1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 4 Copyright (C) 2014 Intel Corporation 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License version 2 as 8 published by the Free Software Foundation; 9 10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 21 SOFTWARE IS DISCLAIMED. 22 */ 23 24 #include <linux/sched/signal.h> 25 26 #include <net/bluetooth/bluetooth.h> 27 #include <net/bluetooth/hci_core.h> 28 #include <net/bluetooth/mgmt.h> 29 30 #include "smp.h" 31 #include "hci_request.h" 32 33 #define HCI_REQ_DONE 0 34 #define HCI_REQ_PEND 1 35 #define HCI_REQ_CANCELED 2 36 37 void hci_req_init(struct hci_request *req, struct hci_dev *hdev) 38 { 39 skb_queue_head_init(&req->cmd_q); 40 req->hdev = hdev; 41 req->err = 0; 42 } 43 44 void hci_req_purge(struct hci_request *req) 45 { 46 skb_queue_purge(&req->cmd_q); 47 } 48 49 static int req_run(struct hci_request *req, hci_req_complete_t complete, 50 hci_req_complete_skb_t complete_skb) 51 { 52 struct hci_dev *hdev = req->hdev; 53 struct sk_buff *skb; 54 unsigned long flags; 55 56 BT_DBG("length %u", skb_queue_len(&req->cmd_q)); 57 58 /* If an error occurred during request building, remove all HCI 59 * commands queued on the HCI request queue. 60 */ 61 if (req->err) { 62 skb_queue_purge(&req->cmd_q); 63 return req->err; 64 } 65 66 /* Do not allow empty requests */ 67 if (skb_queue_empty(&req->cmd_q)) 68 return -ENODATA; 69 70 skb = skb_peek_tail(&req->cmd_q); 71 if (complete) { 72 bt_cb(skb)->hci.req_complete = complete; 73 } else if (complete_skb) { 74 bt_cb(skb)->hci.req_complete_skb = complete_skb; 75 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; 76 } 77 78 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 79 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); 80 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 81 82 queue_work(hdev->workqueue, &hdev->cmd_work); 83 84 return 0; 85 } 86 87 int hci_req_run(struct hci_request *req, hci_req_complete_t complete) 88 { 89 return req_run(req, complete, NULL); 90 } 91 92 int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete) 93 { 94 return req_run(req, NULL, complete); 95 } 96 97 static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, 98 struct sk_buff *skb) 99 { 100 BT_DBG("%s result 0x%2.2x", hdev->name, result); 101 102 if (hdev->req_status == HCI_REQ_PEND) { 103 hdev->req_result = result; 104 hdev->req_status = HCI_REQ_DONE; 105 if (skb) 106 hdev->req_skb = skb_get(skb); 107 wake_up_interruptible(&hdev->req_wait_q); 108 } 109 } 110 111 void hci_req_sync_cancel(struct hci_dev *hdev, int err) 112 { 113 BT_DBG("%s err 0x%2.2x", hdev->name, err); 114 115 if (hdev->req_status == HCI_REQ_PEND) { 116 hdev->req_result = err; 117 hdev->req_status = HCI_REQ_CANCELED; 118 wake_up_interruptible(&hdev->req_wait_q); 119 } 120 } 121 122 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 123 const void *param, u8 event, u32 timeout) 124 { 125 struct hci_request req; 126 struct sk_buff *skb; 127 int err = 0; 128 129 BT_DBG("%s", hdev->name); 130 131 hci_req_init(&req, hdev); 132 133 hci_req_add_ev(&req, opcode, plen, param, event); 134 135 hdev->req_status = HCI_REQ_PEND; 136 137 err = hci_req_run_skb(&req, hci_req_sync_complete); 138 if (err < 0) 139 return ERR_PTR(err); 140 141 err = wait_event_interruptible_timeout(hdev->req_wait_q, 142 hdev->req_status != HCI_REQ_PEND, timeout); 143 144 if (err == -ERESTARTSYS) 145 return ERR_PTR(-EINTR); 146 147 switch (hdev->req_status) { 148 case HCI_REQ_DONE: 149 err = -bt_to_errno(hdev->req_result); 150 break; 151 152 case HCI_REQ_CANCELED: 153 err = -hdev->req_result; 154 break; 155 156 default: 157 err = -ETIMEDOUT; 158 break; 159 } 160 161 hdev->req_status = hdev->req_result = 0; 162 skb = hdev->req_skb; 163 hdev->req_skb = NULL; 164 165 BT_DBG("%s end: err %d", hdev->name, err); 166 167 if (err < 0) { 168 kfree_skb(skb); 169 return ERR_PTR(err); 170 } 171 172 if (!skb) 173 return ERR_PTR(-ENODATA); 174 175 return skb; 176 } 177 EXPORT_SYMBOL(__hci_cmd_sync_ev); 178 179 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 180 const void *param, u32 timeout) 181 { 182 return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout); 183 } 184 EXPORT_SYMBOL(__hci_cmd_sync); 185 186 /* Execute request and wait for completion. */ 187 int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req, 188 unsigned long opt), 189 unsigned long opt, u32 timeout, u8 *hci_status) 190 { 191 struct hci_request req; 192 int err = 0; 193 194 BT_DBG("%s start", hdev->name); 195 196 hci_req_init(&req, hdev); 197 198 hdev->req_status = HCI_REQ_PEND; 199 200 err = func(&req, opt); 201 if (err) { 202 if (hci_status) 203 *hci_status = HCI_ERROR_UNSPECIFIED; 204 return err; 205 } 206 207 err = hci_req_run_skb(&req, hci_req_sync_complete); 208 if (err < 0) { 209 hdev->req_status = 0; 210 211 /* ENODATA means the HCI request command queue is empty. 212 * This can happen when a request with conditionals doesn't 213 * trigger any commands to be sent. This is normal behavior 214 * and should not trigger an error return. 215 */ 216 if (err == -ENODATA) { 217 if (hci_status) 218 *hci_status = 0; 219 return 0; 220 } 221 222 if (hci_status) 223 *hci_status = HCI_ERROR_UNSPECIFIED; 224 225 return err; 226 } 227 228 err = wait_event_interruptible_timeout(hdev->req_wait_q, 229 hdev->req_status != HCI_REQ_PEND, timeout); 230 231 if (err == -ERESTARTSYS) 232 return -EINTR; 233 234 switch (hdev->req_status) { 235 case HCI_REQ_DONE: 236 err = -bt_to_errno(hdev->req_result); 237 if (hci_status) 238 *hci_status = hdev->req_result; 239 break; 240 241 case HCI_REQ_CANCELED: 242 err = -hdev->req_result; 243 if (hci_status) 244 *hci_status = HCI_ERROR_UNSPECIFIED; 245 break; 246 247 default: 248 err = -ETIMEDOUT; 249 if (hci_status) 250 *hci_status = HCI_ERROR_UNSPECIFIED; 251 break; 252 } 253 254 kfree_skb(hdev->req_skb); 255 hdev->req_skb = NULL; 256 hdev->req_status = hdev->req_result = 0; 257 258 BT_DBG("%s end: err %d", hdev->name, err); 259 260 return err; 261 } 262 263 int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req, 264 unsigned long opt), 265 unsigned long opt, u32 timeout, u8 *hci_status) 266 { 267 int ret; 268 269 if (!test_bit(HCI_UP, &hdev->flags)) 270 return -ENETDOWN; 271 272 /* Serialize all requests */ 273 hci_req_sync_lock(hdev); 274 ret = __hci_req_sync(hdev, req, opt, timeout, hci_status); 275 hci_req_sync_unlock(hdev); 276 277 return ret; 278 } 279 280 struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen, 281 const void *param) 282 { 283 int len = HCI_COMMAND_HDR_SIZE + plen; 284 struct hci_command_hdr *hdr; 285 struct sk_buff *skb; 286 287 skb = bt_skb_alloc(len, GFP_ATOMIC); 288 if (!skb) 289 return NULL; 290 291 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); 292 hdr->opcode = cpu_to_le16(opcode); 293 hdr->plen = plen; 294 295 if (plen) 296 skb_put_data(skb, param, plen); 297 298 BT_DBG("skb len %d", skb->len); 299 300 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 301 hci_skb_opcode(skb) = opcode; 302 303 return skb; 304 } 305 306 /* Queue a command to an asynchronous HCI request */ 307 void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen, 308 const void *param, u8 event) 309 { 310 struct hci_dev *hdev = req->hdev; 311 struct sk_buff *skb; 312 313 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen); 314 315 /* If an error occurred during request building, there is no point in 316 * queueing the HCI command. We can simply return. 317 */ 318 if (req->err) 319 return; 320 321 skb = hci_prepare_cmd(hdev, opcode, plen, param); 322 if (!skb) { 323 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 324 opcode); 325 req->err = -ENOMEM; 326 return; 327 } 328 329 if (skb_queue_empty(&req->cmd_q)) 330 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 331 332 bt_cb(skb)->hci.req_event = event; 333 334 skb_queue_tail(&req->cmd_q, skb); 335 } 336 337 void hci_req_add(struct hci_request *req, u16 opcode, u32 plen, 338 const void *param) 339 { 340 hci_req_add_ev(req, opcode, plen, param, 0); 341 } 342 343 void __hci_req_write_fast_connectable(struct hci_request *req, bool enable) 344 { 345 struct hci_dev *hdev = req->hdev; 346 struct hci_cp_write_page_scan_activity acp; 347 u8 type; 348 349 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 350 return; 351 352 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 353 return; 354 355 if (enable) { 356 type = PAGE_SCAN_TYPE_INTERLACED; 357 358 /* 160 msec page scan interval */ 359 acp.interval = cpu_to_le16(0x0100); 360 } else { 361 type = PAGE_SCAN_TYPE_STANDARD; /* default */ 362 363 /* default 1.28 sec page scan */ 364 acp.interval = cpu_to_le16(0x0800); 365 } 366 367 acp.window = cpu_to_le16(0x0012); 368 369 if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval || 370 __cpu_to_le16(hdev->page_scan_window) != acp.window) 371 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 372 sizeof(acp), &acp); 373 374 if (hdev->page_scan_type != type) 375 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type); 376 } 377 378 /* This function controls the background scanning based on hdev->pend_le_conns 379 * list. If there are pending LE connection we start the background scanning, 380 * otherwise we stop it. 381 * 382 * This function requires the caller holds hdev->lock. 383 */ 384 static void __hci_update_background_scan(struct hci_request *req) 385 { 386 struct hci_dev *hdev = req->hdev; 387 388 if (!test_bit(HCI_UP, &hdev->flags) || 389 test_bit(HCI_INIT, &hdev->flags) || 390 hci_dev_test_flag(hdev, HCI_SETUP) || 391 hci_dev_test_flag(hdev, HCI_CONFIG) || 392 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 393 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 394 return; 395 396 /* No point in doing scanning if LE support hasn't been enabled */ 397 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 398 return; 399 400 /* If discovery is active don't interfere with it */ 401 if (hdev->discovery.state != DISCOVERY_STOPPED) 402 return; 403 404 /* Reset RSSI and UUID filters when starting background scanning 405 * since these filters are meant for service discovery only. 406 * 407 * The Start Discovery and Start Service Discovery operations 408 * ensure to set proper values for RSSI threshold and UUID 409 * filter list. So it is safe to just reset them here. 410 */ 411 hci_discovery_filter_clear(hdev); 412 413 if (list_empty(&hdev->pend_le_conns) && 414 list_empty(&hdev->pend_le_reports)) { 415 /* If there is no pending LE connections or devices 416 * to be scanned for, we should stop the background 417 * scanning. 418 */ 419 420 /* If controller is not scanning we are done. */ 421 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 422 return; 423 424 hci_req_add_le_scan_disable(req); 425 426 BT_DBG("%s stopping background scanning", hdev->name); 427 } else { 428 /* If there is at least one pending LE connection, we should 429 * keep the background scan running. 430 */ 431 432 /* If controller is connecting, we should not start scanning 433 * since some controllers are not able to scan and connect at 434 * the same time. 435 */ 436 if (hci_lookup_le_connect(hdev)) 437 return; 438 439 /* If controller is currently scanning, we stop it to ensure we 440 * don't miss any advertising (due to duplicates filter). 441 */ 442 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) 443 hci_req_add_le_scan_disable(req); 444 445 hci_req_add_le_passive_scan(req); 446 447 BT_DBG("%s starting background scanning", hdev->name); 448 } 449 } 450 451 void __hci_req_update_name(struct hci_request *req) 452 { 453 struct hci_dev *hdev = req->hdev; 454 struct hci_cp_write_local_name cp; 455 456 memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); 457 458 hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp); 459 } 460 461 #define PNP_INFO_SVCLASS_ID 0x1200 462 463 static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len) 464 { 465 u8 *ptr = data, *uuids_start = NULL; 466 struct bt_uuid *uuid; 467 468 if (len < 4) 469 return ptr; 470 471 list_for_each_entry(uuid, &hdev->uuids, list) { 472 u16 uuid16; 473 474 if (uuid->size != 16) 475 continue; 476 477 uuid16 = get_unaligned_le16(&uuid->uuid[12]); 478 if (uuid16 < 0x1100) 479 continue; 480 481 if (uuid16 == PNP_INFO_SVCLASS_ID) 482 continue; 483 484 if (!uuids_start) { 485 uuids_start = ptr; 486 uuids_start[0] = 1; 487 uuids_start[1] = EIR_UUID16_ALL; 488 ptr += 2; 489 } 490 491 /* Stop if not enough space to put next UUID */ 492 if ((ptr - data) + sizeof(u16) > len) { 493 uuids_start[1] = EIR_UUID16_SOME; 494 break; 495 } 496 497 *ptr++ = (uuid16 & 0x00ff); 498 *ptr++ = (uuid16 & 0xff00) >> 8; 499 uuids_start[0] += sizeof(uuid16); 500 } 501 502 return ptr; 503 } 504 505 static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len) 506 { 507 u8 *ptr = data, *uuids_start = NULL; 508 struct bt_uuid *uuid; 509 510 if (len < 6) 511 return ptr; 512 513 list_for_each_entry(uuid, &hdev->uuids, list) { 514 if (uuid->size != 32) 515 continue; 516 517 if (!uuids_start) { 518 uuids_start = ptr; 519 uuids_start[0] = 1; 520 uuids_start[1] = EIR_UUID32_ALL; 521 ptr += 2; 522 } 523 524 /* Stop if not enough space to put next UUID */ 525 if ((ptr - data) + sizeof(u32) > len) { 526 uuids_start[1] = EIR_UUID32_SOME; 527 break; 528 } 529 530 memcpy(ptr, &uuid->uuid[12], sizeof(u32)); 531 ptr += sizeof(u32); 532 uuids_start[0] += sizeof(u32); 533 } 534 535 return ptr; 536 } 537 538 static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len) 539 { 540 u8 *ptr = data, *uuids_start = NULL; 541 struct bt_uuid *uuid; 542 543 if (len < 18) 544 return ptr; 545 546 list_for_each_entry(uuid, &hdev->uuids, list) { 547 if (uuid->size != 128) 548 continue; 549 550 if (!uuids_start) { 551 uuids_start = ptr; 552 uuids_start[0] = 1; 553 uuids_start[1] = EIR_UUID128_ALL; 554 ptr += 2; 555 } 556 557 /* Stop if not enough space to put next UUID */ 558 if ((ptr - data) + 16 > len) { 559 uuids_start[1] = EIR_UUID128_SOME; 560 break; 561 } 562 563 memcpy(ptr, uuid->uuid, 16); 564 ptr += 16; 565 uuids_start[0] += 16; 566 } 567 568 return ptr; 569 } 570 571 static void create_eir(struct hci_dev *hdev, u8 *data) 572 { 573 u8 *ptr = data; 574 size_t name_len; 575 576 name_len = strlen(hdev->dev_name); 577 578 if (name_len > 0) { 579 /* EIR Data type */ 580 if (name_len > 48) { 581 name_len = 48; 582 ptr[1] = EIR_NAME_SHORT; 583 } else 584 ptr[1] = EIR_NAME_COMPLETE; 585 586 /* EIR Data length */ 587 ptr[0] = name_len + 1; 588 589 memcpy(ptr + 2, hdev->dev_name, name_len); 590 591 ptr += (name_len + 2); 592 } 593 594 if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) { 595 ptr[0] = 2; 596 ptr[1] = EIR_TX_POWER; 597 ptr[2] = (u8) hdev->inq_tx_power; 598 599 ptr += 3; 600 } 601 602 if (hdev->devid_source > 0) { 603 ptr[0] = 9; 604 ptr[1] = EIR_DEVICE_ID; 605 606 put_unaligned_le16(hdev->devid_source, ptr + 2); 607 put_unaligned_le16(hdev->devid_vendor, ptr + 4); 608 put_unaligned_le16(hdev->devid_product, ptr + 6); 609 put_unaligned_le16(hdev->devid_version, ptr + 8); 610 611 ptr += 10; 612 } 613 614 ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data)); 615 ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data)); 616 ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data)); 617 } 618 619 void __hci_req_update_eir(struct hci_request *req) 620 { 621 struct hci_dev *hdev = req->hdev; 622 struct hci_cp_write_eir cp; 623 624 if (!hdev_is_powered(hdev)) 625 return; 626 627 if (!lmp_ext_inq_capable(hdev)) 628 return; 629 630 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 631 return; 632 633 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 634 return; 635 636 memset(&cp, 0, sizeof(cp)); 637 638 create_eir(hdev, cp.data); 639 640 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) 641 return; 642 643 memcpy(hdev->eir, cp.data, sizeof(cp.data)); 644 645 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp); 646 } 647 648 void hci_req_add_le_scan_disable(struct hci_request *req) 649 { 650 struct hci_dev *hdev = req->hdev; 651 652 if (use_ext_scan(hdev)) { 653 struct hci_cp_le_set_ext_scan_enable cp; 654 655 memset(&cp, 0, sizeof(cp)); 656 cp.enable = LE_SCAN_DISABLE; 657 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp), 658 &cp); 659 } else { 660 struct hci_cp_le_set_scan_enable cp; 661 662 memset(&cp, 0, sizeof(cp)); 663 cp.enable = LE_SCAN_DISABLE; 664 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp); 665 } 666 } 667 668 static void add_to_white_list(struct hci_request *req, 669 struct hci_conn_params *params) 670 { 671 struct hci_cp_le_add_to_white_list cp; 672 673 cp.bdaddr_type = params->addr_type; 674 bacpy(&cp.bdaddr, ¶ms->addr); 675 676 hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp); 677 } 678 679 static u8 update_white_list(struct hci_request *req) 680 { 681 struct hci_dev *hdev = req->hdev; 682 struct hci_conn_params *params; 683 struct bdaddr_list *b; 684 uint8_t white_list_entries = 0; 685 686 /* Go through the current white list programmed into the 687 * controller one by one and check if that address is still 688 * in the list of pending connections or list of devices to 689 * report. If not present in either list, then queue the 690 * command to remove it from the controller. 691 */ 692 list_for_each_entry(b, &hdev->le_white_list, list) { 693 /* If the device is neither in pend_le_conns nor 694 * pend_le_reports then remove it from the whitelist. 695 */ 696 if (!hci_pend_le_action_lookup(&hdev->pend_le_conns, 697 &b->bdaddr, b->bdaddr_type) && 698 !hci_pend_le_action_lookup(&hdev->pend_le_reports, 699 &b->bdaddr, b->bdaddr_type)) { 700 struct hci_cp_le_del_from_white_list cp; 701 702 cp.bdaddr_type = b->bdaddr_type; 703 bacpy(&cp.bdaddr, &b->bdaddr); 704 705 hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST, 706 sizeof(cp), &cp); 707 continue; 708 } 709 710 if (hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) { 711 /* White list can not be used with RPAs */ 712 return 0x00; 713 } 714 715 white_list_entries++; 716 } 717 718 /* Since all no longer valid white list entries have been 719 * removed, walk through the list of pending connections 720 * and ensure that any new device gets programmed into 721 * the controller. 722 * 723 * If the list of the devices is larger than the list of 724 * available white list entries in the controller, then 725 * just abort and return filer policy value to not use the 726 * white list. 727 */ 728 list_for_each_entry(params, &hdev->pend_le_conns, action) { 729 if (hci_bdaddr_list_lookup(&hdev->le_white_list, 730 ¶ms->addr, params->addr_type)) 731 continue; 732 733 if (white_list_entries >= hdev->le_white_list_size) { 734 /* Select filter policy to accept all advertising */ 735 return 0x00; 736 } 737 738 if (hci_find_irk_by_addr(hdev, ¶ms->addr, 739 params->addr_type)) { 740 /* White list can not be used with RPAs */ 741 return 0x00; 742 } 743 744 white_list_entries++; 745 add_to_white_list(req, params); 746 } 747 748 /* After adding all new pending connections, walk through 749 * the list of pending reports and also add these to the 750 * white list if there is still space. 751 */ 752 list_for_each_entry(params, &hdev->pend_le_reports, action) { 753 if (hci_bdaddr_list_lookup(&hdev->le_white_list, 754 ¶ms->addr, params->addr_type)) 755 continue; 756 757 if (white_list_entries >= hdev->le_white_list_size) { 758 /* Select filter policy to accept all advertising */ 759 return 0x00; 760 } 761 762 if (hci_find_irk_by_addr(hdev, ¶ms->addr, 763 params->addr_type)) { 764 /* White list can not be used with RPAs */ 765 return 0x00; 766 } 767 768 white_list_entries++; 769 add_to_white_list(req, params); 770 } 771 772 /* Select filter policy to use white list */ 773 return 0x01; 774 } 775 776 static bool scan_use_rpa(struct hci_dev *hdev) 777 { 778 return hci_dev_test_flag(hdev, HCI_PRIVACY); 779 } 780 781 static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval, 782 u16 window, u8 own_addr_type, u8 filter_policy) 783 { 784 struct hci_dev *hdev = req->hdev; 785 786 /* Use ext scanning if set ext scan param and ext scan enable is 787 * supported 788 */ 789 if (use_ext_scan(hdev)) { 790 struct hci_cp_le_set_ext_scan_params *ext_param_cp; 791 struct hci_cp_le_set_ext_scan_enable ext_enable_cp; 792 struct hci_cp_le_scan_phy_params *phy_params; 793 u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2]; 794 u32 plen; 795 796 ext_param_cp = (void *)data; 797 phy_params = (void *)ext_param_cp->data; 798 799 memset(ext_param_cp, 0, sizeof(*ext_param_cp)); 800 ext_param_cp->own_addr_type = own_addr_type; 801 ext_param_cp->filter_policy = filter_policy; 802 803 plen = sizeof(*ext_param_cp); 804 805 if (scan_1m(hdev) || scan_2m(hdev)) { 806 ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M; 807 808 memset(phy_params, 0, sizeof(*phy_params)); 809 phy_params->type = type; 810 phy_params->interval = cpu_to_le16(interval); 811 phy_params->window = cpu_to_le16(window); 812 813 plen += sizeof(*phy_params); 814 phy_params++; 815 } 816 817 if (scan_coded(hdev)) { 818 ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED; 819 820 memset(phy_params, 0, sizeof(*phy_params)); 821 phy_params->type = type; 822 phy_params->interval = cpu_to_le16(interval); 823 phy_params->window = cpu_to_le16(window); 824 825 plen += sizeof(*phy_params); 826 phy_params++; 827 } 828 829 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS, 830 plen, ext_param_cp); 831 832 memset(&ext_enable_cp, 0, sizeof(ext_enable_cp)); 833 ext_enable_cp.enable = LE_SCAN_ENABLE; 834 ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 835 836 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 837 sizeof(ext_enable_cp), &ext_enable_cp); 838 } else { 839 struct hci_cp_le_set_scan_param param_cp; 840 struct hci_cp_le_set_scan_enable enable_cp; 841 842 memset(¶m_cp, 0, sizeof(param_cp)); 843 param_cp.type = type; 844 param_cp.interval = cpu_to_le16(interval); 845 param_cp.window = cpu_to_le16(window); 846 param_cp.own_address_type = own_addr_type; 847 param_cp.filter_policy = filter_policy; 848 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp), 849 ¶m_cp); 850 851 memset(&enable_cp, 0, sizeof(enable_cp)); 852 enable_cp.enable = LE_SCAN_ENABLE; 853 enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 854 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp), 855 &enable_cp); 856 } 857 } 858 859 void hci_req_add_le_passive_scan(struct hci_request *req) 860 { 861 struct hci_dev *hdev = req->hdev; 862 u8 own_addr_type; 863 u8 filter_policy; 864 865 /* Set require_privacy to false since no SCAN_REQ are send 866 * during passive scanning. Not using an non-resolvable address 867 * here is important so that peer devices using direct 868 * advertising with our address will be correctly reported 869 * by the controller. 870 */ 871 if (hci_update_random_address(req, false, scan_use_rpa(hdev), 872 &own_addr_type)) 873 return; 874 875 /* Adding or removing entries from the white list must 876 * happen before enabling scanning. The controller does 877 * not allow white list modification while scanning. 878 */ 879 filter_policy = update_white_list(req); 880 881 /* When the controller is using random resolvable addresses and 882 * with that having LE privacy enabled, then controllers with 883 * Extended Scanner Filter Policies support can now enable support 884 * for handling directed advertising. 885 * 886 * So instead of using filter polices 0x00 (no whitelist) 887 * and 0x01 (whitelist enabled) use the new filter policies 888 * 0x02 (no whitelist) and 0x03 (whitelist enabled). 889 */ 890 if (hci_dev_test_flag(hdev, HCI_PRIVACY) && 891 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) 892 filter_policy |= 0x02; 893 894 hci_req_start_scan(req, LE_SCAN_PASSIVE, hdev->le_scan_interval, 895 hdev->le_scan_window, own_addr_type, filter_policy); 896 } 897 898 static u8 get_adv_instance_scan_rsp_len(struct hci_dev *hdev, u8 instance) 899 { 900 struct adv_info *adv_instance; 901 902 /* Ignore instance 0 */ 903 if (instance == 0x00) 904 return 0; 905 906 adv_instance = hci_find_adv_instance(hdev, instance); 907 if (!adv_instance) 908 return 0; 909 910 /* TODO: Take into account the "appearance" and "local-name" flags here. 911 * These are currently being ignored as they are not supported. 912 */ 913 return adv_instance->scan_rsp_len; 914 } 915 916 static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev) 917 { 918 u8 instance = hdev->cur_adv_instance; 919 struct adv_info *adv_instance; 920 921 /* Ignore instance 0 */ 922 if (instance == 0x00) 923 return 0; 924 925 adv_instance = hci_find_adv_instance(hdev, instance); 926 if (!adv_instance) 927 return 0; 928 929 /* TODO: Take into account the "appearance" and "local-name" flags here. 930 * These are currently being ignored as they are not supported. 931 */ 932 return adv_instance->scan_rsp_len; 933 } 934 935 void __hci_req_disable_advertising(struct hci_request *req) 936 { 937 if (ext_adv_capable(req->hdev)) { 938 struct hci_cp_le_set_ext_adv_enable cp; 939 940 cp.enable = 0x00; 941 /* Disable all sets since we only support one set at the moment */ 942 cp.num_of_sets = 0x00; 943 944 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp), &cp); 945 } else { 946 u8 enable = 0x00; 947 948 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable); 949 } 950 } 951 952 static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance) 953 { 954 u32 flags; 955 struct adv_info *adv_instance; 956 957 if (instance == 0x00) { 958 /* Instance 0 always manages the "Tx Power" and "Flags" 959 * fields 960 */ 961 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS; 962 963 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting 964 * corresponds to the "connectable" instance flag. 965 */ 966 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE)) 967 flags |= MGMT_ADV_FLAG_CONNECTABLE; 968 969 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 970 flags |= MGMT_ADV_FLAG_LIMITED_DISCOV; 971 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 972 flags |= MGMT_ADV_FLAG_DISCOV; 973 974 return flags; 975 } 976 977 adv_instance = hci_find_adv_instance(hdev, instance); 978 979 /* Return 0 when we got an invalid instance identifier. */ 980 if (!adv_instance) 981 return 0; 982 983 return adv_instance->flags; 984 } 985 986 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) 987 { 988 /* If privacy is not enabled don't use RPA */ 989 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 990 return false; 991 992 /* If basic privacy mode is enabled use RPA */ 993 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 994 return true; 995 996 /* If limited privacy mode is enabled don't use RPA if we're 997 * both discoverable and bondable. 998 */ 999 if ((flags & MGMT_ADV_FLAG_DISCOV) && 1000 hci_dev_test_flag(hdev, HCI_BONDABLE)) 1001 return false; 1002 1003 /* We're neither bondable nor discoverable in the limited 1004 * privacy mode, therefore use RPA. 1005 */ 1006 return true; 1007 } 1008 1009 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) 1010 { 1011 /* If there is no connection we are OK to advertise. */ 1012 if (hci_conn_num(hdev, LE_LINK) == 0) 1013 return true; 1014 1015 /* Check le_states if there is any connection in slave role. */ 1016 if (hdev->conn_hash.le_num_slave > 0) { 1017 /* Slave connection state and non connectable mode bit 20. */ 1018 if (!connectable && !(hdev->le_states[2] & 0x10)) 1019 return false; 1020 1021 /* Slave connection state and connectable mode bit 38 1022 * and scannable bit 21. 1023 */ 1024 if (connectable && (!(hdev->le_states[4] & 0x40) || 1025 !(hdev->le_states[2] & 0x20))) 1026 return false; 1027 } 1028 1029 /* Check le_states if there is any connection in master role. */ 1030 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_slave) { 1031 /* Master connection state and non connectable mode bit 18. */ 1032 if (!connectable && !(hdev->le_states[2] & 0x02)) 1033 return false; 1034 1035 /* Master connection state and connectable mode bit 35 and 1036 * scannable 19. 1037 */ 1038 if (connectable && (!(hdev->le_states[4] & 0x08) || 1039 !(hdev->le_states[2] & 0x08))) 1040 return false; 1041 } 1042 1043 return true; 1044 } 1045 1046 void __hci_req_enable_advertising(struct hci_request *req) 1047 { 1048 struct hci_dev *hdev = req->hdev; 1049 struct hci_cp_le_set_adv_param cp; 1050 u8 own_addr_type, enable = 0x01; 1051 bool connectable; 1052 u32 flags; 1053 1054 flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance); 1055 1056 /* If the "connectable" instance flag was not set, then choose between 1057 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1058 */ 1059 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1060 mgmt_get_connectable(hdev); 1061 1062 if (!is_advertising_allowed(hdev, connectable)) 1063 return; 1064 1065 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) 1066 __hci_req_disable_advertising(req); 1067 1068 /* Clear the HCI_LE_ADV bit temporarily so that the 1069 * hci_update_random_address knows that it's safe to go ahead 1070 * and write a new random address. The flag will be set back on 1071 * as soon as the SET_ADV_ENABLE HCI command completes. 1072 */ 1073 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1074 1075 /* Set require_privacy to true only when non-connectable 1076 * advertising is used. In that case it is fine to use a 1077 * non-resolvable private address. 1078 */ 1079 if (hci_update_random_address(req, !connectable, 1080 adv_use_rpa(hdev, flags), 1081 &own_addr_type) < 0) 1082 return; 1083 1084 memset(&cp, 0, sizeof(cp)); 1085 cp.min_interval = cpu_to_le16(hdev->le_adv_min_interval); 1086 cp.max_interval = cpu_to_le16(hdev->le_adv_max_interval); 1087 1088 if (connectable) 1089 cp.type = LE_ADV_IND; 1090 else if (get_cur_adv_instance_scan_rsp_len(hdev)) 1091 cp.type = LE_ADV_SCAN_IND; 1092 else 1093 cp.type = LE_ADV_NONCONN_IND; 1094 1095 cp.own_address_type = own_addr_type; 1096 cp.channel_map = hdev->le_adv_channel_map; 1097 1098 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp); 1099 1100 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable); 1101 } 1102 1103 u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len) 1104 { 1105 size_t short_len; 1106 size_t complete_len; 1107 1108 /* no space left for name (+ NULL + type + len) */ 1109 if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3) 1110 return ad_len; 1111 1112 /* use complete name if present and fits */ 1113 complete_len = strlen(hdev->dev_name); 1114 if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH) 1115 return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE, 1116 hdev->dev_name, complete_len + 1); 1117 1118 /* use short name if present */ 1119 short_len = strlen(hdev->short_name); 1120 if (short_len) 1121 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, 1122 hdev->short_name, short_len + 1); 1123 1124 /* use shortened full name if present, we already know that name 1125 * is longer then HCI_MAX_SHORT_NAME_LENGTH 1126 */ 1127 if (complete_len) { 1128 u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1]; 1129 1130 memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH); 1131 name[HCI_MAX_SHORT_NAME_LENGTH] = '\0'; 1132 1133 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name, 1134 sizeof(name)); 1135 } 1136 1137 return ad_len; 1138 } 1139 1140 static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len) 1141 { 1142 return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance); 1143 } 1144 1145 static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr) 1146 { 1147 u8 scan_rsp_len = 0; 1148 1149 if (hdev->appearance) { 1150 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len); 1151 } 1152 1153 return append_local_name(hdev, ptr, scan_rsp_len); 1154 } 1155 1156 static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance, 1157 u8 *ptr) 1158 { 1159 struct adv_info *adv_instance; 1160 u32 instance_flags; 1161 u8 scan_rsp_len = 0; 1162 1163 adv_instance = hci_find_adv_instance(hdev, instance); 1164 if (!adv_instance) 1165 return 0; 1166 1167 instance_flags = adv_instance->flags; 1168 1169 if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) { 1170 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len); 1171 } 1172 1173 memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data, 1174 adv_instance->scan_rsp_len); 1175 1176 scan_rsp_len += adv_instance->scan_rsp_len; 1177 1178 if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME) 1179 scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len); 1180 1181 return scan_rsp_len; 1182 } 1183 1184 void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance) 1185 { 1186 struct hci_dev *hdev = req->hdev; 1187 u8 len; 1188 1189 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1190 return; 1191 1192 if (ext_adv_capable(hdev)) { 1193 struct hci_cp_le_set_ext_scan_rsp_data cp; 1194 1195 memset(&cp, 0, sizeof(cp)); 1196 1197 if (instance) 1198 len = create_instance_scan_rsp_data(hdev, instance, 1199 cp.data); 1200 else 1201 len = create_default_scan_rsp_data(hdev, cp.data); 1202 1203 if (hdev->scan_rsp_data_len == len && 1204 !memcmp(cp.data, hdev->scan_rsp_data, len)) 1205 return; 1206 1207 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 1208 hdev->scan_rsp_data_len = len; 1209 1210 cp.handle = 0; 1211 cp.length = len; 1212 cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1213 cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1214 1215 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, sizeof(cp), 1216 &cp); 1217 } else { 1218 struct hci_cp_le_set_scan_rsp_data cp; 1219 1220 memset(&cp, 0, sizeof(cp)); 1221 1222 if (instance) 1223 len = create_instance_scan_rsp_data(hdev, instance, 1224 cp.data); 1225 else 1226 len = create_default_scan_rsp_data(hdev, cp.data); 1227 1228 if (hdev->scan_rsp_data_len == len && 1229 !memcmp(cp.data, hdev->scan_rsp_data, len)) 1230 return; 1231 1232 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 1233 hdev->scan_rsp_data_len = len; 1234 1235 cp.length = len; 1236 1237 hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp); 1238 } 1239 } 1240 1241 static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr) 1242 { 1243 struct adv_info *adv_instance = NULL; 1244 u8 ad_len = 0, flags = 0; 1245 u32 instance_flags; 1246 1247 /* Return 0 when the current instance identifier is invalid. */ 1248 if (instance) { 1249 adv_instance = hci_find_adv_instance(hdev, instance); 1250 if (!adv_instance) 1251 return 0; 1252 } 1253 1254 instance_flags = get_adv_instance_flags(hdev, instance); 1255 1256 /* The Add Advertising command allows userspace to set both the general 1257 * and limited discoverable flags. 1258 */ 1259 if (instance_flags & MGMT_ADV_FLAG_DISCOV) 1260 flags |= LE_AD_GENERAL; 1261 1262 if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV) 1263 flags |= LE_AD_LIMITED; 1264 1265 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 1266 flags |= LE_AD_NO_BREDR; 1267 1268 if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) { 1269 /* If a discovery flag wasn't provided, simply use the global 1270 * settings. 1271 */ 1272 if (!flags) 1273 flags |= mgmt_get_adv_discov_flags(hdev); 1274 1275 /* If flags would still be empty, then there is no need to 1276 * include the "Flags" AD field". 1277 */ 1278 if (flags) { 1279 ptr[0] = 0x02; 1280 ptr[1] = EIR_FLAGS; 1281 ptr[2] = flags; 1282 1283 ad_len += 3; 1284 ptr += 3; 1285 } 1286 } 1287 1288 if (adv_instance) { 1289 memcpy(ptr, adv_instance->adv_data, 1290 adv_instance->adv_data_len); 1291 ad_len += adv_instance->adv_data_len; 1292 ptr += adv_instance->adv_data_len; 1293 } 1294 1295 if (instance_flags & MGMT_ADV_FLAG_TX_POWER) { 1296 s8 adv_tx_power; 1297 1298 if (ext_adv_capable(hdev)) { 1299 if (adv_instance) 1300 adv_tx_power = adv_instance->tx_power; 1301 else 1302 adv_tx_power = hdev->adv_tx_power; 1303 } else { 1304 adv_tx_power = hdev->adv_tx_power; 1305 } 1306 1307 /* Provide Tx Power only if we can provide a valid value for it */ 1308 if (adv_tx_power != HCI_TX_POWER_INVALID) { 1309 ptr[0] = 0x02; 1310 ptr[1] = EIR_TX_POWER; 1311 ptr[2] = (u8)adv_tx_power; 1312 1313 ad_len += 3; 1314 ptr += 3; 1315 } 1316 } 1317 1318 return ad_len; 1319 } 1320 1321 void __hci_req_update_adv_data(struct hci_request *req, u8 instance) 1322 { 1323 struct hci_dev *hdev = req->hdev; 1324 u8 len; 1325 1326 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1327 return; 1328 1329 if (ext_adv_capable(hdev)) { 1330 struct hci_cp_le_set_ext_adv_data cp; 1331 1332 memset(&cp, 0, sizeof(cp)); 1333 1334 len = create_instance_adv_data(hdev, instance, cp.data); 1335 1336 /* There's nothing to do if the data hasn't changed */ 1337 if (hdev->adv_data_len == len && 1338 memcmp(cp.data, hdev->adv_data, len) == 0) 1339 return; 1340 1341 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1342 hdev->adv_data_len = len; 1343 1344 cp.length = len; 1345 cp.handle = 0; 1346 cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; 1347 cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; 1348 1349 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA, sizeof(cp), &cp); 1350 } else { 1351 struct hci_cp_le_set_adv_data cp; 1352 1353 memset(&cp, 0, sizeof(cp)); 1354 1355 len = create_instance_adv_data(hdev, instance, cp.data); 1356 1357 /* There's nothing to do if the data hasn't changed */ 1358 if (hdev->adv_data_len == len && 1359 memcmp(cp.data, hdev->adv_data, len) == 0) 1360 return; 1361 1362 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1363 hdev->adv_data_len = len; 1364 1365 cp.length = len; 1366 1367 hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp); 1368 } 1369 } 1370 1371 int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance) 1372 { 1373 struct hci_request req; 1374 1375 hci_req_init(&req, hdev); 1376 __hci_req_update_adv_data(&req, instance); 1377 1378 return hci_req_run(&req, NULL); 1379 } 1380 1381 static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode) 1382 { 1383 BT_DBG("%s status %u", hdev->name, status); 1384 } 1385 1386 void hci_req_reenable_advertising(struct hci_dev *hdev) 1387 { 1388 struct hci_request req; 1389 1390 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 1391 list_empty(&hdev->adv_instances)) 1392 return; 1393 1394 hci_req_init(&req, hdev); 1395 1396 if (hdev->cur_adv_instance) { 1397 __hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance, 1398 true); 1399 } else { 1400 if (ext_adv_capable(hdev)) { 1401 __hci_req_start_ext_adv(&req, 0x00); 1402 } else { 1403 __hci_req_update_adv_data(&req, 0x00); 1404 __hci_req_update_scan_rsp_data(&req, 0x00); 1405 __hci_req_enable_advertising(&req); 1406 } 1407 } 1408 1409 hci_req_run(&req, adv_enable_complete); 1410 } 1411 1412 static void adv_timeout_expire(struct work_struct *work) 1413 { 1414 struct hci_dev *hdev = container_of(work, struct hci_dev, 1415 adv_instance_expire.work); 1416 1417 struct hci_request req; 1418 u8 instance; 1419 1420 BT_DBG("%s", hdev->name); 1421 1422 hci_dev_lock(hdev); 1423 1424 hdev->adv_instance_timeout = 0; 1425 1426 instance = hdev->cur_adv_instance; 1427 if (instance == 0x00) 1428 goto unlock; 1429 1430 hci_req_init(&req, hdev); 1431 1432 hci_req_clear_adv_instance(hdev, NULL, &req, instance, false); 1433 1434 if (list_empty(&hdev->adv_instances)) 1435 __hci_req_disable_advertising(&req); 1436 1437 hci_req_run(&req, NULL); 1438 1439 unlock: 1440 hci_dev_unlock(hdev); 1441 } 1442 1443 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy, 1444 bool use_rpa, struct adv_info *adv_instance, 1445 u8 *own_addr_type, bdaddr_t *rand_addr) 1446 { 1447 int err; 1448 1449 bacpy(rand_addr, BDADDR_ANY); 1450 1451 /* If privacy is enabled use a resolvable private address. If 1452 * current RPA has expired then generate a new one. 1453 */ 1454 if (use_rpa) { 1455 int to; 1456 1457 *own_addr_type = ADDR_LE_DEV_RANDOM; 1458 1459 if (adv_instance) { 1460 if (!adv_instance->rpa_expired && 1461 !bacmp(&adv_instance->random_addr, &hdev->rpa)) 1462 return 0; 1463 1464 adv_instance->rpa_expired = false; 1465 } else { 1466 if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) && 1467 !bacmp(&hdev->random_addr, &hdev->rpa)) 1468 return 0; 1469 } 1470 1471 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 1472 if (err < 0) { 1473 BT_ERR("%s failed to generate new RPA", hdev->name); 1474 return err; 1475 } 1476 1477 bacpy(rand_addr, &hdev->rpa); 1478 1479 to = msecs_to_jiffies(hdev->rpa_timeout * 1000); 1480 if (adv_instance) 1481 queue_delayed_work(hdev->workqueue, 1482 &adv_instance->rpa_expired_cb, to); 1483 else 1484 queue_delayed_work(hdev->workqueue, 1485 &hdev->rpa_expired, to); 1486 1487 return 0; 1488 } 1489 1490 /* In case of required privacy without resolvable private address, 1491 * use an non-resolvable private address. This is useful for 1492 * non-connectable advertising. 1493 */ 1494 if (require_privacy) { 1495 bdaddr_t nrpa; 1496 1497 while (true) { 1498 /* The non-resolvable private address is generated 1499 * from random six bytes with the two most significant 1500 * bits cleared. 1501 */ 1502 get_random_bytes(&nrpa, 6); 1503 nrpa.b[5] &= 0x3f; 1504 1505 /* The non-resolvable private address shall not be 1506 * equal to the public address. 1507 */ 1508 if (bacmp(&hdev->bdaddr, &nrpa)) 1509 break; 1510 } 1511 1512 *own_addr_type = ADDR_LE_DEV_RANDOM; 1513 bacpy(rand_addr, &nrpa); 1514 1515 return 0; 1516 } 1517 1518 /* No privacy so use a public address. */ 1519 *own_addr_type = ADDR_LE_DEV_PUBLIC; 1520 1521 return 0; 1522 } 1523 1524 void __hci_req_clear_ext_adv_sets(struct hci_request *req) 1525 { 1526 hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL); 1527 } 1528 1529 int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance) 1530 { 1531 struct hci_cp_le_set_ext_adv_params cp; 1532 struct hci_dev *hdev = req->hdev; 1533 bool connectable; 1534 u32 flags; 1535 bdaddr_t random_addr; 1536 u8 own_addr_type; 1537 int err; 1538 struct adv_info *adv_instance; 1539 bool secondary_adv; 1540 /* In ext adv set param interval is 3 octets */ 1541 const u8 adv_interval[3] = { 0x00, 0x08, 0x00 }; 1542 1543 if (instance > 0) { 1544 adv_instance = hci_find_adv_instance(hdev, instance); 1545 if (!adv_instance) 1546 return -EINVAL; 1547 } else { 1548 adv_instance = NULL; 1549 } 1550 1551 flags = get_adv_instance_flags(hdev, instance); 1552 1553 /* If the "connectable" instance flag was not set, then choose between 1554 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 1555 */ 1556 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 1557 mgmt_get_connectable(hdev); 1558 1559 if (!is_advertising_allowed(hdev, connectable)) 1560 return -EPERM; 1561 1562 /* Set require_privacy to true only when non-connectable 1563 * advertising is used. In that case it is fine to use a 1564 * non-resolvable private address. 1565 */ 1566 err = hci_get_random_address(hdev, !connectable, 1567 adv_use_rpa(hdev, flags), adv_instance, 1568 &own_addr_type, &random_addr); 1569 if (err < 0) 1570 return err; 1571 1572 memset(&cp, 0, sizeof(cp)); 1573 1574 memcpy(cp.min_interval, adv_interval, sizeof(cp.min_interval)); 1575 memcpy(cp.max_interval, adv_interval, sizeof(cp.max_interval)); 1576 1577 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); 1578 1579 if (connectable) { 1580 if (secondary_adv) 1581 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); 1582 else 1583 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); 1584 } else if (get_adv_instance_scan_rsp_len(hdev, instance)) { 1585 if (secondary_adv) 1586 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); 1587 else 1588 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); 1589 } else { 1590 if (secondary_adv) 1591 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); 1592 else 1593 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); 1594 } 1595 1596 cp.own_addr_type = own_addr_type; 1597 cp.channel_map = hdev->le_adv_channel_map; 1598 cp.tx_power = 127; 1599 cp.handle = 0; 1600 1601 if (flags & MGMT_ADV_FLAG_SEC_2M) { 1602 cp.primary_phy = HCI_ADV_PHY_1M; 1603 cp.secondary_phy = HCI_ADV_PHY_2M; 1604 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) { 1605 cp.primary_phy = HCI_ADV_PHY_CODED; 1606 cp.secondary_phy = HCI_ADV_PHY_CODED; 1607 } else { 1608 /* In all other cases use 1M */ 1609 cp.primary_phy = HCI_ADV_PHY_1M; 1610 cp.secondary_phy = HCI_ADV_PHY_1M; 1611 } 1612 1613 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp); 1614 1615 if (own_addr_type == ADDR_LE_DEV_RANDOM && 1616 bacmp(&random_addr, BDADDR_ANY)) { 1617 struct hci_cp_le_set_adv_set_rand_addr cp; 1618 1619 /* Check if random address need to be updated */ 1620 if (adv_instance) { 1621 if (!bacmp(&random_addr, &adv_instance->random_addr)) 1622 return 0; 1623 } else { 1624 if (!bacmp(&random_addr, &hdev->random_addr)) 1625 return 0; 1626 } 1627 1628 memset(&cp, 0, sizeof(cp)); 1629 1630 cp.handle = 0; 1631 bacpy(&cp.bdaddr, &random_addr); 1632 1633 hci_req_add(req, 1634 HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 1635 sizeof(cp), &cp); 1636 } 1637 1638 return 0; 1639 } 1640 1641 void __hci_req_enable_ext_advertising(struct hci_request *req) 1642 { 1643 struct hci_cp_le_set_ext_adv_enable *cp; 1644 struct hci_cp_ext_adv_set *adv_set; 1645 u8 data[sizeof(*cp) + sizeof(*adv_set) * 1]; 1646 1647 cp = (void *) data; 1648 adv_set = (void *) cp->data; 1649 1650 memset(cp, 0, sizeof(*cp)); 1651 1652 cp->enable = 0x01; 1653 cp->num_of_sets = 0x01; 1654 1655 memset(adv_set, 0, sizeof(*adv_set)); 1656 1657 adv_set->handle = 0; 1658 1659 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, 1660 sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets, 1661 data); 1662 } 1663 1664 int __hci_req_start_ext_adv(struct hci_request *req, u8 instance) 1665 { 1666 struct hci_dev *hdev = req->hdev; 1667 int err; 1668 1669 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) 1670 __hci_req_disable_advertising(req); 1671 1672 err = __hci_req_setup_ext_adv_instance(req, instance); 1673 if (err < 0) 1674 return err; 1675 1676 __hci_req_update_scan_rsp_data(req, instance); 1677 __hci_req_enable_ext_advertising(req); 1678 1679 return 0; 1680 } 1681 1682 int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance, 1683 bool force) 1684 { 1685 struct hci_dev *hdev = req->hdev; 1686 struct adv_info *adv_instance = NULL; 1687 u16 timeout; 1688 1689 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 1690 list_empty(&hdev->adv_instances)) 1691 return -EPERM; 1692 1693 if (hdev->adv_instance_timeout) 1694 return -EBUSY; 1695 1696 adv_instance = hci_find_adv_instance(hdev, instance); 1697 if (!adv_instance) 1698 return -ENOENT; 1699 1700 /* A zero timeout means unlimited advertising. As long as there is 1701 * only one instance, duration should be ignored. We still set a timeout 1702 * in case further instances are being added later on. 1703 * 1704 * If the remaining lifetime of the instance is more than the duration 1705 * then the timeout corresponds to the duration, otherwise it will be 1706 * reduced to the remaining instance lifetime. 1707 */ 1708 if (adv_instance->timeout == 0 || 1709 adv_instance->duration <= adv_instance->remaining_time) 1710 timeout = adv_instance->duration; 1711 else 1712 timeout = adv_instance->remaining_time; 1713 1714 /* The remaining time is being reduced unless the instance is being 1715 * advertised without time limit. 1716 */ 1717 if (adv_instance->timeout) 1718 adv_instance->remaining_time = 1719 adv_instance->remaining_time - timeout; 1720 1721 hdev->adv_instance_timeout = timeout; 1722 queue_delayed_work(hdev->req_workqueue, 1723 &hdev->adv_instance_expire, 1724 msecs_to_jiffies(timeout * 1000)); 1725 1726 /* If we're just re-scheduling the same instance again then do not 1727 * execute any HCI commands. This happens when a single instance is 1728 * being advertised. 1729 */ 1730 if (!force && hdev->cur_adv_instance == instance && 1731 hci_dev_test_flag(hdev, HCI_LE_ADV)) 1732 return 0; 1733 1734 hdev->cur_adv_instance = instance; 1735 if (ext_adv_capable(hdev)) { 1736 __hci_req_start_ext_adv(req, instance); 1737 } else { 1738 __hci_req_update_adv_data(req, instance); 1739 __hci_req_update_scan_rsp_data(req, instance); 1740 __hci_req_enable_advertising(req); 1741 } 1742 1743 return 0; 1744 } 1745 1746 static void cancel_adv_timeout(struct hci_dev *hdev) 1747 { 1748 if (hdev->adv_instance_timeout) { 1749 hdev->adv_instance_timeout = 0; 1750 cancel_delayed_work(&hdev->adv_instance_expire); 1751 } 1752 } 1753 1754 /* For a single instance: 1755 * - force == true: The instance will be removed even when its remaining 1756 * lifetime is not zero. 1757 * - force == false: the instance will be deactivated but kept stored unless 1758 * the remaining lifetime is zero. 1759 * 1760 * For instance == 0x00: 1761 * - force == true: All instances will be removed regardless of their timeout 1762 * setting. 1763 * - force == false: Only instances that have a timeout will be removed. 1764 */ 1765 void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk, 1766 struct hci_request *req, u8 instance, 1767 bool force) 1768 { 1769 struct adv_info *adv_instance, *n, *next_instance = NULL; 1770 int err; 1771 u8 rem_inst; 1772 1773 /* Cancel any timeout concerning the removed instance(s). */ 1774 if (!instance || hdev->cur_adv_instance == instance) 1775 cancel_adv_timeout(hdev); 1776 1777 /* Get the next instance to advertise BEFORE we remove 1778 * the current one. This can be the same instance again 1779 * if there is only one instance. 1780 */ 1781 if (instance && hdev->cur_adv_instance == instance) 1782 next_instance = hci_get_next_instance(hdev, instance); 1783 1784 if (instance == 0x00) { 1785 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, 1786 list) { 1787 if (!(force || adv_instance->timeout)) 1788 continue; 1789 1790 rem_inst = adv_instance->instance; 1791 err = hci_remove_adv_instance(hdev, rem_inst); 1792 if (!err) 1793 mgmt_advertising_removed(sk, hdev, rem_inst); 1794 } 1795 } else { 1796 adv_instance = hci_find_adv_instance(hdev, instance); 1797 1798 if (force || (adv_instance && adv_instance->timeout && 1799 !adv_instance->remaining_time)) { 1800 /* Don't advertise a removed instance. */ 1801 if (next_instance && 1802 next_instance->instance == instance) 1803 next_instance = NULL; 1804 1805 err = hci_remove_adv_instance(hdev, instance); 1806 if (!err) 1807 mgmt_advertising_removed(sk, hdev, instance); 1808 } 1809 } 1810 1811 if (!req || !hdev_is_powered(hdev) || 1812 hci_dev_test_flag(hdev, HCI_ADVERTISING)) 1813 return; 1814 1815 if (next_instance) 1816 __hci_req_schedule_adv_instance(req, next_instance->instance, 1817 false); 1818 } 1819 1820 static void set_random_addr(struct hci_request *req, bdaddr_t *rpa) 1821 { 1822 struct hci_dev *hdev = req->hdev; 1823 1824 /* If we're advertising or initiating an LE connection we can't 1825 * go ahead and change the random address at this time. This is 1826 * because the eventual initiator address used for the 1827 * subsequently created connection will be undefined (some 1828 * controllers use the new address and others the one we had 1829 * when the operation started). 1830 * 1831 * In this kind of scenario skip the update and let the random 1832 * address be updated at the next cycle. 1833 */ 1834 if (hci_dev_test_flag(hdev, HCI_LE_ADV) || 1835 hci_lookup_le_connect(hdev)) { 1836 BT_DBG("Deferring random address update"); 1837 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 1838 return; 1839 } 1840 1841 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa); 1842 } 1843 1844 int hci_update_random_address(struct hci_request *req, bool require_privacy, 1845 bool use_rpa, u8 *own_addr_type) 1846 { 1847 struct hci_dev *hdev = req->hdev; 1848 int err; 1849 1850 /* If privacy is enabled use a resolvable private address. If 1851 * current RPA has expired or there is something else than 1852 * the current RPA in use, then generate a new one. 1853 */ 1854 if (use_rpa) { 1855 int to; 1856 1857 *own_addr_type = ADDR_LE_DEV_RANDOM; 1858 1859 if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) && 1860 !bacmp(&hdev->random_addr, &hdev->rpa)) 1861 return 0; 1862 1863 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 1864 if (err < 0) { 1865 bt_dev_err(hdev, "failed to generate new RPA"); 1866 return err; 1867 } 1868 1869 set_random_addr(req, &hdev->rpa); 1870 1871 to = msecs_to_jiffies(hdev->rpa_timeout * 1000); 1872 queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to); 1873 1874 return 0; 1875 } 1876 1877 /* In case of required privacy without resolvable private address, 1878 * use an non-resolvable private address. This is useful for active 1879 * scanning and non-connectable advertising. 1880 */ 1881 if (require_privacy) { 1882 bdaddr_t nrpa; 1883 1884 while (true) { 1885 /* The non-resolvable private address is generated 1886 * from random six bytes with the two most significant 1887 * bits cleared. 1888 */ 1889 get_random_bytes(&nrpa, 6); 1890 nrpa.b[5] &= 0x3f; 1891 1892 /* The non-resolvable private address shall not be 1893 * equal to the public address. 1894 */ 1895 if (bacmp(&hdev->bdaddr, &nrpa)) 1896 break; 1897 } 1898 1899 *own_addr_type = ADDR_LE_DEV_RANDOM; 1900 set_random_addr(req, &nrpa); 1901 return 0; 1902 } 1903 1904 /* If forcing static address is in use or there is no public 1905 * address use the static address as random address (but skip 1906 * the HCI command if the current random address is already the 1907 * static one. 1908 * 1909 * In case BR/EDR has been disabled on a dual-mode controller 1910 * and a static address has been configured, then use that 1911 * address instead of the public BR/EDR address. 1912 */ 1913 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 1914 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 1915 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 1916 bacmp(&hdev->static_addr, BDADDR_ANY))) { 1917 *own_addr_type = ADDR_LE_DEV_RANDOM; 1918 if (bacmp(&hdev->static_addr, &hdev->random_addr)) 1919 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, 1920 &hdev->static_addr); 1921 return 0; 1922 } 1923 1924 /* Neither privacy nor static address is being used so use a 1925 * public address. 1926 */ 1927 *own_addr_type = ADDR_LE_DEV_PUBLIC; 1928 1929 return 0; 1930 } 1931 1932 static bool disconnected_whitelist_entries(struct hci_dev *hdev) 1933 { 1934 struct bdaddr_list *b; 1935 1936 list_for_each_entry(b, &hdev->whitelist, list) { 1937 struct hci_conn *conn; 1938 1939 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); 1940 if (!conn) 1941 return true; 1942 1943 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 1944 return true; 1945 } 1946 1947 return false; 1948 } 1949 1950 void __hci_req_update_scan(struct hci_request *req) 1951 { 1952 struct hci_dev *hdev = req->hdev; 1953 u8 scan; 1954 1955 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 1956 return; 1957 1958 if (!hdev_is_powered(hdev)) 1959 return; 1960 1961 if (mgmt_powering_down(hdev)) 1962 return; 1963 1964 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || 1965 disconnected_whitelist_entries(hdev)) 1966 scan = SCAN_PAGE; 1967 else 1968 scan = SCAN_DISABLED; 1969 1970 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 1971 scan |= SCAN_INQUIRY; 1972 1973 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && 1974 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) 1975 return; 1976 1977 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); 1978 } 1979 1980 static int update_scan(struct hci_request *req, unsigned long opt) 1981 { 1982 hci_dev_lock(req->hdev); 1983 __hci_req_update_scan(req); 1984 hci_dev_unlock(req->hdev); 1985 return 0; 1986 } 1987 1988 static void scan_update_work(struct work_struct *work) 1989 { 1990 struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update); 1991 1992 hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL); 1993 } 1994 1995 static int connectable_update(struct hci_request *req, unsigned long opt) 1996 { 1997 struct hci_dev *hdev = req->hdev; 1998 1999 hci_dev_lock(hdev); 2000 2001 __hci_req_update_scan(req); 2002 2003 /* If BR/EDR is not enabled and we disable advertising as a 2004 * by-product of disabling connectable, we need to update the 2005 * advertising flags. 2006 */ 2007 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 2008 __hci_req_update_adv_data(req, hdev->cur_adv_instance); 2009 2010 /* Update the advertising parameters if necessary */ 2011 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 2012 !list_empty(&hdev->adv_instances)) { 2013 if (ext_adv_capable(hdev)) 2014 __hci_req_start_ext_adv(req, hdev->cur_adv_instance); 2015 else 2016 __hci_req_enable_advertising(req); 2017 } 2018 2019 __hci_update_background_scan(req); 2020 2021 hci_dev_unlock(hdev); 2022 2023 return 0; 2024 } 2025 2026 static void connectable_update_work(struct work_struct *work) 2027 { 2028 struct hci_dev *hdev = container_of(work, struct hci_dev, 2029 connectable_update); 2030 u8 status; 2031 2032 hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status); 2033 mgmt_set_connectable_complete(hdev, status); 2034 } 2035 2036 static u8 get_service_classes(struct hci_dev *hdev) 2037 { 2038 struct bt_uuid *uuid; 2039 u8 val = 0; 2040 2041 list_for_each_entry(uuid, &hdev->uuids, list) 2042 val |= uuid->svc_hint; 2043 2044 return val; 2045 } 2046 2047 void __hci_req_update_class(struct hci_request *req) 2048 { 2049 struct hci_dev *hdev = req->hdev; 2050 u8 cod[3]; 2051 2052 BT_DBG("%s", hdev->name); 2053 2054 if (!hdev_is_powered(hdev)) 2055 return; 2056 2057 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 2058 return; 2059 2060 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 2061 return; 2062 2063 cod[0] = hdev->minor_class; 2064 cod[1] = hdev->major_class; 2065 cod[2] = get_service_classes(hdev); 2066 2067 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 2068 cod[1] |= 0x20; 2069 2070 if (memcmp(cod, hdev->dev_class, 3) == 0) 2071 return; 2072 2073 hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod); 2074 } 2075 2076 static void write_iac(struct hci_request *req) 2077 { 2078 struct hci_dev *hdev = req->hdev; 2079 struct hci_cp_write_current_iac_lap cp; 2080 2081 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 2082 return; 2083 2084 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 2085 /* Limited discoverable mode */ 2086 cp.num_iac = min_t(u8, hdev->num_iac, 2); 2087 cp.iac_lap[0] = 0x00; /* LIAC */ 2088 cp.iac_lap[1] = 0x8b; 2089 cp.iac_lap[2] = 0x9e; 2090 cp.iac_lap[3] = 0x33; /* GIAC */ 2091 cp.iac_lap[4] = 0x8b; 2092 cp.iac_lap[5] = 0x9e; 2093 } else { 2094 /* General discoverable mode */ 2095 cp.num_iac = 1; 2096 cp.iac_lap[0] = 0x33; /* GIAC */ 2097 cp.iac_lap[1] = 0x8b; 2098 cp.iac_lap[2] = 0x9e; 2099 } 2100 2101 hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP, 2102 (cp.num_iac * 3) + 1, &cp); 2103 } 2104 2105 static int discoverable_update(struct hci_request *req, unsigned long opt) 2106 { 2107 struct hci_dev *hdev = req->hdev; 2108 2109 hci_dev_lock(hdev); 2110 2111 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 2112 write_iac(req); 2113 __hci_req_update_scan(req); 2114 __hci_req_update_class(req); 2115 } 2116 2117 /* Advertising instances don't use the global discoverable setting, so 2118 * only update AD if advertising was enabled using Set Advertising. 2119 */ 2120 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 2121 __hci_req_update_adv_data(req, 0x00); 2122 2123 /* Discoverable mode affects the local advertising 2124 * address in limited privacy mode. 2125 */ 2126 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { 2127 if (ext_adv_capable(hdev)) 2128 __hci_req_start_ext_adv(req, 0x00); 2129 else 2130 __hci_req_enable_advertising(req); 2131 } 2132 } 2133 2134 hci_dev_unlock(hdev); 2135 2136 return 0; 2137 } 2138 2139 static void discoverable_update_work(struct work_struct *work) 2140 { 2141 struct hci_dev *hdev = container_of(work, struct hci_dev, 2142 discoverable_update); 2143 u8 status; 2144 2145 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status); 2146 mgmt_set_discoverable_complete(hdev, status); 2147 } 2148 2149 void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn, 2150 u8 reason) 2151 { 2152 switch (conn->state) { 2153 case BT_CONNECTED: 2154 case BT_CONFIG: 2155 if (conn->type == AMP_LINK) { 2156 struct hci_cp_disconn_phy_link cp; 2157 2158 cp.phy_handle = HCI_PHY_HANDLE(conn->handle); 2159 cp.reason = reason; 2160 hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp), 2161 &cp); 2162 } else { 2163 struct hci_cp_disconnect dc; 2164 2165 dc.handle = cpu_to_le16(conn->handle); 2166 dc.reason = reason; 2167 hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc); 2168 } 2169 2170 conn->state = BT_DISCONN; 2171 2172 break; 2173 case BT_CONNECT: 2174 if (conn->type == LE_LINK) { 2175 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 2176 break; 2177 hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL, 2178 0, NULL); 2179 } else if (conn->type == ACL_LINK) { 2180 if (req->hdev->hci_ver < BLUETOOTH_VER_1_2) 2181 break; 2182 hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL, 2183 6, &conn->dst); 2184 } 2185 break; 2186 case BT_CONNECT2: 2187 if (conn->type == ACL_LINK) { 2188 struct hci_cp_reject_conn_req rej; 2189 2190 bacpy(&rej.bdaddr, &conn->dst); 2191 rej.reason = reason; 2192 2193 hci_req_add(req, HCI_OP_REJECT_CONN_REQ, 2194 sizeof(rej), &rej); 2195 } else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) { 2196 struct hci_cp_reject_sync_conn_req rej; 2197 2198 bacpy(&rej.bdaddr, &conn->dst); 2199 2200 /* SCO rejection has its own limited set of 2201 * allowed error values (0x0D-0x0F) which isn't 2202 * compatible with most values passed to this 2203 * function. To be safe hard-code one of the 2204 * values that's suitable for SCO. 2205 */ 2206 rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; 2207 2208 hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ, 2209 sizeof(rej), &rej); 2210 } 2211 break; 2212 default: 2213 conn->state = BT_CLOSED; 2214 break; 2215 } 2216 } 2217 2218 static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode) 2219 { 2220 if (status) 2221 BT_DBG("Failed to abort connection: status 0x%2.2x", status); 2222 } 2223 2224 int hci_abort_conn(struct hci_conn *conn, u8 reason) 2225 { 2226 struct hci_request req; 2227 int err; 2228 2229 hci_req_init(&req, conn->hdev); 2230 2231 __hci_abort_conn(&req, conn, reason); 2232 2233 err = hci_req_run(&req, abort_conn_complete); 2234 if (err && err != -ENODATA) { 2235 bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err); 2236 return err; 2237 } 2238 2239 return 0; 2240 } 2241 2242 static int update_bg_scan(struct hci_request *req, unsigned long opt) 2243 { 2244 hci_dev_lock(req->hdev); 2245 __hci_update_background_scan(req); 2246 hci_dev_unlock(req->hdev); 2247 return 0; 2248 } 2249 2250 static void bg_scan_update(struct work_struct *work) 2251 { 2252 struct hci_dev *hdev = container_of(work, struct hci_dev, 2253 bg_scan_update); 2254 struct hci_conn *conn; 2255 u8 status; 2256 int err; 2257 2258 err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status); 2259 if (!err) 2260 return; 2261 2262 hci_dev_lock(hdev); 2263 2264 conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT); 2265 if (conn) 2266 hci_le_conn_failed(conn, status); 2267 2268 hci_dev_unlock(hdev); 2269 } 2270 2271 static int le_scan_disable(struct hci_request *req, unsigned long opt) 2272 { 2273 hci_req_add_le_scan_disable(req); 2274 return 0; 2275 } 2276 2277 static int bredr_inquiry(struct hci_request *req, unsigned long opt) 2278 { 2279 u8 length = opt; 2280 const u8 giac[3] = { 0x33, 0x8b, 0x9e }; 2281 const u8 liac[3] = { 0x00, 0x8b, 0x9e }; 2282 struct hci_cp_inquiry cp; 2283 2284 BT_DBG("%s", req->hdev->name); 2285 2286 hci_dev_lock(req->hdev); 2287 hci_inquiry_cache_flush(req->hdev); 2288 hci_dev_unlock(req->hdev); 2289 2290 memset(&cp, 0, sizeof(cp)); 2291 2292 if (req->hdev->discovery.limited) 2293 memcpy(&cp.lap, liac, sizeof(cp.lap)); 2294 else 2295 memcpy(&cp.lap, giac, sizeof(cp.lap)); 2296 2297 cp.length = length; 2298 2299 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp); 2300 2301 return 0; 2302 } 2303 2304 static void le_scan_disable_work(struct work_struct *work) 2305 { 2306 struct hci_dev *hdev = container_of(work, struct hci_dev, 2307 le_scan_disable.work); 2308 u8 status; 2309 2310 BT_DBG("%s", hdev->name); 2311 2312 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 2313 return; 2314 2315 cancel_delayed_work(&hdev->le_scan_restart); 2316 2317 hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status); 2318 if (status) { 2319 bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x", 2320 status); 2321 return; 2322 } 2323 2324 hdev->discovery.scan_start = 0; 2325 2326 /* If we were running LE only scan, change discovery state. If 2327 * we were running both LE and BR/EDR inquiry simultaneously, 2328 * and BR/EDR inquiry is already finished, stop discovery, 2329 * otherwise BR/EDR inquiry will stop discovery when finished. 2330 * If we will resolve remote device name, do not change 2331 * discovery state. 2332 */ 2333 2334 if (hdev->discovery.type == DISCOV_TYPE_LE) 2335 goto discov_stopped; 2336 2337 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED) 2338 return; 2339 2340 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) { 2341 if (!test_bit(HCI_INQUIRY, &hdev->flags) && 2342 hdev->discovery.state != DISCOVERY_RESOLVING) 2343 goto discov_stopped; 2344 2345 return; 2346 } 2347 2348 hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN, 2349 HCI_CMD_TIMEOUT, &status); 2350 if (status) { 2351 bt_dev_err(hdev, "inquiry failed: status 0x%02x", status); 2352 goto discov_stopped; 2353 } 2354 2355 return; 2356 2357 discov_stopped: 2358 hci_dev_lock(hdev); 2359 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 2360 hci_dev_unlock(hdev); 2361 } 2362 2363 static int le_scan_restart(struct hci_request *req, unsigned long opt) 2364 { 2365 struct hci_dev *hdev = req->hdev; 2366 2367 /* If controller is not scanning we are done. */ 2368 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 2369 return 0; 2370 2371 hci_req_add_le_scan_disable(req); 2372 2373 if (use_ext_scan(hdev)) { 2374 struct hci_cp_le_set_ext_scan_enable ext_enable_cp; 2375 2376 memset(&ext_enable_cp, 0, sizeof(ext_enable_cp)); 2377 ext_enable_cp.enable = LE_SCAN_ENABLE; 2378 ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 2379 2380 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, 2381 sizeof(ext_enable_cp), &ext_enable_cp); 2382 } else { 2383 struct hci_cp_le_set_scan_enable cp; 2384 2385 memset(&cp, 0, sizeof(cp)); 2386 cp.enable = LE_SCAN_ENABLE; 2387 cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 2388 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp); 2389 } 2390 2391 return 0; 2392 } 2393 2394 static void le_scan_restart_work(struct work_struct *work) 2395 { 2396 struct hci_dev *hdev = container_of(work, struct hci_dev, 2397 le_scan_restart.work); 2398 unsigned long timeout, duration, scan_start, now; 2399 u8 status; 2400 2401 BT_DBG("%s", hdev->name); 2402 2403 hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status); 2404 if (status) { 2405 bt_dev_err(hdev, "failed to restart LE scan: status %d", 2406 status); 2407 return; 2408 } 2409 2410 hci_dev_lock(hdev); 2411 2412 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) || 2413 !hdev->discovery.scan_start) 2414 goto unlock; 2415 2416 /* When the scan was started, hdev->le_scan_disable has been queued 2417 * after duration from scan_start. During scan restart this job 2418 * has been canceled, and we need to queue it again after proper 2419 * timeout, to make sure that scan does not run indefinitely. 2420 */ 2421 duration = hdev->discovery.scan_duration; 2422 scan_start = hdev->discovery.scan_start; 2423 now = jiffies; 2424 if (now - scan_start <= duration) { 2425 int elapsed; 2426 2427 if (now >= scan_start) 2428 elapsed = now - scan_start; 2429 else 2430 elapsed = ULONG_MAX - scan_start + now; 2431 2432 timeout = duration - elapsed; 2433 } else { 2434 timeout = 0; 2435 } 2436 2437 queue_delayed_work(hdev->req_workqueue, 2438 &hdev->le_scan_disable, timeout); 2439 2440 unlock: 2441 hci_dev_unlock(hdev); 2442 } 2443 2444 static int active_scan(struct hci_request *req, unsigned long opt) 2445 { 2446 uint16_t interval = opt; 2447 struct hci_dev *hdev = req->hdev; 2448 u8 own_addr_type; 2449 int err; 2450 2451 BT_DBG("%s", hdev->name); 2452 2453 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) { 2454 hci_dev_lock(hdev); 2455 2456 /* Don't let discovery abort an outgoing connection attempt 2457 * that's using directed advertising. 2458 */ 2459 if (hci_lookup_le_connect(hdev)) { 2460 hci_dev_unlock(hdev); 2461 return -EBUSY; 2462 } 2463 2464 cancel_adv_timeout(hdev); 2465 hci_dev_unlock(hdev); 2466 2467 __hci_req_disable_advertising(req); 2468 } 2469 2470 /* If controller is scanning, it means the background scanning is 2471 * running. Thus, we should temporarily stop it in order to set the 2472 * discovery scanning parameters. 2473 */ 2474 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) 2475 hci_req_add_le_scan_disable(req); 2476 2477 /* All active scans will be done with either a resolvable private 2478 * address (when privacy feature has been enabled) or non-resolvable 2479 * private address. 2480 */ 2481 err = hci_update_random_address(req, true, scan_use_rpa(hdev), 2482 &own_addr_type); 2483 if (err < 0) 2484 own_addr_type = ADDR_LE_DEV_PUBLIC; 2485 2486 hci_req_start_scan(req, LE_SCAN_ACTIVE, interval, DISCOV_LE_SCAN_WIN, 2487 own_addr_type, 0); 2488 return 0; 2489 } 2490 2491 static int interleaved_discov(struct hci_request *req, unsigned long opt) 2492 { 2493 int err; 2494 2495 BT_DBG("%s", req->hdev->name); 2496 2497 err = active_scan(req, opt); 2498 if (err) 2499 return err; 2500 2501 return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN); 2502 } 2503 2504 static void start_discovery(struct hci_dev *hdev, u8 *status) 2505 { 2506 unsigned long timeout; 2507 2508 BT_DBG("%s type %u", hdev->name, hdev->discovery.type); 2509 2510 switch (hdev->discovery.type) { 2511 case DISCOV_TYPE_BREDR: 2512 if (!hci_dev_test_flag(hdev, HCI_INQUIRY)) 2513 hci_req_sync(hdev, bredr_inquiry, 2514 DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT, 2515 status); 2516 return; 2517 case DISCOV_TYPE_INTERLEAVED: 2518 /* When running simultaneous discovery, the LE scanning time 2519 * should occupy the whole discovery time sine BR/EDR inquiry 2520 * and LE scanning are scheduled by the controller. 2521 * 2522 * For interleaving discovery in comparison, BR/EDR inquiry 2523 * and LE scanning are done sequentially with separate 2524 * timeouts. 2525 */ 2526 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, 2527 &hdev->quirks)) { 2528 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 2529 /* During simultaneous discovery, we double LE scan 2530 * interval. We must leave some time for the controller 2531 * to do BR/EDR inquiry. 2532 */ 2533 hci_req_sync(hdev, interleaved_discov, 2534 DISCOV_LE_SCAN_INT * 2, HCI_CMD_TIMEOUT, 2535 status); 2536 break; 2537 } 2538 2539 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); 2540 hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT, 2541 HCI_CMD_TIMEOUT, status); 2542 break; 2543 case DISCOV_TYPE_LE: 2544 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 2545 hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT, 2546 HCI_CMD_TIMEOUT, status); 2547 break; 2548 default: 2549 *status = HCI_ERROR_UNSPECIFIED; 2550 return; 2551 } 2552 2553 if (*status) 2554 return; 2555 2556 BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout)); 2557 2558 /* When service discovery is used and the controller has a 2559 * strict duplicate filter, it is important to remember the 2560 * start and duration of the scan. This is required for 2561 * restarting scanning during the discovery phase. 2562 */ 2563 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && 2564 hdev->discovery.result_filtering) { 2565 hdev->discovery.scan_start = jiffies; 2566 hdev->discovery.scan_duration = timeout; 2567 } 2568 2569 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, 2570 timeout); 2571 } 2572 2573 bool hci_req_stop_discovery(struct hci_request *req) 2574 { 2575 struct hci_dev *hdev = req->hdev; 2576 struct discovery_state *d = &hdev->discovery; 2577 struct hci_cp_remote_name_req_cancel cp; 2578 struct inquiry_entry *e; 2579 bool ret = false; 2580 2581 BT_DBG("%s state %u", hdev->name, hdev->discovery.state); 2582 2583 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { 2584 if (test_bit(HCI_INQUIRY, &hdev->flags)) 2585 hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL); 2586 2587 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 2588 cancel_delayed_work(&hdev->le_scan_disable); 2589 hci_req_add_le_scan_disable(req); 2590 } 2591 2592 ret = true; 2593 } else { 2594 /* Passive scanning */ 2595 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 2596 hci_req_add_le_scan_disable(req); 2597 ret = true; 2598 } 2599 } 2600 2601 /* No further actions needed for LE-only discovery */ 2602 if (d->type == DISCOV_TYPE_LE) 2603 return ret; 2604 2605 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { 2606 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, 2607 NAME_PENDING); 2608 if (!e) 2609 return ret; 2610 2611 bacpy(&cp.bdaddr, &e->data.bdaddr); 2612 hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp), 2613 &cp); 2614 ret = true; 2615 } 2616 2617 return ret; 2618 } 2619 2620 static int stop_discovery(struct hci_request *req, unsigned long opt) 2621 { 2622 hci_dev_lock(req->hdev); 2623 hci_req_stop_discovery(req); 2624 hci_dev_unlock(req->hdev); 2625 2626 return 0; 2627 } 2628 2629 static void discov_update(struct work_struct *work) 2630 { 2631 struct hci_dev *hdev = container_of(work, struct hci_dev, 2632 discov_update); 2633 u8 status = 0; 2634 2635 switch (hdev->discovery.state) { 2636 case DISCOVERY_STARTING: 2637 start_discovery(hdev, &status); 2638 mgmt_start_discovery_complete(hdev, status); 2639 if (status) 2640 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 2641 else 2642 hci_discovery_set_state(hdev, DISCOVERY_FINDING); 2643 break; 2644 case DISCOVERY_STOPPING: 2645 hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status); 2646 mgmt_stop_discovery_complete(hdev, status); 2647 if (!status) 2648 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 2649 break; 2650 case DISCOVERY_STOPPED: 2651 default: 2652 return; 2653 } 2654 } 2655 2656 static void discov_off(struct work_struct *work) 2657 { 2658 struct hci_dev *hdev = container_of(work, struct hci_dev, 2659 discov_off.work); 2660 2661 BT_DBG("%s", hdev->name); 2662 2663 hci_dev_lock(hdev); 2664 2665 /* When discoverable timeout triggers, then just make sure 2666 * the limited discoverable flag is cleared. Even in the case 2667 * of a timeout triggered from general discoverable, it is 2668 * safe to unconditionally clear the flag. 2669 */ 2670 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 2671 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 2672 hdev->discov_timeout = 0; 2673 2674 hci_dev_unlock(hdev); 2675 2676 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL); 2677 mgmt_new_settings(hdev); 2678 } 2679 2680 static int powered_update_hci(struct hci_request *req, unsigned long opt) 2681 { 2682 struct hci_dev *hdev = req->hdev; 2683 u8 link_sec; 2684 2685 hci_dev_lock(hdev); 2686 2687 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) && 2688 !lmp_host_ssp_capable(hdev)) { 2689 u8 mode = 0x01; 2690 2691 hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode); 2692 2693 if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) { 2694 u8 support = 0x01; 2695 2696 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT, 2697 sizeof(support), &support); 2698 } 2699 } 2700 2701 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) && 2702 lmp_bredr_capable(hdev)) { 2703 struct hci_cp_write_le_host_supported cp; 2704 2705 cp.le = 0x01; 2706 cp.simul = 0x00; 2707 2708 /* Check first if we already have the right 2709 * host state (host features set) 2710 */ 2711 if (cp.le != lmp_host_le_capable(hdev) || 2712 cp.simul != lmp_host_le_br_capable(hdev)) 2713 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, 2714 sizeof(cp), &cp); 2715 } 2716 2717 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 2718 /* Make sure the controller has a good default for 2719 * advertising data. This also applies to the case 2720 * where BR/EDR was toggled during the AUTO_OFF phase. 2721 */ 2722 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 2723 list_empty(&hdev->adv_instances)) { 2724 int err; 2725 2726 if (ext_adv_capable(hdev)) { 2727 err = __hci_req_setup_ext_adv_instance(req, 2728 0x00); 2729 if (!err) 2730 __hci_req_update_scan_rsp_data(req, 2731 0x00); 2732 } else { 2733 err = 0; 2734 __hci_req_update_adv_data(req, 0x00); 2735 __hci_req_update_scan_rsp_data(req, 0x00); 2736 } 2737 2738 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 2739 if (!ext_adv_capable(hdev)) 2740 __hci_req_enable_advertising(req); 2741 else if (!err) 2742 __hci_req_enable_ext_advertising(req); 2743 } 2744 } else if (!list_empty(&hdev->adv_instances)) { 2745 struct adv_info *adv_instance; 2746 2747 adv_instance = list_first_entry(&hdev->adv_instances, 2748 struct adv_info, list); 2749 __hci_req_schedule_adv_instance(req, 2750 adv_instance->instance, 2751 true); 2752 } 2753 } 2754 2755 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); 2756 if (link_sec != test_bit(HCI_AUTH, &hdev->flags)) 2757 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 2758 sizeof(link_sec), &link_sec); 2759 2760 if (lmp_bredr_capable(hdev)) { 2761 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) 2762 __hci_req_write_fast_connectable(req, true); 2763 else 2764 __hci_req_write_fast_connectable(req, false); 2765 __hci_req_update_scan(req); 2766 __hci_req_update_class(req); 2767 __hci_req_update_name(req); 2768 __hci_req_update_eir(req); 2769 } 2770 2771 hci_dev_unlock(hdev); 2772 return 0; 2773 } 2774 2775 int __hci_req_hci_power_on(struct hci_dev *hdev) 2776 { 2777 /* Register the available SMP channels (BR/EDR and LE) only when 2778 * successfully powering on the controller. This late 2779 * registration is required so that LE SMP can clearly decide if 2780 * the public address or static address is used. 2781 */ 2782 smp_register(hdev); 2783 2784 return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT, 2785 NULL); 2786 } 2787 2788 void hci_request_setup(struct hci_dev *hdev) 2789 { 2790 INIT_WORK(&hdev->discov_update, discov_update); 2791 INIT_WORK(&hdev->bg_scan_update, bg_scan_update); 2792 INIT_WORK(&hdev->scan_update, scan_update_work); 2793 INIT_WORK(&hdev->connectable_update, connectable_update_work); 2794 INIT_WORK(&hdev->discoverable_update, discoverable_update_work); 2795 INIT_DELAYED_WORK(&hdev->discov_off, discov_off); 2796 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work); 2797 INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work); 2798 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire); 2799 } 2800 2801 void hci_request_cancel_all(struct hci_dev *hdev) 2802 { 2803 hci_req_sync_cancel(hdev, ENODEV); 2804 2805 cancel_work_sync(&hdev->discov_update); 2806 cancel_work_sync(&hdev->bg_scan_update); 2807 cancel_work_sync(&hdev->scan_update); 2808 cancel_work_sync(&hdev->connectable_update); 2809 cancel_work_sync(&hdev->discoverable_update); 2810 cancel_delayed_work_sync(&hdev->discov_off); 2811 cancel_delayed_work_sync(&hdev->le_scan_disable); 2812 cancel_delayed_work_sync(&hdev->le_scan_restart); 2813 2814 if (hdev->adv_instance_timeout) { 2815 cancel_delayed_work_sync(&hdev->adv_instance_expire); 2816 hdev->adv_instance_timeout = 0; 2817 } 2818 } 2819