xref: /openbmc/linux/net/bluetooth/hci_request.c (revision 22d55f02)
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3 
4    Copyright (C) 2014 Intel Corporation
5 
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License version 2 as
8    published by the Free Software Foundation;
9 
10    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
11    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
12    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
13    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
14    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
15    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 
19    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
20    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
21    SOFTWARE IS DISCLAIMED.
22 */
23 
24 #include <linux/sched/signal.h>
25 
26 #include <net/bluetooth/bluetooth.h>
27 #include <net/bluetooth/hci_core.h>
28 #include <net/bluetooth/mgmt.h>
29 
30 #include "smp.h"
31 #include "hci_request.h"
32 
33 #define HCI_REQ_DONE	  0
34 #define HCI_REQ_PEND	  1
35 #define HCI_REQ_CANCELED  2
36 
37 void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
38 {
39 	skb_queue_head_init(&req->cmd_q);
40 	req->hdev = hdev;
41 	req->err = 0;
42 }
43 
44 void hci_req_purge(struct hci_request *req)
45 {
46 	skb_queue_purge(&req->cmd_q);
47 }
48 
49 bool hci_req_status_pend(struct hci_dev *hdev)
50 {
51 	return hdev->req_status == HCI_REQ_PEND;
52 }
53 
54 static int req_run(struct hci_request *req, hci_req_complete_t complete,
55 		   hci_req_complete_skb_t complete_skb)
56 {
57 	struct hci_dev *hdev = req->hdev;
58 	struct sk_buff *skb;
59 	unsigned long flags;
60 
61 	BT_DBG("length %u", skb_queue_len(&req->cmd_q));
62 
63 	/* If an error occurred during request building, remove all HCI
64 	 * commands queued on the HCI request queue.
65 	 */
66 	if (req->err) {
67 		skb_queue_purge(&req->cmd_q);
68 		return req->err;
69 	}
70 
71 	/* Do not allow empty requests */
72 	if (skb_queue_empty(&req->cmd_q))
73 		return -ENODATA;
74 
75 	skb = skb_peek_tail(&req->cmd_q);
76 	if (complete) {
77 		bt_cb(skb)->hci.req_complete = complete;
78 	} else if (complete_skb) {
79 		bt_cb(skb)->hci.req_complete_skb = complete_skb;
80 		bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
81 	}
82 
83 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
84 	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
85 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
86 
87 	queue_work(hdev->workqueue, &hdev->cmd_work);
88 
89 	return 0;
90 }
91 
92 int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
93 {
94 	return req_run(req, complete, NULL);
95 }
96 
97 int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
98 {
99 	return req_run(req, NULL, complete);
100 }
101 
102 static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
103 				  struct sk_buff *skb)
104 {
105 	BT_DBG("%s result 0x%2.2x", hdev->name, result);
106 
107 	if (hdev->req_status == HCI_REQ_PEND) {
108 		hdev->req_result = result;
109 		hdev->req_status = HCI_REQ_DONE;
110 		if (skb)
111 			hdev->req_skb = skb_get(skb);
112 		wake_up_interruptible(&hdev->req_wait_q);
113 	}
114 }
115 
116 void hci_req_sync_cancel(struct hci_dev *hdev, int err)
117 {
118 	BT_DBG("%s err 0x%2.2x", hdev->name, err);
119 
120 	if (hdev->req_status == HCI_REQ_PEND) {
121 		hdev->req_result = err;
122 		hdev->req_status = HCI_REQ_CANCELED;
123 		wake_up_interruptible(&hdev->req_wait_q);
124 	}
125 }
126 
127 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
128 				  const void *param, u8 event, u32 timeout)
129 {
130 	struct hci_request req;
131 	struct sk_buff *skb;
132 	int err = 0;
133 
134 	BT_DBG("%s", hdev->name);
135 
136 	hci_req_init(&req, hdev);
137 
138 	hci_req_add_ev(&req, opcode, plen, param, event);
139 
140 	hdev->req_status = HCI_REQ_PEND;
141 
142 	err = hci_req_run_skb(&req, hci_req_sync_complete);
143 	if (err < 0)
144 		return ERR_PTR(err);
145 
146 	err = wait_event_interruptible_timeout(hdev->req_wait_q,
147 			hdev->req_status != HCI_REQ_PEND, timeout);
148 
149 	if (err == -ERESTARTSYS)
150 		return ERR_PTR(-EINTR);
151 
152 	switch (hdev->req_status) {
153 	case HCI_REQ_DONE:
154 		err = -bt_to_errno(hdev->req_result);
155 		break;
156 
157 	case HCI_REQ_CANCELED:
158 		err = -hdev->req_result;
159 		break;
160 
161 	default:
162 		err = -ETIMEDOUT;
163 		break;
164 	}
165 
166 	hdev->req_status = hdev->req_result = 0;
167 	skb = hdev->req_skb;
168 	hdev->req_skb = NULL;
169 
170 	BT_DBG("%s end: err %d", hdev->name, err);
171 
172 	if (err < 0) {
173 		kfree_skb(skb);
174 		return ERR_PTR(err);
175 	}
176 
177 	if (!skb)
178 		return ERR_PTR(-ENODATA);
179 
180 	return skb;
181 }
182 EXPORT_SYMBOL(__hci_cmd_sync_ev);
183 
184 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
185 			       const void *param, u32 timeout)
186 {
187 	return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
188 }
189 EXPORT_SYMBOL(__hci_cmd_sync);
190 
191 /* Execute request and wait for completion. */
192 int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
193 						     unsigned long opt),
194 		   unsigned long opt, u32 timeout, u8 *hci_status)
195 {
196 	struct hci_request req;
197 	int err = 0;
198 
199 	BT_DBG("%s start", hdev->name);
200 
201 	hci_req_init(&req, hdev);
202 
203 	hdev->req_status = HCI_REQ_PEND;
204 
205 	err = func(&req, opt);
206 	if (err) {
207 		if (hci_status)
208 			*hci_status = HCI_ERROR_UNSPECIFIED;
209 		return err;
210 	}
211 
212 	err = hci_req_run_skb(&req, hci_req_sync_complete);
213 	if (err < 0) {
214 		hdev->req_status = 0;
215 
216 		/* ENODATA means the HCI request command queue is empty.
217 		 * This can happen when a request with conditionals doesn't
218 		 * trigger any commands to be sent. This is normal behavior
219 		 * and should not trigger an error return.
220 		 */
221 		if (err == -ENODATA) {
222 			if (hci_status)
223 				*hci_status = 0;
224 			return 0;
225 		}
226 
227 		if (hci_status)
228 			*hci_status = HCI_ERROR_UNSPECIFIED;
229 
230 		return err;
231 	}
232 
233 	err = wait_event_interruptible_timeout(hdev->req_wait_q,
234 			hdev->req_status != HCI_REQ_PEND, timeout);
235 
236 	if (err == -ERESTARTSYS)
237 		return -EINTR;
238 
239 	switch (hdev->req_status) {
240 	case HCI_REQ_DONE:
241 		err = -bt_to_errno(hdev->req_result);
242 		if (hci_status)
243 			*hci_status = hdev->req_result;
244 		break;
245 
246 	case HCI_REQ_CANCELED:
247 		err = -hdev->req_result;
248 		if (hci_status)
249 			*hci_status = HCI_ERROR_UNSPECIFIED;
250 		break;
251 
252 	default:
253 		err = -ETIMEDOUT;
254 		if (hci_status)
255 			*hci_status = HCI_ERROR_UNSPECIFIED;
256 		break;
257 	}
258 
259 	kfree_skb(hdev->req_skb);
260 	hdev->req_skb = NULL;
261 	hdev->req_status = hdev->req_result = 0;
262 
263 	BT_DBG("%s end: err %d", hdev->name, err);
264 
265 	return err;
266 }
267 
268 int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
269 						  unsigned long opt),
270 		 unsigned long opt, u32 timeout, u8 *hci_status)
271 {
272 	int ret;
273 
274 	if (!test_bit(HCI_UP, &hdev->flags))
275 		return -ENETDOWN;
276 
277 	/* Serialize all requests */
278 	hci_req_sync_lock(hdev);
279 	ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
280 	hci_req_sync_unlock(hdev);
281 
282 	return ret;
283 }
284 
285 struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
286 				const void *param)
287 {
288 	int len = HCI_COMMAND_HDR_SIZE + plen;
289 	struct hci_command_hdr *hdr;
290 	struct sk_buff *skb;
291 
292 	skb = bt_skb_alloc(len, GFP_ATOMIC);
293 	if (!skb)
294 		return NULL;
295 
296 	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
297 	hdr->opcode = cpu_to_le16(opcode);
298 	hdr->plen   = plen;
299 
300 	if (plen)
301 		skb_put_data(skb, param, plen);
302 
303 	BT_DBG("skb len %d", skb->len);
304 
305 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
306 	hci_skb_opcode(skb) = opcode;
307 
308 	return skb;
309 }
310 
311 /* Queue a command to an asynchronous HCI request */
312 void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
313 		    const void *param, u8 event)
314 {
315 	struct hci_dev *hdev = req->hdev;
316 	struct sk_buff *skb;
317 
318 	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
319 
320 	/* If an error occurred during request building, there is no point in
321 	 * queueing the HCI command. We can simply return.
322 	 */
323 	if (req->err)
324 		return;
325 
326 	skb = hci_prepare_cmd(hdev, opcode, plen, param);
327 	if (!skb) {
328 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
329 			   opcode);
330 		req->err = -ENOMEM;
331 		return;
332 	}
333 
334 	if (skb_queue_empty(&req->cmd_q))
335 		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
336 
337 	bt_cb(skb)->hci.req_event = event;
338 
339 	skb_queue_tail(&req->cmd_q, skb);
340 }
341 
342 void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
343 		 const void *param)
344 {
345 	hci_req_add_ev(req, opcode, plen, param, 0);
346 }
347 
348 void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
349 {
350 	struct hci_dev *hdev = req->hdev;
351 	struct hci_cp_write_page_scan_activity acp;
352 	u8 type;
353 
354 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
355 		return;
356 
357 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
358 		return;
359 
360 	if (enable) {
361 		type = PAGE_SCAN_TYPE_INTERLACED;
362 
363 		/* 160 msec page scan interval */
364 		acp.interval = cpu_to_le16(0x0100);
365 	} else {
366 		type = PAGE_SCAN_TYPE_STANDARD;	/* default */
367 
368 		/* default 1.28 sec page scan */
369 		acp.interval = cpu_to_le16(0x0800);
370 	}
371 
372 	acp.window = cpu_to_le16(0x0012);
373 
374 	if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
375 	    __cpu_to_le16(hdev->page_scan_window) != acp.window)
376 		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
377 			    sizeof(acp), &acp);
378 
379 	if (hdev->page_scan_type != type)
380 		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
381 }
382 
383 /* This function controls the background scanning based on hdev->pend_le_conns
384  * list. If there are pending LE connection we start the background scanning,
385  * otherwise we stop it.
386  *
387  * This function requires the caller holds hdev->lock.
388  */
389 static void __hci_update_background_scan(struct hci_request *req)
390 {
391 	struct hci_dev *hdev = req->hdev;
392 
393 	if (!test_bit(HCI_UP, &hdev->flags) ||
394 	    test_bit(HCI_INIT, &hdev->flags) ||
395 	    hci_dev_test_flag(hdev, HCI_SETUP) ||
396 	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
397 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
398 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
399 		return;
400 
401 	/* No point in doing scanning if LE support hasn't been enabled */
402 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
403 		return;
404 
405 	/* If discovery is active don't interfere with it */
406 	if (hdev->discovery.state != DISCOVERY_STOPPED)
407 		return;
408 
409 	/* Reset RSSI and UUID filters when starting background scanning
410 	 * since these filters are meant for service discovery only.
411 	 *
412 	 * The Start Discovery and Start Service Discovery operations
413 	 * ensure to set proper values for RSSI threshold and UUID
414 	 * filter list. So it is safe to just reset them here.
415 	 */
416 	hci_discovery_filter_clear(hdev);
417 
418 	if (list_empty(&hdev->pend_le_conns) &&
419 	    list_empty(&hdev->pend_le_reports)) {
420 		/* If there is no pending LE connections or devices
421 		 * to be scanned for, we should stop the background
422 		 * scanning.
423 		 */
424 
425 		/* If controller is not scanning we are done. */
426 		if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
427 			return;
428 
429 		hci_req_add_le_scan_disable(req);
430 
431 		BT_DBG("%s stopping background scanning", hdev->name);
432 	} else {
433 		/* If there is at least one pending LE connection, we should
434 		 * keep the background scan running.
435 		 */
436 
437 		/* If controller is connecting, we should not start scanning
438 		 * since some controllers are not able to scan and connect at
439 		 * the same time.
440 		 */
441 		if (hci_lookup_le_connect(hdev))
442 			return;
443 
444 		/* If controller is currently scanning, we stop it to ensure we
445 		 * don't miss any advertising (due to duplicates filter).
446 		 */
447 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
448 			hci_req_add_le_scan_disable(req);
449 
450 		hci_req_add_le_passive_scan(req);
451 
452 		BT_DBG("%s starting background scanning", hdev->name);
453 	}
454 }
455 
456 void __hci_req_update_name(struct hci_request *req)
457 {
458 	struct hci_dev *hdev = req->hdev;
459 	struct hci_cp_write_local_name cp;
460 
461 	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
462 
463 	hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
464 }
465 
466 #define PNP_INFO_SVCLASS_ID		0x1200
467 
468 static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
469 {
470 	u8 *ptr = data, *uuids_start = NULL;
471 	struct bt_uuid *uuid;
472 
473 	if (len < 4)
474 		return ptr;
475 
476 	list_for_each_entry(uuid, &hdev->uuids, list) {
477 		u16 uuid16;
478 
479 		if (uuid->size != 16)
480 			continue;
481 
482 		uuid16 = get_unaligned_le16(&uuid->uuid[12]);
483 		if (uuid16 < 0x1100)
484 			continue;
485 
486 		if (uuid16 == PNP_INFO_SVCLASS_ID)
487 			continue;
488 
489 		if (!uuids_start) {
490 			uuids_start = ptr;
491 			uuids_start[0] = 1;
492 			uuids_start[1] = EIR_UUID16_ALL;
493 			ptr += 2;
494 		}
495 
496 		/* Stop if not enough space to put next UUID */
497 		if ((ptr - data) + sizeof(u16) > len) {
498 			uuids_start[1] = EIR_UUID16_SOME;
499 			break;
500 		}
501 
502 		*ptr++ = (uuid16 & 0x00ff);
503 		*ptr++ = (uuid16 & 0xff00) >> 8;
504 		uuids_start[0] += sizeof(uuid16);
505 	}
506 
507 	return ptr;
508 }
509 
510 static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
511 {
512 	u8 *ptr = data, *uuids_start = NULL;
513 	struct bt_uuid *uuid;
514 
515 	if (len < 6)
516 		return ptr;
517 
518 	list_for_each_entry(uuid, &hdev->uuids, list) {
519 		if (uuid->size != 32)
520 			continue;
521 
522 		if (!uuids_start) {
523 			uuids_start = ptr;
524 			uuids_start[0] = 1;
525 			uuids_start[1] = EIR_UUID32_ALL;
526 			ptr += 2;
527 		}
528 
529 		/* Stop if not enough space to put next UUID */
530 		if ((ptr - data) + sizeof(u32) > len) {
531 			uuids_start[1] = EIR_UUID32_SOME;
532 			break;
533 		}
534 
535 		memcpy(ptr, &uuid->uuid[12], sizeof(u32));
536 		ptr += sizeof(u32);
537 		uuids_start[0] += sizeof(u32);
538 	}
539 
540 	return ptr;
541 }
542 
543 static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
544 {
545 	u8 *ptr = data, *uuids_start = NULL;
546 	struct bt_uuid *uuid;
547 
548 	if (len < 18)
549 		return ptr;
550 
551 	list_for_each_entry(uuid, &hdev->uuids, list) {
552 		if (uuid->size != 128)
553 			continue;
554 
555 		if (!uuids_start) {
556 			uuids_start = ptr;
557 			uuids_start[0] = 1;
558 			uuids_start[1] = EIR_UUID128_ALL;
559 			ptr += 2;
560 		}
561 
562 		/* Stop if not enough space to put next UUID */
563 		if ((ptr - data) + 16 > len) {
564 			uuids_start[1] = EIR_UUID128_SOME;
565 			break;
566 		}
567 
568 		memcpy(ptr, uuid->uuid, 16);
569 		ptr += 16;
570 		uuids_start[0] += 16;
571 	}
572 
573 	return ptr;
574 }
575 
576 static void create_eir(struct hci_dev *hdev, u8 *data)
577 {
578 	u8 *ptr = data;
579 	size_t name_len;
580 
581 	name_len = strlen(hdev->dev_name);
582 
583 	if (name_len > 0) {
584 		/* EIR Data type */
585 		if (name_len > 48) {
586 			name_len = 48;
587 			ptr[1] = EIR_NAME_SHORT;
588 		} else
589 			ptr[1] = EIR_NAME_COMPLETE;
590 
591 		/* EIR Data length */
592 		ptr[0] = name_len + 1;
593 
594 		memcpy(ptr + 2, hdev->dev_name, name_len);
595 
596 		ptr += (name_len + 2);
597 	}
598 
599 	if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) {
600 		ptr[0] = 2;
601 		ptr[1] = EIR_TX_POWER;
602 		ptr[2] = (u8) hdev->inq_tx_power;
603 
604 		ptr += 3;
605 	}
606 
607 	if (hdev->devid_source > 0) {
608 		ptr[0] = 9;
609 		ptr[1] = EIR_DEVICE_ID;
610 
611 		put_unaligned_le16(hdev->devid_source, ptr + 2);
612 		put_unaligned_le16(hdev->devid_vendor, ptr + 4);
613 		put_unaligned_le16(hdev->devid_product, ptr + 6);
614 		put_unaligned_le16(hdev->devid_version, ptr + 8);
615 
616 		ptr += 10;
617 	}
618 
619 	ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
620 	ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
621 	ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
622 }
623 
624 void __hci_req_update_eir(struct hci_request *req)
625 {
626 	struct hci_dev *hdev = req->hdev;
627 	struct hci_cp_write_eir cp;
628 
629 	if (!hdev_is_powered(hdev))
630 		return;
631 
632 	if (!lmp_ext_inq_capable(hdev))
633 		return;
634 
635 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
636 		return;
637 
638 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
639 		return;
640 
641 	memset(&cp, 0, sizeof(cp));
642 
643 	create_eir(hdev, cp.data);
644 
645 	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
646 		return;
647 
648 	memcpy(hdev->eir, cp.data, sizeof(cp.data));
649 
650 	hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
651 }
652 
653 void hci_req_add_le_scan_disable(struct hci_request *req)
654 {
655 	struct hci_dev *hdev = req->hdev;
656 
657 	if (use_ext_scan(hdev)) {
658 		struct hci_cp_le_set_ext_scan_enable cp;
659 
660 		memset(&cp, 0, sizeof(cp));
661 		cp.enable = LE_SCAN_DISABLE;
662 		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp),
663 			    &cp);
664 	} else {
665 		struct hci_cp_le_set_scan_enable cp;
666 
667 		memset(&cp, 0, sizeof(cp));
668 		cp.enable = LE_SCAN_DISABLE;
669 		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
670 	}
671 }
672 
673 static void add_to_white_list(struct hci_request *req,
674 			      struct hci_conn_params *params)
675 {
676 	struct hci_cp_le_add_to_white_list cp;
677 
678 	cp.bdaddr_type = params->addr_type;
679 	bacpy(&cp.bdaddr, &params->addr);
680 
681 	hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
682 }
683 
684 static u8 update_white_list(struct hci_request *req)
685 {
686 	struct hci_dev *hdev = req->hdev;
687 	struct hci_conn_params *params;
688 	struct bdaddr_list *b;
689 	uint8_t white_list_entries = 0;
690 
691 	/* Go through the current white list programmed into the
692 	 * controller one by one and check if that address is still
693 	 * in the list of pending connections or list of devices to
694 	 * report. If not present in either list, then queue the
695 	 * command to remove it from the controller.
696 	 */
697 	list_for_each_entry(b, &hdev->le_white_list, list) {
698 		/* If the device is neither in pend_le_conns nor
699 		 * pend_le_reports then remove it from the whitelist.
700 		 */
701 		if (!hci_pend_le_action_lookup(&hdev->pend_le_conns,
702 					       &b->bdaddr, b->bdaddr_type) &&
703 		    !hci_pend_le_action_lookup(&hdev->pend_le_reports,
704 					       &b->bdaddr, b->bdaddr_type)) {
705 			struct hci_cp_le_del_from_white_list cp;
706 
707 			cp.bdaddr_type = b->bdaddr_type;
708 			bacpy(&cp.bdaddr, &b->bdaddr);
709 
710 			hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST,
711 				    sizeof(cp), &cp);
712 			continue;
713 		}
714 
715 		if (hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
716 			/* White list can not be used with RPAs */
717 			return 0x00;
718 		}
719 
720 		white_list_entries++;
721 	}
722 
723 	/* Since all no longer valid white list entries have been
724 	 * removed, walk through the list of pending connections
725 	 * and ensure that any new device gets programmed into
726 	 * the controller.
727 	 *
728 	 * If the list of the devices is larger than the list of
729 	 * available white list entries in the controller, then
730 	 * just abort and return filer policy value to not use the
731 	 * white list.
732 	 */
733 	list_for_each_entry(params, &hdev->pend_le_conns, action) {
734 		if (hci_bdaddr_list_lookup(&hdev->le_white_list,
735 					   &params->addr, params->addr_type))
736 			continue;
737 
738 		if (white_list_entries >= hdev->le_white_list_size) {
739 			/* Select filter policy to accept all advertising */
740 			return 0x00;
741 		}
742 
743 		if (hci_find_irk_by_addr(hdev, &params->addr,
744 					 params->addr_type)) {
745 			/* White list can not be used with RPAs */
746 			return 0x00;
747 		}
748 
749 		white_list_entries++;
750 		add_to_white_list(req, params);
751 	}
752 
753 	/* After adding all new pending connections, walk through
754 	 * the list of pending reports and also add these to the
755 	 * white list if there is still space.
756 	 */
757 	list_for_each_entry(params, &hdev->pend_le_reports, action) {
758 		if (hci_bdaddr_list_lookup(&hdev->le_white_list,
759 					   &params->addr, params->addr_type))
760 			continue;
761 
762 		if (white_list_entries >= hdev->le_white_list_size) {
763 			/* Select filter policy to accept all advertising */
764 			return 0x00;
765 		}
766 
767 		if (hci_find_irk_by_addr(hdev, &params->addr,
768 					 params->addr_type)) {
769 			/* White list can not be used with RPAs */
770 			return 0x00;
771 		}
772 
773 		white_list_entries++;
774 		add_to_white_list(req, params);
775 	}
776 
777 	/* Select filter policy to use white list */
778 	return 0x01;
779 }
780 
781 static bool scan_use_rpa(struct hci_dev *hdev)
782 {
783 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
784 }
785 
786 static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval,
787 			       u16 window, u8 own_addr_type, u8 filter_policy)
788 {
789 	struct hci_dev *hdev = req->hdev;
790 
791 	/* Use ext scanning if set ext scan param and ext scan enable is
792 	 * supported
793 	 */
794 	if (use_ext_scan(hdev)) {
795 		struct hci_cp_le_set_ext_scan_params *ext_param_cp;
796 		struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
797 		struct hci_cp_le_scan_phy_params *phy_params;
798 		u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2];
799 		u32 plen;
800 
801 		ext_param_cp = (void *)data;
802 		phy_params = (void *)ext_param_cp->data;
803 
804 		memset(ext_param_cp, 0, sizeof(*ext_param_cp));
805 		ext_param_cp->own_addr_type = own_addr_type;
806 		ext_param_cp->filter_policy = filter_policy;
807 
808 		plen = sizeof(*ext_param_cp);
809 
810 		if (scan_1m(hdev) || scan_2m(hdev)) {
811 			ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M;
812 
813 			memset(phy_params, 0, sizeof(*phy_params));
814 			phy_params->type = type;
815 			phy_params->interval = cpu_to_le16(interval);
816 			phy_params->window = cpu_to_le16(window);
817 
818 			plen += sizeof(*phy_params);
819 			phy_params++;
820 		}
821 
822 		if (scan_coded(hdev)) {
823 			ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED;
824 
825 			memset(phy_params, 0, sizeof(*phy_params));
826 			phy_params->type = type;
827 			phy_params->interval = cpu_to_le16(interval);
828 			phy_params->window = cpu_to_le16(window);
829 
830 			plen += sizeof(*phy_params);
831 			phy_params++;
832 		}
833 
834 		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
835 			    plen, ext_param_cp);
836 
837 		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
838 		ext_enable_cp.enable = LE_SCAN_ENABLE;
839 		ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
840 
841 		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
842 			    sizeof(ext_enable_cp), &ext_enable_cp);
843 	} else {
844 		struct hci_cp_le_set_scan_param param_cp;
845 		struct hci_cp_le_set_scan_enable enable_cp;
846 
847 		memset(&param_cp, 0, sizeof(param_cp));
848 		param_cp.type = type;
849 		param_cp.interval = cpu_to_le16(interval);
850 		param_cp.window = cpu_to_le16(window);
851 		param_cp.own_address_type = own_addr_type;
852 		param_cp.filter_policy = filter_policy;
853 		hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
854 			    &param_cp);
855 
856 		memset(&enable_cp, 0, sizeof(enable_cp));
857 		enable_cp.enable = LE_SCAN_ENABLE;
858 		enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
859 		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
860 			    &enable_cp);
861 	}
862 }
863 
864 void hci_req_add_le_passive_scan(struct hci_request *req)
865 {
866 	struct hci_dev *hdev = req->hdev;
867 	u8 own_addr_type;
868 	u8 filter_policy;
869 
870 	/* Set require_privacy to false since no SCAN_REQ are send
871 	 * during passive scanning. Not using an non-resolvable address
872 	 * here is important so that peer devices using direct
873 	 * advertising with our address will be correctly reported
874 	 * by the controller.
875 	 */
876 	if (hci_update_random_address(req, false, scan_use_rpa(hdev),
877 				      &own_addr_type))
878 		return;
879 
880 	/* Adding or removing entries from the white list must
881 	 * happen before enabling scanning. The controller does
882 	 * not allow white list modification while scanning.
883 	 */
884 	filter_policy = update_white_list(req);
885 
886 	/* When the controller is using random resolvable addresses and
887 	 * with that having LE privacy enabled, then controllers with
888 	 * Extended Scanner Filter Policies support can now enable support
889 	 * for handling directed advertising.
890 	 *
891 	 * So instead of using filter polices 0x00 (no whitelist)
892 	 * and 0x01 (whitelist enabled) use the new filter policies
893 	 * 0x02 (no whitelist) and 0x03 (whitelist enabled).
894 	 */
895 	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
896 	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
897 		filter_policy |= 0x02;
898 
899 	hci_req_start_scan(req, LE_SCAN_PASSIVE, hdev->le_scan_interval,
900 			   hdev->le_scan_window, own_addr_type, filter_policy);
901 }
902 
903 static u8 get_adv_instance_scan_rsp_len(struct hci_dev *hdev, u8 instance)
904 {
905 	struct adv_info *adv_instance;
906 
907 	/* Ignore instance 0 */
908 	if (instance == 0x00)
909 		return 0;
910 
911 	adv_instance = hci_find_adv_instance(hdev, instance);
912 	if (!adv_instance)
913 		return 0;
914 
915 	/* TODO: Take into account the "appearance" and "local-name" flags here.
916 	 * These are currently being ignored as they are not supported.
917 	 */
918 	return adv_instance->scan_rsp_len;
919 }
920 
921 static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev)
922 {
923 	u8 instance = hdev->cur_adv_instance;
924 	struct adv_info *adv_instance;
925 
926 	/* Ignore instance 0 */
927 	if (instance == 0x00)
928 		return 0;
929 
930 	adv_instance = hci_find_adv_instance(hdev, instance);
931 	if (!adv_instance)
932 		return 0;
933 
934 	/* TODO: Take into account the "appearance" and "local-name" flags here.
935 	 * These are currently being ignored as they are not supported.
936 	 */
937 	return adv_instance->scan_rsp_len;
938 }
939 
940 void __hci_req_disable_advertising(struct hci_request *req)
941 {
942 	if (ext_adv_capable(req->hdev)) {
943 		struct hci_cp_le_set_ext_adv_enable cp;
944 
945 		cp.enable = 0x00;
946 		/* Disable all sets since we only support one set at the moment */
947 		cp.num_of_sets = 0x00;
948 
949 		hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp), &cp);
950 	} else {
951 		u8 enable = 0x00;
952 
953 		hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
954 	}
955 }
956 
957 static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance)
958 {
959 	u32 flags;
960 	struct adv_info *adv_instance;
961 
962 	if (instance == 0x00) {
963 		/* Instance 0 always manages the "Tx Power" and "Flags"
964 		 * fields
965 		 */
966 		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
967 
968 		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
969 		 * corresponds to the "connectable" instance flag.
970 		 */
971 		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
972 			flags |= MGMT_ADV_FLAG_CONNECTABLE;
973 
974 		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
975 			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
976 		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
977 			flags |= MGMT_ADV_FLAG_DISCOV;
978 
979 		return flags;
980 	}
981 
982 	adv_instance = hci_find_adv_instance(hdev, instance);
983 
984 	/* Return 0 when we got an invalid instance identifier. */
985 	if (!adv_instance)
986 		return 0;
987 
988 	return adv_instance->flags;
989 }
990 
991 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
992 {
993 	/* If privacy is not enabled don't use RPA */
994 	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
995 		return false;
996 
997 	/* If basic privacy mode is enabled use RPA */
998 	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
999 		return true;
1000 
1001 	/* If limited privacy mode is enabled don't use RPA if we're
1002 	 * both discoverable and bondable.
1003 	 */
1004 	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
1005 	    hci_dev_test_flag(hdev, HCI_BONDABLE))
1006 		return false;
1007 
1008 	/* We're neither bondable nor discoverable in the limited
1009 	 * privacy mode, therefore use RPA.
1010 	 */
1011 	return true;
1012 }
1013 
1014 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
1015 {
1016 	/* If there is no connection we are OK to advertise. */
1017 	if (hci_conn_num(hdev, LE_LINK) == 0)
1018 		return true;
1019 
1020 	/* Check le_states if there is any connection in slave role. */
1021 	if (hdev->conn_hash.le_num_slave > 0) {
1022 		/* Slave connection state and non connectable mode bit 20. */
1023 		if (!connectable && !(hdev->le_states[2] & 0x10))
1024 			return false;
1025 
1026 		/* Slave connection state and connectable mode bit 38
1027 		 * and scannable bit 21.
1028 		 */
1029 		if (connectable && (!(hdev->le_states[4] & 0x40) ||
1030 				    !(hdev->le_states[2] & 0x20)))
1031 			return false;
1032 	}
1033 
1034 	/* Check le_states if there is any connection in master role. */
1035 	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_slave) {
1036 		/* Master connection state and non connectable mode bit 18. */
1037 		if (!connectable && !(hdev->le_states[2] & 0x02))
1038 			return false;
1039 
1040 		/* Master connection state and connectable mode bit 35 and
1041 		 * scannable 19.
1042 		 */
1043 		if (connectable && (!(hdev->le_states[4] & 0x08) ||
1044 				    !(hdev->le_states[2] & 0x08)))
1045 			return false;
1046 	}
1047 
1048 	return true;
1049 }
1050 
1051 void __hci_req_enable_advertising(struct hci_request *req)
1052 {
1053 	struct hci_dev *hdev = req->hdev;
1054 	struct hci_cp_le_set_adv_param cp;
1055 	u8 own_addr_type, enable = 0x01;
1056 	bool connectable;
1057 	u32 flags;
1058 
1059 	flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance);
1060 
1061 	/* If the "connectable" instance flag was not set, then choose between
1062 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1063 	 */
1064 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1065 		      mgmt_get_connectable(hdev);
1066 
1067 	if (!is_advertising_allowed(hdev, connectable))
1068 		return;
1069 
1070 	if (hci_dev_test_flag(hdev, HCI_LE_ADV))
1071 		__hci_req_disable_advertising(req);
1072 
1073 	/* Clear the HCI_LE_ADV bit temporarily so that the
1074 	 * hci_update_random_address knows that it's safe to go ahead
1075 	 * and write a new random address. The flag will be set back on
1076 	 * as soon as the SET_ADV_ENABLE HCI command completes.
1077 	 */
1078 	hci_dev_clear_flag(hdev, HCI_LE_ADV);
1079 
1080 	/* Set require_privacy to true only when non-connectable
1081 	 * advertising is used. In that case it is fine to use a
1082 	 * non-resolvable private address.
1083 	 */
1084 	if (hci_update_random_address(req, !connectable,
1085 				      adv_use_rpa(hdev, flags),
1086 				      &own_addr_type) < 0)
1087 		return;
1088 
1089 	memset(&cp, 0, sizeof(cp));
1090 	cp.min_interval = cpu_to_le16(hdev->le_adv_min_interval);
1091 	cp.max_interval = cpu_to_le16(hdev->le_adv_max_interval);
1092 
1093 	if (connectable)
1094 		cp.type = LE_ADV_IND;
1095 	else if (get_cur_adv_instance_scan_rsp_len(hdev))
1096 		cp.type = LE_ADV_SCAN_IND;
1097 	else
1098 		cp.type = LE_ADV_NONCONN_IND;
1099 
1100 	cp.own_address_type = own_addr_type;
1101 	cp.channel_map = hdev->le_adv_channel_map;
1102 
1103 	hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
1104 
1105 	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1106 }
1107 
1108 u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1109 {
1110 	size_t short_len;
1111 	size_t complete_len;
1112 
1113 	/* no space left for name (+ NULL + type + len) */
1114 	if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3)
1115 		return ad_len;
1116 
1117 	/* use complete name if present and fits */
1118 	complete_len = strlen(hdev->dev_name);
1119 	if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH)
1120 		return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE,
1121 				       hdev->dev_name, complete_len + 1);
1122 
1123 	/* use short name if present */
1124 	short_len = strlen(hdev->short_name);
1125 	if (short_len)
1126 		return eir_append_data(ptr, ad_len, EIR_NAME_SHORT,
1127 				       hdev->short_name, short_len + 1);
1128 
1129 	/* use shortened full name if present, we already know that name
1130 	 * is longer then HCI_MAX_SHORT_NAME_LENGTH
1131 	 */
1132 	if (complete_len) {
1133 		u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1];
1134 
1135 		memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH);
1136 		name[HCI_MAX_SHORT_NAME_LENGTH] = '\0';
1137 
1138 		return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name,
1139 				       sizeof(name));
1140 	}
1141 
1142 	return ad_len;
1143 }
1144 
1145 static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1146 {
1147 	return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance);
1148 }
1149 
1150 static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr)
1151 {
1152 	u8 scan_rsp_len = 0;
1153 
1154 	if (hdev->appearance) {
1155 		scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1156 	}
1157 
1158 	return append_local_name(hdev, ptr, scan_rsp_len);
1159 }
1160 
1161 static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance,
1162 					u8 *ptr)
1163 {
1164 	struct adv_info *adv_instance;
1165 	u32 instance_flags;
1166 	u8 scan_rsp_len = 0;
1167 
1168 	adv_instance = hci_find_adv_instance(hdev, instance);
1169 	if (!adv_instance)
1170 		return 0;
1171 
1172 	instance_flags = adv_instance->flags;
1173 
1174 	if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) {
1175 		scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1176 	}
1177 
1178 	memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data,
1179 	       adv_instance->scan_rsp_len);
1180 
1181 	scan_rsp_len += adv_instance->scan_rsp_len;
1182 
1183 	if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME)
1184 		scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len);
1185 
1186 	return scan_rsp_len;
1187 }
1188 
1189 void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1190 {
1191 	struct hci_dev *hdev = req->hdev;
1192 	u8 len;
1193 
1194 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1195 		return;
1196 
1197 	if (ext_adv_capable(hdev)) {
1198 		struct hci_cp_le_set_ext_scan_rsp_data cp;
1199 
1200 		memset(&cp, 0, sizeof(cp));
1201 
1202 		if (instance)
1203 			len = create_instance_scan_rsp_data(hdev, instance,
1204 							    cp.data);
1205 		else
1206 			len = create_default_scan_rsp_data(hdev, cp.data);
1207 
1208 		if (hdev->scan_rsp_data_len == len &&
1209 		    !memcmp(cp.data, hdev->scan_rsp_data, len))
1210 			return;
1211 
1212 		memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1213 		hdev->scan_rsp_data_len = len;
1214 
1215 		cp.handle = 0;
1216 		cp.length = len;
1217 		cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1218 		cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1219 
1220 		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, sizeof(cp),
1221 			    &cp);
1222 	} else {
1223 		struct hci_cp_le_set_scan_rsp_data cp;
1224 
1225 		memset(&cp, 0, sizeof(cp));
1226 
1227 		if (instance)
1228 			len = create_instance_scan_rsp_data(hdev, instance,
1229 							    cp.data);
1230 		else
1231 			len = create_default_scan_rsp_data(hdev, cp.data);
1232 
1233 		if (hdev->scan_rsp_data_len == len &&
1234 		    !memcmp(cp.data, hdev->scan_rsp_data, len))
1235 			return;
1236 
1237 		memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1238 		hdev->scan_rsp_data_len = len;
1239 
1240 		cp.length = len;
1241 
1242 		hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
1243 	}
1244 }
1245 
1246 static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr)
1247 {
1248 	struct adv_info *adv_instance = NULL;
1249 	u8 ad_len = 0, flags = 0;
1250 	u32 instance_flags;
1251 
1252 	/* Return 0 when the current instance identifier is invalid. */
1253 	if (instance) {
1254 		adv_instance = hci_find_adv_instance(hdev, instance);
1255 		if (!adv_instance)
1256 			return 0;
1257 	}
1258 
1259 	instance_flags = get_adv_instance_flags(hdev, instance);
1260 
1261 	/* The Add Advertising command allows userspace to set both the general
1262 	 * and limited discoverable flags.
1263 	 */
1264 	if (instance_flags & MGMT_ADV_FLAG_DISCOV)
1265 		flags |= LE_AD_GENERAL;
1266 
1267 	if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV)
1268 		flags |= LE_AD_LIMITED;
1269 
1270 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1271 		flags |= LE_AD_NO_BREDR;
1272 
1273 	if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) {
1274 		/* If a discovery flag wasn't provided, simply use the global
1275 		 * settings.
1276 		 */
1277 		if (!flags)
1278 			flags |= mgmt_get_adv_discov_flags(hdev);
1279 
1280 		/* If flags would still be empty, then there is no need to
1281 		 * include the "Flags" AD field".
1282 		 */
1283 		if (flags) {
1284 			ptr[0] = 0x02;
1285 			ptr[1] = EIR_FLAGS;
1286 			ptr[2] = flags;
1287 
1288 			ad_len += 3;
1289 			ptr += 3;
1290 		}
1291 	}
1292 
1293 	if (adv_instance) {
1294 		memcpy(ptr, adv_instance->adv_data,
1295 		       adv_instance->adv_data_len);
1296 		ad_len += adv_instance->adv_data_len;
1297 		ptr += adv_instance->adv_data_len;
1298 	}
1299 
1300 	if (instance_flags & MGMT_ADV_FLAG_TX_POWER) {
1301 		s8 adv_tx_power;
1302 
1303 		if (ext_adv_capable(hdev)) {
1304 			if (adv_instance)
1305 				adv_tx_power = adv_instance->tx_power;
1306 			else
1307 				adv_tx_power = hdev->adv_tx_power;
1308 		} else {
1309 			adv_tx_power = hdev->adv_tx_power;
1310 		}
1311 
1312 		/* Provide Tx Power only if we can provide a valid value for it */
1313 		if (adv_tx_power != HCI_TX_POWER_INVALID) {
1314 			ptr[0] = 0x02;
1315 			ptr[1] = EIR_TX_POWER;
1316 			ptr[2] = (u8)adv_tx_power;
1317 
1318 			ad_len += 3;
1319 			ptr += 3;
1320 		}
1321 	}
1322 
1323 	return ad_len;
1324 }
1325 
1326 void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1327 {
1328 	struct hci_dev *hdev = req->hdev;
1329 	u8 len;
1330 
1331 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1332 		return;
1333 
1334 	if (ext_adv_capable(hdev)) {
1335 		struct hci_cp_le_set_ext_adv_data cp;
1336 
1337 		memset(&cp, 0, sizeof(cp));
1338 
1339 		len = create_instance_adv_data(hdev, instance, cp.data);
1340 
1341 		/* There's nothing to do if the data hasn't changed */
1342 		if (hdev->adv_data_len == len &&
1343 		    memcmp(cp.data, hdev->adv_data, len) == 0)
1344 			return;
1345 
1346 		memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1347 		hdev->adv_data_len = len;
1348 
1349 		cp.length = len;
1350 		cp.handle = 0;
1351 		cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1352 		cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1353 
1354 		hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA, sizeof(cp), &cp);
1355 	} else {
1356 		struct hci_cp_le_set_adv_data cp;
1357 
1358 		memset(&cp, 0, sizeof(cp));
1359 
1360 		len = create_instance_adv_data(hdev, instance, cp.data);
1361 
1362 		/* There's nothing to do if the data hasn't changed */
1363 		if (hdev->adv_data_len == len &&
1364 		    memcmp(cp.data, hdev->adv_data, len) == 0)
1365 			return;
1366 
1367 		memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1368 		hdev->adv_data_len = len;
1369 
1370 		cp.length = len;
1371 
1372 		hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
1373 	}
1374 }
1375 
1376 int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1377 {
1378 	struct hci_request req;
1379 
1380 	hci_req_init(&req, hdev);
1381 	__hci_req_update_adv_data(&req, instance);
1382 
1383 	return hci_req_run(&req, NULL);
1384 }
1385 
1386 static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1387 {
1388 	BT_DBG("%s status %u", hdev->name, status);
1389 }
1390 
1391 void hci_req_reenable_advertising(struct hci_dev *hdev)
1392 {
1393 	struct hci_request req;
1394 
1395 	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1396 	    list_empty(&hdev->adv_instances))
1397 		return;
1398 
1399 	hci_req_init(&req, hdev);
1400 
1401 	if (hdev->cur_adv_instance) {
1402 		__hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
1403 						true);
1404 	} else {
1405 		if (ext_adv_capable(hdev)) {
1406 			__hci_req_start_ext_adv(&req, 0x00);
1407 		} else {
1408 			__hci_req_update_adv_data(&req, 0x00);
1409 			__hci_req_update_scan_rsp_data(&req, 0x00);
1410 			__hci_req_enable_advertising(&req);
1411 		}
1412 	}
1413 
1414 	hci_req_run(&req, adv_enable_complete);
1415 }
1416 
1417 static void adv_timeout_expire(struct work_struct *work)
1418 {
1419 	struct hci_dev *hdev = container_of(work, struct hci_dev,
1420 					    adv_instance_expire.work);
1421 
1422 	struct hci_request req;
1423 	u8 instance;
1424 
1425 	BT_DBG("%s", hdev->name);
1426 
1427 	hci_dev_lock(hdev);
1428 
1429 	hdev->adv_instance_timeout = 0;
1430 
1431 	instance = hdev->cur_adv_instance;
1432 	if (instance == 0x00)
1433 		goto unlock;
1434 
1435 	hci_req_init(&req, hdev);
1436 
1437 	hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1438 
1439 	if (list_empty(&hdev->adv_instances))
1440 		__hci_req_disable_advertising(&req);
1441 
1442 	hci_req_run(&req, NULL);
1443 
1444 unlock:
1445 	hci_dev_unlock(hdev);
1446 }
1447 
1448 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
1449 			   bool use_rpa, struct adv_info *adv_instance,
1450 			   u8 *own_addr_type, bdaddr_t *rand_addr)
1451 {
1452 	int err;
1453 
1454 	bacpy(rand_addr, BDADDR_ANY);
1455 
1456 	/* If privacy is enabled use a resolvable private address. If
1457 	 * current RPA has expired then generate a new one.
1458 	 */
1459 	if (use_rpa) {
1460 		int to;
1461 
1462 		*own_addr_type = ADDR_LE_DEV_RANDOM;
1463 
1464 		if (adv_instance) {
1465 			if (!adv_instance->rpa_expired &&
1466 			    !bacmp(&adv_instance->random_addr, &hdev->rpa))
1467 				return 0;
1468 
1469 			adv_instance->rpa_expired = false;
1470 		} else {
1471 			if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1472 			    !bacmp(&hdev->random_addr, &hdev->rpa))
1473 				return 0;
1474 		}
1475 
1476 		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1477 		if (err < 0) {
1478 			BT_ERR("%s failed to generate new RPA", hdev->name);
1479 			return err;
1480 		}
1481 
1482 		bacpy(rand_addr, &hdev->rpa);
1483 
1484 		to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1485 		if (adv_instance)
1486 			queue_delayed_work(hdev->workqueue,
1487 					   &adv_instance->rpa_expired_cb, to);
1488 		else
1489 			queue_delayed_work(hdev->workqueue,
1490 					   &hdev->rpa_expired, to);
1491 
1492 		return 0;
1493 	}
1494 
1495 	/* In case of required privacy without resolvable private address,
1496 	 * use an non-resolvable private address. This is useful for
1497 	 * non-connectable advertising.
1498 	 */
1499 	if (require_privacy) {
1500 		bdaddr_t nrpa;
1501 
1502 		while (true) {
1503 			/* The non-resolvable private address is generated
1504 			 * from random six bytes with the two most significant
1505 			 * bits cleared.
1506 			 */
1507 			get_random_bytes(&nrpa, 6);
1508 			nrpa.b[5] &= 0x3f;
1509 
1510 			/* The non-resolvable private address shall not be
1511 			 * equal to the public address.
1512 			 */
1513 			if (bacmp(&hdev->bdaddr, &nrpa))
1514 				break;
1515 		}
1516 
1517 		*own_addr_type = ADDR_LE_DEV_RANDOM;
1518 		bacpy(rand_addr, &nrpa);
1519 
1520 		return 0;
1521 	}
1522 
1523 	/* No privacy so use a public address. */
1524 	*own_addr_type = ADDR_LE_DEV_PUBLIC;
1525 
1526 	return 0;
1527 }
1528 
1529 void __hci_req_clear_ext_adv_sets(struct hci_request *req)
1530 {
1531 	hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL);
1532 }
1533 
1534 int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance)
1535 {
1536 	struct hci_cp_le_set_ext_adv_params cp;
1537 	struct hci_dev *hdev = req->hdev;
1538 	bool connectable;
1539 	u32 flags;
1540 	bdaddr_t random_addr;
1541 	u8 own_addr_type;
1542 	int err;
1543 	struct adv_info *adv_instance;
1544 	bool secondary_adv;
1545 	/* In ext adv set param interval is 3 octets */
1546 	const u8 adv_interval[3] = { 0x00, 0x08, 0x00 };
1547 
1548 	if (instance > 0) {
1549 		adv_instance = hci_find_adv_instance(hdev, instance);
1550 		if (!adv_instance)
1551 			return -EINVAL;
1552 	} else {
1553 		adv_instance = NULL;
1554 	}
1555 
1556 	flags = get_adv_instance_flags(hdev, instance);
1557 
1558 	/* If the "connectable" instance flag was not set, then choose between
1559 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1560 	 */
1561 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1562 		      mgmt_get_connectable(hdev);
1563 
1564 	if (!is_advertising_allowed(hdev, connectable))
1565 		return -EPERM;
1566 
1567 	/* Set require_privacy to true only when non-connectable
1568 	 * advertising is used. In that case it is fine to use a
1569 	 * non-resolvable private address.
1570 	 */
1571 	err = hci_get_random_address(hdev, !connectable,
1572 				     adv_use_rpa(hdev, flags), adv_instance,
1573 				     &own_addr_type, &random_addr);
1574 	if (err < 0)
1575 		return err;
1576 
1577 	memset(&cp, 0, sizeof(cp));
1578 
1579 	memcpy(cp.min_interval, adv_interval, sizeof(cp.min_interval));
1580 	memcpy(cp.max_interval, adv_interval, sizeof(cp.max_interval));
1581 
1582 	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
1583 
1584 	if (connectable) {
1585 		if (secondary_adv)
1586 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
1587 		else
1588 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
1589 	} else if (get_adv_instance_scan_rsp_len(hdev, instance)) {
1590 		if (secondary_adv)
1591 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
1592 		else
1593 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
1594 	} else {
1595 		if (secondary_adv)
1596 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
1597 		else
1598 			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
1599 	}
1600 
1601 	cp.own_addr_type = own_addr_type;
1602 	cp.channel_map = hdev->le_adv_channel_map;
1603 	cp.tx_power = 127;
1604 	cp.handle = 0;
1605 
1606 	if (flags & MGMT_ADV_FLAG_SEC_2M) {
1607 		cp.primary_phy = HCI_ADV_PHY_1M;
1608 		cp.secondary_phy = HCI_ADV_PHY_2M;
1609 	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
1610 		cp.primary_phy = HCI_ADV_PHY_CODED;
1611 		cp.secondary_phy = HCI_ADV_PHY_CODED;
1612 	} else {
1613 		/* In all other cases use 1M */
1614 		cp.primary_phy = HCI_ADV_PHY_1M;
1615 		cp.secondary_phy = HCI_ADV_PHY_1M;
1616 	}
1617 
1618 	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);
1619 
1620 	if (own_addr_type == ADDR_LE_DEV_RANDOM &&
1621 	    bacmp(&random_addr, BDADDR_ANY)) {
1622 		struct hci_cp_le_set_adv_set_rand_addr cp;
1623 
1624 		/* Check if random address need to be updated */
1625 		if (adv_instance) {
1626 			if (!bacmp(&random_addr, &adv_instance->random_addr))
1627 				return 0;
1628 		} else {
1629 			if (!bacmp(&random_addr, &hdev->random_addr))
1630 				return 0;
1631 		}
1632 
1633 		memset(&cp, 0, sizeof(cp));
1634 
1635 		cp.handle = 0;
1636 		bacpy(&cp.bdaddr, &random_addr);
1637 
1638 		hci_req_add(req,
1639 			    HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
1640 			    sizeof(cp), &cp);
1641 	}
1642 
1643 	return 0;
1644 }
1645 
1646 void __hci_req_enable_ext_advertising(struct hci_request *req)
1647 {
1648 	struct hci_cp_le_set_ext_adv_enable *cp;
1649 	struct hci_cp_ext_adv_set *adv_set;
1650 	u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
1651 
1652 	cp = (void *) data;
1653 	adv_set = (void *) cp->data;
1654 
1655 	memset(cp, 0, sizeof(*cp));
1656 
1657 	cp->enable = 0x01;
1658 	cp->num_of_sets = 0x01;
1659 
1660 	memset(adv_set, 0, sizeof(*adv_set));
1661 
1662 	adv_set->handle = 0;
1663 
1664 	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE,
1665 		    sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets,
1666 		    data);
1667 }
1668 
1669 int __hci_req_start_ext_adv(struct hci_request *req, u8 instance)
1670 {
1671 	struct hci_dev *hdev = req->hdev;
1672 	int err;
1673 
1674 	if (hci_dev_test_flag(hdev, HCI_LE_ADV))
1675 		__hci_req_disable_advertising(req);
1676 
1677 	err = __hci_req_setup_ext_adv_instance(req, instance);
1678 	if (err < 0)
1679 		return err;
1680 
1681 	__hci_req_update_scan_rsp_data(req, instance);
1682 	__hci_req_enable_ext_advertising(req);
1683 
1684 	return 0;
1685 }
1686 
1687 int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
1688 				    bool force)
1689 {
1690 	struct hci_dev *hdev = req->hdev;
1691 	struct adv_info *adv_instance = NULL;
1692 	u16 timeout;
1693 
1694 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1695 	    list_empty(&hdev->adv_instances))
1696 		return -EPERM;
1697 
1698 	if (hdev->adv_instance_timeout)
1699 		return -EBUSY;
1700 
1701 	adv_instance = hci_find_adv_instance(hdev, instance);
1702 	if (!adv_instance)
1703 		return -ENOENT;
1704 
1705 	/* A zero timeout means unlimited advertising. As long as there is
1706 	 * only one instance, duration should be ignored. We still set a timeout
1707 	 * in case further instances are being added later on.
1708 	 *
1709 	 * If the remaining lifetime of the instance is more than the duration
1710 	 * then the timeout corresponds to the duration, otherwise it will be
1711 	 * reduced to the remaining instance lifetime.
1712 	 */
1713 	if (adv_instance->timeout == 0 ||
1714 	    adv_instance->duration <= adv_instance->remaining_time)
1715 		timeout = adv_instance->duration;
1716 	else
1717 		timeout = adv_instance->remaining_time;
1718 
1719 	/* The remaining time is being reduced unless the instance is being
1720 	 * advertised without time limit.
1721 	 */
1722 	if (adv_instance->timeout)
1723 		adv_instance->remaining_time =
1724 				adv_instance->remaining_time - timeout;
1725 
1726 	hdev->adv_instance_timeout = timeout;
1727 	queue_delayed_work(hdev->req_workqueue,
1728 			   &hdev->adv_instance_expire,
1729 			   msecs_to_jiffies(timeout * 1000));
1730 
1731 	/* If we're just re-scheduling the same instance again then do not
1732 	 * execute any HCI commands. This happens when a single instance is
1733 	 * being advertised.
1734 	 */
1735 	if (!force && hdev->cur_adv_instance == instance &&
1736 	    hci_dev_test_flag(hdev, HCI_LE_ADV))
1737 		return 0;
1738 
1739 	hdev->cur_adv_instance = instance;
1740 	if (ext_adv_capable(hdev)) {
1741 		__hci_req_start_ext_adv(req, instance);
1742 	} else {
1743 		__hci_req_update_adv_data(req, instance);
1744 		__hci_req_update_scan_rsp_data(req, instance);
1745 		__hci_req_enable_advertising(req);
1746 	}
1747 
1748 	return 0;
1749 }
1750 
1751 static void cancel_adv_timeout(struct hci_dev *hdev)
1752 {
1753 	if (hdev->adv_instance_timeout) {
1754 		hdev->adv_instance_timeout = 0;
1755 		cancel_delayed_work(&hdev->adv_instance_expire);
1756 	}
1757 }
1758 
1759 /* For a single instance:
1760  * - force == true: The instance will be removed even when its remaining
1761  *   lifetime is not zero.
1762  * - force == false: the instance will be deactivated but kept stored unless
1763  *   the remaining lifetime is zero.
1764  *
1765  * For instance == 0x00:
1766  * - force == true: All instances will be removed regardless of their timeout
1767  *   setting.
1768  * - force == false: Only instances that have a timeout will be removed.
1769  */
1770 void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
1771 				struct hci_request *req, u8 instance,
1772 				bool force)
1773 {
1774 	struct adv_info *adv_instance, *n, *next_instance = NULL;
1775 	int err;
1776 	u8 rem_inst;
1777 
1778 	/* Cancel any timeout concerning the removed instance(s). */
1779 	if (!instance || hdev->cur_adv_instance == instance)
1780 		cancel_adv_timeout(hdev);
1781 
1782 	/* Get the next instance to advertise BEFORE we remove
1783 	 * the current one. This can be the same instance again
1784 	 * if there is only one instance.
1785 	 */
1786 	if (instance && hdev->cur_adv_instance == instance)
1787 		next_instance = hci_get_next_instance(hdev, instance);
1788 
1789 	if (instance == 0x00) {
1790 		list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
1791 					 list) {
1792 			if (!(force || adv_instance->timeout))
1793 				continue;
1794 
1795 			rem_inst = adv_instance->instance;
1796 			err = hci_remove_adv_instance(hdev, rem_inst);
1797 			if (!err)
1798 				mgmt_advertising_removed(sk, hdev, rem_inst);
1799 		}
1800 	} else {
1801 		adv_instance = hci_find_adv_instance(hdev, instance);
1802 
1803 		if (force || (adv_instance && adv_instance->timeout &&
1804 			      !adv_instance->remaining_time)) {
1805 			/* Don't advertise a removed instance. */
1806 			if (next_instance &&
1807 			    next_instance->instance == instance)
1808 				next_instance = NULL;
1809 
1810 			err = hci_remove_adv_instance(hdev, instance);
1811 			if (!err)
1812 				mgmt_advertising_removed(sk, hdev, instance);
1813 		}
1814 	}
1815 
1816 	if (!req || !hdev_is_powered(hdev) ||
1817 	    hci_dev_test_flag(hdev, HCI_ADVERTISING))
1818 		return;
1819 
1820 	if (next_instance)
1821 		__hci_req_schedule_adv_instance(req, next_instance->instance,
1822 						false);
1823 }
1824 
1825 static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
1826 {
1827 	struct hci_dev *hdev = req->hdev;
1828 
1829 	/* If we're advertising or initiating an LE connection we can't
1830 	 * go ahead and change the random address at this time. This is
1831 	 * because the eventual initiator address used for the
1832 	 * subsequently created connection will be undefined (some
1833 	 * controllers use the new address and others the one we had
1834 	 * when the operation started).
1835 	 *
1836 	 * In this kind of scenario skip the update and let the random
1837 	 * address be updated at the next cycle.
1838 	 */
1839 	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
1840 	    hci_lookup_le_connect(hdev)) {
1841 		BT_DBG("Deferring random address update");
1842 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1843 		return;
1844 	}
1845 
1846 	hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
1847 }
1848 
1849 int hci_update_random_address(struct hci_request *req, bool require_privacy,
1850 			      bool use_rpa, u8 *own_addr_type)
1851 {
1852 	struct hci_dev *hdev = req->hdev;
1853 	int err;
1854 
1855 	/* If privacy is enabled use a resolvable private address. If
1856 	 * current RPA has expired or there is something else than
1857 	 * the current RPA in use, then generate a new one.
1858 	 */
1859 	if (use_rpa) {
1860 		int to;
1861 
1862 		*own_addr_type = ADDR_LE_DEV_RANDOM;
1863 
1864 		if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1865 		    !bacmp(&hdev->random_addr, &hdev->rpa))
1866 			return 0;
1867 
1868 		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1869 		if (err < 0) {
1870 			bt_dev_err(hdev, "failed to generate new RPA");
1871 			return err;
1872 		}
1873 
1874 		set_random_addr(req, &hdev->rpa);
1875 
1876 		to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1877 		queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);
1878 
1879 		return 0;
1880 	}
1881 
1882 	/* In case of required privacy without resolvable private address,
1883 	 * use an non-resolvable private address. This is useful for active
1884 	 * scanning and non-connectable advertising.
1885 	 */
1886 	if (require_privacy) {
1887 		bdaddr_t nrpa;
1888 
1889 		while (true) {
1890 			/* The non-resolvable private address is generated
1891 			 * from random six bytes with the two most significant
1892 			 * bits cleared.
1893 			 */
1894 			get_random_bytes(&nrpa, 6);
1895 			nrpa.b[5] &= 0x3f;
1896 
1897 			/* The non-resolvable private address shall not be
1898 			 * equal to the public address.
1899 			 */
1900 			if (bacmp(&hdev->bdaddr, &nrpa))
1901 				break;
1902 		}
1903 
1904 		*own_addr_type = ADDR_LE_DEV_RANDOM;
1905 		set_random_addr(req, &nrpa);
1906 		return 0;
1907 	}
1908 
1909 	/* If forcing static address is in use or there is no public
1910 	 * address use the static address as random address (but skip
1911 	 * the HCI command if the current random address is already the
1912 	 * static one.
1913 	 *
1914 	 * In case BR/EDR has been disabled on a dual-mode controller
1915 	 * and a static address has been configured, then use that
1916 	 * address instead of the public BR/EDR address.
1917 	 */
1918 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
1919 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
1920 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
1921 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
1922 		*own_addr_type = ADDR_LE_DEV_RANDOM;
1923 		if (bacmp(&hdev->static_addr, &hdev->random_addr))
1924 			hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
1925 				    &hdev->static_addr);
1926 		return 0;
1927 	}
1928 
1929 	/* Neither privacy nor static address is being used so use a
1930 	 * public address.
1931 	 */
1932 	*own_addr_type = ADDR_LE_DEV_PUBLIC;
1933 
1934 	return 0;
1935 }
1936 
1937 static bool disconnected_whitelist_entries(struct hci_dev *hdev)
1938 {
1939 	struct bdaddr_list *b;
1940 
1941 	list_for_each_entry(b, &hdev->whitelist, list) {
1942 		struct hci_conn *conn;
1943 
1944 		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
1945 		if (!conn)
1946 			return true;
1947 
1948 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
1949 			return true;
1950 	}
1951 
1952 	return false;
1953 }
1954 
1955 void __hci_req_update_scan(struct hci_request *req)
1956 {
1957 	struct hci_dev *hdev = req->hdev;
1958 	u8 scan;
1959 
1960 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1961 		return;
1962 
1963 	if (!hdev_is_powered(hdev))
1964 		return;
1965 
1966 	if (mgmt_powering_down(hdev))
1967 		return;
1968 
1969 	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
1970 	    disconnected_whitelist_entries(hdev))
1971 		scan = SCAN_PAGE;
1972 	else
1973 		scan = SCAN_DISABLED;
1974 
1975 	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1976 		scan |= SCAN_INQUIRY;
1977 
1978 	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
1979 	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
1980 		return;
1981 
1982 	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1983 }
1984 
1985 static int update_scan(struct hci_request *req, unsigned long opt)
1986 {
1987 	hci_dev_lock(req->hdev);
1988 	__hci_req_update_scan(req);
1989 	hci_dev_unlock(req->hdev);
1990 	return 0;
1991 }
1992 
1993 static void scan_update_work(struct work_struct *work)
1994 {
1995 	struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);
1996 
1997 	hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
1998 }
1999 
2000 static int connectable_update(struct hci_request *req, unsigned long opt)
2001 {
2002 	struct hci_dev *hdev = req->hdev;
2003 
2004 	hci_dev_lock(hdev);
2005 
2006 	__hci_req_update_scan(req);
2007 
2008 	/* If BR/EDR is not enabled and we disable advertising as a
2009 	 * by-product of disabling connectable, we need to update the
2010 	 * advertising flags.
2011 	 */
2012 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2013 		__hci_req_update_adv_data(req, hdev->cur_adv_instance);
2014 
2015 	/* Update the advertising parameters if necessary */
2016 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2017 	    !list_empty(&hdev->adv_instances)) {
2018 		if (ext_adv_capable(hdev))
2019 			__hci_req_start_ext_adv(req, hdev->cur_adv_instance);
2020 		else
2021 			__hci_req_enable_advertising(req);
2022 	}
2023 
2024 	__hci_update_background_scan(req);
2025 
2026 	hci_dev_unlock(hdev);
2027 
2028 	return 0;
2029 }
2030 
2031 static void connectable_update_work(struct work_struct *work)
2032 {
2033 	struct hci_dev *hdev = container_of(work, struct hci_dev,
2034 					    connectable_update);
2035 	u8 status;
2036 
2037 	hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
2038 	mgmt_set_connectable_complete(hdev, status);
2039 }
2040 
2041 static u8 get_service_classes(struct hci_dev *hdev)
2042 {
2043 	struct bt_uuid *uuid;
2044 	u8 val = 0;
2045 
2046 	list_for_each_entry(uuid, &hdev->uuids, list)
2047 		val |= uuid->svc_hint;
2048 
2049 	return val;
2050 }
2051 
2052 void __hci_req_update_class(struct hci_request *req)
2053 {
2054 	struct hci_dev *hdev = req->hdev;
2055 	u8 cod[3];
2056 
2057 	BT_DBG("%s", hdev->name);
2058 
2059 	if (!hdev_is_powered(hdev))
2060 		return;
2061 
2062 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2063 		return;
2064 
2065 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
2066 		return;
2067 
2068 	cod[0] = hdev->minor_class;
2069 	cod[1] = hdev->major_class;
2070 	cod[2] = get_service_classes(hdev);
2071 
2072 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
2073 		cod[1] |= 0x20;
2074 
2075 	if (memcmp(cod, hdev->dev_class, 3) == 0)
2076 		return;
2077 
2078 	hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
2079 }
2080 
2081 static void write_iac(struct hci_request *req)
2082 {
2083 	struct hci_dev *hdev = req->hdev;
2084 	struct hci_cp_write_current_iac_lap cp;
2085 
2086 	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2087 		return;
2088 
2089 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
2090 		/* Limited discoverable mode */
2091 		cp.num_iac = min_t(u8, hdev->num_iac, 2);
2092 		cp.iac_lap[0] = 0x00;	/* LIAC */
2093 		cp.iac_lap[1] = 0x8b;
2094 		cp.iac_lap[2] = 0x9e;
2095 		cp.iac_lap[3] = 0x33;	/* GIAC */
2096 		cp.iac_lap[4] = 0x8b;
2097 		cp.iac_lap[5] = 0x9e;
2098 	} else {
2099 		/* General discoverable mode */
2100 		cp.num_iac = 1;
2101 		cp.iac_lap[0] = 0x33;	/* GIAC */
2102 		cp.iac_lap[1] = 0x8b;
2103 		cp.iac_lap[2] = 0x9e;
2104 	}
2105 
2106 	hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
2107 		    (cp.num_iac * 3) + 1, &cp);
2108 }
2109 
2110 static int discoverable_update(struct hci_request *req, unsigned long opt)
2111 {
2112 	struct hci_dev *hdev = req->hdev;
2113 
2114 	hci_dev_lock(hdev);
2115 
2116 	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
2117 		write_iac(req);
2118 		__hci_req_update_scan(req);
2119 		__hci_req_update_class(req);
2120 	}
2121 
2122 	/* Advertising instances don't use the global discoverable setting, so
2123 	 * only update AD if advertising was enabled using Set Advertising.
2124 	 */
2125 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2126 		__hci_req_update_adv_data(req, 0x00);
2127 
2128 		/* Discoverable mode affects the local advertising
2129 		 * address in limited privacy mode.
2130 		 */
2131 		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
2132 			if (ext_adv_capable(hdev))
2133 				__hci_req_start_ext_adv(req, 0x00);
2134 			else
2135 				__hci_req_enable_advertising(req);
2136 		}
2137 	}
2138 
2139 	hci_dev_unlock(hdev);
2140 
2141 	return 0;
2142 }
2143 
2144 static void discoverable_update_work(struct work_struct *work)
2145 {
2146 	struct hci_dev *hdev = container_of(work, struct hci_dev,
2147 					    discoverable_update);
2148 	u8 status;
2149 
2150 	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
2151 	mgmt_set_discoverable_complete(hdev, status);
2152 }
2153 
2154 void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
2155 		      u8 reason)
2156 {
2157 	switch (conn->state) {
2158 	case BT_CONNECTED:
2159 	case BT_CONFIG:
2160 		if (conn->type == AMP_LINK) {
2161 			struct hci_cp_disconn_phy_link cp;
2162 
2163 			cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
2164 			cp.reason = reason;
2165 			hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
2166 				    &cp);
2167 		} else {
2168 			struct hci_cp_disconnect dc;
2169 
2170 			dc.handle = cpu_to_le16(conn->handle);
2171 			dc.reason = reason;
2172 			hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
2173 		}
2174 
2175 		conn->state = BT_DISCONN;
2176 
2177 		break;
2178 	case BT_CONNECT:
2179 		if (conn->type == LE_LINK) {
2180 			if (test_bit(HCI_CONN_SCANNING, &conn->flags))
2181 				break;
2182 			hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
2183 				    0, NULL);
2184 		} else if (conn->type == ACL_LINK) {
2185 			if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
2186 				break;
2187 			hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
2188 				    6, &conn->dst);
2189 		}
2190 		break;
2191 	case BT_CONNECT2:
2192 		if (conn->type == ACL_LINK) {
2193 			struct hci_cp_reject_conn_req rej;
2194 
2195 			bacpy(&rej.bdaddr, &conn->dst);
2196 			rej.reason = reason;
2197 
2198 			hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
2199 				    sizeof(rej), &rej);
2200 		} else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
2201 			struct hci_cp_reject_sync_conn_req rej;
2202 
2203 			bacpy(&rej.bdaddr, &conn->dst);
2204 
2205 			/* SCO rejection has its own limited set of
2206 			 * allowed error values (0x0D-0x0F) which isn't
2207 			 * compatible with most values passed to this
2208 			 * function. To be safe hard-code one of the
2209 			 * values that's suitable for SCO.
2210 			 */
2211 			rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
2212 
2213 			hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
2214 				    sizeof(rej), &rej);
2215 		}
2216 		break;
2217 	default:
2218 		conn->state = BT_CLOSED;
2219 		break;
2220 	}
2221 }
2222 
2223 static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
2224 {
2225 	if (status)
2226 		BT_DBG("Failed to abort connection: status 0x%2.2x", status);
2227 }
2228 
2229 int hci_abort_conn(struct hci_conn *conn, u8 reason)
2230 {
2231 	struct hci_request req;
2232 	int err;
2233 
2234 	hci_req_init(&req, conn->hdev);
2235 
2236 	__hci_abort_conn(&req, conn, reason);
2237 
2238 	err = hci_req_run(&req, abort_conn_complete);
2239 	if (err && err != -ENODATA) {
2240 		bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err);
2241 		return err;
2242 	}
2243 
2244 	return 0;
2245 }
2246 
2247 static int update_bg_scan(struct hci_request *req, unsigned long opt)
2248 {
2249 	hci_dev_lock(req->hdev);
2250 	__hci_update_background_scan(req);
2251 	hci_dev_unlock(req->hdev);
2252 	return 0;
2253 }
2254 
2255 static void bg_scan_update(struct work_struct *work)
2256 {
2257 	struct hci_dev *hdev = container_of(work, struct hci_dev,
2258 					    bg_scan_update);
2259 	struct hci_conn *conn;
2260 	u8 status;
2261 	int err;
2262 
2263 	err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
2264 	if (!err)
2265 		return;
2266 
2267 	hci_dev_lock(hdev);
2268 
2269 	conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
2270 	if (conn)
2271 		hci_le_conn_failed(conn, status);
2272 
2273 	hci_dev_unlock(hdev);
2274 }
2275 
2276 static int le_scan_disable(struct hci_request *req, unsigned long opt)
2277 {
2278 	hci_req_add_le_scan_disable(req);
2279 	return 0;
2280 }
2281 
2282 static int bredr_inquiry(struct hci_request *req, unsigned long opt)
2283 {
2284 	u8 length = opt;
2285 	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
2286 	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
2287 	struct hci_cp_inquiry cp;
2288 
2289 	BT_DBG("%s", req->hdev->name);
2290 
2291 	hci_dev_lock(req->hdev);
2292 	hci_inquiry_cache_flush(req->hdev);
2293 	hci_dev_unlock(req->hdev);
2294 
2295 	memset(&cp, 0, sizeof(cp));
2296 
2297 	if (req->hdev->discovery.limited)
2298 		memcpy(&cp.lap, liac, sizeof(cp.lap));
2299 	else
2300 		memcpy(&cp.lap, giac, sizeof(cp.lap));
2301 
2302 	cp.length = length;
2303 
2304 	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
2305 
2306 	return 0;
2307 }
2308 
2309 static void le_scan_disable_work(struct work_struct *work)
2310 {
2311 	struct hci_dev *hdev = container_of(work, struct hci_dev,
2312 					    le_scan_disable.work);
2313 	u8 status;
2314 
2315 	BT_DBG("%s", hdev->name);
2316 
2317 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2318 		return;
2319 
2320 	cancel_delayed_work(&hdev->le_scan_restart);
2321 
2322 	hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
2323 	if (status) {
2324 		bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x",
2325 			   status);
2326 		return;
2327 	}
2328 
2329 	hdev->discovery.scan_start = 0;
2330 
2331 	/* If we were running LE only scan, change discovery state. If
2332 	 * we were running both LE and BR/EDR inquiry simultaneously,
2333 	 * and BR/EDR inquiry is already finished, stop discovery,
2334 	 * otherwise BR/EDR inquiry will stop discovery when finished.
2335 	 * If we will resolve remote device name, do not change
2336 	 * discovery state.
2337 	 */
2338 
2339 	if (hdev->discovery.type == DISCOV_TYPE_LE)
2340 		goto discov_stopped;
2341 
2342 	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
2343 		return;
2344 
2345 	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
2346 		if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
2347 		    hdev->discovery.state != DISCOVERY_RESOLVING)
2348 			goto discov_stopped;
2349 
2350 		return;
2351 	}
2352 
2353 	hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
2354 		     HCI_CMD_TIMEOUT, &status);
2355 	if (status) {
2356 		bt_dev_err(hdev, "inquiry failed: status 0x%02x", status);
2357 		goto discov_stopped;
2358 	}
2359 
2360 	return;
2361 
2362 discov_stopped:
2363 	hci_dev_lock(hdev);
2364 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2365 	hci_dev_unlock(hdev);
2366 }
2367 
2368 static int le_scan_restart(struct hci_request *req, unsigned long opt)
2369 {
2370 	struct hci_dev *hdev = req->hdev;
2371 
2372 	/* If controller is not scanning we are done. */
2373 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2374 		return 0;
2375 
2376 	hci_req_add_le_scan_disable(req);
2377 
2378 	if (use_ext_scan(hdev)) {
2379 		struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
2380 
2381 		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
2382 		ext_enable_cp.enable = LE_SCAN_ENABLE;
2383 		ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2384 
2385 		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
2386 			    sizeof(ext_enable_cp), &ext_enable_cp);
2387 	} else {
2388 		struct hci_cp_le_set_scan_enable cp;
2389 
2390 		memset(&cp, 0, sizeof(cp));
2391 		cp.enable = LE_SCAN_ENABLE;
2392 		cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2393 		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
2394 	}
2395 
2396 	return 0;
2397 }
2398 
2399 static void le_scan_restart_work(struct work_struct *work)
2400 {
2401 	struct hci_dev *hdev = container_of(work, struct hci_dev,
2402 					    le_scan_restart.work);
2403 	unsigned long timeout, duration, scan_start, now;
2404 	u8 status;
2405 
2406 	BT_DBG("%s", hdev->name);
2407 
2408 	hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
2409 	if (status) {
2410 		bt_dev_err(hdev, "failed to restart LE scan: status %d",
2411 			   status);
2412 		return;
2413 	}
2414 
2415 	hci_dev_lock(hdev);
2416 
2417 	if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
2418 	    !hdev->discovery.scan_start)
2419 		goto unlock;
2420 
2421 	/* When the scan was started, hdev->le_scan_disable has been queued
2422 	 * after duration from scan_start. During scan restart this job
2423 	 * has been canceled, and we need to queue it again after proper
2424 	 * timeout, to make sure that scan does not run indefinitely.
2425 	 */
2426 	duration = hdev->discovery.scan_duration;
2427 	scan_start = hdev->discovery.scan_start;
2428 	now = jiffies;
2429 	if (now - scan_start <= duration) {
2430 		int elapsed;
2431 
2432 		if (now >= scan_start)
2433 			elapsed = now - scan_start;
2434 		else
2435 			elapsed = ULONG_MAX - scan_start + now;
2436 
2437 		timeout = duration - elapsed;
2438 	} else {
2439 		timeout = 0;
2440 	}
2441 
2442 	queue_delayed_work(hdev->req_workqueue,
2443 			   &hdev->le_scan_disable, timeout);
2444 
2445 unlock:
2446 	hci_dev_unlock(hdev);
2447 }
2448 
2449 static int active_scan(struct hci_request *req, unsigned long opt)
2450 {
2451 	uint16_t interval = opt;
2452 	struct hci_dev *hdev = req->hdev;
2453 	u8 own_addr_type;
2454 	int err;
2455 
2456 	BT_DBG("%s", hdev->name);
2457 
2458 	if (hci_dev_test_flag(hdev, HCI_LE_ADV)) {
2459 		hci_dev_lock(hdev);
2460 
2461 		/* Don't let discovery abort an outgoing connection attempt
2462 		 * that's using directed advertising.
2463 		 */
2464 		if (hci_lookup_le_connect(hdev)) {
2465 			hci_dev_unlock(hdev);
2466 			return -EBUSY;
2467 		}
2468 
2469 		cancel_adv_timeout(hdev);
2470 		hci_dev_unlock(hdev);
2471 
2472 		__hci_req_disable_advertising(req);
2473 	}
2474 
2475 	/* If controller is scanning, it means the background scanning is
2476 	 * running. Thus, we should temporarily stop it in order to set the
2477 	 * discovery scanning parameters.
2478 	 */
2479 	if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
2480 		hci_req_add_le_scan_disable(req);
2481 
2482 	/* All active scans will be done with either a resolvable private
2483 	 * address (when privacy feature has been enabled) or non-resolvable
2484 	 * private address.
2485 	 */
2486 	err = hci_update_random_address(req, true, scan_use_rpa(hdev),
2487 					&own_addr_type);
2488 	if (err < 0)
2489 		own_addr_type = ADDR_LE_DEV_PUBLIC;
2490 
2491 	hci_req_start_scan(req, LE_SCAN_ACTIVE, interval, DISCOV_LE_SCAN_WIN,
2492 			   own_addr_type, 0);
2493 	return 0;
2494 }
2495 
2496 static int interleaved_discov(struct hci_request *req, unsigned long opt)
2497 {
2498 	int err;
2499 
2500 	BT_DBG("%s", req->hdev->name);
2501 
2502 	err = active_scan(req, opt);
2503 	if (err)
2504 		return err;
2505 
2506 	return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2507 }
2508 
2509 static void start_discovery(struct hci_dev *hdev, u8 *status)
2510 {
2511 	unsigned long timeout;
2512 
2513 	BT_DBG("%s type %u", hdev->name, hdev->discovery.type);
2514 
2515 	switch (hdev->discovery.type) {
2516 	case DISCOV_TYPE_BREDR:
2517 		if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2518 			hci_req_sync(hdev, bredr_inquiry,
2519 				     DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2520 				     status);
2521 		return;
2522 	case DISCOV_TYPE_INTERLEAVED:
2523 		/* When running simultaneous discovery, the LE scanning time
2524 		 * should occupy the whole discovery time sine BR/EDR inquiry
2525 		 * and LE scanning are scheduled by the controller.
2526 		 *
2527 		 * For interleaving discovery in comparison, BR/EDR inquiry
2528 		 * and LE scanning are done sequentially with separate
2529 		 * timeouts.
2530 		 */
2531 		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
2532 			     &hdev->quirks)) {
2533 			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2534 			/* During simultaneous discovery, we double LE scan
2535 			 * interval. We must leave some time for the controller
2536 			 * to do BR/EDR inquiry.
2537 			 */
2538 			hci_req_sync(hdev, interleaved_discov,
2539 				     DISCOV_LE_SCAN_INT * 2, HCI_CMD_TIMEOUT,
2540 				     status);
2541 			break;
2542 		}
2543 
2544 		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
2545 		hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2546 			     HCI_CMD_TIMEOUT, status);
2547 		break;
2548 	case DISCOV_TYPE_LE:
2549 		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2550 		hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2551 			     HCI_CMD_TIMEOUT, status);
2552 		break;
2553 	default:
2554 		*status = HCI_ERROR_UNSPECIFIED;
2555 		return;
2556 	}
2557 
2558 	if (*status)
2559 		return;
2560 
2561 	BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout));
2562 
2563 	/* When service discovery is used and the controller has a
2564 	 * strict duplicate filter, it is important to remember the
2565 	 * start and duration of the scan. This is required for
2566 	 * restarting scanning during the discovery phase.
2567 	 */
2568 	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
2569 		     hdev->discovery.result_filtering) {
2570 		hdev->discovery.scan_start = jiffies;
2571 		hdev->discovery.scan_duration = timeout;
2572 	}
2573 
2574 	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
2575 			   timeout);
2576 }
2577 
2578 bool hci_req_stop_discovery(struct hci_request *req)
2579 {
2580 	struct hci_dev *hdev = req->hdev;
2581 	struct discovery_state *d = &hdev->discovery;
2582 	struct hci_cp_remote_name_req_cancel cp;
2583 	struct inquiry_entry *e;
2584 	bool ret = false;
2585 
2586 	BT_DBG("%s state %u", hdev->name, hdev->discovery.state);
2587 
2588 	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
2589 		if (test_bit(HCI_INQUIRY, &hdev->flags))
2590 			hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);
2591 
2592 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2593 			cancel_delayed_work(&hdev->le_scan_disable);
2594 			hci_req_add_le_scan_disable(req);
2595 		}
2596 
2597 		ret = true;
2598 	} else {
2599 		/* Passive scanning */
2600 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2601 			hci_req_add_le_scan_disable(req);
2602 			ret = true;
2603 		}
2604 	}
2605 
2606 	/* No further actions needed for LE-only discovery */
2607 	if (d->type == DISCOV_TYPE_LE)
2608 		return ret;
2609 
2610 	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
2611 		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
2612 						     NAME_PENDING);
2613 		if (!e)
2614 			return ret;
2615 
2616 		bacpy(&cp.bdaddr, &e->data.bdaddr);
2617 		hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
2618 			    &cp);
2619 		ret = true;
2620 	}
2621 
2622 	return ret;
2623 }
2624 
2625 static int stop_discovery(struct hci_request *req, unsigned long opt)
2626 {
2627 	hci_dev_lock(req->hdev);
2628 	hci_req_stop_discovery(req);
2629 	hci_dev_unlock(req->hdev);
2630 
2631 	return 0;
2632 }
2633 
2634 static void discov_update(struct work_struct *work)
2635 {
2636 	struct hci_dev *hdev = container_of(work, struct hci_dev,
2637 					    discov_update);
2638 	u8 status = 0;
2639 
2640 	switch (hdev->discovery.state) {
2641 	case DISCOVERY_STARTING:
2642 		start_discovery(hdev, &status);
2643 		mgmt_start_discovery_complete(hdev, status);
2644 		if (status)
2645 			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2646 		else
2647 			hci_discovery_set_state(hdev, DISCOVERY_FINDING);
2648 		break;
2649 	case DISCOVERY_STOPPING:
2650 		hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
2651 		mgmt_stop_discovery_complete(hdev, status);
2652 		if (!status)
2653 			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2654 		break;
2655 	case DISCOVERY_STOPPED:
2656 	default:
2657 		return;
2658 	}
2659 }
2660 
2661 static void discov_off(struct work_struct *work)
2662 {
2663 	struct hci_dev *hdev = container_of(work, struct hci_dev,
2664 					    discov_off.work);
2665 
2666 	BT_DBG("%s", hdev->name);
2667 
2668 	hci_dev_lock(hdev);
2669 
2670 	/* When discoverable timeout triggers, then just make sure
2671 	 * the limited discoverable flag is cleared. Even in the case
2672 	 * of a timeout triggered from general discoverable, it is
2673 	 * safe to unconditionally clear the flag.
2674 	 */
2675 	hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2676 	hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2677 	hdev->discov_timeout = 0;
2678 
2679 	hci_dev_unlock(hdev);
2680 
2681 	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
2682 	mgmt_new_settings(hdev);
2683 }
2684 
2685 static int powered_update_hci(struct hci_request *req, unsigned long opt)
2686 {
2687 	struct hci_dev *hdev = req->hdev;
2688 	u8 link_sec;
2689 
2690 	hci_dev_lock(hdev);
2691 
2692 	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
2693 	    !lmp_host_ssp_capable(hdev)) {
2694 		u8 mode = 0x01;
2695 
2696 		hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);
2697 
2698 		if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
2699 			u8 support = 0x01;
2700 
2701 			hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
2702 				    sizeof(support), &support);
2703 		}
2704 	}
2705 
2706 	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
2707 	    lmp_bredr_capable(hdev)) {
2708 		struct hci_cp_write_le_host_supported cp;
2709 
2710 		cp.le = 0x01;
2711 		cp.simul = 0x00;
2712 
2713 		/* Check first if we already have the right
2714 		 * host state (host features set)
2715 		 */
2716 		if (cp.le != lmp_host_le_capable(hdev) ||
2717 		    cp.simul != lmp_host_le_br_capable(hdev))
2718 			hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2719 				    sizeof(cp), &cp);
2720 	}
2721 
2722 	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
2723 		/* Make sure the controller has a good default for
2724 		 * advertising data. This also applies to the case
2725 		 * where BR/EDR was toggled during the AUTO_OFF phase.
2726 		 */
2727 		if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2728 		    list_empty(&hdev->adv_instances)) {
2729 			int err;
2730 
2731 			if (ext_adv_capable(hdev)) {
2732 				err = __hci_req_setup_ext_adv_instance(req,
2733 								       0x00);
2734 				if (!err)
2735 					__hci_req_update_scan_rsp_data(req,
2736 								       0x00);
2737 			} else {
2738 				err = 0;
2739 				__hci_req_update_adv_data(req, 0x00);
2740 				__hci_req_update_scan_rsp_data(req, 0x00);
2741 			}
2742 
2743 			if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2744 				if (!ext_adv_capable(hdev))
2745 					__hci_req_enable_advertising(req);
2746 				else if (!err)
2747 					__hci_req_enable_ext_advertising(req);
2748 			}
2749 		} else if (!list_empty(&hdev->adv_instances)) {
2750 			struct adv_info *adv_instance;
2751 
2752 			adv_instance = list_first_entry(&hdev->adv_instances,
2753 							struct adv_info, list);
2754 			__hci_req_schedule_adv_instance(req,
2755 							adv_instance->instance,
2756 							true);
2757 		}
2758 	}
2759 
2760 	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
2761 	if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
2762 		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
2763 			    sizeof(link_sec), &link_sec);
2764 
2765 	if (lmp_bredr_capable(hdev)) {
2766 		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
2767 			__hci_req_write_fast_connectable(req, true);
2768 		else
2769 			__hci_req_write_fast_connectable(req, false);
2770 		__hci_req_update_scan(req);
2771 		__hci_req_update_class(req);
2772 		__hci_req_update_name(req);
2773 		__hci_req_update_eir(req);
2774 	}
2775 
2776 	hci_dev_unlock(hdev);
2777 	return 0;
2778 }
2779 
2780 int __hci_req_hci_power_on(struct hci_dev *hdev)
2781 {
2782 	/* Register the available SMP channels (BR/EDR and LE) only when
2783 	 * successfully powering on the controller. This late
2784 	 * registration is required so that LE SMP can clearly decide if
2785 	 * the public address or static address is used.
2786 	 */
2787 	smp_register(hdev);
2788 
2789 	return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
2790 			      NULL);
2791 }
2792 
2793 void hci_request_setup(struct hci_dev *hdev)
2794 {
2795 	INIT_WORK(&hdev->discov_update, discov_update);
2796 	INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
2797 	INIT_WORK(&hdev->scan_update, scan_update_work);
2798 	INIT_WORK(&hdev->connectable_update, connectable_update_work);
2799 	INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
2800 	INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
2801 	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
2802 	INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
2803 	INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
2804 }
2805 
2806 void hci_request_cancel_all(struct hci_dev *hdev)
2807 {
2808 	hci_req_sync_cancel(hdev, ENODEV);
2809 
2810 	cancel_work_sync(&hdev->discov_update);
2811 	cancel_work_sync(&hdev->bg_scan_update);
2812 	cancel_work_sync(&hdev->scan_update);
2813 	cancel_work_sync(&hdev->connectable_update);
2814 	cancel_work_sync(&hdev->discoverable_update);
2815 	cancel_delayed_work_sync(&hdev->discov_off);
2816 	cancel_delayed_work_sync(&hdev->le_scan_disable);
2817 	cancel_delayed_work_sync(&hdev->le_scan_restart);
2818 
2819 	if (hdev->adv_instance_timeout) {
2820 		cancel_delayed_work_sync(&hdev->adv_instance_expire);
2821 		hdev->adv_instance_timeout = 0;
2822 	}
2823 }
2824