1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 4 Copyright (C) 2014 Intel Corporation 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License version 2 as 8 published by the Free Software Foundation; 9 10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 21 SOFTWARE IS DISCLAIMED. 22 */ 23 24 #include <linux/sched/signal.h> 25 26 #include <net/bluetooth/bluetooth.h> 27 #include <net/bluetooth/hci_core.h> 28 #include <net/bluetooth/mgmt.h> 29 30 #include "smp.h" 31 #include "hci_request.h" 32 33 #define HCI_REQ_DONE 0 34 #define HCI_REQ_PEND 1 35 #define HCI_REQ_CANCELED 2 36 37 void hci_req_init(struct hci_request *req, struct hci_dev *hdev) 38 { 39 skb_queue_head_init(&req->cmd_q); 40 req->hdev = hdev; 41 req->err = 0; 42 } 43 44 void hci_req_purge(struct hci_request *req) 45 { 46 skb_queue_purge(&req->cmd_q); 47 } 48 49 bool hci_req_status_pend(struct hci_dev *hdev) 50 { 51 return hdev->req_status == HCI_REQ_PEND; 52 } 53 54 static int req_run(struct hci_request *req, hci_req_complete_t complete, 55 hci_req_complete_skb_t complete_skb) 56 { 57 struct hci_dev *hdev = req->hdev; 58 struct sk_buff *skb; 59 unsigned long flags; 60 61 BT_DBG("length %u", skb_queue_len(&req->cmd_q)); 62 63 /* If an error occurred during request building, remove all HCI 64 * commands queued on the HCI request queue. 65 */ 66 if (req->err) { 67 skb_queue_purge(&req->cmd_q); 68 return req->err; 69 } 70 71 /* Do not allow empty requests */ 72 if (skb_queue_empty(&req->cmd_q)) 73 return -ENODATA; 74 75 skb = skb_peek_tail(&req->cmd_q); 76 if (complete) { 77 bt_cb(skb)->hci.req_complete = complete; 78 } else if (complete_skb) { 79 bt_cb(skb)->hci.req_complete_skb = complete_skb; 80 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; 81 } 82 83 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 84 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); 85 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 86 87 queue_work(hdev->workqueue, &hdev->cmd_work); 88 89 return 0; 90 } 91 92 int hci_req_run(struct hci_request *req, hci_req_complete_t complete) 93 { 94 return req_run(req, complete, NULL); 95 } 96 97 int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete) 98 { 99 return req_run(req, NULL, complete); 100 } 101 102 static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, 103 struct sk_buff *skb) 104 { 105 BT_DBG("%s result 0x%2.2x", hdev->name, result); 106 107 if (hdev->req_status == HCI_REQ_PEND) { 108 hdev->req_result = result; 109 hdev->req_status = HCI_REQ_DONE; 110 if (skb) 111 hdev->req_skb = skb_get(skb); 112 wake_up_interruptible(&hdev->req_wait_q); 113 } 114 } 115 116 void hci_req_sync_cancel(struct hci_dev *hdev, int err) 117 { 118 BT_DBG("%s err 0x%2.2x", hdev->name, err); 119 120 if (hdev->req_status == HCI_REQ_PEND) { 121 hdev->req_result = err; 122 hdev->req_status = HCI_REQ_CANCELED; 123 wake_up_interruptible(&hdev->req_wait_q); 124 } 125 } 126 127 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 128 const void *param, u8 event, u32 timeout) 129 { 130 struct hci_request req; 131 struct sk_buff *skb; 132 int err = 0; 133 134 BT_DBG("%s", hdev->name); 135 136 hci_req_init(&req, hdev); 137 138 hci_req_add_ev(&req, opcode, plen, param, event); 139 140 hdev->req_status = HCI_REQ_PEND; 141 142 err = hci_req_run_skb(&req, hci_req_sync_complete); 143 if (err < 0) 144 return ERR_PTR(err); 145 146 err = wait_event_interruptible_timeout(hdev->req_wait_q, 147 hdev->req_status != HCI_REQ_PEND, timeout); 148 149 if (err == -ERESTARTSYS) 150 return ERR_PTR(-EINTR); 151 152 switch (hdev->req_status) { 153 case HCI_REQ_DONE: 154 err = -bt_to_errno(hdev->req_result); 155 break; 156 157 case HCI_REQ_CANCELED: 158 err = -hdev->req_result; 159 break; 160 161 default: 162 err = -ETIMEDOUT; 163 break; 164 } 165 166 hdev->req_status = hdev->req_result = 0; 167 skb = hdev->req_skb; 168 hdev->req_skb = NULL; 169 170 BT_DBG("%s end: err %d", hdev->name, err); 171 172 if (err < 0) { 173 kfree_skb(skb); 174 return ERR_PTR(err); 175 } 176 177 if (!skb) 178 return ERR_PTR(-ENODATA); 179 180 return skb; 181 } 182 EXPORT_SYMBOL(__hci_cmd_sync_ev); 183 184 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 185 const void *param, u32 timeout) 186 { 187 return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout); 188 } 189 EXPORT_SYMBOL(__hci_cmd_sync); 190 191 /* Execute request and wait for completion. */ 192 int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req, 193 unsigned long opt), 194 unsigned long opt, u32 timeout, u8 *hci_status) 195 { 196 struct hci_request req; 197 int err = 0; 198 199 BT_DBG("%s start", hdev->name); 200 201 hci_req_init(&req, hdev); 202 203 hdev->req_status = HCI_REQ_PEND; 204 205 err = func(&req, opt); 206 if (err) { 207 if (hci_status) 208 *hci_status = HCI_ERROR_UNSPECIFIED; 209 return err; 210 } 211 212 err = hci_req_run_skb(&req, hci_req_sync_complete); 213 if (err < 0) { 214 hdev->req_status = 0; 215 216 /* ENODATA means the HCI request command queue is empty. 217 * This can happen when a request with conditionals doesn't 218 * trigger any commands to be sent. This is normal behavior 219 * and should not trigger an error return. 220 */ 221 if (err == -ENODATA) { 222 if (hci_status) 223 *hci_status = 0; 224 return 0; 225 } 226 227 if (hci_status) 228 *hci_status = HCI_ERROR_UNSPECIFIED; 229 230 return err; 231 } 232 233 err = wait_event_interruptible_timeout(hdev->req_wait_q, 234 hdev->req_status != HCI_REQ_PEND, timeout); 235 236 if (err == -ERESTARTSYS) 237 return -EINTR; 238 239 switch (hdev->req_status) { 240 case HCI_REQ_DONE: 241 err = -bt_to_errno(hdev->req_result); 242 if (hci_status) 243 *hci_status = hdev->req_result; 244 break; 245 246 case HCI_REQ_CANCELED: 247 err = -hdev->req_result; 248 if (hci_status) 249 *hci_status = HCI_ERROR_UNSPECIFIED; 250 break; 251 252 default: 253 err = -ETIMEDOUT; 254 if (hci_status) 255 *hci_status = HCI_ERROR_UNSPECIFIED; 256 break; 257 } 258 259 kfree_skb(hdev->req_skb); 260 hdev->req_skb = NULL; 261 hdev->req_status = hdev->req_result = 0; 262 263 BT_DBG("%s end: err %d", hdev->name, err); 264 265 return err; 266 } 267 268 int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req, 269 unsigned long opt), 270 unsigned long opt, u32 timeout, u8 *hci_status) 271 { 272 int ret; 273 274 if (!test_bit(HCI_UP, &hdev->flags)) 275 return -ENETDOWN; 276 277 /* Serialize all requests */ 278 hci_req_sync_lock(hdev); 279 ret = __hci_req_sync(hdev, req, opt, timeout, hci_status); 280 hci_req_sync_unlock(hdev); 281 282 return ret; 283 } 284 285 struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen, 286 const void *param) 287 { 288 int len = HCI_COMMAND_HDR_SIZE + plen; 289 struct hci_command_hdr *hdr; 290 struct sk_buff *skb; 291 292 skb = bt_skb_alloc(len, GFP_ATOMIC); 293 if (!skb) 294 return NULL; 295 296 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); 297 hdr->opcode = cpu_to_le16(opcode); 298 hdr->plen = plen; 299 300 if (plen) 301 skb_put_data(skb, param, plen); 302 303 BT_DBG("skb len %d", skb->len); 304 305 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 306 hci_skb_opcode(skb) = opcode; 307 308 return skb; 309 } 310 311 /* Queue a command to an asynchronous HCI request */ 312 void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen, 313 const void *param, u8 event) 314 { 315 struct hci_dev *hdev = req->hdev; 316 struct sk_buff *skb; 317 318 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen); 319 320 /* If an error occurred during request building, there is no point in 321 * queueing the HCI command. We can simply return. 322 */ 323 if (req->err) 324 return; 325 326 skb = hci_prepare_cmd(hdev, opcode, plen, param); 327 if (!skb) { 328 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 329 opcode); 330 req->err = -ENOMEM; 331 return; 332 } 333 334 if (skb_queue_empty(&req->cmd_q)) 335 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 336 337 bt_cb(skb)->hci.req_event = event; 338 339 skb_queue_tail(&req->cmd_q, skb); 340 } 341 342 void hci_req_add(struct hci_request *req, u16 opcode, u32 plen, 343 const void *param) 344 { 345 hci_req_add_ev(req, opcode, plen, param, 0); 346 } 347 348 void __hci_req_write_fast_connectable(struct hci_request *req, bool enable) 349 { 350 struct hci_dev *hdev = req->hdev; 351 struct hci_cp_write_page_scan_activity acp; 352 u8 type; 353 354 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 355 return; 356 357 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 358 return; 359 360 if (enable) { 361 type = PAGE_SCAN_TYPE_INTERLACED; 362 363 /* 160 msec page scan interval */ 364 acp.interval = cpu_to_le16(0x0100); 365 } else { 366 type = hdev->def_page_scan_type; 367 acp.interval = cpu_to_le16(hdev->def_page_scan_int); 368 } 369 370 acp.window = cpu_to_le16(hdev->def_page_scan_window); 371 372 if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval || 373 __cpu_to_le16(hdev->page_scan_window) != acp.window) 374 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 375 sizeof(acp), &acp); 376 377 if (hdev->page_scan_type != type) 378 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type); 379 } 380 381 /* This function controls the background scanning based on hdev->pend_le_conns 382 * list. If there are pending LE connection we start the background scanning, 383 * otherwise we stop it. 384 * 385 * This function requires the caller holds hdev->lock. 386 */ 387 static void __hci_update_background_scan(struct hci_request *req) 388 { 389 struct hci_dev *hdev = req->hdev; 390 391 if (!test_bit(HCI_UP, &hdev->flags) || 392 test_bit(HCI_INIT, &hdev->flags) || 393 hci_dev_test_flag(hdev, HCI_SETUP) || 394 hci_dev_test_flag(hdev, HCI_CONFIG) || 395 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 396 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 397 return; 398 399 /* No point in doing scanning if LE support hasn't been enabled */ 400 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 401 return; 402 403 /* If discovery is active don't interfere with it */ 404 if (hdev->discovery.state != DISCOVERY_STOPPED) 405 return; 406 407 /* Reset RSSI and UUID filters when starting background scanning 408 * since these filters are meant for service discovery only. 409 * 410 * The Start Discovery and Start Service Discovery operations 411 * ensure to set proper values for RSSI threshold and UUID 412 * filter list. So it is safe to just reset them here. 413 */ 414 hci_discovery_filter_clear(hdev); 415 416 BT_DBG("%s ADV monitoring is %s", hdev->name, 417 hci_is_adv_monitoring(hdev) ? "on" : "off"); 418 419 if (list_empty(&hdev->pend_le_conns) && 420 list_empty(&hdev->pend_le_reports) && 421 !hci_is_adv_monitoring(hdev)) { 422 /* If there is no pending LE connections or devices 423 * to be scanned for or no ADV monitors, we should stop the 424 * background scanning. 425 */ 426 427 /* If controller is not scanning we are done. */ 428 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 429 return; 430 431 hci_req_add_le_scan_disable(req, false); 432 433 BT_DBG("%s stopping background scanning", hdev->name); 434 } else { 435 /* If there is at least one pending LE connection, we should 436 * keep the background scan running. 437 */ 438 439 /* If controller is connecting, we should not start scanning 440 * since some controllers are not able to scan and connect at 441 * the same time. 442 */ 443 if (hci_lookup_le_connect(hdev)) 444 return; 445 446 /* If controller is currently scanning, we stop it to ensure we 447 * don't miss any advertising (due to duplicates filter). 448 */ 449 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) 450 hci_req_add_le_scan_disable(req, false); 451 452 hci_req_add_le_passive_scan(req); 453 454 BT_DBG("%s starting background scanning", hdev->name); 455 } 456 } 457 458 void __hci_req_update_name(struct hci_request *req) 459 { 460 struct hci_dev *hdev = req->hdev; 461 struct hci_cp_write_local_name cp; 462 463 memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); 464 465 hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp); 466 } 467 468 #define PNP_INFO_SVCLASS_ID 0x1200 469 470 static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len) 471 { 472 u8 *ptr = data, *uuids_start = NULL; 473 struct bt_uuid *uuid; 474 475 if (len < 4) 476 return ptr; 477 478 list_for_each_entry(uuid, &hdev->uuids, list) { 479 u16 uuid16; 480 481 if (uuid->size != 16) 482 continue; 483 484 uuid16 = get_unaligned_le16(&uuid->uuid[12]); 485 if (uuid16 < 0x1100) 486 continue; 487 488 if (uuid16 == PNP_INFO_SVCLASS_ID) 489 continue; 490 491 if (!uuids_start) { 492 uuids_start = ptr; 493 uuids_start[0] = 1; 494 uuids_start[1] = EIR_UUID16_ALL; 495 ptr += 2; 496 } 497 498 /* Stop if not enough space to put next UUID */ 499 if ((ptr - data) + sizeof(u16) > len) { 500 uuids_start[1] = EIR_UUID16_SOME; 501 break; 502 } 503 504 *ptr++ = (uuid16 & 0x00ff); 505 *ptr++ = (uuid16 & 0xff00) >> 8; 506 uuids_start[0] += sizeof(uuid16); 507 } 508 509 return ptr; 510 } 511 512 static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len) 513 { 514 u8 *ptr = data, *uuids_start = NULL; 515 struct bt_uuid *uuid; 516 517 if (len < 6) 518 return ptr; 519 520 list_for_each_entry(uuid, &hdev->uuids, list) { 521 if (uuid->size != 32) 522 continue; 523 524 if (!uuids_start) { 525 uuids_start = ptr; 526 uuids_start[0] = 1; 527 uuids_start[1] = EIR_UUID32_ALL; 528 ptr += 2; 529 } 530 531 /* Stop if not enough space to put next UUID */ 532 if ((ptr - data) + sizeof(u32) > len) { 533 uuids_start[1] = EIR_UUID32_SOME; 534 break; 535 } 536 537 memcpy(ptr, &uuid->uuid[12], sizeof(u32)); 538 ptr += sizeof(u32); 539 uuids_start[0] += sizeof(u32); 540 } 541 542 return ptr; 543 } 544 545 static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len) 546 { 547 u8 *ptr = data, *uuids_start = NULL; 548 struct bt_uuid *uuid; 549 550 if (len < 18) 551 return ptr; 552 553 list_for_each_entry(uuid, &hdev->uuids, list) { 554 if (uuid->size != 128) 555 continue; 556 557 if (!uuids_start) { 558 uuids_start = ptr; 559 uuids_start[0] = 1; 560 uuids_start[1] = EIR_UUID128_ALL; 561 ptr += 2; 562 } 563 564 /* Stop if not enough space to put next UUID */ 565 if ((ptr - data) + 16 > len) { 566 uuids_start[1] = EIR_UUID128_SOME; 567 break; 568 } 569 570 memcpy(ptr, uuid->uuid, 16); 571 ptr += 16; 572 uuids_start[0] += 16; 573 } 574 575 return ptr; 576 } 577 578 static void create_eir(struct hci_dev *hdev, u8 *data) 579 { 580 u8 *ptr = data; 581 size_t name_len; 582 583 name_len = strlen(hdev->dev_name); 584 585 if (name_len > 0) { 586 /* EIR Data type */ 587 if (name_len > 48) { 588 name_len = 48; 589 ptr[1] = EIR_NAME_SHORT; 590 } else 591 ptr[1] = EIR_NAME_COMPLETE; 592 593 /* EIR Data length */ 594 ptr[0] = name_len + 1; 595 596 memcpy(ptr + 2, hdev->dev_name, name_len); 597 598 ptr += (name_len + 2); 599 } 600 601 if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) { 602 ptr[0] = 2; 603 ptr[1] = EIR_TX_POWER; 604 ptr[2] = (u8) hdev->inq_tx_power; 605 606 ptr += 3; 607 } 608 609 if (hdev->devid_source > 0) { 610 ptr[0] = 9; 611 ptr[1] = EIR_DEVICE_ID; 612 613 put_unaligned_le16(hdev->devid_source, ptr + 2); 614 put_unaligned_le16(hdev->devid_vendor, ptr + 4); 615 put_unaligned_le16(hdev->devid_product, ptr + 6); 616 put_unaligned_le16(hdev->devid_version, ptr + 8); 617 618 ptr += 10; 619 } 620 621 ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data)); 622 ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data)); 623 ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data)); 624 } 625 626 void __hci_req_update_eir(struct hci_request *req) 627 { 628 struct hci_dev *hdev = req->hdev; 629 struct hci_cp_write_eir cp; 630 631 if (!hdev_is_powered(hdev)) 632 return; 633 634 if (!lmp_ext_inq_capable(hdev)) 635 return; 636 637 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 638 return; 639 640 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 641 return; 642 643 memset(&cp, 0, sizeof(cp)); 644 645 create_eir(hdev, cp.data); 646 647 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) 648 return; 649 650 memcpy(hdev->eir, cp.data, sizeof(cp.data)); 651 652 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp); 653 } 654 655 void hci_req_add_le_scan_disable(struct hci_request *req, bool rpa_le_conn) 656 { 657 struct hci_dev *hdev = req->hdev; 658 659 if (hdev->scanning_paused) { 660 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 661 return; 662 } 663 664 if (use_ext_scan(hdev)) { 665 struct hci_cp_le_set_ext_scan_enable cp; 666 667 memset(&cp, 0, sizeof(cp)); 668 cp.enable = LE_SCAN_DISABLE; 669 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp), 670 &cp); 671 } else { 672 struct hci_cp_le_set_scan_enable cp; 673 674 memset(&cp, 0, sizeof(cp)); 675 cp.enable = LE_SCAN_DISABLE; 676 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp); 677 } 678 679 /* Disable address resolution */ 680 if (use_ll_privacy(hdev) && 681 hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) && 682 hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION) && !rpa_le_conn) { 683 __u8 enable = 0x00; 684 685 hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable); 686 } 687 } 688 689 static void del_from_white_list(struct hci_request *req, bdaddr_t *bdaddr, 690 u8 bdaddr_type) 691 { 692 struct hci_cp_le_del_from_white_list cp; 693 694 cp.bdaddr_type = bdaddr_type; 695 bacpy(&cp.bdaddr, bdaddr); 696 697 bt_dev_dbg(req->hdev, "Remove %pMR (0x%x) from whitelist", &cp.bdaddr, 698 cp.bdaddr_type); 699 hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST, sizeof(cp), &cp); 700 701 if (use_ll_privacy(req->hdev)) { 702 struct smp_irk *irk; 703 704 irk = hci_find_irk_by_addr(req->hdev, bdaddr, bdaddr_type); 705 if (irk) { 706 struct hci_cp_le_del_from_resolv_list cp; 707 708 cp.bdaddr_type = bdaddr_type; 709 bacpy(&cp.bdaddr, bdaddr); 710 711 hci_req_add(req, HCI_OP_LE_DEL_FROM_RESOLV_LIST, 712 sizeof(cp), &cp); 713 } 714 } 715 } 716 717 /* Adds connection to white list if needed. On error, returns -1. */ 718 static int add_to_white_list(struct hci_request *req, 719 struct hci_conn_params *params, u8 *num_entries, 720 bool allow_rpa) 721 { 722 struct hci_cp_le_add_to_white_list cp; 723 struct hci_dev *hdev = req->hdev; 724 725 /* Already in white list */ 726 if (hci_bdaddr_list_lookup(&hdev->le_white_list, ¶ms->addr, 727 params->addr_type)) 728 return 0; 729 730 /* Select filter policy to accept all advertising */ 731 if (*num_entries >= hdev->le_white_list_size) 732 return -1; 733 734 /* White list can not be used with RPAs */ 735 if (!allow_rpa && !use_ll_privacy(hdev) && 736 hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type)) { 737 return -1; 738 } 739 740 /* During suspend, only wakeable devices can be in whitelist */ 741 if (hdev->suspended && !hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP, 742 params->current_flags)) 743 return 0; 744 745 *num_entries += 1; 746 cp.bdaddr_type = params->addr_type; 747 bacpy(&cp.bdaddr, ¶ms->addr); 748 749 bt_dev_dbg(hdev, "Add %pMR (0x%x) to whitelist", &cp.bdaddr, 750 cp.bdaddr_type); 751 hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp); 752 753 if (use_ll_privacy(hdev)) { 754 struct smp_irk *irk; 755 756 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, 757 params->addr_type); 758 if (irk) { 759 struct hci_cp_le_add_to_resolv_list cp; 760 761 cp.bdaddr_type = params->addr_type; 762 bacpy(&cp.bdaddr, ¶ms->addr); 763 memcpy(cp.peer_irk, irk->val, 16); 764 765 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) 766 memcpy(cp.local_irk, hdev->irk, 16); 767 else 768 memset(cp.local_irk, 0, 16); 769 770 hci_req_add(req, HCI_OP_LE_ADD_TO_RESOLV_LIST, 771 sizeof(cp), &cp); 772 } 773 } 774 775 return 0; 776 } 777 778 static u8 update_white_list(struct hci_request *req) 779 { 780 struct hci_dev *hdev = req->hdev; 781 struct hci_conn_params *params; 782 struct bdaddr_list *b; 783 u8 num_entries = 0; 784 bool pend_conn, pend_report; 785 /* We allow whitelisting even with RPAs in suspend. In the worst case, 786 * we won't be able to wake from devices that use the privacy1.2 787 * features. Additionally, once we support privacy1.2 and IRK 788 * offloading, we can update this to also check for those conditions. 789 */ 790 bool allow_rpa = hdev->suspended; 791 792 /* Go through the current white list programmed into the 793 * controller one by one and check if that address is still 794 * in the list of pending connections or list of devices to 795 * report. If not present in either list, then queue the 796 * command to remove it from the controller. 797 */ 798 list_for_each_entry(b, &hdev->le_white_list, list) { 799 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns, 800 &b->bdaddr, 801 b->bdaddr_type); 802 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports, 803 &b->bdaddr, 804 b->bdaddr_type); 805 806 /* If the device is not likely to connect or report, 807 * remove it from the whitelist. 808 */ 809 if (!pend_conn && !pend_report) { 810 del_from_white_list(req, &b->bdaddr, b->bdaddr_type); 811 continue; 812 } 813 814 /* White list can not be used with RPAs */ 815 if (!allow_rpa && !use_ll_privacy(hdev) && 816 hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) { 817 return 0x00; 818 } 819 820 num_entries++; 821 } 822 823 /* Since all no longer valid white list entries have been 824 * removed, walk through the list of pending connections 825 * and ensure that any new device gets programmed into 826 * the controller. 827 * 828 * If the list of the devices is larger than the list of 829 * available white list entries in the controller, then 830 * just abort and return filer policy value to not use the 831 * white list. 832 */ 833 list_for_each_entry(params, &hdev->pend_le_conns, action) { 834 if (add_to_white_list(req, params, &num_entries, allow_rpa)) 835 return 0x00; 836 } 837 838 /* After adding all new pending connections, walk through 839 * the list of pending reports and also add these to the 840 * white list if there is still space. Abort if space runs out. 841 */ 842 list_for_each_entry(params, &hdev->pend_le_reports, action) { 843 if (add_to_white_list(req, params, &num_entries, allow_rpa)) 844 return 0x00; 845 } 846 847 /* Once the controller offloading of advertisement monitor is in place, 848 * the if condition should include the support of MSFT extension 849 * support. If suspend is ongoing, whitelist should be the default to 850 * prevent waking by random advertisements. 851 */ 852 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended) 853 return 0x00; 854 855 /* Select filter policy to use white list */ 856 return 0x01; 857 } 858 859 static bool scan_use_rpa(struct hci_dev *hdev) 860 { 861 return hci_dev_test_flag(hdev, HCI_PRIVACY); 862 } 863 864 static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval, 865 u16 window, u8 own_addr_type, u8 filter_policy, 866 bool addr_resolv) 867 { 868 struct hci_dev *hdev = req->hdev; 869 870 if (hdev->scanning_paused) { 871 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 872 return; 873 } 874 875 if (use_ll_privacy(hdev) && 876 hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) && 877 addr_resolv) { 878 u8 enable = 0x01; 879 880 hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable); 881 } 882 883 /* Use ext scanning if set ext scan param and ext scan enable is 884 * supported 885 */ 886 if (use_ext_scan(hdev)) { 887 struct hci_cp_le_set_ext_scan_params *ext_param_cp; 888 struct hci_cp_le_set_ext_scan_enable ext_enable_cp; 889 struct hci_cp_le_scan_phy_params *phy_params; 890 u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2]; 891 u32 plen; 892 893 ext_param_cp = (void *)data; 894 phy_params = (void *)ext_param_cp->data; 895 896 memset(ext_param_cp, 0, sizeof(*ext_param_cp)); 897 ext_param_cp->own_addr_type = own_addr_type; 898 ext_param_cp->filter_policy = filter_policy; 899 900 plen = sizeof(*ext_param_cp); 901 902 if (scan_1m(hdev) || scan_2m(hdev)) { 903 ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M; 904 905 memset(phy_params, 0, sizeof(*phy_params)); 906 phy_params->type = type; 907 phy_params->interval = cpu_to_le16(interval); 908 phy_params->window = cpu_to_le16(window); 909 910 plen += sizeof(*phy_params); 911 phy_params++; 912 } 913 914 if (scan_coded(hdev)) { 915 ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED; 916 917 memset(phy_params, 0, sizeof(*phy_params)); 918 phy_params->type = type; 919 phy_params->interval = cpu_to_le16(interval); 920 phy_params->window = cpu_to_le16(window); 921 922 plen += sizeof(*phy_params); 923 phy_params++; 924 } 925 926 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS, 927 plen, ext_param_cp); 928 929 memset(&ext_enable_cp, 0, sizeof(ext_enable_cp)); 930 ext_enable_cp.enable = LE_SCAN_ENABLE; 931 ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 932 933 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 934 sizeof(ext_enable_cp), &ext_enable_cp); 935 } else { 936 struct hci_cp_le_set_scan_param param_cp; 937 struct hci_cp_le_set_scan_enable enable_cp; 938 939 memset(¶m_cp, 0, sizeof(param_cp)); 940 param_cp.type = type; 941 param_cp.interval = cpu_to_le16(interval); 942 param_cp.window = cpu_to_le16(window); 943 param_cp.own_address_type = own_addr_type; 944 param_cp.filter_policy = filter_policy; 945 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp), 946 ¶m_cp); 947 948 memset(&enable_cp, 0, sizeof(enable_cp)); 949 enable_cp.enable = LE_SCAN_ENABLE; 950 enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 951 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp), 952 &enable_cp); 953 } 954 } 955 956 /* Returns true if an le connection is in the scanning state */ 957 static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev) 958 { 959 struct hci_conn_hash *h = &hdev->conn_hash; 960 struct hci_conn *c; 961 962 rcu_read_lock(); 963 964 list_for_each_entry_rcu(c, &h->list, list) { 965 if (c->type == LE_LINK && c->state == BT_CONNECT && 966 test_bit(HCI_CONN_SCANNING, &c->flags)) { 967 rcu_read_unlock(); 968 return true; 969 } 970 } 971 972 rcu_read_unlock(); 973 974 return false; 975 } 976 977 /* Ensure to call hci_req_add_le_scan_disable() first to disable the 978 * controller based address resolution to be able to reconfigure 979 * resolving list. 980 */ 981 void hci_req_add_le_passive_scan(struct hci_request *req) 982 { 983 struct hci_dev *hdev = req->hdev; 984 u8 own_addr_type; 985 u8 filter_policy; 986 u16 window, interval; 987 /* Background scanning should run with address resolution */ 988 bool addr_resolv = true; 989 990 if (hdev->scanning_paused) { 991 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 992 return; 993 } 994 995 /* Set require_privacy to false since no SCAN_REQ are send 996 * during passive scanning. Not using an non-resolvable address 997 * here is important so that peer devices using direct 998 * advertising with our address will be correctly reported 999 * by the controller. 1000 */ 1001 if (hci_update_random_address(req, false, scan_use_rpa(hdev), 1002 &own_addr_type)) 1003 return; 1004 1005 /* Adding or removing entries from the white list must 1006 * happen before enabling scanning. The controller does 1007 * not allow white list modification while scanning. 1008 */ 1009 filter_policy = update_white_list(req); 1010 1011 /* When the controller is using random resolvable addresses and 1012 * with that having LE privacy enabled, then controllers with 1013 * Extended Scanner Filter Policies support can now enable support 1014 * for handling directed advertising. 1015 * 1016 * So instead of using filter polices 0x00 (no whitelist) 1017 * and 0x01 (whitelist enabled) use the new filter policies 1018 * 0x02 (no whitelist) and 0x03 (whitelist enabled). 1019 */ 1020 if (hci_dev_test_flag(hdev, HCI_PRIVACY) && 1021 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) 1022 filter_policy |= 0x02; 1023 1024 if (hdev->suspended) { 1025 window = hdev->le_scan_window_suspend; 1026 interval = hdev->le_scan_int_suspend; 1027 } else if (hci_is_le_conn_scanning(hdev)) { 1028 window = hdev->le_scan_window_connect; 1029 interval = hdev->le_scan_int_connect; 1030 } else if (hci_is_adv_monitoring(hdev)) { 1031 window = hdev->le_scan_window_adv_monitor; 1032 interval = hdev->le_scan_int_adv_monitor; 1033 } else { 1034 window = hdev->le_scan_window; 1035 interval = hdev->le_scan_interval; 1036 } 1037 1038 bt_dev_dbg(hdev, "LE passive scan with whitelist = %d", filter_policy); 1039 hci_req_start_scan(req, LE_SCAN_PASSIVE, interval, window, 1040 own_addr_type, filter_policy, addr_resolv); 1041 } 1042 1043 static u8 get_adv_instance_scan_rsp_len(struct hci_dev *hdev, u8 instance) 1044 { 1045 struct adv_info *adv_instance; 1046 1047 /* Instance 0x00 always set local name */ 1048 if (instance == 0x00) 1049 return 1; 1050 1051 adv_instance = hci_find_adv_instance(hdev, instance); 1052 if (!adv_instance) 1053 return 0; 1054 1055 /* TODO: Take into account the "appearance" and "local-name" flags here. 1056 * These are currently being ignored as they are not supported. 1057 */ 1058 return adv_instance->scan_rsp_len; 1059 } 1060 1061 static void hci_req_clear_event_filter(struct hci_request *req) 1062 { 1063 struct hci_cp_set_event_filter f; 1064 1065 memset(&f, 0, sizeof(f)); 1066 f.flt_type = HCI_FLT_CLEAR_ALL; 1067 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &f); 1068 1069 /* Update page scan state (since we may have modified it when setting 1070 * the event filter). 1071 */ 1072 __hci_req_update_scan(req); 1073 } 1074 1075 static void hci_req_set_event_filter(struct hci_request *req) 1076 { 1077 struct bdaddr_list_with_flags *b; 1078 struct hci_cp_set_event_filter f; 1079 struct hci_dev *hdev = req->hdev; 1080 u8 scan = SCAN_DISABLED; 1081 1082 /* Always clear event filter when starting */ 1083 hci_req_clear_event_filter(req); 1084 1085 list_for_each_entry(b, &hdev->whitelist, list) { 1086 if (!hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP, 1087 b->current_flags)) 1088 continue; 1089 1090 memset(&f, 0, sizeof(f)); 1091 bacpy(&f.addr_conn_flt.bdaddr, &b->bdaddr); 1092 f.flt_type = HCI_FLT_CONN_SETUP; 1093 f.cond_type = HCI_CONN_SETUP_ALLOW_BDADDR; 1094 f.addr_conn_flt.auto_accept = HCI_CONN_SETUP_AUTO_ON; 1095 1096 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr); 1097 hci_req_add(req, HCI_OP_SET_EVENT_FLT, sizeof(f), &f); 1098 scan = SCAN_PAGE; 1099 } 1100 1101 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); 1102 } 1103 1104 static void hci_req_config_le_suspend_scan(struct hci_request *req) 1105 { 1106 /* Before changing params disable scan if enabled */ 1107 if (hci_dev_test_flag(req->hdev, HCI_LE_SCAN)) 1108 hci_req_add_le_scan_disable(req, false); 1109 1110 /* Configure params and enable scanning */ 1111 hci_req_add_le_passive_scan(req); 1112 1113 /* Block suspend notifier on response */ 1114 set_bit(SUSPEND_SCAN_ENABLE, req->hdev->suspend_tasks); 1115 } 1116 1117 static void cancel_adv_timeout(struct hci_dev *hdev) 1118 { 1119 if (hdev->adv_instance_timeout) { 1120 hdev->adv_instance_timeout = 0; 1121 cancel_delayed_work(&hdev->adv_instance_expire); 1122 } 1123 } 1124 1125 /* This function requires the caller holds hdev->lock */ 1126 static void hci_suspend_adv_instances(struct hci_request *req) 1127 { 1128 bt_dev_dbg(req->hdev, "Suspending advertising instances"); 1129 1130 /* Call to disable any advertisements active on the controller. 1131 * This will succeed even if no advertisements are configured. 1132 */ 1133 __hci_req_disable_advertising(req); 1134 1135 /* If we are using software rotation, pause the loop */ 1136 if (!ext_adv_capable(req->hdev)) 1137 cancel_adv_timeout(req->hdev); 1138 } 1139 1140 /* This function requires the caller holds hdev->lock */ 1141 static void hci_resume_adv_instances(struct hci_request *req) 1142 { 1143 struct adv_info *adv; 1144 1145 bt_dev_dbg(req->hdev, "Resuming advertising instances"); 1146 1147 if (ext_adv_capable(req->hdev)) { 1148 /* Call for each tracked instance to be re-enabled */ 1149 list_for_each_entry(adv, &req->hdev->adv_instances, list) { 1150 __hci_req_enable_ext_advertising(req, 1151 adv->instance); 1152 } 1153 1154 } else { 1155 /* Schedule for most recent instance to be restarted and begin 1156 * the software rotation loop 1157 */ 1158 __hci_req_schedule_adv_instance(req, 1159 req->hdev->cur_adv_instance, 1160 true); 1161 } 1162 } 1163 1164 static void suspend_req_complete(struct hci_dev *hdev, u8 status, u16 opcode) 1165 { 1166 bt_dev_dbg(hdev, "Request complete opcode=0x%x, status=0x%x", opcode, 1167 status); 1168 if (test_and_clear_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks) || 1169 test_and_clear_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks)) { 1170 wake_up(&hdev->suspend_wait_q); 1171 } 1172 } 1173 1174 /* Call with hci_dev_lock */ 1175 void hci_req_prepare_suspend(struct hci_dev *hdev, enum suspended_state next) 1176 { 1177 int old_state; 1178 struct hci_conn *conn; 1179 struct hci_request req; 1180 u8 page_scan; 1181 int disconnect_counter; 1182 1183 if (next == hdev->suspend_state) { 1184 bt_dev_dbg(hdev, "Same state before and after: %d", next); 1185 goto done; 1186 } 1187 1188 hdev->suspend_state = next; 1189 hci_req_init(&req, hdev); 1190 1191 if (next == BT_SUSPEND_DISCONNECT) { 1192 /* Mark device as suspended */ 1193 hdev->suspended = true; 1194 1195 /* Pause discovery if not already stopped */ 1196 old_state = hdev->discovery.state; 1197 if (old_state != DISCOVERY_STOPPED) { 1198 set_bit(SUSPEND_PAUSE_DISCOVERY, hdev->suspend_tasks); 1199 hci_discovery_set_state(hdev, DISCOVERY_STOPPING); 1200 queue_work(hdev->req_workqueue, &hdev->discov_update); 1201 } 1202 1203 hdev->discovery_paused = true; 1204 hdev->discovery_old_state = old_state; 1205 1206 /* Stop directed advertising */ 1207 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING); 1208 if (old_state) { 1209 set_bit(SUSPEND_PAUSE_ADVERTISING, hdev->suspend_tasks); 1210 cancel_delayed_work(&hdev->discov_off); 1211 queue_delayed_work(hdev->req_workqueue, 1212 &hdev->discov_off, 0); 1213 } 1214 1215 /* Pause other advertisements */ 1216 if (hdev->adv_instance_cnt) 1217 hci_suspend_adv_instances(&req); 1218 1219 hdev->advertising_paused = true; 1220 hdev->advertising_old_state = old_state; 1221 /* Disable page scan */ 1222 page_scan = SCAN_DISABLED; 1223 hci_req_add(&req, HCI_OP_WRITE_SCAN_ENABLE, 1, &page_scan); 1224 1225 /* Disable LE passive scan if enabled */ 1226 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) 1227 hci_req_add_le_scan_disable(&req, false); 1228 1229 /* Mark task needing completion */ 1230 set_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks); 1231 1232 /* Prevent disconnects from causing scanning to be re-enabled */ 1233 hdev->scanning_paused = true; 1234 1235 /* Run commands before disconnecting */ 1236 hci_req_run(&req, suspend_req_complete); 1237 1238 disconnect_counter = 0; 1239 /* Soft disconnect everything (power off) */ 1240 list_for_each_entry(conn, &hdev->conn_hash.list, list) { 1241 hci_disconnect(conn, HCI_ERROR_REMOTE_POWER_OFF); 1242 disconnect_counter++; 1243 } 1244 1245 if (disconnect_counter > 0) { 1246 bt_dev_dbg(hdev, 1247 "Had %d disconnects. Will wait on them", 1248 disconnect_counter); 1249 set_bit(SUSPEND_DISCONNECTING, hdev->suspend_tasks); 1250 } 1251 } else if (next == BT_SUSPEND_CONFIGURE_WAKE) { 1252 /* Unpause to take care of updating scanning params */ 1253 hdev->scanning_paused = false; 1254 /* Enable event filter for paired devices */ 1255 hci_req_set_event_filter(&req); 1256 /* Enable passive scan at lower duty cycle */ 1257 hci_req_config_le_suspend_scan(&req); 1258 /* Pause scan changes again. */ 1259 hdev->scanning_paused = true; 1260 hci_req_run(&req, suspend_req_complete); 1261 } else { 1262 hdev->suspended = false; 1263 hdev->scanning_paused = false; 1264 1265 hci_req_clear_event_filter(&req); 1266 /* Reset passive/background scanning to normal */ 1267 hci_req_config_le_suspend_scan(&req); 1268 1269 /* Unpause directed advertising */ 1270 hdev->advertising_paused = false; 1271 if (hdev->advertising_old_state) { 1272 set_bit(SUSPEND_UNPAUSE_ADVERTISING, 1273 hdev->suspend_tasks); 1274 hci_dev_set_flag(hdev, HCI_ADVERTISING); 1275 queue_work(hdev->req_workqueue, 1276 &hdev->discoverable_update); 1277 hdev->advertising_old_state = 0; 1278 } 1279 1280 /* Resume other advertisements */ 1281 if (hdev->adv_instance_cnt) 1282 hci_resume_adv_instances(&req); 1283 1284 /* Unpause discovery */ 1285 hdev->discovery_paused = false; 1286 if (hdev->discovery_old_state != DISCOVERY_STOPPED && 1287 hdev->discovery_old_state != DISCOVERY_STOPPING) { 1288 set_bit(SUSPEND_UNPAUSE_DISCOVERY, hdev->suspend_tasks); 1289 hci_discovery_set_state(hdev, DISCOVERY_STARTING); 1290 queue_work(hdev->req_workqueue, &hdev->discov_update); 1291 } 1292 1293 hci_req_run(&req, suspend_req_complete); 1294 } 1295 1296 hdev->suspend_state = next; 1297 1298 done: 1299 clear_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks); 1300 wake_up(&hdev->suspend_wait_q); 1301 } 1302 1303 static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev) 1304 { 1305 u8 instance = hdev->cur_adv_instance; 1306 struct adv_info *adv_instance; 1307 1308 /* Instance 0x00 always set local name */ 1309 if (instance == 0x00) 1310 return 1; 1311 1312 adv_instance = hci_find_adv_instance(hdev, instance); 1313 if (!adv_instance) 1314 return 0; 1315 1316 /* TODO: Take into account the "appearance" and "local-name" flags here. 1317 * These are currently being ignored as they are not supported. 1318 */ 1319 return adv_instance->scan_rsp_len; 1320 } 1321 1322 void __hci_req_disable_advertising(struct hci_request *req) 1323 { 1324 if (ext_adv_capable(req->hdev)) { 1325 __hci_req_disable_ext_adv_instance(req, 0x00); 1326 1327 } else { 1328 u8 enable = 0x00; 1329 1330 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable); 1331 } 1332 } 1333 1334 static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance) 1335 { 1336 u32 flags; 1337 struct adv_info *adv_instance; 1338 1339 if (instance == 0x00) { 1340 /* Instance 0 always manages the "Tx Power" and "Flags" 1341 * fields 1342 */ 1343 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS; 1344 1345 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting 1346 * corresponds to the "connectable" instance flag. 1347 */ 1348 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE)) 1349 flags |= MGMT_ADV_FLAG_CONNECTABLE; 1350 1351 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 1352 flags |= MGMT_ADV_FLAG_LIMITED_DISCOV; 1353 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 1354 flags |= MGMT_ADV_FLAG_DISCOV; 1355 1356 return flags; 1357 } 1358 1359 adv_instance = hci_find_adv_instance(hdev, instance); 1360 1361 /* Return 0 when we got an invalid instance identifier. */ 1362 if (!adv_instance) 1363 return 0; 1364 1365 return adv_instance->flags; 1366 } 1367 1368 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) 1369 { 1370 /* If privacy is not enabled don't use RPA */ 1371 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 1372 return false; 1373 1374 /* If basic privacy mode is enabled use RPA */ 1375 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 1376 return true; 1377 1378 /* If limited privacy mode is enabled don't use RPA if we're 1379 * both discoverable and bondable. 1380 */ 1381 if ((flags & MGMT_ADV_FLAG_DISCOV) && 1382 hci_dev_test_flag(hdev, HCI_BONDABLE)) 1383 return false; 1384 1385 /* We're neither bondable nor discoverable in the limited 1386 * privacy mode, therefore use RPA. 1387 */ 1388 return true; 1389 } 1390 1391 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) 1392 { 1393 /* If there is no connection we are OK to advertise. */ 1394 if (hci_conn_num(hdev, LE_LINK) == 0) 1395 return true; 1396 1397 /* Check le_states if there is any connection in slave role. */ 1398 if (hdev->conn_hash.le_num_slave > 0) { 1399 /* Slave connection state and non connectable mode bit 20. */ 1400 if (!connectable && !(hdev->le_states[2] & 0x10)) 1401 return false; 1402 1403 /* Slave connection state and connectable mode bit 38 1404 * and scannable bit 21. 1405 */ 1406 if (connectable && (!(hdev->le_states[4] & 0x40) || 1407 !(hdev->le_states[2] & 0x20))) 1408 return false; 1409 } 1410 1411 /* Check le_states if there is any connection in master role. */ 1412 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_slave) { 1413 /* Master connection state and non connectable mode bit 18. */ 1414 if (!connectable && !(hdev->le_states[2] & 0x02)) 1415 return false; 1416 1417 /* Master connection state and connectable mode bit 35 and 1418 * scannable 19. 1419 */ 1420 if (connectable && (!(hdev->le_states[4] & 0x08) || 1421 !(hdev->le_states[2] & 0x08))) 1422 return false; 1423 } 1424 1425 return true; 1426 } 1427 1428 void __hci_req_enable_advertising(struct hci_request *req) 1429 { 1430 struct hci_dev *hdev = req->hdev; 1431 struct hci_cp_le_set_adv_param cp; 1432 u8 own_addr_type, enable = 0x01; 1433 bool connectable; 1434 u16 adv_min_interval, adv_max_interval; 1435 u32 flags; 1436 1437 flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance); 1438 1439 /* If the "connectable" instance flag was not set, then choose between 1440 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1441 */ 1442 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1443 mgmt_get_connectable(hdev); 1444 1445 if (!is_advertising_allowed(hdev, connectable)) 1446 return; 1447 1448 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) 1449 __hci_req_disable_advertising(req); 1450 1451 /* Clear the HCI_LE_ADV bit temporarily so that the 1452 * hci_update_random_address knows that it's safe to go ahead 1453 * and write a new random address. The flag will be set back on 1454 * as soon as the SET_ADV_ENABLE HCI command completes. 1455 */ 1456 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1457 1458 /* Set require_privacy to true only when non-connectable 1459 * advertising is used. In that case it is fine to use a 1460 * non-resolvable private address. 1461 */ 1462 if (hci_update_random_address(req, !connectable, 1463 adv_use_rpa(hdev, flags), 1464 &own_addr_type) < 0) 1465 return; 1466 1467 memset(&cp, 0, sizeof(cp)); 1468 1469 if (connectable) { 1470 cp.type = LE_ADV_IND; 1471 1472 adv_min_interval = hdev->le_adv_min_interval; 1473 adv_max_interval = hdev->le_adv_max_interval; 1474 } else { 1475 if (get_cur_adv_instance_scan_rsp_len(hdev)) 1476 cp.type = LE_ADV_SCAN_IND; 1477 else 1478 cp.type = LE_ADV_NONCONN_IND; 1479 1480 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) || 1481 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 1482 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN; 1483 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX; 1484 } else { 1485 adv_min_interval = hdev->le_adv_min_interval; 1486 adv_max_interval = hdev->le_adv_max_interval; 1487 } 1488 } 1489 1490 cp.min_interval = cpu_to_le16(adv_min_interval); 1491 cp.max_interval = cpu_to_le16(adv_max_interval); 1492 cp.own_address_type = own_addr_type; 1493 cp.channel_map = hdev->le_adv_channel_map; 1494 1495 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp); 1496 1497 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable); 1498 } 1499 1500 u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len) 1501 { 1502 size_t short_len; 1503 size_t complete_len; 1504 1505 /* no space left for name (+ NULL + type + len) */ 1506 if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3) 1507 return ad_len; 1508 1509 /* use complete name if present and fits */ 1510 complete_len = strlen(hdev->dev_name); 1511 if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH) 1512 return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE, 1513 hdev->dev_name, complete_len + 1); 1514 1515 /* use short name if present */ 1516 short_len = strlen(hdev->short_name); 1517 if (short_len) 1518 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, 1519 hdev->short_name, short_len + 1); 1520 1521 /* use shortened full name if present, we already know that name 1522 * is longer then HCI_MAX_SHORT_NAME_LENGTH 1523 */ 1524 if (complete_len) { 1525 u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1]; 1526 1527 memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH); 1528 name[HCI_MAX_SHORT_NAME_LENGTH] = '\0'; 1529 1530 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name, 1531 sizeof(name)); 1532 } 1533 1534 return ad_len; 1535 } 1536 1537 static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len) 1538 { 1539 return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance); 1540 } 1541 1542 static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr) 1543 { 1544 u8 scan_rsp_len = 0; 1545 1546 if (hdev->appearance) { 1547 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len); 1548 } 1549 1550 return append_local_name(hdev, ptr, scan_rsp_len); 1551 } 1552 1553 static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance, 1554 u8 *ptr) 1555 { 1556 struct adv_info *adv_instance; 1557 u32 instance_flags; 1558 u8 scan_rsp_len = 0; 1559 1560 adv_instance = hci_find_adv_instance(hdev, instance); 1561 if (!adv_instance) 1562 return 0; 1563 1564 instance_flags = adv_instance->flags; 1565 1566 if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) { 1567 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len); 1568 } 1569 1570 memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data, 1571 adv_instance->scan_rsp_len); 1572 1573 scan_rsp_len += adv_instance->scan_rsp_len; 1574 1575 if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME) 1576 scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len); 1577 1578 return scan_rsp_len; 1579 } 1580 1581 void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance) 1582 { 1583 struct hci_dev *hdev = req->hdev; 1584 u8 len; 1585 1586 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1587 return; 1588 1589 if (ext_adv_capable(hdev)) { 1590 struct hci_cp_le_set_ext_scan_rsp_data cp; 1591 1592 memset(&cp, 0, sizeof(cp)); 1593 1594 /* Extended scan response data doesn't allow a response to be 1595 * set if the instance isn't scannable. 1596 */ 1597 if (get_adv_instance_scan_rsp_len(hdev, instance)) 1598 len = create_instance_scan_rsp_data(hdev, instance, 1599 cp.data); 1600 else 1601 len = 0; 1602 1603 if (hdev->scan_rsp_data_len == len && 1604 !memcmp(cp.data, hdev->scan_rsp_data, len)) 1605 return; 1606 1607 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 1608 hdev->scan_rsp_data_len = len; 1609 1610 cp.handle = instance; 1611 cp.length = len; 1612 cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1613 cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1614 1615 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, sizeof(cp), 1616 &cp); 1617 } else { 1618 struct hci_cp_le_set_scan_rsp_data cp; 1619 1620 memset(&cp, 0, sizeof(cp)); 1621 1622 if (instance) 1623 len = create_instance_scan_rsp_data(hdev, instance, 1624 cp.data); 1625 else 1626 len = create_default_scan_rsp_data(hdev, cp.data); 1627 1628 if (hdev->scan_rsp_data_len == len && 1629 !memcmp(cp.data, hdev->scan_rsp_data, len)) 1630 return; 1631 1632 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 1633 hdev->scan_rsp_data_len = len; 1634 1635 cp.length = len; 1636 1637 hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp); 1638 } 1639 } 1640 1641 static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr) 1642 { 1643 struct adv_info *adv_instance = NULL; 1644 u8 ad_len = 0, flags = 0; 1645 u32 instance_flags; 1646 1647 /* Return 0 when the current instance identifier is invalid. */ 1648 if (instance) { 1649 adv_instance = hci_find_adv_instance(hdev, instance); 1650 if (!adv_instance) 1651 return 0; 1652 } 1653 1654 instance_flags = get_adv_instance_flags(hdev, instance); 1655 1656 /* If instance already has the flags set skip adding it once 1657 * again. 1658 */ 1659 if (adv_instance && eir_get_data(adv_instance->adv_data, 1660 adv_instance->adv_data_len, EIR_FLAGS, 1661 NULL)) 1662 goto skip_flags; 1663 1664 /* The Add Advertising command allows userspace to set both the general 1665 * and limited discoverable flags. 1666 */ 1667 if (instance_flags & MGMT_ADV_FLAG_DISCOV) 1668 flags |= LE_AD_GENERAL; 1669 1670 if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV) 1671 flags |= LE_AD_LIMITED; 1672 1673 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 1674 flags |= LE_AD_NO_BREDR; 1675 1676 if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) { 1677 /* If a discovery flag wasn't provided, simply use the global 1678 * settings. 1679 */ 1680 if (!flags) 1681 flags |= mgmt_get_adv_discov_flags(hdev); 1682 1683 /* If flags would still be empty, then there is no need to 1684 * include the "Flags" AD field". 1685 */ 1686 if (flags) { 1687 ptr[0] = 0x02; 1688 ptr[1] = EIR_FLAGS; 1689 ptr[2] = flags; 1690 1691 ad_len += 3; 1692 ptr += 3; 1693 } 1694 } 1695 1696 skip_flags: 1697 if (adv_instance) { 1698 memcpy(ptr, adv_instance->adv_data, 1699 adv_instance->adv_data_len); 1700 ad_len += adv_instance->adv_data_len; 1701 ptr += adv_instance->adv_data_len; 1702 } 1703 1704 if (instance_flags & MGMT_ADV_FLAG_TX_POWER) { 1705 s8 adv_tx_power; 1706 1707 if (ext_adv_capable(hdev)) { 1708 if (adv_instance) 1709 adv_tx_power = adv_instance->tx_power; 1710 else 1711 adv_tx_power = hdev->adv_tx_power; 1712 } else { 1713 adv_tx_power = hdev->adv_tx_power; 1714 } 1715 1716 /* Provide Tx Power only if we can provide a valid value for it */ 1717 if (adv_tx_power != HCI_TX_POWER_INVALID) { 1718 ptr[0] = 0x02; 1719 ptr[1] = EIR_TX_POWER; 1720 ptr[2] = (u8)adv_tx_power; 1721 1722 ad_len += 3; 1723 ptr += 3; 1724 } 1725 } 1726 1727 return ad_len; 1728 } 1729 1730 void __hci_req_update_adv_data(struct hci_request *req, u8 instance) 1731 { 1732 struct hci_dev *hdev = req->hdev; 1733 u8 len; 1734 1735 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1736 return; 1737 1738 if (ext_adv_capable(hdev)) { 1739 struct hci_cp_le_set_ext_adv_data cp; 1740 1741 memset(&cp, 0, sizeof(cp)); 1742 1743 len = create_instance_adv_data(hdev, instance, cp.data); 1744 1745 /* There's nothing to do if the data hasn't changed */ 1746 if (hdev->adv_data_len == len && 1747 memcmp(cp.data, hdev->adv_data, len) == 0) 1748 return; 1749 1750 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1751 hdev->adv_data_len = len; 1752 1753 cp.length = len; 1754 cp.handle = instance; 1755 cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1756 cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1757 1758 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA, sizeof(cp), &cp); 1759 } else { 1760 struct hci_cp_le_set_adv_data cp; 1761 1762 memset(&cp, 0, sizeof(cp)); 1763 1764 len = create_instance_adv_data(hdev, instance, cp.data); 1765 1766 /* There's nothing to do if the data hasn't changed */ 1767 if (hdev->adv_data_len == len && 1768 memcmp(cp.data, hdev->adv_data, len) == 0) 1769 return; 1770 1771 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1772 hdev->adv_data_len = len; 1773 1774 cp.length = len; 1775 1776 hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp); 1777 } 1778 } 1779 1780 int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance) 1781 { 1782 struct hci_request req; 1783 1784 hci_req_init(&req, hdev); 1785 __hci_req_update_adv_data(&req, instance); 1786 1787 return hci_req_run(&req, NULL); 1788 } 1789 1790 static void enable_addr_resolution_complete(struct hci_dev *hdev, u8 status, 1791 u16 opcode) 1792 { 1793 BT_DBG("%s status %u", hdev->name, status); 1794 } 1795 1796 void hci_req_disable_address_resolution(struct hci_dev *hdev) 1797 { 1798 struct hci_request req; 1799 __u8 enable = 0x00; 1800 1801 if (!use_ll_privacy(hdev) && 1802 !hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) 1803 return; 1804 1805 hci_req_init(&req, hdev); 1806 1807 hci_req_add(&req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable); 1808 1809 hci_req_run(&req, enable_addr_resolution_complete); 1810 } 1811 1812 static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode) 1813 { 1814 BT_DBG("%s status %u", hdev->name, status); 1815 } 1816 1817 void hci_req_reenable_advertising(struct hci_dev *hdev) 1818 { 1819 struct hci_request req; 1820 1821 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 1822 list_empty(&hdev->adv_instances)) 1823 return; 1824 1825 hci_req_init(&req, hdev); 1826 1827 if (hdev->cur_adv_instance) { 1828 __hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance, 1829 true); 1830 } else { 1831 if (ext_adv_capable(hdev)) { 1832 __hci_req_start_ext_adv(&req, 0x00); 1833 } else { 1834 __hci_req_update_adv_data(&req, 0x00); 1835 __hci_req_update_scan_rsp_data(&req, 0x00); 1836 __hci_req_enable_advertising(&req); 1837 } 1838 } 1839 1840 hci_req_run(&req, adv_enable_complete); 1841 } 1842 1843 static void adv_timeout_expire(struct work_struct *work) 1844 { 1845 struct hci_dev *hdev = container_of(work, struct hci_dev, 1846 adv_instance_expire.work); 1847 1848 struct hci_request req; 1849 u8 instance; 1850 1851 BT_DBG("%s", hdev->name); 1852 1853 hci_dev_lock(hdev); 1854 1855 hdev->adv_instance_timeout = 0; 1856 1857 instance = hdev->cur_adv_instance; 1858 if (instance == 0x00) 1859 goto unlock; 1860 1861 hci_req_init(&req, hdev); 1862 1863 hci_req_clear_adv_instance(hdev, NULL, &req, instance, false); 1864 1865 if (list_empty(&hdev->adv_instances)) 1866 __hci_req_disable_advertising(&req); 1867 1868 hci_req_run(&req, NULL); 1869 1870 unlock: 1871 hci_dev_unlock(hdev); 1872 } 1873 1874 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy, 1875 bool use_rpa, struct adv_info *adv_instance, 1876 u8 *own_addr_type, bdaddr_t *rand_addr) 1877 { 1878 int err; 1879 1880 bacpy(rand_addr, BDADDR_ANY); 1881 1882 /* If privacy is enabled use a resolvable private address. If 1883 * current RPA has expired then generate a new one. 1884 */ 1885 if (use_rpa) { 1886 int to; 1887 1888 /* If Controller supports LL Privacy use own address type is 1889 * 0x03 1890 */ 1891 if (use_ll_privacy(hdev)) 1892 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 1893 else 1894 *own_addr_type = ADDR_LE_DEV_RANDOM; 1895 1896 if (adv_instance) { 1897 if (!adv_instance->rpa_expired && 1898 !bacmp(&adv_instance->random_addr, &hdev->rpa)) 1899 return 0; 1900 1901 adv_instance->rpa_expired = false; 1902 } else { 1903 if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) && 1904 !bacmp(&hdev->random_addr, &hdev->rpa)) 1905 return 0; 1906 } 1907 1908 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 1909 if (err < 0) { 1910 bt_dev_err(hdev, "failed to generate new RPA"); 1911 return err; 1912 } 1913 1914 bacpy(rand_addr, &hdev->rpa); 1915 1916 to = msecs_to_jiffies(hdev->rpa_timeout * 1000); 1917 if (adv_instance) 1918 queue_delayed_work(hdev->workqueue, 1919 &adv_instance->rpa_expired_cb, to); 1920 else 1921 queue_delayed_work(hdev->workqueue, 1922 &hdev->rpa_expired, to); 1923 1924 return 0; 1925 } 1926 1927 /* In case of required privacy without resolvable private address, 1928 * use an non-resolvable private address. This is useful for 1929 * non-connectable advertising. 1930 */ 1931 if (require_privacy) { 1932 bdaddr_t nrpa; 1933 1934 while (true) { 1935 /* The non-resolvable private address is generated 1936 * from random six bytes with the two most significant 1937 * bits cleared. 1938 */ 1939 get_random_bytes(&nrpa, 6); 1940 nrpa.b[5] &= 0x3f; 1941 1942 /* The non-resolvable private address shall not be 1943 * equal to the public address. 1944 */ 1945 if (bacmp(&hdev->bdaddr, &nrpa)) 1946 break; 1947 } 1948 1949 *own_addr_type = ADDR_LE_DEV_RANDOM; 1950 bacpy(rand_addr, &nrpa); 1951 1952 return 0; 1953 } 1954 1955 /* No privacy so use a public address. */ 1956 *own_addr_type = ADDR_LE_DEV_PUBLIC; 1957 1958 return 0; 1959 } 1960 1961 void __hci_req_clear_ext_adv_sets(struct hci_request *req) 1962 { 1963 hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL); 1964 } 1965 1966 int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance) 1967 { 1968 struct hci_cp_le_set_ext_adv_params cp; 1969 struct hci_dev *hdev = req->hdev; 1970 bool connectable; 1971 u32 flags; 1972 bdaddr_t random_addr; 1973 u8 own_addr_type; 1974 int err; 1975 struct adv_info *adv_instance; 1976 bool secondary_adv; 1977 1978 if (instance > 0) { 1979 adv_instance = hci_find_adv_instance(hdev, instance); 1980 if (!adv_instance) 1981 return -EINVAL; 1982 } else { 1983 adv_instance = NULL; 1984 } 1985 1986 flags = get_adv_instance_flags(hdev, instance); 1987 1988 /* If the "connectable" instance flag was not set, then choose between 1989 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1990 */ 1991 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1992 mgmt_get_connectable(hdev); 1993 1994 if (!is_advertising_allowed(hdev, connectable)) 1995 return -EPERM; 1996 1997 /* Set require_privacy to true only when non-connectable 1998 * advertising is used. In that case it is fine to use a 1999 * non-resolvable private address. 2000 */ 2001 err = hci_get_random_address(hdev, !connectable, 2002 adv_use_rpa(hdev, flags), adv_instance, 2003 &own_addr_type, &random_addr); 2004 if (err < 0) 2005 return err; 2006 2007 memset(&cp, 0, sizeof(cp)); 2008 2009 /* In ext adv set param interval is 3 octets */ 2010 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval); 2011 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval); 2012 2013 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); 2014 2015 if (connectable) { 2016 if (secondary_adv) 2017 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); 2018 else 2019 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); 2020 } else if (get_adv_instance_scan_rsp_len(hdev, instance)) { 2021 if (secondary_adv) 2022 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); 2023 else 2024 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); 2025 } else { 2026 if (secondary_adv) 2027 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); 2028 else 2029 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); 2030 } 2031 2032 cp.own_addr_type = own_addr_type; 2033 cp.channel_map = hdev->le_adv_channel_map; 2034 cp.tx_power = 127; 2035 cp.handle = instance; 2036 2037 if (flags & MGMT_ADV_FLAG_SEC_2M) { 2038 cp.primary_phy = HCI_ADV_PHY_1M; 2039 cp.secondary_phy = HCI_ADV_PHY_2M; 2040 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) { 2041 cp.primary_phy = HCI_ADV_PHY_CODED; 2042 cp.secondary_phy = HCI_ADV_PHY_CODED; 2043 } else { 2044 /* In all other cases use 1M */ 2045 cp.primary_phy = HCI_ADV_PHY_1M; 2046 cp.secondary_phy = HCI_ADV_PHY_1M; 2047 } 2048 2049 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp); 2050 2051 if (own_addr_type == ADDR_LE_DEV_RANDOM && 2052 bacmp(&random_addr, BDADDR_ANY)) { 2053 struct hci_cp_le_set_adv_set_rand_addr cp; 2054 2055 /* Check if random address need to be updated */ 2056 if (adv_instance) { 2057 if (!bacmp(&random_addr, &adv_instance->random_addr)) 2058 return 0; 2059 } else { 2060 if (!bacmp(&random_addr, &hdev->random_addr)) 2061 return 0; 2062 } 2063 2064 memset(&cp, 0, sizeof(cp)); 2065 2066 cp.handle = instance; 2067 bacpy(&cp.bdaddr, &random_addr); 2068 2069 hci_req_add(req, 2070 HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 2071 sizeof(cp), &cp); 2072 } 2073 2074 return 0; 2075 } 2076 2077 int __hci_req_enable_ext_advertising(struct hci_request *req, u8 instance) 2078 { 2079 struct hci_dev *hdev = req->hdev; 2080 struct hci_cp_le_set_ext_adv_enable *cp; 2081 struct hci_cp_ext_adv_set *adv_set; 2082 u8 data[sizeof(*cp) + sizeof(*adv_set) * 1]; 2083 struct adv_info *adv_instance; 2084 2085 if (instance > 0) { 2086 adv_instance = hci_find_adv_instance(hdev, instance); 2087 if (!adv_instance) 2088 return -EINVAL; 2089 } else { 2090 adv_instance = NULL; 2091 } 2092 2093 cp = (void *) data; 2094 adv_set = (void *) cp->data; 2095 2096 memset(cp, 0, sizeof(*cp)); 2097 2098 cp->enable = 0x01; 2099 cp->num_of_sets = 0x01; 2100 2101 memset(adv_set, 0, sizeof(*adv_set)); 2102 2103 adv_set->handle = instance; 2104 2105 /* Set duration per instance since controller is responsible for 2106 * scheduling it. 2107 */ 2108 if (adv_instance && adv_instance->duration) { 2109 u16 duration = adv_instance->timeout * MSEC_PER_SEC; 2110 2111 /* Time = N * 10 ms */ 2112 adv_set->duration = cpu_to_le16(duration / 10); 2113 } 2114 2115 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, 2116 sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets, 2117 data); 2118 2119 return 0; 2120 } 2121 2122 int __hci_req_disable_ext_adv_instance(struct hci_request *req, u8 instance) 2123 { 2124 struct hci_dev *hdev = req->hdev; 2125 struct hci_cp_le_set_ext_adv_enable *cp; 2126 struct hci_cp_ext_adv_set *adv_set; 2127 u8 data[sizeof(*cp) + sizeof(*adv_set) * 1]; 2128 u8 req_size; 2129 2130 /* If request specifies an instance that doesn't exist, fail */ 2131 if (instance > 0 && !hci_find_adv_instance(hdev, instance)) 2132 return -EINVAL; 2133 2134 memset(data, 0, sizeof(data)); 2135 2136 cp = (void *)data; 2137 adv_set = (void *)cp->data; 2138 2139 /* Instance 0x00 indicates all advertising instances will be disabled */ 2140 cp->num_of_sets = !!instance; 2141 cp->enable = 0x00; 2142 2143 adv_set->handle = instance; 2144 2145 req_size = sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets; 2146 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, req_size, data); 2147 2148 return 0; 2149 } 2150 2151 int __hci_req_remove_ext_adv_instance(struct hci_request *req, u8 instance) 2152 { 2153 struct hci_dev *hdev = req->hdev; 2154 2155 /* If request specifies an instance that doesn't exist, fail */ 2156 if (instance > 0 && !hci_find_adv_instance(hdev, instance)) 2157 return -EINVAL; 2158 2159 hci_req_add(req, HCI_OP_LE_REMOVE_ADV_SET, sizeof(instance), &instance); 2160 2161 return 0; 2162 } 2163 2164 int __hci_req_start_ext_adv(struct hci_request *req, u8 instance) 2165 { 2166 struct hci_dev *hdev = req->hdev; 2167 struct adv_info *adv_instance = hci_find_adv_instance(hdev, instance); 2168 int err; 2169 2170 /* If instance isn't pending, the chip knows about it, and it's safe to 2171 * disable 2172 */ 2173 if (adv_instance && !adv_instance->pending) 2174 __hci_req_disable_ext_adv_instance(req, instance); 2175 2176 err = __hci_req_setup_ext_adv_instance(req, instance); 2177 if (err < 0) 2178 return err; 2179 2180 __hci_req_update_scan_rsp_data(req, instance); 2181 __hci_req_enable_ext_advertising(req, instance); 2182 2183 return 0; 2184 } 2185 2186 int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance, 2187 bool force) 2188 { 2189 struct hci_dev *hdev = req->hdev; 2190 struct adv_info *adv_instance = NULL; 2191 u16 timeout; 2192 2193 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 2194 list_empty(&hdev->adv_instances)) 2195 return -EPERM; 2196 2197 if (hdev->adv_instance_timeout) 2198 return -EBUSY; 2199 2200 adv_instance = hci_find_adv_instance(hdev, instance); 2201 if (!adv_instance) 2202 return -ENOENT; 2203 2204 /* A zero timeout means unlimited advertising. As long as there is 2205 * only one instance, duration should be ignored. We still set a timeout 2206 * in case further instances are being added later on. 2207 * 2208 * If the remaining lifetime of the instance is more than the duration 2209 * then the timeout corresponds to the duration, otherwise it will be 2210 * reduced to the remaining instance lifetime. 2211 */ 2212 if (adv_instance->timeout == 0 || 2213 adv_instance->duration <= adv_instance->remaining_time) 2214 timeout = adv_instance->duration; 2215 else 2216 timeout = adv_instance->remaining_time; 2217 2218 /* The remaining time is being reduced unless the instance is being 2219 * advertised without time limit. 2220 */ 2221 if (adv_instance->timeout) 2222 adv_instance->remaining_time = 2223 adv_instance->remaining_time - timeout; 2224 2225 /* Only use work for scheduling instances with legacy advertising */ 2226 if (!ext_adv_capable(hdev)) { 2227 hdev->adv_instance_timeout = timeout; 2228 queue_delayed_work(hdev->req_workqueue, 2229 &hdev->adv_instance_expire, 2230 msecs_to_jiffies(timeout * 1000)); 2231 } 2232 2233 /* If we're just re-scheduling the same instance again then do not 2234 * execute any HCI commands. This happens when a single instance is 2235 * being advertised. 2236 */ 2237 if (!force && hdev->cur_adv_instance == instance && 2238 hci_dev_test_flag(hdev, HCI_LE_ADV)) 2239 return 0; 2240 2241 hdev->cur_adv_instance = instance; 2242 if (ext_adv_capable(hdev)) { 2243 __hci_req_start_ext_adv(req, instance); 2244 } else { 2245 __hci_req_update_adv_data(req, instance); 2246 __hci_req_update_scan_rsp_data(req, instance); 2247 __hci_req_enable_advertising(req); 2248 } 2249 2250 return 0; 2251 } 2252 2253 /* For a single instance: 2254 * - force == true: The instance will be removed even when its remaining 2255 * lifetime is not zero. 2256 * - force == false: the instance will be deactivated but kept stored unless 2257 * the remaining lifetime is zero. 2258 * 2259 * For instance == 0x00: 2260 * - force == true: All instances will be removed regardless of their timeout 2261 * setting. 2262 * - force == false: Only instances that have a timeout will be removed. 2263 */ 2264 void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk, 2265 struct hci_request *req, u8 instance, 2266 bool force) 2267 { 2268 struct adv_info *adv_instance, *n, *next_instance = NULL; 2269 int err; 2270 u8 rem_inst; 2271 2272 /* Cancel any timeout concerning the removed instance(s). */ 2273 if (!instance || hdev->cur_adv_instance == instance) 2274 cancel_adv_timeout(hdev); 2275 2276 /* Get the next instance to advertise BEFORE we remove 2277 * the current one. This can be the same instance again 2278 * if there is only one instance. 2279 */ 2280 if (instance && hdev->cur_adv_instance == instance) 2281 next_instance = hci_get_next_instance(hdev, instance); 2282 2283 if (instance == 0x00) { 2284 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, 2285 list) { 2286 if (!(force || adv_instance->timeout)) 2287 continue; 2288 2289 rem_inst = adv_instance->instance; 2290 err = hci_remove_adv_instance(hdev, rem_inst); 2291 if (!err) 2292 mgmt_advertising_removed(sk, hdev, rem_inst); 2293 } 2294 } else { 2295 adv_instance = hci_find_adv_instance(hdev, instance); 2296 2297 if (force || (adv_instance && adv_instance->timeout && 2298 !adv_instance->remaining_time)) { 2299 /* Don't advertise a removed instance. */ 2300 if (next_instance && 2301 next_instance->instance == instance) 2302 next_instance = NULL; 2303 2304 err = hci_remove_adv_instance(hdev, instance); 2305 if (!err) 2306 mgmt_advertising_removed(sk, hdev, instance); 2307 } 2308 } 2309 2310 if (!req || !hdev_is_powered(hdev) || 2311 hci_dev_test_flag(hdev, HCI_ADVERTISING)) 2312 return; 2313 2314 if (next_instance && !ext_adv_capable(hdev)) 2315 __hci_req_schedule_adv_instance(req, next_instance->instance, 2316 false); 2317 } 2318 2319 static void set_random_addr(struct hci_request *req, bdaddr_t *rpa) 2320 { 2321 struct hci_dev *hdev = req->hdev; 2322 2323 /* If we're advertising or initiating an LE connection we can't 2324 * go ahead and change the random address at this time. This is 2325 * because the eventual initiator address used for the 2326 * subsequently created connection will be undefined (some 2327 * controllers use the new address and others the one we had 2328 * when the operation started). 2329 * 2330 * In this kind of scenario skip the update and let the random 2331 * address be updated at the next cycle. 2332 */ 2333 if (hci_dev_test_flag(hdev, HCI_LE_ADV) || 2334 hci_lookup_le_connect(hdev)) { 2335 BT_DBG("Deferring random address update"); 2336 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 2337 return; 2338 } 2339 2340 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa); 2341 } 2342 2343 int hci_update_random_address(struct hci_request *req, bool require_privacy, 2344 bool use_rpa, u8 *own_addr_type) 2345 { 2346 struct hci_dev *hdev = req->hdev; 2347 int err; 2348 2349 /* If privacy is enabled use a resolvable private address. If 2350 * current RPA has expired or there is something else than 2351 * the current RPA in use, then generate a new one. 2352 */ 2353 if (use_rpa) { 2354 int to; 2355 2356 /* If Controller supports LL Privacy use own address type is 2357 * 0x03 2358 */ 2359 if (use_ll_privacy(hdev)) 2360 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED; 2361 else 2362 *own_addr_type = ADDR_LE_DEV_RANDOM; 2363 2364 if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) && 2365 !bacmp(&hdev->random_addr, &hdev->rpa)) 2366 return 0; 2367 2368 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 2369 if (err < 0) { 2370 bt_dev_err(hdev, "failed to generate new RPA"); 2371 return err; 2372 } 2373 2374 set_random_addr(req, &hdev->rpa); 2375 2376 to = msecs_to_jiffies(hdev->rpa_timeout * 1000); 2377 queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to); 2378 2379 return 0; 2380 } 2381 2382 /* In case of required privacy without resolvable private address, 2383 * use an non-resolvable private address. This is useful for active 2384 * scanning and non-connectable advertising. 2385 */ 2386 if (require_privacy) { 2387 bdaddr_t nrpa; 2388 2389 while (true) { 2390 /* The non-resolvable private address is generated 2391 * from random six bytes with the two most significant 2392 * bits cleared. 2393 */ 2394 get_random_bytes(&nrpa, 6); 2395 nrpa.b[5] &= 0x3f; 2396 2397 /* The non-resolvable private address shall not be 2398 * equal to the public address. 2399 */ 2400 if (bacmp(&hdev->bdaddr, &nrpa)) 2401 break; 2402 } 2403 2404 *own_addr_type = ADDR_LE_DEV_RANDOM; 2405 set_random_addr(req, &nrpa); 2406 return 0; 2407 } 2408 2409 /* If forcing static address is in use or there is no public 2410 * address use the static address as random address (but skip 2411 * the HCI command if the current random address is already the 2412 * static one. 2413 * 2414 * In case BR/EDR has been disabled on a dual-mode controller 2415 * and a static address has been configured, then use that 2416 * address instead of the public BR/EDR address. 2417 */ 2418 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 2419 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 2420 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 2421 bacmp(&hdev->static_addr, BDADDR_ANY))) { 2422 *own_addr_type = ADDR_LE_DEV_RANDOM; 2423 if (bacmp(&hdev->static_addr, &hdev->random_addr)) 2424 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, 2425 &hdev->static_addr); 2426 return 0; 2427 } 2428 2429 /* Neither privacy nor static address is being used so use a 2430 * public address. 2431 */ 2432 *own_addr_type = ADDR_LE_DEV_PUBLIC; 2433 2434 return 0; 2435 } 2436 2437 static bool disconnected_whitelist_entries(struct hci_dev *hdev) 2438 { 2439 struct bdaddr_list *b; 2440 2441 list_for_each_entry(b, &hdev->whitelist, list) { 2442 struct hci_conn *conn; 2443 2444 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); 2445 if (!conn) 2446 return true; 2447 2448 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 2449 return true; 2450 } 2451 2452 return false; 2453 } 2454 2455 void __hci_req_update_scan(struct hci_request *req) 2456 { 2457 struct hci_dev *hdev = req->hdev; 2458 u8 scan; 2459 2460 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 2461 return; 2462 2463 if (!hdev_is_powered(hdev)) 2464 return; 2465 2466 if (mgmt_powering_down(hdev)) 2467 return; 2468 2469 if (hdev->scanning_paused) 2470 return; 2471 2472 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || 2473 disconnected_whitelist_entries(hdev)) 2474 scan = SCAN_PAGE; 2475 else 2476 scan = SCAN_DISABLED; 2477 2478 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 2479 scan |= SCAN_INQUIRY; 2480 2481 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && 2482 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) 2483 return; 2484 2485 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); 2486 } 2487 2488 static int update_scan(struct hci_request *req, unsigned long opt) 2489 { 2490 hci_dev_lock(req->hdev); 2491 __hci_req_update_scan(req); 2492 hci_dev_unlock(req->hdev); 2493 return 0; 2494 } 2495 2496 static void scan_update_work(struct work_struct *work) 2497 { 2498 struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update); 2499 2500 hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL); 2501 } 2502 2503 static int connectable_update(struct hci_request *req, unsigned long opt) 2504 { 2505 struct hci_dev *hdev = req->hdev; 2506 2507 hci_dev_lock(hdev); 2508 2509 __hci_req_update_scan(req); 2510 2511 /* If BR/EDR is not enabled and we disable advertising as a 2512 * by-product of disabling connectable, we need to update the 2513 * advertising flags. 2514 */ 2515 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 2516 __hci_req_update_adv_data(req, hdev->cur_adv_instance); 2517 2518 /* Update the advertising parameters if necessary */ 2519 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 2520 !list_empty(&hdev->adv_instances)) { 2521 if (ext_adv_capable(hdev)) 2522 __hci_req_start_ext_adv(req, hdev->cur_adv_instance); 2523 else 2524 __hci_req_enable_advertising(req); 2525 } 2526 2527 __hci_update_background_scan(req); 2528 2529 hci_dev_unlock(hdev); 2530 2531 return 0; 2532 } 2533 2534 static void connectable_update_work(struct work_struct *work) 2535 { 2536 struct hci_dev *hdev = container_of(work, struct hci_dev, 2537 connectable_update); 2538 u8 status; 2539 2540 hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status); 2541 mgmt_set_connectable_complete(hdev, status); 2542 } 2543 2544 static u8 get_service_classes(struct hci_dev *hdev) 2545 { 2546 struct bt_uuid *uuid; 2547 u8 val = 0; 2548 2549 list_for_each_entry(uuid, &hdev->uuids, list) 2550 val |= uuid->svc_hint; 2551 2552 return val; 2553 } 2554 2555 void __hci_req_update_class(struct hci_request *req) 2556 { 2557 struct hci_dev *hdev = req->hdev; 2558 u8 cod[3]; 2559 2560 BT_DBG("%s", hdev->name); 2561 2562 if (!hdev_is_powered(hdev)) 2563 return; 2564 2565 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 2566 return; 2567 2568 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 2569 return; 2570 2571 cod[0] = hdev->minor_class; 2572 cod[1] = hdev->major_class; 2573 cod[2] = get_service_classes(hdev); 2574 2575 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 2576 cod[1] |= 0x20; 2577 2578 if (memcmp(cod, hdev->dev_class, 3) == 0) 2579 return; 2580 2581 hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod); 2582 } 2583 2584 static void write_iac(struct hci_request *req) 2585 { 2586 struct hci_dev *hdev = req->hdev; 2587 struct hci_cp_write_current_iac_lap cp; 2588 2589 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 2590 return; 2591 2592 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 2593 /* Limited discoverable mode */ 2594 cp.num_iac = min_t(u8, hdev->num_iac, 2); 2595 cp.iac_lap[0] = 0x00; /* LIAC */ 2596 cp.iac_lap[1] = 0x8b; 2597 cp.iac_lap[2] = 0x9e; 2598 cp.iac_lap[3] = 0x33; /* GIAC */ 2599 cp.iac_lap[4] = 0x8b; 2600 cp.iac_lap[5] = 0x9e; 2601 } else { 2602 /* General discoverable mode */ 2603 cp.num_iac = 1; 2604 cp.iac_lap[0] = 0x33; /* GIAC */ 2605 cp.iac_lap[1] = 0x8b; 2606 cp.iac_lap[2] = 0x9e; 2607 } 2608 2609 hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP, 2610 (cp.num_iac * 3) + 1, &cp); 2611 } 2612 2613 static int discoverable_update(struct hci_request *req, unsigned long opt) 2614 { 2615 struct hci_dev *hdev = req->hdev; 2616 2617 hci_dev_lock(hdev); 2618 2619 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 2620 write_iac(req); 2621 __hci_req_update_scan(req); 2622 __hci_req_update_class(req); 2623 } 2624 2625 /* Advertising instances don't use the global discoverable setting, so 2626 * only update AD if advertising was enabled using Set Advertising. 2627 */ 2628 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 2629 __hci_req_update_adv_data(req, 0x00); 2630 2631 /* Discoverable mode affects the local advertising 2632 * address in limited privacy mode. 2633 */ 2634 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { 2635 if (ext_adv_capable(hdev)) 2636 __hci_req_start_ext_adv(req, 0x00); 2637 else 2638 __hci_req_enable_advertising(req); 2639 } 2640 } 2641 2642 hci_dev_unlock(hdev); 2643 2644 return 0; 2645 } 2646 2647 static void discoverable_update_work(struct work_struct *work) 2648 { 2649 struct hci_dev *hdev = container_of(work, struct hci_dev, 2650 discoverable_update); 2651 u8 status; 2652 2653 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status); 2654 mgmt_set_discoverable_complete(hdev, status); 2655 } 2656 2657 void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn, 2658 u8 reason) 2659 { 2660 switch (conn->state) { 2661 case BT_CONNECTED: 2662 case BT_CONFIG: 2663 if (conn->type == AMP_LINK) { 2664 struct hci_cp_disconn_phy_link cp; 2665 2666 cp.phy_handle = HCI_PHY_HANDLE(conn->handle); 2667 cp.reason = reason; 2668 hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp), 2669 &cp); 2670 } else { 2671 struct hci_cp_disconnect dc; 2672 2673 dc.handle = cpu_to_le16(conn->handle); 2674 dc.reason = reason; 2675 hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc); 2676 } 2677 2678 conn->state = BT_DISCONN; 2679 2680 break; 2681 case BT_CONNECT: 2682 if (conn->type == LE_LINK) { 2683 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 2684 break; 2685 hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL, 2686 0, NULL); 2687 } else if (conn->type == ACL_LINK) { 2688 if (req->hdev->hci_ver < BLUETOOTH_VER_1_2) 2689 break; 2690 hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL, 2691 6, &conn->dst); 2692 } 2693 break; 2694 case BT_CONNECT2: 2695 if (conn->type == ACL_LINK) { 2696 struct hci_cp_reject_conn_req rej; 2697 2698 bacpy(&rej.bdaddr, &conn->dst); 2699 rej.reason = reason; 2700 2701 hci_req_add(req, HCI_OP_REJECT_CONN_REQ, 2702 sizeof(rej), &rej); 2703 } else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) { 2704 struct hci_cp_reject_sync_conn_req rej; 2705 2706 bacpy(&rej.bdaddr, &conn->dst); 2707 2708 /* SCO rejection has its own limited set of 2709 * allowed error values (0x0D-0x0F) which isn't 2710 * compatible with most values passed to this 2711 * function. To be safe hard-code one of the 2712 * values that's suitable for SCO. 2713 */ 2714 rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; 2715 2716 hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ, 2717 sizeof(rej), &rej); 2718 } 2719 break; 2720 default: 2721 conn->state = BT_CLOSED; 2722 break; 2723 } 2724 } 2725 2726 static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode) 2727 { 2728 if (status) 2729 BT_DBG("Failed to abort connection: status 0x%2.2x", status); 2730 } 2731 2732 int hci_abort_conn(struct hci_conn *conn, u8 reason) 2733 { 2734 struct hci_request req; 2735 int err; 2736 2737 hci_req_init(&req, conn->hdev); 2738 2739 __hci_abort_conn(&req, conn, reason); 2740 2741 err = hci_req_run(&req, abort_conn_complete); 2742 if (err && err != -ENODATA) { 2743 bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err); 2744 return err; 2745 } 2746 2747 return 0; 2748 } 2749 2750 static int update_bg_scan(struct hci_request *req, unsigned long opt) 2751 { 2752 hci_dev_lock(req->hdev); 2753 __hci_update_background_scan(req); 2754 hci_dev_unlock(req->hdev); 2755 return 0; 2756 } 2757 2758 static void bg_scan_update(struct work_struct *work) 2759 { 2760 struct hci_dev *hdev = container_of(work, struct hci_dev, 2761 bg_scan_update); 2762 struct hci_conn *conn; 2763 u8 status; 2764 int err; 2765 2766 err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status); 2767 if (!err) 2768 return; 2769 2770 hci_dev_lock(hdev); 2771 2772 conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT); 2773 if (conn) 2774 hci_le_conn_failed(conn, status); 2775 2776 hci_dev_unlock(hdev); 2777 } 2778 2779 static int le_scan_disable(struct hci_request *req, unsigned long opt) 2780 { 2781 hci_req_add_le_scan_disable(req, false); 2782 return 0; 2783 } 2784 2785 static int bredr_inquiry(struct hci_request *req, unsigned long opt) 2786 { 2787 u8 length = opt; 2788 const u8 giac[3] = { 0x33, 0x8b, 0x9e }; 2789 const u8 liac[3] = { 0x00, 0x8b, 0x9e }; 2790 struct hci_cp_inquiry cp; 2791 2792 BT_DBG("%s", req->hdev->name); 2793 2794 hci_dev_lock(req->hdev); 2795 hci_inquiry_cache_flush(req->hdev); 2796 hci_dev_unlock(req->hdev); 2797 2798 memset(&cp, 0, sizeof(cp)); 2799 2800 if (req->hdev->discovery.limited) 2801 memcpy(&cp.lap, liac, sizeof(cp.lap)); 2802 else 2803 memcpy(&cp.lap, giac, sizeof(cp.lap)); 2804 2805 cp.length = length; 2806 2807 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp); 2808 2809 return 0; 2810 } 2811 2812 static void le_scan_disable_work(struct work_struct *work) 2813 { 2814 struct hci_dev *hdev = container_of(work, struct hci_dev, 2815 le_scan_disable.work); 2816 u8 status; 2817 2818 BT_DBG("%s", hdev->name); 2819 2820 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 2821 return; 2822 2823 cancel_delayed_work(&hdev->le_scan_restart); 2824 2825 hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status); 2826 if (status) { 2827 bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x", 2828 status); 2829 return; 2830 } 2831 2832 hdev->discovery.scan_start = 0; 2833 2834 /* If we were running LE only scan, change discovery state. If 2835 * we were running both LE and BR/EDR inquiry simultaneously, 2836 * and BR/EDR inquiry is already finished, stop discovery, 2837 * otherwise BR/EDR inquiry will stop discovery when finished. 2838 * If we will resolve remote device name, do not change 2839 * discovery state. 2840 */ 2841 2842 if (hdev->discovery.type == DISCOV_TYPE_LE) 2843 goto discov_stopped; 2844 2845 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED) 2846 return; 2847 2848 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) { 2849 if (!test_bit(HCI_INQUIRY, &hdev->flags) && 2850 hdev->discovery.state != DISCOVERY_RESOLVING) 2851 goto discov_stopped; 2852 2853 return; 2854 } 2855 2856 hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN, 2857 HCI_CMD_TIMEOUT, &status); 2858 if (status) { 2859 bt_dev_err(hdev, "inquiry failed: status 0x%02x", status); 2860 goto discov_stopped; 2861 } 2862 2863 return; 2864 2865 discov_stopped: 2866 hci_dev_lock(hdev); 2867 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 2868 hci_dev_unlock(hdev); 2869 } 2870 2871 static int le_scan_restart(struct hci_request *req, unsigned long opt) 2872 { 2873 struct hci_dev *hdev = req->hdev; 2874 2875 /* If controller is not scanning we are done. */ 2876 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 2877 return 0; 2878 2879 if (hdev->scanning_paused) { 2880 bt_dev_dbg(hdev, "Scanning is paused for suspend"); 2881 return 0; 2882 } 2883 2884 hci_req_add_le_scan_disable(req, false); 2885 2886 if (use_ext_scan(hdev)) { 2887 struct hci_cp_le_set_ext_scan_enable ext_enable_cp; 2888 2889 memset(&ext_enable_cp, 0, sizeof(ext_enable_cp)); 2890 ext_enable_cp.enable = LE_SCAN_ENABLE; 2891 ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 2892 2893 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 2894 sizeof(ext_enable_cp), &ext_enable_cp); 2895 } else { 2896 struct hci_cp_le_set_scan_enable cp; 2897 2898 memset(&cp, 0, sizeof(cp)); 2899 cp.enable = LE_SCAN_ENABLE; 2900 cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 2901 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp); 2902 } 2903 2904 return 0; 2905 } 2906 2907 static void le_scan_restart_work(struct work_struct *work) 2908 { 2909 struct hci_dev *hdev = container_of(work, struct hci_dev, 2910 le_scan_restart.work); 2911 unsigned long timeout, duration, scan_start, now; 2912 u8 status; 2913 2914 BT_DBG("%s", hdev->name); 2915 2916 hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status); 2917 if (status) { 2918 bt_dev_err(hdev, "failed to restart LE scan: status %d", 2919 status); 2920 return; 2921 } 2922 2923 hci_dev_lock(hdev); 2924 2925 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) || 2926 !hdev->discovery.scan_start) 2927 goto unlock; 2928 2929 /* When the scan was started, hdev->le_scan_disable has been queued 2930 * after duration from scan_start. During scan restart this job 2931 * has been canceled, and we need to queue it again after proper 2932 * timeout, to make sure that scan does not run indefinitely. 2933 */ 2934 duration = hdev->discovery.scan_duration; 2935 scan_start = hdev->discovery.scan_start; 2936 now = jiffies; 2937 if (now - scan_start <= duration) { 2938 int elapsed; 2939 2940 if (now >= scan_start) 2941 elapsed = now - scan_start; 2942 else 2943 elapsed = ULONG_MAX - scan_start + now; 2944 2945 timeout = duration - elapsed; 2946 } else { 2947 timeout = 0; 2948 } 2949 2950 queue_delayed_work(hdev->req_workqueue, 2951 &hdev->le_scan_disable, timeout); 2952 2953 unlock: 2954 hci_dev_unlock(hdev); 2955 } 2956 2957 static int active_scan(struct hci_request *req, unsigned long opt) 2958 { 2959 uint16_t interval = opt; 2960 struct hci_dev *hdev = req->hdev; 2961 u8 own_addr_type; 2962 /* White list is not used for discovery */ 2963 u8 filter_policy = 0x00; 2964 /* Discovery doesn't require controller address resolution */ 2965 bool addr_resolv = false; 2966 int err; 2967 2968 BT_DBG("%s", hdev->name); 2969 2970 /* If controller is scanning, it means the background scanning is 2971 * running. Thus, we should temporarily stop it in order to set the 2972 * discovery scanning parameters. 2973 */ 2974 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) 2975 hci_req_add_le_scan_disable(req, false); 2976 2977 /* All active scans will be done with either a resolvable private 2978 * address (when privacy feature has been enabled) or non-resolvable 2979 * private address. 2980 */ 2981 err = hci_update_random_address(req, true, scan_use_rpa(hdev), 2982 &own_addr_type); 2983 if (err < 0) 2984 own_addr_type = ADDR_LE_DEV_PUBLIC; 2985 2986 hci_req_start_scan(req, LE_SCAN_ACTIVE, interval, 2987 hdev->le_scan_window_discovery, own_addr_type, 2988 filter_policy, addr_resolv); 2989 return 0; 2990 } 2991 2992 static int interleaved_discov(struct hci_request *req, unsigned long opt) 2993 { 2994 int err; 2995 2996 BT_DBG("%s", req->hdev->name); 2997 2998 err = active_scan(req, opt); 2999 if (err) 3000 return err; 3001 3002 return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN); 3003 } 3004 3005 static void start_discovery(struct hci_dev *hdev, u8 *status) 3006 { 3007 unsigned long timeout; 3008 3009 BT_DBG("%s type %u", hdev->name, hdev->discovery.type); 3010 3011 switch (hdev->discovery.type) { 3012 case DISCOV_TYPE_BREDR: 3013 if (!hci_dev_test_flag(hdev, HCI_INQUIRY)) 3014 hci_req_sync(hdev, bredr_inquiry, 3015 DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT, 3016 status); 3017 return; 3018 case DISCOV_TYPE_INTERLEAVED: 3019 /* When running simultaneous discovery, the LE scanning time 3020 * should occupy the whole discovery time sine BR/EDR inquiry 3021 * and LE scanning are scheduled by the controller. 3022 * 3023 * For interleaving discovery in comparison, BR/EDR inquiry 3024 * and LE scanning are done sequentially with separate 3025 * timeouts. 3026 */ 3027 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, 3028 &hdev->quirks)) { 3029 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 3030 /* During simultaneous discovery, we double LE scan 3031 * interval. We must leave some time for the controller 3032 * to do BR/EDR inquiry. 3033 */ 3034 hci_req_sync(hdev, interleaved_discov, 3035 hdev->le_scan_int_discovery * 2, HCI_CMD_TIMEOUT, 3036 status); 3037 break; 3038 } 3039 3040 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); 3041 hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery, 3042 HCI_CMD_TIMEOUT, status); 3043 break; 3044 case DISCOV_TYPE_LE: 3045 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 3046 hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery, 3047 HCI_CMD_TIMEOUT, status); 3048 break; 3049 default: 3050 *status = HCI_ERROR_UNSPECIFIED; 3051 return; 3052 } 3053 3054 if (*status) 3055 return; 3056 3057 BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout)); 3058 3059 /* When service discovery is used and the controller has a 3060 * strict duplicate filter, it is important to remember the 3061 * start and duration of the scan. This is required for 3062 * restarting scanning during the discovery phase. 3063 */ 3064 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && 3065 hdev->discovery.result_filtering) { 3066 hdev->discovery.scan_start = jiffies; 3067 hdev->discovery.scan_duration = timeout; 3068 } 3069 3070 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, 3071 timeout); 3072 } 3073 3074 bool hci_req_stop_discovery(struct hci_request *req) 3075 { 3076 struct hci_dev *hdev = req->hdev; 3077 struct discovery_state *d = &hdev->discovery; 3078 struct hci_cp_remote_name_req_cancel cp; 3079 struct inquiry_entry *e; 3080 bool ret = false; 3081 3082 BT_DBG("%s state %u", hdev->name, hdev->discovery.state); 3083 3084 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { 3085 if (test_bit(HCI_INQUIRY, &hdev->flags)) 3086 hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL); 3087 3088 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 3089 cancel_delayed_work(&hdev->le_scan_disable); 3090 hci_req_add_le_scan_disable(req, false); 3091 } 3092 3093 ret = true; 3094 } else { 3095 /* Passive scanning */ 3096 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 3097 hci_req_add_le_scan_disable(req, false); 3098 ret = true; 3099 } 3100 } 3101 3102 /* No further actions needed for LE-only discovery */ 3103 if (d->type == DISCOV_TYPE_LE) 3104 return ret; 3105 3106 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { 3107 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, 3108 NAME_PENDING); 3109 if (!e) 3110 return ret; 3111 3112 bacpy(&cp.bdaddr, &e->data.bdaddr); 3113 hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp), 3114 &cp); 3115 ret = true; 3116 } 3117 3118 return ret; 3119 } 3120 3121 static int stop_discovery(struct hci_request *req, unsigned long opt) 3122 { 3123 hci_dev_lock(req->hdev); 3124 hci_req_stop_discovery(req); 3125 hci_dev_unlock(req->hdev); 3126 3127 return 0; 3128 } 3129 3130 static void discov_update(struct work_struct *work) 3131 { 3132 struct hci_dev *hdev = container_of(work, struct hci_dev, 3133 discov_update); 3134 u8 status = 0; 3135 3136 switch (hdev->discovery.state) { 3137 case DISCOVERY_STARTING: 3138 start_discovery(hdev, &status); 3139 mgmt_start_discovery_complete(hdev, status); 3140 if (status) 3141 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 3142 else 3143 hci_discovery_set_state(hdev, DISCOVERY_FINDING); 3144 break; 3145 case DISCOVERY_STOPPING: 3146 hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status); 3147 mgmt_stop_discovery_complete(hdev, status); 3148 if (!status) 3149 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 3150 break; 3151 case DISCOVERY_STOPPED: 3152 default: 3153 return; 3154 } 3155 } 3156 3157 static void discov_off(struct work_struct *work) 3158 { 3159 struct hci_dev *hdev = container_of(work, struct hci_dev, 3160 discov_off.work); 3161 3162 BT_DBG("%s", hdev->name); 3163 3164 hci_dev_lock(hdev); 3165 3166 /* When discoverable timeout triggers, then just make sure 3167 * the limited discoverable flag is cleared. Even in the case 3168 * of a timeout triggered from general discoverable, it is 3169 * safe to unconditionally clear the flag. 3170 */ 3171 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 3172 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 3173 hdev->discov_timeout = 0; 3174 3175 hci_dev_unlock(hdev); 3176 3177 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL); 3178 mgmt_new_settings(hdev); 3179 } 3180 3181 static int powered_update_hci(struct hci_request *req, unsigned long opt) 3182 { 3183 struct hci_dev *hdev = req->hdev; 3184 u8 link_sec; 3185 3186 hci_dev_lock(hdev); 3187 3188 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) && 3189 !lmp_host_ssp_capable(hdev)) { 3190 u8 mode = 0x01; 3191 3192 hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode); 3193 3194 if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) { 3195 u8 support = 0x01; 3196 3197 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT, 3198 sizeof(support), &support); 3199 } 3200 } 3201 3202 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) && 3203 lmp_bredr_capable(hdev)) { 3204 struct hci_cp_write_le_host_supported cp; 3205 3206 cp.le = 0x01; 3207 cp.simul = 0x00; 3208 3209 /* Check first if we already have the right 3210 * host state (host features set) 3211 */ 3212 if (cp.le != lmp_host_le_capable(hdev) || 3213 cp.simul != lmp_host_le_br_capable(hdev)) 3214 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, 3215 sizeof(cp), &cp); 3216 } 3217 3218 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 3219 /* Make sure the controller has a good default for 3220 * advertising data. This also applies to the case 3221 * where BR/EDR was toggled during the AUTO_OFF phase. 3222 */ 3223 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 3224 list_empty(&hdev->adv_instances)) { 3225 int err; 3226 3227 if (ext_adv_capable(hdev)) { 3228 err = __hci_req_setup_ext_adv_instance(req, 3229 0x00); 3230 if (!err) 3231 __hci_req_update_scan_rsp_data(req, 3232 0x00); 3233 } else { 3234 err = 0; 3235 __hci_req_update_adv_data(req, 0x00); 3236 __hci_req_update_scan_rsp_data(req, 0x00); 3237 } 3238 3239 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 3240 if (!ext_adv_capable(hdev)) 3241 __hci_req_enable_advertising(req); 3242 else if (!err) 3243 __hci_req_enable_ext_advertising(req, 3244 0x00); 3245 } 3246 } else if (!list_empty(&hdev->adv_instances)) { 3247 struct adv_info *adv_instance; 3248 3249 adv_instance = list_first_entry(&hdev->adv_instances, 3250 struct adv_info, list); 3251 __hci_req_schedule_adv_instance(req, 3252 adv_instance->instance, 3253 true); 3254 } 3255 } 3256 3257 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); 3258 if (link_sec != test_bit(HCI_AUTH, &hdev->flags)) 3259 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 3260 sizeof(link_sec), &link_sec); 3261 3262 if (lmp_bredr_capable(hdev)) { 3263 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) 3264 __hci_req_write_fast_connectable(req, true); 3265 else 3266 __hci_req_write_fast_connectable(req, false); 3267 __hci_req_update_scan(req); 3268 __hci_req_update_class(req); 3269 __hci_req_update_name(req); 3270 __hci_req_update_eir(req); 3271 } 3272 3273 hci_dev_unlock(hdev); 3274 return 0; 3275 } 3276 3277 int __hci_req_hci_power_on(struct hci_dev *hdev) 3278 { 3279 /* Register the available SMP channels (BR/EDR and LE) only when 3280 * successfully powering on the controller. This late 3281 * registration is required so that LE SMP can clearly decide if 3282 * the public address or static address is used. 3283 */ 3284 smp_register(hdev); 3285 3286 return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT, 3287 NULL); 3288 } 3289 3290 void hci_request_setup(struct hci_dev *hdev) 3291 { 3292 INIT_WORK(&hdev->discov_update, discov_update); 3293 INIT_WORK(&hdev->bg_scan_update, bg_scan_update); 3294 INIT_WORK(&hdev->scan_update, scan_update_work); 3295 INIT_WORK(&hdev->connectable_update, connectable_update_work); 3296 INIT_WORK(&hdev->discoverable_update, discoverable_update_work); 3297 INIT_DELAYED_WORK(&hdev->discov_off, discov_off); 3298 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work); 3299 INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work); 3300 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire); 3301 } 3302 3303 void hci_request_cancel_all(struct hci_dev *hdev) 3304 { 3305 hci_req_sync_cancel(hdev, ENODEV); 3306 3307 cancel_work_sync(&hdev->discov_update); 3308 cancel_work_sync(&hdev->bg_scan_update); 3309 cancel_work_sync(&hdev->scan_update); 3310 cancel_work_sync(&hdev->connectable_update); 3311 cancel_work_sync(&hdev->discoverable_update); 3312 cancel_delayed_work_sync(&hdev->discov_off); 3313 cancel_delayed_work_sync(&hdev->le_scan_disable); 3314 cancel_delayed_work_sync(&hdev->le_scan_restart); 3315 3316 if (hdev->adv_instance_timeout) { 3317 cancel_delayed_work_sync(&hdev->adv_instance_expire); 3318 hdev->adv_instance_timeout = 0; 3319 } 3320 } 3321