1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 4 Copyright (C) 2014 Intel Corporation 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License version 2 as 8 published by the Free Software Foundation; 9 10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 21 SOFTWARE IS DISCLAIMED. 22 */ 23 24 #include <asm/unaligned.h> 25 26 #include <net/bluetooth/bluetooth.h> 27 #include <net/bluetooth/hci_core.h> 28 #include <net/bluetooth/mgmt.h> 29 30 #include "smp.h" 31 #include "hci_request.h" 32 33 #define HCI_REQ_DONE 0 34 #define HCI_REQ_PEND 1 35 #define HCI_REQ_CANCELED 2 36 37 void hci_req_init(struct hci_request *req, struct hci_dev *hdev) 38 { 39 skb_queue_head_init(&req->cmd_q); 40 req->hdev = hdev; 41 req->err = 0; 42 } 43 44 static int req_run(struct hci_request *req, hci_req_complete_t complete, 45 hci_req_complete_skb_t complete_skb) 46 { 47 struct hci_dev *hdev = req->hdev; 48 struct sk_buff *skb; 49 unsigned long flags; 50 51 BT_DBG("length %u", skb_queue_len(&req->cmd_q)); 52 53 /* If an error occurred during request building, remove all HCI 54 * commands queued on the HCI request queue. 55 */ 56 if (req->err) { 57 skb_queue_purge(&req->cmd_q); 58 return req->err; 59 } 60 61 /* Do not allow empty requests */ 62 if (skb_queue_empty(&req->cmd_q)) 63 return -ENODATA; 64 65 skb = skb_peek_tail(&req->cmd_q); 66 if (complete) { 67 bt_cb(skb)->hci.req_complete = complete; 68 } else if (complete_skb) { 69 bt_cb(skb)->hci.req_complete_skb = complete_skb; 70 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; 71 } 72 73 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 74 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); 75 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 76 77 queue_work(hdev->workqueue, &hdev->cmd_work); 78 79 return 0; 80 } 81 82 int hci_req_run(struct hci_request *req, hci_req_complete_t complete) 83 { 84 return req_run(req, complete, NULL); 85 } 86 87 int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete) 88 { 89 return req_run(req, NULL, complete); 90 } 91 92 static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, 93 struct sk_buff *skb) 94 { 95 BT_DBG("%s result 0x%2.2x", hdev->name, result); 96 97 if (hdev->req_status == HCI_REQ_PEND) { 98 hdev->req_result = result; 99 hdev->req_status = HCI_REQ_DONE; 100 if (skb) 101 hdev->req_skb = skb_get(skb); 102 wake_up_interruptible(&hdev->req_wait_q); 103 } 104 } 105 106 void hci_req_sync_cancel(struct hci_dev *hdev, int err) 107 { 108 BT_DBG("%s err 0x%2.2x", hdev->name, err); 109 110 if (hdev->req_status == HCI_REQ_PEND) { 111 hdev->req_result = err; 112 hdev->req_status = HCI_REQ_CANCELED; 113 wake_up_interruptible(&hdev->req_wait_q); 114 } 115 } 116 117 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 118 const void *param, u8 event, u32 timeout) 119 { 120 DECLARE_WAITQUEUE(wait, current); 121 struct hci_request req; 122 struct sk_buff *skb; 123 int err = 0; 124 125 BT_DBG("%s", hdev->name); 126 127 hci_req_init(&req, hdev); 128 129 hci_req_add_ev(&req, opcode, plen, param, event); 130 131 hdev->req_status = HCI_REQ_PEND; 132 133 add_wait_queue(&hdev->req_wait_q, &wait); 134 set_current_state(TASK_INTERRUPTIBLE); 135 136 err = hci_req_run_skb(&req, hci_req_sync_complete); 137 if (err < 0) { 138 remove_wait_queue(&hdev->req_wait_q, &wait); 139 set_current_state(TASK_RUNNING); 140 return ERR_PTR(err); 141 } 142 143 schedule_timeout(timeout); 144 145 remove_wait_queue(&hdev->req_wait_q, &wait); 146 147 if (signal_pending(current)) 148 return ERR_PTR(-EINTR); 149 150 switch (hdev->req_status) { 151 case HCI_REQ_DONE: 152 err = -bt_to_errno(hdev->req_result); 153 break; 154 155 case HCI_REQ_CANCELED: 156 err = -hdev->req_result; 157 break; 158 159 default: 160 err = -ETIMEDOUT; 161 break; 162 } 163 164 hdev->req_status = hdev->req_result = 0; 165 skb = hdev->req_skb; 166 hdev->req_skb = NULL; 167 168 BT_DBG("%s end: err %d", hdev->name, err); 169 170 if (err < 0) { 171 kfree_skb(skb); 172 return ERR_PTR(err); 173 } 174 175 if (!skb) 176 return ERR_PTR(-ENODATA); 177 178 return skb; 179 } 180 EXPORT_SYMBOL(__hci_cmd_sync_ev); 181 182 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 183 const void *param, u32 timeout) 184 { 185 return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout); 186 } 187 EXPORT_SYMBOL(__hci_cmd_sync); 188 189 /* Execute request and wait for completion. */ 190 int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req, 191 unsigned long opt), 192 unsigned long opt, u32 timeout, u8 *hci_status) 193 { 194 struct hci_request req; 195 DECLARE_WAITQUEUE(wait, current); 196 int err = 0; 197 198 BT_DBG("%s start", hdev->name); 199 200 hci_req_init(&req, hdev); 201 202 hdev->req_status = HCI_REQ_PEND; 203 204 err = func(&req, opt); 205 if (err) { 206 if (hci_status) 207 *hci_status = HCI_ERROR_UNSPECIFIED; 208 return err; 209 } 210 211 add_wait_queue(&hdev->req_wait_q, &wait); 212 set_current_state(TASK_INTERRUPTIBLE); 213 214 err = hci_req_run_skb(&req, hci_req_sync_complete); 215 if (err < 0) { 216 hdev->req_status = 0; 217 218 remove_wait_queue(&hdev->req_wait_q, &wait); 219 set_current_state(TASK_RUNNING); 220 221 /* ENODATA means the HCI request command queue is empty. 222 * This can happen when a request with conditionals doesn't 223 * trigger any commands to be sent. This is normal behavior 224 * and should not trigger an error return. 225 */ 226 if (err == -ENODATA) { 227 if (hci_status) 228 *hci_status = 0; 229 return 0; 230 } 231 232 if (hci_status) 233 *hci_status = HCI_ERROR_UNSPECIFIED; 234 235 return err; 236 } 237 238 schedule_timeout(timeout); 239 240 remove_wait_queue(&hdev->req_wait_q, &wait); 241 242 if (signal_pending(current)) 243 return -EINTR; 244 245 switch (hdev->req_status) { 246 case HCI_REQ_DONE: 247 err = -bt_to_errno(hdev->req_result); 248 if (hci_status) 249 *hci_status = hdev->req_result; 250 break; 251 252 case HCI_REQ_CANCELED: 253 err = -hdev->req_result; 254 if (hci_status) 255 *hci_status = HCI_ERROR_UNSPECIFIED; 256 break; 257 258 default: 259 err = -ETIMEDOUT; 260 if (hci_status) 261 *hci_status = HCI_ERROR_UNSPECIFIED; 262 break; 263 } 264 265 hdev->req_status = hdev->req_result = 0; 266 267 BT_DBG("%s end: err %d", hdev->name, err); 268 269 return err; 270 } 271 272 int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req, 273 unsigned long opt), 274 unsigned long opt, u32 timeout, u8 *hci_status) 275 { 276 int ret; 277 278 if (!test_bit(HCI_UP, &hdev->flags)) 279 return -ENETDOWN; 280 281 /* Serialize all requests */ 282 hci_req_sync_lock(hdev); 283 ret = __hci_req_sync(hdev, req, opt, timeout, hci_status); 284 hci_req_sync_unlock(hdev); 285 286 return ret; 287 } 288 289 struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen, 290 const void *param) 291 { 292 int len = HCI_COMMAND_HDR_SIZE + plen; 293 struct hci_command_hdr *hdr; 294 struct sk_buff *skb; 295 296 skb = bt_skb_alloc(len, GFP_ATOMIC); 297 if (!skb) 298 return NULL; 299 300 hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE); 301 hdr->opcode = cpu_to_le16(opcode); 302 hdr->plen = plen; 303 304 if (plen) 305 memcpy(skb_put(skb, plen), param, plen); 306 307 BT_DBG("skb len %d", skb->len); 308 309 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; 310 hci_skb_opcode(skb) = opcode; 311 312 return skb; 313 } 314 315 /* Queue a command to an asynchronous HCI request */ 316 void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen, 317 const void *param, u8 event) 318 { 319 struct hci_dev *hdev = req->hdev; 320 struct sk_buff *skb; 321 322 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen); 323 324 /* If an error occurred during request building, there is no point in 325 * queueing the HCI command. We can simply return. 326 */ 327 if (req->err) 328 return; 329 330 skb = hci_prepare_cmd(hdev, opcode, plen, param); 331 if (!skb) { 332 BT_ERR("%s no memory for command (opcode 0x%4.4x)", 333 hdev->name, opcode); 334 req->err = -ENOMEM; 335 return; 336 } 337 338 if (skb_queue_empty(&req->cmd_q)) 339 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 340 341 bt_cb(skb)->hci.req_event = event; 342 343 skb_queue_tail(&req->cmd_q, skb); 344 } 345 346 void hci_req_add(struct hci_request *req, u16 opcode, u32 plen, 347 const void *param) 348 { 349 hci_req_add_ev(req, opcode, plen, param, 0); 350 } 351 352 void __hci_req_write_fast_connectable(struct hci_request *req, bool enable) 353 { 354 struct hci_dev *hdev = req->hdev; 355 struct hci_cp_write_page_scan_activity acp; 356 u8 type; 357 358 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 359 return; 360 361 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 362 return; 363 364 if (enable) { 365 type = PAGE_SCAN_TYPE_INTERLACED; 366 367 /* 160 msec page scan interval */ 368 acp.interval = cpu_to_le16(0x0100); 369 } else { 370 type = PAGE_SCAN_TYPE_STANDARD; /* default */ 371 372 /* default 1.28 sec page scan */ 373 acp.interval = cpu_to_le16(0x0800); 374 } 375 376 acp.window = cpu_to_le16(0x0012); 377 378 if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval || 379 __cpu_to_le16(hdev->page_scan_window) != acp.window) 380 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 381 sizeof(acp), &acp); 382 383 if (hdev->page_scan_type != type) 384 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type); 385 } 386 387 /* This function controls the background scanning based on hdev->pend_le_conns 388 * list. If there are pending LE connection we start the background scanning, 389 * otherwise we stop it. 390 * 391 * This function requires the caller holds hdev->lock. 392 */ 393 static void __hci_update_background_scan(struct hci_request *req) 394 { 395 struct hci_dev *hdev = req->hdev; 396 397 if (!test_bit(HCI_UP, &hdev->flags) || 398 test_bit(HCI_INIT, &hdev->flags) || 399 hci_dev_test_flag(hdev, HCI_SETUP) || 400 hci_dev_test_flag(hdev, HCI_CONFIG) || 401 hci_dev_test_flag(hdev, HCI_AUTO_OFF) || 402 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 403 return; 404 405 /* No point in doing scanning if LE support hasn't been enabled */ 406 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 407 return; 408 409 /* If discovery is active don't interfere with it */ 410 if (hdev->discovery.state != DISCOVERY_STOPPED) 411 return; 412 413 /* Reset RSSI and UUID filters when starting background scanning 414 * since these filters are meant for service discovery only. 415 * 416 * The Start Discovery and Start Service Discovery operations 417 * ensure to set proper values for RSSI threshold and UUID 418 * filter list. So it is safe to just reset them here. 419 */ 420 hci_discovery_filter_clear(hdev); 421 422 if (list_empty(&hdev->pend_le_conns) && 423 list_empty(&hdev->pend_le_reports)) { 424 /* If there is no pending LE connections or devices 425 * to be scanned for, we should stop the background 426 * scanning. 427 */ 428 429 /* If controller is not scanning we are done. */ 430 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 431 return; 432 433 hci_req_add_le_scan_disable(req); 434 435 BT_DBG("%s stopping background scanning", hdev->name); 436 } else { 437 /* If there is at least one pending LE connection, we should 438 * keep the background scan running. 439 */ 440 441 /* If controller is connecting, we should not start scanning 442 * since some controllers are not able to scan and connect at 443 * the same time. 444 */ 445 if (hci_lookup_le_connect(hdev)) 446 return; 447 448 /* If controller is currently scanning, we stop it to ensure we 449 * don't miss any advertising (due to duplicates filter). 450 */ 451 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) 452 hci_req_add_le_scan_disable(req); 453 454 hci_req_add_le_passive_scan(req); 455 456 BT_DBG("%s starting background scanning", hdev->name); 457 } 458 } 459 460 void __hci_req_update_name(struct hci_request *req) 461 { 462 struct hci_dev *hdev = req->hdev; 463 struct hci_cp_write_local_name cp; 464 465 memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); 466 467 hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp); 468 } 469 470 #define PNP_INFO_SVCLASS_ID 0x1200 471 472 static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len) 473 { 474 u8 *ptr = data, *uuids_start = NULL; 475 struct bt_uuid *uuid; 476 477 if (len < 4) 478 return ptr; 479 480 list_for_each_entry(uuid, &hdev->uuids, list) { 481 u16 uuid16; 482 483 if (uuid->size != 16) 484 continue; 485 486 uuid16 = get_unaligned_le16(&uuid->uuid[12]); 487 if (uuid16 < 0x1100) 488 continue; 489 490 if (uuid16 == PNP_INFO_SVCLASS_ID) 491 continue; 492 493 if (!uuids_start) { 494 uuids_start = ptr; 495 uuids_start[0] = 1; 496 uuids_start[1] = EIR_UUID16_ALL; 497 ptr += 2; 498 } 499 500 /* Stop if not enough space to put next UUID */ 501 if ((ptr - data) + sizeof(u16) > len) { 502 uuids_start[1] = EIR_UUID16_SOME; 503 break; 504 } 505 506 *ptr++ = (uuid16 & 0x00ff); 507 *ptr++ = (uuid16 & 0xff00) >> 8; 508 uuids_start[0] += sizeof(uuid16); 509 } 510 511 return ptr; 512 } 513 514 static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len) 515 { 516 u8 *ptr = data, *uuids_start = NULL; 517 struct bt_uuid *uuid; 518 519 if (len < 6) 520 return ptr; 521 522 list_for_each_entry(uuid, &hdev->uuids, list) { 523 if (uuid->size != 32) 524 continue; 525 526 if (!uuids_start) { 527 uuids_start = ptr; 528 uuids_start[0] = 1; 529 uuids_start[1] = EIR_UUID32_ALL; 530 ptr += 2; 531 } 532 533 /* Stop if not enough space to put next UUID */ 534 if ((ptr - data) + sizeof(u32) > len) { 535 uuids_start[1] = EIR_UUID32_SOME; 536 break; 537 } 538 539 memcpy(ptr, &uuid->uuid[12], sizeof(u32)); 540 ptr += sizeof(u32); 541 uuids_start[0] += sizeof(u32); 542 } 543 544 return ptr; 545 } 546 547 static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len) 548 { 549 u8 *ptr = data, *uuids_start = NULL; 550 struct bt_uuid *uuid; 551 552 if (len < 18) 553 return ptr; 554 555 list_for_each_entry(uuid, &hdev->uuids, list) { 556 if (uuid->size != 128) 557 continue; 558 559 if (!uuids_start) { 560 uuids_start = ptr; 561 uuids_start[0] = 1; 562 uuids_start[1] = EIR_UUID128_ALL; 563 ptr += 2; 564 } 565 566 /* Stop if not enough space to put next UUID */ 567 if ((ptr - data) + 16 > len) { 568 uuids_start[1] = EIR_UUID128_SOME; 569 break; 570 } 571 572 memcpy(ptr, uuid->uuid, 16); 573 ptr += 16; 574 uuids_start[0] += 16; 575 } 576 577 return ptr; 578 } 579 580 static void create_eir(struct hci_dev *hdev, u8 *data) 581 { 582 u8 *ptr = data; 583 size_t name_len; 584 585 name_len = strlen(hdev->dev_name); 586 587 if (name_len > 0) { 588 /* EIR Data type */ 589 if (name_len > 48) { 590 name_len = 48; 591 ptr[1] = EIR_NAME_SHORT; 592 } else 593 ptr[1] = EIR_NAME_COMPLETE; 594 595 /* EIR Data length */ 596 ptr[0] = name_len + 1; 597 598 memcpy(ptr + 2, hdev->dev_name, name_len); 599 600 ptr += (name_len + 2); 601 } 602 603 if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) { 604 ptr[0] = 2; 605 ptr[1] = EIR_TX_POWER; 606 ptr[2] = (u8) hdev->inq_tx_power; 607 608 ptr += 3; 609 } 610 611 if (hdev->devid_source > 0) { 612 ptr[0] = 9; 613 ptr[1] = EIR_DEVICE_ID; 614 615 put_unaligned_le16(hdev->devid_source, ptr + 2); 616 put_unaligned_le16(hdev->devid_vendor, ptr + 4); 617 put_unaligned_le16(hdev->devid_product, ptr + 6); 618 put_unaligned_le16(hdev->devid_version, ptr + 8); 619 620 ptr += 10; 621 } 622 623 ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data)); 624 ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data)); 625 ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data)); 626 } 627 628 void __hci_req_update_eir(struct hci_request *req) 629 { 630 struct hci_dev *hdev = req->hdev; 631 struct hci_cp_write_eir cp; 632 633 if (!hdev_is_powered(hdev)) 634 return; 635 636 if (!lmp_ext_inq_capable(hdev)) 637 return; 638 639 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 640 return; 641 642 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 643 return; 644 645 memset(&cp, 0, sizeof(cp)); 646 647 create_eir(hdev, cp.data); 648 649 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) 650 return; 651 652 memcpy(hdev->eir, cp.data, sizeof(cp.data)); 653 654 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp); 655 } 656 657 void hci_req_add_le_scan_disable(struct hci_request *req) 658 { 659 struct hci_cp_le_set_scan_enable cp; 660 661 memset(&cp, 0, sizeof(cp)); 662 cp.enable = LE_SCAN_DISABLE; 663 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp); 664 } 665 666 static void add_to_white_list(struct hci_request *req, 667 struct hci_conn_params *params) 668 { 669 struct hci_cp_le_add_to_white_list cp; 670 671 cp.bdaddr_type = params->addr_type; 672 bacpy(&cp.bdaddr, ¶ms->addr); 673 674 hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp); 675 } 676 677 static u8 update_white_list(struct hci_request *req) 678 { 679 struct hci_dev *hdev = req->hdev; 680 struct hci_conn_params *params; 681 struct bdaddr_list *b; 682 uint8_t white_list_entries = 0; 683 684 /* Go through the current white list programmed into the 685 * controller one by one and check if that address is still 686 * in the list of pending connections or list of devices to 687 * report. If not present in either list, then queue the 688 * command to remove it from the controller. 689 */ 690 list_for_each_entry(b, &hdev->le_white_list, list) { 691 /* If the device is neither in pend_le_conns nor 692 * pend_le_reports then remove it from the whitelist. 693 */ 694 if (!hci_pend_le_action_lookup(&hdev->pend_le_conns, 695 &b->bdaddr, b->bdaddr_type) && 696 !hci_pend_le_action_lookup(&hdev->pend_le_reports, 697 &b->bdaddr, b->bdaddr_type)) { 698 struct hci_cp_le_del_from_white_list cp; 699 700 cp.bdaddr_type = b->bdaddr_type; 701 bacpy(&cp.bdaddr, &b->bdaddr); 702 703 hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST, 704 sizeof(cp), &cp); 705 continue; 706 } 707 708 if (hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) { 709 /* White list can not be used with RPAs */ 710 return 0x00; 711 } 712 713 white_list_entries++; 714 } 715 716 /* Since all no longer valid white list entries have been 717 * removed, walk through the list of pending connections 718 * and ensure that any new device gets programmed into 719 * the controller. 720 * 721 * If the list of the devices is larger than the list of 722 * available white list entries in the controller, then 723 * just abort and return filer policy value to not use the 724 * white list. 725 */ 726 list_for_each_entry(params, &hdev->pend_le_conns, action) { 727 if (hci_bdaddr_list_lookup(&hdev->le_white_list, 728 ¶ms->addr, params->addr_type)) 729 continue; 730 731 if (white_list_entries >= hdev->le_white_list_size) { 732 /* Select filter policy to accept all advertising */ 733 return 0x00; 734 } 735 736 if (hci_find_irk_by_addr(hdev, ¶ms->addr, 737 params->addr_type)) { 738 /* White list can not be used with RPAs */ 739 return 0x00; 740 } 741 742 white_list_entries++; 743 add_to_white_list(req, params); 744 } 745 746 /* After adding all new pending connections, walk through 747 * the list of pending reports and also add these to the 748 * white list if there is still space. 749 */ 750 list_for_each_entry(params, &hdev->pend_le_reports, action) { 751 if (hci_bdaddr_list_lookup(&hdev->le_white_list, 752 ¶ms->addr, params->addr_type)) 753 continue; 754 755 if (white_list_entries >= hdev->le_white_list_size) { 756 /* Select filter policy to accept all advertising */ 757 return 0x00; 758 } 759 760 if (hci_find_irk_by_addr(hdev, ¶ms->addr, 761 params->addr_type)) { 762 /* White list can not be used with RPAs */ 763 return 0x00; 764 } 765 766 white_list_entries++; 767 add_to_white_list(req, params); 768 } 769 770 /* Select filter policy to use white list */ 771 return 0x01; 772 } 773 774 static bool scan_use_rpa(struct hci_dev *hdev) 775 { 776 return hci_dev_test_flag(hdev, HCI_PRIVACY); 777 } 778 779 void hci_req_add_le_passive_scan(struct hci_request *req) 780 { 781 struct hci_cp_le_set_scan_param param_cp; 782 struct hci_cp_le_set_scan_enable enable_cp; 783 struct hci_dev *hdev = req->hdev; 784 u8 own_addr_type; 785 u8 filter_policy; 786 787 /* Set require_privacy to false since no SCAN_REQ are send 788 * during passive scanning. Not using an non-resolvable address 789 * here is important so that peer devices using direct 790 * advertising with our address will be correctly reported 791 * by the controller. 792 */ 793 if (hci_update_random_address(req, false, scan_use_rpa(hdev), 794 &own_addr_type)) 795 return; 796 797 /* Adding or removing entries from the white list must 798 * happen before enabling scanning. The controller does 799 * not allow white list modification while scanning. 800 */ 801 filter_policy = update_white_list(req); 802 803 /* When the controller is using random resolvable addresses and 804 * with that having LE privacy enabled, then controllers with 805 * Extended Scanner Filter Policies support can now enable support 806 * for handling directed advertising. 807 * 808 * So instead of using filter polices 0x00 (no whitelist) 809 * and 0x01 (whitelist enabled) use the new filter policies 810 * 0x02 (no whitelist) and 0x03 (whitelist enabled). 811 */ 812 if (hci_dev_test_flag(hdev, HCI_PRIVACY) && 813 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) 814 filter_policy |= 0x02; 815 816 memset(¶m_cp, 0, sizeof(param_cp)); 817 param_cp.type = LE_SCAN_PASSIVE; 818 param_cp.interval = cpu_to_le16(hdev->le_scan_interval); 819 param_cp.window = cpu_to_le16(hdev->le_scan_window); 820 param_cp.own_address_type = own_addr_type; 821 param_cp.filter_policy = filter_policy; 822 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp), 823 ¶m_cp); 824 825 memset(&enable_cp, 0, sizeof(enable_cp)); 826 enable_cp.enable = LE_SCAN_ENABLE; 827 enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 828 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp), 829 &enable_cp); 830 } 831 832 static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev) 833 { 834 u8 instance = hdev->cur_adv_instance; 835 struct adv_info *adv_instance; 836 837 /* Ignore instance 0 */ 838 if (instance == 0x00) 839 return 0; 840 841 adv_instance = hci_find_adv_instance(hdev, instance); 842 if (!adv_instance) 843 return 0; 844 845 /* TODO: Take into account the "appearance" and "local-name" flags here. 846 * These are currently being ignored as they are not supported. 847 */ 848 return adv_instance->scan_rsp_len; 849 } 850 851 void __hci_req_disable_advertising(struct hci_request *req) 852 { 853 u8 enable = 0x00; 854 855 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable); 856 } 857 858 static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance) 859 { 860 u32 flags; 861 struct adv_info *adv_instance; 862 863 if (instance == 0x00) { 864 /* Instance 0 always manages the "Tx Power" and "Flags" 865 * fields 866 */ 867 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS; 868 869 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting 870 * corresponds to the "connectable" instance flag. 871 */ 872 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE)) 873 flags |= MGMT_ADV_FLAG_CONNECTABLE; 874 875 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 876 flags |= MGMT_ADV_FLAG_LIMITED_DISCOV; 877 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 878 flags |= MGMT_ADV_FLAG_DISCOV; 879 880 return flags; 881 } 882 883 adv_instance = hci_find_adv_instance(hdev, instance); 884 885 /* Return 0 when we got an invalid instance identifier. */ 886 if (!adv_instance) 887 return 0; 888 889 return adv_instance->flags; 890 } 891 892 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) 893 { 894 /* If privacy is not enabled don't use RPA */ 895 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 896 return false; 897 898 /* If basic privacy mode is enabled use RPA */ 899 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 900 return true; 901 902 /* If limited privacy mode is enabled don't use RPA if we're 903 * both discoverable and bondable. 904 */ 905 if ((flags & MGMT_ADV_FLAG_DISCOV) && 906 hci_dev_test_flag(hdev, HCI_BONDABLE)) 907 return false; 908 909 /* We're neither bondable nor discoverable in the limited 910 * privacy mode, therefore use RPA. 911 */ 912 return true; 913 } 914 915 void __hci_req_enable_advertising(struct hci_request *req) 916 { 917 struct hci_dev *hdev = req->hdev; 918 struct hci_cp_le_set_adv_param cp; 919 u8 own_addr_type, enable = 0x01; 920 bool connectable; 921 u32 flags; 922 923 if (hci_conn_num(hdev, LE_LINK) > 0) 924 return; 925 926 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) 927 __hci_req_disable_advertising(req); 928 929 /* Clear the HCI_LE_ADV bit temporarily so that the 930 * hci_update_random_address knows that it's safe to go ahead 931 * and write a new random address. The flag will be set back on 932 * as soon as the SET_ADV_ENABLE HCI command completes. 933 */ 934 hci_dev_clear_flag(hdev, HCI_LE_ADV); 935 936 flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance); 937 938 /* If the "connectable" instance flag was not set, then choose between 939 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. 940 */ 941 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || 942 mgmt_get_connectable(hdev); 943 944 /* Set require_privacy to true only when non-connectable 945 * advertising is used. In that case it is fine to use a 946 * non-resolvable private address. 947 */ 948 if (hci_update_random_address(req, !connectable, 949 adv_use_rpa(hdev, flags), 950 &own_addr_type) < 0) 951 return; 952 953 memset(&cp, 0, sizeof(cp)); 954 cp.min_interval = cpu_to_le16(hdev->le_adv_min_interval); 955 cp.max_interval = cpu_to_le16(hdev->le_adv_max_interval); 956 957 if (connectable) 958 cp.type = LE_ADV_IND; 959 else if (get_cur_adv_instance_scan_rsp_len(hdev)) 960 cp.type = LE_ADV_SCAN_IND; 961 else 962 cp.type = LE_ADV_NONCONN_IND; 963 964 cp.own_address_type = own_addr_type; 965 cp.channel_map = hdev->le_adv_channel_map; 966 967 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp); 968 969 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable); 970 } 971 972 static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr) 973 { 974 u8 ad_len = 0; 975 size_t name_len; 976 977 name_len = strlen(hdev->dev_name); 978 if (name_len > 0) { 979 size_t max_len = HCI_MAX_AD_LENGTH - ad_len - 2; 980 981 if (name_len > max_len) { 982 name_len = max_len; 983 ptr[1] = EIR_NAME_SHORT; 984 } else 985 ptr[1] = EIR_NAME_COMPLETE; 986 987 ptr[0] = name_len + 1; 988 989 memcpy(ptr + 2, hdev->dev_name, name_len); 990 991 ad_len += (name_len + 2); 992 ptr += (name_len + 2); 993 } 994 995 return ad_len; 996 } 997 998 static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance, 999 u8 *ptr) 1000 { 1001 struct adv_info *adv_instance; 1002 1003 adv_instance = hci_find_adv_instance(hdev, instance); 1004 if (!adv_instance) 1005 return 0; 1006 1007 /* TODO: Set the appropriate entries based on advertising instance flags 1008 * here once flags other than 0 are supported. 1009 */ 1010 memcpy(ptr, adv_instance->scan_rsp_data, 1011 adv_instance->scan_rsp_len); 1012 1013 return adv_instance->scan_rsp_len; 1014 } 1015 1016 void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance) 1017 { 1018 struct hci_dev *hdev = req->hdev; 1019 struct hci_cp_le_set_scan_rsp_data cp; 1020 u8 len; 1021 1022 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1023 return; 1024 1025 memset(&cp, 0, sizeof(cp)); 1026 1027 if (instance) 1028 len = create_instance_scan_rsp_data(hdev, instance, cp.data); 1029 else 1030 len = create_default_scan_rsp_data(hdev, cp.data); 1031 1032 if (hdev->scan_rsp_data_len == len && 1033 !memcmp(cp.data, hdev->scan_rsp_data, len)) 1034 return; 1035 1036 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); 1037 hdev->scan_rsp_data_len = len; 1038 1039 cp.length = len; 1040 1041 hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp); 1042 } 1043 1044 static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr) 1045 { 1046 struct adv_info *adv_instance = NULL; 1047 u8 ad_len = 0, flags = 0; 1048 u32 instance_flags; 1049 1050 /* Return 0 when the current instance identifier is invalid. */ 1051 if (instance) { 1052 adv_instance = hci_find_adv_instance(hdev, instance); 1053 if (!adv_instance) 1054 return 0; 1055 } 1056 1057 instance_flags = get_adv_instance_flags(hdev, instance); 1058 1059 /* The Add Advertising command allows userspace to set both the general 1060 * and limited discoverable flags. 1061 */ 1062 if (instance_flags & MGMT_ADV_FLAG_DISCOV) 1063 flags |= LE_AD_GENERAL; 1064 1065 if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV) 1066 flags |= LE_AD_LIMITED; 1067 1068 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 1069 flags |= LE_AD_NO_BREDR; 1070 1071 if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) { 1072 /* If a discovery flag wasn't provided, simply use the global 1073 * settings. 1074 */ 1075 if (!flags) 1076 flags |= mgmt_get_adv_discov_flags(hdev); 1077 1078 /* If flags would still be empty, then there is no need to 1079 * include the "Flags" AD field". 1080 */ 1081 if (flags) { 1082 ptr[0] = 0x02; 1083 ptr[1] = EIR_FLAGS; 1084 ptr[2] = flags; 1085 1086 ad_len += 3; 1087 ptr += 3; 1088 } 1089 } 1090 1091 if (adv_instance) { 1092 memcpy(ptr, adv_instance->adv_data, 1093 adv_instance->adv_data_len); 1094 ad_len += adv_instance->adv_data_len; 1095 ptr += adv_instance->adv_data_len; 1096 } 1097 1098 /* Provide Tx Power only if we can provide a valid value for it */ 1099 if (hdev->adv_tx_power != HCI_TX_POWER_INVALID && 1100 (instance_flags & MGMT_ADV_FLAG_TX_POWER)) { 1101 ptr[0] = 0x02; 1102 ptr[1] = EIR_TX_POWER; 1103 ptr[2] = (u8)hdev->adv_tx_power; 1104 1105 ad_len += 3; 1106 ptr += 3; 1107 } 1108 1109 return ad_len; 1110 } 1111 1112 void __hci_req_update_adv_data(struct hci_request *req, u8 instance) 1113 { 1114 struct hci_dev *hdev = req->hdev; 1115 struct hci_cp_le_set_adv_data cp; 1116 u8 len; 1117 1118 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1119 return; 1120 1121 memset(&cp, 0, sizeof(cp)); 1122 1123 len = create_instance_adv_data(hdev, instance, cp.data); 1124 1125 /* There's nothing to do if the data hasn't changed */ 1126 if (hdev->adv_data_len == len && 1127 memcmp(cp.data, hdev->adv_data, len) == 0) 1128 return; 1129 1130 memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); 1131 hdev->adv_data_len = len; 1132 1133 cp.length = len; 1134 1135 hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp); 1136 } 1137 1138 int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance) 1139 { 1140 struct hci_request req; 1141 1142 hci_req_init(&req, hdev); 1143 __hci_req_update_adv_data(&req, instance); 1144 1145 return hci_req_run(&req, NULL); 1146 } 1147 1148 static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode) 1149 { 1150 BT_DBG("%s status %u", hdev->name, status); 1151 } 1152 1153 void hci_req_reenable_advertising(struct hci_dev *hdev) 1154 { 1155 struct hci_request req; 1156 1157 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && 1158 list_empty(&hdev->adv_instances)) 1159 return; 1160 1161 hci_req_init(&req, hdev); 1162 1163 if (hdev->cur_adv_instance) { 1164 __hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance, 1165 true); 1166 } else { 1167 __hci_req_update_adv_data(&req, 0x00); 1168 __hci_req_update_scan_rsp_data(&req, 0x00); 1169 __hci_req_enable_advertising(&req); 1170 } 1171 1172 hci_req_run(&req, adv_enable_complete); 1173 } 1174 1175 static void adv_timeout_expire(struct work_struct *work) 1176 { 1177 struct hci_dev *hdev = container_of(work, struct hci_dev, 1178 adv_instance_expire.work); 1179 1180 struct hci_request req; 1181 u8 instance; 1182 1183 BT_DBG("%s", hdev->name); 1184 1185 hci_dev_lock(hdev); 1186 1187 hdev->adv_instance_timeout = 0; 1188 1189 instance = hdev->cur_adv_instance; 1190 if (instance == 0x00) 1191 goto unlock; 1192 1193 hci_req_init(&req, hdev); 1194 1195 hci_req_clear_adv_instance(hdev, &req, instance, false); 1196 1197 if (list_empty(&hdev->adv_instances)) 1198 __hci_req_disable_advertising(&req); 1199 1200 hci_req_run(&req, NULL); 1201 1202 unlock: 1203 hci_dev_unlock(hdev); 1204 } 1205 1206 int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance, 1207 bool force) 1208 { 1209 struct hci_dev *hdev = req->hdev; 1210 struct adv_info *adv_instance = NULL; 1211 u16 timeout; 1212 1213 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 1214 list_empty(&hdev->adv_instances)) 1215 return -EPERM; 1216 1217 if (hdev->adv_instance_timeout) 1218 return -EBUSY; 1219 1220 adv_instance = hci_find_adv_instance(hdev, instance); 1221 if (!adv_instance) 1222 return -ENOENT; 1223 1224 /* A zero timeout means unlimited advertising. As long as there is 1225 * only one instance, duration should be ignored. We still set a timeout 1226 * in case further instances are being added later on. 1227 * 1228 * If the remaining lifetime of the instance is more than the duration 1229 * then the timeout corresponds to the duration, otherwise it will be 1230 * reduced to the remaining instance lifetime. 1231 */ 1232 if (adv_instance->timeout == 0 || 1233 adv_instance->duration <= adv_instance->remaining_time) 1234 timeout = adv_instance->duration; 1235 else 1236 timeout = adv_instance->remaining_time; 1237 1238 /* The remaining time is being reduced unless the instance is being 1239 * advertised without time limit. 1240 */ 1241 if (adv_instance->timeout) 1242 adv_instance->remaining_time = 1243 adv_instance->remaining_time - timeout; 1244 1245 hdev->adv_instance_timeout = timeout; 1246 queue_delayed_work(hdev->req_workqueue, 1247 &hdev->adv_instance_expire, 1248 msecs_to_jiffies(timeout * 1000)); 1249 1250 /* If we're just re-scheduling the same instance again then do not 1251 * execute any HCI commands. This happens when a single instance is 1252 * being advertised. 1253 */ 1254 if (!force && hdev->cur_adv_instance == instance && 1255 hci_dev_test_flag(hdev, HCI_LE_ADV)) 1256 return 0; 1257 1258 hdev->cur_adv_instance = instance; 1259 __hci_req_update_adv_data(req, instance); 1260 __hci_req_update_scan_rsp_data(req, instance); 1261 __hci_req_enable_advertising(req); 1262 1263 return 0; 1264 } 1265 1266 static void cancel_adv_timeout(struct hci_dev *hdev) 1267 { 1268 if (hdev->adv_instance_timeout) { 1269 hdev->adv_instance_timeout = 0; 1270 cancel_delayed_work(&hdev->adv_instance_expire); 1271 } 1272 } 1273 1274 /* For a single instance: 1275 * - force == true: The instance will be removed even when its remaining 1276 * lifetime is not zero. 1277 * - force == false: the instance will be deactivated but kept stored unless 1278 * the remaining lifetime is zero. 1279 * 1280 * For instance == 0x00: 1281 * - force == true: All instances will be removed regardless of their timeout 1282 * setting. 1283 * - force == false: Only instances that have a timeout will be removed. 1284 */ 1285 void hci_req_clear_adv_instance(struct hci_dev *hdev, struct hci_request *req, 1286 u8 instance, bool force) 1287 { 1288 struct adv_info *adv_instance, *n, *next_instance = NULL; 1289 int err; 1290 u8 rem_inst; 1291 1292 /* Cancel any timeout concerning the removed instance(s). */ 1293 if (!instance || hdev->cur_adv_instance == instance) 1294 cancel_adv_timeout(hdev); 1295 1296 /* Get the next instance to advertise BEFORE we remove 1297 * the current one. This can be the same instance again 1298 * if there is only one instance. 1299 */ 1300 if (instance && hdev->cur_adv_instance == instance) 1301 next_instance = hci_get_next_instance(hdev, instance); 1302 1303 if (instance == 0x00) { 1304 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, 1305 list) { 1306 if (!(force || adv_instance->timeout)) 1307 continue; 1308 1309 rem_inst = adv_instance->instance; 1310 err = hci_remove_adv_instance(hdev, rem_inst); 1311 if (!err) 1312 mgmt_advertising_removed(NULL, hdev, rem_inst); 1313 } 1314 } else { 1315 adv_instance = hci_find_adv_instance(hdev, instance); 1316 1317 if (force || (adv_instance && adv_instance->timeout && 1318 !adv_instance->remaining_time)) { 1319 /* Don't advertise a removed instance. */ 1320 if (next_instance && 1321 next_instance->instance == instance) 1322 next_instance = NULL; 1323 1324 err = hci_remove_adv_instance(hdev, instance); 1325 if (!err) 1326 mgmt_advertising_removed(NULL, hdev, instance); 1327 } 1328 } 1329 1330 if (!req || !hdev_is_powered(hdev) || 1331 hci_dev_test_flag(hdev, HCI_ADVERTISING)) 1332 return; 1333 1334 if (next_instance) 1335 __hci_req_schedule_adv_instance(req, next_instance->instance, 1336 false); 1337 } 1338 1339 static void set_random_addr(struct hci_request *req, bdaddr_t *rpa) 1340 { 1341 struct hci_dev *hdev = req->hdev; 1342 1343 /* If we're advertising or initiating an LE connection we can't 1344 * go ahead and change the random address at this time. This is 1345 * because the eventual initiator address used for the 1346 * subsequently created connection will be undefined (some 1347 * controllers use the new address and others the one we had 1348 * when the operation started). 1349 * 1350 * In this kind of scenario skip the update and let the random 1351 * address be updated at the next cycle. 1352 */ 1353 if (hci_dev_test_flag(hdev, HCI_LE_ADV) || 1354 hci_lookup_le_connect(hdev)) { 1355 BT_DBG("Deferring random address update"); 1356 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 1357 return; 1358 } 1359 1360 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa); 1361 } 1362 1363 int hci_update_random_address(struct hci_request *req, bool require_privacy, 1364 bool use_rpa, u8 *own_addr_type) 1365 { 1366 struct hci_dev *hdev = req->hdev; 1367 int err; 1368 1369 /* If privacy is enabled use a resolvable private address. If 1370 * current RPA has expired or there is something else than 1371 * the current RPA in use, then generate a new one. 1372 */ 1373 if (use_rpa) { 1374 int to; 1375 1376 *own_addr_type = ADDR_LE_DEV_RANDOM; 1377 1378 if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) && 1379 !bacmp(&hdev->random_addr, &hdev->rpa)) 1380 return 0; 1381 1382 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); 1383 if (err < 0) { 1384 BT_ERR("%s failed to generate new RPA", hdev->name); 1385 return err; 1386 } 1387 1388 set_random_addr(req, &hdev->rpa); 1389 1390 to = msecs_to_jiffies(hdev->rpa_timeout * 1000); 1391 queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to); 1392 1393 return 0; 1394 } 1395 1396 /* In case of required privacy without resolvable private address, 1397 * use an non-resolvable private address. This is useful for active 1398 * scanning and non-connectable advertising. 1399 */ 1400 if (require_privacy) { 1401 bdaddr_t nrpa; 1402 1403 while (true) { 1404 /* The non-resolvable private address is generated 1405 * from random six bytes with the two most significant 1406 * bits cleared. 1407 */ 1408 get_random_bytes(&nrpa, 6); 1409 nrpa.b[5] &= 0x3f; 1410 1411 /* The non-resolvable private address shall not be 1412 * equal to the public address. 1413 */ 1414 if (bacmp(&hdev->bdaddr, &nrpa)) 1415 break; 1416 } 1417 1418 *own_addr_type = ADDR_LE_DEV_RANDOM; 1419 set_random_addr(req, &nrpa); 1420 return 0; 1421 } 1422 1423 /* If forcing static address is in use or there is no public 1424 * address use the static address as random address (but skip 1425 * the HCI command if the current random address is already the 1426 * static one. 1427 * 1428 * In case BR/EDR has been disabled on a dual-mode controller 1429 * and a static address has been configured, then use that 1430 * address instead of the public BR/EDR address. 1431 */ 1432 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 1433 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 1434 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 1435 bacmp(&hdev->static_addr, BDADDR_ANY))) { 1436 *own_addr_type = ADDR_LE_DEV_RANDOM; 1437 if (bacmp(&hdev->static_addr, &hdev->random_addr)) 1438 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, 1439 &hdev->static_addr); 1440 return 0; 1441 } 1442 1443 /* Neither privacy nor static address is being used so use a 1444 * public address. 1445 */ 1446 *own_addr_type = ADDR_LE_DEV_PUBLIC; 1447 1448 return 0; 1449 } 1450 1451 static bool disconnected_whitelist_entries(struct hci_dev *hdev) 1452 { 1453 struct bdaddr_list *b; 1454 1455 list_for_each_entry(b, &hdev->whitelist, list) { 1456 struct hci_conn *conn; 1457 1458 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); 1459 if (!conn) 1460 return true; 1461 1462 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 1463 return true; 1464 } 1465 1466 return false; 1467 } 1468 1469 void __hci_req_update_scan(struct hci_request *req) 1470 { 1471 struct hci_dev *hdev = req->hdev; 1472 u8 scan; 1473 1474 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 1475 return; 1476 1477 if (!hdev_is_powered(hdev)) 1478 return; 1479 1480 if (mgmt_powering_down(hdev)) 1481 return; 1482 1483 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || 1484 disconnected_whitelist_entries(hdev)) 1485 scan = SCAN_PAGE; 1486 else 1487 scan = SCAN_DISABLED; 1488 1489 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 1490 scan |= SCAN_INQUIRY; 1491 1492 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && 1493 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) 1494 return; 1495 1496 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); 1497 } 1498 1499 static int update_scan(struct hci_request *req, unsigned long opt) 1500 { 1501 hci_dev_lock(req->hdev); 1502 __hci_req_update_scan(req); 1503 hci_dev_unlock(req->hdev); 1504 return 0; 1505 } 1506 1507 static void scan_update_work(struct work_struct *work) 1508 { 1509 struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update); 1510 1511 hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL); 1512 } 1513 1514 static int connectable_update(struct hci_request *req, unsigned long opt) 1515 { 1516 struct hci_dev *hdev = req->hdev; 1517 1518 hci_dev_lock(hdev); 1519 1520 __hci_req_update_scan(req); 1521 1522 /* If BR/EDR is not enabled and we disable advertising as a 1523 * by-product of disabling connectable, we need to update the 1524 * advertising flags. 1525 */ 1526 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 1527 __hci_req_update_adv_data(req, hdev->cur_adv_instance); 1528 1529 /* Update the advertising parameters if necessary */ 1530 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 1531 !list_empty(&hdev->adv_instances)) 1532 __hci_req_enable_advertising(req); 1533 1534 __hci_update_background_scan(req); 1535 1536 hci_dev_unlock(hdev); 1537 1538 return 0; 1539 } 1540 1541 static void connectable_update_work(struct work_struct *work) 1542 { 1543 struct hci_dev *hdev = container_of(work, struct hci_dev, 1544 connectable_update); 1545 u8 status; 1546 1547 hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status); 1548 mgmt_set_connectable_complete(hdev, status); 1549 } 1550 1551 static u8 get_service_classes(struct hci_dev *hdev) 1552 { 1553 struct bt_uuid *uuid; 1554 u8 val = 0; 1555 1556 list_for_each_entry(uuid, &hdev->uuids, list) 1557 val |= uuid->svc_hint; 1558 1559 return val; 1560 } 1561 1562 void __hci_req_update_class(struct hci_request *req) 1563 { 1564 struct hci_dev *hdev = req->hdev; 1565 u8 cod[3]; 1566 1567 BT_DBG("%s", hdev->name); 1568 1569 if (!hdev_is_powered(hdev)) 1570 return; 1571 1572 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) 1573 return; 1574 1575 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) 1576 return; 1577 1578 cod[0] = hdev->minor_class; 1579 cod[1] = hdev->major_class; 1580 cod[2] = get_service_classes(hdev); 1581 1582 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 1583 cod[1] |= 0x20; 1584 1585 if (memcmp(cod, hdev->dev_class, 3) == 0) 1586 return; 1587 1588 hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod); 1589 } 1590 1591 static void write_iac(struct hci_request *req) 1592 { 1593 struct hci_dev *hdev = req->hdev; 1594 struct hci_cp_write_current_iac_lap cp; 1595 1596 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 1597 return; 1598 1599 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { 1600 /* Limited discoverable mode */ 1601 cp.num_iac = min_t(u8, hdev->num_iac, 2); 1602 cp.iac_lap[0] = 0x00; /* LIAC */ 1603 cp.iac_lap[1] = 0x8b; 1604 cp.iac_lap[2] = 0x9e; 1605 cp.iac_lap[3] = 0x33; /* GIAC */ 1606 cp.iac_lap[4] = 0x8b; 1607 cp.iac_lap[5] = 0x9e; 1608 } else { 1609 /* General discoverable mode */ 1610 cp.num_iac = 1; 1611 cp.iac_lap[0] = 0x33; /* GIAC */ 1612 cp.iac_lap[1] = 0x8b; 1613 cp.iac_lap[2] = 0x9e; 1614 } 1615 1616 hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP, 1617 (cp.num_iac * 3) + 1, &cp); 1618 } 1619 1620 static int discoverable_update(struct hci_request *req, unsigned long opt) 1621 { 1622 struct hci_dev *hdev = req->hdev; 1623 1624 hci_dev_lock(hdev); 1625 1626 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 1627 write_iac(req); 1628 __hci_req_update_scan(req); 1629 __hci_req_update_class(req); 1630 } 1631 1632 /* Advertising instances don't use the global discoverable setting, so 1633 * only update AD if advertising was enabled using Set Advertising. 1634 */ 1635 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { 1636 __hci_req_update_adv_data(req, 0x00); 1637 1638 /* Discoverable mode affects the local advertising 1639 * address in limited privacy mode. 1640 */ 1641 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) 1642 __hci_req_enable_advertising(req); 1643 } 1644 1645 hci_dev_unlock(hdev); 1646 1647 return 0; 1648 } 1649 1650 static void discoverable_update_work(struct work_struct *work) 1651 { 1652 struct hci_dev *hdev = container_of(work, struct hci_dev, 1653 discoverable_update); 1654 u8 status; 1655 1656 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status); 1657 mgmt_set_discoverable_complete(hdev, status); 1658 } 1659 1660 void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn, 1661 u8 reason) 1662 { 1663 switch (conn->state) { 1664 case BT_CONNECTED: 1665 case BT_CONFIG: 1666 if (conn->type == AMP_LINK) { 1667 struct hci_cp_disconn_phy_link cp; 1668 1669 cp.phy_handle = HCI_PHY_HANDLE(conn->handle); 1670 cp.reason = reason; 1671 hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp), 1672 &cp); 1673 } else { 1674 struct hci_cp_disconnect dc; 1675 1676 dc.handle = cpu_to_le16(conn->handle); 1677 dc.reason = reason; 1678 hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc); 1679 } 1680 1681 conn->state = BT_DISCONN; 1682 1683 break; 1684 case BT_CONNECT: 1685 if (conn->type == LE_LINK) { 1686 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 1687 break; 1688 hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL, 1689 0, NULL); 1690 } else if (conn->type == ACL_LINK) { 1691 if (req->hdev->hci_ver < BLUETOOTH_VER_1_2) 1692 break; 1693 hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL, 1694 6, &conn->dst); 1695 } 1696 break; 1697 case BT_CONNECT2: 1698 if (conn->type == ACL_LINK) { 1699 struct hci_cp_reject_conn_req rej; 1700 1701 bacpy(&rej.bdaddr, &conn->dst); 1702 rej.reason = reason; 1703 1704 hci_req_add(req, HCI_OP_REJECT_CONN_REQ, 1705 sizeof(rej), &rej); 1706 } else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) { 1707 struct hci_cp_reject_sync_conn_req rej; 1708 1709 bacpy(&rej.bdaddr, &conn->dst); 1710 1711 /* SCO rejection has its own limited set of 1712 * allowed error values (0x0D-0x0F) which isn't 1713 * compatible with most values passed to this 1714 * function. To be safe hard-code one of the 1715 * values that's suitable for SCO. 1716 */ 1717 rej.reason = HCI_ERROR_REMOTE_LOW_RESOURCES; 1718 1719 hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ, 1720 sizeof(rej), &rej); 1721 } 1722 break; 1723 default: 1724 conn->state = BT_CLOSED; 1725 break; 1726 } 1727 } 1728 1729 static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode) 1730 { 1731 if (status) 1732 BT_DBG("Failed to abort connection: status 0x%2.2x", status); 1733 } 1734 1735 int hci_abort_conn(struct hci_conn *conn, u8 reason) 1736 { 1737 struct hci_request req; 1738 int err; 1739 1740 hci_req_init(&req, conn->hdev); 1741 1742 __hci_abort_conn(&req, conn, reason); 1743 1744 err = hci_req_run(&req, abort_conn_complete); 1745 if (err && err != -ENODATA) { 1746 BT_ERR("Failed to run HCI request: err %d", err); 1747 return err; 1748 } 1749 1750 return 0; 1751 } 1752 1753 static int update_bg_scan(struct hci_request *req, unsigned long opt) 1754 { 1755 hci_dev_lock(req->hdev); 1756 __hci_update_background_scan(req); 1757 hci_dev_unlock(req->hdev); 1758 return 0; 1759 } 1760 1761 static void bg_scan_update(struct work_struct *work) 1762 { 1763 struct hci_dev *hdev = container_of(work, struct hci_dev, 1764 bg_scan_update); 1765 struct hci_conn *conn; 1766 u8 status; 1767 int err; 1768 1769 err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status); 1770 if (!err) 1771 return; 1772 1773 hci_dev_lock(hdev); 1774 1775 conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT); 1776 if (conn) 1777 hci_le_conn_failed(conn, status); 1778 1779 hci_dev_unlock(hdev); 1780 } 1781 1782 static int le_scan_disable(struct hci_request *req, unsigned long opt) 1783 { 1784 hci_req_add_le_scan_disable(req); 1785 return 0; 1786 } 1787 1788 static int bredr_inquiry(struct hci_request *req, unsigned long opt) 1789 { 1790 u8 length = opt; 1791 const u8 giac[3] = { 0x33, 0x8b, 0x9e }; 1792 const u8 liac[3] = { 0x00, 0x8b, 0x9e }; 1793 struct hci_cp_inquiry cp; 1794 1795 BT_DBG("%s", req->hdev->name); 1796 1797 hci_dev_lock(req->hdev); 1798 hci_inquiry_cache_flush(req->hdev); 1799 hci_dev_unlock(req->hdev); 1800 1801 memset(&cp, 0, sizeof(cp)); 1802 1803 if (req->hdev->discovery.limited) 1804 memcpy(&cp.lap, liac, sizeof(cp.lap)); 1805 else 1806 memcpy(&cp.lap, giac, sizeof(cp.lap)); 1807 1808 cp.length = length; 1809 1810 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp); 1811 1812 return 0; 1813 } 1814 1815 static void le_scan_disable_work(struct work_struct *work) 1816 { 1817 struct hci_dev *hdev = container_of(work, struct hci_dev, 1818 le_scan_disable.work); 1819 u8 status; 1820 1821 BT_DBG("%s", hdev->name); 1822 1823 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 1824 return; 1825 1826 cancel_delayed_work(&hdev->le_scan_restart); 1827 1828 hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status); 1829 if (status) { 1830 BT_ERR("Failed to disable LE scan: status 0x%02x", status); 1831 return; 1832 } 1833 1834 hdev->discovery.scan_start = 0; 1835 1836 /* If we were running LE only scan, change discovery state. If 1837 * we were running both LE and BR/EDR inquiry simultaneously, 1838 * and BR/EDR inquiry is already finished, stop discovery, 1839 * otherwise BR/EDR inquiry will stop discovery when finished. 1840 * If we will resolve remote device name, do not change 1841 * discovery state. 1842 */ 1843 1844 if (hdev->discovery.type == DISCOV_TYPE_LE) 1845 goto discov_stopped; 1846 1847 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED) 1848 return; 1849 1850 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) { 1851 if (!test_bit(HCI_INQUIRY, &hdev->flags) && 1852 hdev->discovery.state != DISCOVERY_RESOLVING) 1853 goto discov_stopped; 1854 1855 return; 1856 } 1857 1858 hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN, 1859 HCI_CMD_TIMEOUT, &status); 1860 if (status) { 1861 BT_ERR("Inquiry failed: status 0x%02x", status); 1862 goto discov_stopped; 1863 } 1864 1865 return; 1866 1867 discov_stopped: 1868 hci_dev_lock(hdev); 1869 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 1870 hci_dev_unlock(hdev); 1871 } 1872 1873 static int le_scan_restart(struct hci_request *req, unsigned long opt) 1874 { 1875 struct hci_dev *hdev = req->hdev; 1876 struct hci_cp_le_set_scan_enable cp; 1877 1878 /* If controller is not scanning we are done. */ 1879 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 1880 return 0; 1881 1882 hci_req_add_le_scan_disable(req); 1883 1884 memset(&cp, 0, sizeof(cp)); 1885 cp.enable = LE_SCAN_ENABLE; 1886 cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 1887 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp); 1888 1889 return 0; 1890 } 1891 1892 static void le_scan_restart_work(struct work_struct *work) 1893 { 1894 struct hci_dev *hdev = container_of(work, struct hci_dev, 1895 le_scan_restart.work); 1896 unsigned long timeout, duration, scan_start, now; 1897 u8 status; 1898 1899 BT_DBG("%s", hdev->name); 1900 1901 hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status); 1902 if (status) { 1903 BT_ERR("Failed to restart LE scan: status %d", status); 1904 return; 1905 } 1906 1907 hci_dev_lock(hdev); 1908 1909 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) || 1910 !hdev->discovery.scan_start) 1911 goto unlock; 1912 1913 /* When the scan was started, hdev->le_scan_disable has been queued 1914 * after duration from scan_start. During scan restart this job 1915 * has been canceled, and we need to queue it again after proper 1916 * timeout, to make sure that scan does not run indefinitely. 1917 */ 1918 duration = hdev->discovery.scan_duration; 1919 scan_start = hdev->discovery.scan_start; 1920 now = jiffies; 1921 if (now - scan_start <= duration) { 1922 int elapsed; 1923 1924 if (now >= scan_start) 1925 elapsed = now - scan_start; 1926 else 1927 elapsed = ULONG_MAX - scan_start + now; 1928 1929 timeout = duration - elapsed; 1930 } else { 1931 timeout = 0; 1932 } 1933 1934 queue_delayed_work(hdev->req_workqueue, 1935 &hdev->le_scan_disable, timeout); 1936 1937 unlock: 1938 hci_dev_unlock(hdev); 1939 } 1940 1941 static void disable_advertising(struct hci_request *req) 1942 { 1943 u8 enable = 0x00; 1944 1945 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable); 1946 } 1947 1948 static int active_scan(struct hci_request *req, unsigned long opt) 1949 { 1950 uint16_t interval = opt; 1951 struct hci_dev *hdev = req->hdev; 1952 struct hci_cp_le_set_scan_param param_cp; 1953 struct hci_cp_le_set_scan_enable enable_cp; 1954 u8 own_addr_type; 1955 int err; 1956 1957 BT_DBG("%s", hdev->name); 1958 1959 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) { 1960 hci_dev_lock(hdev); 1961 1962 /* Don't let discovery abort an outgoing connection attempt 1963 * that's using directed advertising. 1964 */ 1965 if (hci_lookup_le_connect(hdev)) { 1966 hci_dev_unlock(hdev); 1967 return -EBUSY; 1968 } 1969 1970 cancel_adv_timeout(hdev); 1971 hci_dev_unlock(hdev); 1972 1973 disable_advertising(req); 1974 } 1975 1976 /* If controller is scanning, it means the background scanning is 1977 * running. Thus, we should temporarily stop it in order to set the 1978 * discovery scanning parameters. 1979 */ 1980 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) 1981 hci_req_add_le_scan_disable(req); 1982 1983 /* All active scans will be done with either a resolvable private 1984 * address (when privacy feature has been enabled) or non-resolvable 1985 * private address. 1986 */ 1987 err = hci_update_random_address(req, true, scan_use_rpa(hdev), 1988 &own_addr_type); 1989 if (err < 0) 1990 own_addr_type = ADDR_LE_DEV_PUBLIC; 1991 1992 memset(¶m_cp, 0, sizeof(param_cp)); 1993 param_cp.type = LE_SCAN_ACTIVE; 1994 param_cp.interval = cpu_to_le16(interval); 1995 param_cp.window = cpu_to_le16(DISCOV_LE_SCAN_WIN); 1996 param_cp.own_address_type = own_addr_type; 1997 1998 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp), 1999 ¶m_cp); 2000 2001 memset(&enable_cp, 0, sizeof(enable_cp)); 2002 enable_cp.enable = LE_SCAN_ENABLE; 2003 enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 2004 2005 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp), 2006 &enable_cp); 2007 2008 return 0; 2009 } 2010 2011 static int interleaved_discov(struct hci_request *req, unsigned long opt) 2012 { 2013 int err; 2014 2015 BT_DBG("%s", req->hdev->name); 2016 2017 err = active_scan(req, opt); 2018 if (err) 2019 return err; 2020 2021 return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN); 2022 } 2023 2024 static void start_discovery(struct hci_dev *hdev, u8 *status) 2025 { 2026 unsigned long timeout; 2027 2028 BT_DBG("%s type %u", hdev->name, hdev->discovery.type); 2029 2030 switch (hdev->discovery.type) { 2031 case DISCOV_TYPE_BREDR: 2032 if (!hci_dev_test_flag(hdev, HCI_INQUIRY)) 2033 hci_req_sync(hdev, bredr_inquiry, 2034 DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT, 2035 status); 2036 return; 2037 case DISCOV_TYPE_INTERLEAVED: 2038 /* When running simultaneous discovery, the LE scanning time 2039 * should occupy the whole discovery time sine BR/EDR inquiry 2040 * and LE scanning are scheduled by the controller. 2041 * 2042 * For interleaving discovery in comparison, BR/EDR inquiry 2043 * and LE scanning are done sequentially with separate 2044 * timeouts. 2045 */ 2046 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, 2047 &hdev->quirks)) { 2048 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 2049 /* During simultaneous discovery, we double LE scan 2050 * interval. We must leave some time for the controller 2051 * to do BR/EDR inquiry. 2052 */ 2053 hci_req_sync(hdev, interleaved_discov, 2054 DISCOV_LE_SCAN_INT * 2, HCI_CMD_TIMEOUT, 2055 status); 2056 break; 2057 } 2058 2059 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); 2060 hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT, 2061 HCI_CMD_TIMEOUT, status); 2062 break; 2063 case DISCOV_TYPE_LE: 2064 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); 2065 hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT, 2066 HCI_CMD_TIMEOUT, status); 2067 break; 2068 default: 2069 *status = HCI_ERROR_UNSPECIFIED; 2070 return; 2071 } 2072 2073 if (*status) 2074 return; 2075 2076 BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout)); 2077 2078 /* When service discovery is used and the controller has a 2079 * strict duplicate filter, it is important to remember the 2080 * start and duration of the scan. This is required for 2081 * restarting scanning during the discovery phase. 2082 */ 2083 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && 2084 hdev->discovery.result_filtering) { 2085 hdev->discovery.scan_start = jiffies; 2086 hdev->discovery.scan_duration = timeout; 2087 } 2088 2089 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, 2090 timeout); 2091 } 2092 2093 bool hci_req_stop_discovery(struct hci_request *req) 2094 { 2095 struct hci_dev *hdev = req->hdev; 2096 struct discovery_state *d = &hdev->discovery; 2097 struct hci_cp_remote_name_req_cancel cp; 2098 struct inquiry_entry *e; 2099 bool ret = false; 2100 2101 BT_DBG("%s state %u", hdev->name, hdev->discovery.state); 2102 2103 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { 2104 if (test_bit(HCI_INQUIRY, &hdev->flags)) 2105 hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL); 2106 2107 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 2108 cancel_delayed_work(&hdev->le_scan_disable); 2109 hci_req_add_le_scan_disable(req); 2110 } 2111 2112 ret = true; 2113 } else { 2114 /* Passive scanning */ 2115 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 2116 hci_req_add_le_scan_disable(req); 2117 ret = true; 2118 } 2119 } 2120 2121 /* No further actions needed for LE-only discovery */ 2122 if (d->type == DISCOV_TYPE_LE) 2123 return ret; 2124 2125 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { 2126 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, 2127 NAME_PENDING); 2128 if (!e) 2129 return ret; 2130 2131 bacpy(&cp.bdaddr, &e->data.bdaddr); 2132 hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp), 2133 &cp); 2134 ret = true; 2135 } 2136 2137 return ret; 2138 } 2139 2140 static int stop_discovery(struct hci_request *req, unsigned long opt) 2141 { 2142 hci_dev_lock(req->hdev); 2143 hci_req_stop_discovery(req); 2144 hci_dev_unlock(req->hdev); 2145 2146 return 0; 2147 } 2148 2149 static void discov_update(struct work_struct *work) 2150 { 2151 struct hci_dev *hdev = container_of(work, struct hci_dev, 2152 discov_update); 2153 u8 status = 0; 2154 2155 switch (hdev->discovery.state) { 2156 case DISCOVERY_STARTING: 2157 start_discovery(hdev, &status); 2158 mgmt_start_discovery_complete(hdev, status); 2159 if (status) 2160 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 2161 else 2162 hci_discovery_set_state(hdev, DISCOVERY_FINDING); 2163 break; 2164 case DISCOVERY_STOPPING: 2165 hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status); 2166 mgmt_stop_discovery_complete(hdev, status); 2167 if (!status) 2168 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 2169 break; 2170 case DISCOVERY_STOPPED: 2171 default: 2172 return; 2173 } 2174 } 2175 2176 static void discov_off(struct work_struct *work) 2177 { 2178 struct hci_dev *hdev = container_of(work, struct hci_dev, 2179 discov_off.work); 2180 2181 BT_DBG("%s", hdev->name); 2182 2183 hci_dev_lock(hdev); 2184 2185 /* When discoverable timeout triggers, then just make sure 2186 * the limited discoverable flag is cleared. Even in the case 2187 * of a timeout triggered from general discoverable, it is 2188 * safe to unconditionally clear the flag. 2189 */ 2190 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 2191 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 2192 hdev->discov_timeout = 0; 2193 2194 hci_dev_unlock(hdev); 2195 2196 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL); 2197 mgmt_new_settings(hdev); 2198 } 2199 2200 static int powered_update_hci(struct hci_request *req, unsigned long opt) 2201 { 2202 struct hci_dev *hdev = req->hdev; 2203 u8 link_sec; 2204 2205 hci_dev_lock(hdev); 2206 2207 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) && 2208 !lmp_host_ssp_capable(hdev)) { 2209 u8 mode = 0x01; 2210 2211 hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode); 2212 2213 if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) { 2214 u8 support = 0x01; 2215 2216 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT, 2217 sizeof(support), &support); 2218 } 2219 } 2220 2221 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) && 2222 lmp_bredr_capable(hdev)) { 2223 struct hci_cp_write_le_host_supported cp; 2224 2225 cp.le = 0x01; 2226 cp.simul = 0x00; 2227 2228 /* Check first if we already have the right 2229 * host state (host features set) 2230 */ 2231 if (cp.le != lmp_host_le_capable(hdev) || 2232 cp.simul != lmp_host_le_br_capable(hdev)) 2233 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, 2234 sizeof(cp), &cp); 2235 } 2236 2237 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 2238 /* Make sure the controller has a good default for 2239 * advertising data. This also applies to the case 2240 * where BR/EDR was toggled during the AUTO_OFF phase. 2241 */ 2242 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || 2243 list_empty(&hdev->adv_instances)) { 2244 __hci_req_update_adv_data(req, 0x00); 2245 __hci_req_update_scan_rsp_data(req, 0x00); 2246 2247 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) 2248 __hci_req_enable_advertising(req); 2249 } else if (!list_empty(&hdev->adv_instances)) { 2250 struct adv_info *adv_instance; 2251 2252 adv_instance = list_first_entry(&hdev->adv_instances, 2253 struct adv_info, list); 2254 __hci_req_schedule_adv_instance(req, 2255 adv_instance->instance, 2256 true); 2257 } 2258 } 2259 2260 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); 2261 if (link_sec != test_bit(HCI_AUTH, &hdev->flags)) 2262 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 2263 sizeof(link_sec), &link_sec); 2264 2265 if (lmp_bredr_capable(hdev)) { 2266 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) 2267 __hci_req_write_fast_connectable(req, true); 2268 else 2269 __hci_req_write_fast_connectable(req, false); 2270 __hci_req_update_scan(req); 2271 __hci_req_update_class(req); 2272 __hci_req_update_name(req); 2273 __hci_req_update_eir(req); 2274 } 2275 2276 hci_dev_unlock(hdev); 2277 return 0; 2278 } 2279 2280 int __hci_req_hci_power_on(struct hci_dev *hdev) 2281 { 2282 /* Register the available SMP channels (BR/EDR and LE) only when 2283 * successfully powering on the controller. This late 2284 * registration is required so that LE SMP can clearly decide if 2285 * the public address or static address is used. 2286 */ 2287 smp_register(hdev); 2288 2289 return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT, 2290 NULL); 2291 } 2292 2293 void hci_request_setup(struct hci_dev *hdev) 2294 { 2295 INIT_WORK(&hdev->discov_update, discov_update); 2296 INIT_WORK(&hdev->bg_scan_update, bg_scan_update); 2297 INIT_WORK(&hdev->scan_update, scan_update_work); 2298 INIT_WORK(&hdev->connectable_update, connectable_update_work); 2299 INIT_WORK(&hdev->discoverable_update, discoverable_update_work); 2300 INIT_DELAYED_WORK(&hdev->discov_off, discov_off); 2301 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work); 2302 INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work); 2303 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire); 2304 } 2305 2306 void hci_request_cancel_all(struct hci_dev *hdev) 2307 { 2308 hci_req_sync_cancel(hdev, ENODEV); 2309 2310 cancel_work_sync(&hdev->discov_update); 2311 cancel_work_sync(&hdev->bg_scan_update); 2312 cancel_work_sync(&hdev->scan_update); 2313 cancel_work_sync(&hdev->connectable_update); 2314 cancel_work_sync(&hdev->discoverable_update); 2315 cancel_delayed_work_sync(&hdev->discov_off); 2316 cancel_delayed_work_sync(&hdev->le_scan_disable); 2317 cancel_delayed_work_sync(&hdev->le_scan_restart); 2318 2319 if (hdev->adv_instance_timeout) { 2320 cancel_delayed_work_sync(&hdev->adv_instance_expire); 2321 hdev->adv_instance_timeout = 0; 2322 } 2323 } 2324