1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 4 Copyright (C) 2014 Intel Corporation 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License version 2 as 8 published by the Free Software Foundation; 9 10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 21 SOFTWARE IS DISCLAIMED. 22 */ 23 24 #include <net/bluetooth/bluetooth.h> 25 #include <net/bluetooth/hci_core.h> 26 27 #include "smp.h" 28 #include "hci_request.h" 29 30 void hci_req_init(struct hci_request *req, struct hci_dev *hdev) 31 { 32 skb_queue_head_init(&req->cmd_q); 33 req->hdev = hdev; 34 req->err = 0; 35 } 36 37 static int req_run(struct hci_request *req, hci_req_complete_t complete, 38 hci_req_complete_skb_t complete_skb) 39 { 40 struct hci_dev *hdev = req->hdev; 41 struct sk_buff *skb; 42 unsigned long flags; 43 44 BT_DBG("length %u", skb_queue_len(&req->cmd_q)); 45 46 /* If an error occurred during request building, remove all HCI 47 * commands queued on the HCI request queue. 48 */ 49 if (req->err) { 50 skb_queue_purge(&req->cmd_q); 51 return req->err; 52 } 53 54 /* Do not allow empty requests */ 55 if (skb_queue_empty(&req->cmd_q)) 56 return -ENODATA; 57 58 skb = skb_peek_tail(&req->cmd_q); 59 bt_cb(skb)->hci.req_complete = complete; 60 bt_cb(skb)->hci.req_complete_skb = complete_skb; 61 62 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 63 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); 64 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 65 66 queue_work(hdev->workqueue, &hdev->cmd_work); 67 68 return 0; 69 } 70 71 int hci_req_run(struct hci_request *req, hci_req_complete_t complete) 72 { 73 return req_run(req, complete, NULL); 74 } 75 76 int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete) 77 { 78 return req_run(req, NULL, complete); 79 } 80 81 struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen, 82 const void *param) 83 { 84 int len = HCI_COMMAND_HDR_SIZE + plen; 85 struct hci_command_hdr *hdr; 86 struct sk_buff *skb; 87 88 skb = bt_skb_alloc(len, GFP_ATOMIC); 89 if (!skb) 90 return NULL; 91 92 hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE); 93 hdr->opcode = cpu_to_le16(opcode); 94 hdr->plen = plen; 95 96 if (plen) 97 memcpy(skb_put(skb, plen), param, plen); 98 99 BT_DBG("skb len %d", skb->len); 100 101 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT; 102 bt_cb(skb)->hci.opcode = opcode; 103 104 return skb; 105 } 106 107 /* Queue a command to an asynchronous HCI request */ 108 void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen, 109 const void *param, u8 event) 110 { 111 struct hci_dev *hdev = req->hdev; 112 struct sk_buff *skb; 113 114 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen); 115 116 /* If an error occurred during request building, there is no point in 117 * queueing the HCI command. We can simply return. 118 */ 119 if (req->err) 120 return; 121 122 skb = hci_prepare_cmd(hdev, opcode, plen, param); 123 if (!skb) { 124 BT_ERR("%s no memory for command (opcode 0x%4.4x)", 125 hdev->name, opcode); 126 req->err = -ENOMEM; 127 return; 128 } 129 130 if (skb_queue_empty(&req->cmd_q)) 131 bt_cb(skb)->hci.req_start = true; 132 133 bt_cb(skb)->hci.req_event = event; 134 135 skb_queue_tail(&req->cmd_q, skb); 136 } 137 138 void hci_req_add(struct hci_request *req, u16 opcode, u32 plen, 139 const void *param) 140 { 141 hci_req_add_ev(req, opcode, plen, param, 0); 142 } 143 144 void hci_req_add_le_scan_disable(struct hci_request *req) 145 { 146 struct hci_cp_le_set_scan_enable cp; 147 148 memset(&cp, 0, sizeof(cp)); 149 cp.enable = LE_SCAN_DISABLE; 150 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp); 151 } 152 153 static void add_to_white_list(struct hci_request *req, 154 struct hci_conn_params *params) 155 { 156 struct hci_cp_le_add_to_white_list cp; 157 158 cp.bdaddr_type = params->addr_type; 159 bacpy(&cp.bdaddr, ¶ms->addr); 160 161 hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp); 162 } 163 164 static u8 update_white_list(struct hci_request *req) 165 { 166 struct hci_dev *hdev = req->hdev; 167 struct hci_conn_params *params; 168 struct bdaddr_list *b; 169 uint8_t white_list_entries = 0; 170 171 /* Go through the current white list programmed into the 172 * controller one by one and check if that address is still 173 * in the list of pending connections or list of devices to 174 * report. If not present in either list, then queue the 175 * command to remove it from the controller. 176 */ 177 list_for_each_entry(b, &hdev->le_white_list, list) { 178 struct hci_cp_le_del_from_white_list cp; 179 180 if (hci_pend_le_action_lookup(&hdev->pend_le_conns, 181 &b->bdaddr, b->bdaddr_type) || 182 hci_pend_le_action_lookup(&hdev->pend_le_reports, 183 &b->bdaddr, b->bdaddr_type)) { 184 white_list_entries++; 185 continue; 186 } 187 188 cp.bdaddr_type = b->bdaddr_type; 189 bacpy(&cp.bdaddr, &b->bdaddr); 190 191 hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST, 192 sizeof(cp), &cp); 193 } 194 195 /* Since all no longer valid white list entries have been 196 * removed, walk through the list of pending connections 197 * and ensure that any new device gets programmed into 198 * the controller. 199 * 200 * If the list of the devices is larger than the list of 201 * available white list entries in the controller, then 202 * just abort and return filer policy value to not use the 203 * white list. 204 */ 205 list_for_each_entry(params, &hdev->pend_le_conns, action) { 206 if (hci_bdaddr_list_lookup(&hdev->le_white_list, 207 ¶ms->addr, params->addr_type)) 208 continue; 209 210 if (white_list_entries >= hdev->le_white_list_size) { 211 /* Select filter policy to accept all advertising */ 212 return 0x00; 213 } 214 215 if (hci_find_irk_by_addr(hdev, ¶ms->addr, 216 params->addr_type)) { 217 /* White list can not be used with RPAs */ 218 return 0x00; 219 } 220 221 white_list_entries++; 222 add_to_white_list(req, params); 223 } 224 225 /* After adding all new pending connections, walk through 226 * the list of pending reports and also add these to the 227 * white list if there is still space. 228 */ 229 list_for_each_entry(params, &hdev->pend_le_reports, action) { 230 if (hci_bdaddr_list_lookup(&hdev->le_white_list, 231 ¶ms->addr, params->addr_type)) 232 continue; 233 234 if (white_list_entries >= hdev->le_white_list_size) { 235 /* Select filter policy to accept all advertising */ 236 return 0x00; 237 } 238 239 if (hci_find_irk_by_addr(hdev, ¶ms->addr, 240 params->addr_type)) { 241 /* White list can not be used with RPAs */ 242 return 0x00; 243 } 244 245 white_list_entries++; 246 add_to_white_list(req, params); 247 } 248 249 /* Select filter policy to use white list */ 250 return 0x01; 251 } 252 253 void hci_req_add_le_passive_scan(struct hci_request *req) 254 { 255 struct hci_cp_le_set_scan_param param_cp; 256 struct hci_cp_le_set_scan_enable enable_cp; 257 struct hci_dev *hdev = req->hdev; 258 u8 own_addr_type; 259 u8 filter_policy; 260 261 /* Set require_privacy to false since no SCAN_REQ are send 262 * during passive scanning. Not using an non-resolvable address 263 * here is important so that peer devices using direct 264 * advertising with our address will be correctly reported 265 * by the controller. 266 */ 267 if (hci_update_random_address(req, false, &own_addr_type)) 268 return; 269 270 /* Adding or removing entries from the white list must 271 * happen before enabling scanning. The controller does 272 * not allow white list modification while scanning. 273 */ 274 filter_policy = update_white_list(req); 275 276 /* When the controller is using random resolvable addresses and 277 * with that having LE privacy enabled, then controllers with 278 * Extended Scanner Filter Policies support can now enable support 279 * for handling directed advertising. 280 * 281 * So instead of using filter polices 0x00 (no whitelist) 282 * and 0x01 (whitelist enabled) use the new filter policies 283 * 0x02 (no whitelist) and 0x03 (whitelist enabled). 284 */ 285 if (hci_dev_test_flag(hdev, HCI_PRIVACY) && 286 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) 287 filter_policy |= 0x02; 288 289 memset(¶m_cp, 0, sizeof(param_cp)); 290 param_cp.type = LE_SCAN_PASSIVE; 291 param_cp.interval = cpu_to_le16(hdev->le_scan_interval); 292 param_cp.window = cpu_to_le16(hdev->le_scan_window); 293 param_cp.own_address_type = own_addr_type; 294 param_cp.filter_policy = filter_policy; 295 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp), 296 ¶m_cp); 297 298 memset(&enable_cp, 0, sizeof(enable_cp)); 299 enable_cp.enable = LE_SCAN_ENABLE; 300 enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 301 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp), 302 &enable_cp); 303 } 304 305 static void set_random_addr(struct hci_request *req, bdaddr_t *rpa) 306 { 307 struct hci_dev *hdev = req->hdev; 308 309 /* If we're advertising or initiating an LE connection we can't 310 * go ahead and change the random address at this time. This is 311 * because the eventual initiator address used for the 312 * subsequently created connection will be undefined (some 313 * controllers use the new address and others the one we had 314 * when the operation started). 315 * 316 * In this kind of scenario skip the update and let the random 317 * address be updated at the next cycle. 318 */ 319 if (hci_dev_test_flag(hdev, HCI_LE_ADV) || 320 hci_lookup_le_connect(hdev)) { 321 BT_DBG("Deferring random address update"); 322 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 323 return; 324 } 325 326 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa); 327 } 328 329 int hci_update_random_address(struct hci_request *req, bool require_privacy, 330 u8 *own_addr_type) 331 { 332 struct hci_dev *hdev = req->hdev; 333 int err; 334 335 /* If privacy is enabled use a resolvable private address. If 336 * current RPA has expired or there is something else than 337 * the current RPA in use, then generate a new one. 338 */ 339 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) { 340 int to; 341 342 *own_addr_type = ADDR_LE_DEV_RANDOM; 343 344 if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) && 345 !bacmp(&hdev->random_addr, &hdev->rpa)) 346 return 0; 347 348 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 349 if (err < 0) { 350 BT_ERR("%s failed to generate new RPA", hdev->name); 351 return err; 352 } 353 354 set_random_addr(req, &hdev->rpa); 355 356 to = msecs_to_jiffies(hdev->rpa_timeout * 1000); 357 queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to); 358 359 return 0; 360 } 361 362 /* In case of required privacy without resolvable private address, 363 * use an non-resolvable private address. This is useful for active 364 * scanning and non-connectable advertising. 365 */ 366 if (require_privacy) { 367 bdaddr_t nrpa; 368 369 while (true) { 370 /* The non-resolvable private address is generated 371 * from random six bytes with the two most significant 372 * bits cleared. 373 */ 374 get_random_bytes(&nrpa, 6); 375 nrpa.b[5] &= 0x3f; 376 377 /* The non-resolvable private address shall not be 378 * equal to the public address. 379 */ 380 if (bacmp(&hdev->bdaddr, &nrpa)) 381 break; 382 } 383 384 *own_addr_type = ADDR_LE_DEV_RANDOM; 385 set_random_addr(req, &nrpa); 386 return 0; 387 } 388 389 /* If forcing static address is in use or there is no public 390 * address use the static address as random address (but skip 391 * the HCI command if the current random address is already the 392 * static one. 393 * 394 * In case BR/EDR has been disabled on a dual-mode controller 395 * and a static address has been configured, then use that 396 * address instead of the public BR/EDR address. 397 */ 398 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 399 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 400 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 401 bacmp(&hdev->static_addr, BDADDR_ANY))) { 402 *own_addr_type = ADDR_LE_DEV_RANDOM; 403 if (bacmp(&hdev->static_addr, &hdev->random_addr)) 404 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, 405 &hdev->static_addr); 406 return 0; 407 } 408 409 /* Neither privacy nor static address is being used so use a 410 * public address. 411 */ 412 *own_addr_type = ADDR_LE_DEV_PUBLIC; 413 414 return 0; 415 } 416 417 static bool disconnected_whitelist_entries(struct hci_dev *hdev) 418 { 419 struct bdaddr_list *b; 420 421 list_for_each_entry(b, &hdev->whitelist, list) { 422 struct hci_conn *conn; 423 424 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); 425 if (!conn) 426 return true; 427 428 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 429 return true; 430 } 431 432 return false; 433 } 434 435 void __hci_update_page_scan(struct hci_request *req) 436 { 437 struct hci_dev *hdev = req->hdev; 438 u8 scan; 439 440 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 441 return; 442 443 if (!hdev_is_powered(hdev)) 444 return; 445 446 if (mgmt_powering_down(hdev)) 447 return; 448 449 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || 450 disconnected_whitelist_entries(hdev)) 451 scan = SCAN_PAGE; 452 else 453 scan = SCAN_DISABLED; 454 455 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE)) 456 return; 457 458 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 459 scan |= SCAN_INQUIRY; 460 461 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); 462 } 463 464 void hci_update_page_scan(struct hci_dev *hdev) 465 { 466 struct hci_request req; 467 468 hci_req_init(&req, hdev); 469 __hci_update_page_scan(&req); 470 hci_req_run(&req, NULL); 471 } 472 473 /* This function controls the background scanning based on hdev->pend_le_conns 474 * list. If there are pending LE connection we start the background scanning, 475 * otherwise we stop it. 476 * 477 * This function requires the caller holds hdev->lock. 478 */ 479 void __hci_update_background_scan(struct hci_request *req) 480 { 481 struct hci_dev *hdev = req->hdev; 482 483 if (!test_bit(HCI_UP, &hdev->flags) || 484 test_bit(HCI_INIT, &hdev->flags) || 485 hci_dev_test_flag(hdev, HCI_SETUP) || 486 hci_dev_test_flag(hdev, HCI_CONFIG) || 487 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 488 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 489 return; 490 491 /* No point in doing scanning if LE support hasn't been enabled */ 492 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 493 return; 494 495 /* If discovery is active don't interfere with it */ 496 if (hdev->discovery.state != DISCOVERY_STOPPED) 497 return; 498 499 /* Reset RSSI and UUID filters when starting background scanning 500 * since these filters are meant for service discovery only. 501 * 502 * The Start Discovery and Start Service Discovery operations 503 * ensure to set proper values for RSSI threshold and UUID 504 * filter list. So it is safe to just reset them here. 505 */ 506 hci_discovery_filter_clear(hdev); 507 508 if (list_empty(&hdev->pend_le_conns) && 509 list_empty(&hdev->pend_le_reports)) { 510 /* If there is no pending LE connections or devices 511 * to be scanned for, we should stop the background 512 * scanning. 513 */ 514 515 /* If controller is not scanning we are done. */ 516 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 517 return; 518 519 hci_req_add_le_scan_disable(req); 520 521 BT_DBG("%s stopping background scanning", hdev->name); 522 } else { 523 /* If there is at least one pending LE connection, we should 524 * keep the background scan running. 525 */ 526 527 /* If controller is connecting, we should not start scanning 528 * since some controllers are not able to scan and connect at 529 * the same time. 530 */ 531 if (hci_lookup_le_connect(hdev)) 532 return; 533 534 /* If controller is currently scanning, we stop it to ensure we 535 * don't miss any advertising (due to duplicates filter). 536 */ 537 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) 538 hci_req_add_le_scan_disable(req); 539 540 hci_req_add_le_passive_scan(req); 541 542 BT_DBG("%s starting background scanning", hdev->name); 543 } 544 } 545 546 static void update_background_scan_complete(struct hci_dev *hdev, u8 status, 547 u16 opcode) 548 { 549 if (status) 550 BT_DBG("HCI request failed to update background scanning: " 551 "status 0x%2.2x", status); 552 } 553 554 void hci_update_background_scan(struct hci_dev *hdev) 555 { 556 int err; 557 struct hci_request req; 558 559 hci_req_init(&req, hdev); 560 561 __hci_update_background_scan(&req); 562 563 err = hci_req_run(&req, update_background_scan_complete); 564 if (err && err != -ENODATA) 565 BT_ERR("Failed to run HCI request: err %d", err); 566 } 567 568 void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn, 569 u8 reason) 570 { 571 switch (conn->state) { 572 case BT_CONNECTED: 573 case BT_CONFIG: 574 if (conn->type == AMP_LINK) { 575 struct hci_cp_disconn_phy_link cp; 576 577 cp.phy_handle = HCI_PHY_HANDLE(conn->handle); 578 cp.reason = reason; 579 hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp), 580 &cp); 581 } else { 582 struct hci_cp_disconnect dc; 583 584 dc.handle = cpu_to_le16(conn->handle); 585 dc.reason = reason; 586 hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc); 587 } 588 589 conn->state = BT_DISCONN; 590 591 break; 592 case BT_CONNECT: 593 if (conn->type == LE_LINK) { 594 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 595 break; 596 hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL, 597 0, NULL); 598 } else if (conn->type == ACL_LINK) { 599 if (req->hdev->hci_ver < BLUETOOTH_VER_1_2) 600 break; 601 hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL, 602 6, &conn->dst); 603 } 604 break; 605 case BT_CONNECT2: 606 if (conn->type == ACL_LINK) { 607 struct hci_cp_reject_conn_req rej; 608 609 bacpy(&rej.bdaddr, &conn->dst); 610 rej.reason = reason; 611 612 hci_req_add(req, HCI_OP_REJECT_CONN_REQ, 613 sizeof(rej), &rej); 614 } else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) { 615 struct hci_cp_reject_sync_conn_req rej; 616 617 bacpy(&rej.bdaddr, &conn->dst); 618 619 /* SCO rejection has its own limited set of 620 * allowed error values (0x0D-0x0F) which isn't 621 * compatible with most values passed to this 622 * function. To be safe hard-code one of the 623 * values that's suitable for SCO. 624 */ 625 rej.reason = HCI_ERROR_REMOTE_LOW_RESOURCES; 626 627 hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ, 628 sizeof(rej), &rej); 629 } 630 break; 631 default: 632 conn->state = BT_CLOSED; 633 break; 634 } 635 } 636 637 static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode) 638 { 639 if (status) 640 BT_DBG("Failed to abort connection: status 0x%2.2x", status); 641 } 642 643 int hci_abort_conn(struct hci_conn *conn, u8 reason) 644 { 645 struct hci_request req; 646 int err; 647 648 hci_req_init(&req, conn->hdev); 649 650 __hci_abort_conn(&req, conn, reason); 651 652 err = hci_req_run(&req, abort_conn_complete); 653 if (err && err != -ENODATA) { 654 BT_ERR("Failed to run HCI request: err %d", err); 655 return err; 656 } 657 658 return 0; 659 } 660