEV_RANDOM; 1828 1829 if (adv_instance) { 1830 if (!adv_instance->rpa_expired && 1831 !bacmp(&adv_instance->random_addr, &hdev->rpa)) 1832 return 0; 1833 1834 adv_instance->rpa_expired = false; 1835 } else { 1836 if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) && 1837 !bacmp(&hdev->random_addr, &hdev->rpa)) 1838 return 0; 1839 } 1840 1841 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 1842 if (err < 0) { 1843 bt_dev_err(hdev, "failed to generate new RPA"); 1844 return err; 1845 } 1846 1847 bacpy(rand_addr, &hdev->rpa); 1848 1849 to = msecs_to_jiffies(hdev->rpa_timeout * 1000); 1850 if (adv_instance) 1851 queue_delayed_work(hdev->workqueue, 1852 &adv_instance->rpa_expired_cb, to); 1853 else 1854 queue_delayed_work(hdev->workqueue, 1855 &hdev->rpa_expired, to); 1856 1857 return 0; 1858 } 1859 1860 /* In case of required privacy without resolvable private address, 1861 * use an non-resolvable private address. This is useful for 1862 * non-connectable advertising. 1863 */ 1864 if (require_privacy) { 1865 bdaddr_t nrpa; 1866 1867 while (true) { 1868 /* The non-resolvable private address is generated 1869 * from random six bytes with the two most significant 1870 * bits cleared. 1871 */ 1872 get_random_bytes(&nrpa, 6); 1873 nrpa.b[5] &= 0x3f; 1874 1875 /* The non-resolvable private address shall not be 1876 * equal to the public address. 1877 */ 1878 if (bacmp(&hdev->bdaddr, &nrpa)) 1879 break; 1880 } 1881 1882 *own_addr_type = ADDR_LE_DEV_RANDOM; 1883 bacpy(rand_addr, &nrpa); 1884 1885 return 0; 1886 } 1887 1888 /* No privacy so use a public address. */ 1889 *own_addr_type = ADDR_LE_DEV_PUBLIC; 1890 1891 return 0; 1892 } 1893 1894 void __hci_req_clear_ext_adv_sets(struct hci_request *req) 1895 { 1896 hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL); 1897 } 1898 1899 int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance) 1900 { 1901 struct hci_cp_le_set_ext_adv_params cp; 1902 struct hci_dev *hdev = req->hdev; 1903 bool connectable; 1904 u32 flags; 1905 bdaddr_t random_addr; 1906 u8 own_addr_type; 1907 int err; 1908 struct adv_info *adv_instance; 1909 bool secondary_adv; 1910 1911 if (instance > 0) { 1912 adv_instance = hci_find_adv_instance(hdev, instance); 1913 if (!adv_instance) 1914 return -EINVAL; 1915 } else { 1916 adv_instance = NULL; 1917 } 1918 1919 flags = get_adv_instance_flags(hdev, instance); 1920 1921 /* If the "connectable" instance flag was not set, then choose between 1922 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1923 */ 1924 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1925 mgmt_get_connectable(hdev); 1926 1927 if (!is_advertising_allowed(hdev, connectable)) 1928 return -EPERM; 1929 1930 /* Set require_privacy to true only when non-connectable 1931 * advertising is used. In that case it is fine to use a 1932 * non-resolvable private address. 1933 */ 1934 err = hci_get_random_address(hdev, !connectable, 1935 adv_use_rpa(hdev, flags), adv_instance, 1936 &own_addr_type, &random_addr); 1937 if (err < 0) 1938 return err; 1939 1940 memset(&cp, 0, sizeof(cp)); 1941 1942 /* In ext adv set param interval is 3 octets */ 1943 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval); 1944 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval); 1945 1946 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); 1947 1948 if (connectable) { 1949 if (secondary_adv) 1950 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); 1951 else 1952 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); 1953 } else if (get_adv_instance_scan_rsp_len(hdev, instance)) { 1954 if (secondary_adv) 1955 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); 1956 else 1957 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); 1958 } else { 1959 if (secondary_adv) 1960 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); 1961 else 1962 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); 1963 } 1964 1965 cp.own_addr_type = own_addr_type; 1966 cp.channel_map = hdev->le_adv_channel_map; 1967 cp.tx_power = 127; 1968 cp.handle = instance; 1969 1970 if (flags & MGMT_ADV_FLAG_SEC_2M) { 1971 cp.primary_phy = HCI_ADV_PHY_1M; 1972 cp.secondary_phy = HCI_ADV_PHY_2M; 1973 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) { 1974 cp.primary_phy = HCI_ADV_PHY_CODED; 1975 cp.secondary_phy = HCI_ADV_PHY_CODED; 1976 } else { 1977 /* In all other cases use 1M */ 1978 cp.primary_phy = HCI_ADV_PHY_1M; 1979 cp.secondary_phy = HCI_ADV_PHY_1M; 1980 } 1981 1982 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp); 1983 1984 if (own_addr_type == ADDR_LE_DEV_RANDOM && 1985 bacmp(&random_addr, BDADDR_ANY)) { 1986 struct hci_cp_le_set_adv_set_rand_addr cp; 1987 1988 /* Check if random address need to be updated */ 1989 if (adv_instance) { 1990 if (!bacmp(&random_addr, &adv_instance->random_addr)) 1991 return 0; 1992 } else { 1993 if (!bacmp(&random_addr, &hdev->random_addr)) 1994 return 0; 1995 } 1996 1997 memset(&cp, 0, sizeof(cp)); 1998 1999 cp.handle = instance; 2000 bacpy(&cp.bdaddr, &random_addr); 2001 2002 hci_req_add(req, 2003 HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 2004 sizeof(cp), &cp); 2005 } 2006 2007 return 0; 2008 } 2009 2010 int __hci_req_enable_ext_advertising(struct hci_request *req, u8 instance) 2011 { 2012 struct hci_dev *hdev = req->hdev; 2013 struct hci_cp_le_set_ext_adv_enable *cp; 2014 struct hci_cp_ext_adv_set *adv_set; 2015 u8 data[sizeof(*cp) + sizeof(*adv_set) * 1]; 2016 struct adv_info *adv_instance; 2017 2018 if (instance > 0) { 2019 adv_instance = hci_find_adv_instance(hdev, instance); 2020 if (!adv_instance) 2021 return -EINVAL; 2022 } else { 2023 adv_instance = NULL; 2024 } 2025 2026 cp = (void *) data; 2027 adv_set = (void *) cp->data; 2028 2029 memset(cp, 0, sizeof(*cp)); 2030 2031 cp->enable = 0x01; 2032 cp->num_of_sets = 0x01; 2033 2034 memset(adv_set, 0, sizeof(*adv_set)); 2035 2036 adv_set->handle = instance; 2037 2038 /* Set duration per instance since controller is responsible for 2039 * scheduling it. 2040 */ 2041 if (adv_instance && adv_instance->duration) { 2042 u16 duration = adv_instance->timeout * MSEC_PER_SEC; 2043 2044 /* Time = N * 10 ms */ 2045 adv_set->duration = cpu_to_le16(duration / 10); 2046 } 2047 2048 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, 2049 sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets, 2050 data); 2051 2052 return 0; 2053 } 2054 2055 int __hci_req_disable_ext_adv_instance(struct hci_request *req, u8 instance) 2056 { 2057 struct hci_dev *hdev = req->hdev; 2058 struct hci_cp_le_set_ext_adv_enable *cp; 2059 struct hci_cp_ext_adv_set *adv_set; 2060 u8 data[sizeof(*cp) + sizeof(*adv_set) * 1]; 2061 u8 req_size; 2062 2063 /* If request specifies an instance that doesn't exist, fail */ 2064 if (instance > 0 && !hci_find_adv_instance(hdev, instance)) 2065 return -EINVAL; 2066 2067 memset(data, 0, sizeof(data)); 2068 2069 cp = (void *)data; 2070 adv_set = (void *)cp->data; 2071 2072 /* Instance 0x00 indicates all advertising instances will be disabled */ 2073 cp->num_of_sets = !!instance; 2074 cp->enable = 0x00; 2075 2076 adv_set->handle = instance; 2077 2078 req_size = sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets; 2079 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, req_size, data); 2080 2081 return 0; 2082 } 2083 2084 int __hci_req_remove_ext_adv_instance(struct hci_request *req, u8 instance) 2085 { 2086 struct hci_dev *hdev = req->hdev; 2087 2088 /* If request specifies an instance that doesn't exist, fail */ 2089 if (instance > 0 && !hci_find_adv_instance(hdev, instance)) 2090 return -EINVAL; 2091 2092 hci_req_add(req, HCI_OP_LE_REMOVE_ADV_SET, sizeof(instance), &instance); 2093 2094 return 0; 2095 } 2096 2097 int __hci_req_start_ext_adv(struct hci_request *req, u8 instance) 2098 { 2099 struct hci_dev *hdev = req->hdev; 2100 struct adv_info *adv_instance = hci_find_adv_instance(hdev, instance); 2101 int err; 2102 2103 /* If instance isn't pending, the chip knows about it, and it's safe to 2104 * disable 2105 */ 2106 if (adv_instance && !adv_instance->pending) 2107 __hci_req_disable_ext_adv_instance(req, instance); 2108 2109 err = __hci_req_setup_ext_adv_instance(req, instance); 2110 if (err < 0) 2111 return err; 2112 2113 __hci_req_update_scan_rsp_data(req, instance); 2114 __hci_req_enable_ext_advertising(req, instance); 2115 2116 return 0; 2117 } 2118 2119 int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance, 2120 bool force) 2121 { 2122 struct hci_dev *hdev = req->hdev; 2123 struct adv_info *adv_instance = NULL; 2124 u16 timeout; 2125 2126 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 2127 list_empty(&hdev->adv_instances)) 2128 return -EPERM; 2129 2130 if (hdev->adv_instance_timeout) 2131 return -EBUSY; 2132 2133 adv_instance = hci_find_adv_instance(hdev, instance); 2134 if (!adv_instance) 2135 return -ENOENT; 2136 2137 /* A zero timeout means unlimited advertising. As long as there is 2138 * only one instance, duration should be ignored. We still set a timeout 2139 * in case further instances are being added later on. 2140 * 2141 * If the remaining lifetime of the instance is more than the duration 2142 * then the timeout corresponds to the duration, otherwise it will be 2143 * reduced to the remaining instance lifetime. 2144 */ 2145 if (adv_instance->timeout == 0 || 2146 adv_instance->duration <= adv_instance->remaining_time) 2147 timeout = adv_instance->duration; 2148 else 2149 timeout = adv_instance->remaining_time; 2150 2151 /* The remaining time is being reduced unless the instance is being 2152 * advertised without time limit. 2153 */ 2154 if (adv_instance->timeout) 2155 adv_instance->remaining_time = 2156 adv_instance->remaining_time - timeout; 2157 2158 /* Only use work for scheduling instances with legacy advertising */ 2159 if (!ext_adv_capable(hdev)) { 2160 hdev->adv_instance_timeout = timeout; 2161 queue_delayed_work(hdev->req_workqueue, 2162 &hdev->adv_instance_expire, 2163 msecs_to_jiffies(timeout * 1000)); 2164 } 2165 2166 /* If we're just re-scheduling the same instance again then do not 2167 * execute any HCI commands. This happens when a single instance is 2168 * being advertised. 2169 */ 2170 if (!force && hdev->cur_adv_instance == instance && 2171 hci_dev_test_flag(hdev, HCI_LE_ADV)) 2172 return 0; 2173 2174 hdev->cur_adv_instance = instance; 2175 if (ext_adv_capable(hdev)) { 2176 __hci_req_start_ext_adv(req, instance); 2177 } else { 2178 __hci_req_update_adv_data(req, instance); 2179 __hci_req_update_scan_rsp_data(req, instance); 2180 __hci_req_enable_advertising(req); 2181 } 2182 2183 return 0; 2184 } 2185 2186 static void cancel_adv_timeout(struct hci_dev *hdev) 2187 { 2188 if (hdev->adv_instance_timeout) { 2189 hdev->adv_instance_timeout = 0; 2190 cancel_delayed_work(&hdev->adv_instance_expire); 2191 } 2192 } 2193 2194 /* For a single instance: 2195 * - force == true: The instance will be removed even when its remaining 2196 * lifetime is not zero. 2197 * - force == false: the instance will be deactivated but kept stored unless 2198 * the remaining lifetime is zero. 2199 * 2200 * For instance == 0x00: 2201 * - force == true: All instances will be removed regardless of their timeout 2202 * setting. 2203 * - force == false: Only instances that have a timeout will be removed. 2204 */ 2205 void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk, 2206 struct hci_request *req, u8 instance, 2207 bool force) 2208 { 2209 struct adv_info *adv_instance, *n, *next_instance = NULL; 2210 int err; 2211 u8 rem_inst; 2212 2213 /* Cancel any timeout concerning the removed instance(s). */ 2214 if (!instance || hdev->cur_adv_instance == instance) 2215 cancel_adv_timeout(hdev); 2216 2217 /* Get the next instance to advertise BEFORE we remove 2218 * the current one. This can be the same instance again 2219 * if there is only one instance. 2220 */ 2221 if (instance && hdev->cur_adv_instance == instance) 2222 next_instance = hci_get_next_instance(hdev, instance); 2223 2224 if (instance == 0x00) { 2225 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, 2226 list) { 2227 if (!(force || adv_instance->timeout)) 2228 continue; 2229 2230 rem_inst = adv_instance->instance; 2231 err = hci_remove_adv_instance(hdev, rem_inst); 2232 if (!err) 2233 mgmt_advertising_removed(sk, hdev, rem_inst); 2234 } 2235 } else { 2236 adv_instance = hci_find_adv_instance(hdev, instance); 2237 2238 if (force || (adv_instance && adv_instance->timeout && 2239 !adv_instance->remaining_time)) { 2240 /* Don't advertise a removed instance. */ 2241 if (next_instance && 2242 next_instance->instance == instance) 2243 next_instance = NULL; 2244 2245 err = hci_remove_adv_instance(hdev, instance); 2246 if (!err) 2247 mgmt_advertising_removed(sk, hdev, instance); 2248 } 2249 } 2250 2251 if (!req || !hdev_is_powered(hdev) || 2252 hci_dev_test_flag(hdev, HCI_ADVERTISING)) 2253 return; 2254 2255 if (next_instance && !ext_adv_capable(hdev)) 2256 __hci_req_schedule_adv_instance(req, next_instance->instance, 2257 false); 2258 } 2259 2260 static void set_random_addr(struct hci_request *req, bdaddr_t *rpa) 2261 { 2262 struct hci_dev *hdev = req->hdev; 2263 2264 /* If we're advertising or initiating an LE connection we can't 2265 * go ahead and change the random address at this time. This is 2266 * because the eventual initiator address used for the 2267 * subsequently created connection will be undefined (some 2268 * controllers use the new address and others the one we had 2269 * when the operation started). 2270 * 2271 * In this kind of scenario skip the update and let the random 2272 * address be updated at the next cycle. 2273 */ 2274 if (hci_dev_test_flag(hdev, HCI_LE_ADV) || 2275 hci_lookup_le_connect(hdev)) { 2276 BT_DBG("Deferring random address update"); 2277 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 2278 return; 2279 } 2280 2281 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa); 2282 } 2283 2284 int hci_update_random_address(struct hci_request *req, bool require_privacy, 2285 bool use_rpa, u8 *own_addr_type) 2286 { 2287 struct hci_dev *hdev = req->hdev; 2288 int err; 2289 2290 /* If privacy is enabled use a resolvable private address. If 2291 * current RPA has expired or there is something else than 2292 * the current RPA in use, then generate a new one. 2293 */ 2294 if (use_rpa) { 2295 int to; 2296 2297 /* If Controller supports LL Privacy use own address type is 2298 * 0x03 2299 */ 2300 if (use_ll_privacy(hdev)) 2301 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 2302 else 2303 *own_addr_type = ADDR_LE_DEV_RANDOM; 2304 2305 if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) && 2306 !bacmp(&hdev->random_addr, &hdev->rpa)) 2307 return 0; 2308 2309 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 2310 if (err < 0) { 2311 bt_dev_err(hdev, "failed to generate new RPA"); 2312 return err; 2313 } 2314 2315 set_random_addr(req, &hdev->rpa); 2316 2317 to = msecs_to_jiffies(hdev->rpa_timeout * 1000); 2318 queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to); 2319 2320 return 0; 2321 } 2322 2323 /* In case of required privacy without resolvable private address, 2324 * use an non-resolvable private address. This is useful for active 2325 * scanning and non-connectable advertising. 2326 */ 2327 if (require_privacy) { 2328 bdaddr_t nrpa; 2329 2330 while (true) { 2331 /* The non-resolvable private address is generated 2332 * from random six bytes with the two most significant 2333 * bits cleared. 2334 */ 2335 get_random_bytes(&nrpa, 6); 2336 nrpa.b[5] &= 0x3f; 2337 2338 /* The non-resolvable private address shall not be 2339 * equal to the public address. 2340 */ 2341 if (bacmp(&hdev->bdaddr, &nrpa)) 2342 break; 2343 } 2344 2345 *own_addr_type = ADDR_LE_DEV_RANDOM; 2346 set_random_addr(req, &nrpa); 2347 return 0; 2348 } 2349 2350 /* If forcing static address is in use or there is no public 2351 * address use the static address as random address (but skip 2352 * the HCI command if the current random address is already the 2353 * static one. 2354 * 2355 * In case BR/EDR has been disabled on a dual-mode controller 2356 * and a static address has been configured, then use that 2357 * address instead of the public BR/EDR address. 2358 */ 2359 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 2360 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 2361 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 2362 bacmp(&hdev->static_addr, BDADDR_ANY))) { 2363 *own_addr_type = ADDR_LE_DEV_RANDOM; 2364 if (bacmp(&hdev->static_addr, &hdev->random_addr)) 2365 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, 2366 &hdev->static_addr); 2367 return 0; 2368 } 2369 2370 /* Neither privacy nor static address is being used so use a 2371 * public address. 2372 */ 2373 *own_addr_type = ADDR_LE_DEV_PUBLIC; 2374 2375 return 0; 2376 } 2377 2378 static bool disconnected_whitelist_entries(struct hci_dev *hdev) 2379 { 2380 struct bdaddr_list *b; 2381 2382 list_for_each_entry(b, &hdev->whitelist, list) { 2383 struct hci_conn *conn; 2384 2385 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); 2386 if (!conn) 2387 return true; 2388 2389 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 2390 return true; 2391 } 2392 2393 return false; 2394 } 2395 2396 void __hci_req_update_scan(struct hci_request *req) 2397 { 2398 struct hci_dev *hdev = req->hdev; 2399 u8 scan; 2400 2401 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 2402 return; 2403 2404 if (!hdev_is_powered(hdev)) 2405 return; 2406 2407 if (mgmt_powering_down(hdev)) 2408 return; 2409 2410 if (hdev->scanning_paused) 2411 return; 2412 2413 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || 2414 disconnected_whitelist_entries(hdev)) 2415 scan = SCAN_PAGE; 2416 else 2417 scan = SCAN_DISABLED; 2418 2419 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 2420 scan |= SCAN_INQUIRY; 2421 2422 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && 2423 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) 2424 return; 2425 2426 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); 2427 } 2428 2429 static int update_scan(struct hci_request *req, unsigned long opt) 2430 { 2431 hci_dev_lock(req->hdev); 2432 __hci_req_update_scan(req); 2433 hci_dev_unlock(req->hdev); 2434 return 0; 2435 } 2436 2437 static void scan_update_work(struct work_struct *work) 2438 { 2439 struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update); 2440 2441 hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL); 2442 } 2443 2444 static int connectable_update(struct hci_request *req, unsigned long opt) 2445 { 2446 struct hci_dev *hdev = req->hdev; 2447 2448 hci_dev_lock(hdev); 2449 2450 __hci_req_update_scan(req); 2451 2452 /* If BR/EDR is not enabled and we disable advertising as a 2453 * by-product of disabling connectable, we need to update the 2454 * advertising flags. 2455 */ 2456 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 2457 __hci_req_update_adv_data(req, hdev->cur_adv_instance); 2458 2459 /* Update the advertising parameters if necessary */ 2460 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 2461 !list_empty(&hdev->adv_instances)) { 2462 if (ext_adv_capable(hdev)) 2463 __hci_req_start_ext_adv(req, hdev->cur_adv_instance); 2464 else 2465 __hci_req_enable_advertising(req); 2466 } 2467 2468 __hci_update_background_scan(req); 2469 2470 hci_dev_unlock(hdev); 2471 2472 return 0; 2473 } 2474 2475 static void connectable_update_work(struct work_struct *work) 2476 { 2477 struct hci_dev *hdev = container_of(work, struct hci_dev, 2478 connectable_update); 2479 u8 status; 2480 2481 hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status); 2482 mgmt_set_connectable_complete(hdev, status); 2483 } 2484 2485 static u8 get_service_classes(struct hci_dev *hdev) 2486 { 2487 struct bt_uuid *uuid; 2488 u8 val = 0; 2489 2490 list_for_each_entry(uuid, &hdev->uuids, list) 2491 val |= uuid->svc_hint; 2492 2493 return val; 2494 } 2495 2496 void __hci_req_update_class(struct hci_request *req) 2497 { 2498 struct hci_dev *hdev = req->hdev; 2499 u8 cod[3]; 2500 2501 BT_DBG("%s", hdev->name); 2502 2503 if (!hdev_is_powered(hdev)) 2504 return; 2505 2506 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 2507 return; 2508 2509 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 2510 return; 2511 2512 cod[0] = hdev->minor_class; 2513 cod[1] = hdev->major_class; 2514 cod[2] = get_service_classes(hdev); 2515 2516 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 2517 cod[1] |= 0x20; 2518 2519 if (memcmp(cod, hdev->dev_class, 3) == 0) 2520 return; 2521 2522 hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod); 2523 } 2524 2525 static void write_iac(struct hci_request *req) 2526 { 2527 struct hci_dev *hdev = req->hdev; 2528 struct hci_cp_write_current_iac_lap cp; 2529 2530 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 2531 return; 2532 2533 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 2534 /* Limited discoverable mode */ 2535 cp.num_iac = min_t(u8, hdev->num_iac, 2); 2536 cp.iac_lap[0] = 0x00; /* LIAC */ 2537 cp.iac_lap[1] = 0x8b; 2538 cp.iac_lap[2] = 0x9e; 2539 cp.iac_lap[3] = 0x33; /* GIAC */ 2540 cp.iac_lap[4] = 0x8b; 2541 cp.iac_lap[5] = 0x9e; 2542 } else { 2543 /* General discoverable mode */ 2544 cp.num_iac = 1; 2545 cp.iac_lap[0] = 0x33; /* GIAC */ 2546 cp.iac_lap[1] = 0x8b; 2547 cp.iac_lap[2] = 0x9e; 2548 } 2549 2550 hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP, 2551 (cp.num_iac * 3) + 1, &cp); 2552 } 2553 2554 static int discoverable_update(struct hci_request *req, unsigned long opt) 2555 { 2556 struct hci_dev *hdev = req->hdev; 2557 2558 hci_dev_lock(hdev); 2559 2560 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 2561 write_iac(req); 2562 __hci_req_update_scan(req); 2563 __hci_req_update_class(req); 2564 } 2565 2566 /* Advertising instances don't use the global discoverable setting, so 2567 * only update AD if advertising was enabled using Set Advertising. 2568 */ 2569 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 2570 __hci_req_update_adv_data(req, 0x00); 2571 2572 /* Discoverable mode affects the local advertising 2573 * address in limited privacy mode. 2574 */ 2575 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { 2576 if (ext_adv_capable(hdev)) 2577 __hci_req_start_ext_adv(req, 0x00); 2578 else 2579 __hci_req_enable_advertising(req); 2580 } 2581 } 2582 2583 hci_dev_unlock(hdev); 2584 2585 return 0; 2586 } 2587 2588 static void discoverable_update_work(struct work_struct *work) 2589 { 2590 struct hci_dev *hdev = container_of(work, struct hci_dev, 2591 discoverable_update); 2592 u8 status; 2593 2594 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status); 2595 mgmt_set_discoverable_complete(hdev, status); 2596 } 2597 2598 void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn, 2599 u8 reason) 2600 { 2601 switch (conn->state) { 2602 case BT_CONNECTED: 2603 case BT_CONFIG: 2604 if (conn->type == AMP_LINK) { 2605 struct hci_cp_disconn_phy_link cp; 2606 2607 cp.phy_handle = HCI_PHY_HANDLE(conn->handle); 2608 cp.reason = reason; 2609 hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp), 2610 &cp); 2611 } else { 2612 struct hci_cp_disconnect dc; 2613 2614 dc.handle = cpu_to_le16(conn->handle); 2615 dc.reason = reason; 2616 hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc); 2617 } 2618 2619 conn->state = BT_DISCONN; 2620 2621 break; 2622 case BT_CONNECT: 2623 if (conn->type == LE_LINK) { 2624 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 2625 break; 2626 hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL, 2627 0, NULL); 2628 } else if (conn->type == ACL_LINK) { 2629 if (req->hdev->hci_ver < BLUETOOTH_VER_1_2) 2630 break; 2631 hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL, 2632 6, &conn->dst); 2633 } 2634 break; 2635 case BT_CONNECT2: 2636 if (conn->type == ACL_LINK) { 2637 struct hci_cp_reject_conn_req rej; 2638 2639 bacpy(&rej.bdaddr, &conn->dst); 2640 rej.reason = reason; 2641 2642 hci_req_add(req, HCI_OP_REJECT_CONN_REQ, 2643 sizeof(rej), &rej); 2644 } else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) { 2645 struct hci_cp_reject_sync_conn_req rej; 2646 2647 bacpy(&rej.bdaddr, &conn->dst); 2648 2649 /* SCO rejection has its own limited set of 2650 * allowed error values (0x0D-0x0F) which isn't 2651 * compatible with most values passed to this 2652 * function. To be safe hard-code one of the 2653 * values that's suitable for SCO. 2654 */ 2655 rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; 2656 2657 hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ, 2658 sizeof(rej), &rej); 2659 } 2660 break; 2661 default: 2662 conn->state = BT_CLOSED; 2663 break; 2664 } 2665 } 2666 2667 static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode) 2668 { 2669 if (status) 2670 BT_DBG("Failed to abort connection: status 0x%2.2x", status); 2671 } 2672 2673 int hci_abort_conn(struct hci_conn *conn, u8 reason) 2674 { 2675 struct hci_request req; 2676 int err; 2677 2678 hci_req_init(&req, conn->hdev); 2679 2680 __hci_abort_conn(&req, conn, reason); 2681 2682 err = hci_req_run(&req, abort_conn_complete); 2683 if (err && err != -ENODATA) { 2684 bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err); 2685 return err; 2686 } 2687 2688 return 0; 2689 } 2690 2691 static int update_bg_scan(struct hci_request *req, unsigned long opt) 2692 { 2693 hci_dev_lock(req->hdev); 2694 __hci_update_background_scan(req); 2695 hci_dev_unlock(req->hdev); 2696 return 0; 2697 } 2698 2699 static void bg_scan_update(struct work_struct *work) 2700 { 2701 struct hci_dev *hdev = container_of(work, struct hci_dev, 2702 bg_scan_update); 2703 struct hci_conn *conn; 2704 u8 status; 2705 int err; 2706 2707 err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status); 2708 if (!err) 2709 return; 2710 2711 hci_dev_lock(hdev); 2712 2713 conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT); 2714 if (conn) 2715 hci_le_conn_failed(conn, status); 2716 2717 hci_dev_unlock(hdev); 2718 } 2719 2720 static int le_scan_disable(struct hci_request *req, unsigned long opt) 2721 { 2722 hci_req_add_le_scan_disable(req, false); 2723 return 0; 2724 } 2725 2726 static int bredr_inquiry(struct hci_request *req, unsigned long opt) 2727 { 2728 u8 length = opt; 2729 const u8 giac[3] = { 0x33, 0x8b, 0x9e }; 2730 const u8 liac[3] = { 0x00, 0x8b, 0x9e }; 2731 struct hci_cp_inquiry cp; 2732 2733 BT_DBG("%s", req->hdev->name); 2734 2735 hci_dev_lock(req->hdev); 2736 hci_inquiry_cache_flush(req->hdev); 2737 hci_dev_unlock(req->hdev); 2738 2739 memset(&cp, 0, sizeof(cp)); 2740 2741 if (req->hdev->discovery.limited) 2742 memcpy(&cp.lap, liac, sizeof(cp.lap)); 2743 else 2744 memcpy(&cp.lap, giac, sizeof(cp.lap)); 2745 2746 cp.length = length; 2747 2748 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp); 2749 2750 return 0; 2751 } 2752 2753 static void le_scan_disable_work(struct work_struct *work) 2754 { 2755 struct hci_dev *hdev = container_of(work, struct hci_dev, 2756 le_scan_disable.work); 2757 u8 status; 2758 2759 BT_DBG("%s", hdev->name); 2760 2761 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 2762 return; 2763 2764 cancel_delayed_work(&hdev->le_scan_restart); 2765 2766 hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status); 2767 if (status) { 2768 bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x", 2769 status); 2770 return; 2771 } 2772 2773 hdev->discovery.scan_start = 0; 2774 2775 /* If we were running LE only scan, change discovery state. If 2776 * we were running both LE and BR/EDR inquiry simultaneously, 2777 * and BR/EDR inquiry is already finished, stop discovery, 2778 * otherwise BR/EDR inquiry will stop discovery when finished. 2779 * If we will resolve remote device name, do not change 2780 * discovery state. 2781 */ 2782 2783 if (hdev->discovery.type == DISCOV_TYPE_LE) 2784 goto discov_stopped; 2785 2786 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED) 2787 return; 2788 2789 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) { 2790 if (!test_bit(HCI_INQUIRY, &hdev->flags) && 2791 hdev->discovery.state != DISCOVERY_RESOLVING) 2792 goto discov_stopped; 2793 2794 return; 2795 } 2796 2797 hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN, 2798 HCI_CMD_TIMEOUT, &status); 2799 if (status) { 2800 bt_dev_err(hdev, "inquiry failed: status 0x%02x", status); 2801 goto discov_stopped; 2802 } 2803 2804 return; 2805 2806 discov_stopped: 2807 hci_dev_lock(hdev); 2808 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 2809 hci_dev_unlock(hdev); 2810 } 2811 2812 static int le_scan_restart(struct hci_request *req, unsigned long opt) 2813 { 2814 struct hci_dev *hdev = req->hdev; 2815 2816 /* If controller is not scanning we are done. */ 2817 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 2818 return 0; 2819 2820 if (hdev->scanning_paused) { 2821 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2822 return 0; 2823 } 2824 2825 hci_req_add_le_scan_disable(req, false); 2826 2827 if (use_ext_scan(hdev)) { 2828 struct hci_cp_le_set_ext_scan_enable ext_enable_cp; 2829 2830 memset(&ext_enable_cp, 0, sizeof(ext_enable_cp)); 2831 ext_enable_cp.enable = LE_SCAN_ENABLE; 2832 ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 2833 2834 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 2835 sizeof(ext_enable_cp), &ext_enable_cp); 2836 } else { 2837 struct hci_cp_le_set_scan_enable cp; 2838 2839 memset(&cp, 0, sizeof(cp)); 2840 cp.enable = LE_SCAN_ENABLE; 2841 cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 2842 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp); 2843 } 2844 2845 return 0; 2846 } 2847 2848 static void le_scan_restart_work(struct work_struct *work) 2849 { 2850 struct hci_dev *hdev = container_of(work, struct hci_dev, 2851 le_scan_restart.work); 2852 unsigned long timeout, duration, scan_start, now; 2853 u8 status; 2854 2855 BT_DBG("%s", hdev->name); 2856 2857 hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status); 2858 if (status) { 2859 bt_dev_err(hdev, "failed to restart LE scan: status %d", 2860 status); 2861 return; 2862 } 2863 2864 hci_dev_lock(hdev); 2865 2866 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) || 2867 !hdev->discovery.scan_start) 2868 goto unlock; 2869 2870 /* When the scan was started, hdev->le_scan_disable has been queued 2871 * after duration from scan_start. During scan restart this job 2872 * has been canceled, and we need to queue it again after proper 2873 * timeout, to make sure that scan does not run indefinitely. 2874 */ 2875 duration = hdev->discovery.scan_duration; 2876 scan_start = hdev->discovery.scan_start; 2877 now = jiffies; 2878 if (now - scan_start <= duration) { 2879 int elapsed; 2880 2881 if (now >= scan_start) 2882 elapsed = now - scan_start; 2883 else 2884 elapsed = ULONG_MAX - scan_start + now; 2885 2886 timeout = duration - elapsed; 2887 } else { 2888 timeout = 0; 2889 } 2890 2891 queue_delayed_work(hdev->req_workqueue, 2892 &hdev->le_scan_disable, timeout); 2893 2894 unlock: 2895 hci_dev_unlock(hdev); 2896 } 2897 2898 static int active_scan(struct hci_request *req, unsigned long opt) 2899 { 2900 uint16_t interval = opt; 2901 struct hci_dev *hdev = req->hdev; 2902 u8 own_addr_type; 2903 /* White list is not used for discovery */ 2904 u8 filter_policy = 0x00; 2905 /* Discovery doesn't require controller address resolution */ 2906 bool addr_resolv = false; 2907 int err; 2908 2909 BT_DBG("%s", hdev->name); 2910 2911 /* If controller is scanning, it means the background scanning is 2912 * running. Thus, we should temporarily stop it in order to set the 2913 * discovery scanning parameters. 2914 */ 2915 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) 2916 hci_req_add_le_scan_disable(req, false); 2917 2918 /* All active scans will be done with either a resolvable private 2919 * address (when privacy feature has been enabled) or non-resolvable 2920 * private address. 2921 */ 2922 err = hci_update_random_address(req, true, scan_use_rpa(hdev), 2923 &own_addr_type); 2924 if (err < 0) 2925 own_addr_type = ADDR_LE_DEV_PUBLIC; 2926 2927 hci_req_start_scan(req, LE_SCAN_ACTIVE, interval, 2928 hdev->le_scan_window_discovery, own_addr_type, 2929 filter_policy, addr_resolv); 2930 return 0; 2931 } 2932 2933 static int interleaved_discov(struct hci_request *req, unsigned long opt) 2934 { 2935 int err; 2936 2937 BT_DBG("%s", req->hdev->name); 2938 2939 err = active_scan(req, opt); 2940 if (err) 2941 return err; 2942 2943 return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN); 2944 } 2945 2946 static void start_discovery(struct hci_dev *hdev, u8 *status) 2947 { 2948 unsigned long timeout; 2949 2950 BT_DBG("%s type %u", hdev->name, hdev->discovery.type); 2951 2952 switch (hdev->discovery.type) { 2953 case DISCOV_TYPE_BREDR: 2954 if (!hci_dev_test_flag(hdev, HCI_INQUIRY)) 2955 hci_req_sync(hdev, bredr_inquiry, 2956 DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT, 2957 status); 2958 return; 2959 case DISCOV_TYPE_INTERLEAVED: 2960 /* When running simultaneous discovery, the LE scanning time 2961 * should occupy the whole discovery time sine BR/EDR inquiry 2962 * and LE scanning are scheduled by the controller. 2963 * 2964 * For interleaving discovery in comparison, BR/EDR inquiry 2965 * and LE scanning are done sequentially with separate 2966 * timeouts. 2967 */ 2968 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, 2969 &hdev->quirks)) { 2970 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 2971 /* During simultaneous discovery, we double LE scan 2972 * interval. We must leave some time for the controller 2973 * to do BR/EDR inquiry. 2974 */ 2975 hci_req_sync(hdev, interleaved_discov, 2976 hdev->le_scan_int_discovery * 2, HCI_CMD_TIMEOUT, 2977 status); 2978 break; 2979 } 2980 2981 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); 2982 hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery, 2983 HCI_CMD_TIMEOUT, status); 2984 break; 2985 case DISCOV_TYPE_LE: 2986 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 2987 hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery, 2988 HCI_CMD_TIMEOUT, status); 2989 break; 2990 default: 2991 *status = HCI_ERROR_UNSPECIFIED; 2992 return; 2993 } 2994 2995 if (*status) 2996 return; 2997 2998 BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout)); 2999 3000 /* When service discovery is used and the controller has a 3001 * strict duplicate filter, it is important to remember the 3002 * start and duration of the scan. This is required for 3003 * restarting scanning during the discovery phase. 3004 */ 3005 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && 3006 hdev->discovery.result_filtering) { 3007 hdev->discovery.scan_start = jiffies; 3008 hdev->discovery.scan_duration = timeout; 3009 } 3010 3011 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, 3012 timeout); 3013 } 3014 3015 bool hci_req_stop_discovery(struct hci_request *req) 3016 { 3017 struct hci_dev *hdev = req->hdev; 3018 struct discovery_state *d = &hdev->discovery; 3019 struct hci_cp_remote_name_req_cancel cp; 3020 struct inquiry_entry *e; 3021 bool ret = false; 3022 3023 BT_DBG("%s state %u", hdev->name, hdev->discovery.state); 3024 3025 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { 3026 if (test_bit(HCI_INQUIRY, &hdev->flags)) 3027 hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL); 3028 3029 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 3030 cancel_delayed_work(&hdev->le_scan_disable); 3031 hci_req_add_le_scan_disable(req, false); 3032 } 3033 3034 ret = true; 3035 } else { 3036 /* Passive scanning */ 3037 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 3038 hci_req_add_le_scan_disable(req, false); 3039 ret = true; 3040 } 3041 } 3042 3043 /* No further actions needed for LE-only discovery */ 3044 if (d->type == DISCOV_TYPE_LE) 3045 return ret; 3046 3047 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { 3048 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, 3049 NAME_PENDING); 3050 if (!e) 3051 return ret; 3052 3053 bacpy(&cp.bdaddr, &e->data.bdaddr); 3054 hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp), 3055 &cp); 3056 ret = true; 3057 } 3058 3059 return ret; 3060 } 3061 3062 static int stop_discovery(struct hci_request *req, unsigned long opt) 3063 { 3064 hci_dev_lock(req->hdev); 3065 hci_req_stop_discovery(req); 3066 hci_dev_unlock(req->hdev); 3067 3068 return 0; 3069 } 3070 3071 static void discov_update(struct work_struct *work) 3072 { 3073 struct hci_dev *hdev = container_of(work, struct hci_dev, 3074 discov_update); 3075 u8 status = 0; 3076 3077 switch (hdev->discovery.state) { 3078 case DISCOVERY_STARTING: 3079 start_discovery(hdev, &status); 3080 mgmt_start_discovery_complete(hdev, status); 3081 if (status) 3082 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 3083 else 3084 hci_discovery_set_state(hdev, DISCOVERY_FINDING); 3085 break; 3086 case DISCOVERY_STOPPING: 3087 hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status); 3088 mgmt_stop_discovery_complete(hdev, status); 3089 if (!status) 3090 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 3091 break; 3092 case DISCOVERY_STOPPED: 3093 default: 3094 return; 3095 } 3096 } 3097 3098 static void discov_off(struct work_struct *work) 3099 { 3100 struct hci_dev *hdev = container_of(work, struct hci_dev, 3101 discov_off.work); 3102 3103 BT_DBG("%s", hdev->name); 3104 3105 hci_dev_lock(hdev); 3106 3107 /* When discoverable timeout triggers, then just make sure 3108 * the limited discoverable flag is cleared. Even in the case 3109 * of a timeout triggered from general discoverable, it is 3110 * safe to unconditionally clear the flag. 3111 */ 3112 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 3113 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 3114 hdev->discov_timeout = 0; 3115 3116 hci_dev_unlock(hdev); 3117 3118 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL); 3119 mgmt_new_settings(hdev); 3120 } 3121 3122 static int powered_update_hci(struct hci_request *req, unsigned long opt) 3123 { 3124 struct hci_dev *hdev = req->hdev; 3125 u8 link_sec; 3126 3127 hci_dev_lock(hdev); 3128 3129 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) && 3130 !lmp_host_ssp_capable(hdev)) { 3131 u8 mode = 0x01; 3132 3133 hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode); 3134 3135 if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) { 3136 u8 support = 0x01; 3137 3138 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT, 3139 sizeof(support), &support); 3140 } 3141 } 3142 3143 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) && 3144 lmp_bredr_capable(hdev)) { 3145 struct hci_cp_write_le_host_supported cp; 3146 3147 cp.le = 0x01; 3148 cp.simul = 0x00; 3149 3150 /* Check first if we already have the right 3151 * host state (host features set) 3152 */ 3153 if (cp.le != lmp_host_le_capable(hdev) || 3154 cp.simul != lmp_host_le_br_capable(hdev)) 3155 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, 3156 sizeof(cp), &cp); 3157 } 3158 3159 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 3160 /* Make sure the controller has a good default for 3161 * advertising data. This also applies to the case 3162 * where BR/EDR was toggled during the AUTO_OFF phase. 3163 */ 3164 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 3165 list_empty(&hdev->adv_instances)) { 3166 int err; 3167 3168 if (ext_adv_capable(hdev)) { 3169 err = __hci_req_setup_ext_adv_instance(req, 3170 0x00); 3171 if (!err) 3172 __hci_req_update_scan_rsp_data(req, 3173 0x00); 3174 } else { 3175 err = 0; 3176 __hci_req_update_adv_data(req, 0x00); 3177 __hci_req_update_scan_rsp_data(req, 0x00); 3178 } 3179 3180 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 3181 if (!ext_adv_capable(hdev)) 3182 __hci_req_enable_advertising(req); 3183 else if (!err) 3184 __hci_req_enable_ext_advertising(req, 3185 0x00); 3186 } 3187 } else if (!list_empty(&hdev->adv_instances)) { 3188 struct adv_info *adv_instance; 3189 3190 adv_instance = list_first_entry(&hdev->adv_instances, 3191 struct adv_info, list); 3192 __hci_req_schedule_adv_instance(req, 3193 adv_instance->instance, 3194 true); 3195 } 3196 } 3197 3198 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); 3199 if (link_sec != test_bit(HCI_AUTH, &hdev->flags)) 3200 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 3201 sizeof(link_sec), &link_sec); 3202 3203 if (lmp_bredr_capable(hdev)) { 3204 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) 3205 __hci_req_write_fast_connectable(req, true); 3206 else 3207 __hci_req_write_fast_connectable(req, false); 3208 __hci_req_update_scan(req); 3209 __hci_req_update_class(req); 3210 __hci_req_update_name(req); 3211 __hci_req_update_eir(req); 3212 } 3213 3214 hci_dev_unlock(hdev); 3215 return 0; 3216 } 3217 3218 int __hci_req_hci_power_on(struct hci_dev *hdev) 3219 { 3220 /* Register the available SMP channels (BR/EDR and LE) only when 3221 * successfully powering on the controller. This late 3222 * registration is required so that LE SMP can clearly decide if 3223 * the public address or static address is used. 3224 */ 3225 smp_register(hdev); 3226 3227 return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT, 3228 NULL); 3229 } 3230 3231 void hci_request_setup(struct hci_dev *hdev) 3232 { 3233 INIT_WORK(&hdev->discov_update, discov_update); 3234 INIT_WORK(&hdev->bg_scan_update, bg_scan_update); 3235 INIT_WORK(&hdev->scan_update, scan_update_work); 3236 INIT_WORK(&hdev->connectable_update, connectable_update_work); 3237 INIT_WORK(&hdev->discoverable_update, discoverable_update_work); 3238 INIT_DELAYED_WORK(&hdev->discov_off, discov_off); 3239 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work); 3240 INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work); 3241 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire); 3242 } 3243 3244 void hci_request_cancel_all(struct hci_dev *hdev) 3245 { 3246 hci_req_sync_cancel(hdev, ENODEV); 3247 3248 cancel_work_sync(&hdev->discov_update); 3249 cancel_work_sync(&hdev->bg_scan_update); 3250 cancel_work_sync(&hdev->scan_update); 3251 cancel_work_sync(&hdev->connectable_update); 3252 cancel_work_sync(&hdev->discoverable_update); 3253 cancel_delayed_work_sync(&hdev->discov_off); 3254 cancel_delayed_work_sync(&hdev->le_scan_disable); 3255 cancel_delayed_work_sync(&hdev->le_scan_restart); 3256 3257 if (hdev->adv_instance_timeout) { 3258 cancel_delayed_work_sync(&hdev->adv_instance_expire); 3259 hdev->adv_instance_timeout = 0; 3260 } 3261 } 3262