1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 Copyright 2023 NXP 5 6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License version 2 as 10 published by the Free Software Foundation; 11 12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 23 SOFTWARE IS DISCLAIMED. 24 */ 25 26 /* Bluetooth HCI event handling. */ 27 28 #include <asm/unaligned.h> 29 #include <linux/crypto.h> 30 #include <crypto/algapi.h> 31 32 #include <net/bluetooth/bluetooth.h> 33 #include <net/bluetooth/hci_core.h> 34 #include <net/bluetooth/mgmt.h> 35 36 #include "hci_request.h" 37 #include "hci_debugfs.h" 38 #include "hci_codec.h" 39 #include "smp.h" 40 #include "msft.h" 41 #include "eir.h" 42 43 #define ZERO_KEY "\x00\x00\x00\x00\x00\x00\x00\x00" \ 44 "\x00\x00\x00\x00\x00\x00\x00\x00" 45 46 #define secs_to_jiffies(_secs) msecs_to_jiffies((_secs) * 1000) 47 48 /* Handle HCI Event packets */ 49 50 static void *hci_ev_skb_pull(struct hci_dev *hdev, struct sk_buff *skb, 51 u8 ev, size_t len) 52 { 53 void *data; 54 55 data = skb_pull_data(skb, len); 56 if (!data) 57 bt_dev_err(hdev, "Malformed Event: 0x%2.2x", ev); 58 59 return data; 60 } 61 62 static void *hci_cc_skb_pull(struct hci_dev *hdev, struct sk_buff *skb, 63 u16 op, size_t len) 64 { 65 void *data; 66 67 data = skb_pull_data(skb, len); 68 if (!data) 69 bt_dev_err(hdev, "Malformed Command Complete: 0x%4.4x", op); 70 71 return data; 72 } 73 74 static void *hci_le_ev_skb_pull(struct hci_dev *hdev, struct sk_buff *skb, 75 u8 ev, size_t len) 76 { 77 void *data; 78 79 data = skb_pull_data(skb, len); 80 if (!data) 81 bt_dev_err(hdev, "Malformed LE Event: 0x%2.2x", ev); 82 83 return data; 84 } 85 86 static u8 hci_cc_inquiry_cancel(struct hci_dev *hdev, void *data, 87 struct sk_buff *skb) 88 { 89 struct hci_ev_status *rp = data; 90 91 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 92 93 /* It is possible that we receive Inquiry Complete event right 94 * before we receive Inquiry Cancel Command Complete event, in 95 * which case the latter event should have status of Command 96 * Disallowed. This should not be treated as error, since 97 * we actually achieve what Inquiry Cancel wants to achieve, 98 * which is to end the last Inquiry session. 99 */ 100 if (rp->status == HCI_ERROR_COMMAND_DISALLOWED && !test_bit(HCI_INQUIRY, &hdev->flags)) { 101 bt_dev_warn(hdev, "Ignoring error of Inquiry Cancel command"); 102 rp->status = 0x00; 103 } 104 105 if (rp->status) 106 return rp->status; 107 108 clear_bit(HCI_INQUIRY, &hdev->flags); 109 smp_mb__after_atomic(); /* wake_up_bit advises about this barrier */ 110 wake_up_bit(&hdev->flags, HCI_INQUIRY); 111 112 hci_dev_lock(hdev); 113 /* Set discovery state to stopped if we're not doing LE active 114 * scanning. 115 */ 116 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN) || 117 hdev->le_scan_type != LE_SCAN_ACTIVE) 118 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 119 hci_dev_unlock(hdev); 120 121 return rp->status; 122 } 123 124 static u8 hci_cc_periodic_inq(struct hci_dev *hdev, void *data, 125 struct sk_buff *skb) 126 { 127 struct hci_ev_status *rp = data; 128 129 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 130 131 if (rp->status) 132 return rp->status; 133 134 hci_dev_set_flag(hdev, HCI_PERIODIC_INQ); 135 136 return rp->status; 137 } 138 139 static u8 hci_cc_exit_periodic_inq(struct hci_dev *hdev, void *data, 140 struct sk_buff *skb) 141 { 142 struct hci_ev_status *rp = data; 143 144 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 145 146 if (rp->status) 147 return rp->status; 148 149 hci_dev_clear_flag(hdev, HCI_PERIODIC_INQ); 150 151 return rp->status; 152 } 153 154 static u8 hci_cc_remote_name_req_cancel(struct hci_dev *hdev, void *data, 155 struct sk_buff *skb) 156 { 157 struct hci_ev_status *rp = data; 158 159 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 160 161 return rp->status; 162 } 163 164 static u8 hci_cc_role_discovery(struct hci_dev *hdev, void *data, 165 struct sk_buff *skb) 166 { 167 struct hci_rp_role_discovery *rp = data; 168 struct hci_conn *conn; 169 170 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 171 172 if (rp->status) 173 return rp->status; 174 175 hci_dev_lock(hdev); 176 177 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 178 if (conn) 179 conn->role = rp->role; 180 181 hci_dev_unlock(hdev); 182 183 return rp->status; 184 } 185 186 static u8 hci_cc_read_link_policy(struct hci_dev *hdev, void *data, 187 struct sk_buff *skb) 188 { 189 struct hci_rp_read_link_policy *rp = data; 190 struct hci_conn *conn; 191 192 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 193 194 if (rp->status) 195 return rp->status; 196 197 hci_dev_lock(hdev); 198 199 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 200 if (conn) 201 conn->link_policy = __le16_to_cpu(rp->policy); 202 203 hci_dev_unlock(hdev); 204 205 return rp->status; 206 } 207 208 static u8 hci_cc_write_link_policy(struct hci_dev *hdev, void *data, 209 struct sk_buff *skb) 210 { 211 struct hci_rp_write_link_policy *rp = data; 212 struct hci_conn *conn; 213 void *sent; 214 215 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 216 217 if (rp->status) 218 return rp->status; 219 220 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_LINK_POLICY); 221 if (!sent) 222 return rp->status; 223 224 hci_dev_lock(hdev); 225 226 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 227 if (conn) 228 conn->link_policy = get_unaligned_le16(sent + 2); 229 230 hci_dev_unlock(hdev); 231 232 return rp->status; 233 } 234 235 static u8 hci_cc_read_def_link_policy(struct hci_dev *hdev, void *data, 236 struct sk_buff *skb) 237 { 238 struct hci_rp_read_def_link_policy *rp = data; 239 240 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 241 242 if (rp->status) 243 return rp->status; 244 245 hdev->link_policy = __le16_to_cpu(rp->policy); 246 247 return rp->status; 248 } 249 250 static u8 hci_cc_write_def_link_policy(struct hci_dev *hdev, void *data, 251 struct sk_buff *skb) 252 { 253 struct hci_ev_status *rp = data; 254 void *sent; 255 256 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 257 258 if (rp->status) 259 return rp->status; 260 261 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_DEF_LINK_POLICY); 262 if (!sent) 263 return rp->status; 264 265 hdev->link_policy = get_unaligned_le16(sent); 266 267 return rp->status; 268 } 269 270 static u8 hci_cc_reset(struct hci_dev *hdev, void *data, struct sk_buff *skb) 271 { 272 struct hci_ev_status *rp = data; 273 274 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 275 276 clear_bit(HCI_RESET, &hdev->flags); 277 278 if (rp->status) 279 return rp->status; 280 281 /* Reset all non-persistent flags */ 282 hci_dev_clear_volatile_flags(hdev); 283 284 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 285 286 hdev->inq_tx_power = HCI_TX_POWER_INVALID; 287 hdev->adv_tx_power = HCI_TX_POWER_INVALID; 288 289 memset(hdev->adv_data, 0, sizeof(hdev->adv_data)); 290 hdev->adv_data_len = 0; 291 292 memset(hdev->scan_rsp_data, 0, sizeof(hdev->scan_rsp_data)); 293 hdev->scan_rsp_data_len = 0; 294 295 hdev->le_scan_type = LE_SCAN_PASSIVE; 296 297 hdev->ssp_debug_mode = 0; 298 299 hci_bdaddr_list_clear(&hdev->le_accept_list); 300 hci_bdaddr_list_clear(&hdev->le_resolv_list); 301 302 return rp->status; 303 } 304 305 static u8 hci_cc_read_stored_link_key(struct hci_dev *hdev, void *data, 306 struct sk_buff *skb) 307 { 308 struct hci_rp_read_stored_link_key *rp = data; 309 struct hci_cp_read_stored_link_key *sent; 310 311 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 312 313 sent = hci_sent_cmd_data(hdev, HCI_OP_READ_STORED_LINK_KEY); 314 if (!sent) 315 return rp->status; 316 317 if (!rp->status && sent->read_all == 0x01) { 318 hdev->stored_max_keys = le16_to_cpu(rp->max_keys); 319 hdev->stored_num_keys = le16_to_cpu(rp->num_keys); 320 } 321 322 return rp->status; 323 } 324 325 static u8 hci_cc_delete_stored_link_key(struct hci_dev *hdev, void *data, 326 struct sk_buff *skb) 327 { 328 struct hci_rp_delete_stored_link_key *rp = data; 329 u16 num_keys; 330 331 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 332 333 if (rp->status) 334 return rp->status; 335 336 num_keys = le16_to_cpu(rp->num_keys); 337 338 if (num_keys <= hdev->stored_num_keys) 339 hdev->stored_num_keys -= num_keys; 340 else 341 hdev->stored_num_keys = 0; 342 343 return rp->status; 344 } 345 346 static u8 hci_cc_write_local_name(struct hci_dev *hdev, void *data, 347 struct sk_buff *skb) 348 { 349 struct hci_ev_status *rp = data; 350 void *sent; 351 352 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 353 354 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_LOCAL_NAME); 355 if (!sent) 356 return rp->status; 357 358 hci_dev_lock(hdev); 359 360 if (hci_dev_test_flag(hdev, HCI_MGMT)) 361 mgmt_set_local_name_complete(hdev, sent, rp->status); 362 else if (!rp->status) 363 memcpy(hdev->dev_name, sent, HCI_MAX_NAME_LENGTH); 364 365 hci_dev_unlock(hdev); 366 367 return rp->status; 368 } 369 370 static u8 hci_cc_read_local_name(struct hci_dev *hdev, void *data, 371 struct sk_buff *skb) 372 { 373 struct hci_rp_read_local_name *rp = data; 374 375 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 376 377 if (rp->status) 378 return rp->status; 379 380 if (hci_dev_test_flag(hdev, HCI_SETUP) || 381 hci_dev_test_flag(hdev, HCI_CONFIG)) 382 memcpy(hdev->dev_name, rp->name, HCI_MAX_NAME_LENGTH); 383 384 return rp->status; 385 } 386 387 static u8 hci_cc_write_auth_enable(struct hci_dev *hdev, void *data, 388 struct sk_buff *skb) 389 { 390 struct hci_ev_status *rp = data; 391 void *sent; 392 393 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 394 395 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_AUTH_ENABLE); 396 if (!sent) 397 return rp->status; 398 399 hci_dev_lock(hdev); 400 401 if (!rp->status) { 402 __u8 param = *((__u8 *) sent); 403 404 if (param == AUTH_ENABLED) 405 set_bit(HCI_AUTH, &hdev->flags); 406 else 407 clear_bit(HCI_AUTH, &hdev->flags); 408 } 409 410 if (hci_dev_test_flag(hdev, HCI_MGMT)) 411 mgmt_auth_enable_complete(hdev, rp->status); 412 413 hci_dev_unlock(hdev); 414 415 return rp->status; 416 } 417 418 static u8 hci_cc_write_encrypt_mode(struct hci_dev *hdev, void *data, 419 struct sk_buff *skb) 420 { 421 struct hci_ev_status *rp = data; 422 __u8 param; 423 void *sent; 424 425 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 426 427 if (rp->status) 428 return rp->status; 429 430 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_ENCRYPT_MODE); 431 if (!sent) 432 return rp->status; 433 434 param = *((__u8 *) sent); 435 436 if (param) 437 set_bit(HCI_ENCRYPT, &hdev->flags); 438 else 439 clear_bit(HCI_ENCRYPT, &hdev->flags); 440 441 return rp->status; 442 } 443 444 static u8 hci_cc_write_scan_enable(struct hci_dev *hdev, void *data, 445 struct sk_buff *skb) 446 { 447 struct hci_ev_status *rp = data; 448 __u8 param; 449 void *sent; 450 451 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 452 453 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_SCAN_ENABLE); 454 if (!sent) 455 return rp->status; 456 457 param = *((__u8 *) sent); 458 459 hci_dev_lock(hdev); 460 461 if (rp->status) { 462 hdev->discov_timeout = 0; 463 goto done; 464 } 465 466 if (param & SCAN_INQUIRY) 467 set_bit(HCI_ISCAN, &hdev->flags); 468 else 469 clear_bit(HCI_ISCAN, &hdev->flags); 470 471 if (param & SCAN_PAGE) 472 set_bit(HCI_PSCAN, &hdev->flags); 473 else 474 clear_bit(HCI_PSCAN, &hdev->flags); 475 476 done: 477 hci_dev_unlock(hdev); 478 479 return rp->status; 480 } 481 482 static u8 hci_cc_set_event_filter(struct hci_dev *hdev, void *data, 483 struct sk_buff *skb) 484 { 485 struct hci_ev_status *rp = data; 486 struct hci_cp_set_event_filter *cp; 487 void *sent; 488 489 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 490 491 if (rp->status) 492 return rp->status; 493 494 sent = hci_sent_cmd_data(hdev, HCI_OP_SET_EVENT_FLT); 495 if (!sent) 496 return rp->status; 497 498 cp = (struct hci_cp_set_event_filter *)sent; 499 500 if (cp->flt_type == HCI_FLT_CLEAR_ALL) 501 hci_dev_clear_flag(hdev, HCI_EVENT_FILTER_CONFIGURED); 502 else 503 hci_dev_set_flag(hdev, HCI_EVENT_FILTER_CONFIGURED); 504 505 return rp->status; 506 } 507 508 static u8 hci_cc_read_class_of_dev(struct hci_dev *hdev, void *data, 509 struct sk_buff *skb) 510 { 511 struct hci_rp_read_class_of_dev *rp = data; 512 513 if (WARN_ON(!hdev)) 514 return HCI_ERROR_UNSPECIFIED; 515 516 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 517 518 if (rp->status) 519 return rp->status; 520 521 memcpy(hdev->dev_class, rp->dev_class, 3); 522 523 bt_dev_dbg(hdev, "class 0x%.2x%.2x%.2x", hdev->dev_class[2], 524 hdev->dev_class[1], hdev->dev_class[0]); 525 526 return rp->status; 527 } 528 529 static u8 hci_cc_write_class_of_dev(struct hci_dev *hdev, void *data, 530 struct sk_buff *skb) 531 { 532 struct hci_ev_status *rp = data; 533 void *sent; 534 535 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 536 537 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_CLASS_OF_DEV); 538 if (!sent) 539 return rp->status; 540 541 hci_dev_lock(hdev); 542 543 if (!rp->status) 544 memcpy(hdev->dev_class, sent, 3); 545 546 if (hci_dev_test_flag(hdev, HCI_MGMT)) 547 mgmt_set_class_of_dev_complete(hdev, sent, rp->status); 548 549 hci_dev_unlock(hdev); 550 551 return rp->status; 552 } 553 554 static u8 hci_cc_read_voice_setting(struct hci_dev *hdev, void *data, 555 struct sk_buff *skb) 556 { 557 struct hci_rp_read_voice_setting *rp = data; 558 __u16 setting; 559 560 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 561 562 if (rp->status) 563 return rp->status; 564 565 setting = __le16_to_cpu(rp->voice_setting); 566 567 if (hdev->voice_setting == setting) 568 return rp->status; 569 570 hdev->voice_setting = setting; 571 572 bt_dev_dbg(hdev, "voice setting 0x%4.4x", setting); 573 574 if (hdev->notify) 575 hdev->notify(hdev, HCI_NOTIFY_VOICE_SETTING); 576 577 return rp->status; 578 } 579 580 static u8 hci_cc_write_voice_setting(struct hci_dev *hdev, void *data, 581 struct sk_buff *skb) 582 { 583 struct hci_ev_status *rp = data; 584 __u16 setting; 585 void *sent; 586 587 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 588 589 if (rp->status) 590 return rp->status; 591 592 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_VOICE_SETTING); 593 if (!sent) 594 return rp->status; 595 596 setting = get_unaligned_le16(sent); 597 598 if (hdev->voice_setting == setting) 599 return rp->status; 600 601 hdev->voice_setting = setting; 602 603 bt_dev_dbg(hdev, "voice setting 0x%4.4x", setting); 604 605 if (hdev->notify) 606 hdev->notify(hdev, HCI_NOTIFY_VOICE_SETTING); 607 608 return rp->status; 609 } 610 611 static u8 hci_cc_read_num_supported_iac(struct hci_dev *hdev, void *data, 612 struct sk_buff *skb) 613 { 614 struct hci_rp_read_num_supported_iac *rp = data; 615 616 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 617 618 if (rp->status) 619 return rp->status; 620 621 hdev->num_iac = rp->num_iac; 622 623 bt_dev_dbg(hdev, "num iac %d", hdev->num_iac); 624 625 return rp->status; 626 } 627 628 static u8 hci_cc_write_ssp_mode(struct hci_dev *hdev, void *data, 629 struct sk_buff *skb) 630 { 631 struct hci_ev_status *rp = data; 632 struct hci_cp_write_ssp_mode *sent; 633 634 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 635 636 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_SSP_MODE); 637 if (!sent) 638 return rp->status; 639 640 hci_dev_lock(hdev); 641 642 if (!rp->status) { 643 if (sent->mode) 644 hdev->features[1][0] |= LMP_HOST_SSP; 645 else 646 hdev->features[1][0] &= ~LMP_HOST_SSP; 647 } 648 649 if (!rp->status) { 650 if (sent->mode) 651 hci_dev_set_flag(hdev, HCI_SSP_ENABLED); 652 else 653 hci_dev_clear_flag(hdev, HCI_SSP_ENABLED); 654 } 655 656 hci_dev_unlock(hdev); 657 658 return rp->status; 659 } 660 661 static u8 hci_cc_write_sc_support(struct hci_dev *hdev, void *data, 662 struct sk_buff *skb) 663 { 664 struct hci_ev_status *rp = data; 665 struct hci_cp_write_sc_support *sent; 666 667 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 668 669 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_SC_SUPPORT); 670 if (!sent) 671 return rp->status; 672 673 hci_dev_lock(hdev); 674 675 if (!rp->status) { 676 if (sent->support) 677 hdev->features[1][0] |= LMP_HOST_SC; 678 else 679 hdev->features[1][0] &= ~LMP_HOST_SC; 680 } 681 682 if (!hci_dev_test_flag(hdev, HCI_MGMT) && !rp->status) { 683 if (sent->support) 684 hci_dev_set_flag(hdev, HCI_SC_ENABLED); 685 else 686 hci_dev_clear_flag(hdev, HCI_SC_ENABLED); 687 } 688 689 hci_dev_unlock(hdev); 690 691 return rp->status; 692 } 693 694 static u8 hci_cc_read_local_version(struct hci_dev *hdev, void *data, 695 struct sk_buff *skb) 696 { 697 struct hci_rp_read_local_version *rp = data; 698 699 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 700 701 if (rp->status) 702 return rp->status; 703 704 if (hci_dev_test_flag(hdev, HCI_SETUP) || 705 hci_dev_test_flag(hdev, HCI_CONFIG)) { 706 hdev->hci_ver = rp->hci_ver; 707 hdev->hci_rev = __le16_to_cpu(rp->hci_rev); 708 hdev->lmp_ver = rp->lmp_ver; 709 hdev->manufacturer = __le16_to_cpu(rp->manufacturer); 710 hdev->lmp_subver = __le16_to_cpu(rp->lmp_subver); 711 } 712 713 return rp->status; 714 } 715 716 static u8 hci_cc_read_enc_key_size(struct hci_dev *hdev, void *data, 717 struct sk_buff *skb) 718 { 719 struct hci_rp_read_enc_key_size *rp = data; 720 struct hci_conn *conn; 721 u16 handle; 722 u8 status = rp->status; 723 724 bt_dev_dbg(hdev, "status 0x%2.2x", status); 725 726 handle = le16_to_cpu(rp->handle); 727 728 hci_dev_lock(hdev); 729 730 conn = hci_conn_hash_lookup_handle(hdev, handle); 731 if (!conn) { 732 status = 0xFF; 733 goto done; 734 } 735 736 /* While unexpected, the read_enc_key_size command may fail. The most 737 * secure approach is to then assume the key size is 0 to force a 738 * disconnection. 739 */ 740 if (status) { 741 bt_dev_err(hdev, "failed to read key size for handle %u", 742 handle); 743 conn->enc_key_size = 0; 744 } else { 745 conn->enc_key_size = rp->key_size; 746 status = 0; 747 748 if (conn->enc_key_size < hdev->min_enc_key_size) { 749 /* As slave role, the conn->state has been set to 750 * BT_CONNECTED and l2cap conn req might not be received 751 * yet, at this moment the l2cap layer almost does 752 * nothing with the non-zero status. 753 * So we also clear encrypt related bits, and then the 754 * handler of l2cap conn req will get the right secure 755 * state at a later time. 756 */ 757 status = HCI_ERROR_AUTH_FAILURE; 758 clear_bit(HCI_CONN_ENCRYPT, &conn->flags); 759 clear_bit(HCI_CONN_AES_CCM, &conn->flags); 760 } 761 } 762 763 hci_encrypt_cfm(conn, status); 764 765 done: 766 hci_dev_unlock(hdev); 767 768 return status; 769 } 770 771 static u8 hci_cc_read_local_commands(struct hci_dev *hdev, void *data, 772 struct sk_buff *skb) 773 { 774 struct hci_rp_read_local_commands *rp = data; 775 776 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 777 778 if (rp->status) 779 return rp->status; 780 781 if (hci_dev_test_flag(hdev, HCI_SETUP) || 782 hci_dev_test_flag(hdev, HCI_CONFIG)) 783 memcpy(hdev->commands, rp->commands, sizeof(hdev->commands)); 784 785 return rp->status; 786 } 787 788 static u8 hci_cc_read_auth_payload_timeout(struct hci_dev *hdev, void *data, 789 struct sk_buff *skb) 790 { 791 struct hci_rp_read_auth_payload_to *rp = data; 792 struct hci_conn *conn; 793 794 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 795 796 if (rp->status) 797 return rp->status; 798 799 hci_dev_lock(hdev); 800 801 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 802 if (conn) 803 conn->auth_payload_timeout = __le16_to_cpu(rp->timeout); 804 805 hci_dev_unlock(hdev); 806 807 return rp->status; 808 } 809 810 static u8 hci_cc_write_auth_payload_timeout(struct hci_dev *hdev, void *data, 811 struct sk_buff *skb) 812 { 813 struct hci_rp_write_auth_payload_to *rp = data; 814 struct hci_conn *conn; 815 void *sent; 816 817 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 818 819 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_AUTH_PAYLOAD_TO); 820 if (!sent) 821 return rp->status; 822 823 hci_dev_lock(hdev); 824 825 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 826 if (!conn) { 827 rp->status = 0xff; 828 goto unlock; 829 } 830 831 if (!rp->status) 832 conn->auth_payload_timeout = get_unaligned_le16(sent + 2); 833 834 unlock: 835 hci_dev_unlock(hdev); 836 837 return rp->status; 838 } 839 840 static u8 hci_cc_read_local_features(struct hci_dev *hdev, void *data, 841 struct sk_buff *skb) 842 { 843 struct hci_rp_read_local_features *rp = data; 844 845 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 846 847 if (rp->status) 848 return rp->status; 849 850 memcpy(hdev->features, rp->features, 8); 851 852 /* Adjust default settings according to features 853 * supported by device. */ 854 855 if (hdev->features[0][0] & LMP_3SLOT) 856 hdev->pkt_type |= (HCI_DM3 | HCI_DH3); 857 858 if (hdev->features[0][0] & LMP_5SLOT) 859 hdev->pkt_type |= (HCI_DM5 | HCI_DH5); 860 861 if (hdev->features[0][1] & LMP_HV2) { 862 hdev->pkt_type |= (HCI_HV2); 863 hdev->esco_type |= (ESCO_HV2); 864 } 865 866 if (hdev->features[0][1] & LMP_HV3) { 867 hdev->pkt_type |= (HCI_HV3); 868 hdev->esco_type |= (ESCO_HV3); 869 } 870 871 if (lmp_esco_capable(hdev)) 872 hdev->esco_type |= (ESCO_EV3); 873 874 if (hdev->features[0][4] & LMP_EV4) 875 hdev->esco_type |= (ESCO_EV4); 876 877 if (hdev->features[0][4] & LMP_EV5) 878 hdev->esco_type |= (ESCO_EV5); 879 880 if (hdev->features[0][5] & LMP_EDR_ESCO_2M) 881 hdev->esco_type |= (ESCO_2EV3); 882 883 if (hdev->features[0][5] & LMP_EDR_ESCO_3M) 884 hdev->esco_type |= (ESCO_3EV3); 885 886 if (hdev->features[0][5] & LMP_EDR_3S_ESCO) 887 hdev->esco_type |= (ESCO_2EV5 | ESCO_3EV5); 888 889 return rp->status; 890 } 891 892 static u8 hci_cc_read_local_ext_features(struct hci_dev *hdev, void *data, 893 struct sk_buff *skb) 894 { 895 struct hci_rp_read_local_ext_features *rp = data; 896 897 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 898 899 if (rp->status) 900 return rp->status; 901 902 if (hdev->max_page < rp->max_page) { 903 if (test_bit(HCI_QUIRK_BROKEN_LOCAL_EXT_FEATURES_PAGE_2, 904 &hdev->quirks)) 905 bt_dev_warn(hdev, "broken local ext features page 2"); 906 else 907 hdev->max_page = rp->max_page; 908 } 909 910 if (rp->page < HCI_MAX_PAGES) 911 memcpy(hdev->features[rp->page], rp->features, 8); 912 913 return rp->status; 914 } 915 916 static u8 hci_cc_read_buffer_size(struct hci_dev *hdev, void *data, 917 struct sk_buff *skb) 918 { 919 struct hci_rp_read_buffer_size *rp = data; 920 921 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 922 923 if (rp->status) 924 return rp->status; 925 926 hdev->acl_mtu = __le16_to_cpu(rp->acl_mtu); 927 hdev->sco_mtu = rp->sco_mtu; 928 hdev->acl_pkts = __le16_to_cpu(rp->acl_max_pkt); 929 hdev->sco_pkts = __le16_to_cpu(rp->sco_max_pkt); 930 931 if (test_bit(HCI_QUIRK_FIXUP_BUFFER_SIZE, &hdev->quirks)) { 932 hdev->sco_mtu = 64; 933 hdev->sco_pkts = 8; 934 } 935 936 hdev->acl_cnt = hdev->acl_pkts; 937 hdev->sco_cnt = hdev->sco_pkts; 938 939 BT_DBG("%s acl mtu %d:%d sco mtu %d:%d", hdev->name, hdev->acl_mtu, 940 hdev->acl_pkts, hdev->sco_mtu, hdev->sco_pkts); 941 942 if (!hdev->acl_mtu || !hdev->acl_pkts) 943 return HCI_ERROR_INVALID_PARAMETERS; 944 945 return rp->status; 946 } 947 948 static u8 hci_cc_read_bd_addr(struct hci_dev *hdev, void *data, 949 struct sk_buff *skb) 950 { 951 struct hci_rp_read_bd_addr *rp = data; 952 953 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 954 955 if (rp->status) 956 return rp->status; 957 958 if (test_bit(HCI_INIT, &hdev->flags)) 959 bacpy(&hdev->bdaddr, &rp->bdaddr); 960 961 if (hci_dev_test_flag(hdev, HCI_SETUP)) 962 bacpy(&hdev->setup_addr, &rp->bdaddr); 963 964 return rp->status; 965 } 966 967 static u8 hci_cc_read_local_pairing_opts(struct hci_dev *hdev, void *data, 968 struct sk_buff *skb) 969 { 970 struct hci_rp_read_local_pairing_opts *rp = data; 971 972 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 973 974 if (rp->status) 975 return rp->status; 976 977 if (hci_dev_test_flag(hdev, HCI_SETUP) || 978 hci_dev_test_flag(hdev, HCI_CONFIG)) { 979 hdev->pairing_opts = rp->pairing_opts; 980 hdev->max_enc_key_size = rp->max_key_size; 981 } 982 983 return rp->status; 984 } 985 986 static u8 hci_cc_read_page_scan_activity(struct hci_dev *hdev, void *data, 987 struct sk_buff *skb) 988 { 989 struct hci_rp_read_page_scan_activity *rp = data; 990 991 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 992 993 if (rp->status) 994 return rp->status; 995 996 if (test_bit(HCI_INIT, &hdev->flags)) { 997 hdev->page_scan_interval = __le16_to_cpu(rp->interval); 998 hdev->page_scan_window = __le16_to_cpu(rp->window); 999 } 1000 1001 return rp->status; 1002 } 1003 1004 static u8 hci_cc_write_page_scan_activity(struct hci_dev *hdev, void *data, 1005 struct sk_buff *skb) 1006 { 1007 struct hci_ev_status *rp = data; 1008 struct hci_cp_write_page_scan_activity *sent; 1009 1010 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1011 1012 if (rp->status) 1013 return rp->status; 1014 1015 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY); 1016 if (!sent) 1017 return rp->status; 1018 1019 hdev->page_scan_interval = __le16_to_cpu(sent->interval); 1020 hdev->page_scan_window = __le16_to_cpu(sent->window); 1021 1022 return rp->status; 1023 } 1024 1025 static u8 hci_cc_read_page_scan_type(struct hci_dev *hdev, void *data, 1026 struct sk_buff *skb) 1027 { 1028 struct hci_rp_read_page_scan_type *rp = data; 1029 1030 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1031 1032 if (rp->status) 1033 return rp->status; 1034 1035 if (test_bit(HCI_INIT, &hdev->flags)) 1036 hdev->page_scan_type = rp->type; 1037 1038 return rp->status; 1039 } 1040 1041 static u8 hci_cc_write_page_scan_type(struct hci_dev *hdev, void *data, 1042 struct sk_buff *skb) 1043 { 1044 struct hci_ev_status *rp = data; 1045 u8 *type; 1046 1047 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1048 1049 if (rp->status) 1050 return rp->status; 1051 1052 type = hci_sent_cmd_data(hdev, HCI_OP_WRITE_PAGE_SCAN_TYPE); 1053 if (type) 1054 hdev->page_scan_type = *type; 1055 1056 return rp->status; 1057 } 1058 1059 static u8 hci_cc_read_clock(struct hci_dev *hdev, void *data, 1060 struct sk_buff *skb) 1061 { 1062 struct hci_rp_read_clock *rp = data; 1063 struct hci_cp_read_clock *cp; 1064 struct hci_conn *conn; 1065 1066 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1067 1068 if (rp->status) 1069 return rp->status; 1070 1071 hci_dev_lock(hdev); 1072 1073 cp = hci_sent_cmd_data(hdev, HCI_OP_READ_CLOCK); 1074 if (!cp) 1075 goto unlock; 1076 1077 if (cp->which == 0x00) { 1078 hdev->clock = le32_to_cpu(rp->clock); 1079 goto unlock; 1080 } 1081 1082 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 1083 if (conn) { 1084 conn->clock = le32_to_cpu(rp->clock); 1085 conn->clock_accuracy = le16_to_cpu(rp->accuracy); 1086 } 1087 1088 unlock: 1089 hci_dev_unlock(hdev); 1090 return rp->status; 1091 } 1092 1093 static u8 hci_cc_read_inq_rsp_tx_power(struct hci_dev *hdev, void *data, 1094 struct sk_buff *skb) 1095 { 1096 struct hci_rp_read_inq_rsp_tx_power *rp = data; 1097 1098 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1099 1100 if (rp->status) 1101 return rp->status; 1102 1103 hdev->inq_tx_power = rp->tx_power; 1104 1105 return rp->status; 1106 } 1107 1108 static u8 hci_cc_read_def_err_data_reporting(struct hci_dev *hdev, void *data, 1109 struct sk_buff *skb) 1110 { 1111 struct hci_rp_read_def_err_data_reporting *rp = data; 1112 1113 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1114 1115 if (rp->status) 1116 return rp->status; 1117 1118 hdev->err_data_reporting = rp->err_data_reporting; 1119 1120 return rp->status; 1121 } 1122 1123 static u8 hci_cc_write_def_err_data_reporting(struct hci_dev *hdev, void *data, 1124 struct sk_buff *skb) 1125 { 1126 struct hci_ev_status *rp = data; 1127 struct hci_cp_write_def_err_data_reporting *cp; 1128 1129 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1130 1131 if (rp->status) 1132 return rp->status; 1133 1134 cp = hci_sent_cmd_data(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING); 1135 if (!cp) 1136 return rp->status; 1137 1138 hdev->err_data_reporting = cp->err_data_reporting; 1139 1140 return rp->status; 1141 } 1142 1143 static u8 hci_cc_pin_code_reply(struct hci_dev *hdev, void *data, 1144 struct sk_buff *skb) 1145 { 1146 struct hci_rp_pin_code_reply *rp = data; 1147 struct hci_cp_pin_code_reply *cp; 1148 struct hci_conn *conn; 1149 1150 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1151 1152 hci_dev_lock(hdev); 1153 1154 if (hci_dev_test_flag(hdev, HCI_MGMT)) 1155 mgmt_pin_code_reply_complete(hdev, &rp->bdaddr, rp->status); 1156 1157 if (rp->status) 1158 goto unlock; 1159 1160 cp = hci_sent_cmd_data(hdev, HCI_OP_PIN_CODE_REPLY); 1161 if (!cp) 1162 goto unlock; 1163 1164 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->bdaddr); 1165 if (conn) 1166 conn->pin_length = cp->pin_len; 1167 1168 unlock: 1169 hci_dev_unlock(hdev); 1170 return rp->status; 1171 } 1172 1173 static u8 hci_cc_pin_code_neg_reply(struct hci_dev *hdev, void *data, 1174 struct sk_buff *skb) 1175 { 1176 struct hci_rp_pin_code_neg_reply *rp = data; 1177 1178 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1179 1180 hci_dev_lock(hdev); 1181 1182 if (hci_dev_test_flag(hdev, HCI_MGMT)) 1183 mgmt_pin_code_neg_reply_complete(hdev, &rp->bdaddr, 1184 rp->status); 1185 1186 hci_dev_unlock(hdev); 1187 1188 return rp->status; 1189 } 1190 1191 static u8 hci_cc_le_read_buffer_size(struct hci_dev *hdev, void *data, 1192 struct sk_buff *skb) 1193 { 1194 struct hci_rp_le_read_buffer_size *rp = data; 1195 1196 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1197 1198 if (rp->status) 1199 return rp->status; 1200 1201 hdev->le_mtu = __le16_to_cpu(rp->le_mtu); 1202 hdev->le_pkts = rp->le_max_pkt; 1203 1204 hdev->le_cnt = hdev->le_pkts; 1205 1206 BT_DBG("%s le mtu %d:%d", hdev->name, hdev->le_mtu, hdev->le_pkts); 1207 1208 if (hdev->le_mtu && hdev->le_mtu < HCI_MIN_LE_MTU) 1209 return HCI_ERROR_INVALID_PARAMETERS; 1210 1211 return rp->status; 1212 } 1213 1214 static u8 hci_cc_le_read_local_features(struct hci_dev *hdev, void *data, 1215 struct sk_buff *skb) 1216 { 1217 struct hci_rp_le_read_local_features *rp = data; 1218 1219 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 1220 1221 if (rp->status) 1222 return rp->status; 1223 1224 memcpy(hdev->le_features, rp->features, 8); 1225 1226 return rp->status; 1227 } 1228 1229 static u8 hci_cc_le_read_adv_tx_power(struct hci_dev *hdev, void *data, 1230 struct sk_buff *skb) 1231 { 1232 struct hci_rp_le_read_adv_tx_power *rp = data; 1233 1234 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1235 1236 if (rp->status) 1237 return rp->status; 1238 1239 hdev->adv_tx_power = rp->tx_power; 1240 1241 return rp->status; 1242 } 1243 1244 static u8 hci_cc_user_confirm_reply(struct hci_dev *hdev, void *data, 1245 struct sk_buff *skb) 1246 { 1247 struct hci_rp_user_confirm_reply *rp = data; 1248 1249 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1250 1251 hci_dev_lock(hdev); 1252 1253 if (hci_dev_test_flag(hdev, HCI_MGMT)) 1254 mgmt_user_confirm_reply_complete(hdev, &rp->bdaddr, ACL_LINK, 0, 1255 rp->status); 1256 1257 hci_dev_unlock(hdev); 1258 1259 return rp->status; 1260 } 1261 1262 static u8 hci_cc_user_confirm_neg_reply(struct hci_dev *hdev, void *data, 1263 struct sk_buff *skb) 1264 { 1265 struct hci_rp_user_confirm_reply *rp = data; 1266 1267 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1268 1269 hci_dev_lock(hdev); 1270 1271 if (hci_dev_test_flag(hdev, HCI_MGMT)) 1272 mgmt_user_confirm_neg_reply_complete(hdev, &rp->bdaddr, 1273 ACL_LINK, 0, rp->status); 1274 1275 hci_dev_unlock(hdev); 1276 1277 return rp->status; 1278 } 1279 1280 static u8 hci_cc_user_passkey_reply(struct hci_dev *hdev, void *data, 1281 struct sk_buff *skb) 1282 { 1283 struct hci_rp_user_confirm_reply *rp = data; 1284 1285 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1286 1287 hci_dev_lock(hdev); 1288 1289 if (hci_dev_test_flag(hdev, HCI_MGMT)) 1290 mgmt_user_passkey_reply_complete(hdev, &rp->bdaddr, ACL_LINK, 1291 0, rp->status); 1292 1293 hci_dev_unlock(hdev); 1294 1295 return rp->status; 1296 } 1297 1298 static u8 hci_cc_user_passkey_neg_reply(struct hci_dev *hdev, void *data, 1299 struct sk_buff *skb) 1300 { 1301 struct hci_rp_user_confirm_reply *rp = data; 1302 1303 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1304 1305 hci_dev_lock(hdev); 1306 1307 if (hci_dev_test_flag(hdev, HCI_MGMT)) 1308 mgmt_user_passkey_neg_reply_complete(hdev, &rp->bdaddr, 1309 ACL_LINK, 0, rp->status); 1310 1311 hci_dev_unlock(hdev); 1312 1313 return rp->status; 1314 } 1315 1316 static u8 hci_cc_read_local_oob_data(struct hci_dev *hdev, void *data, 1317 struct sk_buff *skb) 1318 { 1319 struct hci_rp_read_local_oob_data *rp = data; 1320 1321 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1322 1323 return rp->status; 1324 } 1325 1326 static u8 hci_cc_read_local_oob_ext_data(struct hci_dev *hdev, void *data, 1327 struct sk_buff *skb) 1328 { 1329 struct hci_rp_read_local_oob_ext_data *rp = data; 1330 1331 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1332 1333 return rp->status; 1334 } 1335 1336 static u8 hci_cc_le_set_random_addr(struct hci_dev *hdev, void *data, 1337 struct sk_buff *skb) 1338 { 1339 struct hci_ev_status *rp = data; 1340 bdaddr_t *sent; 1341 1342 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1343 1344 if (rp->status) 1345 return rp->status; 1346 1347 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_RANDOM_ADDR); 1348 if (!sent) 1349 return rp->status; 1350 1351 hci_dev_lock(hdev); 1352 1353 bacpy(&hdev->random_addr, sent); 1354 1355 if (!bacmp(&hdev->rpa, sent)) { 1356 hci_dev_clear_flag(hdev, HCI_RPA_EXPIRED); 1357 queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, 1358 secs_to_jiffies(hdev->rpa_timeout)); 1359 } 1360 1361 hci_dev_unlock(hdev); 1362 1363 return rp->status; 1364 } 1365 1366 static u8 hci_cc_le_set_default_phy(struct hci_dev *hdev, void *data, 1367 struct sk_buff *skb) 1368 { 1369 struct hci_ev_status *rp = data; 1370 struct hci_cp_le_set_default_phy *cp; 1371 1372 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1373 1374 if (rp->status) 1375 return rp->status; 1376 1377 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_DEFAULT_PHY); 1378 if (!cp) 1379 return rp->status; 1380 1381 hci_dev_lock(hdev); 1382 1383 hdev->le_tx_def_phys = cp->tx_phys; 1384 hdev->le_rx_def_phys = cp->rx_phys; 1385 1386 hci_dev_unlock(hdev); 1387 1388 return rp->status; 1389 } 1390 1391 static u8 hci_cc_le_set_adv_set_random_addr(struct hci_dev *hdev, void *data, 1392 struct sk_buff *skb) 1393 { 1394 struct hci_ev_status *rp = data; 1395 struct hci_cp_le_set_adv_set_rand_addr *cp; 1396 struct adv_info *adv; 1397 1398 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1399 1400 if (rp->status) 1401 return rp->status; 1402 1403 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR); 1404 /* Update only in case the adv instance since handle 0x00 shall be using 1405 * HCI_OP_LE_SET_RANDOM_ADDR since that allows both extended and 1406 * non-extended adverting. 1407 */ 1408 if (!cp || !cp->handle) 1409 return rp->status; 1410 1411 hci_dev_lock(hdev); 1412 1413 adv = hci_find_adv_instance(hdev, cp->handle); 1414 if (adv) { 1415 bacpy(&adv->random_addr, &cp->bdaddr); 1416 if (!bacmp(&hdev->rpa, &cp->bdaddr)) { 1417 adv->rpa_expired = false; 1418 queue_delayed_work(hdev->workqueue, 1419 &adv->rpa_expired_cb, 1420 secs_to_jiffies(hdev->rpa_timeout)); 1421 } 1422 } 1423 1424 hci_dev_unlock(hdev); 1425 1426 return rp->status; 1427 } 1428 1429 static u8 hci_cc_le_remove_adv_set(struct hci_dev *hdev, void *data, 1430 struct sk_buff *skb) 1431 { 1432 struct hci_ev_status *rp = data; 1433 u8 *instance; 1434 int err; 1435 1436 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1437 1438 if (rp->status) 1439 return rp->status; 1440 1441 instance = hci_sent_cmd_data(hdev, HCI_OP_LE_REMOVE_ADV_SET); 1442 if (!instance) 1443 return rp->status; 1444 1445 hci_dev_lock(hdev); 1446 1447 err = hci_remove_adv_instance(hdev, *instance); 1448 if (!err) 1449 mgmt_advertising_removed(hci_skb_sk(hdev->sent_cmd), hdev, 1450 *instance); 1451 1452 hci_dev_unlock(hdev); 1453 1454 return rp->status; 1455 } 1456 1457 static u8 hci_cc_le_clear_adv_sets(struct hci_dev *hdev, void *data, 1458 struct sk_buff *skb) 1459 { 1460 struct hci_ev_status *rp = data; 1461 struct adv_info *adv, *n; 1462 int err; 1463 1464 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1465 1466 if (rp->status) 1467 return rp->status; 1468 1469 if (!hci_sent_cmd_data(hdev, HCI_OP_LE_CLEAR_ADV_SETS)) 1470 return rp->status; 1471 1472 hci_dev_lock(hdev); 1473 1474 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { 1475 u8 instance = adv->instance; 1476 1477 err = hci_remove_adv_instance(hdev, instance); 1478 if (!err) 1479 mgmt_advertising_removed(hci_skb_sk(hdev->sent_cmd), 1480 hdev, instance); 1481 } 1482 1483 hci_dev_unlock(hdev); 1484 1485 return rp->status; 1486 } 1487 1488 static u8 hci_cc_le_read_transmit_power(struct hci_dev *hdev, void *data, 1489 struct sk_buff *skb) 1490 { 1491 struct hci_rp_le_read_transmit_power *rp = data; 1492 1493 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1494 1495 if (rp->status) 1496 return rp->status; 1497 1498 hdev->min_le_tx_power = rp->min_le_tx_power; 1499 hdev->max_le_tx_power = rp->max_le_tx_power; 1500 1501 return rp->status; 1502 } 1503 1504 static u8 hci_cc_le_set_privacy_mode(struct hci_dev *hdev, void *data, 1505 struct sk_buff *skb) 1506 { 1507 struct hci_ev_status *rp = data; 1508 struct hci_cp_le_set_privacy_mode *cp; 1509 struct hci_conn_params *params; 1510 1511 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1512 1513 if (rp->status) 1514 return rp->status; 1515 1516 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_PRIVACY_MODE); 1517 if (!cp) 1518 return rp->status; 1519 1520 hci_dev_lock(hdev); 1521 1522 params = hci_conn_params_lookup(hdev, &cp->bdaddr, cp->bdaddr_type); 1523 if (params) 1524 WRITE_ONCE(params->privacy_mode, cp->mode); 1525 1526 hci_dev_unlock(hdev); 1527 1528 return rp->status; 1529 } 1530 1531 static u8 hci_cc_le_set_adv_enable(struct hci_dev *hdev, void *data, 1532 struct sk_buff *skb) 1533 { 1534 struct hci_ev_status *rp = data; 1535 __u8 *sent; 1536 1537 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1538 1539 if (rp->status) 1540 return rp->status; 1541 1542 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_ADV_ENABLE); 1543 if (!sent) 1544 return rp->status; 1545 1546 hci_dev_lock(hdev); 1547 1548 /* If we're doing connection initiation as peripheral. Set a 1549 * timeout in case something goes wrong. 1550 */ 1551 if (*sent) { 1552 struct hci_conn *conn; 1553 1554 hci_dev_set_flag(hdev, HCI_LE_ADV); 1555 1556 conn = hci_lookup_le_connect(hdev); 1557 if (conn) 1558 queue_delayed_work(hdev->workqueue, 1559 &conn->le_conn_timeout, 1560 conn->conn_timeout); 1561 } else { 1562 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1563 } 1564 1565 hci_dev_unlock(hdev); 1566 1567 return rp->status; 1568 } 1569 1570 static u8 hci_cc_le_set_ext_adv_enable(struct hci_dev *hdev, void *data, 1571 struct sk_buff *skb) 1572 { 1573 struct hci_cp_le_set_ext_adv_enable *cp; 1574 struct hci_cp_ext_adv_set *set; 1575 struct adv_info *adv = NULL, *n; 1576 struct hci_ev_status *rp = data; 1577 1578 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1579 1580 if (rp->status) 1581 return rp->status; 1582 1583 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE); 1584 if (!cp) 1585 return rp->status; 1586 1587 set = (void *)cp->data; 1588 1589 hci_dev_lock(hdev); 1590 1591 if (cp->num_of_sets) 1592 adv = hci_find_adv_instance(hdev, set->handle); 1593 1594 if (cp->enable) { 1595 struct hci_conn *conn; 1596 1597 hci_dev_set_flag(hdev, HCI_LE_ADV); 1598 1599 if (adv && !adv->periodic) 1600 adv->enabled = true; 1601 1602 conn = hci_lookup_le_connect(hdev); 1603 if (conn) 1604 queue_delayed_work(hdev->workqueue, 1605 &conn->le_conn_timeout, 1606 conn->conn_timeout); 1607 } else { 1608 if (cp->num_of_sets) { 1609 if (adv) 1610 adv->enabled = false; 1611 1612 /* If just one instance was disabled check if there are 1613 * any other instance enabled before clearing HCI_LE_ADV 1614 */ 1615 list_for_each_entry_safe(adv, n, &hdev->adv_instances, 1616 list) { 1617 if (adv->enabled) 1618 goto unlock; 1619 } 1620 } else { 1621 /* All instances shall be considered disabled */ 1622 list_for_each_entry_safe(adv, n, &hdev->adv_instances, 1623 list) 1624 adv->enabled = false; 1625 } 1626 1627 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1628 } 1629 1630 unlock: 1631 hci_dev_unlock(hdev); 1632 return rp->status; 1633 } 1634 1635 static u8 hci_cc_le_set_scan_param(struct hci_dev *hdev, void *data, 1636 struct sk_buff *skb) 1637 { 1638 struct hci_cp_le_set_scan_param *cp; 1639 struct hci_ev_status *rp = data; 1640 1641 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1642 1643 if (rp->status) 1644 return rp->status; 1645 1646 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_SCAN_PARAM); 1647 if (!cp) 1648 return rp->status; 1649 1650 hci_dev_lock(hdev); 1651 1652 hdev->le_scan_type = cp->type; 1653 1654 hci_dev_unlock(hdev); 1655 1656 return rp->status; 1657 } 1658 1659 static u8 hci_cc_le_set_ext_scan_param(struct hci_dev *hdev, void *data, 1660 struct sk_buff *skb) 1661 { 1662 struct hci_cp_le_set_ext_scan_params *cp; 1663 struct hci_ev_status *rp = data; 1664 struct hci_cp_le_scan_phy_params *phy_param; 1665 1666 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1667 1668 if (rp->status) 1669 return rp->status; 1670 1671 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS); 1672 if (!cp) 1673 return rp->status; 1674 1675 phy_param = (void *)cp->data; 1676 1677 hci_dev_lock(hdev); 1678 1679 hdev->le_scan_type = phy_param->type; 1680 1681 hci_dev_unlock(hdev); 1682 1683 return rp->status; 1684 } 1685 1686 static bool has_pending_adv_report(struct hci_dev *hdev) 1687 { 1688 struct discovery_state *d = &hdev->discovery; 1689 1690 return bacmp(&d->last_adv_addr, BDADDR_ANY); 1691 } 1692 1693 static void clear_pending_adv_report(struct hci_dev *hdev) 1694 { 1695 struct discovery_state *d = &hdev->discovery; 1696 1697 bacpy(&d->last_adv_addr, BDADDR_ANY); 1698 d->last_adv_data_len = 0; 1699 } 1700 1701 static void store_pending_adv_report(struct hci_dev *hdev, bdaddr_t *bdaddr, 1702 u8 bdaddr_type, s8 rssi, u32 flags, 1703 u8 *data, u8 len) 1704 { 1705 struct discovery_state *d = &hdev->discovery; 1706 1707 if (len > max_adv_len(hdev)) 1708 return; 1709 1710 bacpy(&d->last_adv_addr, bdaddr); 1711 d->last_adv_addr_type = bdaddr_type; 1712 d->last_adv_rssi = rssi; 1713 d->last_adv_flags = flags; 1714 memcpy(d->last_adv_data, data, len); 1715 d->last_adv_data_len = len; 1716 } 1717 1718 static void le_set_scan_enable_complete(struct hci_dev *hdev, u8 enable) 1719 { 1720 hci_dev_lock(hdev); 1721 1722 switch (enable) { 1723 case LE_SCAN_ENABLE: 1724 hci_dev_set_flag(hdev, HCI_LE_SCAN); 1725 if (hdev->le_scan_type == LE_SCAN_ACTIVE) 1726 clear_pending_adv_report(hdev); 1727 if (hci_dev_test_flag(hdev, HCI_MESH)) 1728 hci_discovery_set_state(hdev, DISCOVERY_FINDING); 1729 break; 1730 1731 case LE_SCAN_DISABLE: 1732 /* We do this here instead of when setting DISCOVERY_STOPPED 1733 * since the latter would potentially require waiting for 1734 * inquiry to stop too. 1735 */ 1736 if (has_pending_adv_report(hdev)) { 1737 struct discovery_state *d = &hdev->discovery; 1738 1739 mgmt_device_found(hdev, &d->last_adv_addr, LE_LINK, 1740 d->last_adv_addr_type, NULL, 1741 d->last_adv_rssi, d->last_adv_flags, 1742 d->last_adv_data, 1743 d->last_adv_data_len, NULL, 0, 0); 1744 } 1745 1746 /* Cancel this timer so that we don't try to disable scanning 1747 * when it's already disabled. 1748 */ 1749 cancel_delayed_work(&hdev->le_scan_disable); 1750 1751 hci_dev_clear_flag(hdev, HCI_LE_SCAN); 1752 1753 /* The HCI_LE_SCAN_INTERRUPTED flag indicates that we 1754 * interrupted scanning due to a connect request. Mark 1755 * therefore discovery as stopped. 1756 */ 1757 if (hci_dev_test_and_clear_flag(hdev, HCI_LE_SCAN_INTERRUPTED)) 1758 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 1759 else if (!hci_dev_test_flag(hdev, HCI_LE_ADV) && 1760 hdev->discovery.state == DISCOVERY_FINDING) 1761 queue_work(hdev->workqueue, &hdev->reenable_adv_work); 1762 1763 break; 1764 1765 default: 1766 bt_dev_err(hdev, "use of reserved LE_Scan_Enable param %d", 1767 enable); 1768 break; 1769 } 1770 1771 hci_dev_unlock(hdev); 1772 } 1773 1774 static u8 hci_cc_le_set_scan_enable(struct hci_dev *hdev, void *data, 1775 struct sk_buff *skb) 1776 { 1777 struct hci_cp_le_set_scan_enable *cp; 1778 struct hci_ev_status *rp = data; 1779 1780 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1781 1782 if (rp->status) 1783 return rp->status; 1784 1785 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_SCAN_ENABLE); 1786 if (!cp) 1787 return rp->status; 1788 1789 le_set_scan_enable_complete(hdev, cp->enable); 1790 1791 return rp->status; 1792 } 1793 1794 static u8 hci_cc_le_set_ext_scan_enable(struct hci_dev *hdev, void *data, 1795 struct sk_buff *skb) 1796 { 1797 struct hci_cp_le_set_ext_scan_enable *cp; 1798 struct hci_ev_status *rp = data; 1799 1800 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1801 1802 if (rp->status) 1803 return rp->status; 1804 1805 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE); 1806 if (!cp) 1807 return rp->status; 1808 1809 le_set_scan_enable_complete(hdev, cp->enable); 1810 1811 return rp->status; 1812 } 1813 1814 static u8 hci_cc_le_read_num_adv_sets(struct hci_dev *hdev, void *data, 1815 struct sk_buff *skb) 1816 { 1817 struct hci_rp_le_read_num_supported_adv_sets *rp = data; 1818 1819 bt_dev_dbg(hdev, "status 0x%2.2x No of Adv sets %u", rp->status, 1820 rp->num_of_sets); 1821 1822 if (rp->status) 1823 return rp->status; 1824 1825 hdev->le_num_of_adv_sets = rp->num_of_sets; 1826 1827 return rp->status; 1828 } 1829 1830 static u8 hci_cc_le_read_accept_list_size(struct hci_dev *hdev, void *data, 1831 struct sk_buff *skb) 1832 { 1833 struct hci_rp_le_read_accept_list_size *rp = data; 1834 1835 bt_dev_dbg(hdev, "status 0x%2.2x size %u", rp->status, rp->size); 1836 1837 if (rp->status) 1838 return rp->status; 1839 1840 hdev->le_accept_list_size = rp->size; 1841 1842 return rp->status; 1843 } 1844 1845 static u8 hci_cc_le_clear_accept_list(struct hci_dev *hdev, void *data, 1846 struct sk_buff *skb) 1847 { 1848 struct hci_ev_status *rp = data; 1849 1850 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1851 1852 if (rp->status) 1853 return rp->status; 1854 1855 hci_dev_lock(hdev); 1856 hci_bdaddr_list_clear(&hdev->le_accept_list); 1857 hci_dev_unlock(hdev); 1858 1859 return rp->status; 1860 } 1861 1862 static u8 hci_cc_le_add_to_accept_list(struct hci_dev *hdev, void *data, 1863 struct sk_buff *skb) 1864 { 1865 struct hci_cp_le_add_to_accept_list *sent; 1866 struct hci_ev_status *rp = data; 1867 1868 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1869 1870 if (rp->status) 1871 return rp->status; 1872 1873 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST); 1874 if (!sent) 1875 return rp->status; 1876 1877 hci_dev_lock(hdev); 1878 hci_bdaddr_list_add(&hdev->le_accept_list, &sent->bdaddr, 1879 sent->bdaddr_type); 1880 hci_dev_unlock(hdev); 1881 1882 return rp->status; 1883 } 1884 1885 static u8 hci_cc_le_del_from_accept_list(struct hci_dev *hdev, void *data, 1886 struct sk_buff *skb) 1887 { 1888 struct hci_cp_le_del_from_accept_list *sent; 1889 struct hci_ev_status *rp = data; 1890 1891 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1892 1893 if (rp->status) 1894 return rp->status; 1895 1896 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST); 1897 if (!sent) 1898 return rp->status; 1899 1900 hci_dev_lock(hdev); 1901 hci_bdaddr_list_del(&hdev->le_accept_list, &sent->bdaddr, 1902 sent->bdaddr_type); 1903 hci_dev_unlock(hdev); 1904 1905 return rp->status; 1906 } 1907 1908 static u8 hci_cc_le_read_supported_states(struct hci_dev *hdev, void *data, 1909 struct sk_buff *skb) 1910 { 1911 struct hci_rp_le_read_supported_states *rp = data; 1912 1913 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1914 1915 if (rp->status) 1916 return rp->status; 1917 1918 memcpy(hdev->le_states, rp->le_states, 8); 1919 1920 return rp->status; 1921 } 1922 1923 static u8 hci_cc_le_read_def_data_len(struct hci_dev *hdev, void *data, 1924 struct sk_buff *skb) 1925 { 1926 struct hci_rp_le_read_def_data_len *rp = data; 1927 1928 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1929 1930 if (rp->status) 1931 return rp->status; 1932 1933 hdev->le_def_tx_len = le16_to_cpu(rp->tx_len); 1934 hdev->le_def_tx_time = le16_to_cpu(rp->tx_time); 1935 1936 return rp->status; 1937 } 1938 1939 static u8 hci_cc_le_write_def_data_len(struct hci_dev *hdev, void *data, 1940 struct sk_buff *skb) 1941 { 1942 struct hci_cp_le_write_def_data_len *sent; 1943 struct hci_ev_status *rp = data; 1944 1945 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1946 1947 if (rp->status) 1948 return rp->status; 1949 1950 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN); 1951 if (!sent) 1952 return rp->status; 1953 1954 hdev->le_def_tx_len = le16_to_cpu(sent->tx_len); 1955 hdev->le_def_tx_time = le16_to_cpu(sent->tx_time); 1956 1957 return rp->status; 1958 } 1959 1960 static u8 hci_cc_le_add_to_resolv_list(struct hci_dev *hdev, void *data, 1961 struct sk_buff *skb) 1962 { 1963 struct hci_cp_le_add_to_resolv_list *sent; 1964 struct hci_ev_status *rp = data; 1965 1966 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1967 1968 if (rp->status) 1969 return rp->status; 1970 1971 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST); 1972 if (!sent) 1973 return rp->status; 1974 1975 hci_dev_lock(hdev); 1976 hci_bdaddr_list_add_with_irk(&hdev->le_resolv_list, &sent->bdaddr, 1977 sent->bdaddr_type, sent->peer_irk, 1978 sent->local_irk); 1979 hci_dev_unlock(hdev); 1980 1981 return rp->status; 1982 } 1983 1984 static u8 hci_cc_le_del_from_resolv_list(struct hci_dev *hdev, void *data, 1985 struct sk_buff *skb) 1986 { 1987 struct hci_cp_le_del_from_resolv_list *sent; 1988 struct hci_ev_status *rp = data; 1989 1990 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1991 1992 if (rp->status) 1993 return rp->status; 1994 1995 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST); 1996 if (!sent) 1997 return rp->status; 1998 1999 hci_dev_lock(hdev); 2000 hci_bdaddr_list_del_with_irk(&hdev->le_resolv_list, &sent->bdaddr, 2001 sent->bdaddr_type); 2002 hci_dev_unlock(hdev); 2003 2004 return rp->status; 2005 } 2006 2007 static u8 hci_cc_le_clear_resolv_list(struct hci_dev *hdev, void *data, 2008 struct sk_buff *skb) 2009 { 2010 struct hci_ev_status *rp = data; 2011 2012 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2013 2014 if (rp->status) 2015 return rp->status; 2016 2017 hci_dev_lock(hdev); 2018 hci_bdaddr_list_clear(&hdev->le_resolv_list); 2019 hci_dev_unlock(hdev); 2020 2021 return rp->status; 2022 } 2023 2024 static u8 hci_cc_le_read_resolv_list_size(struct hci_dev *hdev, void *data, 2025 struct sk_buff *skb) 2026 { 2027 struct hci_rp_le_read_resolv_list_size *rp = data; 2028 2029 bt_dev_dbg(hdev, "status 0x%2.2x size %u", rp->status, rp->size); 2030 2031 if (rp->status) 2032 return rp->status; 2033 2034 hdev->le_resolv_list_size = rp->size; 2035 2036 return rp->status; 2037 } 2038 2039 static u8 hci_cc_le_set_addr_resolution_enable(struct hci_dev *hdev, void *data, 2040 struct sk_buff *skb) 2041 { 2042 struct hci_ev_status *rp = data; 2043 __u8 *sent; 2044 2045 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2046 2047 if (rp->status) 2048 return rp->status; 2049 2050 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE); 2051 if (!sent) 2052 return rp->status; 2053 2054 hci_dev_lock(hdev); 2055 2056 if (*sent) 2057 hci_dev_set_flag(hdev, HCI_LL_RPA_RESOLUTION); 2058 else 2059 hci_dev_clear_flag(hdev, HCI_LL_RPA_RESOLUTION); 2060 2061 hci_dev_unlock(hdev); 2062 2063 return rp->status; 2064 } 2065 2066 static u8 hci_cc_le_read_max_data_len(struct hci_dev *hdev, void *data, 2067 struct sk_buff *skb) 2068 { 2069 struct hci_rp_le_read_max_data_len *rp = data; 2070 2071 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2072 2073 if (rp->status) 2074 return rp->status; 2075 2076 hdev->le_max_tx_len = le16_to_cpu(rp->tx_len); 2077 hdev->le_max_tx_time = le16_to_cpu(rp->tx_time); 2078 hdev->le_max_rx_len = le16_to_cpu(rp->rx_len); 2079 hdev->le_max_rx_time = le16_to_cpu(rp->rx_time); 2080 2081 return rp->status; 2082 } 2083 2084 static u8 hci_cc_write_le_host_supported(struct hci_dev *hdev, void *data, 2085 struct sk_buff *skb) 2086 { 2087 struct hci_cp_write_le_host_supported *sent; 2088 struct hci_ev_status *rp = data; 2089 2090 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2091 2092 if (rp->status) 2093 return rp->status; 2094 2095 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED); 2096 if (!sent) 2097 return rp->status; 2098 2099 hci_dev_lock(hdev); 2100 2101 if (sent->le) { 2102 hdev->features[1][0] |= LMP_HOST_LE; 2103 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 2104 } else { 2105 hdev->features[1][0] &= ~LMP_HOST_LE; 2106 hci_dev_clear_flag(hdev, HCI_LE_ENABLED); 2107 hci_dev_clear_flag(hdev, HCI_ADVERTISING); 2108 } 2109 2110 if (sent->simul) 2111 hdev->features[1][0] |= LMP_HOST_LE_BREDR; 2112 else 2113 hdev->features[1][0] &= ~LMP_HOST_LE_BREDR; 2114 2115 hci_dev_unlock(hdev); 2116 2117 return rp->status; 2118 } 2119 2120 static u8 hci_cc_set_adv_param(struct hci_dev *hdev, void *data, 2121 struct sk_buff *skb) 2122 { 2123 struct hci_cp_le_set_adv_param *cp; 2124 struct hci_ev_status *rp = data; 2125 2126 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2127 2128 if (rp->status) 2129 return rp->status; 2130 2131 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_ADV_PARAM); 2132 if (!cp) 2133 return rp->status; 2134 2135 hci_dev_lock(hdev); 2136 hdev->adv_addr_type = cp->own_address_type; 2137 hci_dev_unlock(hdev); 2138 2139 return rp->status; 2140 } 2141 2142 static u8 hci_cc_set_ext_adv_param(struct hci_dev *hdev, void *data, 2143 struct sk_buff *skb) 2144 { 2145 struct hci_rp_le_set_ext_adv_params *rp = data; 2146 struct hci_cp_le_set_ext_adv_params *cp; 2147 struct adv_info *adv_instance; 2148 2149 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2150 2151 if (rp->status) 2152 return rp->status; 2153 2154 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS); 2155 if (!cp) 2156 return rp->status; 2157 2158 hci_dev_lock(hdev); 2159 hdev->adv_addr_type = cp->own_addr_type; 2160 if (!cp->handle) { 2161 /* Store in hdev for instance 0 */ 2162 hdev->adv_tx_power = rp->tx_power; 2163 } else { 2164 adv_instance = hci_find_adv_instance(hdev, cp->handle); 2165 if (adv_instance) 2166 adv_instance->tx_power = rp->tx_power; 2167 } 2168 /* Update adv data as tx power is known now */ 2169 hci_update_adv_data(hdev, cp->handle); 2170 2171 hci_dev_unlock(hdev); 2172 2173 return rp->status; 2174 } 2175 2176 static u8 hci_cc_read_rssi(struct hci_dev *hdev, void *data, 2177 struct sk_buff *skb) 2178 { 2179 struct hci_rp_read_rssi *rp = data; 2180 struct hci_conn *conn; 2181 2182 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2183 2184 if (rp->status) 2185 return rp->status; 2186 2187 hci_dev_lock(hdev); 2188 2189 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 2190 if (conn) 2191 conn->rssi = rp->rssi; 2192 2193 hci_dev_unlock(hdev); 2194 2195 return rp->status; 2196 } 2197 2198 static u8 hci_cc_read_tx_power(struct hci_dev *hdev, void *data, 2199 struct sk_buff *skb) 2200 { 2201 struct hci_cp_read_tx_power *sent; 2202 struct hci_rp_read_tx_power *rp = data; 2203 struct hci_conn *conn; 2204 2205 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2206 2207 if (rp->status) 2208 return rp->status; 2209 2210 sent = hci_sent_cmd_data(hdev, HCI_OP_READ_TX_POWER); 2211 if (!sent) 2212 return rp->status; 2213 2214 hci_dev_lock(hdev); 2215 2216 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 2217 if (!conn) 2218 goto unlock; 2219 2220 switch (sent->type) { 2221 case 0x00: 2222 conn->tx_power = rp->tx_power; 2223 break; 2224 case 0x01: 2225 conn->max_tx_power = rp->tx_power; 2226 break; 2227 } 2228 2229 unlock: 2230 hci_dev_unlock(hdev); 2231 return rp->status; 2232 } 2233 2234 static u8 hci_cc_write_ssp_debug_mode(struct hci_dev *hdev, void *data, 2235 struct sk_buff *skb) 2236 { 2237 struct hci_ev_status *rp = data; 2238 u8 *mode; 2239 2240 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2241 2242 if (rp->status) 2243 return rp->status; 2244 2245 mode = hci_sent_cmd_data(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE); 2246 if (mode) 2247 hdev->ssp_debug_mode = *mode; 2248 2249 return rp->status; 2250 } 2251 2252 static void hci_cs_inquiry(struct hci_dev *hdev, __u8 status) 2253 { 2254 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2255 2256 if (status) 2257 return; 2258 2259 if (hci_sent_cmd_data(hdev, HCI_OP_INQUIRY)) 2260 set_bit(HCI_INQUIRY, &hdev->flags); 2261 } 2262 2263 static void hci_cs_create_conn(struct hci_dev *hdev, __u8 status) 2264 { 2265 struct hci_cp_create_conn *cp; 2266 struct hci_conn *conn; 2267 2268 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2269 2270 cp = hci_sent_cmd_data(hdev, HCI_OP_CREATE_CONN); 2271 if (!cp) 2272 return; 2273 2274 hci_dev_lock(hdev); 2275 2276 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->bdaddr); 2277 2278 bt_dev_dbg(hdev, "bdaddr %pMR hcon %p", &cp->bdaddr, conn); 2279 2280 if (status) { 2281 if (conn && conn->state == BT_CONNECT) { 2282 conn->state = BT_CLOSED; 2283 hci_connect_cfm(conn, status); 2284 hci_conn_del(conn); 2285 } 2286 } else { 2287 if (!conn) { 2288 conn = hci_conn_add_unset(hdev, ACL_LINK, &cp->bdaddr, 2289 HCI_ROLE_MASTER); 2290 if (IS_ERR(conn)) 2291 bt_dev_err(hdev, "connection err: %ld", PTR_ERR(conn)); 2292 } 2293 } 2294 2295 hci_dev_unlock(hdev); 2296 } 2297 2298 static void hci_cs_add_sco(struct hci_dev *hdev, __u8 status) 2299 { 2300 struct hci_cp_add_sco *cp; 2301 struct hci_conn *acl; 2302 struct hci_link *link; 2303 __u16 handle; 2304 2305 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2306 2307 if (!status) 2308 return; 2309 2310 cp = hci_sent_cmd_data(hdev, HCI_OP_ADD_SCO); 2311 if (!cp) 2312 return; 2313 2314 handle = __le16_to_cpu(cp->handle); 2315 2316 bt_dev_dbg(hdev, "handle 0x%4.4x", handle); 2317 2318 hci_dev_lock(hdev); 2319 2320 acl = hci_conn_hash_lookup_handle(hdev, handle); 2321 if (acl) { 2322 link = list_first_entry_or_null(&acl->link_list, 2323 struct hci_link, list); 2324 if (link && link->conn) { 2325 link->conn->state = BT_CLOSED; 2326 2327 hci_connect_cfm(link->conn, status); 2328 hci_conn_del(link->conn); 2329 } 2330 } 2331 2332 hci_dev_unlock(hdev); 2333 } 2334 2335 static void hci_cs_auth_requested(struct hci_dev *hdev, __u8 status) 2336 { 2337 struct hci_cp_auth_requested *cp; 2338 struct hci_conn *conn; 2339 2340 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2341 2342 if (!status) 2343 return; 2344 2345 cp = hci_sent_cmd_data(hdev, HCI_OP_AUTH_REQUESTED); 2346 if (!cp) 2347 return; 2348 2349 hci_dev_lock(hdev); 2350 2351 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2352 if (conn) { 2353 if (conn->state == BT_CONFIG) { 2354 hci_connect_cfm(conn, status); 2355 hci_conn_drop(conn); 2356 } 2357 } 2358 2359 hci_dev_unlock(hdev); 2360 } 2361 2362 static void hci_cs_set_conn_encrypt(struct hci_dev *hdev, __u8 status) 2363 { 2364 struct hci_cp_set_conn_encrypt *cp; 2365 struct hci_conn *conn; 2366 2367 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2368 2369 if (!status) 2370 return; 2371 2372 cp = hci_sent_cmd_data(hdev, HCI_OP_SET_CONN_ENCRYPT); 2373 if (!cp) 2374 return; 2375 2376 hci_dev_lock(hdev); 2377 2378 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2379 if (conn) { 2380 if (conn->state == BT_CONFIG) { 2381 hci_connect_cfm(conn, status); 2382 hci_conn_drop(conn); 2383 } 2384 } 2385 2386 hci_dev_unlock(hdev); 2387 } 2388 2389 static int hci_outgoing_auth_needed(struct hci_dev *hdev, 2390 struct hci_conn *conn) 2391 { 2392 if (conn->state != BT_CONFIG || !conn->out) 2393 return 0; 2394 2395 if (conn->pending_sec_level == BT_SECURITY_SDP) 2396 return 0; 2397 2398 /* Only request authentication for SSP connections or non-SSP 2399 * devices with sec_level MEDIUM or HIGH or if MITM protection 2400 * is requested. 2401 */ 2402 if (!hci_conn_ssp_enabled(conn) && !(conn->auth_type & 0x01) && 2403 conn->pending_sec_level != BT_SECURITY_FIPS && 2404 conn->pending_sec_level != BT_SECURITY_HIGH && 2405 conn->pending_sec_level != BT_SECURITY_MEDIUM) 2406 return 0; 2407 2408 return 1; 2409 } 2410 2411 static int hci_resolve_name(struct hci_dev *hdev, 2412 struct inquiry_entry *e) 2413 { 2414 struct hci_cp_remote_name_req cp; 2415 2416 memset(&cp, 0, sizeof(cp)); 2417 2418 bacpy(&cp.bdaddr, &e->data.bdaddr); 2419 cp.pscan_rep_mode = e->data.pscan_rep_mode; 2420 cp.pscan_mode = e->data.pscan_mode; 2421 cp.clock_offset = e->data.clock_offset; 2422 2423 return hci_send_cmd(hdev, HCI_OP_REMOTE_NAME_REQ, sizeof(cp), &cp); 2424 } 2425 2426 static bool hci_resolve_next_name(struct hci_dev *hdev) 2427 { 2428 struct discovery_state *discov = &hdev->discovery; 2429 struct inquiry_entry *e; 2430 2431 if (list_empty(&discov->resolve)) 2432 return false; 2433 2434 /* We should stop if we already spent too much time resolving names. */ 2435 if (time_after(jiffies, discov->name_resolve_timeout)) { 2436 bt_dev_warn_ratelimited(hdev, "Name resolve takes too long."); 2437 return false; 2438 } 2439 2440 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, NAME_NEEDED); 2441 if (!e) 2442 return false; 2443 2444 if (hci_resolve_name(hdev, e) == 0) { 2445 e->name_state = NAME_PENDING; 2446 return true; 2447 } 2448 2449 return false; 2450 } 2451 2452 static void hci_check_pending_name(struct hci_dev *hdev, struct hci_conn *conn, 2453 bdaddr_t *bdaddr, u8 *name, u8 name_len) 2454 { 2455 struct discovery_state *discov = &hdev->discovery; 2456 struct inquiry_entry *e; 2457 2458 /* Update the mgmt connected state if necessary. Be careful with 2459 * conn objects that exist but are not (yet) connected however. 2460 * Only those in BT_CONFIG or BT_CONNECTED states can be 2461 * considered connected. 2462 */ 2463 if (conn && (conn->state == BT_CONFIG || conn->state == BT_CONNECTED)) 2464 mgmt_device_connected(hdev, conn, name, name_len); 2465 2466 if (discov->state == DISCOVERY_STOPPED) 2467 return; 2468 2469 if (discov->state == DISCOVERY_STOPPING) 2470 goto discov_complete; 2471 2472 if (discov->state != DISCOVERY_RESOLVING) 2473 return; 2474 2475 e = hci_inquiry_cache_lookup_resolve(hdev, bdaddr, NAME_PENDING); 2476 /* If the device was not found in a list of found devices names of which 2477 * are pending. there is no need to continue resolving a next name as it 2478 * will be done upon receiving another Remote Name Request Complete 2479 * Event */ 2480 if (!e) 2481 return; 2482 2483 list_del(&e->list); 2484 2485 e->name_state = name ? NAME_KNOWN : NAME_NOT_KNOWN; 2486 mgmt_remote_name(hdev, bdaddr, ACL_LINK, 0x00, e->data.rssi, 2487 name, name_len); 2488 2489 if (hci_resolve_next_name(hdev)) 2490 return; 2491 2492 discov_complete: 2493 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 2494 } 2495 2496 static void hci_cs_remote_name_req(struct hci_dev *hdev, __u8 status) 2497 { 2498 struct hci_cp_remote_name_req *cp; 2499 struct hci_conn *conn; 2500 2501 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2502 2503 /* If successful wait for the name req complete event before 2504 * checking for the need to do authentication */ 2505 if (!status) 2506 return; 2507 2508 cp = hci_sent_cmd_data(hdev, HCI_OP_REMOTE_NAME_REQ); 2509 if (!cp) 2510 return; 2511 2512 hci_dev_lock(hdev); 2513 2514 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->bdaddr); 2515 2516 if (hci_dev_test_flag(hdev, HCI_MGMT)) 2517 hci_check_pending_name(hdev, conn, &cp->bdaddr, NULL, 0); 2518 2519 if (!conn) 2520 goto unlock; 2521 2522 if (!hci_outgoing_auth_needed(hdev, conn)) 2523 goto unlock; 2524 2525 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) { 2526 struct hci_cp_auth_requested auth_cp; 2527 2528 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags); 2529 2530 auth_cp.handle = __cpu_to_le16(conn->handle); 2531 hci_send_cmd(hdev, HCI_OP_AUTH_REQUESTED, 2532 sizeof(auth_cp), &auth_cp); 2533 } 2534 2535 unlock: 2536 hci_dev_unlock(hdev); 2537 } 2538 2539 static void hci_cs_read_remote_features(struct hci_dev *hdev, __u8 status) 2540 { 2541 struct hci_cp_read_remote_features *cp; 2542 struct hci_conn *conn; 2543 2544 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2545 2546 if (!status) 2547 return; 2548 2549 cp = hci_sent_cmd_data(hdev, HCI_OP_READ_REMOTE_FEATURES); 2550 if (!cp) 2551 return; 2552 2553 hci_dev_lock(hdev); 2554 2555 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2556 if (conn) { 2557 if (conn->state == BT_CONFIG) { 2558 hci_connect_cfm(conn, status); 2559 hci_conn_drop(conn); 2560 } 2561 } 2562 2563 hci_dev_unlock(hdev); 2564 } 2565 2566 static void hci_cs_read_remote_ext_features(struct hci_dev *hdev, __u8 status) 2567 { 2568 struct hci_cp_read_remote_ext_features *cp; 2569 struct hci_conn *conn; 2570 2571 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2572 2573 if (!status) 2574 return; 2575 2576 cp = hci_sent_cmd_data(hdev, HCI_OP_READ_REMOTE_EXT_FEATURES); 2577 if (!cp) 2578 return; 2579 2580 hci_dev_lock(hdev); 2581 2582 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2583 if (conn) { 2584 if (conn->state == BT_CONFIG) { 2585 hci_connect_cfm(conn, status); 2586 hci_conn_drop(conn); 2587 } 2588 } 2589 2590 hci_dev_unlock(hdev); 2591 } 2592 2593 static void hci_setup_sync_conn_status(struct hci_dev *hdev, __u16 handle, 2594 __u8 status) 2595 { 2596 struct hci_conn *acl; 2597 struct hci_link *link; 2598 2599 bt_dev_dbg(hdev, "handle 0x%4.4x status 0x%2.2x", handle, status); 2600 2601 hci_dev_lock(hdev); 2602 2603 acl = hci_conn_hash_lookup_handle(hdev, handle); 2604 if (acl) { 2605 link = list_first_entry_or_null(&acl->link_list, 2606 struct hci_link, list); 2607 if (link && link->conn) { 2608 link->conn->state = BT_CLOSED; 2609 2610 hci_connect_cfm(link->conn, status); 2611 hci_conn_del(link->conn); 2612 } 2613 } 2614 2615 hci_dev_unlock(hdev); 2616 } 2617 2618 static void hci_cs_setup_sync_conn(struct hci_dev *hdev, __u8 status) 2619 { 2620 struct hci_cp_setup_sync_conn *cp; 2621 2622 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2623 2624 if (!status) 2625 return; 2626 2627 cp = hci_sent_cmd_data(hdev, HCI_OP_SETUP_SYNC_CONN); 2628 if (!cp) 2629 return; 2630 2631 hci_setup_sync_conn_status(hdev, __le16_to_cpu(cp->handle), status); 2632 } 2633 2634 static void hci_cs_enhanced_setup_sync_conn(struct hci_dev *hdev, __u8 status) 2635 { 2636 struct hci_cp_enhanced_setup_sync_conn *cp; 2637 2638 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2639 2640 if (!status) 2641 return; 2642 2643 cp = hci_sent_cmd_data(hdev, HCI_OP_ENHANCED_SETUP_SYNC_CONN); 2644 if (!cp) 2645 return; 2646 2647 hci_setup_sync_conn_status(hdev, __le16_to_cpu(cp->handle), status); 2648 } 2649 2650 static void hci_cs_sniff_mode(struct hci_dev *hdev, __u8 status) 2651 { 2652 struct hci_cp_sniff_mode *cp; 2653 struct hci_conn *conn; 2654 2655 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2656 2657 if (!status) 2658 return; 2659 2660 cp = hci_sent_cmd_data(hdev, HCI_OP_SNIFF_MODE); 2661 if (!cp) 2662 return; 2663 2664 hci_dev_lock(hdev); 2665 2666 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2667 if (conn) { 2668 clear_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags); 2669 2670 if (test_and_clear_bit(HCI_CONN_SCO_SETUP_PEND, &conn->flags)) 2671 hci_sco_setup(conn, status); 2672 } 2673 2674 hci_dev_unlock(hdev); 2675 } 2676 2677 static void hci_cs_exit_sniff_mode(struct hci_dev *hdev, __u8 status) 2678 { 2679 struct hci_cp_exit_sniff_mode *cp; 2680 struct hci_conn *conn; 2681 2682 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2683 2684 if (!status) 2685 return; 2686 2687 cp = hci_sent_cmd_data(hdev, HCI_OP_EXIT_SNIFF_MODE); 2688 if (!cp) 2689 return; 2690 2691 hci_dev_lock(hdev); 2692 2693 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2694 if (conn) { 2695 clear_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags); 2696 2697 if (test_and_clear_bit(HCI_CONN_SCO_SETUP_PEND, &conn->flags)) 2698 hci_sco_setup(conn, status); 2699 } 2700 2701 hci_dev_unlock(hdev); 2702 } 2703 2704 static void hci_cs_disconnect(struct hci_dev *hdev, u8 status) 2705 { 2706 struct hci_cp_disconnect *cp; 2707 struct hci_conn_params *params; 2708 struct hci_conn *conn; 2709 bool mgmt_conn; 2710 2711 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2712 2713 /* Wait for HCI_EV_DISCONN_COMPLETE if status 0x00 and not suspended 2714 * otherwise cleanup the connection immediately. 2715 */ 2716 if (!status && !hdev->suspended) 2717 return; 2718 2719 cp = hci_sent_cmd_data(hdev, HCI_OP_DISCONNECT); 2720 if (!cp) 2721 return; 2722 2723 hci_dev_lock(hdev); 2724 2725 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2726 if (!conn) 2727 goto unlock; 2728 2729 if (status) { 2730 mgmt_disconnect_failed(hdev, &conn->dst, conn->type, 2731 conn->dst_type, status); 2732 2733 if (conn->type == LE_LINK && conn->role == HCI_ROLE_SLAVE) { 2734 hdev->cur_adv_instance = conn->adv_instance; 2735 hci_enable_advertising(hdev); 2736 } 2737 2738 /* Inform sockets conn is gone before we delete it */ 2739 hci_disconn_cfm(conn, HCI_ERROR_UNSPECIFIED); 2740 2741 goto done; 2742 } 2743 2744 mgmt_conn = test_and_clear_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags); 2745 2746 if (conn->type == ACL_LINK) { 2747 if (test_and_clear_bit(HCI_CONN_FLUSH_KEY, &conn->flags)) 2748 hci_remove_link_key(hdev, &conn->dst); 2749 } 2750 2751 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 2752 if (params) { 2753 switch (params->auto_connect) { 2754 case HCI_AUTO_CONN_LINK_LOSS: 2755 if (cp->reason != HCI_ERROR_CONNECTION_TIMEOUT) 2756 break; 2757 fallthrough; 2758 2759 case HCI_AUTO_CONN_DIRECT: 2760 case HCI_AUTO_CONN_ALWAYS: 2761 hci_pend_le_list_del_init(params); 2762 hci_pend_le_list_add(params, &hdev->pend_le_conns); 2763 break; 2764 2765 default: 2766 break; 2767 } 2768 } 2769 2770 mgmt_device_disconnected(hdev, &conn->dst, conn->type, conn->dst_type, 2771 cp->reason, mgmt_conn); 2772 2773 hci_disconn_cfm(conn, cp->reason); 2774 2775 done: 2776 /* If the disconnection failed for any reason, the upper layer 2777 * does not retry to disconnect in current implementation. 2778 * Hence, we need to do some basic cleanup here and re-enable 2779 * advertising if necessary. 2780 */ 2781 hci_conn_del(conn); 2782 unlock: 2783 hci_dev_unlock(hdev); 2784 } 2785 2786 static u8 ev_bdaddr_type(struct hci_dev *hdev, u8 type, bool *resolved) 2787 { 2788 /* When using controller based address resolution, then the new 2789 * address types 0x02 and 0x03 are used. These types need to be 2790 * converted back into either public address or random address type 2791 */ 2792 switch (type) { 2793 case ADDR_LE_DEV_PUBLIC_RESOLVED: 2794 if (resolved) 2795 *resolved = true; 2796 return ADDR_LE_DEV_PUBLIC; 2797 case ADDR_LE_DEV_RANDOM_RESOLVED: 2798 if (resolved) 2799 *resolved = true; 2800 return ADDR_LE_DEV_RANDOM; 2801 } 2802 2803 if (resolved) 2804 *resolved = false; 2805 return type; 2806 } 2807 2808 static void cs_le_create_conn(struct hci_dev *hdev, bdaddr_t *peer_addr, 2809 u8 peer_addr_type, u8 own_address_type, 2810 u8 filter_policy) 2811 { 2812 struct hci_conn *conn; 2813 2814 conn = hci_conn_hash_lookup_le(hdev, peer_addr, 2815 peer_addr_type); 2816 if (!conn) 2817 return; 2818 2819 own_address_type = ev_bdaddr_type(hdev, own_address_type, NULL); 2820 2821 /* Store the initiator and responder address information which 2822 * is needed for SMP. These values will not change during the 2823 * lifetime of the connection. 2824 */ 2825 conn->init_addr_type = own_address_type; 2826 if (own_address_type == ADDR_LE_DEV_RANDOM) 2827 bacpy(&conn->init_addr, &hdev->random_addr); 2828 else 2829 bacpy(&conn->init_addr, &hdev->bdaddr); 2830 2831 conn->resp_addr_type = peer_addr_type; 2832 bacpy(&conn->resp_addr, peer_addr); 2833 } 2834 2835 static void hci_cs_le_create_conn(struct hci_dev *hdev, u8 status) 2836 { 2837 struct hci_cp_le_create_conn *cp; 2838 2839 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2840 2841 /* All connection failure handling is taken care of by the 2842 * hci_conn_failed function which is triggered by the HCI 2843 * request completion callbacks used for connecting. 2844 */ 2845 if (status) 2846 return; 2847 2848 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_CREATE_CONN); 2849 if (!cp) 2850 return; 2851 2852 hci_dev_lock(hdev); 2853 2854 cs_le_create_conn(hdev, &cp->peer_addr, cp->peer_addr_type, 2855 cp->own_address_type, cp->filter_policy); 2856 2857 hci_dev_unlock(hdev); 2858 } 2859 2860 static void hci_cs_le_ext_create_conn(struct hci_dev *hdev, u8 status) 2861 { 2862 struct hci_cp_le_ext_create_conn *cp; 2863 2864 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2865 2866 /* All connection failure handling is taken care of by the 2867 * hci_conn_failed function which is triggered by the HCI 2868 * request completion callbacks used for connecting. 2869 */ 2870 if (status) 2871 return; 2872 2873 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_EXT_CREATE_CONN); 2874 if (!cp) 2875 return; 2876 2877 hci_dev_lock(hdev); 2878 2879 cs_le_create_conn(hdev, &cp->peer_addr, cp->peer_addr_type, 2880 cp->own_addr_type, cp->filter_policy); 2881 2882 hci_dev_unlock(hdev); 2883 } 2884 2885 static void hci_cs_le_read_remote_features(struct hci_dev *hdev, u8 status) 2886 { 2887 struct hci_cp_le_read_remote_features *cp; 2888 struct hci_conn *conn; 2889 2890 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2891 2892 if (!status) 2893 return; 2894 2895 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_READ_REMOTE_FEATURES); 2896 if (!cp) 2897 return; 2898 2899 hci_dev_lock(hdev); 2900 2901 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2902 if (conn) { 2903 if (conn->state == BT_CONFIG) { 2904 hci_connect_cfm(conn, status); 2905 hci_conn_drop(conn); 2906 } 2907 } 2908 2909 hci_dev_unlock(hdev); 2910 } 2911 2912 static void hci_cs_le_start_enc(struct hci_dev *hdev, u8 status) 2913 { 2914 struct hci_cp_le_start_enc *cp; 2915 struct hci_conn *conn; 2916 2917 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2918 2919 if (!status) 2920 return; 2921 2922 hci_dev_lock(hdev); 2923 2924 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_START_ENC); 2925 if (!cp) 2926 goto unlock; 2927 2928 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2929 if (!conn) 2930 goto unlock; 2931 2932 if (conn->state != BT_CONNECTED) 2933 goto unlock; 2934 2935 hci_disconnect(conn, HCI_ERROR_AUTH_FAILURE); 2936 hci_conn_drop(conn); 2937 2938 unlock: 2939 hci_dev_unlock(hdev); 2940 } 2941 2942 static void hci_cs_switch_role(struct hci_dev *hdev, u8 status) 2943 { 2944 struct hci_cp_switch_role *cp; 2945 struct hci_conn *conn; 2946 2947 BT_DBG("%s status 0x%2.2x", hdev->name, status); 2948 2949 if (!status) 2950 return; 2951 2952 cp = hci_sent_cmd_data(hdev, HCI_OP_SWITCH_ROLE); 2953 if (!cp) 2954 return; 2955 2956 hci_dev_lock(hdev); 2957 2958 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->bdaddr); 2959 if (conn) 2960 clear_bit(HCI_CONN_RSWITCH_PEND, &conn->flags); 2961 2962 hci_dev_unlock(hdev); 2963 } 2964 2965 static void hci_inquiry_complete_evt(struct hci_dev *hdev, void *data, 2966 struct sk_buff *skb) 2967 { 2968 struct hci_ev_status *ev = data; 2969 struct discovery_state *discov = &hdev->discovery; 2970 struct inquiry_entry *e; 2971 2972 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 2973 2974 if (!test_and_clear_bit(HCI_INQUIRY, &hdev->flags)) 2975 return; 2976 2977 smp_mb__after_atomic(); /* wake_up_bit advises about this barrier */ 2978 wake_up_bit(&hdev->flags, HCI_INQUIRY); 2979 2980 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 2981 return; 2982 2983 hci_dev_lock(hdev); 2984 2985 if (discov->state != DISCOVERY_FINDING) 2986 goto unlock; 2987 2988 if (list_empty(&discov->resolve)) { 2989 /* When BR/EDR inquiry is active and no LE scanning is in 2990 * progress, then change discovery state to indicate completion. 2991 * 2992 * When running LE scanning and BR/EDR inquiry simultaneously 2993 * and the LE scan already finished, then change the discovery 2994 * state to indicate completion. 2995 */ 2996 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN) || 2997 !test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) 2998 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 2999 goto unlock; 3000 } 3001 3002 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, NAME_NEEDED); 3003 if (e && hci_resolve_name(hdev, e) == 0) { 3004 e->name_state = NAME_PENDING; 3005 hci_discovery_set_state(hdev, DISCOVERY_RESOLVING); 3006 discov->name_resolve_timeout = jiffies + NAME_RESOLVE_DURATION; 3007 } else { 3008 /* When BR/EDR inquiry is active and no LE scanning is in 3009 * progress, then change discovery state to indicate completion. 3010 * 3011 * When running LE scanning and BR/EDR inquiry simultaneously 3012 * and the LE scan already finished, then change the discovery 3013 * state to indicate completion. 3014 */ 3015 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN) || 3016 !test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) 3017 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 3018 } 3019 3020 unlock: 3021 hci_dev_unlock(hdev); 3022 } 3023 3024 static void hci_inquiry_result_evt(struct hci_dev *hdev, void *edata, 3025 struct sk_buff *skb) 3026 { 3027 struct hci_ev_inquiry_result *ev = edata; 3028 struct inquiry_data data; 3029 int i; 3030 3031 if (!hci_ev_skb_pull(hdev, skb, HCI_EV_INQUIRY_RESULT, 3032 flex_array_size(ev, info, ev->num))) 3033 return; 3034 3035 bt_dev_dbg(hdev, "num %d", ev->num); 3036 3037 if (!ev->num) 3038 return; 3039 3040 if (hci_dev_test_flag(hdev, HCI_PERIODIC_INQ)) 3041 return; 3042 3043 hci_dev_lock(hdev); 3044 3045 for (i = 0; i < ev->num; i++) { 3046 struct inquiry_info *info = &ev->info[i]; 3047 u32 flags; 3048 3049 bacpy(&data.bdaddr, &info->bdaddr); 3050 data.pscan_rep_mode = info->pscan_rep_mode; 3051 data.pscan_period_mode = info->pscan_period_mode; 3052 data.pscan_mode = info->pscan_mode; 3053 memcpy(data.dev_class, info->dev_class, 3); 3054 data.clock_offset = info->clock_offset; 3055 data.rssi = HCI_RSSI_INVALID; 3056 data.ssp_mode = 0x00; 3057 3058 flags = hci_inquiry_cache_update(hdev, &data, false); 3059 3060 mgmt_device_found(hdev, &info->bdaddr, ACL_LINK, 0x00, 3061 info->dev_class, HCI_RSSI_INVALID, 3062 flags, NULL, 0, NULL, 0, 0); 3063 } 3064 3065 hci_dev_unlock(hdev); 3066 } 3067 3068 static void hci_conn_complete_evt(struct hci_dev *hdev, void *data, 3069 struct sk_buff *skb) 3070 { 3071 struct hci_ev_conn_complete *ev = data; 3072 struct hci_conn *conn; 3073 u8 status = ev->status; 3074 3075 bt_dev_dbg(hdev, "status 0x%2.2x", status); 3076 3077 hci_dev_lock(hdev); 3078 3079 conn = hci_conn_hash_lookup_ba(hdev, ev->link_type, &ev->bdaddr); 3080 if (!conn) { 3081 /* In case of error status and there is no connection pending 3082 * just unlock as there is nothing to cleanup. 3083 */ 3084 if (ev->status) 3085 goto unlock; 3086 3087 /* Connection may not exist if auto-connected. Check the bredr 3088 * allowlist to see if this device is allowed to auto connect. 3089 * If link is an ACL type, create a connection class 3090 * automatically. 3091 * 3092 * Auto-connect will only occur if the event filter is 3093 * programmed with a given address. Right now, event filter is 3094 * only used during suspend. 3095 */ 3096 if (ev->link_type == ACL_LINK && 3097 hci_bdaddr_list_lookup_with_flags(&hdev->accept_list, 3098 &ev->bdaddr, 3099 BDADDR_BREDR)) { 3100 conn = hci_conn_add_unset(hdev, ev->link_type, 3101 &ev->bdaddr, HCI_ROLE_SLAVE); 3102 if (IS_ERR(conn)) { 3103 bt_dev_err(hdev, "connection err: %ld", PTR_ERR(conn)); 3104 goto unlock; 3105 } 3106 } else { 3107 if (ev->link_type != SCO_LINK) 3108 goto unlock; 3109 3110 conn = hci_conn_hash_lookup_ba(hdev, ESCO_LINK, 3111 &ev->bdaddr); 3112 if (!conn) 3113 goto unlock; 3114 3115 conn->type = SCO_LINK; 3116 } 3117 } 3118 3119 /* The HCI_Connection_Complete event is only sent once per connection. 3120 * Processing it more than once per connection can corrupt kernel memory. 3121 * 3122 * As the connection handle is set here for the first time, it indicates 3123 * whether the connection is already set up. 3124 */ 3125 if (!HCI_CONN_HANDLE_UNSET(conn->handle)) { 3126 bt_dev_err(hdev, "Ignoring HCI_Connection_Complete for existing connection"); 3127 goto unlock; 3128 } 3129 3130 if (!status) { 3131 status = hci_conn_set_handle(conn, __le16_to_cpu(ev->handle)); 3132 if (status) 3133 goto done; 3134 3135 if (conn->type == ACL_LINK) { 3136 conn->state = BT_CONFIG; 3137 hci_conn_hold(conn); 3138 3139 if (!conn->out && !hci_conn_ssp_enabled(conn) && 3140 !hci_find_link_key(hdev, &ev->bdaddr)) 3141 conn->disc_timeout = HCI_PAIRING_TIMEOUT; 3142 else 3143 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 3144 } else 3145 conn->state = BT_CONNECTED; 3146 3147 hci_debugfs_create_conn(conn); 3148 hci_conn_add_sysfs(conn); 3149 3150 if (test_bit(HCI_AUTH, &hdev->flags)) 3151 set_bit(HCI_CONN_AUTH, &conn->flags); 3152 3153 if (test_bit(HCI_ENCRYPT, &hdev->flags)) 3154 set_bit(HCI_CONN_ENCRYPT, &conn->flags); 3155 3156 /* "Link key request" completed ahead of "connect request" completes */ 3157 if (ev->encr_mode == 1 && !test_bit(HCI_CONN_ENCRYPT, &conn->flags) && 3158 ev->link_type == ACL_LINK) { 3159 struct link_key *key; 3160 struct hci_cp_read_enc_key_size cp; 3161 3162 key = hci_find_link_key(hdev, &ev->bdaddr); 3163 if (key) { 3164 set_bit(HCI_CONN_ENCRYPT, &conn->flags); 3165 3166 if (!read_key_size_capable(hdev)) { 3167 conn->enc_key_size = HCI_LINK_KEY_SIZE; 3168 } else { 3169 cp.handle = cpu_to_le16(conn->handle); 3170 if (hci_send_cmd(hdev, HCI_OP_READ_ENC_KEY_SIZE, 3171 sizeof(cp), &cp)) { 3172 bt_dev_err(hdev, "sending read key size failed"); 3173 conn->enc_key_size = HCI_LINK_KEY_SIZE; 3174 } 3175 } 3176 3177 hci_encrypt_cfm(conn, ev->status); 3178 } 3179 } 3180 3181 /* Get remote features */ 3182 if (conn->type == ACL_LINK) { 3183 struct hci_cp_read_remote_features cp; 3184 cp.handle = ev->handle; 3185 hci_send_cmd(hdev, HCI_OP_READ_REMOTE_FEATURES, 3186 sizeof(cp), &cp); 3187 3188 hci_update_scan(hdev); 3189 } 3190 3191 /* Set packet type for incoming connection */ 3192 if (!conn->out && hdev->hci_ver < BLUETOOTH_VER_2_0) { 3193 struct hci_cp_change_conn_ptype cp; 3194 cp.handle = ev->handle; 3195 cp.pkt_type = cpu_to_le16(conn->pkt_type); 3196 hci_send_cmd(hdev, HCI_OP_CHANGE_CONN_PTYPE, sizeof(cp), 3197 &cp); 3198 } 3199 } 3200 3201 if (conn->type == ACL_LINK) 3202 hci_sco_setup(conn, ev->status); 3203 3204 done: 3205 if (status) { 3206 hci_conn_failed(conn, status); 3207 } else if (ev->link_type == SCO_LINK) { 3208 switch (conn->setting & SCO_AIRMODE_MASK) { 3209 case SCO_AIRMODE_CVSD: 3210 if (hdev->notify) 3211 hdev->notify(hdev, HCI_NOTIFY_ENABLE_SCO_CVSD); 3212 break; 3213 } 3214 3215 hci_connect_cfm(conn, status); 3216 } 3217 3218 unlock: 3219 hci_dev_unlock(hdev); 3220 } 3221 3222 static void hci_reject_conn(struct hci_dev *hdev, bdaddr_t *bdaddr) 3223 { 3224 struct hci_cp_reject_conn_req cp; 3225 3226 bacpy(&cp.bdaddr, bdaddr); 3227 cp.reason = HCI_ERROR_REJ_BAD_ADDR; 3228 hci_send_cmd(hdev, HCI_OP_REJECT_CONN_REQ, sizeof(cp), &cp); 3229 } 3230 3231 static void hci_conn_request_evt(struct hci_dev *hdev, void *data, 3232 struct sk_buff *skb) 3233 { 3234 struct hci_ev_conn_request *ev = data; 3235 int mask = hdev->link_mode; 3236 struct inquiry_entry *ie; 3237 struct hci_conn *conn; 3238 __u8 flags = 0; 3239 3240 bt_dev_dbg(hdev, "bdaddr %pMR type 0x%x", &ev->bdaddr, ev->link_type); 3241 3242 /* Reject incoming connection from device with same BD ADDR against 3243 * CVE-2020-26555 3244 */ 3245 if (hdev && !bacmp(&hdev->bdaddr, &ev->bdaddr)) { 3246 bt_dev_dbg(hdev, "Reject connection with same BD_ADDR %pMR\n", 3247 &ev->bdaddr); 3248 hci_reject_conn(hdev, &ev->bdaddr); 3249 return; 3250 } 3251 3252 mask |= hci_proto_connect_ind(hdev, &ev->bdaddr, ev->link_type, 3253 &flags); 3254 3255 if (!(mask & HCI_LM_ACCEPT)) { 3256 hci_reject_conn(hdev, &ev->bdaddr); 3257 return; 3258 } 3259 3260 hci_dev_lock(hdev); 3261 3262 if (hci_bdaddr_list_lookup(&hdev->reject_list, &ev->bdaddr, 3263 BDADDR_BREDR)) { 3264 hci_reject_conn(hdev, &ev->bdaddr); 3265 goto unlock; 3266 } 3267 3268 /* Require HCI_CONNECTABLE or an accept list entry to accept the 3269 * connection. These features are only touched through mgmt so 3270 * only do the checks if HCI_MGMT is set. 3271 */ 3272 if (hci_dev_test_flag(hdev, HCI_MGMT) && 3273 !hci_dev_test_flag(hdev, HCI_CONNECTABLE) && 3274 !hci_bdaddr_list_lookup_with_flags(&hdev->accept_list, &ev->bdaddr, 3275 BDADDR_BREDR)) { 3276 hci_reject_conn(hdev, &ev->bdaddr); 3277 goto unlock; 3278 } 3279 3280 /* Connection accepted */ 3281 3282 ie = hci_inquiry_cache_lookup(hdev, &ev->bdaddr); 3283 if (ie) 3284 memcpy(ie->data.dev_class, ev->dev_class, 3); 3285 3286 conn = hci_conn_hash_lookup_ba(hdev, ev->link_type, 3287 &ev->bdaddr); 3288 if (!conn) { 3289 conn = hci_conn_add_unset(hdev, ev->link_type, &ev->bdaddr, 3290 HCI_ROLE_SLAVE); 3291 if (IS_ERR(conn)) { 3292 bt_dev_err(hdev, "connection err: %ld", PTR_ERR(conn)); 3293 goto unlock; 3294 } 3295 } 3296 3297 memcpy(conn->dev_class, ev->dev_class, 3); 3298 3299 hci_dev_unlock(hdev); 3300 3301 if (ev->link_type == ACL_LINK || 3302 (!(flags & HCI_PROTO_DEFER) && !lmp_esco_capable(hdev))) { 3303 struct hci_cp_accept_conn_req cp; 3304 conn->state = BT_CONNECT; 3305 3306 bacpy(&cp.bdaddr, &ev->bdaddr); 3307 3308 if (lmp_rswitch_capable(hdev) && (mask & HCI_LM_MASTER)) 3309 cp.role = 0x00; /* Become central */ 3310 else 3311 cp.role = 0x01; /* Remain peripheral */ 3312 3313 hci_send_cmd(hdev, HCI_OP_ACCEPT_CONN_REQ, sizeof(cp), &cp); 3314 } else if (!(flags & HCI_PROTO_DEFER)) { 3315 struct hci_cp_accept_sync_conn_req cp; 3316 conn->state = BT_CONNECT; 3317 3318 bacpy(&cp.bdaddr, &ev->bdaddr); 3319 cp.pkt_type = cpu_to_le16(conn->pkt_type); 3320 3321 cp.tx_bandwidth = cpu_to_le32(0x00001f40); 3322 cp.rx_bandwidth = cpu_to_le32(0x00001f40); 3323 cp.max_latency = cpu_to_le16(0xffff); 3324 cp.content_format = cpu_to_le16(hdev->voice_setting); 3325 cp.retrans_effort = 0xff; 3326 3327 hci_send_cmd(hdev, HCI_OP_ACCEPT_SYNC_CONN_REQ, sizeof(cp), 3328 &cp); 3329 } else { 3330 conn->state = BT_CONNECT2; 3331 hci_connect_cfm(conn, 0); 3332 } 3333 3334 return; 3335 unlock: 3336 hci_dev_unlock(hdev); 3337 } 3338 3339 static u8 hci_to_mgmt_reason(u8 err) 3340 { 3341 switch (err) { 3342 case HCI_ERROR_CONNECTION_TIMEOUT: 3343 return MGMT_DEV_DISCONN_TIMEOUT; 3344 case HCI_ERROR_REMOTE_USER_TERM: 3345 case HCI_ERROR_REMOTE_LOW_RESOURCES: 3346 case HCI_ERROR_REMOTE_POWER_OFF: 3347 return MGMT_DEV_DISCONN_REMOTE; 3348 case HCI_ERROR_LOCAL_HOST_TERM: 3349 return MGMT_DEV_DISCONN_LOCAL_HOST; 3350 default: 3351 return MGMT_DEV_DISCONN_UNKNOWN; 3352 } 3353 } 3354 3355 static void hci_disconn_complete_evt(struct hci_dev *hdev, void *data, 3356 struct sk_buff *skb) 3357 { 3358 struct hci_ev_disconn_complete *ev = data; 3359 u8 reason; 3360 struct hci_conn_params *params; 3361 struct hci_conn *conn; 3362 bool mgmt_connected; 3363 3364 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 3365 3366 hci_dev_lock(hdev); 3367 3368 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 3369 if (!conn) 3370 goto unlock; 3371 3372 if (ev->status) { 3373 mgmt_disconnect_failed(hdev, &conn->dst, conn->type, 3374 conn->dst_type, ev->status); 3375 goto unlock; 3376 } 3377 3378 conn->state = BT_CLOSED; 3379 3380 mgmt_connected = test_and_clear_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags); 3381 3382 if (test_bit(HCI_CONN_AUTH_FAILURE, &conn->flags)) 3383 reason = MGMT_DEV_DISCONN_AUTH_FAILURE; 3384 else 3385 reason = hci_to_mgmt_reason(ev->reason); 3386 3387 mgmt_device_disconnected(hdev, &conn->dst, conn->type, conn->dst_type, 3388 reason, mgmt_connected); 3389 3390 if (conn->type == ACL_LINK) { 3391 if (test_and_clear_bit(HCI_CONN_FLUSH_KEY, &conn->flags)) 3392 hci_remove_link_key(hdev, &conn->dst); 3393 3394 hci_update_scan(hdev); 3395 } 3396 3397 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 3398 if (params) { 3399 switch (params->auto_connect) { 3400 case HCI_AUTO_CONN_LINK_LOSS: 3401 if (ev->reason != HCI_ERROR_CONNECTION_TIMEOUT) 3402 break; 3403 fallthrough; 3404 3405 case HCI_AUTO_CONN_DIRECT: 3406 case HCI_AUTO_CONN_ALWAYS: 3407 hci_pend_le_list_del_init(params); 3408 hci_pend_le_list_add(params, &hdev->pend_le_conns); 3409 hci_update_passive_scan(hdev); 3410 break; 3411 3412 default: 3413 break; 3414 } 3415 } 3416 3417 hci_disconn_cfm(conn, ev->reason); 3418 3419 /* Re-enable advertising if necessary, since it might 3420 * have been disabled by the connection. From the 3421 * HCI_LE_Set_Advertise_Enable command description in 3422 * the core specification (v4.0): 3423 * "The Controller shall continue advertising until the Host 3424 * issues an LE_Set_Advertise_Enable command with 3425 * Advertising_Enable set to 0x00 (Advertising is disabled) 3426 * or until a connection is created or until the Advertising 3427 * is timed out due to Directed Advertising." 3428 */ 3429 if (conn->type == LE_LINK && conn->role == HCI_ROLE_SLAVE) { 3430 hdev->cur_adv_instance = conn->adv_instance; 3431 hci_enable_advertising(hdev); 3432 } 3433 3434 hci_conn_del(conn); 3435 3436 unlock: 3437 hci_dev_unlock(hdev); 3438 } 3439 3440 static void hci_auth_complete_evt(struct hci_dev *hdev, void *data, 3441 struct sk_buff *skb) 3442 { 3443 struct hci_ev_auth_complete *ev = data; 3444 struct hci_conn *conn; 3445 3446 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 3447 3448 hci_dev_lock(hdev); 3449 3450 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 3451 if (!conn) 3452 goto unlock; 3453 3454 if (!ev->status) { 3455 clear_bit(HCI_CONN_AUTH_FAILURE, &conn->flags); 3456 set_bit(HCI_CONN_AUTH, &conn->flags); 3457 conn->sec_level = conn->pending_sec_level; 3458 } else { 3459 if (ev->status == HCI_ERROR_PIN_OR_KEY_MISSING) 3460 set_bit(HCI_CONN_AUTH_FAILURE, &conn->flags); 3461 3462 mgmt_auth_failed(conn, ev->status); 3463 } 3464 3465 clear_bit(HCI_CONN_AUTH_PEND, &conn->flags); 3466 3467 if (conn->state == BT_CONFIG) { 3468 if (!ev->status && hci_conn_ssp_enabled(conn)) { 3469 struct hci_cp_set_conn_encrypt cp; 3470 cp.handle = ev->handle; 3471 cp.encrypt = 0x01; 3472 hci_send_cmd(hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp), 3473 &cp); 3474 } else { 3475 conn->state = BT_CONNECTED; 3476 hci_connect_cfm(conn, ev->status); 3477 hci_conn_drop(conn); 3478 } 3479 } else { 3480 hci_auth_cfm(conn, ev->status); 3481 3482 hci_conn_hold(conn); 3483 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 3484 hci_conn_drop(conn); 3485 } 3486 3487 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) { 3488 if (!ev->status) { 3489 struct hci_cp_set_conn_encrypt cp; 3490 cp.handle = ev->handle; 3491 cp.encrypt = 0x01; 3492 hci_send_cmd(hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp), 3493 &cp); 3494 } else { 3495 clear_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); 3496 hci_encrypt_cfm(conn, ev->status); 3497 } 3498 } 3499 3500 unlock: 3501 hci_dev_unlock(hdev); 3502 } 3503 3504 static void hci_remote_name_evt(struct hci_dev *hdev, void *data, 3505 struct sk_buff *skb) 3506 { 3507 struct hci_ev_remote_name *ev = data; 3508 struct hci_conn *conn; 3509 3510 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 3511 3512 hci_dev_lock(hdev); 3513 3514 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 3515 3516 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 3517 goto check_auth; 3518 3519 if (ev->status == 0) 3520 hci_check_pending_name(hdev, conn, &ev->bdaddr, ev->name, 3521 strnlen(ev->name, HCI_MAX_NAME_LENGTH)); 3522 else 3523 hci_check_pending_name(hdev, conn, &ev->bdaddr, NULL, 0); 3524 3525 check_auth: 3526 if (!conn) 3527 goto unlock; 3528 3529 if (!hci_outgoing_auth_needed(hdev, conn)) 3530 goto unlock; 3531 3532 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) { 3533 struct hci_cp_auth_requested cp; 3534 3535 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags); 3536 3537 cp.handle = __cpu_to_le16(conn->handle); 3538 hci_send_cmd(hdev, HCI_OP_AUTH_REQUESTED, sizeof(cp), &cp); 3539 } 3540 3541 unlock: 3542 hci_dev_unlock(hdev); 3543 } 3544 3545 static void hci_encrypt_change_evt(struct hci_dev *hdev, void *data, 3546 struct sk_buff *skb) 3547 { 3548 struct hci_ev_encrypt_change *ev = data; 3549 struct hci_conn *conn; 3550 3551 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 3552 3553 hci_dev_lock(hdev); 3554 3555 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 3556 if (!conn) 3557 goto unlock; 3558 3559 if (!ev->status) { 3560 if (ev->encrypt) { 3561 /* Encryption implies authentication */ 3562 set_bit(HCI_CONN_AUTH, &conn->flags); 3563 set_bit(HCI_CONN_ENCRYPT, &conn->flags); 3564 conn->sec_level = conn->pending_sec_level; 3565 3566 /* P-256 authentication key implies FIPS */ 3567 if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256) 3568 set_bit(HCI_CONN_FIPS, &conn->flags); 3569 3570 if ((conn->type == ACL_LINK && ev->encrypt == 0x02) || 3571 conn->type == LE_LINK) 3572 set_bit(HCI_CONN_AES_CCM, &conn->flags); 3573 } else { 3574 clear_bit(HCI_CONN_ENCRYPT, &conn->flags); 3575 clear_bit(HCI_CONN_AES_CCM, &conn->flags); 3576 } 3577 } 3578 3579 /* We should disregard the current RPA and generate a new one 3580 * whenever the encryption procedure fails. 3581 */ 3582 if (ev->status && conn->type == LE_LINK) { 3583 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 3584 hci_adv_instances_set_rpa_expired(hdev, true); 3585 } 3586 3587 clear_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); 3588 3589 /* Check link security requirements are met */ 3590 if (!hci_conn_check_link_mode(conn)) 3591 ev->status = HCI_ERROR_AUTH_FAILURE; 3592 3593 if (ev->status && conn->state == BT_CONNECTED) { 3594 if (ev->status == HCI_ERROR_PIN_OR_KEY_MISSING) 3595 set_bit(HCI_CONN_AUTH_FAILURE, &conn->flags); 3596 3597 /* Notify upper layers so they can cleanup before 3598 * disconnecting. 3599 */ 3600 hci_encrypt_cfm(conn, ev->status); 3601 hci_disconnect(conn, HCI_ERROR_AUTH_FAILURE); 3602 hci_conn_drop(conn); 3603 goto unlock; 3604 } 3605 3606 /* Try reading the encryption key size for encrypted ACL links */ 3607 if (!ev->status && ev->encrypt && conn->type == ACL_LINK) { 3608 struct hci_cp_read_enc_key_size cp; 3609 3610 /* Only send HCI_Read_Encryption_Key_Size if the 3611 * controller really supports it. If it doesn't, assume 3612 * the default size (16). 3613 */ 3614 if (!read_key_size_capable(hdev)) { 3615 conn->enc_key_size = HCI_LINK_KEY_SIZE; 3616 goto notify; 3617 } 3618 3619 cp.handle = cpu_to_le16(conn->handle); 3620 if (hci_send_cmd(hdev, HCI_OP_READ_ENC_KEY_SIZE, 3621 sizeof(cp), &cp)) { 3622 bt_dev_err(hdev, "sending read key size failed"); 3623 conn->enc_key_size = HCI_LINK_KEY_SIZE; 3624 goto notify; 3625 } 3626 3627 goto unlock; 3628 } 3629 3630 /* We skip the WRITE_AUTH_PAYLOAD_TIMEOUT for ATS2851 based controllers 3631 * to avoid unexpected SMP command errors when pairing. 3632 */ 3633 if (test_bit(HCI_QUIRK_BROKEN_WRITE_AUTH_PAYLOAD_TIMEOUT, 3634 &hdev->quirks)) 3635 goto notify; 3636 3637 /* Set the default Authenticated Payload Timeout after 3638 * an LE Link is established. As per Core Spec v5.0, Vol 2, Part B 3639 * Section 3.3, the HCI command WRITE_AUTH_PAYLOAD_TIMEOUT should be 3640 * sent when the link is active and Encryption is enabled, the conn 3641 * type can be either LE or ACL and controller must support LMP Ping. 3642 * Ensure for AES-CCM encryption as well. 3643 */ 3644 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags) && 3645 test_bit(HCI_CONN_AES_CCM, &conn->flags) && 3646 ((conn->type == ACL_LINK && lmp_ping_capable(hdev)) || 3647 (conn->type == LE_LINK && (hdev->le_features[0] & HCI_LE_PING)))) { 3648 struct hci_cp_write_auth_payload_to cp; 3649 3650 cp.handle = cpu_to_le16(conn->handle); 3651 cp.timeout = cpu_to_le16(hdev->auth_payload_timeout); 3652 if (hci_send_cmd(conn->hdev, HCI_OP_WRITE_AUTH_PAYLOAD_TO, 3653 sizeof(cp), &cp)) 3654 bt_dev_err(hdev, "write auth payload timeout failed"); 3655 } 3656 3657 notify: 3658 hci_encrypt_cfm(conn, ev->status); 3659 3660 unlock: 3661 hci_dev_unlock(hdev); 3662 } 3663 3664 static void hci_change_link_key_complete_evt(struct hci_dev *hdev, void *data, 3665 struct sk_buff *skb) 3666 { 3667 struct hci_ev_change_link_key_complete *ev = data; 3668 struct hci_conn *conn; 3669 3670 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 3671 3672 hci_dev_lock(hdev); 3673 3674 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 3675 if (conn) { 3676 if (!ev->status) 3677 set_bit(HCI_CONN_SECURE, &conn->flags); 3678 3679 clear_bit(HCI_CONN_AUTH_PEND, &conn->flags); 3680 3681 hci_key_change_cfm(conn, ev->status); 3682 } 3683 3684 hci_dev_unlock(hdev); 3685 } 3686 3687 static void hci_remote_features_evt(struct hci_dev *hdev, void *data, 3688 struct sk_buff *skb) 3689 { 3690 struct hci_ev_remote_features *ev = data; 3691 struct hci_conn *conn; 3692 3693 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 3694 3695 hci_dev_lock(hdev); 3696 3697 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 3698 if (!conn) 3699 goto unlock; 3700 3701 if (!ev->status) 3702 memcpy(conn->features[0], ev->features, 8); 3703 3704 if (conn->state != BT_CONFIG) 3705 goto unlock; 3706 3707 if (!ev->status && lmp_ext_feat_capable(hdev) && 3708 lmp_ext_feat_capable(conn)) { 3709 struct hci_cp_read_remote_ext_features cp; 3710 cp.handle = ev->handle; 3711 cp.page = 0x01; 3712 hci_send_cmd(hdev, HCI_OP_READ_REMOTE_EXT_FEATURES, 3713 sizeof(cp), &cp); 3714 goto unlock; 3715 } 3716 3717 if (!ev->status) { 3718 struct hci_cp_remote_name_req cp; 3719 memset(&cp, 0, sizeof(cp)); 3720 bacpy(&cp.bdaddr, &conn->dst); 3721 cp.pscan_rep_mode = 0x02; 3722 hci_send_cmd(hdev, HCI_OP_REMOTE_NAME_REQ, sizeof(cp), &cp); 3723 } else { 3724 mgmt_device_connected(hdev, conn, NULL, 0); 3725 } 3726 3727 if (!hci_outgoing_auth_needed(hdev, conn)) { 3728 conn->state = BT_CONNECTED; 3729 hci_connect_cfm(conn, ev->status); 3730 hci_conn_drop(conn); 3731 } 3732 3733 unlock: 3734 hci_dev_unlock(hdev); 3735 } 3736 3737 static inline void handle_cmd_cnt_and_timer(struct hci_dev *hdev, u8 ncmd) 3738 { 3739 cancel_delayed_work(&hdev->cmd_timer); 3740 3741 rcu_read_lock(); 3742 if (!test_bit(HCI_RESET, &hdev->flags)) { 3743 if (ncmd) { 3744 cancel_delayed_work(&hdev->ncmd_timer); 3745 atomic_set(&hdev->cmd_cnt, 1); 3746 } else { 3747 if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE)) 3748 queue_delayed_work(hdev->workqueue, &hdev->ncmd_timer, 3749 HCI_NCMD_TIMEOUT); 3750 } 3751 } 3752 rcu_read_unlock(); 3753 } 3754 3755 static u8 hci_cc_le_read_buffer_size_v2(struct hci_dev *hdev, void *data, 3756 struct sk_buff *skb) 3757 { 3758 struct hci_rp_le_read_buffer_size_v2 *rp = data; 3759 3760 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 3761 3762 if (rp->status) 3763 return rp->status; 3764 3765 hdev->le_mtu = __le16_to_cpu(rp->acl_mtu); 3766 hdev->le_pkts = rp->acl_max_pkt; 3767 hdev->iso_mtu = __le16_to_cpu(rp->iso_mtu); 3768 hdev->iso_pkts = rp->iso_max_pkt; 3769 3770 hdev->le_cnt = hdev->le_pkts; 3771 hdev->iso_cnt = hdev->iso_pkts; 3772 3773 BT_DBG("%s acl mtu %d:%d iso mtu %d:%d", hdev->name, hdev->acl_mtu, 3774 hdev->acl_pkts, hdev->iso_mtu, hdev->iso_pkts); 3775 3776 if (hdev->le_mtu && hdev->le_mtu < HCI_MIN_LE_MTU) 3777 return HCI_ERROR_INVALID_PARAMETERS; 3778 3779 return rp->status; 3780 } 3781 3782 static void hci_unbound_cis_failed(struct hci_dev *hdev, u8 cig, u8 status) 3783 { 3784 struct hci_conn *conn, *tmp; 3785 3786 lockdep_assert_held(&hdev->lock); 3787 3788 list_for_each_entry_safe(conn, tmp, &hdev->conn_hash.list, list) { 3789 if (conn->type != ISO_LINK || !bacmp(&conn->dst, BDADDR_ANY) || 3790 conn->state == BT_OPEN || conn->iso_qos.ucast.cig != cig) 3791 continue; 3792 3793 if (HCI_CONN_HANDLE_UNSET(conn->handle)) 3794 hci_conn_failed(conn, status); 3795 } 3796 } 3797 3798 static u8 hci_cc_le_set_cig_params(struct hci_dev *hdev, void *data, 3799 struct sk_buff *skb) 3800 { 3801 struct hci_rp_le_set_cig_params *rp = data; 3802 struct hci_cp_le_set_cig_params *cp; 3803 struct hci_conn *conn; 3804 u8 status = rp->status; 3805 bool pending = false; 3806 int i; 3807 3808 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 3809 3810 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_CIG_PARAMS); 3811 if (!rp->status && (!cp || rp->num_handles != cp->num_cis || 3812 rp->cig_id != cp->cig_id)) { 3813 bt_dev_err(hdev, "unexpected Set CIG Parameters response data"); 3814 status = HCI_ERROR_UNSPECIFIED; 3815 } 3816 3817 hci_dev_lock(hdev); 3818 3819 /* BLUETOOTH CORE SPECIFICATION Version 5.4 | Vol 4, Part E page 2554 3820 * 3821 * If the Status return parameter is non-zero, then the state of the CIG 3822 * and its CIS configurations shall not be changed by the command. If 3823 * the CIG did not already exist, it shall not be created. 3824 */ 3825 if (status) { 3826 /* Keep current configuration, fail only the unbound CIS */ 3827 hci_unbound_cis_failed(hdev, rp->cig_id, status); 3828 goto unlock; 3829 } 3830 3831 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2553 3832 * 3833 * If the Status return parameter is zero, then the Controller shall 3834 * set the Connection_Handle arrayed return parameter to the connection 3835 * handle(s) corresponding to the CIS configurations specified in 3836 * the CIS_IDs command parameter, in the same order. 3837 */ 3838 for (i = 0; i < rp->num_handles; ++i) { 3839 conn = hci_conn_hash_lookup_cis(hdev, NULL, 0, rp->cig_id, 3840 cp->cis[i].cis_id); 3841 if (!conn || !bacmp(&conn->dst, BDADDR_ANY)) 3842 continue; 3843 3844 if (conn->state != BT_BOUND && conn->state != BT_CONNECT) 3845 continue; 3846 3847 if (hci_conn_set_handle(conn, __le16_to_cpu(rp->handle[i]))) 3848 continue; 3849 3850 if (conn->state == BT_CONNECT) 3851 pending = true; 3852 } 3853 3854 unlock: 3855 if (pending) 3856 hci_le_create_cis_pending(hdev); 3857 3858 hci_dev_unlock(hdev); 3859 3860 return rp->status; 3861 } 3862 3863 static u8 hci_cc_le_setup_iso_path(struct hci_dev *hdev, void *data, 3864 struct sk_buff *skb) 3865 { 3866 struct hci_rp_le_setup_iso_path *rp = data; 3867 struct hci_cp_le_setup_iso_path *cp; 3868 struct hci_conn *conn; 3869 3870 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 3871 3872 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SETUP_ISO_PATH); 3873 if (!cp) 3874 return rp->status; 3875 3876 hci_dev_lock(hdev); 3877 3878 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 3879 if (!conn) 3880 goto unlock; 3881 3882 if (rp->status) { 3883 hci_connect_cfm(conn, rp->status); 3884 hci_conn_del(conn); 3885 goto unlock; 3886 } 3887 3888 switch (cp->direction) { 3889 /* Input (Host to Controller) */ 3890 case 0x00: 3891 /* Only confirm connection if output only */ 3892 if (conn->iso_qos.ucast.out.sdu && !conn->iso_qos.ucast.in.sdu) 3893 hci_connect_cfm(conn, rp->status); 3894 break; 3895 /* Output (Controller to Host) */ 3896 case 0x01: 3897 /* Confirm connection since conn->iso_qos is always configured 3898 * last. 3899 */ 3900 hci_connect_cfm(conn, rp->status); 3901 3902 /* Notify device connected in case it is a BIG Sync */ 3903 if (!rp->status && test_bit(HCI_CONN_BIG_SYNC, &conn->flags)) 3904 mgmt_device_connected(hdev, conn, NULL, 0); 3905 3906 break; 3907 } 3908 3909 unlock: 3910 hci_dev_unlock(hdev); 3911 return rp->status; 3912 } 3913 3914 static void hci_cs_le_create_big(struct hci_dev *hdev, u8 status) 3915 { 3916 bt_dev_dbg(hdev, "status 0x%2.2x", status); 3917 } 3918 3919 static u8 hci_cc_set_per_adv_param(struct hci_dev *hdev, void *data, 3920 struct sk_buff *skb) 3921 { 3922 struct hci_ev_status *rp = data; 3923 struct hci_cp_le_set_per_adv_params *cp; 3924 3925 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 3926 3927 if (rp->status) 3928 return rp->status; 3929 3930 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS); 3931 if (!cp) 3932 return rp->status; 3933 3934 /* TODO: set the conn state */ 3935 return rp->status; 3936 } 3937 3938 static u8 hci_cc_le_set_per_adv_enable(struct hci_dev *hdev, void *data, 3939 struct sk_buff *skb) 3940 { 3941 struct hci_ev_status *rp = data; 3942 struct hci_cp_le_set_per_adv_enable *cp; 3943 struct adv_info *adv = NULL, *n; 3944 u8 per_adv_cnt = 0; 3945 3946 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 3947 3948 if (rp->status) 3949 return rp->status; 3950 3951 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE); 3952 if (!cp) 3953 return rp->status; 3954 3955 hci_dev_lock(hdev); 3956 3957 adv = hci_find_adv_instance(hdev, cp->handle); 3958 3959 if (cp->enable) { 3960 hci_dev_set_flag(hdev, HCI_LE_PER_ADV); 3961 3962 if (adv) 3963 adv->enabled = true; 3964 } else { 3965 /* If just one instance was disabled check if there are 3966 * any other instance enabled before clearing HCI_LE_PER_ADV. 3967 * The current periodic adv instance will be marked as 3968 * disabled once extended advertising is also disabled. 3969 */ 3970 list_for_each_entry_safe(adv, n, &hdev->adv_instances, 3971 list) { 3972 if (adv->periodic && adv->enabled) 3973 per_adv_cnt++; 3974 } 3975 3976 if (per_adv_cnt > 1) 3977 goto unlock; 3978 3979 hci_dev_clear_flag(hdev, HCI_LE_PER_ADV); 3980 } 3981 3982 unlock: 3983 hci_dev_unlock(hdev); 3984 3985 return rp->status; 3986 } 3987 3988 #define HCI_CC_VL(_op, _func, _min, _max) \ 3989 { \ 3990 .op = _op, \ 3991 .func = _func, \ 3992 .min_len = _min, \ 3993 .max_len = _max, \ 3994 } 3995 3996 #define HCI_CC(_op, _func, _len) \ 3997 HCI_CC_VL(_op, _func, _len, _len) 3998 3999 #define HCI_CC_STATUS(_op, _func) \ 4000 HCI_CC(_op, _func, sizeof(struct hci_ev_status)) 4001 4002 static const struct hci_cc { 4003 u16 op; 4004 u8 (*func)(struct hci_dev *hdev, void *data, struct sk_buff *skb); 4005 u16 min_len; 4006 u16 max_len; 4007 } hci_cc_table[] = { 4008 HCI_CC_STATUS(HCI_OP_INQUIRY_CANCEL, hci_cc_inquiry_cancel), 4009 HCI_CC_STATUS(HCI_OP_PERIODIC_INQ, hci_cc_periodic_inq), 4010 HCI_CC_STATUS(HCI_OP_EXIT_PERIODIC_INQ, hci_cc_exit_periodic_inq), 4011 HCI_CC_STATUS(HCI_OP_REMOTE_NAME_REQ_CANCEL, 4012 hci_cc_remote_name_req_cancel), 4013 HCI_CC(HCI_OP_ROLE_DISCOVERY, hci_cc_role_discovery, 4014 sizeof(struct hci_rp_role_discovery)), 4015 HCI_CC(HCI_OP_READ_LINK_POLICY, hci_cc_read_link_policy, 4016 sizeof(struct hci_rp_read_link_policy)), 4017 HCI_CC(HCI_OP_WRITE_LINK_POLICY, hci_cc_write_link_policy, 4018 sizeof(struct hci_rp_write_link_policy)), 4019 HCI_CC(HCI_OP_READ_DEF_LINK_POLICY, hci_cc_read_def_link_policy, 4020 sizeof(struct hci_rp_read_def_link_policy)), 4021 HCI_CC_STATUS(HCI_OP_WRITE_DEF_LINK_POLICY, 4022 hci_cc_write_def_link_policy), 4023 HCI_CC_STATUS(HCI_OP_RESET, hci_cc_reset), 4024 HCI_CC(HCI_OP_READ_STORED_LINK_KEY, hci_cc_read_stored_link_key, 4025 sizeof(struct hci_rp_read_stored_link_key)), 4026 HCI_CC(HCI_OP_DELETE_STORED_LINK_KEY, hci_cc_delete_stored_link_key, 4027 sizeof(struct hci_rp_delete_stored_link_key)), 4028 HCI_CC_STATUS(HCI_OP_WRITE_LOCAL_NAME, hci_cc_write_local_name), 4029 HCI_CC(HCI_OP_READ_LOCAL_NAME, hci_cc_read_local_name, 4030 sizeof(struct hci_rp_read_local_name)), 4031 HCI_CC_STATUS(HCI_OP_WRITE_AUTH_ENABLE, hci_cc_write_auth_enable), 4032 HCI_CC_STATUS(HCI_OP_WRITE_ENCRYPT_MODE, hci_cc_write_encrypt_mode), 4033 HCI_CC_STATUS(HCI_OP_WRITE_SCAN_ENABLE, hci_cc_write_scan_enable), 4034 HCI_CC_STATUS(HCI_OP_SET_EVENT_FLT, hci_cc_set_event_filter), 4035 HCI_CC(HCI_OP_READ_CLASS_OF_DEV, hci_cc_read_class_of_dev, 4036 sizeof(struct hci_rp_read_class_of_dev)), 4037 HCI_CC_STATUS(HCI_OP_WRITE_CLASS_OF_DEV, hci_cc_write_class_of_dev), 4038 HCI_CC(HCI_OP_READ_VOICE_SETTING, hci_cc_read_voice_setting, 4039 sizeof(struct hci_rp_read_voice_setting)), 4040 HCI_CC_STATUS(HCI_OP_WRITE_VOICE_SETTING, hci_cc_write_voice_setting), 4041 HCI_CC(HCI_OP_READ_NUM_SUPPORTED_IAC, hci_cc_read_num_supported_iac, 4042 sizeof(struct hci_rp_read_num_supported_iac)), 4043 HCI_CC_STATUS(HCI_OP_WRITE_SSP_MODE, hci_cc_write_ssp_mode), 4044 HCI_CC_STATUS(HCI_OP_WRITE_SC_SUPPORT, hci_cc_write_sc_support), 4045 HCI_CC(HCI_OP_READ_AUTH_PAYLOAD_TO, hci_cc_read_auth_payload_timeout, 4046 sizeof(struct hci_rp_read_auth_payload_to)), 4047 HCI_CC(HCI_OP_WRITE_AUTH_PAYLOAD_TO, hci_cc_write_auth_payload_timeout, 4048 sizeof(struct hci_rp_write_auth_payload_to)), 4049 HCI_CC(HCI_OP_READ_LOCAL_VERSION, hci_cc_read_local_version, 4050 sizeof(struct hci_rp_read_local_version)), 4051 HCI_CC(HCI_OP_READ_LOCAL_COMMANDS, hci_cc_read_local_commands, 4052 sizeof(struct hci_rp_read_local_commands)), 4053 HCI_CC(HCI_OP_READ_LOCAL_FEATURES, hci_cc_read_local_features, 4054 sizeof(struct hci_rp_read_local_features)), 4055 HCI_CC(HCI_OP_READ_LOCAL_EXT_FEATURES, hci_cc_read_local_ext_features, 4056 sizeof(struct hci_rp_read_local_ext_features)), 4057 HCI_CC(HCI_OP_READ_BUFFER_SIZE, hci_cc_read_buffer_size, 4058 sizeof(struct hci_rp_read_buffer_size)), 4059 HCI_CC(HCI_OP_READ_BD_ADDR, hci_cc_read_bd_addr, 4060 sizeof(struct hci_rp_read_bd_addr)), 4061 HCI_CC(HCI_OP_READ_LOCAL_PAIRING_OPTS, hci_cc_read_local_pairing_opts, 4062 sizeof(struct hci_rp_read_local_pairing_opts)), 4063 HCI_CC(HCI_OP_READ_PAGE_SCAN_ACTIVITY, hci_cc_read_page_scan_activity, 4064 sizeof(struct hci_rp_read_page_scan_activity)), 4065 HCI_CC_STATUS(HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 4066 hci_cc_write_page_scan_activity), 4067 HCI_CC(HCI_OP_READ_PAGE_SCAN_TYPE, hci_cc_read_page_scan_type, 4068 sizeof(struct hci_rp_read_page_scan_type)), 4069 HCI_CC_STATUS(HCI_OP_WRITE_PAGE_SCAN_TYPE, hci_cc_write_page_scan_type), 4070 HCI_CC(HCI_OP_READ_CLOCK, hci_cc_read_clock, 4071 sizeof(struct hci_rp_read_clock)), 4072 HCI_CC(HCI_OP_READ_ENC_KEY_SIZE, hci_cc_read_enc_key_size, 4073 sizeof(struct hci_rp_read_enc_key_size)), 4074 HCI_CC(HCI_OP_READ_INQ_RSP_TX_POWER, hci_cc_read_inq_rsp_tx_power, 4075 sizeof(struct hci_rp_read_inq_rsp_tx_power)), 4076 HCI_CC(HCI_OP_READ_DEF_ERR_DATA_REPORTING, 4077 hci_cc_read_def_err_data_reporting, 4078 sizeof(struct hci_rp_read_def_err_data_reporting)), 4079 HCI_CC_STATUS(HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, 4080 hci_cc_write_def_err_data_reporting), 4081 HCI_CC(HCI_OP_PIN_CODE_REPLY, hci_cc_pin_code_reply, 4082 sizeof(struct hci_rp_pin_code_reply)), 4083 HCI_CC(HCI_OP_PIN_CODE_NEG_REPLY, hci_cc_pin_code_neg_reply, 4084 sizeof(struct hci_rp_pin_code_neg_reply)), 4085 HCI_CC(HCI_OP_READ_LOCAL_OOB_DATA, hci_cc_read_local_oob_data, 4086 sizeof(struct hci_rp_read_local_oob_data)), 4087 HCI_CC(HCI_OP_READ_LOCAL_OOB_EXT_DATA, hci_cc_read_local_oob_ext_data, 4088 sizeof(struct hci_rp_read_local_oob_ext_data)), 4089 HCI_CC(HCI_OP_LE_READ_BUFFER_SIZE, hci_cc_le_read_buffer_size, 4090 sizeof(struct hci_rp_le_read_buffer_size)), 4091 HCI_CC(HCI_OP_LE_READ_LOCAL_FEATURES, hci_cc_le_read_local_features, 4092 sizeof(struct hci_rp_le_read_local_features)), 4093 HCI_CC(HCI_OP_LE_READ_ADV_TX_POWER, hci_cc_le_read_adv_tx_power, 4094 sizeof(struct hci_rp_le_read_adv_tx_power)), 4095 HCI_CC(HCI_OP_USER_CONFIRM_REPLY, hci_cc_user_confirm_reply, 4096 sizeof(struct hci_rp_user_confirm_reply)), 4097 HCI_CC(HCI_OP_USER_CONFIRM_NEG_REPLY, hci_cc_user_confirm_neg_reply, 4098 sizeof(struct hci_rp_user_confirm_reply)), 4099 HCI_CC(HCI_OP_USER_PASSKEY_REPLY, hci_cc_user_passkey_reply, 4100 sizeof(struct hci_rp_user_confirm_reply)), 4101 HCI_CC(HCI_OP_USER_PASSKEY_NEG_REPLY, hci_cc_user_passkey_neg_reply, 4102 sizeof(struct hci_rp_user_confirm_reply)), 4103 HCI_CC_STATUS(HCI_OP_LE_SET_RANDOM_ADDR, hci_cc_le_set_random_addr), 4104 HCI_CC_STATUS(HCI_OP_LE_SET_ADV_ENABLE, hci_cc_le_set_adv_enable), 4105 HCI_CC_STATUS(HCI_OP_LE_SET_SCAN_PARAM, hci_cc_le_set_scan_param), 4106 HCI_CC_STATUS(HCI_OP_LE_SET_SCAN_ENABLE, hci_cc_le_set_scan_enable), 4107 HCI_CC(HCI_OP_LE_READ_ACCEPT_LIST_SIZE, 4108 hci_cc_le_read_accept_list_size, 4109 sizeof(struct hci_rp_le_read_accept_list_size)), 4110 HCI_CC_STATUS(HCI_OP_LE_CLEAR_ACCEPT_LIST, hci_cc_le_clear_accept_list), 4111 HCI_CC_STATUS(HCI_OP_LE_ADD_TO_ACCEPT_LIST, 4112 hci_cc_le_add_to_accept_list), 4113 HCI_CC_STATUS(HCI_OP_LE_DEL_FROM_ACCEPT_LIST, 4114 hci_cc_le_del_from_accept_list), 4115 HCI_CC(HCI_OP_LE_READ_SUPPORTED_STATES, hci_cc_le_read_supported_states, 4116 sizeof(struct hci_rp_le_read_supported_states)), 4117 HCI_CC(HCI_OP_LE_READ_DEF_DATA_LEN, hci_cc_le_read_def_data_len, 4118 sizeof(struct hci_rp_le_read_def_data_len)), 4119 HCI_CC_STATUS(HCI_OP_LE_WRITE_DEF_DATA_LEN, 4120 hci_cc_le_write_def_data_len), 4121 HCI_CC_STATUS(HCI_OP_LE_ADD_TO_RESOLV_LIST, 4122 hci_cc_le_add_to_resolv_list), 4123 HCI_CC_STATUS(HCI_OP_LE_DEL_FROM_RESOLV_LIST, 4124 hci_cc_le_del_from_resolv_list), 4125 HCI_CC_STATUS(HCI_OP_LE_CLEAR_RESOLV_LIST, 4126 hci_cc_le_clear_resolv_list), 4127 HCI_CC(HCI_OP_LE_READ_RESOLV_LIST_SIZE, hci_cc_le_read_resolv_list_size, 4128 sizeof(struct hci_rp_le_read_resolv_list_size)), 4129 HCI_CC_STATUS(HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 4130 hci_cc_le_set_addr_resolution_enable), 4131 HCI_CC(HCI_OP_LE_READ_MAX_DATA_LEN, hci_cc_le_read_max_data_len, 4132 sizeof(struct hci_rp_le_read_max_data_len)), 4133 HCI_CC_STATUS(HCI_OP_WRITE_LE_HOST_SUPPORTED, 4134 hci_cc_write_le_host_supported), 4135 HCI_CC_STATUS(HCI_OP_LE_SET_ADV_PARAM, hci_cc_set_adv_param), 4136 HCI_CC(HCI_OP_READ_RSSI, hci_cc_read_rssi, 4137 sizeof(struct hci_rp_read_rssi)), 4138 HCI_CC(HCI_OP_READ_TX_POWER, hci_cc_read_tx_power, 4139 sizeof(struct hci_rp_read_tx_power)), 4140 HCI_CC_STATUS(HCI_OP_WRITE_SSP_DEBUG_MODE, hci_cc_write_ssp_debug_mode), 4141 HCI_CC_STATUS(HCI_OP_LE_SET_EXT_SCAN_PARAMS, 4142 hci_cc_le_set_ext_scan_param), 4143 HCI_CC_STATUS(HCI_OP_LE_SET_EXT_SCAN_ENABLE, 4144 hci_cc_le_set_ext_scan_enable), 4145 HCI_CC_STATUS(HCI_OP_LE_SET_DEFAULT_PHY, hci_cc_le_set_default_phy), 4146 HCI_CC(HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 4147 hci_cc_le_read_num_adv_sets, 4148 sizeof(struct hci_rp_le_read_num_supported_adv_sets)), 4149 HCI_CC(HCI_OP_LE_SET_EXT_ADV_PARAMS, hci_cc_set_ext_adv_param, 4150 sizeof(struct hci_rp_le_set_ext_adv_params)), 4151 HCI_CC_STATUS(HCI_OP_LE_SET_EXT_ADV_ENABLE, 4152 hci_cc_le_set_ext_adv_enable), 4153 HCI_CC_STATUS(HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 4154 hci_cc_le_set_adv_set_random_addr), 4155 HCI_CC_STATUS(HCI_OP_LE_REMOVE_ADV_SET, hci_cc_le_remove_adv_set), 4156 HCI_CC_STATUS(HCI_OP_LE_CLEAR_ADV_SETS, hci_cc_le_clear_adv_sets), 4157 HCI_CC_STATUS(HCI_OP_LE_SET_PER_ADV_PARAMS, hci_cc_set_per_adv_param), 4158 HCI_CC_STATUS(HCI_OP_LE_SET_PER_ADV_ENABLE, 4159 hci_cc_le_set_per_adv_enable), 4160 HCI_CC(HCI_OP_LE_READ_TRANSMIT_POWER, hci_cc_le_read_transmit_power, 4161 sizeof(struct hci_rp_le_read_transmit_power)), 4162 HCI_CC_STATUS(HCI_OP_LE_SET_PRIVACY_MODE, hci_cc_le_set_privacy_mode), 4163 HCI_CC(HCI_OP_LE_READ_BUFFER_SIZE_V2, hci_cc_le_read_buffer_size_v2, 4164 sizeof(struct hci_rp_le_read_buffer_size_v2)), 4165 HCI_CC_VL(HCI_OP_LE_SET_CIG_PARAMS, hci_cc_le_set_cig_params, 4166 sizeof(struct hci_rp_le_set_cig_params), HCI_MAX_EVENT_SIZE), 4167 HCI_CC(HCI_OP_LE_SETUP_ISO_PATH, hci_cc_le_setup_iso_path, 4168 sizeof(struct hci_rp_le_setup_iso_path)), 4169 }; 4170 4171 static u8 hci_cc_func(struct hci_dev *hdev, const struct hci_cc *cc, 4172 struct sk_buff *skb) 4173 { 4174 void *data; 4175 4176 if (skb->len < cc->min_len) { 4177 bt_dev_err(hdev, "unexpected cc 0x%4.4x length: %u < %u", 4178 cc->op, skb->len, cc->min_len); 4179 return HCI_ERROR_UNSPECIFIED; 4180 } 4181 4182 /* Just warn if the length is over max_len size it still be possible to 4183 * partially parse the cc so leave to callback to decide if that is 4184 * acceptable. 4185 */ 4186 if (skb->len > cc->max_len) 4187 bt_dev_warn(hdev, "unexpected cc 0x%4.4x length: %u > %u", 4188 cc->op, skb->len, cc->max_len); 4189 4190 data = hci_cc_skb_pull(hdev, skb, cc->op, cc->min_len); 4191 if (!data) 4192 return HCI_ERROR_UNSPECIFIED; 4193 4194 return cc->func(hdev, data, skb); 4195 } 4196 4197 static void hci_cmd_complete_evt(struct hci_dev *hdev, void *data, 4198 struct sk_buff *skb, u16 *opcode, u8 *status, 4199 hci_req_complete_t *req_complete, 4200 hci_req_complete_skb_t *req_complete_skb) 4201 { 4202 struct hci_ev_cmd_complete *ev = data; 4203 int i; 4204 4205 *opcode = __le16_to_cpu(ev->opcode); 4206 4207 bt_dev_dbg(hdev, "opcode 0x%4.4x", *opcode); 4208 4209 for (i = 0; i < ARRAY_SIZE(hci_cc_table); i++) { 4210 if (hci_cc_table[i].op == *opcode) { 4211 *status = hci_cc_func(hdev, &hci_cc_table[i], skb); 4212 break; 4213 } 4214 } 4215 4216 if (i == ARRAY_SIZE(hci_cc_table)) { 4217 /* Unknown opcode, assume byte 0 contains the status, so 4218 * that e.g. __hci_cmd_sync() properly returns errors 4219 * for vendor specific commands send by HCI drivers. 4220 * If a vendor doesn't actually follow this convention we may 4221 * need to introduce a vendor CC table in order to properly set 4222 * the status. 4223 */ 4224 *status = skb->data[0]; 4225 } 4226 4227 handle_cmd_cnt_and_timer(hdev, ev->ncmd); 4228 4229 hci_req_cmd_complete(hdev, *opcode, *status, req_complete, 4230 req_complete_skb); 4231 4232 if (hci_dev_test_flag(hdev, HCI_CMD_PENDING)) { 4233 bt_dev_err(hdev, 4234 "unexpected event for opcode 0x%4.4x", *opcode); 4235 return; 4236 } 4237 4238 if (atomic_read(&hdev->cmd_cnt) && !skb_queue_empty(&hdev->cmd_q)) 4239 queue_work(hdev->workqueue, &hdev->cmd_work); 4240 } 4241 4242 static void hci_cs_le_create_cis(struct hci_dev *hdev, u8 status) 4243 { 4244 struct hci_cp_le_create_cis *cp; 4245 bool pending = false; 4246 int i; 4247 4248 bt_dev_dbg(hdev, "status 0x%2.2x", status); 4249 4250 if (!status) 4251 return; 4252 4253 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_CREATE_CIS); 4254 if (!cp) 4255 return; 4256 4257 hci_dev_lock(hdev); 4258 4259 /* Remove connection if command failed */ 4260 for (i = 0; cp->num_cis; cp->num_cis--, i++) { 4261 struct hci_conn *conn; 4262 u16 handle; 4263 4264 handle = __le16_to_cpu(cp->cis[i].cis_handle); 4265 4266 conn = hci_conn_hash_lookup_handle(hdev, handle); 4267 if (conn) { 4268 if (test_and_clear_bit(HCI_CONN_CREATE_CIS, 4269 &conn->flags)) 4270 pending = true; 4271 conn->state = BT_CLOSED; 4272 hci_connect_cfm(conn, status); 4273 hci_conn_del(conn); 4274 } 4275 } 4276 4277 if (pending) 4278 hci_le_create_cis_pending(hdev); 4279 4280 hci_dev_unlock(hdev); 4281 } 4282 4283 #define HCI_CS(_op, _func) \ 4284 { \ 4285 .op = _op, \ 4286 .func = _func, \ 4287 } 4288 4289 static const struct hci_cs { 4290 u16 op; 4291 void (*func)(struct hci_dev *hdev, __u8 status); 4292 } hci_cs_table[] = { 4293 HCI_CS(HCI_OP_INQUIRY, hci_cs_inquiry), 4294 HCI_CS(HCI_OP_CREATE_CONN, hci_cs_create_conn), 4295 HCI_CS(HCI_OP_DISCONNECT, hci_cs_disconnect), 4296 HCI_CS(HCI_OP_ADD_SCO, hci_cs_add_sco), 4297 HCI_CS(HCI_OP_AUTH_REQUESTED, hci_cs_auth_requested), 4298 HCI_CS(HCI_OP_SET_CONN_ENCRYPT, hci_cs_set_conn_encrypt), 4299 HCI_CS(HCI_OP_REMOTE_NAME_REQ, hci_cs_remote_name_req), 4300 HCI_CS(HCI_OP_READ_REMOTE_FEATURES, hci_cs_read_remote_features), 4301 HCI_CS(HCI_OP_READ_REMOTE_EXT_FEATURES, 4302 hci_cs_read_remote_ext_features), 4303 HCI_CS(HCI_OP_SETUP_SYNC_CONN, hci_cs_setup_sync_conn), 4304 HCI_CS(HCI_OP_ENHANCED_SETUP_SYNC_CONN, 4305 hci_cs_enhanced_setup_sync_conn), 4306 HCI_CS(HCI_OP_SNIFF_MODE, hci_cs_sniff_mode), 4307 HCI_CS(HCI_OP_EXIT_SNIFF_MODE, hci_cs_exit_sniff_mode), 4308 HCI_CS(HCI_OP_SWITCH_ROLE, hci_cs_switch_role), 4309 HCI_CS(HCI_OP_LE_CREATE_CONN, hci_cs_le_create_conn), 4310 HCI_CS(HCI_OP_LE_READ_REMOTE_FEATURES, hci_cs_le_read_remote_features), 4311 HCI_CS(HCI_OP_LE_START_ENC, hci_cs_le_start_enc), 4312 HCI_CS(HCI_OP_LE_EXT_CREATE_CONN, hci_cs_le_ext_create_conn), 4313 HCI_CS(HCI_OP_LE_CREATE_CIS, hci_cs_le_create_cis), 4314 HCI_CS(HCI_OP_LE_CREATE_BIG, hci_cs_le_create_big), 4315 }; 4316 4317 static void hci_cmd_status_evt(struct hci_dev *hdev, void *data, 4318 struct sk_buff *skb, u16 *opcode, u8 *status, 4319 hci_req_complete_t *req_complete, 4320 hci_req_complete_skb_t *req_complete_skb) 4321 { 4322 struct hci_ev_cmd_status *ev = data; 4323 int i; 4324 4325 *opcode = __le16_to_cpu(ev->opcode); 4326 *status = ev->status; 4327 4328 bt_dev_dbg(hdev, "opcode 0x%4.4x", *opcode); 4329 4330 for (i = 0; i < ARRAY_SIZE(hci_cs_table); i++) { 4331 if (hci_cs_table[i].op == *opcode) { 4332 hci_cs_table[i].func(hdev, ev->status); 4333 break; 4334 } 4335 } 4336 4337 handle_cmd_cnt_and_timer(hdev, ev->ncmd); 4338 4339 /* Indicate request completion if the command failed. Also, if 4340 * we're not waiting for a special event and we get a success 4341 * command status we should try to flag the request as completed 4342 * (since for this kind of commands there will not be a command 4343 * complete event). 4344 */ 4345 if (ev->status || (hdev->req_skb && !hci_skb_event(hdev->req_skb))) { 4346 hci_req_cmd_complete(hdev, *opcode, ev->status, req_complete, 4347 req_complete_skb); 4348 if (hci_dev_test_flag(hdev, HCI_CMD_PENDING)) { 4349 bt_dev_err(hdev, "unexpected event for opcode 0x%4.4x", 4350 *opcode); 4351 return; 4352 } 4353 } 4354 4355 if (atomic_read(&hdev->cmd_cnt) && !skb_queue_empty(&hdev->cmd_q)) 4356 queue_work(hdev->workqueue, &hdev->cmd_work); 4357 } 4358 4359 static void hci_hardware_error_evt(struct hci_dev *hdev, void *data, 4360 struct sk_buff *skb) 4361 { 4362 struct hci_ev_hardware_error *ev = data; 4363 4364 bt_dev_dbg(hdev, "code 0x%2.2x", ev->code); 4365 4366 hdev->hw_error_code = ev->code; 4367 4368 queue_work(hdev->req_workqueue, &hdev->error_reset); 4369 } 4370 4371 static void hci_role_change_evt(struct hci_dev *hdev, void *data, 4372 struct sk_buff *skb) 4373 { 4374 struct hci_ev_role_change *ev = data; 4375 struct hci_conn *conn; 4376 4377 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 4378 4379 hci_dev_lock(hdev); 4380 4381 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 4382 if (conn) { 4383 if (!ev->status) 4384 conn->role = ev->role; 4385 4386 clear_bit(HCI_CONN_RSWITCH_PEND, &conn->flags); 4387 4388 hci_role_switch_cfm(conn, ev->status, ev->role); 4389 } 4390 4391 hci_dev_unlock(hdev); 4392 } 4393 4394 static void hci_num_comp_pkts_evt(struct hci_dev *hdev, void *data, 4395 struct sk_buff *skb) 4396 { 4397 struct hci_ev_num_comp_pkts *ev = data; 4398 int i; 4399 4400 if (!hci_ev_skb_pull(hdev, skb, HCI_EV_NUM_COMP_PKTS, 4401 flex_array_size(ev, handles, ev->num))) 4402 return; 4403 4404 bt_dev_dbg(hdev, "num %d", ev->num); 4405 4406 for (i = 0; i < ev->num; i++) { 4407 struct hci_comp_pkts_info *info = &ev->handles[i]; 4408 struct hci_conn *conn; 4409 __u16 handle, count; 4410 4411 handle = __le16_to_cpu(info->handle); 4412 count = __le16_to_cpu(info->count); 4413 4414 conn = hci_conn_hash_lookup_handle(hdev, handle); 4415 if (!conn) 4416 continue; 4417 4418 conn->sent -= count; 4419 4420 switch (conn->type) { 4421 case ACL_LINK: 4422 hdev->acl_cnt += count; 4423 if (hdev->acl_cnt > hdev->acl_pkts) 4424 hdev->acl_cnt = hdev->acl_pkts; 4425 break; 4426 4427 case LE_LINK: 4428 if (hdev->le_pkts) { 4429 hdev->le_cnt += count; 4430 if (hdev->le_cnt > hdev->le_pkts) 4431 hdev->le_cnt = hdev->le_pkts; 4432 } else { 4433 hdev->acl_cnt += count; 4434 if (hdev->acl_cnt > hdev->acl_pkts) 4435 hdev->acl_cnt = hdev->acl_pkts; 4436 } 4437 break; 4438 4439 case SCO_LINK: 4440 hdev->sco_cnt += count; 4441 if (hdev->sco_cnt > hdev->sco_pkts) 4442 hdev->sco_cnt = hdev->sco_pkts; 4443 break; 4444 4445 case ISO_LINK: 4446 if (hdev->iso_pkts) { 4447 hdev->iso_cnt += count; 4448 if (hdev->iso_cnt > hdev->iso_pkts) 4449 hdev->iso_cnt = hdev->iso_pkts; 4450 } else if (hdev->le_pkts) { 4451 hdev->le_cnt += count; 4452 if (hdev->le_cnt > hdev->le_pkts) 4453 hdev->le_cnt = hdev->le_pkts; 4454 } else { 4455 hdev->acl_cnt += count; 4456 if (hdev->acl_cnt > hdev->acl_pkts) 4457 hdev->acl_cnt = hdev->acl_pkts; 4458 } 4459 break; 4460 4461 default: 4462 bt_dev_err(hdev, "unknown type %d conn %p", 4463 conn->type, conn); 4464 break; 4465 } 4466 } 4467 4468 queue_work(hdev->workqueue, &hdev->tx_work); 4469 } 4470 4471 static void hci_mode_change_evt(struct hci_dev *hdev, void *data, 4472 struct sk_buff *skb) 4473 { 4474 struct hci_ev_mode_change *ev = data; 4475 struct hci_conn *conn; 4476 4477 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 4478 4479 hci_dev_lock(hdev); 4480 4481 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 4482 if (conn) { 4483 conn->mode = ev->mode; 4484 4485 if (!test_and_clear_bit(HCI_CONN_MODE_CHANGE_PEND, 4486 &conn->flags)) { 4487 if (conn->mode == HCI_CM_ACTIVE) 4488 set_bit(HCI_CONN_POWER_SAVE, &conn->flags); 4489 else 4490 clear_bit(HCI_CONN_POWER_SAVE, &conn->flags); 4491 } 4492 4493 if (test_and_clear_bit(HCI_CONN_SCO_SETUP_PEND, &conn->flags)) 4494 hci_sco_setup(conn, ev->status); 4495 } 4496 4497 hci_dev_unlock(hdev); 4498 } 4499 4500 static void hci_pin_code_request_evt(struct hci_dev *hdev, void *data, 4501 struct sk_buff *skb) 4502 { 4503 struct hci_ev_pin_code_req *ev = data; 4504 struct hci_conn *conn; 4505 4506 bt_dev_dbg(hdev, ""); 4507 4508 hci_dev_lock(hdev); 4509 4510 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 4511 if (!conn) 4512 goto unlock; 4513 4514 if (conn->state == BT_CONNECTED) { 4515 hci_conn_hold(conn); 4516 conn->disc_timeout = HCI_PAIRING_TIMEOUT; 4517 hci_conn_drop(conn); 4518 } 4519 4520 if (!hci_dev_test_flag(hdev, HCI_BONDABLE) && 4521 !test_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags)) { 4522 hci_send_cmd(hdev, HCI_OP_PIN_CODE_NEG_REPLY, 4523 sizeof(ev->bdaddr), &ev->bdaddr); 4524 } else if (hci_dev_test_flag(hdev, HCI_MGMT)) { 4525 u8 secure; 4526 4527 if (conn->pending_sec_level == BT_SECURITY_HIGH) 4528 secure = 1; 4529 else 4530 secure = 0; 4531 4532 mgmt_pin_code_request(hdev, &ev->bdaddr, secure); 4533 } 4534 4535 unlock: 4536 hci_dev_unlock(hdev); 4537 } 4538 4539 static void conn_set_key(struct hci_conn *conn, u8 key_type, u8 pin_len) 4540 { 4541 if (key_type == HCI_LK_CHANGED_COMBINATION) 4542 return; 4543 4544 conn->pin_length = pin_len; 4545 conn->key_type = key_type; 4546 4547 switch (key_type) { 4548 case HCI_LK_LOCAL_UNIT: 4549 case HCI_LK_REMOTE_UNIT: 4550 case HCI_LK_DEBUG_COMBINATION: 4551 return; 4552 case HCI_LK_COMBINATION: 4553 if (pin_len == 16) 4554 conn->pending_sec_level = BT_SECURITY_HIGH; 4555 else 4556 conn->pending_sec_level = BT_SECURITY_MEDIUM; 4557 break; 4558 case HCI_LK_UNAUTH_COMBINATION_P192: 4559 case HCI_LK_UNAUTH_COMBINATION_P256: 4560 conn->pending_sec_level = BT_SECURITY_MEDIUM; 4561 break; 4562 case HCI_LK_AUTH_COMBINATION_P192: 4563 conn->pending_sec_level = BT_SECURITY_HIGH; 4564 break; 4565 case HCI_LK_AUTH_COMBINATION_P256: 4566 conn->pending_sec_level = BT_SECURITY_FIPS; 4567 break; 4568 } 4569 } 4570 4571 static void hci_link_key_request_evt(struct hci_dev *hdev, void *data, 4572 struct sk_buff *skb) 4573 { 4574 struct hci_ev_link_key_req *ev = data; 4575 struct hci_cp_link_key_reply cp; 4576 struct hci_conn *conn; 4577 struct link_key *key; 4578 4579 bt_dev_dbg(hdev, ""); 4580 4581 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 4582 return; 4583 4584 hci_dev_lock(hdev); 4585 4586 key = hci_find_link_key(hdev, &ev->bdaddr); 4587 if (!key) { 4588 bt_dev_dbg(hdev, "link key not found for %pMR", &ev->bdaddr); 4589 goto not_found; 4590 } 4591 4592 bt_dev_dbg(hdev, "found key type %u for %pMR", key->type, &ev->bdaddr); 4593 4594 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 4595 if (conn) { 4596 clear_bit(HCI_CONN_NEW_LINK_KEY, &conn->flags); 4597 4598 if ((key->type == HCI_LK_UNAUTH_COMBINATION_P192 || 4599 key->type == HCI_LK_UNAUTH_COMBINATION_P256) && 4600 conn->auth_type != 0xff && (conn->auth_type & 0x01)) { 4601 bt_dev_dbg(hdev, "ignoring unauthenticated key"); 4602 goto not_found; 4603 } 4604 4605 if (key->type == HCI_LK_COMBINATION && key->pin_len < 16 && 4606 (conn->pending_sec_level == BT_SECURITY_HIGH || 4607 conn->pending_sec_level == BT_SECURITY_FIPS)) { 4608 bt_dev_dbg(hdev, "ignoring key unauthenticated for high security"); 4609 goto not_found; 4610 } 4611 4612 conn_set_key(conn, key->type, key->pin_len); 4613 } 4614 4615 bacpy(&cp.bdaddr, &ev->bdaddr); 4616 memcpy(cp.link_key, key->val, HCI_LINK_KEY_SIZE); 4617 4618 hci_send_cmd(hdev, HCI_OP_LINK_KEY_REPLY, sizeof(cp), &cp); 4619 4620 hci_dev_unlock(hdev); 4621 4622 return; 4623 4624 not_found: 4625 hci_send_cmd(hdev, HCI_OP_LINK_KEY_NEG_REPLY, 6, &ev->bdaddr); 4626 hci_dev_unlock(hdev); 4627 } 4628 4629 static void hci_link_key_notify_evt(struct hci_dev *hdev, void *data, 4630 struct sk_buff *skb) 4631 { 4632 struct hci_ev_link_key_notify *ev = data; 4633 struct hci_conn *conn; 4634 struct link_key *key; 4635 bool persistent; 4636 u8 pin_len = 0; 4637 4638 bt_dev_dbg(hdev, ""); 4639 4640 hci_dev_lock(hdev); 4641 4642 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 4643 if (!conn) 4644 goto unlock; 4645 4646 /* Ignore NULL link key against CVE-2020-26555 */ 4647 if (!crypto_memneq(ev->link_key, ZERO_KEY, HCI_LINK_KEY_SIZE)) { 4648 bt_dev_dbg(hdev, "Ignore NULL link key (ZERO KEY) for %pMR", 4649 &ev->bdaddr); 4650 hci_disconnect(conn, HCI_ERROR_AUTH_FAILURE); 4651 hci_conn_drop(conn); 4652 goto unlock; 4653 } 4654 4655 hci_conn_hold(conn); 4656 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 4657 hci_conn_drop(conn); 4658 4659 set_bit(HCI_CONN_NEW_LINK_KEY, &conn->flags); 4660 conn_set_key(conn, ev->key_type, conn->pin_length); 4661 4662 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 4663 goto unlock; 4664 4665 key = hci_add_link_key(hdev, conn, &ev->bdaddr, ev->link_key, 4666 ev->key_type, pin_len, &persistent); 4667 if (!key) 4668 goto unlock; 4669 4670 /* Update connection information since adding the key will have 4671 * fixed up the type in the case of changed combination keys. 4672 */ 4673 if (ev->key_type == HCI_LK_CHANGED_COMBINATION) 4674 conn_set_key(conn, key->type, key->pin_len); 4675 4676 mgmt_new_link_key(hdev, key, persistent); 4677 4678 /* Keep debug keys around only if the HCI_KEEP_DEBUG_KEYS flag 4679 * is set. If it's not set simply remove the key from the kernel 4680 * list (we've still notified user space about it but with 4681 * store_hint being 0). 4682 */ 4683 if (key->type == HCI_LK_DEBUG_COMBINATION && 4684 !hci_dev_test_flag(hdev, HCI_KEEP_DEBUG_KEYS)) { 4685 list_del_rcu(&key->list); 4686 kfree_rcu(key, rcu); 4687 goto unlock; 4688 } 4689 4690 if (persistent) 4691 clear_bit(HCI_CONN_FLUSH_KEY, &conn->flags); 4692 else 4693 set_bit(HCI_CONN_FLUSH_KEY, &conn->flags); 4694 4695 unlock: 4696 hci_dev_unlock(hdev); 4697 } 4698 4699 static void hci_clock_offset_evt(struct hci_dev *hdev, void *data, 4700 struct sk_buff *skb) 4701 { 4702 struct hci_ev_clock_offset *ev = data; 4703 struct hci_conn *conn; 4704 4705 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 4706 4707 hci_dev_lock(hdev); 4708 4709 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 4710 if (conn && !ev->status) { 4711 struct inquiry_entry *ie; 4712 4713 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 4714 if (ie) { 4715 ie->data.clock_offset = ev->clock_offset; 4716 ie->timestamp = jiffies; 4717 } 4718 } 4719 4720 hci_dev_unlock(hdev); 4721 } 4722 4723 static void hci_pkt_type_change_evt(struct hci_dev *hdev, void *data, 4724 struct sk_buff *skb) 4725 { 4726 struct hci_ev_pkt_type_change *ev = data; 4727 struct hci_conn *conn; 4728 4729 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 4730 4731 hci_dev_lock(hdev); 4732 4733 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 4734 if (conn && !ev->status) 4735 conn->pkt_type = __le16_to_cpu(ev->pkt_type); 4736 4737 hci_dev_unlock(hdev); 4738 } 4739 4740 static void hci_pscan_rep_mode_evt(struct hci_dev *hdev, void *data, 4741 struct sk_buff *skb) 4742 { 4743 struct hci_ev_pscan_rep_mode *ev = data; 4744 struct inquiry_entry *ie; 4745 4746 bt_dev_dbg(hdev, ""); 4747 4748 hci_dev_lock(hdev); 4749 4750 ie = hci_inquiry_cache_lookup(hdev, &ev->bdaddr); 4751 if (ie) { 4752 ie->data.pscan_rep_mode = ev->pscan_rep_mode; 4753 ie->timestamp = jiffies; 4754 } 4755 4756 hci_dev_unlock(hdev); 4757 } 4758 4759 static void hci_inquiry_result_with_rssi_evt(struct hci_dev *hdev, void *edata, 4760 struct sk_buff *skb) 4761 { 4762 struct hci_ev_inquiry_result_rssi *ev = edata; 4763 struct inquiry_data data; 4764 int i; 4765 4766 bt_dev_dbg(hdev, "num_rsp %d", ev->num); 4767 4768 if (!ev->num) 4769 return; 4770 4771 if (hci_dev_test_flag(hdev, HCI_PERIODIC_INQ)) 4772 return; 4773 4774 hci_dev_lock(hdev); 4775 4776 if (skb->len == array_size(ev->num, 4777 sizeof(struct inquiry_info_rssi_pscan))) { 4778 struct inquiry_info_rssi_pscan *info; 4779 4780 for (i = 0; i < ev->num; i++) { 4781 u32 flags; 4782 4783 info = hci_ev_skb_pull(hdev, skb, 4784 HCI_EV_INQUIRY_RESULT_WITH_RSSI, 4785 sizeof(*info)); 4786 if (!info) { 4787 bt_dev_err(hdev, "Malformed HCI Event: 0x%2.2x", 4788 HCI_EV_INQUIRY_RESULT_WITH_RSSI); 4789 goto unlock; 4790 } 4791 4792 bacpy(&data.bdaddr, &info->bdaddr); 4793 data.pscan_rep_mode = info->pscan_rep_mode; 4794 data.pscan_period_mode = info->pscan_period_mode; 4795 data.pscan_mode = info->pscan_mode; 4796 memcpy(data.dev_class, info->dev_class, 3); 4797 data.clock_offset = info->clock_offset; 4798 data.rssi = info->rssi; 4799 data.ssp_mode = 0x00; 4800 4801 flags = hci_inquiry_cache_update(hdev, &data, false); 4802 4803 mgmt_device_found(hdev, &info->bdaddr, ACL_LINK, 0x00, 4804 info->dev_class, info->rssi, 4805 flags, NULL, 0, NULL, 0, 0); 4806 } 4807 } else if (skb->len == array_size(ev->num, 4808 sizeof(struct inquiry_info_rssi))) { 4809 struct inquiry_info_rssi *info; 4810 4811 for (i = 0; i < ev->num; i++) { 4812 u32 flags; 4813 4814 info = hci_ev_skb_pull(hdev, skb, 4815 HCI_EV_INQUIRY_RESULT_WITH_RSSI, 4816 sizeof(*info)); 4817 if (!info) { 4818 bt_dev_err(hdev, "Malformed HCI Event: 0x%2.2x", 4819 HCI_EV_INQUIRY_RESULT_WITH_RSSI); 4820 goto unlock; 4821 } 4822 4823 bacpy(&data.bdaddr, &info->bdaddr); 4824 data.pscan_rep_mode = info->pscan_rep_mode; 4825 data.pscan_period_mode = info->pscan_period_mode; 4826 data.pscan_mode = 0x00; 4827 memcpy(data.dev_class, info->dev_class, 3); 4828 data.clock_offset = info->clock_offset; 4829 data.rssi = info->rssi; 4830 data.ssp_mode = 0x00; 4831 4832 flags = hci_inquiry_cache_update(hdev, &data, false); 4833 4834 mgmt_device_found(hdev, &info->bdaddr, ACL_LINK, 0x00, 4835 info->dev_class, info->rssi, 4836 flags, NULL, 0, NULL, 0, 0); 4837 } 4838 } else { 4839 bt_dev_err(hdev, "Malformed HCI Event: 0x%2.2x", 4840 HCI_EV_INQUIRY_RESULT_WITH_RSSI); 4841 } 4842 unlock: 4843 hci_dev_unlock(hdev); 4844 } 4845 4846 static void hci_remote_ext_features_evt(struct hci_dev *hdev, void *data, 4847 struct sk_buff *skb) 4848 { 4849 struct hci_ev_remote_ext_features *ev = data; 4850 struct hci_conn *conn; 4851 4852 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 4853 4854 hci_dev_lock(hdev); 4855 4856 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 4857 if (!conn) 4858 goto unlock; 4859 4860 if (ev->page < HCI_MAX_PAGES) 4861 memcpy(conn->features[ev->page], ev->features, 8); 4862 4863 if (!ev->status && ev->page == 0x01) { 4864 struct inquiry_entry *ie; 4865 4866 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 4867 if (ie) 4868 ie->data.ssp_mode = (ev->features[0] & LMP_HOST_SSP); 4869 4870 if (ev->features[0] & LMP_HOST_SSP) { 4871 set_bit(HCI_CONN_SSP_ENABLED, &conn->flags); 4872 } else { 4873 /* It is mandatory by the Bluetooth specification that 4874 * Extended Inquiry Results are only used when Secure 4875 * Simple Pairing is enabled, but some devices violate 4876 * this. 4877 * 4878 * To make these devices work, the internal SSP 4879 * enabled flag needs to be cleared if the remote host 4880 * features do not indicate SSP support */ 4881 clear_bit(HCI_CONN_SSP_ENABLED, &conn->flags); 4882 } 4883 4884 if (ev->features[0] & LMP_HOST_SC) 4885 set_bit(HCI_CONN_SC_ENABLED, &conn->flags); 4886 } 4887 4888 if (conn->state != BT_CONFIG) 4889 goto unlock; 4890 4891 if (!ev->status && !test_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags)) { 4892 struct hci_cp_remote_name_req cp; 4893 memset(&cp, 0, sizeof(cp)); 4894 bacpy(&cp.bdaddr, &conn->dst); 4895 cp.pscan_rep_mode = 0x02; 4896 hci_send_cmd(hdev, HCI_OP_REMOTE_NAME_REQ, sizeof(cp), &cp); 4897 } else { 4898 mgmt_device_connected(hdev, conn, NULL, 0); 4899 } 4900 4901 if (!hci_outgoing_auth_needed(hdev, conn)) { 4902 conn->state = BT_CONNECTED; 4903 hci_connect_cfm(conn, ev->status); 4904 hci_conn_drop(conn); 4905 } 4906 4907 unlock: 4908 hci_dev_unlock(hdev); 4909 } 4910 4911 static void hci_sync_conn_complete_evt(struct hci_dev *hdev, void *data, 4912 struct sk_buff *skb) 4913 { 4914 struct hci_ev_sync_conn_complete *ev = data; 4915 struct hci_conn *conn; 4916 u8 status = ev->status; 4917 4918 switch (ev->link_type) { 4919 case SCO_LINK: 4920 case ESCO_LINK: 4921 break; 4922 default: 4923 /* As per Core 5.3 Vol 4 Part E 7.7.35 (p.2219), Link_Type 4924 * for HCI_Synchronous_Connection_Complete is limited to 4925 * either SCO or eSCO 4926 */ 4927 bt_dev_err(hdev, "Ignoring connect complete event for invalid link type"); 4928 return; 4929 } 4930 4931 bt_dev_dbg(hdev, "status 0x%2.2x", status); 4932 4933 hci_dev_lock(hdev); 4934 4935 conn = hci_conn_hash_lookup_ba(hdev, ev->link_type, &ev->bdaddr); 4936 if (!conn) { 4937 if (ev->link_type == ESCO_LINK) 4938 goto unlock; 4939 4940 /* When the link type in the event indicates SCO connection 4941 * and lookup of the connection object fails, then check 4942 * if an eSCO connection object exists. 4943 * 4944 * The core limits the synchronous connections to either 4945 * SCO or eSCO. The eSCO connection is preferred and tried 4946 * to be setup first and until successfully established, 4947 * the link type will be hinted as eSCO. 4948 */ 4949 conn = hci_conn_hash_lookup_ba(hdev, ESCO_LINK, &ev->bdaddr); 4950 if (!conn) 4951 goto unlock; 4952 } 4953 4954 /* The HCI_Synchronous_Connection_Complete event is only sent once per connection. 4955 * Processing it more than once per connection can corrupt kernel memory. 4956 * 4957 * As the connection handle is set here for the first time, it indicates 4958 * whether the connection is already set up. 4959 */ 4960 if (!HCI_CONN_HANDLE_UNSET(conn->handle)) { 4961 bt_dev_err(hdev, "Ignoring HCI_Sync_Conn_Complete event for existing connection"); 4962 goto unlock; 4963 } 4964 4965 switch (status) { 4966 case 0x00: 4967 status = hci_conn_set_handle(conn, __le16_to_cpu(ev->handle)); 4968 if (status) { 4969 conn->state = BT_CLOSED; 4970 break; 4971 } 4972 4973 conn->state = BT_CONNECTED; 4974 conn->type = ev->link_type; 4975 4976 hci_debugfs_create_conn(conn); 4977 hci_conn_add_sysfs(conn); 4978 break; 4979 4980 case 0x10: /* Connection Accept Timeout */ 4981 case 0x0d: /* Connection Rejected due to Limited Resources */ 4982 case 0x11: /* Unsupported Feature or Parameter Value */ 4983 case 0x1c: /* SCO interval rejected */ 4984 case 0x1a: /* Unsupported Remote Feature */ 4985 case 0x1e: /* Invalid LMP Parameters */ 4986 case 0x1f: /* Unspecified error */ 4987 case 0x20: /* Unsupported LMP Parameter value */ 4988 if (conn->out) { 4989 conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) | 4990 (hdev->esco_type & EDR_ESCO_MASK); 4991 if (hci_setup_sync(conn, conn->parent->handle)) 4992 goto unlock; 4993 } 4994 fallthrough; 4995 4996 default: 4997 conn->state = BT_CLOSED; 4998 break; 4999 } 5000 5001 bt_dev_dbg(hdev, "SCO connected with air mode: %02x", ev->air_mode); 5002 /* Notify only in case of SCO over HCI transport data path which 5003 * is zero and non-zero value shall be non-HCI transport data path 5004 */ 5005 if (conn->codec.data_path == 0 && hdev->notify) { 5006 switch (ev->air_mode) { 5007 case 0x02: 5008 hdev->notify(hdev, HCI_NOTIFY_ENABLE_SCO_CVSD); 5009 break; 5010 case 0x03: 5011 hdev->notify(hdev, HCI_NOTIFY_ENABLE_SCO_TRANSP); 5012 break; 5013 } 5014 } 5015 5016 hci_connect_cfm(conn, status); 5017 if (status) 5018 hci_conn_del(conn); 5019 5020 unlock: 5021 hci_dev_unlock(hdev); 5022 } 5023 5024 static inline size_t eir_get_length(u8 *eir, size_t eir_len) 5025 { 5026 size_t parsed = 0; 5027 5028 while (parsed < eir_len) { 5029 u8 field_len = eir[0]; 5030 5031 if (field_len == 0) 5032 return parsed; 5033 5034 parsed += field_len + 1; 5035 eir += field_len + 1; 5036 } 5037 5038 return eir_len; 5039 } 5040 5041 static void hci_extended_inquiry_result_evt(struct hci_dev *hdev, void *edata, 5042 struct sk_buff *skb) 5043 { 5044 struct hci_ev_ext_inquiry_result *ev = edata; 5045 struct inquiry_data data; 5046 size_t eir_len; 5047 int i; 5048 5049 if (!hci_ev_skb_pull(hdev, skb, HCI_EV_EXTENDED_INQUIRY_RESULT, 5050 flex_array_size(ev, info, ev->num))) 5051 return; 5052 5053 bt_dev_dbg(hdev, "num %d", ev->num); 5054 5055 if (!ev->num) 5056 return; 5057 5058 if (hci_dev_test_flag(hdev, HCI_PERIODIC_INQ)) 5059 return; 5060 5061 hci_dev_lock(hdev); 5062 5063 for (i = 0; i < ev->num; i++) { 5064 struct extended_inquiry_info *info = &ev->info[i]; 5065 u32 flags; 5066 bool name_known; 5067 5068 bacpy(&data.bdaddr, &info->bdaddr); 5069 data.pscan_rep_mode = info->pscan_rep_mode; 5070 data.pscan_period_mode = info->pscan_period_mode; 5071 data.pscan_mode = 0x00; 5072 memcpy(data.dev_class, info->dev_class, 3); 5073 data.clock_offset = info->clock_offset; 5074 data.rssi = info->rssi; 5075 data.ssp_mode = 0x01; 5076 5077 if (hci_dev_test_flag(hdev, HCI_MGMT)) 5078 name_known = eir_get_data(info->data, 5079 sizeof(info->data), 5080 EIR_NAME_COMPLETE, NULL); 5081 else 5082 name_known = true; 5083 5084 flags = hci_inquiry_cache_update(hdev, &data, name_known); 5085 5086 eir_len = eir_get_length(info->data, sizeof(info->data)); 5087 5088 mgmt_device_found(hdev, &info->bdaddr, ACL_LINK, 0x00, 5089 info->dev_class, info->rssi, 5090 flags, info->data, eir_len, NULL, 0, 0); 5091 } 5092 5093 hci_dev_unlock(hdev); 5094 } 5095 5096 static void hci_key_refresh_complete_evt(struct hci_dev *hdev, void *data, 5097 struct sk_buff *skb) 5098 { 5099 struct hci_ev_key_refresh_complete *ev = data; 5100 struct hci_conn *conn; 5101 5102 bt_dev_dbg(hdev, "status 0x%2.2x handle 0x%4.4x", ev->status, 5103 __le16_to_cpu(ev->handle)); 5104 5105 hci_dev_lock(hdev); 5106 5107 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 5108 if (!conn) 5109 goto unlock; 5110 5111 /* For BR/EDR the necessary steps are taken through the 5112 * auth_complete event. 5113 */ 5114 if (conn->type != LE_LINK) 5115 goto unlock; 5116 5117 if (!ev->status) 5118 conn->sec_level = conn->pending_sec_level; 5119 5120 clear_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); 5121 5122 if (ev->status && conn->state == BT_CONNECTED) { 5123 hci_disconnect(conn, HCI_ERROR_AUTH_FAILURE); 5124 hci_conn_drop(conn); 5125 goto unlock; 5126 } 5127 5128 if (conn->state == BT_CONFIG) { 5129 if (!ev->status) 5130 conn->state = BT_CONNECTED; 5131 5132 hci_connect_cfm(conn, ev->status); 5133 hci_conn_drop(conn); 5134 } else { 5135 hci_auth_cfm(conn, ev->status); 5136 5137 hci_conn_hold(conn); 5138 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 5139 hci_conn_drop(conn); 5140 } 5141 5142 unlock: 5143 hci_dev_unlock(hdev); 5144 } 5145 5146 static u8 hci_get_auth_req(struct hci_conn *conn) 5147 { 5148 /* If remote requests no-bonding follow that lead */ 5149 if (conn->remote_auth == HCI_AT_NO_BONDING || 5150 conn->remote_auth == HCI_AT_NO_BONDING_MITM) 5151 return conn->remote_auth | (conn->auth_type & 0x01); 5152 5153 /* If both remote and local have enough IO capabilities, require 5154 * MITM protection 5155 */ 5156 if (conn->remote_cap != HCI_IO_NO_INPUT_OUTPUT && 5157 conn->io_capability != HCI_IO_NO_INPUT_OUTPUT) 5158 return conn->remote_auth | 0x01; 5159 5160 /* No MITM protection possible so ignore remote requirement */ 5161 return (conn->remote_auth & ~0x01) | (conn->auth_type & 0x01); 5162 } 5163 5164 static u8 bredr_oob_data_present(struct hci_conn *conn) 5165 { 5166 struct hci_dev *hdev = conn->hdev; 5167 struct oob_data *data; 5168 5169 data = hci_find_remote_oob_data(hdev, &conn->dst, BDADDR_BREDR); 5170 if (!data) 5171 return 0x00; 5172 5173 if (bredr_sc_enabled(hdev)) { 5174 /* When Secure Connections is enabled, then just 5175 * return the present value stored with the OOB 5176 * data. The stored value contains the right present 5177 * information. However it can only be trusted when 5178 * not in Secure Connection Only mode. 5179 */ 5180 if (!hci_dev_test_flag(hdev, HCI_SC_ONLY)) 5181 return data->present; 5182 5183 /* When Secure Connections Only mode is enabled, then 5184 * the P-256 values are required. If they are not 5185 * available, then do not declare that OOB data is 5186 * present. 5187 */ 5188 if (!crypto_memneq(data->rand256, ZERO_KEY, 16) || 5189 !crypto_memneq(data->hash256, ZERO_KEY, 16)) 5190 return 0x00; 5191 5192 return 0x02; 5193 } 5194 5195 /* When Secure Connections is not enabled or actually 5196 * not supported by the hardware, then check that if 5197 * P-192 data values are present. 5198 */ 5199 if (!crypto_memneq(data->rand192, ZERO_KEY, 16) || 5200 !crypto_memneq(data->hash192, ZERO_KEY, 16)) 5201 return 0x00; 5202 5203 return 0x01; 5204 } 5205 5206 static void hci_io_capa_request_evt(struct hci_dev *hdev, void *data, 5207 struct sk_buff *skb) 5208 { 5209 struct hci_ev_io_capa_request *ev = data; 5210 struct hci_conn *conn; 5211 5212 bt_dev_dbg(hdev, ""); 5213 5214 hci_dev_lock(hdev); 5215 5216 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 5217 if (!conn || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 5218 goto unlock; 5219 5220 /* Assume remote supports SSP since it has triggered this event */ 5221 set_bit(HCI_CONN_SSP_ENABLED, &conn->flags); 5222 5223 hci_conn_hold(conn); 5224 5225 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 5226 goto unlock; 5227 5228 /* Allow pairing if we're pairable, the initiators of the 5229 * pairing or if the remote is not requesting bonding. 5230 */ 5231 if (hci_dev_test_flag(hdev, HCI_BONDABLE) || 5232 test_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags) || 5233 (conn->remote_auth & ~0x01) == HCI_AT_NO_BONDING) { 5234 struct hci_cp_io_capability_reply cp; 5235 5236 bacpy(&cp.bdaddr, &ev->bdaddr); 5237 /* Change the IO capability from KeyboardDisplay 5238 * to DisplayYesNo as it is not supported by BT spec. */ 5239 cp.capability = (conn->io_capability == 0x04) ? 5240 HCI_IO_DISPLAY_YESNO : conn->io_capability; 5241 5242 /* If we are initiators, there is no remote information yet */ 5243 if (conn->remote_auth == 0xff) { 5244 /* Request MITM protection if our IO caps allow it 5245 * except for the no-bonding case. 5246 */ 5247 if (conn->io_capability != HCI_IO_NO_INPUT_OUTPUT && 5248 conn->auth_type != HCI_AT_NO_BONDING) 5249 conn->auth_type |= 0x01; 5250 } else { 5251 conn->auth_type = hci_get_auth_req(conn); 5252 } 5253 5254 /* If we're not bondable, force one of the non-bondable 5255 * authentication requirement values. 5256 */ 5257 if (!hci_dev_test_flag(hdev, HCI_BONDABLE)) 5258 conn->auth_type &= HCI_AT_NO_BONDING_MITM; 5259 5260 cp.authentication = conn->auth_type; 5261 cp.oob_data = bredr_oob_data_present(conn); 5262 5263 hci_send_cmd(hdev, HCI_OP_IO_CAPABILITY_REPLY, 5264 sizeof(cp), &cp); 5265 } else { 5266 struct hci_cp_io_capability_neg_reply cp; 5267 5268 bacpy(&cp.bdaddr, &ev->bdaddr); 5269 cp.reason = HCI_ERROR_PAIRING_NOT_ALLOWED; 5270 5271 hci_send_cmd(hdev, HCI_OP_IO_CAPABILITY_NEG_REPLY, 5272 sizeof(cp), &cp); 5273 } 5274 5275 unlock: 5276 hci_dev_unlock(hdev); 5277 } 5278 5279 static void hci_io_capa_reply_evt(struct hci_dev *hdev, void *data, 5280 struct sk_buff *skb) 5281 { 5282 struct hci_ev_io_capa_reply *ev = data; 5283 struct hci_conn *conn; 5284 5285 bt_dev_dbg(hdev, ""); 5286 5287 hci_dev_lock(hdev); 5288 5289 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 5290 if (!conn) 5291 goto unlock; 5292 5293 conn->remote_cap = ev->capability; 5294 conn->remote_auth = ev->authentication; 5295 5296 unlock: 5297 hci_dev_unlock(hdev); 5298 } 5299 5300 static void hci_user_confirm_request_evt(struct hci_dev *hdev, void *data, 5301 struct sk_buff *skb) 5302 { 5303 struct hci_ev_user_confirm_req *ev = data; 5304 int loc_mitm, rem_mitm, confirm_hint = 0; 5305 struct hci_conn *conn; 5306 5307 bt_dev_dbg(hdev, ""); 5308 5309 hci_dev_lock(hdev); 5310 5311 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 5312 goto unlock; 5313 5314 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 5315 if (!conn) 5316 goto unlock; 5317 5318 loc_mitm = (conn->auth_type & 0x01); 5319 rem_mitm = (conn->remote_auth & 0x01); 5320 5321 /* If we require MITM but the remote device can't provide that 5322 * (it has NoInputNoOutput) then reject the confirmation 5323 * request. We check the security level here since it doesn't 5324 * necessarily match conn->auth_type. 5325 */ 5326 if (conn->pending_sec_level > BT_SECURITY_MEDIUM && 5327 conn->remote_cap == HCI_IO_NO_INPUT_OUTPUT) { 5328 bt_dev_dbg(hdev, "Rejecting request: remote device can't provide MITM"); 5329 hci_send_cmd(hdev, HCI_OP_USER_CONFIRM_NEG_REPLY, 5330 sizeof(ev->bdaddr), &ev->bdaddr); 5331 goto unlock; 5332 } 5333 5334 /* If no side requires MITM protection; use JUST_CFM method */ 5335 if ((!loc_mitm || conn->remote_cap == HCI_IO_NO_INPUT_OUTPUT) && 5336 (!rem_mitm || conn->io_capability == HCI_IO_NO_INPUT_OUTPUT)) { 5337 5338 /* If we're not the initiator of request authorization and the 5339 * local IO capability is not NoInputNoOutput, use JUST_WORKS 5340 * method (mgmt_user_confirm with confirm_hint set to 1). 5341 */ 5342 if (!test_bit(HCI_CONN_AUTH_PEND, &conn->flags) && 5343 conn->io_capability != HCI_IO_NO_INPUT_OUTPUT) { 5344 bt_dev_dbg(hdev, "Confirming auto-accept as acceptor"); 5345 confirm_hint = 1; 5346 goto confirm; 5347 } 5348 5349 /* If there already exists link key in local host, leave the 5350 * decision to user space since the remote device could be 5351 * legitimate or malicious. 5352 */ 5353 if (hci_find_link_key(hdev, &ev->bdaddr)) { 5354 bt_dev_dbg(hdev, "Local host already has link key"); 5355 confirm_hint = 1; 5356 goto confirm; 5357 } 5358 5359 BT_DBG("Auto-accept of user confirmation with %ums delay", 5360 hdev->auto_accept_delay); 5361 5362 if (hdev->auto_accept_delay > 0) { 5363 int delay = msecs_to_jiffies(hdev->auto_accept_delay); 5364 queue_delayed_work(conn->hdev->workqueue, 5365 &conn->auto_accept_work, delay); 5366 goto unlock; 5367 } 5368 5369 hci_send_cmd(hdev, HCI_OP_USER_CONFIRM_REPLY, 5370 sizeof(ev->bdaddr), &ev->bdaddr); 5371 goto unlock; 5372 } 5373 5374 confirm: 5375 mgmt_user_confirm_request(hdev, &ev->bdaddr, ACL_LINK, 0, 5376 le32_to_cpu(ev->passkey), confirm_hint); 5377 5378 unlock: 5379 hci_dev_unlock(hdev); 5380 } 5381 5382 static void hci_user_passkey_request_evt(struct hci_dev *hdev, void *data, 5383 struct sk_buff *skb) 5384 { 5385 struct hci_ev_user_passkey_req *ev = data; 5386 5387 bt_dev_dbg(hdev, ""); 5388 5389 if (hci_dev_test_flag(hdev, HCI_MGMT)) 5390 mgmt_user_passkey_request(hdev, &ev->bdaddr, ACL_LINK, 0); 5391 } 5392 5393 static void hci_user_passkey_notify_evt(struct hci_dev *hdev, void *data, 5394 struct sk_buff *skb) 5395 { 5396 struct hci_ev_user_passkey_notify *ev = data; 5397 struct hci_conn *conn; 5398 5399 bt_dev_dbg(hdev, ""); 5400 5401 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 5402 if (!conn) 5403 return; 5404 5405 conn->passkey_notify = __le32_to_cpu(ev->passkey); 5406 conn->passkey_entered = 0; 5407 5408 if (hci_dev_test_flag(hdev, HCI_MGMT)) 5409 mgmt_user_passkey_notify(hdev, &conn->dst, conn->type, 5410 conn->dst_type, conn->passkey_notify, 5411 conn->passkey_entered); 5412 } 5413 5414 static void hci_keypress_notify_evt(struct hci_dev *hdev, void *data, 5415 struct sk_buff *skb) 5416 { 5417 struct hci_ev_keypress_notify *ev = data; 5418 struct hci_conn *conn; 5419 5420 bt_dev_dbg(hdev, ""); 5421 5422 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 5423 if (!conn) 5424 return; 5425 5426 switch (ev->type) { 5427 case HCI_KEYPRESS_STARTED: 5428 conn->passkey_entered = 0; 5429 return; 5430 5431 case HCI_KEYPRESS_ENTERED: 5432 conn->passkey_entered++; 5433 break; 5434 5435 case HCI_KEYPRESS_ERASED: 5436 conn->passkey_entered--; 5437 break; 5438 5439 case HCI_KEYPRESS_CLEARED: 5440 conn->passkey_entered = 0; 5441 break; 5442 5443 case HCI_KEYPRESS_COMPLETED: 5444 return; 5445 } 5446 5447 if (hci_dev_test_flag(hdev, HCI_MGMT)) 5448 mgmt_user_passkey_notify(hdev, &conn->dst, conn->type, 5449 conn->dst_type, conn->passkey_notify, 5450 conn->passkey_entered); 5451 } 5452 5453 static void hci_simple_pair_complete_evt(struct hci_dev *hdev, void *data, 5454 struct sk_buff *skb) 5455 { 5456 struct hci_ev_simple_pair_complete *ev = data; 5457 struct hci_conn *conn; 5458 5459 bt_dev_dbg(hdev, ""); 5460 5461 hci_dev_lock(hdev); 5462 5463 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 5464 if (!conn || !hci_conn_ssp_enabled(conn)) 5465 goto unlock; 5466 5467 /* Reset the authentication requirement to unknown */ 5468 conn->remote_auth = 0xff; 5469 5470 /* To avoid duplicate auth_failed events to user space we check 5471 * the HCI_CONN_AUTH_PEND flag which will be set if we 5472 * initiated the authentication. A traditional auth_complete 5473 * event gets always produced as initiator and is also mapped to 5474 * the mgmt_auth_failed event */ 5475 if (!test_bit(HCI_CONN_AUTH_PEND, &conn->flags) && ev->status) 5476 mgmt_auth_failed(conn, ev->status); 5477 5478 hci_conn_drop(conn); 5479 5480 unlock: 5481 hci_dev_unlock(hdev); 5482 } 5483 5484 static void hci_remote_host_features_evt(struct hci_dev *hdev, void *data, 5485 struct sk_buff *skb) 5486 { 5487 struct hci_ev_remote_host_features *ev = data; 5488 struct inquiry_entry *ie; 5489 struct hci_conn *conn; 5490 5491 bt_dev_dbg(hdev, ""); 5492 5493 hci_dev_lock(hdev); 5494 5495 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 5496 if (conn) 5497 memcpy(conn->features[1], ev->features, 8); 5498 5499 ie = hci_inquiry_cache_lookup(hdev, &ev->bdaddr); 5500 if (ie) 5501 ie->data.ssp_mode = (ev->features[0] & LMP_HOST_SSP); 5502 5503 hci_dev_unlock(hdev); 5504 } 5505 5506 static void hci_remote_oob_data_request_evt(struct hci_dev *hdev, void *edata, 5507 struct sk_buff *skb) 5508 { 5509 struct hci_ev_remote_oob_data_request *ev = edata; 5510 struct oob_data *data; 5511 5512 bt_dev_dbg(hdev, ""); 5513 5514 hci_dev_lock(hdev); 5515 5516 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 5517 goto unlock; 5518 5519 data = hci_find_remote_oob_data(hdev, &ev->bdaddr, BDADDR_BREDR); 5520 if (!data) { 5521 struct hci_cp_remote_oob_data_neg_reply cp; 5522 5523 bacpy(&cp.bdaddr, &ev->bdaddr); 5524 hci_send_cmd(hdev, HCI_OP_REMOTE_OOB_DATA_NEG_REPLY, 5525 sizeof(cp), &cp); 5526 goto unlock; 5527 } 5528 5529 if (bredr_sc_enabled(hdev)) { 5530 struct hci_cp_remote_oob_ext_data_reply cp; 5531 5532 bacpy(&cp.bdaddr, &ev->bdaddr); 5533 if (hci_dev_test_flag(hdev, HCI_SC_ONLY)) { 5534 memset(cp.hash192, 0, sizeof(cp.hash192)); 5535 memset(cp.rand192, 0, sizeof(cp.rand192)); 5536 } else { 5537 memcpy(cp.hash192, data->hash192, sizeof(cp.hash192)); 5538 memcpy(cp.rand192, data->rand192, sizeof(cp.rand192)); 5539 } 5540 memcpy(cp.hash256, data->hash256, sizeof(cp.hash256)); 5541 memcpy(cp.rand256, data->rand256, sizeof(cp.rand256)); 5542 5543 hci_send_cmd(hdev, HCI_OP_REMOTE_OOB_EXT_DATA_REPLY, 5544 sizeof(cp), &cp); 5545 } else { 5546 struct hci_cp_remote_oob_data_reply cp; 5547 5548 bacpy(&cp.bdaddr, &ev->bdaddr); 5549 memcpy(cp.hash, data->hash192, sizeof(cp.hash)); 5550 memcpy(cp.rand, data->rand192, sizeof(cp.rand)); 5551 5552 hci_send_cmd(hdev, HCI_OP_REMOTE_OOB_DATA_REPLY, 5553 sizeof(cp), &cp); 5554 } 5555 5556 unlock: 5557 hci_dev_unlock(hdev); 5558 } 5559 5560 static void le_conn_update_addr(struct hci_conn *conn, bdaddr_t *bdaddr, 5561 u8 bdaddr_type, bdaddr_t *local_rpa) 5562 { 5563 if (conn->out) { 5564 conn->dst_type = bdaddr_type; 5565 conn->resp_addr_type = bdaddr_type; 5566 bacpy(&conn->resp_addr, bdaddr); 5567 5568 /* Check if the controller has set a Local RPA then it must be 5569 * used instead or hdev->rpa. 5570 */ 5571 if (local_rpa && bacmp(local_rpa, BDADDR_ANY)) { 5572 conn->init_addr_type = ADDR_LE_DEV_RANDOM; 5573 bacpy(&conn->init_addr, local_rpa); 5574 } else if (hci_dev_test_flag(conn->hdev, HCI_PRIVACY)) { 5575 conn->init_addr_type = ADDR_LE_DEV_RANDOM; 5576 bacpy(&conn->init_addr, &conn->hdev->rpa); 5577 } else { 5578 hci_copy_identity_address(conn->hdev, &conn->init_addr, 5579 &conn->init_addr_type); 5580 } 5581 } else { 5582 conn->resp_addr_type = conn->hdev->adv_addr_type; 5583 /* Check if the controller has set a Local RPA then it must be 5584 * used instead or hdev->rpa. 5585 */ 5586 if (local_rpa && bacmp(local_rpa, BDADDR_ANY)) { 5587 conn->resp_addr_type = ADDR_LE_DEV_RANDOM; 5588 bacpy(&conn->resp_addr, local_rpa); 5589 } else if (conn->hdev->adv_addr_type == ADDR_LE_DEV_RANDOM) { 5590 /* In case of ext adv, resp_addr will be updated in 5591 * Adv Terminated event. 5592 */ 5593 if (!ext_adv_capable(conn->hdev)) 5594 bacpy(&conn->resp_addr, 5595 &conn->hdev->random_addr); 5596 } else { 5597 bacpy(&conn->resp_addr, &conn->hdev->bdaddr); 5598 } 5599 5600 conn->init_addr_type = bdaddr_type; 5601 bacpy(&conn->init_addr, bdaddr); 5602 5603 /* For incoming connections, set the default minimum 5604 * and maximum connection interval. They will be used 5605 * to check if the parameters are in range and if not 5606 * trigger the connection update procedure. 5607 */ 5608 conn->le_conn_min_interval = conn->hdev->le_conn_min_interval; 5609 conn->le_conn_max_interval = conn->hdev->le_conn_max_interval; 5610 } 5611 } 5612 5613 static void le_conn_complete_evt(struct hci_dev *hdev, u8 status, 5614 bdaddr_t *bdaddr, u8 bdaddr_type, 5615 bdaddr_t *local_rpa, u8 role, u16 handle, 5616 u16 interval, u16 latency, 5617 u16 supervision_timeout) 5618 { 5619 struct hci_conn_params *params; 5620 struct hci_conn *conn; 5621 struct smp_irk *irk; 5622 u8 addr_type; 5623 5624 hci_dev_lock(hdev); 5625 5626 /* All controllers implicitly stop advertising in the event of a 5627 * connection, so ensure that the state bit is cleared. 5628 */ 5629 hci_dev_clear_flag(hdev, HCI_LE_ADV); 5630 5631 conn = hci_conn_hash_lookup_ba(hdev, LE_LINK, bdaddr); 5632 if (!conn) { 5633 /* In case of error status and there is no connection pending 5634 * just unlock as there is nothing to cleanup. 5635 */ 5636 if (status) 5637 goto unlock; 5638 5639 conn = hci_conn_add_unset(hdev, LE_LINK, bdaddr, role); 5640 if (IS_ERR(conn)) { 5641 bt_dev_err(hdev, "connection err: %ld", PTR_ERR(conn)); 5642 goto unlock; 5643 } 5644 5645 conn->dst_type = bdaddr_type; 5646 5647 /* If we didn't have a hci_conn object previously 5648 * but we're in central role this must be something 5649 * initiated using an accept list. Since accept list based 5650 * connections are not "first class citizens" we don't 5651 * have full tracking of them. Therefore, we go ahead 5652 * with a "best effort" approach of determining the 5653 * initiator address based on the HCI_PRIVACY flag. 5654 */ 5655 if (conn->out) { 5656 conn->resp_addr_type = bdaddr_type; 5657 bacpy(&conn->resp_addr, bdaddr); 5658 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) { 5659 conn->init_addr_type = ADDR_LE_DEV_RANDOM; 5660 bacpy(&conn->init_addr, &hdev->rpa); 5661 } else { 5662 hci_copy_identity_address(hdev, 5663 &conn->init_addr, 5664 &conn->init_addr_type); 5665 } 5666 } 5667 } else { 5668 cancel_delayed_work(&conn->le_conn_timeout); 5669 } 5670 5671 /* The HCI_LE_Connection_Complete event is only sent once per connection. 5672 * Processing it more than once per connection can corrupt kernel memory. 5673 * 5674 * As the connection handle is set here for the first time, it indicates 5675 * whether the connection is already set up. 5676 */ 5677 if (!HCI_CONN_HANDLE_UNSET(conn->handle)) { 5678 bt_dev_err(hdev, "Ignoring HCI_Connection_Complete for existing connection"); 5679 goto unlock; 5680 } 5681 5682 le_conn_update_addr(conn, bdaddr, bdaddr_type, local_rpa); 5683 5684 /* Lookup the identity address from the stored connection 5685 * address and address type. 5686 * 5687 * When establishing connections to an identity address, the 5688 * connection procedure will store the resolvable random 5689 * address first. Now if it can be converted back into the 5690 * identity address, start using the identity address from 5691 * now on. 5692 */ 5693 irk = hci_get_irk(hdev, &conn->dst, conn->dst_type); 5694 if (irk) { 5695 bacpy(&conn->dst, &irk->bdaddr); 5696 conn->dst_type = irk->addr_type; 5697 } 5698 5699 conn->dst_type = ev_bdaddr_type(hdev, conn->dst_type, NULL); 5700 5701 /* All connection failure handling is taken care of by the 5702 * hci_conn_failed function which is triggered by the HCI 5703 * request completion callbacks used for connecting. 5704 */ 5705 if (status || hci_conn_set_handle(conn, handle)) 5706 goto unlock; 5707 5708 /* Drop the connection if it has been aborted */ 5709 if (test_bit(HCI_CONN_CANCEL, &conn->flags)) { 5710 hci_conn_drop(conn); 5711 goto unlock; 5712 } 5713 5714 if (conn->dst_type == ADDR_LE_DEV_PUBLIC) 5715 addr_type = BDADDR_LE_PUBLIC; 5716 else 5717 addr_type = BDADDR_LE_RANDOM; 5718 5719 /* Drop the connection if the device is blocked */ 5720 if (hci_bdaddr_list_lookup(&hdev->reject_list, &conn->dst, addr_type)) { 5721 hci_conn_drop(conn); 5722 goto unlock; 5723 } 5724 5725 mgmt_device_connected(hdev, conn, NULL, 0); 5726 5727 conn->sec_level = BT_SECURITY_LOW; 5728 conn->state = BT_CONFIG; 5729 5730 /* Store current advertising instance as connection advertising instance 5731 * when sotfware rotation is in use so it can be re-enabled when 5732 * disconnected. 5733 */ 5734 if (!ext_adv_capable(hdev)) 5735 conn->adv_instance = hdev->cur_adv_instance; 5736 5737 conn->le_conn_interval = interval; 5738 conn->le_conn_latency = latency; 5739 conn->le_supv_timeout = supervision_timeout; 5740 5741 hci_debugfs_create_conn(conn); 5742 hci_conn_add_sysfs(conn); 5743 5744 /* The remote features procedure is defined for central 5745 * role only. So only in case of an initiated connection 5746 * request the remote features. 5747 * 5748 * If the local controller supports peripheral-initiated features 5749 * exchange, then requesting the remote features in peripheral 5750 * role is possible. Otherwise just transition into the 5751 * connected state without requesting the remote features. 5752 */ 5753 if (conn->out || 5754 (hdev->le_features[0] & HCI_LE_PERIPHERAL_FEATURES)) { 5755 struct hci_cp_le_read_remote_features cp; 5756 5757 cp.handle = __cpu_to_le16(conn->handle); 5758 5759 hci_send_cmd(hdev, HCI_OP_LE_READ_REMOTE_FEATURES, 5760 sizeof(cp), &cp); 5761 5762 hci_conn_hold(conn); 5763 } else { 5764 conn->state = BT_CONNECTED; 5765 hci_connect_cfm(conn, status); 5766 } 5767 5768 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst, 5769 conn->dst_type); 5770 if (params) { 5771 hci_pend_le_list_del_init(params); 5772 if (params->conn) { 5773 hci_conn_drop(params->conn); 5774 hci_conn_put(params->conn); 5775 params->conn = NULL; 5776 } 5777 } 5778 5779 unlock: 5780 hci_update_passive_scan(hdev); 5781 hci_dev_unlock(hdev); 5782 } 5783 5784 static void hci_le_conn_complete_evt(struct hci_dev *hdev, void *data, 5785 struct sk_buff *skb) 5786 { 5787 struct hci_ev_le_conn_complete *ev = data; 5788 5789 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 5790 5791 le_conn_complete_evt(hdev, ev->status, &ev->bdaddr, ev->bdaddr_type, 5792 NULL, ev->role, le16_to_cpu(ev->handle), 5793 le16_to_cpu(ev->interval), 5794 le16_to_cpu(ev->latency), 5795 le16_to_cpu(ev->supervision_timeout)); 5796 } 5797 5798 static void hci_le_enh_conn_complete_evt(struct hci_dev *hdev, void *data, 5799 struct sk_buff *skb) 5800 { 5801 struct hci_ev_le_enh_conn_complete *ev = data; 5802 5803 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 5804 5805 le_conn_complete_evt(hdev, ev->status, &ev->bdaddr, ev->bdaddr_type, 5806 &ev->local_rpa, ev->role, le16_to_cpu(ev->handle), 5807 le16_to_cpu(ev->interval), 5808 le16_to_cpu(ev->latency), 5809 le16_to_cpu(ev->supervision_timeout)); 5810 } 5811 5812 static void hci_le_ext_adv_term_evt(struct hci_dev *hdev, void *data, 5813 struct sk_buff *skb) 5814 { 5815 struct hci_evt_le_ext_adv_set_term *ev = data; 5816 struct hci_conn *conn; 5817 struct adv_info *adv, *n; 5818 5819 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 5820 5821 /* The Bluetooth Core 5.3 specification clearly states that this event 5822 * shall not be sent when the Host disables the advertising set. So in 5823 * case of HCI_ERROR_CANCELLED_BY_HOST, just ignore the event. 5824 * 5825 * When the Host disables an advertising set, all cleanup is done via 5826 * its command callback and not needed to be duplicated here. 5827 */ 5828 if (ev->status == HCI_ERROR_CANCELLED_BY_HOST) { 5829 bt_dev_warn_ratelimited(hdev, "Unexpected advertising set terminated event"); 5830 return; 5831 } 5832 5833 hci_dev_lock(hdev); 5834 5835 adv = hci_find_adv_instance(hdev, ev->handle); 5836 5837 if (ev->status) { 5838 if (!adv) 5839 goto unlock; 5840 5841 /* Remove advertising as it has been terminated */ 5842 hci_remove_adv_instance(hdev, ev->handle); 5843 mgmt_advertising_removed(NULL, hdev, ev->handle); 5844 5845 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { 5846 if (adv->enabled) 5847 goto unlock; 5848 } 5849 5850 /* We are no longer advertising, clear HCI_LE_ADV */ 5851 hci_dev_clear_flag(hdev, HCI_LE_ADV); 5852 goto unlock; 5853 } 5854 5855 if (adv) 5856 adv->enabled = false; 5857 5858 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->conn_handle)); 5859 if (conn) { 5860 /* Store handle in the connection so the correct advertising 5861 * instance can be re-enabled when disconnected. 5862 */ 5863 conn->adv_instance = ev->handle; 5864 5865 if (hdev->adv_addr_type != ADDR_LE_DEV_RANDOM || 5866 bacmp(&conn->resp_addr, BDADDR_ANY)) 5867 goto unlock; 5868 5869 if (!ev->handle) { 5870 bacpy(&conn->resp_addr, &hdev->random_addr); 5871 goto unlock; 5872 } 5873 5874 if (adv) 5875 bacpy(&conn->resp_addr, &adv->random_addr); 5876 } 5877 5878 unlock: 5879 hci_dev_unlock(hdev); 5880 } 5881 5882 static void hci_le_conn_update_complete_evt(struct hci_dev *hdev, void *data, 5883 struct sk_buff *skb) 5884 { 5885 struct hci_ev_le_conn_update_complete *ev = data; 5886 struct hci_conn *conn; 5887 5888 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 5889 5890 if (ev->status) 5891 return; 5892 5893 hci_dev_lock(hdev); 5894 5895 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 5896 if (conn) { 5897 conn->le_conn_interval = le16_to_cpu(ev->interval); 5898 conn->le_conn_latency = le16_to_cpu(ev->latency); 5899 conn->le_supv_timeout = le16_to_cpu(ev->supervision_timeout); 5900 } 5901 5902 hci_dev_unlock(hdev); 5903 } 5904 5905 /* This function requires the caller holds hdev->lock */ 5906 static struct hci_conn *check_pending_le_conn(struct hci_dev *hdev, 5907 bdaddr_t *addr, 5908 u8 addr_type, bool addr_resolved, 5909 u8 adv_type) 5910 { 5911 struct hci_conn *conn; 5912 struct hci_conn_params *params; 5913 5914 /* If the event is not connectable don't proceed further */ 5915 if (adv_type != LE_ADV_IND && adv_type != LE_ADV_DIRECT_IND) 5916 return NULL; 5917 5918 /* Ignore if the device is blocked or hdev is suspended */ 5919 if (hci_bdaddr_list_lookup(&hdev->reject_list, addr, addr_type) || 5920 hdev->suspended) 5921 return NULL; 5922 5923 /* Most controller will fail if we try to create new connections 5924 * while we have an existing one in peripheral role. 5925 */ 5926 if (hdev->conn_hash.le_num_peripheral > 0 && 5927 (!test_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks) || 5928 !(hdev->le_states[3] & 0x10))) 5929 return NULL; 5930 5931 /* If we're not connectable only connect devices that we have in 5932 * our pend_le_conns list. 5933 */ 5934 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, addr, 5935 addr_type); 5936 if (!params) 5937 return NULL; 5938 5939 if (!params->explicit_connect) { 5940 switch (params->auto_connect) { 5941 case HCI_AUTO_CONN_DIRECT: 5942 /* Only devices advertising with ADV_DIRECT_IND are 5943 * triggering a connection attempt. This is allowing 5944 * incoming connections from peripheral devices. 5945 */ 5946 if (adv_type != LE_ADV_DIRECT_IND) 5947 return NULL; 5948 break; 5949 case HCI_AUTO_CONN_ALWAYS: 5950 /* Devices advertising with ADV_IND or ADV_DIRECT_IND 5951 * are triggering a connection attempt. This means 5952 * that incoming connections from peripheral device are 5953 * accepted and also outgoing connections to peripheral 5954 * devices are established when found. 5955 */ 5956 break; 5957 default: 5958 return NULL; 5959 } 5960 } 5961 5962 conn = hci_connect_le(hdev, addr, addr_type, addr_resolved, 5963 BT_SECURITY_LOW, hdev->def_le_autoconnect_timeout, 5964 HCI_ROLE_MASTER); 5965 if (!IS_ERR(conn)) { 5966 /* If HCI_AUTO_CONN_EXPLICIT is set, conn is already owned 5967 * by higher layer that tried to connect, if no then 5968 * store the pointer since we don't really have any 5969 * other owner of the object besides the params that 5970 * triggered it. This way we can abort the connection if 5971 * the parameters get removed and keep the reference 5972 * count consistent once the connection is established. 5973 */ 5974 5975 if (!params->explicit_connect) 5976 params->conn = hci_conn_get(conn); 5977 5978 return conn; 5979 } 5980 5981 switch (PTR_ERR(conn)) { 5982 case -EBUSY: 5983 /* If hci_connect() returns -EBUSY it means there is already 5984 * an LE connection attempt going on. Since controllers don't 5985 * support more than one connection attempt at the time, we 5986 * don't consider this an error case. 5987 */ 5988 break; 5989 default: 5990 BT_DBG("Failed to connect: err %ld", PTR_ERR(conn)); 5991 return NULL; 5992 } 5993 5994 return NULL; 5995 } 5996 5997 static void process_adv_report(struct hci_dev *hdev, u8 type, bdaddr_t *bdaddr, 5998 u8 bdaddr_type, bdaddr_t *direct_addr, 5999 u8 direct_addr_type, s8 rssi, u8 *data, u8 len, 6000 bool ext_adv, bool ctl_time, u64 instant) 6001 { 6002 struct discovery_state *d = &hdev->discovery; 6003 struct smp_irk *irk; 6004 struct hci_conn *conn; 6005 bool match, bdaddr_resolved; 6006 u32 flags; 6007 u8 *ptr; 6008 6009 switch (type) { 6010 case LE_ADV_IND: 6011 case LE_ADV_DIRECT_IND: 6012 case LE_ADV_SCAN_IND: 6013 case LE_ADV_NONCONN_IND: 6014 case LE_ADV_SCAN_RSP: 6015 break; 6016 default: 6017 bt_dev_err_ratelimited(hdev, "unknown advertising packet " 6018 "type: 0x%02x", type); 6019 return; 6020 } 6021 6022 if (len > max_adv_len(hdev)) { 6023 bt_dev_err_ratelimited(hdev, 6024 "adv larger than maximum supported"); 6025 return; 6026 } 6027 6028 /* Find the end of the data in case the report contains padded zero 6029 * bytes at the end causing an invalid length value. 6030 * 6031 * When data is NULL, len is 0 so there is no need for extra ptr 6032 * check as 'ptr < data + 0' is already false in such case. 6033 */ 6034 for (ptr = data; ptr < data + len && *ptr; ptr += *ptr + 1) { 6035 if (ptr + 1 + *ptr > data + len) 6036 break; 6037 } 6038 6039 /* Adjust for actual length. This handles the case when remote 6040 * device is advertising with incorrect data length. 6041 */ 6042 len = ptr - data; 6043 6044 /* If the direct address is present, then this report is from 6045 * a LE Direct Advertising Report event. In that case it is 6046 * important to see if the address is matching the local 6047 * controller address. 6048 */ 6049 if (!hci_dev_test_flag(hdev, HCI_MESH) && direct_addr) { 6050 direct_addr_type = ev_bdaddr_type(hdev, direct_addr_type, 6051 &bdaddr_resolved); 6052 6053 /* Only resolvable random addresses are valid for these 6054 * kind of reports and others can be ignored. 6055 */ 6056 if (!hci_bdaddr_is_rpa(direct_addr, direct_addr_type)) 6057 return; 6058 6059 /* If the controller is not using resolvable random 6060 * addresses, then this report can be ignored. 6061 */ 6062 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 6063 return; 6064 6065 /* If the local IRK of the controller does not match 6066 * with the resolvable random address provided, then 6067 * this report can be ignored. 6068 */ 6069 if (!smp_irk_matches(hdev, hdev->irk, direct_addr)) 6070 return; 6071 } 6072 6073 /* Check if we need to convert to identity address */ 6074 irk = hci_get_irk(hdev, bdaddr, bdaddr_type); 6075 if (irk) { 6076 bdaddr = &irk->bdaddr; 6077 bdaddr_type = irk->addr_type; 6078 } 6079 6080 bdaddr_type = ev_bdaddr_type(hdev, bdaddr_type, &bdaddr_resolved); 6081 6082 /* Check if we have been requested to connect to this device. 6083 * 6084 * direct_addr is set only for directed advertising reports (it is NULL 6085 * for advertising reports) and is already verified to be RPA above. 6086 */ 6087 conn = check_pending_le_conn(hdev, bdaddr, bdaddr_type, bdaddr_resolved, 6088 type); 6089 if (!ext_adv && conn && type == LE_ADV_IND && 6090 len <= max_adv_len(hdev)) { 6091 /* Store report for later inclusion by 6092 * mgmt_device_connected 6093 */ 6094 memcpy(conn->le_adv_data, data, len); 6095 conn->le_adv_data_len = len; 6096 } 6097 6098 if (type == LE_ADV_NONCONN_IND || type == LE_ADV_SCAN_IND) 6099 flags = MGMT_DEV_FOUND_NOT_CONNECTABLE; 6100 else 6101 flags = 0; 6102 6103 /* All scan results should be sent up for Mesh systems */ 6104 if (hci_dev_test_flag(hdev, HCI_MESH)) { 6105 mgmt_device_found(hdev, bdaddr, LE_LINK, bdaddr_type, NULL, 6106 rssi, flags, data, len, NULL, 0, instant); 6107 return; 6108 } 6109 6110 /* Passive scanning shouldn't trigger any device found events, 6111 * except for devices marked as CONN_REPORT for which we do send 6112 * device found events, or advertisement monitoring requested. 6113 */ 6114 if (hdev->le_scan_type == LE_SCAN_PASSIVE) { 6115 if (type == LE_ADV_DIRECT_IND) 6116 return; 6117 6118 if (!hci_pend_le_action_lookup(&hdev->pend_le_reports, 6119 bdaddr, bdaddr_type) && 6120 idr_is_empty(&hdev->adv_monitors_idr)) 6121 return; 6122 6123 mgmt_device_found(hdev, bdaddr, LE_LINK, bdaddr_type, NULL, 6124 rssi, flags, data, len, NULL, 0, 0); 6125 return; 6126 } 6127 6128 /* When receiving a scan response, then there is no way to 6129 * know if the remote device is connectable or not. However 6130 * since scan responses are merged with a previously seen 6131 * advertising report, the flags field from that report 6132 * will be used. 6133 * 6134 * In the unlikely case that a controller just sends a scan 6135 * response event that doesn't match the pending report, then 6136 * it is marked as a standalone SCAN_RSP. 6137 */ 6138 if (type == LE_ADV_SCAN_RSP) 6139 flags = MGMT_DEV_FOUND_SCAN_RSP; 6140 6141 /* If there's nothing pending either store the data from this 6142 * event or send an immediate device found event if the data 6143 * should not be stored for later. 6144 */ 6145 if (!ext_adv && !has_pending_adv_report(hdev)) { 6146 /* If the report will trigger a SCAN_REQ store it for 6147 * later merging. 6148 */ 6149 if (type == LE_ADV_IND || type == LE_ADV_SCAN_IND) { 6150 store_pending_adv_report(hdev, bdaddr, bdaddr_type, 6151 rssi, flags, data, len); 6152 return; 6153 } 6154 6155 mgmt_device_found(hdev, bdaddr, LE_LINK, bdaddr_type, NULL, 6156 rssi, flags, data, len, NULL, 0, 0); 6157 return; 6158 } 6159 6160 /* Check if the pending report is for the same device as the new one */ 6161 match = (!bacmp(bdaddr, &d->last_adv_addr) && 6162 bdaddr_type == d->last_adv_addr_type); 6163 6164 /* If the pending data doesn't match this report or this isn't a 6165 * scan response (e.g. we got a duplicate ADV_IND) then force 6166 * sending of the pending data. 6167 */ 6168 if (type != LE_ADV_SCAN_RSP || !match) { 6169 /* Send out whatever is in the cache, but skip duplicates */ 6170 if (!match) 6171 mgmt_device_found(hdev, &d->last_adv_addr, LE_LINK, 6172 d->last_adv_addr_type, NULL, 6173 d->last_adv_rssi, d->last_adv_flags, 6174 d->last_adv_data, 6175 d->last_adv_data_len, NULL, 0, 0); 6176 6177 /* If the new report will trigger a SCAN_REQ store it for 6178 * later merging. 6179 */ 6180 if (!ext_adv && (type == LE_ADV_IND || 6181 type == LE_ADV_SCAN_IND)) { 6182 store_pending_adv_report(hdev, bdaddr, bdaddr_type, 6183 rssi, flags, data, len); 6184 return; 6185 } 6186 6187 /* The advertising reports cannot be merged, so clear 6188 * the pending report and send out a device found event. 6189 */ 6190 clear_pending_adv_report(hdev); 6191 mgmt_device_found(hdev, bdaddr, LE_LINK, bdaddr_type, NULL, 6192 rssi, flags, data, len, NULL, 0, 0); 6193 return; 6194 } 6195 6196 /* If we get here we've got a pending ADV_IND or ADV_SCAN_IND and 6197 * the new event is a SCAN_RSP. We can therefore proceed with 6198 * sending a merged device found event. 6199 */ 6200 mgmt_device_found(hdev, &d->last_adv_addr, LE_LINK, 6201 d->last_adv_addr_type, NULL, rssi, d->last_adv_flags, 6202 d->last_adv_data, d->last_adv_data_len, data, len, 0); 6203 clear_pending_adv_report(hdev); 6204 } 6205 6206 static void hci_le_adv_report_evt(struct hci_dev *hdev, void *data, 6207 struct sk_buff *skb) 6208 { 6209 struct hci_ev_le_advertising_report *ev = data; 6210 u64 instant = jiffies; 6211 6212 if (!ev->num) 6213 return; 6214 6215 hci_dev_lock(hdev); 6216 6217 while (ev->num--) { 6218 struct hci_ev_le_advertising_info *info; 6219 s8 rssi; 6220 6221 info = hci_le_ev_skb_pull(hdev, skb, 6222 HCI_EV_LE_ADVERTISING_REPORT, 6223 sizeof(*info)); 6224 if (!info) 6225 break; 6226 6227 if (!hci_le_ev_skb_pull(hdev, skb, HCI_EV_LE_ADVERTISING_REPORT, 6228 info->length + 1)) 6229 break; 6230 6231 if (info->length <= max_adv_len(hdev)) { 6232 rssi = info->data[info->length]; 6233 process_adv_report(hdev, info->type, &info->bdaddr, 6234 info->bdaddr_type, NULL, 0, rssi, 6235 info->data, info->length, false, 6236 false, instant); 6237 } else { 6238 bt_dev_err(hdev, "Dropping invalid advertising data"); 6239 } 6240 } 6241 6242 hci_dev_unlock(hdev); 6243 } 6244 6245 static u8 ext_evt_type_to_legacy(struct hci_dev *hdev, u16 evt_type) 6246 { 6247 if (evt_type & LE_EXT_ADV_LEGACY_PDU) { 6248 switch (evt_type) { 6249 case LE_LEGACY_ADV_IND: 6250 return LE_ADV_IND; 6251 case LE_LEGACY_ADV_DIRECT_IND: 6252 return LE_ADV_DIRECT_IND; 6253 case LE_LEGACY_ADV_SCAN_IND: 6254 return LE_ADV_SCAN_IND; 6255 case LE_LEGACY_NONCONN_IND: 6256 return LE_ADV_NONCONN_IND; 6257 case LE_LEGACY_SCAN_RSP_ADV: 6258 case LE_LEGACY_SCAN_RSP_ADV_SCAN: 6259 return LE_ADV_SCAN_RSP; 6260 } 6261 6262 goto invalid; 6263 } 6264 6265 if (evt_type & LE_EXT_ADV_CONN_IND) { 6266 if (evt_type & LE_EXT_ADV_DIRECT_IND) 6267 return LE_ADV_DIRECT_IND; 6268 6269 return LE_ADV_IND; 6270 } 6271 6272 if (evt_type & LE_EXT_ADV_SCAN_RSP) 6273 return LE_ADV_SCAN_RSP; 6274 6275 if (evt_type & LE_EXT_ADV_SCAN_IND) 6276 return LE_ADV_SCAN_IND; 6277 6278 if (evt_type == LE_EXT_ADV_NON_CONN_IND || 6279 evt_type & LE_EXT_ADV_DIRECT_IND) 6280 return LE_ADV_NONCONN_IND; 6281 6282 invalid: 6283 bt_dev_err_ratelimited(hdev, "Unknown advertising packet type: 0x%02x", 6284 evt_type); 6285 6286 return LE_ADV_INVALID; 6287 } 6288 6289 static void hci_le_ext_adv_report_evt(struct hci_dev *hdev, void *data, 6290 struct sk_buff *skb) 6291 { 6292 struct hci_ev_le_ext_adv_report *ev = data; 6293 u64 instant = jiffies; 6294 6295 if (!ev->num) 6296 return; 6297 6298 hci_dev_lock(hdev); 6299 6300 while (ev->num--) { 6301 struct hci_ev_le_ext_adv_info *info; 6302 u8 legacy_evt_type; 6303 u16 evt_type; 6304 6305 info = hci_le_ev_skb_pull(hdev, skb, HCI_EV_LE_EXT_ADV_REPORT, 6306 sizeof(*info)); 6307 if (!info) 6308 break; 6309 6310 if (!hci_le_ev_skb_pull(hdev, skb, HCI_EV_LE_EXT_ADV_REPORT, 6311 info->length)) 6312 break; 6313 6314 evt_type = __le16_to_cpu(info->type) & LE_EXT_ADV_EVT_TYPE_MASK; 6315 legacy_evt_type = ext_evt_type_to_legacy(hdev, evt_type); 6316 if (legacy_evt_type != LE_ADV_INVALID) { 6317 process_adv_report(hdev, legacy_evt_type, &info->bdaddr, 6318 info->bdaddr_type, NULL, 0, 6319 info->rssi, info->data, info->length, 6320 !(evt_type & LE_EXT_ADV_LEGACY_PDU), 6321 false, instant); 6322 } 6323 } 6324 6325 hci_dev_unlock(hdev); 6326 } 6327 6328 static int hci_le_pa_term_sync(struct hci_dev *hdev, __le16 handle) 6329 { 6330 struct hci_cp_le_pa_term_sync cp; 6331 6332 memset(&cp, 0, sizeof(cp)); 6333 cp.handle = handle; 6334 6335 return hci_send_cmd(hdev, HCI_OP_LE_PA_TERM_SYNC, sizeof(cp), &cp); 6336 } 6337 6338 static void hci_le_pa_sync_estabilished_evt(struct hci_dev *hdev, void *data, 6339 struct sk_buff *skb) 6340 { 6341 struct hci_ev_le_pa_sync_established *ev = data; 6342 int mask = hdev->link_mode; 6343 __u8 flags = 0; 6344 struct hci_conn *pa_sync; 6345 6346 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 6347 6348 hci_dev_lock(hdev); 6349 6350 hci_dev_clear_flag(hdev, HCI_PA_SYNC); 6351 6352 mask |= hci_proto_connect_ind(hdev, &ev->bdaddr, ISO_LINK, &flags); 6353 if (!(mask & HCI_LM_ACCEPT)) { 6354 hci_le_pa_term_sync(hdev, ev->handle); 6355 goto unlock; 6356 } 6357 6358 if (!(flags & HCI_PROTO_DEFER)) 6359 goto unlock; 6360 6361 if (ev->status) { 6362 /* Add connection to indicate the failed PA sync event */ 6363 pa_sync = hci_conn_add_unset(hdev, ISO_LINK, BDADDR_ANY, 6364 HCI_ROLE_SLAVE); 6365 6366 if (!pa_sync) 6367 goto unlock; 6368 6369 set_bit(HCI_CONN_PA_SYNC_FAILED, &pa_sync->flags); 6370 6371 /* Notify iso layer */ 6372 hci_connect_cfm(pa_sync, ev->status); 6373 } 6374 6375 unlock: 6376 hci_dev_unlock(hdev); 6377 } 6378 6379 static void hci_le_per_adv_report_evt(struct hci_dev *hdev, void *data, 6380 struct sk_buff *skb) 6381 { 6382 struct hci_ev_le_per_adv_report *ev = data; 6383 int mask = hdev->link_mode; 6384 __u8 flags = 0; 6385 6386 bt_dev_dbg(hdev, "sync_handle 0x%4.4x", le16_to_cpu(ev->sync_handle)); 6387 6388 hci_dev_lock(hdev); 6389 6390 mask |= hci_proto_connect_ind(hdev, BDADDR_ANY, ISO_LINK, &flags); 6391 if (!(mask & HCI_LM_ACCEPT)) 6392 hci_le_pa_term_sync(hdev, ev->sync_handle); 6393 6394 hci_dev_unlock(hdev); 6395 } 6396 6397 static void hci_le_remote_feat_complete_evt(struct hci_dev *hdev, void *data, 6398 struct sk_buff *skb) 6399 { 6400 struct hci_ev_le_remote_feat_complete *ev = data; 6401 struct hci_conn *conn; 6402 6403 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 6404 6405 hci_dev_lock(hdev); 6406 6407 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 6408 if (conn) { 6409 if (!ev->status) 6410 memcpy(conn->features[0], ev->features, 8); 6411 6412 if (conn->state == BT_CONFIG) { 6413 __u8 status; 6414 6415 /* If the local controller supports peripheral-initiated 6416 * features exchange, but the remote controller does 6417 * not, then it is possible that the error code 0x1a 6418 * for unsupported remote feature gets returned. 6419 * 6420 * In this specific case, allow the connection to 6421 * transition into connected state and mark it as 6422 * successful. 6423 */ 6424 if (!conn->out && ev->status == HCI_ERROR_UNSUPPORTED_REMOTE_FEATURE && 6425 (hdev->le_features[0] & HCI_LE_PERIPHERAL_FEATURES)) 6426 status = 0x00; 6427 else 6428 status = ev->status; 6429 6430 conn->state = BT_CONNECTED; 6431 hci_connect_cfm(conn, status); 6432 hci_conn_drop(conn); 6433 } 6434 } 6435 6436 hci_dev_unlock(hdev); 6437 } 6438 6439 static void hci_le_ltk_request_evt(struct hci_dev *hdev, void *data, 6440 struct sk_buff *skb) 6441 { 6442 struct hci_ev_le_ltk_req *ev = data; 6443 struct hci_cp_le_ltk_reply cp; 6444 struct hci_cp_le_ltk_neg_reply neg; 6445 struct hci_conn *conn; 6446 struct smp_ltk *ltk; 6447 6448 bt_dev_dbg(hdev, "handle 0x%4.4x", __le16_to_cpu(ev->handle)); 6449 6450 hci_dev_lock(hdev); 6451 6452 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 6453 if (conn == NULL) 6454 goto not_found; 6455 6456 ltk = hci_find_ltk(hdev, &conn->dst, conn->dst_type, conn->role); 6457 if (!ltk) 6458 goto not_found; 6459 6460 if (smp_ltk_is_sc(ltk)) { 6461 /* With SC both EDiv and Rand are set to zero */ 6462 if (ev->ediv || ev->rand) 6463 goto not_found; 6464 } else { 6465 /* For non-SC keys check that EDiv and Rand match */ 6466 if (ev->ediv != ltk->ediv || ev->rand != ltk->rand) 6467 goto not_found; 6468 } 6469 6470 memcpy(cp.ltk, ltk->val, ltk->enc_size); 6471 memset(cp.ltk + ltk->enc_size, 0, sizeof(cp.ltk) - ltk->enc_size); 6472 cp.handle = cpu_to_le16(conn->handle); 6473 6474 conn->pending_sec_level = smp_ltk_sec_level(ltk); 6475 6476 conn->enc_key_size = ltk->enc_size; 6477 6478 hci_send_cmd(hdev, HCI_OP_LE_LTK_REPLY, sizeof(cp), &cp); 6479 6480 /* Ref. Bluetooth Core SPEC pages 1975 and 2004. STK is a 6481 * temporary key used to encrypt a connection following 6482 * pairing. It is used during the Encrypted Session Setup to 6483 * distribute the keys. Later, security can be re-established 6484 * using a distributed LTK. 6485 */ 6486 if (ltk->type == SMP_STK) { 6487 set_bit(HCI_CONN_STK_ENCRYPT, &conn->flags); 6488 list_del_rcu(<k->list); 6489 kfree_rcu(ltk, rcu); 6490 } else { 6491 clear_bit(HCI_CONN_STK_ENCRYPT, &conn->flags); 6492 } 6493 6494 hci_dev_unlock(hdev); 6495 6496 return; 6497 6498 not_found: 6499 neg.handle = ev->handle; 6500 hci_send_cmd(hdev, HCI_OP_LE_LTK_NEG_REPLY, sizeof(neg), &neg); 6501 hci_dev_unlock(hdev); 6502 } 6503 6504 static void send_conn_param_neg_reply(struct hci_dev *hdev, u16 handle, 6505 u8 reason) 6506 { 6507 struct hci_cp_le_conn_param_req_neg_reply cp; 6508 6509 cp.handle = cpu_to_le16(handle); 6510 cp.reason = reason; 6511 6512 hci_send_cmd(hdev, HCI_OP_LE_CONN_PARAM_REQ_NEG_REPLY, sizeof(cp), 6513 &cp); 6514 } 6515 6516 static void hci_le_remote_conn_param_req_evt(struct hci_dev *hdev, void *data, 6517 struct sk_buff *skb) 6518 { 6519 struct hci_ev_le_remote_conn_param_req *ev = data; 6520 struct hci_cp_le_conn_param_req_reply cp; 6521 struct hci_conn *hcon; 6522 u16 handle, min, max, latency, timeout; 6523 6524 bt_dev_dbg(hdev, "handle 0x%4.4x", __le16_to_cpu(ev->handle)); 6525 6526 handle = le16_to_cpu(ev->handle); 6527 min = le16_to_cpu(ev->interval_min); 6528 max = le16_to_cpu(ev->interval_max); 6529 latency = le16_to_cpu(ev->latency); 6530 timeout = le16_to_cpu(ev->timeout); 6531 6532 hcon = hci_conn_hash_lookup_handle(hdev, handle); 6533 if (!hcon || hcon->state != BT_CONNECTED) 6534 return send_conn_param_neg_reply(hdev, handle, 6535 HCI_ERROR_UNKNOWN_CONN_ID); 6536 6537 if (max > hcon->le_conn_max_interval) 6538 return send_conn_param_neg_reply(hdev, handle, 6539 HCI_ERROR_INVALID_LL_PARAMS); 6540 6541 if (hci_check_conn_params(min, max, latency, timeout)) 6542 return send_conn_param_neg_reply(hdev, handle, 6543 HCI_ERROR_INVALID_LL_PARAMS); 6544 6545 if (hcon->role == HCI_ROLE_MASTER) { 6546 struct hci_conn_params *params; 6547 u8 store_hint; 6548 6549 hci_dev_lock(hdev); 6550 6551 params = hci_conn_params_lookup(hdev, &hcon->dst, 6552 hcon->dst_type); 6553 if (params) { 6554 params->conn_min_interval = min; 6555 params->conn_max_interval = max; 6556 params->conn_latency = latency; 6557 params->supervision_timeout = timeout; 6558 store_hint = 0x01; 6559 } else { 6560 store_hint = 0x00; 6561 } 6562 6563 hci_dev_unlock(hdev); 6564 6565 mgmt_new_conn_param(hdev, &hcon->dst, hcon->dst_type, 6566 store_hint, min, max, latency, timeout); 6567 } 6568 6569 cp.handle = ev->handle; 6570 cp.interval_min = ev->interval_min; 6571 cp.interval_max = ev->interval_max; 6572 cp.latency = ev->latency; 6573 cp.timeout = ev->timeout; 6574 cp.min_ce_len = 0; 6575 cp.max_ce_len = 0; 6576 6577 hci_send_cmd(hdev, HCI_OP_LE_CONN_PARAM_REQ_REPLY, sizeof(cp), &cp); 6578 } 6579 6580 static void hci_le_direct_adv_report_evt(struct hci_dev *hdev, void *data, 6581 struct sk_buff *skb) 6582 { 6583 struct hci_ev_le_direct_adv_report *ev = data; 6584 u64 instant = jiffies; 6585 int i; 6586 6587 if (!hci_le_ev_skb_pull(hdev, skb, HCI_EV_LE_DIRECT_ADV_REPORT, 6588 flex_array_size(ev, info, ev->num))) 6589 return; 6590 6591 if (!ev->num) 6592 return; 6593 6594 hci_dev_lock(hdev); 6595 6596 for (i = 0; i < ev->num; i++) { 6597 struct hci_ev_le_direct_adv_info *info = &ev->info[i]; 6598 6599 process_adv_report(hdev, info->type, &info->bdaddr, 6600 info->bdaddr_type, &info->direct_addr, 6601 info->direct_addr_type, info->rssi, NULL, 0, 6602 false, false, instant); 6603 } 6604 6605 hci_dev_unlock(hdev); 6606 } 6607 6608 static void hci_le_phy_update_evt(struct hci_dev *hdev, void *data, 6609 struct sk_buff *skb) 6610 { 6611 struct hci_ev_le_phy_update_complete *ev = data; 6612 struct hci_conn *conn; 6613 6614 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 6615 6616 if (ev->status) 6617 return; 6618 6619 hci_dev_lock(hdev); 6620 6621 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 6622 if (!conn) 6623 goto unlock; 6624 6625 conn->le_tx_phy = ev->tx_phy; 6626 conn->le_rx_phy = ev->rx_phy; 6627 6628 unlock: 6629 hci_dev_unlock(hdev); 6630 } 6631 6632 static void hci_le_cis_estabilished_evt(struct hci_dev *hdev, void *data, 6633 struct sk_buff *skb) 6634 { 6635 struct hci_evt_le_cis_established *ev = data; 6636 struct hci_conn *conn; 6637 struct bt_iso_qos *qos; 6638 bool pending = false; 6639 u16 handle = __le16_to_cpu(ev->handle); 6640 u32 c_sdu_interval, p_sdu_interval; 6641 6642 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 6643 6644 hci_dev_lock(hdev); 6645 6646 conn = hci_conn_hash_lookup_handle(hdev, handle); 6647 if (!conn) { 6648 bt_dev_err(hdev, 6649 "Unable to find connection with handle 0x%4.4x", 6650 handle); 6651 goto unlock; 6652 } 6653 6654 if (conn->type != ISO_LINK) { 6655 bt_dev_err(hdev, 6656 "Invalid connection link type handle 0x%4.4x", 6657 handle); 6658 goto unlock; 6659 } 6660 6661 qos = &conn->iso_qos; 6662 6663 pending = test_and_clear_bit(HCI_CONN_CREATE_CIS, &conn->flags); 6664 6665 /* BLUETOOTH CORE SPECIFICATION Version 5.4 | Vol 6, Part G 6666 * page 3075: 6667 * Transport_Latency_C_To_P = CIG_Sync_Delay + (FT_C_To_P) × 6668 * ISO_Interval + SDU_Interval_C_To_P 6669 * ... 6670 * SDU_Interval = (CIG_Sync_Delay + (FT) x ISO_Interval) - 6671 * Transport_Latency 6672 */ 6673 c_sdu_interval = (get_unaligned_le24(ev->cig_sync_delay) + 6674 (ev->c_ft * le16_to_cpu(ev->interval) * 1250)) - 6675 get_unaligned_le24(ev->c_latency); 6676 p_sdu_interval = (get_unaligned_le24(ev->cig_sync_delay) + 6677 (ev->p_ft * le16_to_cpu(ev->interval) * 1250)) - 6678 get_unaligned_le24(ev->p_latency); 6679 6680 switch (conn->role) { 6681 case HCI_ROLE_SLAVE: 6682 qos->ucast.in.interval = c_sdu_interval; 6683 qos->ucast.out.interval = p_sdu_interval; 6684 /* Convert Transport Latency (us) to Latency (msec) */ 6685 qos->ucast.in.latency = 6686 DIV_ROUND_CLOSEST(get_unaligned_le24(ev->c_latency), 6687 1000); 6688 qos->ucast.out.latency = 6689 DIV_ROUND_CLOSEST(get_unaligned_le24(ev->p_latency), 6690 1000); 6691 qos->ucast.in.sdu = le16_to_cpu(ev->c_mtu); 6692 qos->ucast.out.sdu = le16_to_cpu(ev->p_mtu); 6693 qos->ucast.in.phy = ev->c_phy; 6694 qos->ucast.out.phy = ev->p_phy; 6695 break; 6696 case HCI_ROLE_MASTER: 6697 qos->ucast.in.interval = p_sdu_interval; 6698 qos->ucast.out.interval = c_sdu_interval; 6699 /* Convert Transport Latency (us) to Latency (msec) */ 6700 qos->ucast.out.latency = 6701 DIV_ROUND_CLOSEST(get_unaligned_le24(ev->c_latency), 6702 1000); 6703 qos->ucast.in.latency = 6704 DIV_ROUND_CLOSEST(get_unaligned_le24(ev->p_latency), 6705 1000); 6706 qos->ucast.out.sdu = le16_to_cpu(ev->c_mtu); 6707 qos->ucast.in.sdu = le16_to_cpu(ev->p_mtu); 6708 qos->ucast.out.phy = ev->c_phy; 6709 qos->ucast.in.phy = ev->p_phy; 6710 break; 6711 } 6712 6713 if (!ev->status) { 6714 conn->state = BT_CONNECTED; 6715 hci_debugfs_create_conn(conn); 6716 hci_conn_add_sysfs(conn); 6717 hci_iso_setup_path(conn); 6718 goto unlock; 6719 } 6720 6721 conn->state = BT_CLOSED; 6722 hci_connect_cfm(conn, ev->status); 6723 hci_conn_del(conn); 6724 6725 unlock: 6726 if (pending) 6727 hci_le_create_cis_pending(hdev); 6728 6729 hci_dev_unlock(hdev); 6730 } 6731 6732 static void hci_le_reject_cis(struct hci_dev *hdev, __le16 handle) 6733 { 6734 struct hci_cp_le_reject_cis cp; 6735 6736 memset(&cp, 0, sizeof(cp)); 6737 cp.handle = handle; 6738 cp.reason = HCI_ERROR_REJ_BAD_ADDR; 6739 hci_send_cmd(hdev, HCI_OP_LE_REJECT_CIS, sizeof(cp), &cp); 6740 } 6741 6742 static void hci_le_accept_cis(struct hci_dev *hdev, __le16 handle) 6743 { 6744 struct hci_cp_le_accept_cis cp; 6745 6746 memset(&cp, 0, sizeof(cp)); 6747 cp.handle = handle; 6748 hci_send_cmd(hdev, HCI_OP_LE_ACCEPT_CIS, sizeof(cp), &cp); 6749 } 6750 6751 static void hci_le_cis_req_evt(struct hci_dev *hdev, void *data, 6752 struct sk_buff *skb) 6753 { 6754 struct hci_evt_le_cis_req *ev = data; 6755 u16 acl_handle, cis_handle; 6756 struct hci_conn *acl, *cis; 6757 int mask; 6758 __u8 flags = 0; 6759 6760 acl_handle = __le16_to_cpu(ev->acl_handle); 6761 cis_handle = __le16_to_cpu(ev->cis_handle); 6762 6763 bt_dev_dbg(hdev, "acl 0x%4.4x handle 0x%4.4x cig 0x%2.2x cis 0x%2.2x", 6764 acl_handle, cis_handle, ev->cig_id, ev->cis_id); 6765 6766 hci_dev_lock(hdev); 6767 6768 acl = hci_conn_hash_lookup_handle(hdev, acl_handle); 6769 if (!acl) 6770 goto unlock; 6771 6772 mask = hci_proto_connect_ind(hdev, &acl->dst, ISO_LINK, &flags); 6773 if (!(mask & HCI_LM_ACCEPT)) { 6774 hci_le_reject_cis(hdev, ev->cis_handle); 6775 goto unlock; 6776 } 6777 6778 cis = hci_conn_hash_lookup_handle(hdev, cis_handle); 6779 if (!cis) { 6780 cis = hci_conn_add(hdev, ISO_LINK, &acl->dst, HCI_ROLE_SLAVE, 6781 cis_handle); 6782 if (IS_ERR(cis)) { 6783 hci_le_reject_cis(hdev, ev->cis_handle); 6784 goto unlock; 6785 } 6786 } 6787 6788 cis->iso_qos.ucast.cig = ev->cig_id; 6789 cis->iso_qos.ucast.cis = ev->cis_id; 6790 6791 if (!(flags & HCI_PROTO_DEFER)) { 6792 hci_le_accept_cis(hdev, ev->cis_handle); 6793 } else { 6794 cis->state = BT_CONNECT2; 6795 hci_connect_cfm(cis, 0); 6796 } 6797 6798 unlock: 6799 hci_dev_unlock(hdev); 6800 } 6801 6802 static int hci_iso_term_big_sync(struct hci_dev *hdev, void *data) 6803 { 6804 u8 handle = PTR_UINT(data); 6805 6806 return hci_le_terminate_big_sync(hdev, handle, 6807 HCI_ERROR_LOCAL_HOST_TERM); 6808 } 6809 6810 static void hci_le_create_big_complete_evt(struct hci_dev *hdev, void *data, 6811 struct sk_buff *skb) 6812 { 6813 struct hci_evt_le_create_big_complete *ev = data; 6814 struct hci_conn *conn; 6815 __u8 i = 0; 6816 6817 BT_DBG("%s status 0x%2.2x", hdev->name, ev->status); 6818 6819 if (!hci_le_ev_skb_pull(hdev, skb, HCI_EVT_LE_CREATE_BIG_COMPLETE, 6820 flex_array_size(ev, bis_handle, ev->num_bis))) 6821 return; 6822 6823 hci_dev_lock(hdev); 6824 rcu_read_lock(); 6825 6826 /* Connect all BISes that are bound to the BIG */ 6827 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 6828 if (bacmp(&conn->dst, BDADDR_ANY) || 6829 conn->type != ISO_LINK || 6830 conn->iso_qos.bcast.big != ev->handle) 6831 continue; 6832 6833 if (hci_conn_set_handle(conn, 6834 __le16_to_cpu(ev->bis_handle[i++]))) 6835 continue; 6836 6837 if (!ev->status) { 6838 conn->state = BT_CONNECTED; 6839 set_bit(HCI_CONN_BIG_CREATED, &conn->flags); 6840 rcu_read_unlock(); 6841 hci_debugfs_create_conn(conn); 6842 hci_conn_add_sysfs(conn); 6843 hci_iso_setup_path(conn); 6844 rcu_read_lock(); 6845 continue; 6846 } 6847 6848 hci_connect_cfm(conn, ev->status); 6849 rcu_read_unlock(); 6850 hci_conn_del(conn); 6851 rcu_read_lock(); 6852 } 6853 6854 rcu_read_unlock(); 6855 6856 if (!ev->status && !i) 6857 /* If no BISes have been connected for the BIG, 6858 * terminate. This is in case all bound connections 6859 * have been closed before the BIG creation 6860 * has completed. 6861 */ 6862 hci_cmd_sync_queue(hdev, hci_iso_term_big_sync, 6863 UINT_PTR(ev->handle), NULL); 6864 6865 hci_dev_unlock(hdev); 6866 } 6867 6868 static void hci_le_big_sync_established_evt(struct hci_dev *hdev, void *data, 6869 struct sk_buff *skb) 6870 { 6871 struct hci_evt_le_big_sync_estabilished *ev = data; 6872 struct hci_conn *bis; 6873 struct hci_conn *pa_sync; 6874 int i; 6875 6876 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 6877 6878 if (!hci_le_ev_skb_pull(hdev, skb, HCI_EVT_LE_BIG_SYNC_ESTABILISHED, 6879 flex_array_size(ev, bis, ev->num_bis))) 6880 return; 6881 6882 hci_dev_lock(hdev); 6883 6884 if (!ev->status) { 6885 pa_sync = hci_conn_hash_lookup_pa_sync_big_handle(hdev, ev->handle); 6886 if (pa_sync) 6887 /* Also mark the BIG sync established event on the 6888 * associated PA sync hcon 6889 */ 6890 set_bit(HCI_CONN_BIG_SYNC, &pa_sync->flags); 6891 } 6892 6893 for (i = 0; i < ev->num_bis; i++) { 6894 u16 handle = le16_to_cpu(ev->bis[i]); 6895 __le32 interval; 6896 6897 bis = hci_conn_hash_lookup_handle(hdev, handle); 6898 if (!bis) { 6899 if (handle > HCI_CONN_HANDLE_MAX) { 6900 bt_dev_dbg(hdev, "ignore too large handle %u", handle); 6901 continue; 6902 } 6903 bis = hci_conn_add(hdev, ISO_LINK, BDADDR_ANY, 6904 HCI_ROLE_SLAVE, handle); 6905 if (IS_ERR(bis)) 6906 continue; 6907 } 6908 6909 if (ev->status != 0x42) 6910 /* Mark PA sync as established */ 6911 set_bit(HCI_CONN_PA_SYNC, &bis->flags); 6912 6913 bis->iso_qos.bcast.big = ev->handle; 6914 memset(&interval, 0, sizeof(interval)); 6915 memcpy(&interval, ev->latency, sizeof(ev->latency)); 6916 bis->iso_qos.bcast.in.interval = le32_to_cpu(interval); 6917 /* Convert ISO Interval (1.25 ms slots) to latency (ms) */ 6918 bis->iso_qos.bcast.in.latency = le16_to_cpu(ev->interval) * 125 / 100; 6919 bis->iso_qos.bcast.in.sdu = le16_to_cpu(ev->max_pdu); 6920 6921 if (!ev->status) { 6922 set_bit(HCI_CONN_BIG_SYNC, &bis->flags); 6923 hci_iso_setup_path(bis); 6924 } 6925 } 6926 6927 /* In case BIG sync failed, notify each failed connection to 6928 * the user after all hci connections have been added 6929 */ 6930 if (ev->status) 6931 for (i = 0; i < ev->num_bis; i++) { 6932 u16 handle = le16_to_cpu(ev->bis[i]); 6933 6934 bis = hci_conn_hash_lookup_handle(hdev, handle); 6935 if (!bis) 6936 continue; 6937 6938 set_bit(HCI_CONN_BIG_SYNC_FAILED, &bis->flags); 6939 hci_connect_cfm(bis, ev->status); 6940 } 6941 6942 hci_dev_unlock(hdev); 6943 } 6944 6945 static void hci_le_big_info_adv_report_evt(struct hci_dev *hdev, void *data, 6946 struct sk_buff *skb) 6947 { 6948 struct hci_evt_le_big_info_adv_report *ev = data; 6949 int mask = hdev->link_mode; 6950 __u8 flags = 0; 6951 struct hci_conn *pa_sync; 6952 6953 bt_dev_dbg(hdev, "sync_handle 0x%4.4x", le16_to_cpu(ev->sync_handle)); 6954 6955 hci_dev_lock(hdev); 6956 6957 mask |= hci_proto_connect_ind(hdev, BDADDR_ANY, ISO_LINK, &flags); 6958 if (!(mask & HCI_LM_ACCEPT)) { 6959 hci_le_pa_term_sync(hdev, ev->sync_handle); 6960 goto unlock; 6961 } 6962 6963 if (!(flags & HCI_PROTO_DEFER)) 6964 goto unlock; 6965 6966 pa_sync = hci_conn_hash_lookup_pa_sync_handle 6967 (hdev, 6968 le16_to_cpu(ev->sync_handle)); 6969 6970 if (pa_sync) 6971 goto unlock; 6972 6973 /* Add connection to indicate the PA sync event */ 6974 pa_sync = hci_conn_add_unset(hdev, ISO_LINK, BDADDR_ANY, 6975 HCI_ROLE_SLAVE); 6976 6977 if (IS_ERR(pa_sync)) 6978 goto unlock; 6979 6980 pa_sync->sync_handle = le16_to_cpu(ev->sync_handle); 6981 set_bit(HCI_CONN_PA_SYNC, &pa_sync->flags); 6982 6983 /* Notify iso layer */ 6984 hci_connect_cfm(pa_sync, 0x00); 6985 6986 /* Notify MGMT layer */ 6987 mgmt_device_connected(hdev, pa_sync, NULL, 0); 6988 6989 unlock: 6990 hci_dev_unlock(hdev); 6991 } 6992 6993 #define HCI_LE_EV_VL(_op, _func, _min_len, _max_len) \ 6994 [_op] = { \ 6995 .func = _func, \ 6996 .min_len = _min_len, \ 6997 .max_len = _max_len, \ 6998 } 6999 7000 #define HCI_LE_EV(_op, _func, _len) \ 7001 HCI_LE_EV_VL(_op, _func, _len, _len) 7002 7003 #define HCI_LE_EV_STATUS(_op, _func) \ 7004 HCI_LE_EV(_op, _func, sizeof(struct hci_ev_status)) 7005 7006 /* Entries in this table shall have their position according to the subevent 7007 * opcode they handle so the use of the macros above is recommend since it does 7008 * attempt to initialize at its proper index using Designated Initializers that 7009 * way events without a callback function can be ommited. 7010 */ 7011 static const struct hci_le_ev { 7012 void (*func)(struct hci_dev *hdev, void *data, struct sk_buff *skb); 7013 u16 min_len; 7014 u16 max_len; 7015 } hci_le_ev_table[U8_MAX + 1] = { 7016 /* [0x01 = HCI_EV_LE_CONN_COMPLETE] */ 7017 HCI_LE_EV(HCI_EV_LE_CONN_COMPLETE, hci_le_conn_complete_evt, 7018 sizeof(struct hci_ev_le_conn_complete)), 7019 /* [0x02 = HCI_EV_LE_ADVERTISING_REPORT] */ 7020 HCI_LE_EV_VL(HCI_EV_LE_ADVERTISING_REPORT, hci_le_adv_report_evt, 7021 sizeof(struct hci_ev_le_advertising_report), 7022 HCI_MAX_EVENT_SIZE), 7023 /* [0x03 = HCI_EV_LE_CONN_UPDATE_COMPLETE] */ 7024 HCI_LE_EV(HCI_EV_LE_CONN_UPDATE_COMPLETE, 7025 hci_le_conn_update_complete_evt, 7026 sizeof(struct hci_ev_le_conn_update_complete)), 7027 /* [0x04 = HCI_EV_LE_REMOTE_FEAT_COMPLETE] */ 7028 HCI_LE_EV(HCI_EV_LE_REMOTE_FEAT_COMPLETE, 7029 hci_le_remote_feat_complete_evt, 7030 sizeof(struct hci_ev_le_remote_feat_complete)), 7031 /* [0x05 = HCI_EV_LE_LTK_REQ] */ 7032 HCI_LE_EV(HCI_EV_LE_LTK_REQ, hci_le_ltk_request_evt, 7033 sizeof(struct hci_ev_le_ltk_req)), 7034 /* [0x06 = HCI_EV_LE_REMOTE_CONN_PARAM_REQ] */ 7035 HCI_LE_EV(HCI_EV_LE_REMOTE_CONN_PARAM_REQ, 7036 hci_le_remote_conn_param_req_evt, 7037 sizeof(struct hci_ev_le_remote_conn_param_req)), 7038 /* [0x0a = HCI_EV_LE_ENHANCED_CONN_COMPLETE] */ 7039 HCI_LE_EV(HCI_EV_LE_ENHANCED_CONN_COMPLETE, 7040 hci_le_enh_conn_complete_evt, 7041 sizeof(struct hci_ev_le_enh_conn_complete)), 7042 /* [0x0b = HCI_EV_LE_DIRECT_ADV_REPORT] */ 7043 HCI_LE_EV_VL(HCI_EV_LE_DIRECT_ADV_REPORT, hci_le_direct_adv_report_evt, 7044 sizeof(struct hci_ev_le_direct_adv_report), 7045 HCI_MAX_EVENT_SIZE), 7046 /* [0x0c = HCI_EV_LE_PHY_UPDATE_COMPLETE] */ 7047 HCI_LE_EV(HCI_EV_LE_PHY_UPDATE_COMPLETE, hci_le_phy_update_evt, 7048 sizeof(struct hci_ev_le_phy_update_complete)), 7049 /* [0x0d = HCI_EV_LE_EXT_ADV_REPORT] */ 7050 HCI_LE_EV_VL(HCI_EV_LE_EXT_ADV_REPORT, hci_le_ext_adv_report_evt, 7051 sizeof(struct hci_ev_le_ext_adv_report), 7052 HCI_MAX_EVENT_SIZE), 7053 /* [0x0e = HCI_EV_LE_PA_SYNC_ESTABLISHED] */ 7054 HCI_LE_EV(HCI_EV_LE_PA_SYNC_ESTABLISHED, 7055 hci_le_pa_sync_estabilished_evt, 7056 sizeof(struct hci_ev_le_pa_sync_established)), 7057 /* [0x0f = HCI_EV_LE_PER_ADV_REPORT] */ 7058 HCI_LE_EV_VL(HCI_EV_LE_PER_ADV_REPORT, 7059 hci_le_per_adv_report_evt, 7060 sizeof(struct hci_ev_le_per_adv_report), 7061 HCI_MAX_EVENT_SIZE), 7062 /* [0x12 = HCI_EV_LE_EXT_ADV_SET_TERM] */ 7063 HCI_LE_EV(HCI_EV_LE_EXT_ADV_SET_TERM, hci_le_ext_adv_term_evt, 7064 sizeof(struct hci_evt_le_ext_adv_set_term)), 7065 /* [0x19 = HCI_EVT_LE_CIS_ESTABLISHED] */ 7066 HCI_LE_EV(HCI_EVT_LE_CIS_ESTABLISHED, hci_le_cis_estabilished_evt, 7067 sizeof(struct hci_evt_le_cis_established)), 7068 /* [0x1a = HCI_EVT_LE_CIS_REQ] */ 7069 HCI_LE_EV(HCI_EVT_LE_CIS_REQ, hci_le_cis_req_evt, 7070 sizeof(struct hci_evt_le_cis_req)), 7071 /* [0x1b = HCI_EVT_LE_CREATE_BIG_COMPLETE] */ 7072 HCI_LE_EV_VL(HCI_EVT_LE_CREATE_BIG_COMPLETE, 7073 hci_le_create_big_complete_evt, 7074 sizeof(struct hci_evt_le_create_big_complete), 7075 HCI_MAX_EVENT_SIZE), 7076 /* [0x1d = HCI_EV_LE_BIG_SYNC_ESTABILISHED] */ 7077 HCI_LE_EV_VL(HCI_EVT_LE_BIG_SYNC_ESTABILISHED, 7078 hci_le_big_sync_established_evt, 7079 sizeof(struct hci_evt_le_big_sync_estabilished), 7080 HCI_MAX_EVENT_SIZE), 7081 /* [0x22 = HCI_EVT_LE_BIG_INFO_ADV_REPORT] */ 7082 HCI_LE_EV_VL(HCI_EVT_LE_BIG_INFO_ADV_REPORT, 7083 hci_le_big_info_adv_report_evt, 7084 sizeof(struct hci_evt_le_big_info_adv_report), 7085 HCI_MAX_EVENT_SIZE), 7086 }; 7087 7088 static void hci_le_meta_evt(struct hci_dev *hdev, void *data, 7089 struct sk_buff *skb, u16 *opcode, u8 *status, 7090 hci_req_complete_t *req_complete, 7091 hci_req_complete_skb_t *req_complete_skb) 7092 { 7093 struct hci_ev_le_meta *ev = data; 7094 const struct hci_le_ev *subev; 7095 7096 bt_dev_dbg(hdev, "subevent 0x%2.2x", ev->subevent); 7097 7098 /* Only match event if command OGF is for LE */ 7099 if (hdev->req_skb && 7100 hci_opcode_ogf(hci_skb_opcode(hdev->req_skb)) == 0x08 && 7101 hci_skb_event(hdev->req_skb) == ev->subevent) { 7102 *opcode = hci_skb_opcode(hdev->req_skb); 7103 hci_req_cmd_complete(hdev, *opcode, 0x00, req_complete, 7104 req_complete_skb); 7105 } 7106 7107 subev = &hci_le_ev_table[ev->subevent]; 7108 if (!subev->func) 7109 return; 7110 7111 if (skb->len < subev->min_len) { 7112 bt_dev_err(hdev, "unexpected subevent 0x%2.2x length: %u < %u", 7113 ev->subevent, skb->len, subev->min_len); 7114 return; 7115 } 7116 7117 /* Just warn if the length is over max_len size it still be 7118 * possible to partially parse the event so leave to callback to 7119 * decide if that is acceptable. 7120 */ 7121 if (skb->len > subev->max_len) 7122 bt_dev_warn(hdev, "unexpected subevent 0x%2.2x length: %u > %u", 7123 ev->subevent, skb->len, subev->max_len); 7124 data = hci_le_ev_skb_pull(hdev, skb, ev->subevent, subev->min_len); 7125 if (!data) 7126 return; 7127 7128 subev->func(hdev, data, skb); 7129 } 7130 7131 static bool hci_get_cmd_complete(struct hci_dev *hdev, u16 opcode, 7132 u8 event, struct sk_buff *skb) 7133 { 7134 struct hci_ev_cmd_complete *ev; 7135 struct hci_event_hdr *hdr; 7136 7137 if (!skb) 7138 return false; 7139 7140 hdr = hci_ev_skb_pull(hdev, skb, event, sizeof(*hdr)); 7141 if (!hdr) 7142 return false; 7143 7144 if (event) { 7145 if (hdr->evt != event) 7146 return false; 7147 return true; 7148 } 7149 7150 /* Check if request ended in Command Status - no way to retrieve 7151 * any extra parameters in this case. 7152 */ 7153 if (hdr->evt == HCI_EV_CMD_STATUS) 7154 return false; 7155 7156 if (hdr->evt != HCI_EV_CMD_COMPLETE) { 7157 bt_dev_err(hdev, "last event is not cmd complete (0x%2.2x)", 7158 hdr->evt); 7159 return false; 7160 } 7161 7162 ev = hci_cc_skb_pull(hdev, skb, opcode, sizeof(*ev)); 7163 if (!ev) 7164 return false; 7165 7166 if (opcode != __le16_to_cpu(ev->opcode)) { 7167 BT_DBG("opcode doesn't match (0x%2.2x != 0x%2.2x)", opcode, 7168 __le16_to_cpu(ev->opcode)); 7169 return false; 7170 } 7171 7172 return true; 7173 } 7174 7175 static void hci_store_wake_reason(struct hci_dev *hdev, u8 event, 7176 struct sk_buff *skb) 7177 { 7178 struct hci_ev_le_advertising_info *adv; 7179 struct hci_ev_le_direct_adv_info *direct_adv; 7180 struct hci_ev_le_ext_adv_info *ext_adv; 7181 const struct hci_ev_conn_complete *conn_complete = (void *)skb->data; 7182 const struct hci_ev_conn_request *conn_request = (void *)skb->data; 7183 7184 hci_dev_lock(hdev); 7185 7186 /* If we are currently suspended and this is the first BT event seen, 7187 * save the wake reason associated with the event. 7188 */ 7189 if (!hdev->suspended || hdev->wake_reason) 7190 goto unlock; 7191 7192 /* Default to remote wake. Values for wake_reason are documented in the 7193 * Bluez mgmt api docs. 7194 */ 7195 hdev->wake_reason = MGMT_WAKE_REASON_REMOTE_WAKE; 7196 7197 /* Once configured for remote wakeup, we should only wake up for 7198 * reconnections. It's useful to see which device is waking us up so 7199 * keep track of the bdaddr of the connection event that woke us up. 7200 */ 7201 if (event == HCI_EV_CONN_REQUEST) { 7202 bacpy(&hdev->wake_addr, &conn_request->bdaddr); 7203 hdev->wake_addr_type = BDADDR_BREDR; 7204 } else if (event == HCI_EV_CONN_COMPLETE) { 7205 bacpy(&hdev->wake_addr, &conn_complete->bdaddr); 7206 hdev->wake_addr_type = BDADDR_BREDR; 7207 } else if (event == HCI_EV_LE_META) { 7208 struct hci_ev_le_meta *le_ev = (void *)skb->data; 7209 u8 subevent = le_ev->subevent; 7210 u8 *ptr = &skb->data[sizeof(*le_ev)]; 7211 u8 num_reports = *ptr; 7212 7213 if ((subevent == HCI_EV_LE_ADVERTISING_REPORT || 7214 subevent == HCI_EV_LE_DIRECT_ADV_REPORT || 7215 subevent == HCI_EV_LE_EXT_ADV_REPORT) && 7216 num_reports) { 7217 adv = (void *)(ptr + 1); 7218 direct_adv = (void *)(ptr + 1); 7219 ext_adv = (void *)(ptr + 1); 7220 7221 switch (subevent) { 7222 case HCI_EV_LE_ADVERTISING_REPORT: 7223 bacpy(&hdev->wake_addr, &adv->bdaddr); 7224 hdev->wake_addr_type = adv->bdaddr_type; 7225 break; 7226 case HCI_EV_LE_DIRECT_ADV_REPORT: 7227 bacpy(&hdev->wake_addr, &direct_adv->bdaddr); 7228 hdev->wake_addr_type = direct_adv->bdaddr_type; 7229 break; 7230 case HCI_EV_LE_EXT_ADV_REPORT: 7231 bacpy(&hdev->wake_addr, &ext_adv->bdaddr); 7232 hdev->wake_addr_type = ext_adv->bdaddr_type; 7233 break; 7234 } 7235 } 7236 } else { 7237 hdev->wake_reason = MGMT_WAKE_REASON_UNEXPECTED; 7238 } 7239 7240 unlock: 7241 hci_dev_unlock(hdev); 7242 } 7243 7244 #define HCI_EV_VL(_op, _func, _min_len, _max_len) \ 7245 [_op] = { \ 7246 .req = false, \ 7247 .func = _func, \ 7248 .min_len = _min_len, \ 7249 .max_len = _max_len, \ 7250 } 7251 7252 #define HCI_EV(_op, _func, _len) \ 7253 HCI_EV_VL(_op, _func, _len, _len) 7254 7255 #define HCI_EV_STATUS(_op, _func) \ 7256 HCI_EV(_op, _func, sizeof(struct hci_ev_status)) 7257 7258 #define HCI_EV_REQ_VL(_op, _func, _min_len, _max_len) \ 7259 [_op] = { \ 7260 .req = true, \ 7261 .func_req = _func, \ 7262 .min_len = _min_len, \ 7263 .max_len = _max_len, \ 7264 } 7265 7266 #define HCI_EV_REQ(_op, _func, _len) \ 7267 HCI_EV_REQ_VL(_op, _func, _len, _len) 7268 7269 /* Entries in this table shall have their position according to the event opcode 7270 * they handle so the use of the macros above is recommend since it does attempt 7271 * to initialize at its proper index using Designated Initializers that way 7272 * events without a callback function don't have entered. 7273 */ 7274 static const struct hci_ev { 7275 bool req; 7276 union { 7277 void (*func)(struct hci_dev *hdev, void *data, 7278 struct sk_buff *skb); 7279 void (*func_req)(struct hci_dev *hdev, void *data, 7280 struct sk_buff *skb, u16 *opcode, u8 *status, 7281 hci_req_complete_t *req_complete, 7282 hci_req_complete_skb_t *req_complete_skb); 7283 }; 7284 u16 min_len; 7285 u16 max_len; 7286 } hci_ev_table[U8_MAX + 1] = { 7287 /* [0x01 = HCI_EV_INQUIRY_COMPLETE] */ 7288 HCI_EV_STATUS(HCI_EV_INQUIRY_COMPLETE, hci_inquiry_complete_evt), 7289 /* [0x02 = HCI_EV_INQUIRY_RESULT] */ 7290 HCI_EV_VL(HCI_EV_INQUIRY_RESULT, hci_inquiry_result_evt, 7291 sizeof(struct hci_ev_inquiry_result), HCI_MAX_EVENT_SIZE), 7292 /* [0x03 = HCI_EV_CONN_COMPLETE] */ 7293 HCI_EV(HCI_EV_CONN_COMPLETE, hci_conn_complete_evt, 7294 sizeof(struct hci_ev_conn_complete)), 7295 /* [0x04 = HCI_EV_CONN_REQUEST] */ 7296 HCI_EV(HCI_EV_CONN_REQUEST, hci_conn_request_evt, 7297 sizeof(struct hci_ev_conn_request)), 7298 /* [0x05 = HCI_EV_DISCONN_COMPLETE] */ 7299 HCI_EV(HCI_EV_DISCONN_COMPLETE, hci_disconn_complete_evt, 7300 sizeof(struct hci_ev_disconn_complete)), 7301 /* [0x06 = HCI_EV_AUTH_COMPLETE] */ 7302 HCI_EV(HCI_EV_AUTH_COMPLETE, hci_auth_complete_evt, 7303 sizeof(struct hci_ev_auth_complete)), 7304 /* [0x07 = HCI_EV_REMOTE_NAME] */ 7305 HCI_EV(HCI_EV_REMOTE_NAME, hci_remote_name_evt, 7306 sizeof(struct hci_ev_remote_name)), 7307 /* [0x08 = HCI_EV_ENCRYPT_CHANGE] */ 7308 HCI_EV(HCI_EV_ENCRYPT_CHANGE, hci_encrypt_change_evt, 7309 sizeof(struct hci_ev_encrypt_change)), 7310 /* [0x09 = HCI_EV_CHANGE_LINK_KEY_COMPLETE] */ 7311 HCI_EV(HCI_EV_CHANGE_LINK_KEY_COMPLETE, 7312 hci_change_link_key_complete_evt, 7313 sizeof(struct hci_ev_change_link_key_complete)), 7314 /* [0x0b = HCI_EV_REMOTE_FEATURES] */ 7315 HCI_EV(HCI_EV_REMOTE_FEATURES, hci_remote_features_evt, 7316 sizeof(struct hci_ev_remote_features)), 7317 /* [0x0e = HCI_EV_CMD_COMPLETE] */ 7318 HCI_EV_REQ_VL(HCI_EV_CMD_COMPLETE, hci_cmd_complete_evt, 7319 sizeof(struct hci_ev_cmd_complete), HCI_MAX_EVENT_SIZE), 7320 /* [0x0f = HCI_EV_CMD_STATUS] */ 7321 HCI_EV_REQ(HCI_EV_CMD_STATUS, hci_cmd_status_evt, 7322 sizeof(struct hci_ev_cmd_status)), 7323 /* [0x10 = HCI_EV_CMD_STATUS] */ 7324 HCI_EV(HCI_EV_HARDWARE_ERROR, hci_hardware_error_evt, 7325 sizeof(struct hci_ev_hardware_error)), 7326 /* [0x12 = HCI_EV_ROLE_CHANGE] */ 7327 HCI_EV(HCI_EV_ROLE_CHANGE, hci_role_change_evt, 7328 sizeof(struct hci_ev_role_change)), 7329 /* [0x13 = HCI_EV_NUM_COMP_PKTS] */ 7330 HCI_EV_VL(HCI_EV_NUM_COMP_PKTS, hci_num_comp_pkts_evt, 7331 sizeof(struct hci_ev_num_comp_pkts), HCI_MAX_EVENT_SIZE), 7332 /* [0x14 = HCI_EV_MODE_CHANGE] */ 7333 HCI_EV(HCI_EV_MODE_CHANGE, hci_mode_change_evt, 7334 sizeof(struct hci_ev_mode_change)), 7335 /* [0x16 = HCI_EV_PIN_CODE_REQ] */ 7336 HCI_EV(HCI_EV_PIN_CODE_REQ, hci_pin_code_request_evt, 7337 sizeof(struct hci_ev_pin_code_req)), 7338 /* [0x17 = HCI_EV_LINK_KEY_REQ] */ 7339 HCI_EV(HCI_EV_LINK_KEY_REQ, hci_link_key_request_evt, 7340 sizeof(struct hci_ev_link_key_req)), 7341 /* [0x18 = HCI_EV_LINK_KEY_NOTIFY] */ 7342 HCI_EV(HCI_EV_LINK_KEY_NOTIFY, hci_link_key_notify_evt, 7343 sizeof(struct hci_ev_link_key_notify)), 7344 /* [0x1c = HCI_EV_CLOCK_OFFSET] */ 7345 HCI_EV(HCI_EV_CLOCK_OFFSET, hci_clock_offset_evt, 7346 sizeof(struct hci_ev_clock_offset)), 7347 /* [0x1d = HCI_EV_PKT_TYPE_CHANGE] */ 7348 HCI_EV(HCI_EV_PKT_TYPE_CHANGE, hci_pkt_type_change_evt, 7349 sizeof(struct hci_ev_pkt_type_change)), 7350 /* [0x20 = HCI_EV_PSCAN_REP_MODE] */ 7351 HCI_EV(HCI_EV_PSCAN_REP_MODE, hci_pscan_rep_mode_evt, 7352 sizeof(struct hci_ev_pscan_rep_mode)), 7353 /* [0x22 = HCI_EV_INQUIRY_RESULT_WITH_RSSI] */ 7354 HCI_EV_VL(HCI_EV_INQUIRY_RESULT_WITH_RSSI, 7355 hci_inquiry_result_with_rssi_evt, 7356 sizeof(struct hci_ev_inquiry_result_rssi), 7357 HCI_MAX_EVENT_SIZE), 7358 /* [0x23 = HCI_EV_REMOTE_EXT_FEATURES] */ 7359 HCI_EV(HCI_EV_REMOTE_EXT_FEATURES, hci_remote_ext_features_evt, 7360 sizeof(struct hci_ev_remote_ext_features)), 7361 /* [0x2c = HCI_EV_SYNC_CONN_COMPLETE] */ 7362 HCI_EV(HCI_EV_SYNC_CONN_COMPLETE, hci_sync_conn_complete_evt, 7363 sizeof(struct hci_ev_sync_conn_complete)), 7364 /* [0x2d = HCI_EV_EXTENDED_INQUIRY_RESULT] */ 7365 HCI_EV_VL(HCI_EV_EXTENDED_INQUIRY_RESULT, 7366 hci_extended_inquiry_result_evt, 7367 sizeof(struct hci_ev_ext_inquiry_result), HCI_MAX_EVENT_SIZE), 7368 /* [0x30 = HCI_EV_KEY_REFRESH_COMPLETE] */ 7369 HCI_EV(HCI_EV_KEY_REFRESH_COMPLETE, hci_key_refresh_complete_evt, 7370 sizeof(struct hci_ev_key_refresh_complete)), 7371 /* [0x31 = HCI_EV_IO_CAPA_REQUEST] */ 7372 HCI_EV(HCI_EV_IO_CAPA_REQUEST, hci_io_capa_request_evt, 7373 sizeof(struct hci_ev_io_capa_request)), 7374 /* [0x32 = HCI_EV_IO_CAPA_REPLY] */ 7375 HCI_EV(HCI_EV_IO_CAPA_REPLY, hci_io_capa_reply_evt, 7376 sizeof(struct hci_ev_io_capa_reply)), 7377 /* [0x33 = HCI_EV_USER_CONFIRM_REQUEST] */ 7378 HCI_EV(HCI_EV_USER_CONFIRM_REQUEST, hci_user_confirm_request_evt, 7379 sizeof(struct hci_ev_user_confirm_req)), 7380 /* [0x34 = HCI_EV_USER_PASSKEY_REQUEST] */ 7381 HCI_EV(HCI_EV_USER_PASSKEY_REQUEST, hci_user_passkey_request_evt, 7382 sizeof(struct hci_ev_user_passkey_req)), 7383 /* [0x35 = HCI_EV_REMOTE_OOB_DATA_REQUEST] */ 7384 HCI_EV(HCI_EV_REMOTE_OOB_DATA_REQUEST, hci_remote_oob_data_request_evt, 7385 sizeof(struct hci_ev_remote_oob_data_request)), 7386 /* [0x36 = HCI_EV_SIMPLE_PAIR_COMPLETE] */ 7387 HCI_EV(HCI_EV_SIMPLE_PAIR_COMPLETE, hci_simple_pair_complete_evt, 7388 sizeof(struct hci_ev_simple_pair_complete)), 7389 /* [0x3b = HCI_EV_USER_PASSKEY_NOTIFY] */ 7390 HCI_EV(HCI_EV_USER_PASSKEY_NOTIFY, hci_user_passkey_notify_evt, 7391 sizeof(struct hci_ev_user_passkey_notify)), 7392 /* [0x3c = HCI_EV_KEYPRESS_NOTIFY] */ 7393 HCI_EV(HCI_EV_KEYPRESS_NOTIFY, hci_keypress_notify_evt, 7394 sizeof(struct hci_ev_keypress_notify)), 7395 /* [0x3d = HCI_EV_REMOTE_HOST_FEATURES] */ 7396 HCI_EV(HCI_EV_REMOTE_HOST_FEATURES, hci_remote_host_features_evt, 7397 sizeof(struct hci_ev_remote_host_features)), 7398 /* [0x3e = HCI_EV_LE_META] */ 7399 HCI_EV_REQ_VL(HCI_EV_LE_META, hci_le_meta_evt, 7400 sizeof(struct hci_ev_le_meta), HCI_MAX_EVENT_SIZE), 7401 /* [0xff = HCI_EV_VENDOR] */ 7402 HCI_EV_VL(HCI_EV_VENDOR, msft_vendor_evt, 0, HCI_MAX_EVENT_SIZE), 7403 }; 7404 7405 static void hci_event_func(struct hci_dev *hdev, u8 event, struct sk_buff *skb, 7406 u16 *opcode, u8 *status, 7407 hci_req_complete_t *req_complete, 7408 hci_req_complete_skb_t *req_complete_skb) 7409 { 7410 const struct hci_ev *ev = &hci_ev_table[event]; 7411 void *data; 7412 7413 if (!ev->func) 7414 return; 7415 7416 if (skb->len < ev->min_len) { 7417 bt_dev_err(hdev, "unexpected event 0x%2.2x length: %u < %u", 7418 event, skb->len, ev->min_len); 7419 return; 7420 } 7421 7422 /* Just warn if the length is over max_len size it still be 7423 * possible to partially parse the event so leave to callback to 7424 * decide if that is acceptable. 7425 */ 7426 if (skb->len > ev->max_len) 7427 bt_dev_warn_ratelimited(hdev, 7428 "unexpected event 0x%2.2x length: %u > %u", 7429 event, skb->len, ev->max_len); 7430 7431 data = hci_ev_skb_pull(hdev, skb, event, ev->min_len); 7432 if (!data) 7433 return; 7434 7435 if (ev->req) 7436 ev->func_req(hdev, data, skb, opcode, status, req_complete, 7437 req_complete_skb); 7438 else 7439 ev->func(hdev, data, skb); 7440 } 7441 7442 void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb) 7443 { 7444 struct hci_event_hdr *hdr = (void *) skb->data; 7445 hci_req_complete_t req_complete = NULL; 7446 hci_req_complete_skb_t req_complete_skb = NULL; 7447 struct sk_buff *orig_skb = NULL; 7448 u8 status = 0, event, req_evt = 0; 7449 u16 opcode = HCI_OP_NOP; 7450 7451 if (skb->len < sizeof(*hdr)) { 7452 bt_dev_err(hdev, "Malformed HCI Event"); 7453 goto done; 7454 } 7455 7456 kfree_skb(hdev->recv_event); 7457 hdev->recv_event = skb_clone(skb, GFP_KERNEL); 7458 7459 event = hdr->evt; 7460 if (!event) { 7461 bt_dev_warn(hdev, "Received unexpected HCI Event 0x%2.2x", 7462 event); 7463 goto done; 7464 } 7465 7466 /* Only match event if command OGF is not for LE */ 7467 if (hdev->req_skb && 7468 hci_opcode_ogf(hci_skb_opcode(hdev->req_skb)) != 0x08 && 7469 hci_skb_event(hdev->req_skb) == event) { 7470 hci_req_cmd_complete(hdev, hci_skb_opcode(hdev->req_skb), 7471 status, &req_complete, &req_complete_skb); 7472 req_evt = event; 7473 } 7474 7475 /* If it looks like we might end up having to call 7476 * req_complete_skb, store a pristine copy of the skb since the 7477 * various handlers may modify the original one through 7478 * skb_pull() calls, etc. 7479 */ 7480 if (req_complete_skb || event == HCI_EV_CMD_STATUS || 7481 event == HCI_EV_CMD_COMPLETE) 7482 orig_skb = skb_clone(skb, GFP_KERNEL); 7483 7484 skb_pull(skb, HCI_EVENT_HDR_SIZE); 7485 7486 /* Store wake reason if we're suspended */ 7487 hci_store_wake_reason(hdev, event, skb); 7488 7489 bt_dev_dbg(hdev, "event 0x%2.2x", event); 7490 7491 hci_event_func(hdev, event, skb, &opcode, &status, &req_complete, 7492 &req_complete_skb); 7493 7494 if (req_complete) { 7495 req_complete(hdev, status, opcode); 7496 } else if (req_complete_skb) { 7497 if (!hci_get_cmd_complete(hdev, opcode, req_evt, orig_skb)) { 7498 kfree_skb(orig_skb); 7499 orig_skb = NULL; 7500 } 7501 req_complete_skb(hdev, status, opcode, orig_skb); 7502 } 7503 7504 done: 7505 kfree_skb(orig_skb); 7506 kfree_skb(skb); 7507 hdev->stat.evt_rx++; 7508 } 7509