1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 /* Bluetooth HCI event handling. */ 26 27 #include <asm/unaligned.h> 28 29 #include <net/bluetooth/bluetooth.h> 30 #include <net/bluetooth/hci_core.h> 31 #include <net/bluetooth/mgmt.h> 32 33 #include "hci_request.h" 34 #include "hci_debugfs.h" 35 #include "a2mp.h" 36 #include "amp.h" 37 #include "smp.h" 38 39 #define ZERO_KEY "\x00\x00\x00\x00\x00\x00\x00\x00" \ 40 "\x00\x00\x00\x00\x00\x00\x00\x00" 41 42 /* Handle HCI Event packets */ 43 44 static void hci_cc_inquiry_cancel(struct hci_dev *hdev, struct sk_buff *skb) 45 { 46 __u8 status = *((__u8 *) skb->data); 47 48 BT_DBG("%s status 0x%2.2x", hdev->name, status); 49 50 if (status) 51 return; 52 53 clear_bit(HCI_INQUIRY, &hdev->flags); 54 smp_mb__after_atomic(); /* wake_up_bit advises about this barrier */ 55 wake_up_bit(&hdev->flags, HCI_INQUIRY); 56 57 hci_dev_lock(hdev); 58 /* Set discovery state to stopped if we're not doing LE active 59 * scanning. 60 */ 61 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN) || 62 hdev->le_scan_type != LE_SCAN_ACTIVE) 63 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 64 hci_dev_unlock(hdev); 65 66 hci_conn_check_pending(hdev); 67 } 68 69 static void hci_cc_periodic_inq(struct hci_dev *hdev, struct sk_buff *skb) 70 { 71 __u8 status = *((__u8 *) skb->data); 72 73 BT_DBG("%s status 0x%2.2x", hdev->name, status); 74 75 if (status) 76 return; 77 78 hci_dev_set_flag(hdev, HCI_PERIODIC_INQ); 79 } 80 81 static void hci_cc_exit_periodic_inq(struct hci_dev *hdev, struct sk_buff *skb) 82 { 83 __u8 status = *((__u8 *) skb->data); 84 85 BT_DBG("%s status 0x%2.2x", hdev->name, status); 86 87 if (status) 88 return; 89 90 hci_dev_clear_flag(hdev, HCI_PERIODIC_INQ); 91 92 hci_conn_check_pending(hdev); 93 } 94 95 static void hci_cc_remote_name_req_cancel(struct hci_dev *hdev, 96 struct sk_buff *skb) 97 { 98 BT_DBG("%s", hdev->name); 99 } 100 101 static void hci_cc_role_discovery(struct hci_dev *hdev, struct sk_buff *skb) 102 { 103 struct hci_rp_role_discovery *rp = (void *) skb->data; 104 struct hci_conn *conn; 105 106 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 107 108 if (rp->status) 109 return; 110 111 hci_dev_lock(hdev); 112 113 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 114 if (conn) 115 conn->role = rp->role; 116 117 hci_dev_unlock(hdev); 118 } 119 120 static void hci_cc_read_link_policy(struct hci_dev *hdev, struct sk_buff *skb) 121 { 122 struct hci_rp_read_link_policy *rp = (void *) skb->data; 123 struct hci_conn *conn; 124 125 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 126 127 if (rp->status) 128 return; 129 130 hci_dev_lock(hdev); 131 132 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 133 if (conn) 134 conn->link_policy = __le16_to_cpu(rp->policy); 135 136 hci_dev_unlock(hdev); 137 } 138 139 static void hci_cc_write_link_policy(struct hci_dev *hdev, struct sk_buff *skb) 140 { 141 struct hci_rp_write_link_policy *rp = (void *) skb->data; 142 struct hci_conn *conn; 143 void *sent; 144 145 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 146 147 if (rp->status) 148 return; 149 150 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_LINK_POLICY); 151 if (!sent) 152 return; 153 154 hci_dev_lock(hdev); 155 156 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 157 if (conn) 158 conn->link_policy = get_unaligned_le16(sent + 2); 159 160 hci_dev_unlock(hdev); 161 } 162 163 static void hci_cc_read_def_link_policy(struct hci_dev *hdev, 164 struct sk_buff *skb) 165 { 166 struct hci_rp_read_def_link_policy *rp = (void *) skb->data; 167 168 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 169 170 if (rp->status) 171 return; 172 173 hdev->link_policy = __le16_to_cpu(rp->policy); 174 } 175 176 static void hci_cc_write_def_link_policy(struct hci_dev *hdev, 177 struct sk_buff *skb) 178 { 179 __u8 status = *((__u8 *) skb->data); 180 void *sent; 181 182 BT_DBG("%s status 0x%2.2x", hdev->name, status); 183 184 if (status) 185 return; 186 187 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_DEF_LINK_POLICY); 188 if (!sent) 189 return; 190 191 hdev->link_policy = get_unaligned_le16(sent); 192 } 193 194 static void hci_cc_reset(struct hci_dev *hdev, struct sk_buff *skb) 195 { 196 __u8 status = *((__u8 *) skb->data); 197 198 BT_DBG("%s status 0x%2.2x", hdev->name, status); 199 200 clear_bit(HCI_RESET, &hdev->flags); 201 202 if (status) 203 return; 204 205 /* Reset all non-persistent flags */ 206 hci_dev_clear_volatile_flags(hdev); 207 208 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 209 210 hdev->inq_tx_power = HCI_TX_POWER_INVALID; 211 hdev->adv_tx_power = HCI_TX_POWER_INVALID; 212 213 memset(hdev->adv_data, 0, sizeof(hdev->adv_data)); 214 hdev->adv_data_len = 0; 215 216 memset(hdev->scan_rsp_data, 0, sizeof(hdev->scan_rsp_data)); 217 hdev->scan_rsp_data_len = 0; 218 219 hdev->le_scan_type = LE_SCAN_PASSIVE; 220 221 hdev->ssp_debug_mode = 0; 222 223 hci_bdaddr_list_clear(&hdev->le_white_list); 224 } 225 226 static void hci_cc_read_stored_link_key(struct hci_dev *hdev, 227 struct sk_buff *skb) 228 { 229 struct hci_rp_read_stored_link_key *rp = (void *)skb->data; 230 struct hci_cp_read_stored_link_key *sent; 231 232 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 233 234 sent = hci_sent_cmd_data(hdev, HCI_OP_READ_STORED_LINK_KEY); 235 if (!sent) 236 return; 237 238 if (!rp->status && sent->read_all == 0x01) { 239 hdev->stored_max_keys = rp->max_keys; 240 hdev->stored_num_keys = rp->num_keys; 241 } 242 } 243 244 static void hci_cc_delete_stored_link_key(struct hci_dev *hdev, 245 struct sk_buff *skb) 246 { 247 struct hci_rp_delete_stored_link_key *rp = (void *)skb->data; 248 249 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 250 251 if (rp->status) 252 return; 253 254 if (rp->num_keys <= hdev->stored_num_keys) 255 hdev->stored_num_keys -= rp->num_keys; 256 else 257 hdev->stored_num_keys = 0; 258 } 259 260 static void hci_cc_write_local_name(struct hci_dev *hdev, struct sk_buff *skb) 261 { 262 __u8 status = *((__u8 *) skb->data); 263 void *sent; 264 265 BT_DBG("%s status 0x%2.2x", hdev->name, status); 266 267 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_LOCAL_NAME); 268 if (!sent) 269 return; 270 271 hci_dev_lock(hdev); 272 273 if (hci_dev_test_flag(hdev, HCI_MGMT)) 274 mgmt_set_local_name_complete(hdev, sent, status); 275 else if (!status) 276 memcpy(hdev->dev_name, sent, HCI_MAX_NAME_LENGTH); 277 278 hci_dev_unlock(hdev); 279 } 280 281 static void hci_cc_read_local_name(struct hci_dev *hdev, struct sk_buff *skb) 282 { 283 struct hci_rp_read_local_name *rp = (void *) skb->data; 284 285 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 286 287 if (rp->status) 288 return; 289 290 if (hci_dev_test_flag(hdev, HCI_SETUP) || 291 hci_dev_test_flag(hdev, HCI_CONFIG)) 292 memcpy(hdev->dev_name, rp->name, HCI_MAX_NAME_LENGTH); 293 } 294 295 static void hci_cc_write_auth_enable(struct hci_dev *hdev, struct sk_buff *skb) 296 { 297 __u8 status = *((__u8 *) skb->data); 298 void *sent; 299 300 BT_DBG("%s status 0x%2.2x", hdev->name, status); 301 302 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_AUTH_ENABLE); 303 if (!sent) 304 return; 305 306 hci_dev_lock(hdev); 307 308 if (!status) { 309 __u8 param = *((__u8 *) sent); 310 311 if (param == AUTH_ENABLED) 312 set_bit(HCI_AUTH, &hdev->flags); 313 else 314 clear_bit(HCI_AUTH, &hdev->flags); 315 } 316 317 if (hci_dev_test_flag(hdev, HCI_MGMT)) 318 mgmt_auth_enable_complete(hdev, status); 319 320 hci_dev_unlock(hdev); 321 } 322 323 static void hci_cc_write_encrypt_mode(struct hci_dev *hdev, struct sk_buff *skb) 324 { 325 __u8 status = *((__u8 *) skb->data); 326 __u8 param; 327 void *sent; 328 329 BT_DBG("%s status 0x%2.2x", hdev->name, status); 330 331 if (status) 332 return; 333 334 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_ENCRYPT_MODE); 335 if (!sent) 336 return; 337 338 param = *((__u8 *) sent); 339 340 if (param) 341 set_bit(HCI_ENCRYPT, &hdev->flags); 342 else 343 clear_bit(HCI_ENCRYPT, &hdev->flags); 344 } 345 346 static void hci_cc_write_scan_enable(struct hci_dev *hdev, struct sk_buff *skb) 347 { 348 __u8 status = *((__u8 *) skb->data); 349 __u8 param; 350 void *sent; 351 352 BT_DBG("%s status 0x%2.2x", hdev->name, status); 353 354 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_SCAN_ENABLE); 355 if (!sent) 356 return; 357 358 param = *((__u8 *) sent); 359 360 hci_dev_lock(hdev); 361 362 if (status) { 363 hdev->discov_timeout = 0; 364 goto done; 365 } 366 367 if (param & SCAN_INQUIRY) 368 set_bit(HCI_ISCAN, &hdev->flags); 369 else 370 clear_bit(HCI_ISCAN, &hdev->flags); 371 372 if (param & SCAN_PAGE) 373 set_bit(HCI_PSCAN, &hdev->flags); 374 else 375 clear_bit(HCI_PSCAN, &hdev->flags); 376 377 done: 378 hci_dev_unlock(hdev); 379 } 380 381 static void hci_cc_read_class_of_dev(struct hci_dev *hdev, struct sk_buff *skb) 382 { 383 struct hci_rp_read_class_of_dev *rp = (void *) skb->data; 384 385 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 386 387 if (rp->status) 388 return; 389 390 memcpy(hdev->dev_class, rp->dev_class, 3); 391 392 BT_DBG("%s class 0x%.2x%.2x%.2x", hdev->name, 393 hdev->dev_class[2], hdev->dev_class[1], hdev->dev_class[0]); 394 } 395 396 static void hci_cc_write_class_of_dev(struct hci_dev *hdev, struct sk_buff *skb) 397 { 398 __u8 status = *((__u8 *) skb->data); 399 void *sent; 400 401 BT_DBG("%s status 0x%2.2x", hdev->name, status); 402 403 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_CLASS_OF_DEV); 404 if (!sent) 405 return; 406 407 hci_dev_lock(hdev); 408 409 if (status == 0) 410 memcpy(hdev->dev_class, sent, 3); 411 412 if (hci_dev_test_flag(hdev, HCI_MGMT)) 413 mgmt_set_class_of_dev_complete(hdev, sent, status); 414 415 hci_dev_unlock(hdev); 416 } 417 418 static void hci_cc_read_voice_setting(struct hci_dev *hdev, struct sk_buff *skb) 419 { 420 struct hci_rp_read_voice_setting *rp = (void *) skb->data; 421 __u16 setting; 422 423 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 424 425 if (rp->status) 426 return; 427 428 setting = __le16_to_cpu(rp->voice_setting); 429 430 if (hdev->voice_setting == setting) 431 return; 432 433 hdev->voice_setting = setting; 434 435 BT_DBG("%s voice setting 0x%4.4x", hdev->name, setting); 436 437 if (hdev->notify) 438 hdev->notify(hdev, HCI_NOTIFY_VOICE_SETTING); 439 } 440 441 static void hci_cc_write_voice_setting(struct hci_dev *hdev, 442 struct sk_buff *skb) 443 { 444 __u8 status = *((__u8 *) skb->data); 445 __u16 setting; 446 void *sent; 447 448 BT_DBG("%s status 0x%2.2x", hdev->name, status); 449 450 if (status) 451 return; 452 453 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_VOICE_SETTING); 454 if (!sent) 455 return; 456 457 setting = get_unaligned_le16(sent); 458 459 if (hdev->voice_setting == setting) 460 return; 461 462 hdev->voice_setting = setting; 463 464 BT_DBG("%s voice setting 0x%4.4x", hdev->name, setting); 465 466 if (hdev->notify) 467 hdev->notify(hdev, HCI_NOTIFY_VOICE_SETTING); 468 } 469 470 static void hci_cc_read_num_supported_iac(struct hci_dev *hdev, 471 struct sk_buff *skb) 472 { 473 struct hci_rp_read_num_supported_iac *rp = (void *) skb->data; 474 475 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 476 477 if (rp->status) 478 return; 479 480 hdev->num_iac = rp->num_iac; 481 482 BT_DBG("%s num iac %d", hdev->name, hdev->num_iac); 483 } 484 485 static void hci_cc_write_ssp_mode(struct hci_dev *hdev, struct sk_buff *skb) 486 { 487 __u8 status = *((__u8 *) skb->data); 488 struct hci_cp_write_ssp_mode *sent; 489 490 BT_DBG("%s status 0x%2.2x", hdev->name, status); 491 492 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_SSP_MODE); 493 if (!sent) 494 return; 495 496 hci_dev_lock(hdev); 497 498 if (!status) { 499 if (sent->mode) 500 hdev->features[1][0] |= LMP_HOST_SSP; 501 else 502 hdev->features[1][0] &= ~LMP_HOST_SSP; 503 } 504 505 if (hci_dev_test_flag(hdev, HCI_MGMT)) 506 mgmt_ssp_enable_complete(hdev, sent->mode, status); 507 else if (!status) { 508 if (sent->mode) 509 hci_dev_set_flag(hdev, HCI_SSP_ENABLED); 510 else 511 hci_dev_clear_flag(hdev, HCI_SSP_ENABLED); 512 } 513 514 hci_dev_unlock(hdev); 515 } 516 517 static void hci_cc_write_sc_support(struct hci_dev *hdev, struct sk_buff *skb) 518 { 519 u8 status = *((u8 *) skb->data); 520 struct hci_cp_write_sc_support *sent; 521 522 BT_DBG("%s status 0x%2.2x", hdev->name, status); 523 524 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_SC_SUPPORT); 525 if (!sent) 526 return; 527 528 hci_dev_lock(hdev); 529 530 if (!status) { 531 if (sent->support) 532 hdev->features[1][0] |= LMP_HOST_SC; 533 else 534 hdev->features[1][0] &= ~LMP_HOST_SC; 535 } 536 537 if (!hci_dev_test_flag(hdev, HCI_MGMT) && !status) { 538 if (sent->support) 539 hci_dev_set_flag(hdev, HCI_SC_ENABLED); 540 else 541 hci_dev_clear_flag(hdev, HCI_SC_ENABLED); 542 } 543 544 hci_dev_unlock(hdev); 545 } 546 547 static void hci_cc_read_local_version(struct hci_dev *hdev, struct sk_buff *skb) 548 { 549 struct hci_rp_read_local_version *rp = (void *) skb->data; 550 551 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 552 553 if (rp->status) 554 return; 555 556 if (hci_dev_test_flag(hdev, HCI_SETUP) || 557 hci_dev_test_flag(hdev, HCI_CONFIG)) { 558 hdev->hci_ver = rp->hci_ver; 559 hdev->hci_rev = __le16_to_cpu(rp->hci_rev); 560 hdev->lmp_ver = rp->lmp_ver; 561 hdev->manufacturer = __le16_to_cpu(rp->manufacturer); 562 hdev->lmp_subver = __le16_to_cpu(rp->lmp_subver); 563 } 564 } 565 566 static void hci_cc_read_local_commands(struct hci_dev *hdev, 567 struct sk_buff *skb) 568 { 569 struct hci_rp_read_local_commands *rp = (void *) skb->data; 570 571 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 572 573 if (rp->status) 574 return; 575 576 if (hci_dev_test_flag(hdev, HCI_SETUP) || 577 hci_dev_test_flag(hdev, HCI_CONFIG)) 578 memcpy(hdev->commands, rp->commands, sizeof(hdev->commands)); 579 } 580 581 static void hci_cc_read_local_features(struct hci_dev *hdev, 582 struct sk_buff *skb) 583 { 584 struct hci_rp_read_local_features *rp = (void *) skb->data; 585 586 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 587 588 if (rp->status) 589 return; 590 591 memcpy(hdev->features, rp->features, 8); 592 593 /* Adjust default settings according to features 594 * supported by device. */ 595 596 if (hdev->features[0][0] & LMP_3SLOT) 597 hdev->pkt_type |= (HCI_DM3 | HCI_DH3); 598 599 if (hdev->features[0][0] & LMP_5SLOT) 600 hdev->pkt_type |= (HCI_DM5 | HCI_DH5); 601 602 if (hdev->features[0][1] & LMP_HV2) { 603 hdev->pkt_type |= (HCI_HV2); 604 hdev->esco_type |= (ESCO_HV2); 605 } 606 607 if (hdev->features[0][1] & LMP_HV3) { 608 hdev->pkt_type |= (HCI_HV3); 609 hdev->esco_type |= (ESCO_HV3); 610 } 611 612 if (lmp_esco_capable(hdev)) 613 hdev->esco_type |= (ESCO_EV3); 614 615 if (hdev->features[0][4] & LMP_EV4) 616 hdev->esco_type |= (ESCO_EV4); 617 618 if (hdev->features[0][4] & LMP_EV5) 619 hdev->esco_type |= (ESCO_EV5); 620 621 if (hdev->features[0][5] & LMP_EDR_ESCO_2M) 622 hdev->esco_type |= (ESCO_2EV3); 623 624 if (hdev->features[0][5] & LMP_EDR_ESCO_3M) 625 hdev->esco_type |= (ESCO_3EV3); 626 627 if (hdev->features[0][5] & LMP_EDR_3S_ESCO) 628 hdev->esco_type |= (ESCO_2EV5 | ESCO_3EV5); 629 } 630 631 static void hci_cc_read_local_ext_features(struct hci_dev *hdev, 632 struct sk_buff *skb) 633 { 634 struct hci_rp_read_local_ext_features *rp = (void *) skb->data; 635 636 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 637 638 if (rp->status) 639 return; 640 641 if (hdev->max_page < rp->max_page) 642 hdev->max_page = rp->max_page; 643 644 if (rp->page < HCI_MAX_PAGES) 645 memcpy(hdev->features[rp->page], rp->features, 8); 646 } 647 648 static void hci_cc_read_flow_control_mode(struct hci_dev *hdev, 649 struct sk_buff *skb) 650 { 651 struct hci_rp_read_flow_control_mode *rp = (void *) skb->data; 652 653 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 654 655 if (rp->status) 656 return; 657 658 hdev->flow_ctl_mode = rp->mode; 659 } 660 661 static void hci_cc_read_buffer_size(struct hci_dev *hdev, struct sk_buff *skb) 662 { 663 struct hci_rp_read_buffer_size *rp = (void *) skb->data; 664 665 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 666 667 if (rp->status) 668 return; 669 670 hdev->acl_mtu = __le16_to_cpu(rp->acl_mtu); 671 hdev->sco_mtu = rp->sco_mtu; 672 hdev->acl_pkts = __le16_to_cpu(rp->acl_max_pkt); 673 hdev->sco_pkts = __le16_to_cpu(rp->sco_max_pkt); 674 675 if (test_bit(HCI_QUIRK_FIXUP_BUFFER_SIZE, &hdev->quirks)) { 676 hdev->sco_mtu = 64; 677 hdev->sco_pkts = 8; 678 } 679 680 hdev->acl_cnt = hdev->acl_pkts; 681 hdev->sco_cnt = hdev->sco_pkts; 682 683 BT_DBG("%s acl mtu %d:%d sco mtu %d:%d", hdev->name, hdev->acl_mtu, 684 hdev->acl_pkts, hdev->sco_mtu, hdev->sco_pkts); 685 } 686 687 static void hci_cc_read_bd_addr(struct hci_dev *hdev, struct sk_buff *skb) 688 { 689 struct hci_rp_read_bd_addr *rp = (void *) skb->data; 690 691 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 692 693 if (rp->status) 694 return; 695 696 if (test_bit(HCI_INIT, &hdev->flags)) 697 bacpy(&hdev->bdaddr, &rp->bdaddr); 698 699 if (hci_dev_test_flag(hdev, HCI_SETUP)) 700 bacpy(&hdev->setup_addr, &rp->bdaddr); 701 } 702 703 static void hci_cc_read_page_scan_activity(struct hci_dev *hdev, 704 struct sk_buff *skb) 705 { 706 struct hci_rp_read_page_scan_activity *rp = (void *) skb->data; 707 708 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 709 710 if (rp->status) 711 return; 712 713 if (test_bit(HCI_INIT, &hdev->flags)) { 714 hdev->page_scan_interval = __le16_to_cpu(rp->interval); 715 hdev->page_scan_window = __le16_to_cpu(rp->window); 716 } 717 } 718 719 static void hci_cc_write_page_scan_activity(struct hci_dev *hdev, 720 struct sk_buff *skb) 721 { 722 u8 status = *((u8 *) skb->data); 723 struct hci_cp_write_page_scan_activity *sent; 724 725 BT_DBG("%s status 0x%2.2x", hdev->name, status); 726 727 if (status) 728 return; 729 730 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY); 731 if (!sent) 732 return; 733 734 hdev->page_scan_interval = __le16_to_cpu(sent->interval); 735 hdev->page_scan_window = __le16_to_cpu(sent->window); 736 } 737 738 static void hci_cc_read_page_scan_type(struct hci_dev *hdev, 739 struct sk_buff *skb) 740 { 741 struct hci_rp_read_page_scan_type *rp = (void *) skb->data; 742 743 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 744 745 if (rp->status) 746 return; 747 748 if (test_bit(HCI_INIT, &hdev->flags)) 749 hdev->page_scan_type = rp->type; 750 } 751 752 static void hci_cc_write_page_scan_type(struct hci_dev *hdev, 753 struct sk_buff *skb) 754 { 755 u8 status = *((u8 *) skb->data); 756 u8 *type; 757 758 BT_DBG("%s status 0x%2.2x", hdev->name, status); 759 760 if (status) 761 return; 762 763 type = hci_sent_cmd_data(hdev, HCI_OP_WRITE_PAGE_SCAN_TYPE); 764 if (type) 765 hdev->page_scan_type = *type; 766 } 767 768 static void hci_cc_read_data_block_size(struct hci_dev *hdev, 769 struct sk_buff *skb) 770 { 771 struct hci_rp_read_data_block_size *rp = (void *) skb->data; 772 773 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 774 775 if (rp->status) 776 return; 777 778 hdev->block_mtu = __le16_to_cpu(rp->max_acl_len); 779 hdev->block_len = __le16_to_cpu(rp->block_len); 780 hdev->num_blocks = __le16_to_cpu(rp->num_blocks); 781 782 hdev->block_cnt = hdev->num_blocks; 783 784 BT_DBG("%s blk mtu %d cnt %d len %d", hdev->name, hdev->block_mtu, 785 hdev->block_cnt, hdev->block_len); 786 } 787 788 static void hci_cc_read_clock(struct hci_dev *hdev, struct sk_buff *skb) 789 { 790 struct hci_rp_read_clock *rp = (void *) skb->data; 791 struct hci_cp_read_clock *cp; 792 struct hci_conn *conn; 793 794 BT_DBG("%s", hdev->name); 795 796 if (skb->len < sizeof(*rp)) 797 return; 798 799 if (rp->status) 800 return; 801 802 hci_dev_lock(hdev); 803 804 cp = hci_sent_cmd_data(hdev, HCI_OP_READ_CLOCK); 805 if (!cp) 806 goto unlock; 807 808 if (cp->which == 0x00) { 809 hdev->clock = le32_to_cpu(rp->clock); 810 goto unlock; 811 } 812 813 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 814 if (conn) { 815 conn->clock = le32_to_cpu(rp->clock); 816 conn->clock_accuracy = le16_to_cpu(rp->accuracy); 817 } 818 819 unlock: 820 hci_dev_unlock(hdev); 821 } 822 823 static void hci_cc_read_local_amp_info(struct hci_dev *hdev, 824 struct sk_buff *skb) 825 { 826 struct hci_rp_read_local_amp_info *rp = (void *) skb->data; 827 828 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 829 830 if (rp->status) 831 return; 832 833 hdev->amp_status = rp->amp_status; 834 hdev->amp_total_bw = __le32_to_cpu(rp->total_bw); 835 hdev->amp_max_bw = __le32_to_cpu(rp->max_bw); 836 hdev->amp_min_latency = __le32_to_cpu(rp->min_latency); 837 hdev->amp_max_pdu = __le32_to_cpu(rp->max_pdu); 838 hdev->amp_type = rp->amp_type; 839 hdev->amp_pal_cap = __le16_to_cpu(rp->pal_cap); 840 hdev->amp_assoc_size = __le16_to_cpu(rp->max_assoc_size); 841 hdev->amp_be_flush_to = __le32_to_cpu(rp->be_flush_to); 842 hdev->amp_max_flush_to = __le32_to_cpu(rp->max_flush_to); 843 } 844 845 static void hci_cc_read_inq_rsp_tx_power(struct hci_dev *hdev, 846 struct sk_buff *skb) 847 { 848 struct hci_rp_read_inq_rsp_tx_power *rp = (void *) skb->data; 849 850 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 851 852 if (rp->status) 853 return; 854 855 hdev->inq_tx_power = rp->tx_power; 856 } 857 858 static void hci_cc_pin_code_reply(struct hci_dev *hdev, struct sk_buff *skb) 859 { 860 struct hci_rp_pin_code_reply *rp = (void *) skb->data; 861 struct hci_cp_pin_code_reply *cp; 862 struct hci_conn *conn; 863 864 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 865 866 hci_dev_lock(hdev); 867 868 if (hci_dev_test_flag(hdev, HCI_MGMT)) 869 mgmt_pin_code_reply_complete(hdev, &rp->bdaddr, rp->status); 870 871 if (rp->status) 872 goto unlock; 873 874 cp = hci_sent_cmd_data(hdev, HCI_OP_PIN_CODE_REPLY); 875 if (!cp) 876 goto unlock; 877 878 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->bdaddr); 879 if (conn) 880 conn->pin_length = cp->pin_len; 881 882 unlock: 883 hci_dev_unlock(hdev); 884 } 885 886 static void hci_cc_pin_code_neg_reply(struct hci_dev *hdev, struct sk_buff *skb) 887 { 888 struct hci_rp_pin_code_neg_reply *rp = (void *) skb->data; 889 890 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 891 892 hci_dev_lock(hdev); 893 894 if (hci_dev_test_flag(hdev, HCI_MGMT)) 895 mgmt_pin_code_neg_reply_complete(hdev, &rp->bdaddr, 896 rp->status); 897 898 hci_dev_unlock(hdev); 899 } 900 901 static void hci_cc_le_read_buffer_size(struct hci_dev *hdev, 902 struct sk_buff *skb) 903 { 904 struct hci_rp_le_read_buffer_size *rp = (void *) skb->data; 905 906 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 907 908 if (rp->status) 909 return; 910 911 hdev->le_mtu = __le16_to_cpu(rp->le_mtu); 912 hdev->le_pkts = rp->le_max_pkt; 913 914 hdev->le_cnt = hdev->le_pkts; 915 916 BT_DBG("%s le mtu %d:%d", hdev->name, hdev->le_mtu, hdev->le_pkts); 917 } 918 919 static void hci_cc_le_read_local_features(struct hci_dev *hdev, 920 struct sk_buff *skb) 921 { 922 struct hci_rp_le_read_local_features *rp = (void *) skb->data; 923 924 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 925 926 if (rp->status) 927 return; 928 929 memcpy(hdev->le_features, rp->features, 8); 930 } 931 932 static void hci_cc_le_read_adv_tx_power(struct hci_dev *hdev, 933 struct sk_buff *skb) 934 { 935 struct hci_rp_le_read_adv_tx_power *rp = (void *) skb->data; 936 937 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 938 939 if (rp->status) 940 return; 941 942 hdev->adv_tx_power = rp->tx_power; 943 } 944 945 static void hci_cc_user_confirm_reply(struct hci_dev *hdev, struct sk_buff *skb) 946 { 947 struct hci_rp_user_confirm_reply *rp = (void *) skb->data; 948 949 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 950 951 hci_dev_lock(hdev); 952 953 if (hci_dev_test_flag(hdev, HCI_MGMT)) 954 mgmt_user_confirm_reply_complete(hdev, &rp->bdaddr, ACL_LINK, 0, 955 rp->status); 956 957 hci_dev_unlock(hdev); 958 } 959 960 static void hci_cc_user_confirm_neg_reply(struct hci_dev *hdev, 961 struct sk_buff *skb) 962 { 963 struct hci_rp_user_confirm_reply *rp = (void *) skb->data; 964 965 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 966 967 hci_dev_lock(hdev); 968 969 if (hci_dev_test_flag(hdev, HCI_MGMT)) 970 mgmt_user_confirm_neg_reply_complete(hdev, &rp->bdaddr, 971 ACL_LINK, 0, rp->status); 972 973 hci_dev_unlock(hdev); 974 } 975 976 static void hci_cc_user_passkey_reply(struct hci_dev *hdev, struct sk_buff *skb) 977 { 978 struct hci_rp_user_confirm_reply *rp = (void *) skb->data; 979 980 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 981 982 hci_dev_lock(hdev); 983 984 if (hci_dev_test_flag(hdev, HCI_MGMT)) 985 mgmt_user_passkey_reply_complete(hdev, &rp->bdaddr, ACL_LINK, 986 0, rp->status); 987 988 hci_dev_unlock(hdev); 989 } 990 991 static void hci_cc_user_passkey_neg_reply(struct hci_dev *hdev, 992 struct sk_buff *skb) 993 { 994 struct hci_rp_user_confirm_reply *rp = (void *) skb->data; 995 996 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 997 998 hci_dev_lock(hdev); 999 1000 if (hci_dev_test_flag(hdev, HCI_MGMT)) 1001 mgmt_user_passkey_neg_reply_complete(hdev, &rp->bdaddr, 1002 ACL_LINK, 0, rp->status); 1003 1004 hci_dev_unlock(hdev); 1005 } 1006 1007 static void hci_cc_read_local_oob_data(struct hci_dev *hdev, 1008 struct sk_buff *skb) 1009 { 1010 struct hci_rp_read_local_oob_data *rp = (void *) skb->data; 1011 1012 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 1013 } 1014 1015 static void hci_cc_read_local_oob_ext_data(struct hci_dev *hdev, 1016 struct sk_buff *skb) 1017 { 1018 struct hci_rp_read_local_oob_ext_data *rp = (void *) skb->data; 1019 1020 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 1021 } 1022 1023 static void hci_cc_le_set_random_addr(struct hci_dev *hdev, struct sk_buff *skb) 1024 { 1025 __u8 status = *((__u8 *) skb->data); 1026 bdaddr_t *sent; 1027 1028 BT_DBG("%s status 0x%2.2x", hdev->name, status); 1029 1030 if (status) 1031 return; 1032 1033 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_RANDOM_ADDR); 1034 if (!sent) 1035 return; 1036 1037 hci_dev_lock(hdev); 1038 1039 bacpy(&hdev->random_addr, sent); 1040 1041 hci_dev_unlock(hdev); 1042 } 1043 1044 static void hci_cc_le_set_adv_enable(struct hci_dev *hdev, struct sk_buff *skb) 1045 { 1046 __u8 *sent, status = *((__u8 *) skb->data); 1047 1048 BT_DBG("%s status 0x%2.2x", hdev->name, status); 1049 1050 if (status) 1051 return; 1052 1053 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_ADV_ENABLE); 1054 if (!sent) 1055 return; 1056 1057 hci_dev_lock(hdev); 1058 1059 /* If we're doing connection initiation as peripheral. Set a 1060 * timeout in case something goes wrong. 1061 */ 1062 if (*sent) { 1063 struct hci_conn *conn; 1064 1065 hci_dev_set_flag(hdev, HCI_LE_ADV); 1066 1067 conn = hci_lookup_le_connect(hdev); 1068 if (conn) 1069 queue_delayed_work(hdev->workqueue, 1070 &conn->le_conn_timeout, 1071 conn->conn_timeout); 1072 } else { 1073 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1074 } 1075 1076 hci_dev_unlock(hdev); 1077 } 1078 1079 static void hci_cc_le_set_scan_param(struct hci_dev *hdev, struct sk_buff *skb) 1080 { 1081 struct hci_cp_le_set_scan_param *cp; 1082 __u8 status = *((__u8 *) skb->data); 1083 1084 BT_DBG("%s status 0x%2.2x", hdev->name, status); 1085 1086 if (status) 1087 return; 1088 1089 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_SCAN_PARAM); 1090 if (!cp) 1091 return; 1092 1093 hci_dev_lock(hdev); 1094 1095 hdev->le_scan_type = cp->type; 1096 1097 hci_dev_unlock(hdev); 1098 } 1099 1100 static bool has_pending_adv_report(struct hci_dev *hdev) 1101 { 1102 struct discovery_state *d = &hdev->discovery; 1103 1104 return bacmp(&d->last_adv_addr, BDADDR_ANY); 1105 } 1106 1107 static void clear_pending_adv_report(struct hci_dev *hdev) 1108 { 1109 struct discovery_state *d = &hdev->discovery; 1110 1111 bacpy(&d->last_adv_addr, BDADDR_ANY); 1112 d->last_adv_data_len = 0; 1113 } 1114 1115 static void store_pending_adv_report(struct hci_dev *hdev, bdaddr_t *bdaddr, 1116 u8 bdaddr_type, s8 rssi, u32 flags, 1117 u8 *data, u8 len) 1118 { 1119 struct discovery_state *d = &hdev->discovery; 1120 1121 bacpy(&d->last_adv_addr, bdaddr); 1122 d->last_adv_addr_type = bdaddr_type; 1123 d->last_adv_rssi = rssi; 1124 d->last_adv_flags = flags; 1125 memcpy(d->last_adv_data, data, len); 1126 d->last_adv_data_len = len; 1127 } 1128 1129 static void hci_cc_le_set_scan_enable(struct hci_dev *hdev, 1130 struct sk_buff *skb) 1131 { 1132 struct hci_cp_le_set_scan_enable *cp; 1133 __u8 status = *((__u8 *) skb->data); 1134 1135 BT_DBG("%s status 0x%2.2x", hdev->name, status); 1136 1137 if (status) 1138 return; 1139 1140 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_SCAN_ENABLE); 1141 if (!cp) 1142 return; 1143 1144 hci_dev_lock(hdev); 1145 1146 switch (cp->enable) { 1147 case LE_SCAN_ENABLE: 1148 hci_dev_set_flag(hdev, HCI_LE_SCAN); 1149 if (hdev->le_scan_type == LE_SCAN_ACTIVE) 1150 clear_pending_adv_report(hdev); 1151 break; 1152 1153 case LE_SCAN_DISABLE: 1154 /* We do this here instead of when setting DISCOVERY_STOPPED 1155 * since the latter would potentially require waiting for 1156 * inquiry to stop too. 1157 */ 1158 if (has_pending_adv_report(hdev)) { 1159 struct discovery_state *d = &hdev->discovery; 1160 1161 mgmt_device_found(hdev, &d->last_adv_addr, LE_LINK, 1162 d->last_adv_addr_type, NULL, 1163 d->last_adv_rssi, d->last_adv_flags, 1164 d->last_adv_data, 1165 d->last_adv_data_len, NULL, 0); 1166 } 1167 1168 /* Cancel this timer so that we don't try to disable scanning 1169 * when it's already disabled. 1170 */ 1171 cancel_delayed_work(&hdev->le_scan_disable); 1172 1173 hci_dev_clear_flag(hdev, HCI_LE_SCAN); 1174 1175 /* The HCI_LE_SCAN_INTERRUPTED flag indicates that we 1176 * interrupted scanning due to a connect request. Mark 1177 * therefore discovery as stopped. If this was not 1178 * because of a connect request advertising might have 1179 * been disabled because of active scanning, so 1180 * re-enable it again if necessary. 1181 */ 1182 if (hci_dev_test_and_clear_flag(hdev, HCI_LE_SCAN_INTERRUPTED)) 1183 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 1184 else if (!hci_dev_test_flag(hdev, HCI_LE_ADV) && 1185 hdev->discovery.state == DISCOVERY_FINDING) 1186 mgmt_reenable_advertising(hdev); 1187 1188 break; 1189 1190 default: 1191 BT_ERR("Used reserved LE_Scan_Enable param %d", cp->enable); 1192 break; 1193 } 1194 1195 hci_dev_unlock(hdev); 1196 } 1197 1198 static void hci_cc_le_read_white_list_size(struct hci_dev *hdev, 1199 struct sk_buff *skb) 1200 { 1201 struct hci_rp_le_read_white_list_size *rp = (void *) skb->data; 1202 1203 BT_DBG("%s status 0x%2.2x size %u", hdev->name, rp->status, rp->size); 1204 1205 if (rp->status) 1206 return; 1207 1208 hdev->le_white_list_size = rp->size; 1209 } 1210 1211 static void hci_cc_le_clear_white_list(struct hci_dev *hdev, 1212 struct sk_buff *skb) 1213 { 1214 __u8 status = *((__u8 *) skb->data); 1215 1216 BT_DBG("%s status 0x%2.2x", hdev->name, status); 1217 1218 if (status) 1219 return; 1220 1221 hci_bdaddr_list_clear(&hdev->le_white_list); 1222 } 1223 1224 static void hci_cc_le_add_to_white_list(struct hci_dev *hdev, 1225 struct sk_buff *skb) 1226 { 1227 struct hci_cp_le_add_to_white_list *sent; 1228 __u8 status = *((__u8 *) skb->data); 1229 1230 BT_DBG("%s status 0x%2.2x", hdev->name, status); 1231 1232 if (status) 1233 return; 1234 1235 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_ADD_TO_WHITE_LIST); 1236 if (!sent) 1237 return; 1238 1239 hci_bdaddr_list_add(&hdev->le_white_list, &sent->bdaddr, 1240 sent->bdaddr_type); 1241 } 1242 1243 static void hci_cc_le_del_from_white_list(struct hci_dev *hdev, 1244 struct sk_buff *skb) 1245 { 1246 struct hci_cp_le_del_from_white_list *sent; 1247 __u8 status = *((__u8 *) skb->data); 1248 1249 BT_DBG("%s status 0x%2.2x", hdev->name, status); 1250 1251 if (status) 1252 return; 1253 1254 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_DEL_FROM_WHITE_LIST); 1255 if (!sent) 1256 return; 1257 1258 hci_bdaddr_list_del(&hdev->le_white_list, &sent->bdaddr, 1259 sent->bdaddr_type); 1260 } 1261 1262 static void hci_cc_le_read_supported_states(struct hci_dev *hdev, 1263 struct sk_buff *skb) 1264 { 1265 struct hci_rp_le_read_supported_states *rp = (void *) skb->data; 1266 1267 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 1268 1269 if (rp->status) 1270 return; 1271 1272 memcpy(hdev->le_states, rp->le_states, 8); 1273 } 1274 1275 static void hci_cc_le_read_def_data_len(struct hci_dev *hdev, 1276 struct sk_buff *skb) 1277 { 1278 struct hci_rp_le_read_def_data_len *rp = (void *) skb->data; 1279 1280 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 1281 1282 if (rp->status) 1283 return; 1284 1285 hdev->le_def_tx_len = le16_to_cpu(rp->tx_len); 1286 hdev->le_def_tx_time = le16_to_cpu(rp->tx_time); 1287 } 1288 1289 static void hci_cc_le_write_def_data_len(struct hci_dev *hdev, 1290 struct sk_buff *skb) 1291 { 1292 struct hci_cp_le_write_def_data_len *sent; 1293 __u8 status = *((__u8 *) skb->data); 1294 1295 BT_DBG("%s status 0x%2.2x", hdev->name, status); 1296 1297 if (status) 1298 return; 1299 1300 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN); 1301 if (!sent) 1302 return; 1303 1304 hdev->le_def_tx_len = le16_to_cpu(sent->tx_len); 1305 hdev->le_def_tx_time = le16_to_cpu(sent->tx_time); 1306 } 1307 1308 static void hci_cc_le_read_max_data_len(struct hci_dev *hdev, 1309 struct sk_buff *skb) 1310 { 1311 struct hci_rp_le_read_max_data_len *rp = (void *) skb->data; 1312 1313 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 1314 1315 if (rp->status) 1316 return; 1317 1318 hdev->le_max_tx_len = le16_to_cpu(rp->tx_len); 1319 hdev->le_max_tx_time = le16_to_cpu(rp->tx_time); 1320 hdev->le_max_rx_len = le16_to_cpu(rp->rx_len); 1321 hdev->le_max_rx_time = le16_to_cpu(rp->rx_time); 1322 } 1323 1324 static void hci_cc_write_le_host_supported(struct hci_dev *hdev, 1325 struct sk_buff *skb) 1326 { 1327 struct hci_cp_write_le_host_supported *sent; 1328 __u8 status = *((__u8 *) skb->data); 1329 1330 BT_DBG("%s status 0x%2.2x", hdev->name, status); 1331 1332 if (status) 1333 return; 1334 1335 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED); 1336 if (!sent) 1337 return; 1338 1339 hci_dev_lock(hdev); 1340 1341 if (sent->le) { 1342 hdev->features[1][0] |= LMP_HOST_LE; 1343 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 1344 } else { 1345 hdev->features[1][0] &= ~LMP_HOST_LE; 1346 hci_dev_clear_flag(hdev, HCI_LE_ENABLED); 1347 hci_dev_clear_flag(hdev, HCI_ADVERTISING); 1348 } 1349 1350 if (sent->simul) 1351 hdev->features[1][0] |= LMP_HOST_LE_BREDR; 1352 else 1353 hdev->features[1][0] &= ~LMP_HOST_LE_BREDR; 1354 1355 hci_dev_unlock(hdev); 1356 } 1357 1358 static void hci_cc_set_adv_param(struct hci_dev *hdev, struct sk_buff *skb) 1359 { 1360 struct hci_cp_le_set_adv_param *cp; 1361 u8 status = *((u8 *) skb->data); 1362 1363 BT_DBG("%s status 0x%2.2x", hdev->name, status); 1364 1365 if (status) 1366 return; 1367 1368 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_ADV_PARAM); 1369 if (!cp) 1370 return; 1371 1372 hci_dev_lock(hdev); 1373 hdev->adv_addr_type = cp->own_address_type; 1374 hci_dev_unlock(hdev); 1375 } 1376 1377 static void hci_cc_read_rssi(struct hci_dev *hdev, struct sk_buff *skb) 1378 { 1379 struct hci_rp_read_rssi *rp = (void *) skb->data; 1380 struct hci_conn *conn; 1381 1382 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 1383 1384 if (rp->status) 1385 return; 1386 1387 hci_dev_lock(hdev); 1388 1389 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 1390 if (conn) 1391 conn->rssi = rp->rssi; 1392 1393 hci_dev_unlock(hdev); 1394 } 1395 1396 static void hci_cc_read_tx_power(struct hci_dev *hdev, struct sk_buff *skb) 1397 { 1398 struct hci_cp_read_tx_power *sent; 1399 struct hci_rp_read_tx_power *rp = (void *) skb->data; 1400 struct hci_conn *conn; 1401 1402 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 1403 1404 if (rp->status) 1405 return; 1406 1407 sent = hci_sent_cmd_data(hdev, HCI_OP_READ_TX_POWER); 1408 if (!sent) 1409 return; 1410 1411 hci_dev_lock(hdev); 1412 1413 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 1414 if (!conn) 1415 goto unlock; 1416 1417 switch (sent->type) { 1418 case 0x00: 1419 conn->tx_power = rp->tx_power; 1420 break; 1421 case 0x01: 1422 conn->max_tx_power = rp->tx_power; 1423 break; 1424 } 1425 1426 unlock: 1427 hci_dev_unlock(hdev); 1428 } 1429 1430 static void hci_cc_write_ssp_debug_mode(struct hci_dev *hdev, struct sk_buff *skb) 1431 { 1432 u8 status = *((u8 *) skb->data); 1433 u8 *mode; 1434 1435 BT_DBG("%s status 0x%2.2x", hdev->name, status); 1436 1437 if (status) 1438 return; 1439 1440 mode = hci_sent_cmd_data(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE); 1441 if (mode) 1442 hdev->ssp_debug_mode = *mode; 1443 } 1444 1445 static void hci_cs_inquiry(struct hci_dev *hdev, __u8 status) 1446 { 1447 BT_DBG("%s status 0x%2.2x", hdev->name, status); 1448 1449 if (status) { 1450 hci_conn_check_pending(hdev); 1451 return; 1452 } 1453 1454 set_bit(HCI_INQUIRY, &hdev->flags); 1455 } 1456 1457 static void hci_cs_create_conn(struct hci_dev *hdev, __u8 status) 1458 { 1459 struct hci_cp_create_conn *cp; 1460 struct hci_conn *conn; 1461 1462 BT_DBG("%s status 0x%2.2x", hdev->name, status); 1463 1464 cp = hci_sent_cmd_data(hdev, HCI_OP_CREATE_CONN); 1465 if (!cp) 1466 return; 1467 1468 hci_dev_lock(hdev); 1469 1470 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->bdaddr); 1471 1472 BT_DBG("%s bdaddr %pMR hcon %p", hdev->name, &cp->bdaddr, conn); 1473 1474 if (status) { 1475 if (conn && conn->state == BT_CONNECT) { 1476 if (status != 0x0c || conn->attempt > 2) { 1477 conn->state = BT_CLOSED; 1478 hci_connect_cfm(conn, status); 1479 hci_conn_del(conn); 1480 } else 1481 conn->state = BT_CONNECT2; 1482 } 1483 } else { 1484 if (!conn) { 1485 conn = hci_conn_add(hdev, ACL_LINK, &cp->bdaddr, 1486 HCI_ROLE_MASTER); 1487 if (!conn) 1488 BT_ERR("No memory for new connection"); 1489 } 1490 } 1491 1492 hci_dev_unlock(hdev); 1493 } 1494 1495 static void hci_cs_add_sco(struct hci_dev *hdev, __u8 status) 1496 { 1497 struct hci_cp_add_sco *cp; 1498 struct hci_conn *acl, *sco; 1499 __u16 handle; 1500 1501 BT_DBG("%s status 0x%2.2x", hdev->name, status); 1502 1503 if (!status) 1504 return; 1505 1506 cp = hci_sent_cmd_data(hdev, HCI_OP_ADD_SCO); 1507 if (!cp) 1508 return; 1509 1510 handle = __le16_to_cpu(cp->handle); 1511 1512 BT_DBG("%s handle 0x%4.4x", hdev->name, handle); 1513 1514 hci_dev_lock(hdev); 1515 1516 acl = hci_conn_hash_lookup_handle(hdev, handle); 1517 if (acl) { 1518 sco = acl->link; 1519 if (sco) { 1520 sco->state = BT_CLOSED; 1521 1522 hci_connect_cfm(sco, status); 1523 hci_conn_del(sco); 1524 } 1525 } 1526 1527 hci_dev_unlock(hdev); 1528 } 1529 1530 static void hci_cs_auth_requested(struct hci_dev *hdev, __u8 status) 1531 { 1532 struct hci_cp_auth_requested *cp; 1533 struct hci_conn *conn; 1534 1535 BT_DBG("%s status 0x%2.2x", hdev->name, status); 1536 1537 if (!status) 1538 return; 1539 1540 cp = hci_sent_cmd_data(hdev, HCI_OP_AUTH_REQUESTED); 1541 if (!cp) 1542 return; 1543 1544 hci_dev_lock(hdev); 1545 1546 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 1547 if (conn) { 1548 if (conn->state == BT_CONFIG) { 1549 hci_connect_cfm(conn, status); 1550 hci_conn_drop(conn); 1551 } 1552 } 1553 1554 hci_dev_unlock(hdev); 1555 } 1556 1557 static void hci_cs_set_conn_encrypt(struct hci_dev *hdev, __u8 status) 1558 { 1559 struct hci_cp_set_conn_encrypt *cp; 1560 struct hci_conn *conn; 1561 1562 BT_DBG("%s status 0x%2.2x", hdev->name, status); 1563 1564 if (!status) 1565 return; 1566 1567 cp = hci_sent_cmd_data(hdev, HCI_OP_SET_CONN_ENCRYPT); 1568 if (!cp) 1569 return; 1570 1571 hci_dev_lock(hdev); 1572 1573 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 1574 if (conn) { 1575 if (conn->state == BT_CONFIG) { 1576 hci_connect_cfm(conn, status); 1577 hci_conn_drop(conn); 1578 } 1579 } 1580 1581 hci_dev_unlock(hdev); 1582 } 1583 1584 static int hci_outgoing_auth_needed(struct hci_dev *hdev, 1585 struct hci_conn *conn) 1586 { 1587 if (conn->state != BT_CONFIG || !conn->out) 1588 return 0; 1589 1590 if (conn->pending_sec_level == BT_SECURITY_SDP) 1591 return 0; 1592 1593 /* Only request authentication for SSP connections or non-SSP 1594 * devices with sec_level MEDIUM or HIGH or if MITM protection 1595 * is requested. 1596 */ 1597 if (!hci_conn_ssp_enabled(conn) && !(conn->auth_type & 0x01) && 1598 conn->pending_sec_level != BT_SECURITY_FIPS && 1599 conn->pending_sec_level != BT_SECURITY_HIGH && 1600 conn->pending_sec_level != BT_SECURITY_MEDIUM) 1601 return 0; 1602 1603 return 1; 1604 } 1605 1606 static int hci_resolve_name(struct hci_dev *hdev, 1607 struct inquiry_entry *e) 1608 { 1609 struct hci_cp_remote_name_req cp; 1610 1611 memset(&cp, 0, sizeof(cp)); 1612 1613 bacpy(&cp.bdaddr, &e->data.bdaddr); 1614 cp.pscan_rep_mode = e->data.pscan_rep_mode; 1615 cp.pscan_mode = e->data.pscan_mode; 1616 cp.clock_offset = e->data.clock_offset; 1617 1618 return hci_send_cmd(hdev, HCI_OP_REMOTE_NAME_REQ, sizeof(cp), &cp); 1619 } 1620 1621 static bool hci_resolve_next_name(struct hci_dev *hdev) 1622 { 1623 struct discovery_state *discov = &hdev->discovery; 1624 struct inquiry_entry *e; 1625 1626 if (list_empty(&discov->resolve)) 1627 return false; 1628 1629 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, NAME_NEEDED); 1630 if (!e) 1631 return false; 1632 1633 if (hci_resolve_name(hdev, e) == 0) { 1634 e->name_state = NAME_PENDING; 1635 return true; 1636 } 1637 1638 return false; 1639 } 1640 1641 static void hci_check_pending_name(struct hci_dev *hdev, struct hci_conn *conn, 1642 bdaddr_t *bdaddr, u8 *name, u8 name_len) 1643 { 1644 struct discovery_state *discov = &hdev->discovery; 1645 struct inquiry_entry *e; 1646 1647 /* Update the mgmt connected state if necessary. Be careful with 1648 * conn objects that exist but are not (yet) connected however. 1649 * Only those in BT_CONFIG or BT_CONNECTED states can be 1650 * considered connected. 1651 */ 1652 if (conn && 1653 (conn->state == BT_CONFIG || conn->state == BT_CONNECTED) && 1654 !test_and_set_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags)) 1655 mgmt_device_connected(hdev, conn, 0, name, name_len); 1656 1657 if (discov->state == DISCOVERY_STOPPED) 1658 return; 1659 1660 if (discov->state == DISCOVERY_STOPPING) 1661 goto discov_complete; 1662 1663 if (discov->state != DISCOVERY_RESOLVING) 1664 return; 1665 1666 e = hci_inquiry_cache_lookup_resolve(hdev, bdaddr, NAME_PENDING); 1667 /* If the device was not found in a list of found devices names of which 1668 * are pending. there is no need to continue resolving a next name as it 1669 * will be done upon receiving another Remote Name Request Complete 1670 * Event */ 1671 if (!e) 1672 return; 1673 1674 list_del(&e->list); 1675 if (name) { 1676 e->name_state = NAME_KNOWN; 1677 mgmt_remote_name(hdev, bdaddr, ACL_LINK, 0x00, 1678 e->data.rssi, name, name_len); 1679 } else { 1680 e->name_state = NAME_NOT_KNOWN; 1681 } 1682 1683 if (hci_resolve_next_name(hdev)) 1684 return; 1685 1686 discov_complete: 1687 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 1688 } 1689 1690 static void hci_cs_remote_name_req(struct hci_dev *hdev, __u8 status) 1691 { 1692 struct hci_cp_remote_name_req *cp; 1693 struct hci_conn *conn; 1694 1695 BT_DBG("%s status 0x%2.2x", hdev->name, status); 1696 1697 /* If successful wait for the name req complete event before 1698 * checking for the need to do authentication */ 1699 if (!status) 1700 return; 1701 1702 cp = hci_sent_cmd_data(hdev, HCI_OP_REMOTE_NAME_REQ); 1703 if (!cp) 1704 return; 1705 1706 hci_dev_lock(hdev); 1707 1708 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->bdaddr); 1709 1710 if (hci_dev_test_flag(hdev, HCI_MGMT)) 1711 hci_check_pending_name(hdev, conn, &cp->bdaddr, NULL, 0); 1712 1713 if (!conn) 1714 goto unlock; 1715 1716 if (!hci_outgoing_auth_needed(hdev, conn)) 1717 goto unlock; 1718 1719 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) { 1720 struct hci_cp_auth_requested auth_cp; 1721 1722 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags); 1723 1724 auth_cp.handle = __cpu_to_le16(conn->handle); 1725 hci_send_cmd(hdev, HCI_OP_AUTH_REQUESTED, 1726 sizeof(auth_cp), &auth_cp); 1727 } 1728 1729 unlock: 1730 hci_dev_unlock(hdev); 1731 } 1732 1733 static void hci_cs_read_remote_features(struct hci_dev *hdev, __u8 status) 1734 { 1735 struct hci_cp_read_remote_features *cp; 1736 struct hci_conn *conn; 1737 1738 BT_DBG("%s status 0x%2.2x", hdev->name, status); 1739 1740 if (!status) 1741 return; 1742 1743 cp = hci_sent_cmd_data(hdev, HCI_OP_READ_REMOTE_FEATURES); 1744 if (!cp) 1745 return; 1746 1747 hci_dev_lock(hdev); 1748 1749 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 1750 if (conn) { 1751 if (conn->state == BT_CONFIG) { 1752 hci_connect_cfm(conn, status); 1753 hci_conn_drop(conn); 1754 } 1755 } 1756 1757 hci_dev_unlock(hdev); 1758 } 1759 1760 static void hci_cs_read_remote_ext_features(struct hci_dev *hdev, __u8 status) 1761 { 1762 struct hci_cp_read_remote_ext_features *cp; 1763 struct hci_conn *conn; 1764 1765 BT_DBG("%s status 0x%2.2x", hdev->name, status); 1766 1767 if (!status) 1768 return; 1769 1770 cp = hci_sent_cmd_data(hdev, HCI_OP_READ_REMOTE_EXT_FEATURES); 1771 if (!cp) 1772 return; 1773 1774 hci_dev_lock(hdev); 1775 1776 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 1777 if (conn) { 1778 if (conn->state == BT_CONFIG) { 1779 hci_connect_cfm(conn, status); 1780 hci_conn_drop(conn); 1781 } 1782 } 1783 1784 hci_dev_unlock(hdev); 1785 } 1786 1787 static void hci_cs_setup_sync_conn(struct hci_dev *hdev, __u8 status) 1788 { 1789 struct hci_cp_setup_sync_conn *cp; 1790 struct hci_conn *acl, *sco; 1791 __u16 handle; 1792 1793 BT_DBG("%s status 0x%2.2x", hdev->name, status); 1794 1795 if (!status) 1796 return; 1797 1798 cp = hci_sent_cmd_data(hdev, HCI_OP_SETUP_SYNC_CONN); 1799 if (!cp) 1800 return; 1801 1802 handle = __le16_to_cpu(cp->handle); 1803 1804 BT_DBG("%s handle 0x%4.4x", hdev->name, handle); 1805 1806 hci_dev_lock(hdev); 1807 1808 acl = hci_conn_hash_lookup_handle(hdev, handle); 1809 if (acl) { 1810 sco = acl->link; 1811 if (sco) { 1812 sco->state = BT_CLOSED; 1813 1814 hci_connect_cfm(sco, status); 1815 hci_conn_del(sco); 1816 } 1817 } 1818 1819 hci_dev_unlock(hdev); 1820 } 1821 1822 static void hci_cs_sniff_mode(struct hci_dev *hdev, __u8 status) 1823 { 1824 struct hci_cp_sniff_mode *cp; 1825 struct hci_conn *conn; 1826 1827 BT_DBG("%s status 0x%2.2x", hdev->name, status); 1828 1829 if (!status) 1830 return; 1831 1832 cp = hci_sent_cmd_data(hdev, HCI_OP_SNIFF_MODE); 1833 if (!cp) 1834 return; 1835 1836 hci_dev_lock(hdev); 1837 1838 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 1839 if (conn) { 1840 clear_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags); 1841 1842 if (test_and_clear_bit(HCI_CONN_SCO_SETUP_PEND, &conn->flags)) 1843 hci_sco_setup(conn, status); 1844 } 1845 1846 hci_dev_unlock(hdev); 1847 } 1848 1849 static void hci_cs_exit_sniff_mode(struct hci_dev *hdev, __u8 status) 1850 { 1851 struct hci_cp_exit_sniff_mode *cp; 1852 struct hci_conn *conn; 1853 1854 BT_DBG("%s status 0x%2.2x", hdev->name, status); 1855 1856 if (!status) 1857 return; 1858 1859 cp = hci_sent_cmd_data(hdev, HCI_OP_EXIT_SNIFF_MODE); 1860 if (!cp) 1861 return; 1862 1863 hci_dev_lock(hdev); 1864 1865 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 1866 if (conn) { 1867 clear_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags); 1868 1869 if (test_and_clear_bit(HCI_CONN_SCO_SETUP_PEND, &conn->flags)) 1870 hci_sco_setup(conn, status); 1871 } 1872 1873 hci_dev_unlock(hdev); 1874 } 1875 1876 static void hci_cs_disconnect(struct hci_dev *hdev, u8 status) 1877 { 1878 struct hci_cp_disconnect *cp; 1879 struct hci_conn *conn; 1880 1881 if (!status) 1882 return; 1883 1884 cp = hci_sent_cmd_data(hdev, HCI_OP_DISCONNECT); 1885 if (!cp) 1886 return; 1887 1888 hci_dev_lock(hdev); 1889 1890 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 1891 if (conn) 1892 mgmt_disconnect_failed(hdev, &conn->dst, conn->type, 1893 conn->dst_type, status); 1894 1895 hci_dev_unlock(hdev); 1896 } 1897 1898 static void hci_cs_le_create_conn(struct hci_dev *hdev, u8 status) 1899 { 1900 struct hci_cp_le_create_conn *cp; 1901 struct hci_conn *conn; 1902 1903 BT_DBG("%s status 0x%2.2x", hdev->name, status); 1904 1905 /* All connection failure handling is taken care of by the 1906 * hci_le_conn_failed function which is triggered by the HCI 1907 * request completion callbacks used for connecting. 1908 */ 1909 if (status) 1910 return; 1911 1912 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_CREATE_CONN); 1913 if (!cp) 1914 return; 1915 1916 hci_dev_lock(hdev); 1917 1918 conn = hci_conn_hash_lookup_le(hdev, &cp->peer_addr, 1919 cp->peer_addr_type); 1920 if (!conn) 1921 goto unlock; 1922 1923 /* Store the initiator and responder address information which 1924 * is needed for SMP. These values will not change during the 1925 * lifetime of the connection. 1926 */ 1927 conn->init_addr_type = cp->own_address_type; 1928 if (cp->own_address_type == ADDR_LE_DEV_RANDOM) 1929 bacpy(&conn->init_addr, &hdev->random_addr); 1930 else 1931 bacpy(&conn->init_addr, &hdev->bdaddr); 1932 1933 conn->resp_addr_type = cp->peer_addr_type; 1934 bacpy(&conn->resp_addr, &cp->peer_addr); 1935 1936 /* We don't want the connection attempt to stick around 1937 * indefinitely since LE doesn't have a page timeout concept 1938 * like BR/EDR. Set a timer for any connection that doesn't use 1939 * the white list for connecting. 1940 */ 1941 if (cp->filter_policy == HCI_LE_USE_PEER_ADDR) 1942 queue_delayed_work(conn->hdev->workqueue, 1943 &conn->le_conn_timeout, 1944 conn->conn_timeout); 1945 1946 unlock: 1947 hci_dev_unlock(hdev); 1948 } 1949 1950 static void hci_cs_le_read_remote_features(struct hci_dev *hdev, u8 status) 1951 { 1952 struct hci_cp_le_read_remote_features *cp; 1953 struct hci_conn *conn; 1954 1955 BT_DBG("%s status 0x%2.2x", hdev->name, status); 1956 1957 if (!status) 1958 return; 1959 1960 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_READ_REMOTE_FEATURES); 1961 if (!cp) 1962 return; 1963 1964 hci_dev_lock(hdev); 1965 1966 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 1967 if (conn) { 1968 if (conn->state == BT_CONFIG) { 1969 hci_connect_cfm(conn, status); 1970 hci_conn_drop(conn); 1971 } 1972 } 1973 1974 hci_dev_unlock(hdev); 1975 } 1976 1977 static void hci_cs_le_start_enc(struct hci_dev *hdev, u8 status) 1978 { 1979 struct hci_cp_le_start_enc *cp; 1980 struct hci_conn *conn; 1981 1982 BT_DBG("%s status 0x%2.2x", hdev->name, status); 1983 1984 if (!status) 1985 return; 1986 1987 hci_dev_lock(hdev); 1988 1989 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_START_ENC); 1990 if (!cp) 1991 goto unlock; 1992 1993 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 1994 if (!conn) 1995 goto unlock; 1996 1997 if (conn->state != BT_CONNECTED) 1998 goto unlock; 1999 2000 hci_disconnect(conn, HCI_ERROR_AUTH_FAILURE); 2001 hci_conn_drop(conn); 2002 2003 unlock: 2004 hci_dev_unlock(hdev); 2005 } 2006 2007 static void hci_cs_switch_role(struct hci_dev *hdev, u8 status) 2008 { 2009 struct hci_cp_switch_role *cp; 2010 struct hci_conn *conn; 2011 2012 BT_DBG("%s status 0x%2.2x", hdev->name, status); 2013 2014 if (!status) 2015 return; 2016 2017 cp = hci_sent_cmd_data(hdev, HCI_OP_SWITCH_ROLE); 2018 if (!cp) 2019 return; 2020 2021 hci_dev_lock(hdev); 2022 2023 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->bdaddr); 2024 if (conn) 2025 clear_bit(HCI_CONN_RSWITCH_PEND, &conn->flags); 2026 2027 hci_dev_unlock(hdev); 2028 } 2029 2030 static void hci_inquiry_complete_evt(struct hci_dev *hdev, struct sk_buff *skb) 2031 { 2032 __u8 status = *((__u8 *) skb->data); 2033 struct discovery_state *discov = &hdev->discovery; 2034 struct inquiry_entry *e; 2035 2036 BT_DBG("%s status 0x%2.2x", hdev->name, status); 2037 2038 hci_conn_check_pending(hdev); 2039 2040 if (!test_and_clear_bit(HCI_INQUIRY, &hdev->flags)) 2041 return; 2042 2043 smp_mb__after_atomic(); /* wake_up_bit advises about this barrier */ 2044 wake_up_bit(&hdev->flags, HCI_INQUIRY); 2045 2046 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 2047 return; 2048 2049 hci_dev_lock(hdev); 2050 2051 if (discov->state != DISCOVERY_FINDING) 2052 goto unlock; 2053 2054 if (list_empty(&discov->resolve)) { 2055 /* When BR/EDR inquiry is active and no LE scanning is in 2056 * progress, then change discovery state to indicate completion. 2057 * 2058 * When running LE scanning and BR/EDR inquiry simultaneously 2059 * and the LE scan already finished, then change the discovery 2060 * state to indicate completion. 2061 */ 2062 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN) || 2063 !test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) 2064 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 2065 goto unlock; 2066 } 2067 2068 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, NAME_NEEDED); 2069 if (e && hci_resolve_name(hdev, e) == 0) { 2070 e->name_state = NAME_PENDING; 2071 hci_discovery_set_state(hdev, DISCOVERY_RESOLVING); 2072 } else { 2073 /* When BR/EDR inquiry is active and no LE scanning is in 2074 * progress, then change discovery state to indicate completion. 2075 * 2076 * When running LE scanning and BR/EDR inquiry simultaneously 2077 * and the LE scan already finished, then change the discovery 2078 * state to indicate completion. 2079 */ 2080 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN) || 2081 !test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) 2082 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 2083 } 2084 2085 unlock: 2086 hci_dev_unlock(hdev); 2087 } 2088 2089 static void hci_inquiry_result_evt(struct hci_dev *hdev, struct sk_buff *skb) 2090 { 2091 struct inquiry_data data; 2092 struct inquiry_info *info = (void *) (skb->data + 1); 2093 int num_rsp = *((__u8 *) skb->data); 2094 2095 BT_DBG("%s num_rsp %d", hdev->name, num_rsp); 2096 2097 if (!num_rsp) 2098 return; 2099 2100 if (hci_dev_test_flag(hdev, HCI_PERIODIC_INQ)) 2101 return; 2102 2103 hci_dev_lock(hdev); 2104 2105 for (; num_rsp; num_rsp--, info++) { 2106 u32 flags; 2107 2108 bacpy(&data.bdaddr, &info->bdaddr); 2109 data.pscan_rep_mode = info->pscan_rep_mode; 2110 data.pscan_period_mode = info->pscan_period_mode; 2111 data.pscan_mode = info->pscan_mode; 2112 memcpy(data.dev_class, info->dev_class, 3); 2113 data.clock_offset = info->clock_offset; 2114 data.rssi = HCI_RSSI_INVALID; 2115 data.ssp_mode = 0x00; 2116 2117 flags = hci_inquiry_cache_update(hdev, &data, false); 2118 2119 mgmt_device_found(hdev, &info->bdaddr, ACL_LINK, 0x00, 2120 info->dev_class, HCI_RSSI_INVALID, 2121 flags, NULL, 0, NULL, 0); 2122 } 2123 2124 hci_dev_unlock(hdev); 2125 } 2126 2127 static void hci_conn_complete_evt(struct hci_dev *hdev, struct sk_buff *skb) 2128 { 2129 struct hci_ev_conn_complete *ev = (void *) skb->data; 2130 struct hci_conn *conn; 2131 2132 BT_DBG("%s", hdev->name); 2133 2134 hci_dev_lock(hdev); 2135 2136 conn = hci_conn_hash_lookup_ba(hdev, ev->link_type, &ev->bdaddr); 2137 if (!conn) { 2138 if (ev->link_type != SCO_LINK) 2139 goto unlock; 2140 2141 conn = hci_conn_hash_lookup_ba(hdev, ESCO_LINK, &ev->bdaddr); 2142 if (!conn) 2143 goto unlock; 2144 2145 conn->type = SCO_LINK; 2146 } 2147 2148 if (!ev->status) { 2149 conn->handle = __le16_to_cpu(ev->handle); 2150 2151 if (conn->type == ACL_LINK) { 2152 conn->state = BT_CONFIG; 2153 hci_conn_hold(conn); 2154 2155 if (!conn->out && !hci_conn_ssp_enabled(conn) && 2156 !hci_find_link_key(hdev, &ev->bdaddr)) 2157 conn->disc_timeout = HCI_PAIRING_TIMEOUT; 2158 else 2159 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 2160 } else 2161 conn->state = BT_CONNECTED; 2162 2163 hci_debugfs_create_conn(conn); 2164 hci_conn_add_sysfs(conn); 2165 2166 if (test_bit(HCI_AUTH, &hdev->flags)) 2167 set_bit(HCI_CONN_AUTH, &conn->flags); 2168 2169 if (test_bit(HCI_ENCRYPT, &hdev->flags)) 2170 set_bit(HCI_CONN_ENCRYPT, &conn->flags); 2171 2172 /* Get remote features */ 2173 if (conn->type == ACL_LINK) { 2174 struct hci_cp_read_remote_features cp; 2175 cp.handle = ev->handle; 2176 hci_send_cmd(hdev, HCI_OP_READ_REMOTE_FEATURES, 2177 sizeof(cp), &cp); 2178 2179 hci_update_page_scan(hdev); 2180 } 2181 2182 /* Set packet type for incoming connection */ 2183 if (!conn->out && hdev->hci_ver < BLUETOOTH_VER_2_0) { 2184 struct hci_cp_change_conn_ptype cp; 2185 cp.handle = ev->handle; 2186 cp.pkt_type = cpu_to_le16(conn->pkt_type); 2187 hci_send_cmd(hdev, HCI_OP_CHANGE_CONN_PTYPE, sizeof(cp), 2188 &cp); 2189 } 2190 } else { 2191 conn->state = BT_CLOSED; 2192 if (conn->type == ACL_LINK) 2193 mgmt_connect_failed(hdev, &conn->dst, conn->type, 2194 conn->dst_type, ev->status); 2195 } 2196 2197 if (conn->type == ACL_LINK) 2198 hci_sco_setup(conn, ev->status); 2199 2200 if (ev->status) { 2201 hci_connect_cfm(conn, ev->status); 2202 hci_conn_del(conn); 2203 } else if (ev->link_type != ACL_LINK) 2204 hci_connect_cfm(conn, ev->status); 2205 2206 unlock: 2207 hci_dev_unlock(hdev); 2208 2209 hci_conn_check_pending(hdev); 2210 } 2211 2212 static void hci_reject_conn(struct hci_dev *hdev, bdaddr_t *bdaddr) 2213 { 2214 struct hci_cp_reject_conn_req cp; 2215 2216 bacpy(&cp.bdaddr, bdaddr); 2217 cp.reason = HCI_ERROR_REJ_BAD_ADDR; 2218 hci_send_cmd(hdev, HCI_OP_REJECT_CONN_REQ, sizeof(cp), &cp); 2219 } 2220 2221 static void hci_conn_request_evt(struct hci_dev *hdev, struct sk_buff *skb) 2222 { 2223 struct hci_ev_conn_request *ev = (void *) skb->data; 2224 int mask = hdev->link_mode; 2225 struct inquiry_entry *ie; 2226 struct hci_conn *conn; 2227 __u8 flags = 0; 2228 2229 BT_DBG("%s bdaddr %pMR type 0x%x", hdev->name, &ev->bdaddr, 2230 ev->link_type); 2231 2232 mask |= hci_proto_connect_ind(hdev, &ev->bdaddr, ev->link_type, 2233 &flags); 2234 2235 if (!(mask & HCI_LM_ACCEPT)) { 2236 hci_reject_conn(hdev, &ev->bdaddr); 2237 return; 2238 } 2239 2240 if (hci_bdaddr_list_lookup(&hdev->blacklist, &ev->bdaddr, 2241 BDADDR_BREDR)) { 2242 hci_reject_conn(hdev, &ev->bdaddr); 2243 return; 2244 } 2245 2246 /* Require HCI_CONNECTABLE or a whitelist entry to accept the 2247 * connection. These features are only touched through mgmt so 2248 * only do the checks if HCI_MGMT is set. 2249 */ 2250 if (hci_dev_test_flag(hdev, HCI_MGMT) && 2251 !hci_dev_test_flag(hdev, HCI_CONNECTABLE) && 2252 !hci_bdaddr_list_lookup(&hdev->whitelist, &ev->bdaddr, 2253 BDADDR_BREDR)) { 2254 hci_reject_conn(hdev, &ev->bdaddr); 2255 return; 2256 } 2257 2258 /* Connection accepted */ 2259 2260 hci_dev_lock(hdev); 2261 2262 ie = hci_inquiry_cache_lookup(hdev, &ev->bdaddr); 2263 if (ie) 2264 memcpy(ie->data.dev_class, ev->dev_class, 3); 2265 2266 conn = hci_conn_hash_lookup_ba(hdev, ev->link_type, 2267 &ev->bdaddr); 2268 if (!conn) { 2269 conn = hci_conn_add(hdev, ev->link_type, &ev->bdaddr, 2270 HCI_ROLE_SLAVE); 2271 if (!conn) { 2272 BT_ERR("No memory for new connection"); 2273 hci_dev_unlock(hdev); 2274 return; 2275 } 2276 } 2277 2278 memcpy(conn->dev_class, ev->dev_class, 3); 2279 2280 hci_dev_unlock(hdev); 2281 2282 if (ev->link_type == ACL_LINK || 2283 (!(flags & HCI_PROTO_DEFER) && !lmp_esco_capable(hdev))) { 2284 struct hci_cp_accept_conn_req cp; 2285 conn->state = BT_CONNECT; 2286 2287 bacpy(&cp.bdaddr, &ev->bdaddr); 2288 2289 if (lmp_rswitch_capable(hdev) && (mask & HCI_LM_MASTER)) 2290 cp.role = 0x00; /* Become master */ 2291 else 2292 cp.role = 0x01; /* Remain slave */ 2293 2294 hci_send_cmd(hdev, HCI_OP_ACCEPT_CONN_REQ, sizeof(cp), &cp); 2295 } else if (!(flags & HCI_PROTO_DEFER)) { 2296 struct hci_cp_accept_sync_conn_req cp; 2297 conn->state = BT_CONNECT; 2298 2299 bacpy(&cp.bdaddr, &ev->bdaddr); 2300 cp.pkt_type = cpu_to_le16(conn->pkt_type); 2301 2302 cp.tx_bandwidth = cpu_to_le32(0x00001f40); 2303 cp.rx_bandwidth = cpu_to_le32(0x00001f40); 2304 cp.max_latency = cpu_to_le16(0xffff); 2305 cp.content_format = cpu_to_le16(hdev->voice_setting); 2306 cp.retrans_effort = 0xff; 2307 2308 hci_send_cmd(hdev, HCI_OP_ACCEPT_SYNC_CONN_REQ, sizeof(cp), 2309 &cp); 2310 } else { 2311 conn->state = BT_CONNECT2; 2312 hci_connect_cfm(conn, 0); 2313 } 2314 } 2315 2316 static u8 hci_to_mgmt_reason(u8 err) 2317 { 2318 switch (err) { 2319 case HCI_ERROR_CONNECTION_TIMEOUT: 2320 return MGMT_DEV_DISCONN_TIMEOUT; 2321 case HCI_ERROR_REMOTE_USER_TERM: 2322 case HCI_ERROR_REMOTE_LOW_RESOURCES: 2323 case HCI_ERROR_REMOTE_POWER_OFF: 2324 return MGMT_DEV_DISCONN_REMOTE; 2325 case HCI_ERROR_LOCAL_HOST_TERM: 2326 return MGMT_DEV_DISCONN_LOCAL_HOST; 2327 default: 2328 return MGMT_DEV_DISCONN_UNKNOWN; 2329 } 2330 } 2331 2332 static void hci_disconn_complete_evt(struct hci_dev *hdev, struct sk_buff *skb) 2333 { 2334 struct hci_ev_disconn_complete *ev = (void *) skb->data; 2335 u8 reason = hci_to_mgmt_reason(ev->reason); 2336 struct hci_conn_params *params; 2337 struct hci_conn *conn; 2338 bool mgmt_connected; 2339 u8 type; 2340 2341 BT_DBG("%s status 0x%2.2x", hdev->name, ev->status); 2342 2343 hci_dev_lock(hdev); 2344 2345 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 2346 if (!conn) 2347 goto unlock; 2348 2349 if (ev->status) { 2350 mgmt_disconnect_failed(hdev, &conn->dst, conn->type, 2351 conn->dst_type, ev->status); 2352 goto unlock; 2353 } 2354 2355 conn->state = BT_CLOSED; 2356 2357 mgmt_connected = test_and_clear_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags); 2358 mgmt_device_disconnected(hdev, &conn->dst, conn->type, conn->dst_type, 2359 reason, mgmt_connected); 2360 2361 if (conn->type == ACL_LINK) { 2362 if (test_bit(HCI_CONN_FLUSH_KEY, &conn->flags)) 2363 hci_remove_link_key(hdev, &conn->dst); 2364 2365 hci_update_page_scan(hdev); 2366 } 2367 2368 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 2369 if (params) { 2370 switch (params->auto_connect) { 2371 case HCI_AUTO_CONN_LINK_LOSS: 2372 if (ev->reason != HCI_ERROR_CONNECTION_TIMEOUT) 2373 break; 2374 /* Fall through */ 2375 2376 case HCI_AUTO_CONN_DIRECT: 2377 case HCI_AUTO_CONN_ALWAYS: 2378 list_del_init(¶ms->action); 2379 list_add(¶ms->action, &hdev->pend_le_conns); 2380 hci_update_background_scan(hdev); 2381 break; 2382 2383 default: 2384 break; 2385 } 2386 } 2387 2388 type = conn->type; 2389 2390 hci_disconn_cfm(conn, ev->reason); 2391 hci_conn_del(conn); 2392 2393 /* Re-enable advertising if necessary, since it might 2394 * have been disabled by the connection. From the 2395 * HCI_LE_Set_Advertise_Enable command description in 2396 * the core specification (v4.0): 2397 * "The Controller shall continue advertising until the Host 2398 * issues an LE_Set_Advertise_Enable command with 2399 * Advertising_Enable set to 0x00 (Advertising is disabled) 2400 * or until a connection is created or until the Advertising 2401 * is timed out due to Directed Advertising." 2402 */ 2403 if (type == LE_LINK) 2404 mgmt_reenable_advertising(hdev); 2405 2406 unlock: 2407 hci_dev_unlock(hdev); 2408 } 2409 2410 static void hci_auth_complete_evt(struct hci_dev *hdev, struct sk_buff *skb) 2411 { 2412 struct hci_ev_auth_complete *ev = (void *) skb->data; 2413 struct hci_conn *conn; 2414 2415 BT_DBG("%s status 0x%2.2x", hdev->name, ev->status); 2416 2417 hci_dev_lock(hdev); 2418 2419 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 2420 if (!conn) 2421 goto unlock; 2422 2423 if (!ev->status) { 2424 if (!hci_conn_ssp_enabled(conn) && 2425 test_bit(HCI_CONN_REAUTH_PEND, &conn->flags)) { 2426 BT_INFO("re-auth of legacy device is not possible."); 2427 } else { 2428 set_bit(HCI_CONN_AUTH, &conn->flags); 2429 conn->sec_level = conn->pending_sec_level; 2430 } 2431 } else { 2432 mgmt_auth_failed(conn, ev->status); 2433 } 2434 2435 clear_bit(HCI_CONN_AUTH_PEND, &conn->flags); 2436 clear_bit(HCI_CONN_REAUTH_PEND, &conn->flags); 2437 2438 if (conn->state == BT_CONFIG) { 2439 if (!ev->status && hci_conn_ssp_enabled(conn)) { 2440 struct hci_cp_set_conn_encrypt cp; 2441 cp.handle = ev->handle; 2442 cp.encrypt = 0x01; 2443 hci_send_cmd(hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp), 2444 &cp); 2445 } else { 2446 conn->state = BT_CONNECTED; 2447 hci_connect_cfm(conn, ev->status); 2448 hci_conn_drop(conn); 2449 } 2450 } else { 2451 hci_auth_cfm(conn, ev->status); 2452 2453 hci_conn_hold(conn); 2454 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 2455 hci_conn_drop(conn); 2456 } 2457 2458 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) { 2459 if (!ev->status) { 2460 struct hci_cp_set_conn_encrypt cp; 2461 cp.handle = ev->handle; 2462 cp.encrypt = 0x01; 2463 hci_send_cmd(hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp), 2464 &cp); 2465 } else { 2466 clear_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); 2467 hci_encrypt_cfm(conn, ev->status, 0x00); 2468 } 2469 } 2470 2471 unlock: 2472 hci_dev_unlock(hdev); 2473 } 2474 2475 static void hci_remote_name_evt(struct hci_dev *hdev, struct sk_buff *skb) 2476 { 2477 struct hci_ev_remote_name *ev = (void *) skb->data; 2478 struct hci_conn *conn; 2479 2480 BT_DBG("%s", hdev->name); 2481 2482 hci_conn_check_pending(hdev); 2483 2484 hci_dev_lock(hdev); 2485 2486 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 2487 2488 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 2489 goto check_auth; 2490 2491 if (ev->status == 0) 2492 hci_check_pending_name(hdev, conn, &ev->bdaddr, ev->name, 2493 strnlen(ev->name, HCI_MAX_NAME_LENGTH)); 2494 else 2495 hci_check_pending_name(hdev, conn, &ev->bdaddr, NULL, 0); 2496 2497 check_auth: 2498 if (!conn) 2499 goto unlock; 2500 2501 if (!hci_outgoing_auth_needed(hdev, conn)) 2502 goto unlock; 2503 2504 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) { 2505 struct hci_cp_auth_requested cp; 2506 2507 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags); 2508 2509 cp.handle = __cpu_to_le16(conn->handle); 2510 hci_send_cmd(hdev, HCI_OP_AUTH_REQUESTED, sizeof(cp), &cp); 2511 } 2512 2513 unlock: 2514 hci_dev_unlock(hdev); 2515 } 2516 2517 static void read_enc_key_size_complete(struct hci_dev *hdev, u8 status, 2518 u16 opcode, struct sk_buff *skb) 2519 { 2520 const struct hci_rp_read_enc_key_size *rp; 2521 struct hci_conn *conn; 2522 u16 handle; 2523 2524 BT_DBG("%s status 0x%02x", hdev->name, status); 2525 2526 if (!skb || skb->len < sizeof(*rp)) { 2527 BT_ERR("%s invalid HCI Read Encryption Key Size response", 2528 hdev->name); 2529 return; 2530 } 2531 2532 rp = (void *)skb->data; 2533 handle = le16_to_cpu(rp->handle); 2534 2535 hci_dev_lock(hdev); 2536 2537 conn = hci_conn_hash_lookup_handle(hdev, handle); 2538 if (!conn) 2539 goto unlock; 2540 2541 /* If we fail to read the encryption key size, assume maximum 2542 * (which is the same we do also when this HCI command isn't 2543 * supported. 2544 */ 2545 if (rp->status) { 2546 BT_ERR("%s failed to read key size for handle %u", hdev->name, 2547 handle); 2548 conn->enc_key_size = HCI_LINK_KEY_SIZE; 2549 } else { 2550 conn->enc_key_size = rp->key_size; 2551 } 2552 2553 if (conn->state == BT_CONFIG) { 2554 conn->state = BT_CONNECTED; 2555 hci_connect_cfm(conn, 0); 2556 hci_conn_drop(conn); 2557 } else { 2558 u8 encrypt; 2559 2560 if (!test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 2561 encrypt = 0x00; 2562 else if (test_bit(HCI_CONN_AES_CCM, &conn->flags)) 2563 encrypt = 0x02; 2564 else 2565 encrypt = 0x01; 2566 2567 hci_encrypt_cfm(conn, 0, encrypt); 2568 } 2569 2570 unlock: 2571 hci_dev_unlock(hdev); 2572 } 2573 2574 static void hci_encrypt_change_evt(struct hci_dev *hdev, struct sk_buff *skb) 2575 { 2576 struct hci_ev_encrypt_change *ev = (void *) skb->data; 2577 struct hci_conn *conn; 2578 2579 BT_DBG("%s status 0x%2.2x", hdev->name, ev->status); 2580 2581 hci_dev_lock(hdev); 2582 2583 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 2584 if (!conn) 2585 goto unlock; 2586 2587 if (!ev->status) { 2588 if (ev->encrypt) { 2589 /* Encryption implies authentication */ 2590 set_bit(HCI_CONN_AUTH, &conn->flags); 2591 set_bit(HCI_CONN_ENCRYPT, &conn->flags); 2592 conn->sec_level = conn->pending_sec_level; 2593 2594 /* P-256 authentication key implies FIPS */ 2595 if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256) 2596 set_bit(HCI_CONN_FIPS, &conn->flags); 2597 2598 if ((conn->type == ACL_LINK && ev->encrypt == 0x02) || 2599 conn->type == LE_LINK) 2600 set_bit(HCI_CONN_AES_CCM, &conn->flags); 2601 } else { 2602 clear_bit(HCI_CONN_ENCRYPT, &conn->flags); 2603 clear_bit(HCI_CONN_AES_CCM, &conn->flags); 2604 } 2605 } 2606 2607 /* We should disregard the current RPA and generate a new one 2608 * whenever the encryption procedure fails. 2609 */ 2610 if (ev->status && conn->type == LE_LINK) 2611 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 2612 2613 clear_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); 2614 2615 if (ev->status && conn->state == BT_CONNECTED) { 2616 hci_disconnect(conn, HCI_ERROR_AUTH_FAILURE); 2617 hci_conn_drop(conn); 2618 goto unlock; 2619 } 2620 2621 /* In Secure Connections Only mode, do not allow any connections 2622 * that are not encrypted with AES-CCM using a P-256 authenticated 2623 * combination key. 2624 */ 2625 if (hci_dev_test_flag(hdev, HCI_SC_ONLY) && 2626 (!test_bit(HCI_CONN_AES_CCM, &conn->flags) || 2627 conn->key_type != HCI_LK_AUTH_COMBINATION_P256)) { 2628 hci_connect_cfm(conn, HCI_ERROR_AUTH_FAILURE); 2629 hci_conn_drop(conn); 2630 goto unlock; 2631 } 2632 2633 /* Try reading the encryption key size for encrypted ACL links */ 2634 if (!ev->status && ev->encrypt && conn->type == ACL_LINK) { 2635 struct hci_cp_read_enc_key_size cp; 2636 struct hci_request req; 2637 2638 /* Only send HCI_Read_Encryption_Key_Size if the 2639 * controller really supports it. If it doesn't, assume 2640 * the default size (16). 2641 */ 2642 if (!(hdev->commands[20] & 0x10)) { 2643 conn->enc_key_size = HCI_LINK_KEY_SIZE; 2644 goto notify; 2645 } 2646 2647 hci_req_init(&req, hdev); 2648 2649 cp.handle = cpu_to_le16(conn->handle); 2650 hci_req_add(&req, HCI_OP_READ_ENC_KEY_SIZE, sizeof(cp), &cp); 2651 2652 if (hci_req_run_skb(&req, read_enc_key_size_complete)) { 2653 BT_ERR("Sending HCI Read Encryption Key Size failed"); 2654 conn->enc_key_size = HCI_LINK_KEY_SIZE; 2655 goto notify; 2656 } 2657 2658 goto unlock; 2659 } 2660 2661 notify: 2662 if (conn->state == BT_CONFIG) { 2663 if (!ev->status) 2664 conn->state = BT_CONNECTED; 2665 2666 hci_connect_cfm(conn, ev->status); 2667 hci_conn_drop(conn); 2668 } else 2669 hci_encrypt_cfm(conn, ev->status, ev->encrypt); 2670 2671 unlock: 2672 hci_dev_unlock(hdev); 2673 } 2674 2675 static void hci_change_link_key_complete_evt(struct hci_dev *hdev, 2676 struct sk_buff *skb) 2677 { 2678 struct hci_ev_change_link_key_complete *ev = (void *) skb->data; 2679 struct hci_conn *conn; 2680 2681 BT_DBG("%s status 0x%2.2x", hdev->name, ev->status); 2682 2683 hci_dev_lock(hdev); 2684 2685 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 2686 if (conn) { 2687 if (!ev->status) 2688 set_bit(HCI_CONN_SECURE, &conn->flags); 2689 2690 clear_bit(HCI_CONN_AUTH_PEND, &conn->flags); 2691 2692 hci_key_change_cfm(conn, ev->status); 2693 } 2694 2695 hci_dev_unlock(hdev); 2696 } 2697 2698 static void hci_remote_features_evt(struct hci_dev *hdev, 2699 struct sk_buff *skb) 2700 { 2701 struct hci_ev_remote_features *ev = (void *) skb->data; 2702 struct hci_conn *conn; 2703 2704 BT_DBG("%s status 0x%2.2x", hdev->name, ev->status); 2705 2706 hci_dev_lock(hdev); 2707 2708 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 2709 if (!conn) 2710 goto unlock; 2711 2712 if (!ev->status) 2713 memcpy(conn->features[0], ev->features, 8); 2714 2715 if (conn->state != BT_CONFIG) 2716 goto unlock; 2717 2718 if (!ev->status && lmp_ext_feat_capable(hdev) && 2719 lmp_ext_feat_capable(conn)) { 2720 struct hci_cp_read_remote_ext_features cp; 2721 cp.handle = ev->handle; 2722 cp.page = 0x01; 2723 hci_send_cmd(hdev, HCI_OP_READ_REMOTE_EXT_FEATURES, 2724 sizeof(cp), &cp); 2725 goto unlock; 2726 } 2727 2728 if (!ev->status && !test_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags)) { 2729 struct hci_cp_remote_name_req cp; 2730 memset(&cp, 0, sizeof(cp)); 2731 bacpy(&cp.bdaddr, &conn->dst); 2732 cp.pscan_rep_mode = 0x02; 2733 hci_send_cmd(hdev, HCI_OP_REMOTE_NAME_REQ, sizeof(cp), &cp); 2734 } else if (!test_and_set_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags)) 2735 mgmt_device_connected(hdev, conn, 0, NULL, 0); 2736 2737 if (!hci_outgoing_auth_needed(hdev, conn)) { 2738 conn->state = BT_CONNECTED; 2739 hci_connect_cfm(conn, ev->status); 2740 hci_conn_drop(conn); 2741 } 2742 2743 unlock: 2744 hci_dev_unlock(hdev); 2745 } 2746 2747 static void hci_cmd_complete_evt(struct hci_dev *hdev, struct sk_buff *skb, 2748 u16 *opcode, u8 *status, 2749 hci_req_complete_t *req_complete, 2750 hci_req_complete_skb_t *req_complete_skb) 2751 { 2752 struct hci_ev_cmd_complete *ev = (void *) skb->data; 2753 2754 *opcode = __le16_to_cpu(ev->opcode); 2755 *status = skb->data[sizeof(*ev)]; 2756 2757 skb_pull(skb, sizeof(*ev)); 2758 2759 switch (*opcode) { 2760 case HCI_OP_INQUIRY_CANCEL: 2761 hci_cc_inquiry_cancel(hdev, skb); 2762 break; 2763 2764 case HCI_OP_PERIODIC_INQ: 2765 hci_cc_periodic_inq(hdev, skb); 2766 break; 2767 2768 case HCI_OP_EXIT_PERIODIC_INQ: 2769 hci_cc_exit_periodic_inq(hdev, skb); 2770 break; 2771 2772 case HCI_OP_REMOTE_NAME_REQ_CANCEL: 2773 hci_cc_remote_name_req_cancel(hdev, skb); 2774 break; 2775 2776 case HCI_OP_ROLE_DISCOVERY: 2777 hci_cc_role_discovery(hdev, skb); 2778 break; 2779 2780 case HCI_OP_READ_LINK_POLICY: 2781 hci_cc_read_link_policy(hdev, skb); 2782 break; 2783 2784 case HCI_OP_WRITE_LINK_POLICY: 2785 hci_cc_write_link_policy(hdev, skb); 2786 break; 2787 2788 case HCI_OP_READ_DEF_LINK_POLICY: 2789 hci_cc_read_def_link_policy(hdev, skb); 2790 break; 2791 2792 case HCI_OP_WRITE_DEF_LINK_POLICY: 2793 hci_cc_write_def_link_policy(hdev, skb); 2794 break; 2795 2796 case HCI_OP_RESET: 2797 hci_cc_reset(hdev, skb); 2798 break; 2799 2800 case HCI_OP_READ_STORED_LINK_KEY: 2801 hci_cc_read_stored_link_key(hdev, skb); 2802 break; 2803 2804 case HCI_OP_DELETE_STORED_LINK_KEY: 2805 hci_cc_delete_stored_link_key(hdev, skb); 2806 break; 2807 2808 case HCI_OP_WRITE_LOCAL_NAME: 2809 hci_cc_write_local_name(hdev, skb); 2810 break; 2811 2812 case HCI_OP_READ_LOCAL_NAME: 2813 hci_cc_read_local_name(hdev, skb); 2814 break; 2815 2816 case HCI_OP_WRITE_AUTH_ENABLE: 2817 hci_cc_write_auth_enable(hdev, skb); 2818 break; 2819 2820 case HCI_OP_WRITE_ENCRYPT_MODE: 2821 hci_cc_write_encrypt_mode(hdev, skb); 2822 break; 2823 2824 case HCI_OP_WRITE_SCAN_ENABLE: 2825 hci_cc_write_scan_enable(hdev, skb); 2826 break; 2827 2828 case HCI_OP_READ_CLASS_OF_DEV: 2829 hci_cc_read_class_of_dev(hdev, skb); 2830 break; 2831 2832 case HCI_OP_WRITE_CLASS_OF_DEV: 2833 hci_cc_write_class_of_dev(hdev, skb); 2834 break; 2835 2836 case HCI_OP_READ_VOICE_SETTING: 2837 hci_cc_read_voice_setting(hdev, skb); 2838 break; 2839 2840 case HCI_OP_WRITE_VOICE_SETTING: 2841 hci_cc_write_voice_setting(hdev, skb); 2842 break; 2843 2844 case HCI_OP_READ_NUM_SUPPORTED_IAC: 2845 hci_cc_read_num_supported_iac(hdev, skb); 2846 break; 2847 2848 case HCI_OP_WRITE_SSP_MODE: 2849 hci_cc_write_ssp_mode(hdev, skb); 2850 break; 2851 2852 case HCI_OP_WRITE_SC_SUPPORT: 2853 hci_cc_write_sc_support(hdev, skb); 2854 break; 2855 2856 case HCI_OP_READ_LOCAL_VERSION: 2857 hci_cc_read_local_version(hdev, skb); 2858 break; 2859 2860 case HCI_OP_READ_LOCAL_COMMANDS: 2861 hci_cc_read_local_commands(hdev, skb); 2862 break; 2863 2864 case HCI_OP_READ_LOCAL_FEATURES: 2865 hci_cc_read_local_features(hdev, skb); 2866 break; 2867 2868 case HCI_OP_READ_LOCAL_EXT_FEATURES: 2869 hci_cc_read_local_ext_features(hdev, skb); 2870 break; 2871 2872 case HCI_OP_READ_BUFFER_SIZE: 2873 hci_cc_read_buffer_size(hdev, skb); 2874 break; 2875 2876 case HCI_OP_READ_BD_ADDR: 2877 hci_cc_read_bd_addr(hdev, skb); 2878 break; 2879 2880 case HCI_OP_READ_PAGE_SCAN_ACTIVITY: 2881 hci_cc_read_page_scan_activity(hdev, skb); 2882 break; 2883 2884 case HCI_OP_WRITE_PAGE_SCAN_ACTIVITY: 2885 hci_cc_write_page_scan_activity(hdev, skb); 2886 break; 2887 2888 case HCI_OP_READ_PAGE_SCAN_TYPE: 2889 hci_cc_read_page_scan_type(hdev, skb); 2890 break; 2891 2892 case HCI_OP_WRITE_PAGE_SCAN_TYPE: 2893 hci_cc_write_page_scan_type(hdev, skb); 2894 break; 2895 2896 case HCI_OP_READ_DATA_BLOCK_SIZE: 2897 hci_cc_read_data_block_size(hdev, skb); 2898 break; 2899 2900 case HCI_OP_READ_FLOW_CONTROL_MODE: 2901 hci_cc_read_flow_control_mode(hdev, skb); 2902 break; 2903 2904 case HCI_OP_READ_LOCAL_AMP_INFO: 2905 hci_cc_read_local_amp_info(hdev, skb); 2906 break; 2907 2908 case HCI_OP_READ_CLOCK: 2909 hci_cc_read_clock(hdev, skb); 2910 break; 2911 2912 case HCI_OP_READ_INQ_RSP_TX_POWER: 2913 hci_cc_read_inq_rsp_tx_power(hdev, skb); 2914 break; 2915 2916 case HCI_OP_PIN_CODE_REPLY: 2917 hci_cc_pin_code_reply(hdev, skb); 2918 break; 2919 2920 case HCI_OP_PIN_CODE_NEG_REPLY: 2921 hci_cc_pin_code_neg_reply(hdev, skb); 2922 break; 2923 2924 case HCI_OP_READ_LOCAL_OOB_DATA: 2925 hci_cc_read_local_oob_data(hdev, skb); 2926 break; 2927 2928 case HCI_OP_READ_LOCAL_OOB_EXT_DATA: 2929 hci_cc_read_local_oob_ext_data(hdev, skb); 2930 break; 2931 2932 case HCI_OP_LE_READ_BUFFER_SIZE: 2933 hci_cc_le_read_buffer_size(hdev, skb); 2934 break; 2935 2936 case HCI_OP_LE_READ_LOCAL_FEATURES: 2937 hci_cc_le_read_local_features(hdev, skb); 2938 break; 2939 2940 case HCI_OP_LE_READ_ADV_TX_POWER: 2941 hci_cc_le_read_adv_tx_power(hdev, skb); 2942 break; 2943 2944 case HCI_OP_USER_CONFIRM_REPLY: 2945 hci_cc_user_confirm_reply(hdev, skb); 2946 break; 2947 2948 case HCI_OP_USER_CONFIRM_NEG_REPLY: 2949 hci_cc_user_confirm_neg_reply(hdev, skb); 2950 break; 2951 2952 case HCI_OP_USER_PASSKEY_REPLY: 2953 hci_cc_user_passkey_reply(hdev, skb); 2954 break; 2955 2956 case HCI_OP_USER_PASSKEY_NEG_REPLY: 2957 hci_cc_user_passkey_neg_reply(hdev, skb); 2958 break; 2959 2960 case HCI_OP_LE_SET_RANDOM_ADDR: 2961 hci_cc_le_set_random_addr(hdev, skb); 2962 break; 2963 2964 case HCI_OP_LE_SET_ADV_ENABLE: 2965 hci_cc_le_set_adv_enable(hdev, skb); 2966 break; 2967 2968 case HCI_OP_LE_SET_SCAN_PARAM: 2969 hci_cc_le_set_scan_param(hdev, skb); 2970 break; 2971 2972 case HCI_OP_LE_SET_SCAN_ENABLE: 2973 hci_cc_le_set_scan_enable(hdev, skb); 2974 break; 2975 2976 case HCI_OP_LE_READ_WHITE_LIST_SIZE: 2977 hci_cc_le_read_white_list_size(hdev, skb); 2978 break; 2979 2980 case HCI_OP_LE_CLEAR_WHITE_LIST: 2981 hci_cc_le_clear_white_list(hdev, skb); 2982 break; 2983 2984 case HCI_OP_LE_ADD_TO_WHITE_LIST: 2985 hci_cc_le_add_to_white_list(hdev, skb); 2986 break; 2987 2988 case HCI_OP_LE_DEL_FROM_WHITE_LIST: 2989 hci_cc_le_del_from_white_list(hdev, skb); 2990 break; 2991 2992 case HCI_OP_LE_READ_SUPPORTED_STATES: 2993 hci_cc_le_read_supported_states(hdev, skb); 2994 break; 2995 2996 case HCI_OP_LE_READ_DEF_DATA_LEN: 2997 hci_cc_le_read_def_data_len(hdev, skb); 2998 break; 2999 3000 case HCI_OP_LE_WRITE_DEF_DATA_LEN: 3001 hci_cc_le_write_def_data_len(hdev, skb); 3002 break; 3003 3004 case HCI_OP_LE_READ_MAX_DATA_LEN: 3005 hci_cc_le_read_max_data_len(hdev, skb); 3006 break; 3007 3008 case HCI_OP_WRITE_LE_HOST_SUPPORTED: 3009 hci_cc_write_le_host_supported(hdev, skb); 3010 break; 3011 3012 case HCI_OP_LE_SET_ADV_PARAM: 3013 hci_cc_set_adv_param(hdev, skb); 3014 break; 3015 3016 case HCI_OP_READ_RSSI: 3017 hci_cc_read_rssi(hdev, skb); 3018 break; 3019 3020 case HCI_OP_READ_TX_POWER: 3021 hci_cc_read_tx_power(hdev, skb); 3022 break; 3023 3024 case HCI_OP_WRITE_SSP_DEBUG_MODE: 3025 hci_cc_write_ssp_debug_mode(hdev, skb); 3026 break; 3027 3028 default: 3029 BT_DBG("%s opcode 0x%4.4x", hdev->name, *opcode); 3030 break; 3031 } 3032 3033 if (*opcode != HCI_OP_NOP) 3034 cancel_delayed_work(&hdev->cmd_timer); 3035 3036 if (ev->ncmd && !test_bit(HCI_RESET, &hdev->flags)) 3037 atomic_set(&hdev->cmd_cnt, 1); 3038 3039 hci_req_cmd_complete(hdev, *opcode, *status, req_complete, 3040 req_complete_skb); 3041 3042 if (atomic_read(&hdev->cmd_cnt) && !skb_queue_empty(&hdev->cmd_q)) 3043 queue_work(hdev->workqueue, &hdev->cmd_work); 3044 } 3045 3046 static void hci_cmd_status_evt(struct hci_dev *hdev, struct sk_buff *skb, 3047 u16 *opcode, u8 *status, 3048 hci_req_complete_t *req_complete, 3049 hci_req_complete_skb_t *req_complete_skb) 3050 { 3051 struct hci_ev_cmd_status *ev = (void *) skb->data; 3052 3053 skb_pull(skb, sizeof(*ev)); 3054 3055 *opcode = __le16_to_cpu(ev->opcode); 3056 *status = ev->status; 3057 3058 switch (*opcode) { 3059 case HCI_OP_INQUIRY: 3060 hci_cs_inquiry(hdev, ev->status); 3061 break; 3062 3063 case HCI_OP_CREATE_CONN: 3064 hci_cs_create_conn(hdev, ev->status); 3065 break; 3066 3067 case HCI_OP_DISCONNECT: 3068 hci_cs_disconnect(hdev, ev->status); 3069 break; 3070 3071 case HCI_OP_ADD_SCO: 3072 hci_cs_add_sco(hdev, ev->status); 3073 break; 3074 3075 case HCI_OP_AUTH_REQUESTED: 3076 hci_cs_auth_requested(hdev, ev->status); 3077 break; 3078 3079 case HCI_OP_SET_CONN_ENCRYPT: 3080 hci_cs_set_conn_encrypt(hdev, ev->status); 3081 break; 3082 3083 case HCI_OP_REMOTE_NAME_REQ: 3084 hci_cs_remote_name_req(hdev, ev->status); 3085 break; 3086 3087 case HCI_OP_READ_REMOTE_FEATURES: 3088 hci_cs_read_remote_features(hdev, ev->status); 3089 break; 3090 3091 case HCI_OP_READ_REMOTE_EXT_FEATURES: 3092 hci_cs_read_remote_ext_features(hdev, ev->status); 3093 break; 3094 3095 case HCI_OP_SETUP_SYNC_CONN: 3096 hci_cs_setup_sync_conn(hdev, ev->status); 3097 break; 3098 3099 case HCI_OP_SNIFF_MODE: 3100 hci_cs_sniff_mode(hdev, ev->status); 3101 break; 3102 3103 case HCI_OP_EXIT_SNIFF_MODE: 3104 hci_cs_exit_sniff_mode(hdev, ev->status); 3105 break; 3106 3107 case HCI_OP_SWITCH_ROLE: 3108 hci_cs_switch_role(hdev, ev->status); 3109 break; 3110 3111 case HCI_OP_LE_CREATE_CONN: 3112 hci_cs_le_create_conn(hdev, ev->status); 3113 break; 3114 3115 case HCI_OP_LE_READ_REMOTE_FEATURES: 3116 hci_cs_le_read_remote_features(hdev, ev->status); 3117 break; 3118 3119 case HCI_OP_LE_START_ENC: 3120 hci_cs_le_start_enc(hdev, ev->status); 3121 break; 3122 3123 default: 3124 BT_DBG("%s opcode 0x%4.4x", hdev->name, *opcode); 3125 break; 3126 } 3127 3128 if (*opcode != HCI_OP_NOP) 3129 cancel_delayed_work(&hdev->cmd_timer); 3130 3131 if (ev->ncmd && !test_bit(HCI_RESET, &hdev->flags)) 3132 atomic_set(&hdev->cmd_cnt, 1); 3133 3134 /* Indicate request completion if the command failed. Also, if 3135 * we're not waiting for a special event and we get a success 3136 * command status we should try to flag the request as completed 3137 * (since for this kind of commands there will not be a command 3138 * complete event). 3139 */ 3140 if (ev->status || 3141 (hdev->sent_cmd && !bt_cb(hdev->sent_cmd)->hci.req_event)) 3142 hci_req_cmd_complete(hdev, *opcode, ev->status, req_complete, 3143 req_complete_skb); 3144 3145 if (atomic_read(&hdev->cmd_cnt) && !skb_queue_empty(&hdev->cmd_q)) 3146 queue_work(hdev->workqueue, &hdev->cmd_work); 3147 } 3148 3149 static void hci_hardware_error_evt(struct hci_dev *hdev, struct sk_buff *skb) 3150 { 3151 struct hci_ev_hardware_error *ev = (void *) skb->data; 3152 3153 hdev->hw_error_code = ev->code; 3154 3155 queue_work(hdev->req_workqueue, &hdev->error_reset); 3156 } 3157 3158 static void hci_role_change_evt(struct hci_dev *hdev, struct sk_buff *skb) 3159 { 3160 struct hci_ev_role_change *ev = (void *) skb->data; 3161 struct hci_conn *conn; 3162 3163 BT_DBG("%s status 0x%2.2x", hdev->name, ev->status); 3164 3165 hci_dev_lock(hdev); 3166 3167 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 3168 if (conn) { 3169 if (!ev->status) 3170 conn->role = ev->role; 3171 3172 clear_bit(HCI_CONN_RSWITCH_PEND, &conn->flags); 3173 3174 hci_role_switch_cfm(conn, ev->status, ev->role); 3175 } 3176 3177 hci_dev_unlock(hdev); 3178 } 3179 3180 static void hci_num_comp_pkts_evt(struct hci_dev *hdev, struct sk_buff *skb) 3181 { 3182 struct hci_ev_num_comp_pkts *ev = (void *) skb->data; 3183 int i; 3184 3185 if (hdev->flow_ctl_mode != HCI_FLOW_CTL_MODE_PACKET_BASED) { 3186 BT_ERR("Wrong event for mode %d", hdev->flow_ctl_mode); 3187 return; 3188 } 3189 3190 if (skb->len < sizeof(*ev) || skb->len < sizeof(*ev) + 3191 ev->num_hndl * sizeof(struct hci_comp_pkts_info)) { 3192 BT_DBG("%s bad parameters", hdev->name); 3193 return; 3194 } 3195 3196 BT_DBG("%s num_hndl %d", hdev->name, ev->num_hndl); 3197 3198 for (i = 0; i < ev->num_hndl; i++) { 3199 struct hci_comp_pkts_info *info = &ev->handles[i]; 3200 struct hci_conn *conn; 3201 __u16 handle, count; 3202 3203 handle = __le16_to_cpu(info->handle); 3204 count = __le16_to_cpu(info->count); 3205 3206 conn = hci_conn_hash_lookup_handle(hdev, handle); 3207 if (!conn) 3208 continue; 3209 3210 conn->sent -= count; 3211 3212 switch (conn->type) { 3213 case ACL_LINK: 3214 hdev->acl_cnt += count; 3215 if (hdev->acl_cnt > hdev->acl_pkts) 3216 hdev->acl_cnt = hdev->acl_pkts; 3217 break; 3218 3219 case LE_LINK: 3220 if (hdev->le_pkts) { 3221 hdev->le_cnt += count; 3222 if (hdev->le_cnt > hdev->le_pkts) 3223 hdev->le_cnt = hdev->le_pkts; 3224 } else { 3225 hdev->acl_cnt += count; 3226 if (hdev->acl_cnt > hdev->acl_pkts) 3227 hdev->acl_cnt = hdev->acl_pkts; 3228 } 3229 break; 3230 3231 case SCO_LINK: 3232 hdev->sco_cnt += count; 3233 if (hdev->sco_cnt > hdev->sco_pkts) 3234 hdev->sco_cnt = hdev->sco_pkts; 3235 break; 3236 3237 default: 3238 BT_ERR("Unknown type %d conn %p", conn->type, conn); 3239 break; 3240 } 3241 } 3242 3243 queue_work(hdev->workqueue, &hdev->tx_work); 3244 } 3245 3246 static struct hci_conn *__hci_conn_lookup_handle(struct hci_dev *hdev, 3247 __u16 handle) 3248 { 3249 struct hci_chan *chan; 3250 3251 switch (hdev->dev_type) { 3252 case HCI_BREDR: 3253 return hci_conn_hash_lookup_handle(hdev, handle); 3254 case HCI_AMP: 3255 chan = hci_chan_lookup_handle(hdev, handle); 3256 if (chan) 3257 return chan->conn; 3258 break; 3259 default: 3260 BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type); 3261 break; 3262 } 3263 3264 return NULL; 3265 } 3266 3267 static void hci_num_comp_blocks_evt(struct hci_dev *hdev, struct sk_buff *skb) 3268 { 3269 struct hci_ev_num_comp_blocks *ev = (void *) skb->data; 3270 int i; 3271 3272 if (hdev->flow_ctl_mode != HCI_FLOW_CTL_MODE_BLOCK_BASED) { 3273 BT_ERR("Wrong event for mode %d", hdev->flow_ctl_mode); 3274 return; 3275 } 3276 3277 if (skb->len < sizeof(*ev) || skb->len < sizeof(*ev) + 3278 ev->num_hndl * sizeof(struct hci_comp_blocks_info)) { 3279 BT_DBG("%s bad parameters", hdev->name); 3280 return; 3281 } 3282 3283 BT_DBG("%s num_blocks %d num_hndl %d", hdev->name, ev->num_blocks, 3284 ev->num_hndl); 3285 3286 for (i = 0; i < ev->num_hndl; i++) { 3287 struct hci_comp_blocks_info *info = &ev->handles[i]; 3288 struct hci_conn *conn = NULL; 3289 __u16 handle, block_count; 3290 3291 handle = __le16_to_cpu(info->handle); 3292 block_count = __le16_to_cpu(info->blocks); 3293 3294 conn = __hci_conn_lookup_handle(hdev, handle); 3295 if (!conn) 3296 continue; 3297 3298 conn->sent -= block_count; 3299 3300 switch (conn->type) { 3301 case ACL_LINK: 3302 case AMP_LINK: 3303 hdev->block_cnt += block_count; 3304 if (hdev->block_cnt > hdev->num_blocks) 3305 hdev->block_cnt = hdev->num_blocks; 3306 break; 3307 3308 default: 3309 BT_ERR("Unknown type %d conn %p", conn->type, conn); 3310 break; 3311 } 3312 } 3313 3314 queue_work(hdev->workqueue, &hdev->tx_work); 3315 } 3316 3317 static void hci_mode_change_evt(struct hci_dev *hdev, struct sk_buff *skb) 3318 { 3319 struct hci_ev_mode_change *ev = (void *) skb->data; 3320 struct hci_conn *conn; 3321 3322 BT_DBG("%s status 0x%2.2x", hdev->name, ev->status); 3323 3324 hci_dev_lock(hdev); 3325 3326 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 3327 if (conn) { 3328 conn->mode = ev->mode; 3329 3330 if (!test_and_clear_bit(HCI_CONN_MODE_CHANGE_PEND, 3331 &conn->flags)) { 3332 if (conn->mode == HCI_CM_ACTIVE) 3333 set_bit(HCI_CONN_POWER_SAVE, &conn->flags); 3334 else 3335 clear_bit(HCI_CONN_POWER_SAVE, &conn->flags); 3336 } 3337 3338 if (test_and_clear_bit(HCI_CONN_SCO_SETUP_PEND, &conn->flags)) 3339 hci_sco_setup(conn, ev->status); 3340 } 3341 3342 hci_dev_unlock(hdev); 3343 } 3344 3345 static void hci_pin_code_request_evt(struct hci_dev *hdev, struct sk_buff *skb) 3346 { 3347 struct hci_ev_pin_code_req *ev = (void *) skb->data; 3348 struct hci_conn *conn; 3349 3350 BT_DBG("%s", hdev->name); 3351 3352 hci_dev_lock(hdev); 3353 3354 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 3355 if (!conn) 3356 goto unlock; 3357 3358 if (conn->state == BT_CONNECTED) { 3359 hci_conn_hold(conn); 3360 conn->disc_timeout = HCI_PAIRING_TIMEOUT; 3361 hci_conn_drop(conn); 3362 } 3363 3364 if (!hci_dev_test_flag(hdev, HCI_BONDABLE) && 3365 !test_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags)) { 3366 hci_send_cmd(hdev, HCI_OP_PIN_CODE_NEG_REPLY, 3367 sizeof(ev->bdaddr), &ev->bdaddr); 3368 } else if (hci_dev_test_flag(hdev, HCI_MGMT)) { 3369 u8 secure; 3370 3371 if (conn->pending_sec_level == BT_SECURITY_HIGH) 3372 secure = 1; 3373 else 3374 secure = 0; 3375 3376 mgmt_pin_code_request(hdev, &ev->bdaddr, secure); 3377 } 3378 3379 unlock: 3380 hci_dev_unlock(hdev); 3381 } 3382 3383 static void conn_set_key(struct hci_conn *conn, u8 key_type, u8 pin_len) 3384 { 3385 if (key_type == HCI_LK_CHANGED_COMBINATION) 3386 return; 3387 3388 conn->pin_length = pin_len; 3389 conn->key_type = key_type; 3390 3391 switch (key_type) { 3392 case HCI_LK_LOCAL_UNIT: 3393 case HCI_LK_REMOTE_UNIT: 3394 case HCI_LK_DEBUG_COMBINATION: 3395 return; 3396 case HCI_LK_COMBINATION: 3397 if (pin_len == 16) 3398 conn->pending_sec_level = BT_SECURITY_HIGH; 3399 else 3400 conn->pending_sec_level = BT_SECURITY_MEDIUM; 3401 break; 3402 case HCI_LK_UNAUTH_COMBINATION_P192: 3403 case HCI_LK_UNAUTH_COMBINATION_P256: 3404 conn->pending_sec_level = BT_SECURITY_MEDIUM; 3405 break; 3406 case HCI_LK_AUTH_COMBINATION_P192: 3407 conn->pending_sec_level = BT_SECURITY_HIGH; 3408 break; 3409 case HCI_LK_AUTH_COMBINATION_P256: 3410 conn->pending_sec_level = BT_SECURITY_FIPS; 3411 break; 3412 } 3413 } 3414 3415 static void hci_link_key_request_evt(struct hci_dev *hdev, struct sk_buff *skb) 3416 { 3417 struct hci_ev_link_key_req *ev = (void *) skb->data; 3418 struct hci_cp_link_key_reply cp; 3419 struct hci_conn *conn; 3420 struct link_key *key; 3421 3422 BT_DBG("%s", hdev->name); 3423 3424 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 3425 return; 3426 3427 hci_dev_lock(hdev); 3428 3429 key = hci_find_link_key(hdev, &ev->bdaddr); 3430 if (!key) { 3431 BT_DBG("%s link key not found for %pMR", hdev->name, 3432 &ev->bdaddr); 3433 goto not_found; 3434 } 3435 3436 BT_DBG("%s found key type %u for %pMR", hdev->name, key->type, 3437 &ev->bdaddr); 3438 3439 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 3440 if (conn) { 3441 clear_bit(HCI_CONN_NEW_LINK_KEY, &conn->flags); 3442 3443 if ((key->type == HCI_LK_UNAUTH_COMBINATION_P192 || 3444 key->type == HCI_LK_UNAUTH_COMBINATION_P256) && 3445 conn->auth_type != 0xff && (conn->auth_type & 0x01)) { 3446 BT_DBG("%s ignoring unauthenticated key", hdev->name); 3447 goto not_found; 3448 } 3449 3450 if (key->type == HCI_LK_COMBINATION && key->pin_len < 16 && 3451 (conn->pending_sec_level == BT_SECURITY_HIGH || 3452 conn->pending_sec_level == BT_SECURITY_FIPS)) { 3453 BT_DBG("%s ignoring key unauthenticated for high security", 3454 hdev->name); 3455 goto not_found; 3456 } 3457 3458 conn_set_key(conn, key->type, key->pin_len); 3459 } 3460 3461 bacpy(&cp.bdaddr, &ev->bdaddr); 3462 memcpy(cp.link_key, key->val, HCI_LINK_KEY_SIZE); 3463 3464 hci_send_cmd(hdev, HCI_OP_LINK_KEY_REPLY, sizeof(cp), &cp); 3465 3466 hci_dev_unlock(hdev); 3467 3468 return; 3469 3470 not_found: 3471 hci_send_cmd(hdev, HCI_OP_LINK_KEY_NEG_REPLY, 6, &ev->bdaddr); 3472 hci_dev_unlock(hdev); 3473 } 3474 3475 static void hci_link_key_notify_evt(struct hci_dev *hdev, struct sk_buff *skb) 3476 { 3477 struct hci_ev_link_key_notify *ev = (void *) skb->data; 3478 struct hci_conn *conn; 3479 struct link_key *key; 3480 bool persistent; 3481 u8 pin_len = 0; 3482 3483 BT_DBG("%s", hdev->name); 3484 3485 hci_dev_lock(hdev); 3486 3487 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 3488 if (!conn) 3489 goto unlock; 3490 3491 hci_conn_hold(conn); 3492 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 3493 hci_conn_drop(conn); 3494 3495 set_bit(HCI_CONN_NEW_LINK_KEY, &conn->flags); 3496 conn_set_key(conn, ev->key_type, conn->pin_length); 3497 3498 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 3499 goto unlock; 3500 3501 key = hci_add_link_key(hdev, conn, &ev->bdaddr, ev->link_key, 3502 ev->key_type, pin_len, &persistent); 3503 if (!key) 3504 goto unlock; 3505 3506 /* Update connection information since adding the key will have 3507 * fixed up the type in the case of changed combination keys. 3508 */ 3509 if (ev->key_type == HCI_LK_CHANGED_COMBINATION) 3510 conn_set_key(conn, key->type, key->pin_len); 3511 3512 mgmt_new_link_key(hdev, key, persistent); 3513 3514 /* Keep debug keys around only if the HCI_KEEP_DEBUG_KEYS flag 3515 * is set. If it's not set simply remove the key from the kernel 3516 * list (we've still notified user space about it but with 3517 * store_hint being 0). 3518 */ 3519 if (key->type == HCI_LK_DEBUG_COMBINATION && 3520 !hci_dev_test_flag(hdev, HCI_KEEP_DEBUG_KEYS)) { 3521 list_del_rcu(&key->list); 3522 kfree_rcu(key, rcu); 3523 goto unlock; 3524 } 3525 3526 if (persistent) 3527 clear_bit(HCI_CONN_FLUSH_KEY, &conn->flags); 3528 else 3529 set_bit(HCI_CONN_FLUSH_KEY, &conn->flags); 3530 3531 unlock: 3532 hci_dev_unlock(hdev); 3533 } 3534 3535 static void hci_clock_offset_evt(struct hci_dev *hdev, struct sk_buff *skb) 3536 { 3537 struct hci_ev_clock_offset *ev = (void *) skb->data; 3538 struct hci_conn *conn; 3539 3540 BT_DBG("%s status 0x%2.2x", hdev->name, ev->status); 3541 3542 hci_dev_lock(hdev); 3543 3544 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 3545 if (conn && !ev->status) { 3546 struct inquiry_entry *ie; 3547 3548 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 3549 if (ie) { 3550 ie->data.clock_offset = ev->clock_offset; 3551 ie->timestamp = jiffies; 3552 } 3553 } 3554 3555 hci_dev_unlock(hdev); 3556 } 3557 3558 static void hci_pkt_type_change_evt(struct hci_dev *hdev, struct sk_buff *skb) 3559 { 3560 struct hci_ev_pkt_type_change *ev = (void *) skb->data; 3561 struct hci_conn *conn; 3562 3563 BT_DBG("%s status 0x%2.2x", hdev->name, ev->status); 3564 3565 hci_dev_lock(hdev); 3566 3567 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 3568 if (conn && !ev->status) 3569 conn->pkt_type = __le16_to_cpu(ev->pkt_type); 3570 3571 hci_dev_unlock(hdev); 3572 } 3573 3574 static void hci_pscan_rep_mode_evt(struct hci_dev *hdev, struct sk_buff *skb) 3575 { 3576 struct hci_ev_pscan_rep_mode *ev = (void *) skb->data; 3577 struct inquiry_entry *ie; 3578 3579 BT_DBG("%s", hdev->name); 3580 3581 hci_dev_lock(hdev); 3582 3583 ie = hci_inquiry_cache_lookup(hdev, &ev->bdaddr); 3584 if (ie) { 3585 ie->data.pscan_rep_mode = ev->pscan_rep_mode; 3586 ie->timestamp = jiffies; 3587 } 3588 3589 hci_dev_unlock(hdev); 3590 } 3591 3592 static void hci_inquiry_result_with_rssi_evt(struct hci_dev *hdev, 3593 struct sk_buff *skb) 3594 { 3595 struct inquiry_data data; 3596 int num_rsp = *((__u8 *) skb->data); 3597 3598 BT_DBG("%s num_rsp %d", hdev->name, num_rsp); 3599 3600 if (!num_rsp) 3601 return; 3602 3603 if (hci_dev_test_flag(hdev, HCI_PERIODIC_INQ)) 3604 return; 3605 3606 hci_dev_lock(hdev); 3607 3608 if ((skb->len - 1) / num_rsp != sizeof(struct inquiry_info_with_rssi)) { 3609 struct inquiry_info_with_rssi_and_pscan_mode *info; 3610 info = (void *) (skb->data + 1); 3611 3612 for (; num_rsp; num_rsp--, info++) { 3613 u32 flags; 3614 3615 bacpy(&data.bdaddr, &info->bdaddr); 3616 data.pscan_rep_mode = info->pscan_rep_mode; 3617 data.pscan_period_mode = info->pscan_period_mode; 3618 data.pscan_mode = info->pscan_mode; 3619 memcpy(data.dev_class, info->dev_class, 3); 3620 data.clock_offset = info->clock_offset; 3621 data.rssi = info->rssi; 3622 data.ssp_mode = 0x00; 3623 3624 flags = hci_inquiry_cache_update(hdev, &data, false); 3625 3626 mgmt_device_found(hdev, &info->bdaddr, ACL_LINK, 0x00, 3627 info->dev_class, info->rssi, 3628 flags, NULL, 0, NULL, 0); 3629 } 3630 } else { 3631 struct inquiry_info_with_rssi *info = (void *) (skb->data + 1); 3632 3633 for (; num_rsp; num_rsp--, info++) { 3634 u32 flags; 3635 3636 bacpy(&data.bdaddr, &info->bdaddr); 3637 data.pscan_rep_mode = info->pscan_rep_mode; 3638 data.pscan_period_mode = info->pscan_period_mode; 3639 data.pscan_mode = 0x00; 3640 memcpy(data.dev_class, info->dev_class, 3); 3641 data.clock_offset = info->clock_offset; 3642 data.rssi = info->rssi; 3643 data.ssp_mode = 0x00; 3644 3645 flags = hci_inquiry_cache_update(hdev, &data, false); 3646 3647 mgmt_device_found(hdev, &info->bdaddr, ACL_LINK, 0x00, 3648 info->dev_class, info->rssi, 3649 flags, NULL, 0, NULL, 0); 3650 } 3651 } 3652 3653 hci_dev_unlock(hdev); 3654 } 3655 3656 static void hci_remote_ext_features_evt(struct hci_dev *hdev, 3657 struct sk_buff *skb) 3658 { 3659 struct hci_ev_remote_ext_features *ev = (void *) skb->data; 3660 struct hci_conn *conn; 3661 3662 BT_DBG("%s", hdev->name); 3663 3664 hci_dev_lock(hdev); 3665 3666 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 3667 if (!conn) 3668 goto unlock; 3669 3670 if (ev->page < HCI_MAX_PAGES) 3671 memcpy(conn->features[ev->page], ev->features, 8); 3672 3673 if (!ev->status && ev->page == 0x01) { 3674 struct inquiry_entry *ie; 3675 3676 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 3677 if (ie) 3678 ie->data.ssp_mode = (ev->features[0] & LMP_HOST_SSP); 3679 3680 if (ev->features[0] & LMP_HOST_SSP) { 3681 set_bit(HCI_CONN_SSP_ENABLED, &conn->flags); 3682 } else { 3683 /* It is mandatory by the Bluetooth specification that 3684 * Extended Inquiry Results are only used when Secure 3685 * Simple Pairing is enabled, but some devices violate 3686 * this. 3687 * 3688 * To make these devices work, the internal SSP 3689 * enabled flag needs to be cleared if the remote host 3690 * features do not indicate SSP support */ 3691 clear_bit(HCI_CONN_SSP_ENABLED, &conn->flags); 3692 } 3693 3694 if (ev->features[0] & LMP_HOST_SC) 3695 set_bit(HCI_CONN_SC_ENABLED, &conn->flags); 3696 } 3697 3698 if (conn->state != BT_CONFIG) 3699 goto unlock; 3700 3701 if (!ev->status && !test_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags)) { 3702 struct hci_cp_remote_name_req cp; 3703 memset(&cp, 0, sizeof(cp)); 3704 bacpy(&cp.bdaddr, &conn->dst); 3705 cp.pscan_rep_mode = 0x02; 3706 hci_send_cmd(hdev, HCI_OP_REMOTE_NAME_REQ, sizeof(cp), &cp); 3707 } else if (!test_and_set_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags)) 3708 mgmt_device_connected(hdev, conn, 0, NULL, 0); 3709 3710 if (!hci_outgoing_auth_needed(hdev, conn)) { 3711 conn->state = BT_CONNECTED; 3712 hci_connect_cfm(conn, ev->status); 3713 hci_conn_drop(conn); 3714 } 3715 3716 unlock: 3717 hci_dev_unlock(hdev); 3718 } 3719 3720 static void hci_sync_conn_complete_evt(struct hci_dev *hdev, 3721 struct sk_buff *skb) 3722 { 3723 struct hci_ev_sync_conn_complete *ev = (void *) skb->data; 3724 struct hci_conn *conn; 3725 3726 BT_DBG("%s status 0x%2.2x", hdev->name, ev->status); 3727 3728 hci_dev_lock(hdev); 3729 3730 conn = hci_conn_hash_lookup_ba(hdev, ev->link_type, &ev->bdaddr); 3731 if (!conn) { 3732 if (ev->link_type == ESCO_LINK) 3733 goto unlock; 3734 3735 /* When the link type in the event indicates SCO connection 3736 * and lookup of the connection object fails, then check 3737 * if an eSCO connection object exists. 3738 * 3739 * The core limits the synchronous connections to either 3740 * SCO or eSCO. The eSCO connection is preferred and tried 3741 * to be setup first and until successfully established, 3742 * the link type will be hinted as eSCO. 3743 */ 3744 conn = hci_conn_hash_lookup_ba(hdev, ESCO_LINK, &ev->bdaddr); 3745 if (!conn) 3746 goto unlock; 3747 } 3748 3749 switch (ev->status) { 3750 case 0x00: 3751 conn->handle = __le16_to_cpu(ev->handle); 3752 conn->state = BT_CONNECTED; 3753 conn->type = ev->link_type; 3754 3755 hci_debugfs_create_conn(conn); 3756 hci_conn_add_sysfs(conn); 3757 break; 3758 3759 case 0x10: /* Connection Accept Timeout */ 3760 case 0x0d: /* Connection Rejected due to Limited Resources */ 3761 case 0x11: /* Unsupported Feature or Parameter Value */ 3762 case 0x1c: /* SCO interval rejected */ 3763 case 0x1a: /* Unsupported Remote Feature */ 3764 case 0x1f: /* Unspecified error */ 3765 case 0x20: /* Unsupported LMP Parameter value */ 3766 if (conn->out) { 3767 conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) | 3768 (hdev->esco_type & EDR_ESCO_MASK); 3769 if (hci_setup_sync(conn, conn->link->handle)) 3770 goto unlock; 3771 } 3772 /* fall through */ 3773 3774 default: 3775 conn->state = BT_CLOSED; 3776 break; 3777 } 3778 3779 hci_connect_cfm(conn, ev->status); 3780 if (ev->status) 3781 hci_conn_del(conn); 3782 3783 unlock: 3784 hci_dev_unlock(hdev); 3785 } 3786 3787 static inline size_t eir_get_length(u8 *eir, size_t eir_len) 3788 { 3789 size_t parsed = 0; 3790 3791 while (parsed < eir_len) { 3792 u8 field_len = eir[0]; 3793 3794 if (field_len == 0) 3795 return parsed; 3796 3797 parsed += field_len + 1; 3798 eir += field_len + 1; 3799 } 3800 3801 return eir_len; 3802 } 3803 3804 static void hci_extended_inquiry_result_evt(struct hci_dev *hdev, 3805 struct sk_buff *skb) 3806 { 3807 struct inquiry_data data; 3808 struct extended_inquiry_info *info = (void *) (skb->data + 1); 3809 int num_rsp = *((__u8 *) skb->data); 3810 size_t eir_len; 3811 3812 BT_DBG("%s num_rsp %d", hdev->name, num_rsp); 3813 3814 if (!num_rsp) 3815 return; 3816 3817 if (hci_dev_test_flag(hdev, HCI_PERIODIC_INQ)) 3818 return; 3819 3820 hci_dev_lock(hdev); 3821 3822 for (; num_rsp; num_rsp--, info++) { 3823 u32 flags; 3824 bool name_known; 3825 3826 bacpy(&data.bdaddr, &info->bdaddr); 3827 data.pscan_rep_mode = info->pscan_rep_mode; 3828 data.pscan_period_mode = info->pscan_period_mode; 3829 data.pscan_mode = 0x00; 3830 memcpy(data.dev_class, info->dev_class, 3); 3831 data.clock_offset = info->clock_offset; 3832 data.rssi = info->rssi; 3833 data.ssp_mode = 0x01; 3834 3835 if (hci_dev_test_flag(hdev, HCI_MGMT)) 3836 name_known = eir_has_data_type(info->data, 3837 sizeof(info->data), 3838 EIR_NAME_COMPLETE); 3839 else 3840 name_known = true; 3841 3842 flags = hci_inquiry_cache_update(hdev, &data, name_known); 3843 3844 eir_len = eir_get_length(info->data, sizeof(info->data)); 3845 3846 mgmt_device_found(hdev, &info->bdaddr, ACL_LINK, 0x00, 3847 info->dev_class, info->rssi, 3848 flags, info->data, eir_len, NULL, 0); 3849 } 3850 3851 hci_dev_unlock(hdev); 3852 } 3853 3854 static void hci_key_refresh_complete_evt(struct hci_dev *hdev, 3855 struct sk_buff *skb) 3856 { 3857 struct hci_ev_key_refresh_complete *ev = (void *) skb->data; 3858 struct hci_conn *conn; 3859 3860 BT_DBG("%s status 0x%2.2x handle 0x%4.4x", hdev->name, ev->status, 3861 __le16_to_cpu(ev->handle)); 3862 3863 hci_dev_lock(hdev); 3864 3865 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 3866 if (!conn) 3867 goto unlock; 3868 3869 /* For BR/EDR the necessary steps are taken through the 3870 * auth_complete event. 3871 */ 3872 if (conn->type != LE_LINK) 3873 goto unlock; 3874 3875 if (!ev->status) 3876 conn->sec_level = conn->pending_sec_level; 3877 3878 clear_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); 3879 3880 if (ev->status && conn->state == BT_CONNECTED) { 3881 hci_disconnect(conn, HCI_ERROR_AUTH_FAILURE); 3882 hci_conn_drop(conn); 3883 goto unlock; 3884 } 3885 3886 if (conn->state == BT_CONFIG) { 3887 if (!ev->status) 3888 conn->state = BT_CONNECTED; 3889 3890 hci_connect_cfm(conn, ev->status); 3891 hci_conn_drop(conn); 3892 } else { 3893 hci_auth_cfm(conn, ev->status); 3894 3895 hci_conn_hold(conn); 3896 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 3897 hci_conn_drop(conn); 3898 } 3899 3900 unlock: 3901 hci_dev_unlock(hdev); 3902 } 3903 3904 static u8 hci_get_auth_req(struct hci_conn *conn) 3905 { 3906 /* If remote requests no-bonding follow that lead */ 3907 if (conn->remote_auth == HCI_AT_NO_BONDING || 3908 conn->remote_auth == HCI_AT_NO_BONDING_MITM) 3909 return conn->remote_auth | (conn->auth_type & 0x01); 3910 3911 /* If both remote and local have enough IO capabilities, require 3912 * MITM protection 3913 */ 3914 if (conn->remote_cap != HCI_IO_NO_INPUT_OUTPUT && 3915 conn->io_capability != HCI_IO_NO_INPUT_OUTPUT) 3916 return conn->remote_auth | 0x01; 3917 3918 /* No MITM protection possible so ignore remote requirement */ 3919 return (conn->remote_auth & ~0x01) | (conn->auth_type & 0x01); 3920 } 3921 3922 static u8 bredr_oob_data_present(struct hci_conn *conn) 3923 { 3924 struct hci_dev *hdev = conn->hdev; 3925 struct oob_data *data; 3926 3927 data = hci_find_remote_oob_data(hdev, &conn->dst, BDADDR_BREDR); 3928 if (!data) 3929 return 0x00; 3930 3931 if (bredr_sc_enabled(hdev)) { 3932 /* When Secure Connections is enabled, then just 3933 * return the present value stored with the OOB 3934 * data. The stored value contains the right present 3935 * information. However it can only be trusted when 3936 * not in Secure Connection Only mode. 3937 */ 3938 if (!hci_dev_test_flag(hdev, HCI_SC_ONLY)) 3939 return data->present; 3940 3941 /* When Secure Connections Only mode is enabled, then 3942 * the P-256 values are required. If they are not 3943 * available, then do not declare that OOB data is 3944 * present. 3945 */ 3946 if (!memcmp(data->rand256, ZERO_KEY, 16) || 3947 !memcmp(data->hash256, ZERO_KEY, 16)) 3948 return 0x00; 3949 3950 return 0x02; 3951 } 3952 3953 /* When Secure Connections is not enabled or actually 3954 * not supported by the hardware, then check that if 3955 * P-192 data values are present. 3956 */ 3957 if (!memcmp(data->rand192, ZERO_KEY, 16) || 3958 !memcmp(data->hash192, ZERO_KEY, 16)) 3959 return 0x00; 3960 3961 return 0x01; 3962 } 3963 3964 static void hci_io_capa_request_evt(struct hci_dev *hdev, struct sk_buff *skb) 3965 { 3966 struct hci_ev_io_capa_request *ev = (void *) skb->data; 3967 struct hci_conn *conn; 3968 3969 BT_DBG("%s", hdev->name); 3970 3971 hci_dev_lock(hdev); 3972 3973 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 3974 if (!conn) 3975 goto unlock; 3976 3977 hci_conn_hold(conn); 3978 3979 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 3980 goto unlock; 3981 3982 /* Allow pairing if we're pairable, the initiators of the 3983 * pairing or if the remote is not requesting bonding. 3984 */ 3985 if (hci_dev_test_flag(hdev, HCI_BONDABLE) || 3986 test_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags) || 3987 (conn->remote_auth & ~0x01) == HCI_AT_NO_BONDING) { 3988 struct hci_cp_io_capability_reply cp; 3989 3990 bacpy(&cp.bdaddr, &ev->bdaddr); 3991 /* Change the IO capability from KeyboardDisplay 3992 * to DisplayYesNo as it is not supported by BT spec. */ 3993 cp.capability = (conn->io_capability == 0x04) ? 3994 HCI_IO_DISPLAY_YESNO : conn->io_capability; 3995 3996 /* If we are initiators, there is no remote information yet */ 3997 if (conn->remote_auth == 0xff) { 3998 /* Request MITM protection if our IO caps allow it 3999 * except for the no-bonding case. 4000 */ 4001 if (conn->io_capability != HCI_IO_NO_INPUT_OUTPUT && 4002 conn->auth_type != HCI_AT_NO_BONDING) 4003 conn->auth_type |= 0x01; 4004 } else { 4005 conn->auth_type = hci_get_auth_req(conn); 4006 } 4007 4008 /* If we're not bondable, force one of the non-bondable 4009 * authentication requirement values. 4010 */ 4011 if (!hci_dev_test_flag(hdev, HCI_BONDABLE)) 4012 conn->auth_type &= HCI_AT_NO_BONDING_MITM; 4013 4014 cp.authentication = conn->auth_type; 4015 cp.oob_data = bredr_oob_data_present(conn); 4016 4017 hci_send_cmd(hdev, HCI_OP_IO_CAPABILITY_REPLY, 4018 sizeof(cp), &cp); 4019 } else { 4020 struct hci_cp_io_capability_neg_reply cp; 4021 4022 bacpy(&cp.bdaddr, &ev->bdaddr); 4023 cp.reason = HCI_ERROR_PAIRING_NOT_ALLOWED; 4024 4025 hci_send_cmd(hdev, HCI_OP_IO_CAPABILITY_NEG_REPLY, 4026 sizeof(cp), &cp); 4027 } 4028 4029 unlock: 4030 hci_dev_unlock(hdev); 4031 } 4032 4033 static void hci_io_capa_reply_evt(struct hci_dev *hdev, struct sk_buff *skb) 4034 { 4035 struct hci_ev_io_capa_reply *ev = (void *) skb->data; 4036 struct hci_conn *conn; 4037 4038 BT_DBG("%s", hdev->name); 4039 4040 hci_dev_lock(hdev); 4041 4042 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 4043 if (!conn) 4044 goto unlock; 4045 4046 conn->remote_cap = ev->capability; 4047 conn->remote_auth = ev->authentication; 4048 4049 unlock: 4050 hci_dev_unlock(hdev); 4051 } 4052 4053 static void hci_user_confirm_request_evt(struct hci_dev *hdev, 4054 struct sk_buff *skb) 4055 { 4056 struct hci_ev_user_confirm_req *ev = (void *) skb->data; 4057 int loc_mitm, rem_mitm, confirm_hint = 0; 4058 struct hci_conn *conn; 4059 4060 BT_DBG("%s", hdev->name); 4061 4062 hci_dev_lock(hdev); 4063 4064 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 4065 goto unlock; 4066 4067 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 4068 if (!conn) 4069 goto unlock; 4070 4071 loc_mitm = (conn->auth_type & 0x01); 4072 rem_mitm = (conn->remote_auth & 0x01); 4073 4074 /* If we require MITM but the remote device can't provide that 4075 * (it has NoInputNoOutput) then reject the confirmation 4076 * request. We check the security level here since it doesn't 4077 * necessarily match conn->auth_type. 4078 */ 4079 if (conn->pending_sec_level > BT_SECURITY_MEDIUM && 4080 conn->remote_cap == HCI_IO_NO_INPUT_OUTPUT) { 4081 BT_DBG("Rejecting request: remote device can't provide MITM"); 4082 hci_send_cmd(hdev, HCI_OP_USER_CONFIRM_NEG_REPLY, 4083 sizeof(ev->bdaddr), &ev->bdaddr); 4084 goto unlock; 4085 } 4086 4087 /* If no side requires MITM protection; auto-accept */ 4088 if ((!loc_mitm || conn->remote_cap == HCI_IO_NO_INPUT_OUTPUT) && 4089 (!rem_mitm || conn->io_capability == HCI_IO_NO_INPUT_OUTPUT)) { 4090 4091 /* If we're not the initiators request authorization to 4092 * proceed from user space (mgmt_user_confirm with 4093 * confirm_hint set to 1). The exception is if neither 4094 * side had MITM or if the local IO capability is 4095 * NoInputNoOutput, in which case we do auto-accept 4096 */ 4097 if (!test_bit(HCI_CONN_AUTH_PEND, &conn->flags) && 4098 conn->io_capability != HCI_IO_NO_INPUT_OUTPUT && 4099 (loc_mitm || rem_mitm)) { 4100 BT_DBG("Confirming auto-accept as acceptor"); 4101 confirm_hint = 1; 4102 goto confirm; 4103 } 4104 4105 BT_DBG("Auto-accept of user confirmation with %ums delay", 4106 hdev->auto_accept_delay); 4107 4108 if (hdev->auto_accept_delay > 0) { 4109 int delay = msecs_to_jiffies(hdev->auto_accept_delay); 4110 queue_delayed_work(conn->hdev->workqueue, 4111 &conn->auto_accept_work, delay); 4112 goto unlock; 4113 } 4114 4115 hci_send_cmd(hdev, HCI_OP_USER_CONFIRM_REPLY, 4116 sizeof(ev->bdaddr), &ev->bdaddr); 4117 goto unlock; 4118 } 4119 4120 confirm: 4121 mgmt_user_confirm_request(hdev, &ev->bdaddr, ACL_LINK, 0, 4122 le32_to_cpu(ev->passkey), confirm_hint); 4123 4124 unlock: 4125 hci_dev_unlock(hdev); 4126 } 4127 4128 static void hci_user_passkey_request_evt(struct hci_dev *hdev, 4129 struct sk_buff *skb) 4130 { 4131 struct hci_ev_user_passkey_req *ev = (void *) skb->data; 4132 4133 BT_DBG("%s", hdev->name); 4134 4135 if (hci_dev_test_flag(hdev, HCI_MGMT)) 4136 mgmt_user_passkey_request(hdev, &ev->bdaddr, ACL_LINK, 0); 4137 } 4138 4139 static void hci_user_passkey_notify_evt(struct hci_dev *hdev, 4140 struct sk_buff *skb) 4141 { 4142 struct hci_ev_user_passkey_notify *ev = (void *) skb->data; 4143 struct hci_conn *conn; 4144 4145 BT_DBG("%s", hdev->name); 4146 4147 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 4148 if (!conn) 4149 return; 4150 4151 conn->passkey_notify = __le32_to_cpu(ev->passkey); 4152 conn->passkey_entered = 0; 4153 4154 if (hci_dev_test_flag(hdev, HCI_MGMT)) 4155 mgmt_user_passkey_notify(hdev, &conn->dst, conn->type, 4156 conn->dst_type, conn->passkey_notify, 4157 conn->passkey_entered); 4158 } 4159 4160 static void hci_keypress_notify_evt(struct hci_dev *hdev, struct sk_buff *skb) 4161 { 4162 struct hci_ev_keypress_notify *ev = (void *) skb->data; 4163 struct hci_conn *conn; 4164 4165 BT_DBG("%s", hdev->name); 4166 4167 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 4168 if (!conn) 4169 return; 4170 4171 switch (ev->type) { 4172 case HCI_KEYPRESS_STARTED: 4173 conn->passkey_entered = 0; 4174 return; 4175 4176 case HCI_KEYPRESS_ENTERED: 4177 conn->passkey_entered++; 4178 break; 4179 4180 case HCI_KEYPRESS_ERASED: 4181 conn->passkey_entered--; 4182 break; 4183 4184 case HCI_KEYPRESS_CLEARED: 4185 conn->passkey_entered = 0; 4186 break; 4187 4188 case HCI_KEYPRESS_COMPLETED: 4189 return; 4190 } 4191 4192 if (hci_dev_test_flag(hdev, HCI_MGMT)) 4193 mgmt_user_passkey_notify(hdev, &conn->dst, conn->type, 4194 conn->dst_type, conn->passkey_notify, 4195 conn->passkey_entered); 4196 } 4197 4198 static void hci_simple_pair_complete_evt(struct hci_dev *hdev, 4199 struct sk_buff *skb) 4200 { 4201 struct hci_ev_simple_pair_complete *ev = (void *) skb->data; 4202 struct hci_conn *conn; 4203 4204 BT_DBG("%s", hdev->name); 4205 4206 hci_dev_lock(hdev); 4207 4208 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 4209 if (!conn) 4210 goto unlock; 4211 4212 /* Reset the authentication requirement to unknown */ 4213 conn->remote_auth = 0xff; 4214 4215 /* To avoid duplicate auth_failed events to user space we check 4216 * the HCI_CONN_AUTH_PEND flag which will be set if we 4217 * initiated the authentication. A traditional auth_complete 4218 * event gets always produced as initiator and is also mapped to 4219 * the mgmt_auth_failed event */ 4220 if (!test_bit(HCI_CONN_AUTH_PEND, &conn->flags) && ev->status) 4221 mgmt_auth_failed(conn, ev->status); 4222 4223 hci_conn_drop(conn); 4224 4225 unlock: 4226 hci_dev_unlock(hdev); 4227 } 4228 4229 static void hci_remote_host_features_evt(struct hci_dev *hdev, 4230 struct sk_buff *skb) 4231 { 4232 struct hci_ev_remote_host_features *ev = (void *) skb->data; 4233 struct inquiry_entry *ie; 4234 struct hci_conn *conn; 4235 4236 BT_DBG("%s", hdev->name); 4237 4238 hci_dev_lock(hdev); 4239 4240 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 4241 if (conn) 4242 memcpy(conn->features[1], ev->features, 8); 4243 4244 ie = hci_inquiry_cache_lookup(hdev, &ev->bdaddr); 4245 if (ie) 4246 ie->data.ssp_mode = (ev->features[0] & LMP_HOST_SSP); 4247 4248 hci_dev_unlock(hdev); 4249 } 4250 4251 static void hci_remote_oob_data_request_evt(struct hci_dev *hdev, 4252 struct sk_buff *skb) 4253 { 4254 struct hci_ev_remote_oob_data_request *ev = (void *) skb->data; 4255 struct oob_data *data; 4256 4257 BT_DBG("%s", hdev->name); 4258 4259 hci_dev_lock(hdev); 4260 4261 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 4262 goto unlock; 4263 4264 data = hci_find_remote_oob_data(hdev, &ev->bdaddr, BDADDR_BREDR); 4265 if (!data) { 4266 struct hci_cp_remote_oob_data_neg_reply cp; 4267 4268 bacpy(&cp.bdaddr, &ev->bdaddr); 4269 hci_send_cmd(hdev, HCI_OP_REMOTE_OOB_DATA_NEG_REPLY, 4270 sizeof(cp), &cp); 4271 goto unlock; 4272 } 4273 4274 if (bredr_sc_enabled(hdev)) { 4275 struct hci_cp_remote_oob_ext_data_reply cp; 4276 4277 bacpy(&cp.bdaddr, &ev->bdaddr); 4278 if (hci_dev_test_flag(hdev, HCI_SC_ONLY)) { 4279 memset(cp.hash192, 0, sizeof(cp.hash192)); 4280 memset(cp.rand192, 0, sizeof(cp.rand192)); 4281 } else { 4282 memcpy(cp.hash192, data->hash192, sizeof(cp.hash192)); 4283 memcpy(cp.rand192, data->rand192, sizeof(cp.rand192)); 4284 } 4285 memcpy(cp.hash256, data->hash256, sizeof(cp.hash256)); 4286 memcpy(cp.rand256, data->rand256, sizeof(cp.rand256)); 4287 4288 hci_send_cmd(hdev, HCI_OP_REMOTE_OOB_EXT_DATA_REPLY, 4289 sizeof(cp), &cp); 4290 } else { 4291 struct hci_cp_remote_oob_data_reply cp; 4292 4293 bacpy(&cp.bdaddr, &ev->bdaddr); 4294 memcpy(cp.hash, data->hash192, sizeof(cp.hash)); 4295 memcpy(cp.rand, data->rand192, sizeof(cp.rand)); 4296 4297 hci_send_cmd(hdev, HCI_OP_REMOTE_OOB_DATA_REPLY, 4298 sizeof(cp), &cp); 4299 } 4300 4301 unlock: 4302 hci_dev_unlock(hdev); 4303 } 4304 4305 #if IS_ENABLED(CONFIG_BT_HS) 4306 static void hci_chan_selected_evt(struct hci_dev *hdev, struct sk_buff *skb) 4307 { 4308 struct hci_ev_channel_selected *ev = (void *)skb->data; 4309 struct hci_conn *hcon; 4310 4311 BT_DBG("%s handle 0x%2.2x", hdev->name, ev->phy_handle); 4312 4313 skb_pull(skb, sizeof(*ev)); 4314 4315 hcon = hci_conn_hash_lookup_handle(hdev, ev->phy_handle); 4316 if (!hcon) 4317 return; 4318 4319 amp_read_loc_assoc_final_data(hdev, hcon); 4320 } 4321 4322 static void hci_phy_link_complete_evt(struct hci_dev *hdev, 4323 struct sk_buff *skb) 4324 { 4325 struct hci_ev_phy_link_complete *ev = (void *) skb->data; 4326 struct hci_conn *hcon, *bredr_hcon; 4327 4328 BT_DBG("%s handle 0x%2.2x status 0x%2.2x", hdev->name, ev->phy_handle, 4329 ev->status); 4330 4331 hci_dev_lock(hdev); 4332 4333 hcon = hci_conn_hash_lookup_handle(hdev, ev->phy_handle); 4334 if (!hcon) { 4335 hci_dev_unlock(hdev); 4336 return; 4337 } 4338 4339 if (ev->status) { 4340 hci_conn_del(hcon); 4341 hci_dev_unlock(hdev); 4342 return; 4343 } 4344 4345 bredr_hcon = hcon->amp_mgr->l2cap_conn->hcon; 4346 4347 hcon->state = BT_CONNECTED; 4348 bacpy(&hcon->dst, &bredr_hcon->dst); 4349 4350 hci_conn_hold(hcon); 4351 hcon->disc_timeout = HCI_DISCONN_TIMEOUT; 4352 hci_conn_drop(hcon); 4353 4354 hci_debugfs_create_conn(hcon); 4355 hci_conn_add_sysfs(hcon); 4356 4357 amp_physical_cfm(bredr_hcon, hcon); 4358 4359 hci_dev_unlock(hdev); 4360 } 4361 4362 static void hci_loglink_complete_evt(struct hci_dev *hdev, struct sk_buff *skb) 4363 { 4364 struct hci_ev_logical_link_complete *ev = (void *) skb->data; 4365 struct hci_conn *hcon; 4366 struct hci_chan *hchan; 4367 struct amp_mgr *mgr; 4368 4369 BT_DBG("%s log_handle 0x%4.4x phy_handle 0x%2.2x status 0x%2.2x", 4370 hdev->name, le16_to_cpu(ev->handle), ev->phy_handle, 4371 ev->status); 4372 4373 hcon = hci_conn_hash_lookup_handle(hdev, ev->phy_handle); 4374 if (!hcon) 4375 return; 4376 4377 /* Create AMP hchan */ 4378 hchan = hci_chan_create(hcon); 4379 if (!hchan) 4380 return; 4381 4382 hchan->handle = le16_to_cpu(ev->handle); 4383 4384 BT_DBG("hcon %p mgr %p hchan %p", hcon, hcon->amp_mgr, hchan); 4385 4386 mgr = hcon->amp_mgr; 4387 if (mgr && mgr->bredr_chan) { 4388 struct l2cap_chan *bredr_chan = mgr->bredr_chan; 4389 4390 l2cap_chan_lock(bredr_chan); 4391 4392 bredr_chan->conn->mtu = hdev->block_mtu; 4393 l2cap_logical_cfm(bredr_chan, hchan, 0); 4394 hci_conn_hold(hcon); 4395 4396 l2cap_chan_unlock(bredr_chan); 4397 } 4398 } 4399 4400 static void hci_disconn_loglink_complete_evt(struct hci_dev *hdev, 4401 struct sk_buff *skb) 4402 { 4403 struct hci_ev_disconn_logical_link_complete *ev = (void *) skb->data; 4404 struct hci_chan *hchan; 4405 4406 BT_DBG("%s log handle 0x%4.4x status 0x%2.2x", hdev->name, 4407 le16_to_cpu(ev->handle), ev->status); 4408 4409 if (ev->status) 4410 return; 4411 4412 hci_dev_lock(hdev); 4413 4414 hchan = hci_chan_lookup_handle(hdev, le16_to_cpu(ev->handle)); 4415 if (!hchan) 4416 goto unlock; 4417 4418 amp_destroy_logical_link(hchan, ev->reason); 4419 4420 unlock: 4421 hci_dev_unlock(hdev); 4422 } 4423 4424 static void hci_disconn_phylink_complete_evt(struct hci_dev *hdev, 4425 struct sk_buff *skb) 4426 { 4427 struct hci_ev_disconn_phy_link_complete *ev = (void *) skb->data; 4428 struct hci_conn *hcon; 4429 4430 BT_DBG("%s status 0x%2.2x", hdev->name, ev->status); 4431 4432 if (ev->status) 4433 return; 4434 4435 hci_dev_lock(hdev); 4436 4437 hcon = hci_conn_hash_lookup_handle(hdev, ev->phy_handle); 4438 if (hcon) { 4439 hcon->state = BT_CLOSED; 4440 hci_conn_del(hcon); 4441 } 4442 4443 hci_dev_unlock(hdev); 4444 } 4445 #endif 4446 4447 static void hci_le_conn_complete_evt(struct hci_dev *hdev, struct sk_buff *skb) 4448 { 4449 struct hci_ev_le_conn_complete *ev = (void *) skb->data; 4450 struct hci_conn_params *params; 4451 struct hci_conn *conn; 4452 struct smp_irk *irk; 4453 u8 addr_type; 4454 4455 BT_DBG("%s status 0x%2.2x", hdev->name, ev->status); 4456 4457 hci_dev_lock(hdev); 4458 4459 /* All controllers implicitly stop advertising in the event of a 4460 * connection, so ensure that the state bit is cleared. 4461 */ 4462 hci_dev_clear_flag(hdev, HCI_LE_ADV); 4463 4464 conn = hci_lookup_le_connect(hdev); 4465 if (!conn) { 4466 conn = hci_conn_add(hdev, LE_LINK, &ev->bdaddr, ev->role); 4467 if (!conn) { 4468 BT_ERR("No memory for new connection"); 4469 goto unlock; 4470 } 4471 4472 conn->dst_type = ev->bdaddr_type; 4473 4474 /* If we didn't have a hci_conn object previously 4475 * but we're in master role this must be something 4476 * initiated using a white list. Since white list based 4477 * connections are not "first class citizens" we don't 4478 * have full tracking of them. Therefore, we go ahead 4479 * with a "best effort" approach of determining the 4480 * initiator address based on the HCI_PRIVACY flag. 4481 */ 4482 if (conn->out) { 4483 conn->resp_addr_type = ev->bdaddr_type; 4484 bacpy(&conn->resp_addr, &ev->bdaddr); 4485 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) { 4486 conn->init_addr_type = ADDR_LE_DEV_RANDOM; 4487 bacpy(&conn->init_addr, &hdev->rpa); 4488 } else { 4489 hci_copy_identity_address(hdev, 4490 &conn->init_addr, 4491 &conn->init_addr_type); 4492 } 4493 } 4494 } else { 4495 cancel_delayed_work(&conn->le_conn_timeout); 4496 } 4497 4498 if (!conn->out) { 4499 /* Set the responder (our side) address type based on 4500 * the advertising address type. 4501 */ 4502 conn->resp_addr_type = hdev->adv_addr_type; 4503 if (hdev->adv_addr_type == ADDR_LE_DEV_RANDOM) 4504 bacpy(&conn->resp_addr, &hdev->random_addr); 4505 else 4506 bacpy(&conn->resp_addr, &hdev->bdaddr); 4507 4508 conn->init_addr_type = ev->bdaddr_type; 4509 bacpy(&conn->init_addr, &ev->bdaddr); 4510 4511 /* For incoming connections, set the default minimum 4512 * and maximum connection interval. They will be used 4513 * to check if the parameters are in range and if not 4514 * trigger the connection update procedure. 4515 */ 4516 conn->le_conn_min_interval = hdev->le_conn_min_interval; 4517 conn->le_conn_max_interval = hdev->le_conn_max_interval; 4518 } 4519 4520 /* Lookup the identity address from the stored connection 4521 * address and address type. 4522 * 4523 * When establishing connections to an identity address, the 4524 * connection procedure will store the resolvable random 4525 * address first. Now if it can be converted back into the 4526 * identity address, start using the identity address from 4527 * now on. 4528 */ 4529 irk = hci_get_irk(hdev, &conn->dst, conn->dst_type); 4530 if (irk) { 4531 bacpy(&conn->dst, &irk->bdaddr); 4532 conn->dst_type = irk->addr_type; 4533 } 4534 4535 if (ev->status) { 4536 hci_le_conn_failed(conn, ev->status); 4537 goto unlock; 4538 } 4539 4540 if (conn->dst_type == ADDR_LE_DEV_PUBLIC) 4541 addr_type = BDADDR_LE_PUBLIC; 4542 else 4543 addr_type = BDADDR_LE_RANDOM; 4544 4545 /* Drop the connection if the device is blocked */ 4546 if (hci_bdaddr_list_lookup(&hdev->blacklist, &conn->dst, addr_type)) { 4547 hci_conn_drop(conn); 4548 goto unlock; 4549 } 4550 4551 if (!test_and_set_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags)) 4552 mgmt_device_connected(hdev, conn, 0, NULL, 0); 4553 4554 conn->sec_level = BT_SECURITY_LOW; 4555 conn->handle = __le16_to_cpu(ev->handle); 4556 conn->state = BT_CONFIG; 4557 4558 conn->le_conn_interval = le16_to_cpu(ev->interval); 4559 conn->le_conn_latency = le16_to_cpu(ev->latency); 4560 conn->le_supv_timeout = le16_to_cpu(ev->supervision_timeout); 4561 4562 hci_debugfs_create_conn(conn); 4563 hci_conn_add_sysfs(conn); 4564 4565 if (!ev->status) { 4566 /* The remote features procedure is defined for master 4567 * role only. So only in case of an initiated connection 4568 * request the remote features. 4569 * 4570 * If the local controller supports slave-initiated features 4571 * exchange, then requesting the remote features in slave 4572 * role is possible. Otherwise just transition into the 4573 * connected state without requesting the remote features. 4574 */ 4575 if (conn->out || 4576 (hdev->le_features[0] & HCI_LE_SLAVE_FEATURES)) { 4577 struct hci_cp_le_read_remote_features cp; 4578 4579 cp.handle = __cpu_to_le16(conn->handle); 4580 4581 hci_send_cmd(hdev, HCI_OP_LE_READ_REMOTE_FEATURES, 4582 sizeof(cp), &cp); 4583 4584 hci_conn_hold(conn); 4585 } else { 4586 conn->state = BT_CONNECTED; 4587 hci_connect_cfm(conn, ev->status); 4588 } 4589 } else { 4590 hci_connect_cfm(conn, ev->status); 4591 } 4592 4593 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst, 4594 conn->dst_type); 4595 if (params) { 4596 list_del_init(¶ms->action); 4597 if (params->conn) { 4598 hci_conn_drop(params->conn); 4599 hci_conn_put(params->conn); 4600 params->conn = NULL; 4601 } 4602 } 4603 4604 unlock: 4605 hci_update_background_scan(hdev); 4606 hci_dev_unlock(hdev); 4607 } 4608 4609 static void hci_le_conn_update_complete_evt(struct hci_dev *hdev, 4610 struct sk_buff *skb) 4611 { 4612 struct hci_ev_le_conn_update_complete *ev = (void *) skb->data; 4613 struct hci_conn *conn; 4614 4615 BT_DBG("%s status 0x%2.2x", hdev->name, ev->status); 4616 4617 if (ev->status) 4618 return; 4619 4620 hci_dev_lock(hdev); 4621 4622 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 4623 if (conn) { 4624 conn->le_conn_interval = le16_to_cpu(ev->interval); 4625 conn->le_conn_latency = le16_to_cpu(ev->latency); 4626 conn->le_supv_timeout = le16_to_cpu(ev->supervision_timeout); 4627 } 4628 4629 hci_dev_unlock(hdev); 4630 } 4631 4632 /* This function requires the caller holds hdev->lock */ 4633 static struct hci_conn *check_pending_le_conn(struct hci_dev *hdev, 4634 bdaddr_t *addr, 4635 u8 addr_type, u8 adv_type) 4636 { 4637 struct hci_conn *conn; 4638 struct hci_conn_params *params; 4639 4640 /* If the event is not connectable don't proceed further */ 4641 if (adv_type != LE_ADV_IND && adv_type != LE_ADV_DIRECT_IND) 4642 return NULL; 4643 4644 /* Ignore if the device is blocked */ 4645 if (hci_bdaddr_list_lookup(&hdev->blacklist, addr, addr_type)) 4646 return NULL; 4647 4648 /* Most controller will fail if we try to create new connections 4649 * while we have an existing one in slave role. 4650 */ 4651 if (hdev->conn_hash.le_num_slave > 0) 4652 return NULL; 4653 4654 /* If we're not connectable only connect devices that we have in 4655 * our pend_le_conns list. 4656 */ 4657 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, addr, 4658 addr_type); 4659 if (!params) 4660 return NULL; 4661 4662 if (!params->explicit_connect) { 4663 switch (params->auto_connect) { 4664 case HCI_AUTO_CONN_DIRECT: 4665 /* Only devices advertising with ADV_DIRECT_IND are 4666 * triggering a connection attempt. This is allowing 4667 * incoming connections from slave devices. 4668 */ 4669 if (adv_type != LE_ADV_DIRECT_IND) 4670 return NULL; 4671 break; 4672 case HCI_AUTO_CONN_ALWAYS: 4673 /* Devices advertising with ADV_IND or ADV_DIRECT_IND 4674 * are triggering a connection attempt. This means 4675 * that incoming connectioms from slave device are 4676 * accepted and also outgoing connections to slave 4677 * devices are established when found. 4678 */ 4679 break; 4680 default: 4681 return NULL; 4682 } 4683 } 4684 4685 conn = hci_connect_le(hdev, addr, addr_type, BT_SECURITY_LOW, 4686 HCI_LE_AUTOCONN_TIMEOUT, HCI_ROLE_MASTER); 4687 if (!IS_ERR(conn)) { 4688 /* If HCI_AUTO_CONN_EXPLICIT is set, conn is already owned 4689 * by higher layer that tried to connect, if no then 4690 * store the pointer since we don't really have any 4691 * other owner of the object besides the params that 4692 * triggered it. This way we can abort the connection if 4693 * the parameters get removed and keep the reference 4694 * count consistent once the connection is established. 4695 */ 4696 4697 if (!params->explicit_connect) 4698 params->conn = hci_conn_get(conn); 4699 4700 return conn; 4701 } 4702 4703 switch (PTR_ERR(conn)) { 4704 case -EBUSY: 4705 /* If hci_connect() returns -EBUSY it means there is already 4706 * an LE connection attempt going on. Since controllers don't 4707 * support more than one connection attempt at the time, we 4708 * don't consider this an error case. 4709 */ 4710 break; 4711 default: 4712 BT_DBG("Failed to connect: err %ld", PTR_ERR(conn)); 4713 return NULL; 4714 } 4715 4716 return NULL; 4717 } 4718 4719 static void process_adv_report(struct hci_dev *hdev, u8 type, bdaddr_t *bdaddr, 4720 u8 bdaddr_type, bdaddr_t *direct_addr, 4721 u8 direct_addr_type, s8 rssi, u8 *data, u8 len) 4722 { 4723 struct discovery_state *d = &hdev->discovery; 4724 struct smp_irk *irk; 4725 struct hci_conn *conn; 4726 bool match; 4727 u32 flags; 4728 u8 *ptr, real_len; 4729 4730 /* Find the end of the data in case the report contains padded zero 4731 * bytes at the end causing an invalid length value. 4732 * 4733 * When data is NULL, len is 0 so there is no need for extra ptr 4734 * check as 'ptr < data + 0' is already false in such case. 4735 */ 4736 for (ptr = data; ptr < data + len && *ptr; ptr += *ptr + 1) { 4737 if (ptr + 1 + *ptr > data + len) 4738 break; 4739 } 4740 4741 real_len = ptr - data; 4742 4743 /* Adjust for actual length */ 4744 if (len != real_len) { 4745 BT_ERR_RATELIMITED("%s advertising data length corrected", 4746 hdev->name); 4747 len = real_len; 4748 } 4749 4750 /* If the direct address is present, then this report is from 4751 * a LE Direct Advertising Report event. In that case it is 4752 * important to see if the address is matching the local 4753 * controller address. 4754 */ 4755 if (direct_addr) { 4756 /* Only resolvable random addresses are valid for these 4757 * kind of reports and others can be ignored. 4758 */ 4759 if (!hci_bdaddr_is_rpa(direct_addr, direct_addr_type)) 4760 return; 4761 4762 /* If the controller is not using resolvable random 4763 * addresses, then this report can be ignored. 4764 */ 4765 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 4766 return; 4767 4768 /* If the local IRK of the controller does not match 4769 * with the resolvable random address provided, then 4770 * this report can be ignored. 4771 */ 4772 if (!smp_irk_matches(hdev, hdev->irk, direct_addr)) 4773 return; 4774 } 4775 4776 /* Check if we need to convert to identity address */ 4777 irk = hci_get_irk(hdev, bdaddr, bdaddr_type); 4778 if (irk) { 4779 bdaddr = &irk->bdaddr; 4780 bdaddr_type = irk->addr_type; 4781 } 4782 4783 /* Check if we have been requested to connect to this device */ 4784 conn = check_pending_le_conn(hdev, bdaddr, bdaddr_type, type); 4785 if (conn && type == LE_ADV_IND) { 4786 /* Store report for later inclusion by 4787 * mgmt_device_connected 4788 */ 4789 memcpy(conn->le_adv_data, data, len); 4790 conn->le_adv_data_len = len; 4791 } 4792 4793 /* Passive scanning shouldn't trigger any device found events, 4794 * except for devices marked as CONN_REPORT for which we do send 4795 * device found events. 4796 */ 4797 if (hdev->le_scan_type == LE_SCAN_PASSIVE) { 4798 if (type == LE_ADV_DIRECT_IND) 4799 return; 4800 4801 if (!hci_pend_le_action_lookup(&hdev->pend_le_reports, 4802 bdaddr, bdaddr_type)) 4803 return; 4804 4805 if (type == LE_ADV_NONCONN_IND || type == LE_ADV_SCAN_IND) 4806 flags = MGMT_DEV_FOUND_NOT_CONNECTABLE; 4807 else 4808 flags = 0; 4809 mgmt_device_found(hdev, bdaddr, LE_LINK, bdaddr_type, NULL, 4810 rssi, flags, data, len, NULL, 0); 4811 return; 4812 } 4813 4814 /* When receiving non-connectable or scannable undirected 4815 * advertising reports, this means that the remote device is 4816 * not connectable and then clearly indicate this in the 4817 * device found event. 4818 * 4819 * When receiving a scan response, then there is no way to 4820 * know if the remote device is connectable or not. However 4821 * since scan responses are merged with a previously seen 4822 * advertising report, the flags field from that report 4823 * will be used. 4824 * 4825 * In the really unlikely case that a controller get confused 4826 * and just sends a scan response event, then it is marked as 4827 * not connectable as well. 4828 */ 4829 if (type == LE_ADV_NONCONN_IND || type == LE_ADV_SCAN_IND || 4830 type == LE_ADV_SCAN_RSP) 4831 flags = MGMT_DEV_FOUND_NOT_CONNECTABLE; 4832 else 4833 flags = 0; 4834 4835 /* If there's nothing pending either store the data from this 4836 * event or send an immediate device found event if the data 4837 * should not be stored for later. 4838 */ 4839 if (!has_pending_adv_report(hdev)) { 4840 /* If the report will trigger a SCAN_REQ store it for 4841 * later merging. 4842 */ 4843 if (type == LE_ADV_IND || type == LE_ADV_SCAN_IND) { 4844 store_pending_adv_report(hdev, bdaddr, bdaddr_type, 4845 rssi, flags, data, len); 4846 return; 4847 } 4848 4849 mgmt_device_found(hdev, bdaddr, LE_LINK, bdaddr_type, NULL, 4850 rssi, flags, data, len, NULL, 0); 4851 return; 4852 } 4853 4854 /* Check if the pending report is for the same device as the new one */ 4855 match = (!bacmp(bdaddr, &d->last_adv_addr) && 4856 bdaddr_type == d->last_adv_addr_type); 4857 4858 /* If the pending data doesn't match this report or this isn't a 4859 * scan response (e.g. we got a duplicate ADV_IND) then force 4860 * sending of the pending data. 4861 */ 4862 if (type != LE_ADV_SCAN_RSP || !match) { 4863 /* Send out whatever is in the cache, but skip duplicates */ 4864 if (!match) 4865 mgmt_device_found(hdev, &d->last_adv_addr, LE_LINK, 4866 d->last_adv_addr_type, NULL, 4867 d->last_adv_rssi, d->last_adv_flags, 4868 d->last_adv_data, 4869 d->last_adv_data_len, NULL, 0); 4870 4871 /* If the new report will trigger a SCAN_REQ store it for 4872 * later merging. 4873 */ 4874 if (type == LE_ADV_IND || type == LE_ADV_SCAN_IND) { 4875 store_pending_adv_report(hdev, bdaddr, bdaddr_type, 4876 rssi, flags, data, len); 4877 return; 4878 } 4879 4880 /* The advertising reports cannot be merged, so clear 4881 * the pending report and send out a device found event. 4882 */ 4883 clear_pending_adv_report(hdev); 4884 mgmt_device_found(hdev, bdaddr, LE_LINK, bdaddr_type, NULL, 4885 rssi, flags, data, len, NULL, 0); 4886 return; 4887 } 4888 4889 /* If we get here we've got a pending ADV_IND or ADV_SCAN_IND and 4890 * the new event is a SCAN_RSP. We can therefore proceed with 4891 * sending a merged device found event. 4892 */ 4893 mgmt_device_found(hdev, &d->last_adv_addr, LE_LINK, 4894 d->last_adv_addr_type, NULL, rssi, d->last_adv_flags, 4895 d->last_adv_data, d->last_adv_data_len, data, len); 4896 clear_pending_adv_report(hdev); 4897 } 4898 4899 static void hci_le_adv_report_evt(struct hci_dev *hdev, struct sk_buff *skb) 4900 { 4901 u8 num_reports = skb->data[0]; 4902 void *ptr = &skb->data[1]; 4903 4904 hci_dev_lock(hdev); 4905 4906 while (num_reports--) { 4907 struct hci_ev_le_advertising_info *ev = ptr; 4908 s8 rssi; 4909 4910 rssi = ev->data[ev->length]; 4911 process_adv_report(hdev, ev->evt_type, &ev->bdaddr, 4912 ev->bdaddr_type, NULL, 0, rssi, 4913 ev->data, ev->length); 4914 4915 ptr += sizeof(*ev) + ev->length + 1; 4916 } 4917 4918 hci_dev_unlock(hdev); 4919 } 4920 4921 static void hci_le_remote_feat_complete_evt(struct hci_dev *hdev, 4922 struct sk_buff *skb) 4923 { 4924 struct hci_ev_le_remote_feat_complete *ev = (void *)skb->data; 4925 struct hci_conn *conn; 4926 4927 BT_DBG("%s status 0x%2.2x", hdev->name, ev->status); 4928 4929 hci_dev_lock(hdev); 4930 4931 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 4932 if (conn) { 4933 if (!ev->status) 4934 memcpy(conn->features[0], ev->features, 8); 4935 4936 if (conn->state == BT_CONFIG) { 4937 __u8 status; 4938 4939 /* If the local controller supports slave-initiated 4940 * features exchange, but the remote controller does 4941 * not, then it is possible that the error code 0x1a 4942 * for unsupported remote feature gets returned. 4943 * 4944 * In this specific case, allow the connection to 4945 * transition into connected state and mark it as 4946 * successful. 4947 */ 4948 if ((hdev->le_features[0] & HCI_LE_SLAVE_FEATURES) && 4949 !conn->out && ev->status == 0x1a) 4950 status = 0x00; 4951 else 4952 status = ev->status; 4953 4954 conn->state = BT_CONNECTED; 4955 hci_connect_cfm(conn, status); 4956 hci_conn_drop(conn); 4957 } 4958 } 4959 4960 hci_dev_unlock(hdev); 4961 } 4962 4963 static void hci_le_ltk_request_evt(struct hci_dev *hdev, struct sk_buff *skb) 4964 { 4965 struct hci_ev_le_ltk_req *ev = (void *) skb->data; 4966 struct hci_cp_le_ltk_reply cp; 4967 struct hci_cp_le_ltk_neg_reply neg; 4968 struct hci_conn *conn; 4969 struct smp_ltk *ltk; 4970 4971 BT_DBG("%s handle 0x%4.4x", hdev->name, __le16_to_cpu(ev->handle)); 4972 4973 hci_dev_lock(hdev); 4974 4975 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 4976 if (conn == NULL) 4977 goto not_found; 4978 4979 ltk = hci_find_ltk(hdev, &conn->dst, conn->dst_type, conn->role); 4980 if (!ltk) 4981 goto not_found; 4982 4983 if (smp_ltk_is_sc(ltk)) { 4984 /* With SC both EDiv and Rand are set to zero */ 4985 if (ev->ediv || ev->rand) 4986 goto not_found; 4987 } else { 4988 /* For non-SC keys check that EDiv and Rand match */ 4989 if (ev->ediv != ltk->ediv || ev->rand != ltk->rand) 4990 goto not_found; 4991 } 4992 4993 memcpy(cp.ltk, ltk->val, ltk->enc_size); 4994 memset(cp.ltk + ltk->enc_size, 0, sizeof(cp.ltk) - ltk->enc_size); 4995 cp.handle = cpu_to_le16(conn->handle); 4996 4997 conn->pending_sec_level = smp_ltk_sec_level(ltk); 4998 4999 conn->enc_key_size = ltk->enc_size; 5000 5001 hci_send_cmd(hdev, HCI_OP_LE_LTK_REPLY, sizeof(cp), &cp); 5002 5003 /* Ref. Bluetooth Core SPEC pages 1975 and 2004. STK is a 5004 * temporary key used to encrypt a connection following 5005 * pairing. It is used during the Encrypted Session Setup to 5006 * distribute the keys. Later, security can be re-established 5007 * using a distributed LTK. 5008 */ 5009 if (ltk->type == SMP_STK) { 5010 set_bit(HCI_CONN_STK_ENCRYPT, &conn->flags); 5011 list_del_rcu(<k->list); 5012 kfree_rcu(ltk, rcu); 5013 } else { 5014 clear_bit(HCI_CONN_STK_ENCRYPT, &conn->flags); 5015 } 5016 5017 hci_dev_unlock(hdev); 5018 5019 return; 5020 5021 not_found: 5022 neg.handle = ev->handle; 5023 hci_send_cmd(hdev, HCI_OP_LE_LTK_NEG_REPLY, sizeof(neg), &neg); 5024 hci_dev_unlock(hdev); 5025 } 5026 5027 static void send_conn_param_neg_reply(struct hci_dev *hdev, u16 handle, 5028 u8 reason) 5029 { 5030 struct hci_cp_le_conn_param_req_neg_reply cp; 5031 5032 cp.handle = cpu_to_le16(handle); 5033 cp.reason = reason; 5034 5035 hci_send_cmd(hdev, HCI_OP_LE_CONN_PARAM_REQ_NEG_REPLY, sizeof(cp), 5036 &cp); 5037 } 5038 5039 static void hci_le_remote_conn_param_req_evt(struct hci_dev *hdev, 5040 struct sk_buff *skb) 5041 { 5042 struct hci_ev_le_remote_conn_param_req *ev = (void *) skb->data; 5043 struct hci_cp_le_conn_param_req_reply cp; 5044 struct hci_conn *hcon; 5045 u16 handle, min, max, latency, timeout; 5046 5047 handle = le16_to_cpu(ev->handle); 5048 min = le16_to_cpu(ev->interval_min); 5049 max = le16_to_cpu(ev->interval_max); 5050 latency = le16_to_cpu(ev->latency); 5051 timeout = le16_to_cpu(ev->timeout); 5052 5053 hcon = hci_conn_hash_lookup_handle(hdev, handle); 5054 if (!hcon || hcon->state != BT_CONNECTED) 5055 return send_conn_param_neg_reply(hdev, handle, 5056 HCI_ERROR_UNKNOWN_CONN_ID); 5057 5058 if (hci_check_conn_params(min, max, latency, timeout)) 5059 return send_conn_param_neg_reply(hdev, handle, 5060 HCI_ERROR_INVALID_LL_PARAMS); 5061 5062 if (hcon->role == HCI_ROLE_MASTER) { 5063 struct hci_conn_params *params; 5064 u8 store_hint; 5065 5066 hci_dev_lock(hdev); 5067 5068 params = hci_conn_params_lookup(hdev, &hcon->dst, 5069 hcon->dst_type); 5070 if (params) { 5071 params->conn_min_interval = min; 5072 params->conn_max_interval = max; 5073 params->conn_latency = latency; 5074 params->supervision_timeout = timeout; 5075 store_hint = 0x01; 5076 } else{ 5077 store_hint = 0x00; 5078 } 5079 5080 hci_dev_unlock(hdev); 5081 5082 mgmt_new_conn_param(hdev, &hcon->dst, hcon->dst_type, 5083 store_hint, min, max, latency, timeout); 5084 } 5085 5086 cp.handle = ev->handle; 5087 cp.interval_min = ev->interval_min; 5088 cp.interval_max = ev->interval_max; 5089 cp.latency = ev->latency; 5090 cp.timeout = ev->timeout; 5091 cp.min_ce_len = 0; 5092 cp.max_ce_len = 0; 5093 5094 hci_send_cmd(hdev, HCI_OP_LE_CONN_PARAM_REQ_REPLY, sizeof(cp), &cp); 5095 } 5096 5097 static void hci_le_direct_adv_report_evt(struct hci_dev *hdev, 5098 struct sk_buff *skb) 5099 { 5100 u8 num_reports = skb->data[0]; 5101 void *ptr = &skb->data[1]; 5102 5103 hci_dev_lock(hdev); 5104 5105 while (num_reports--) { 5106 struct hci_ev_le_direct_adv_info *ev = ptr; 5107 5108 process_adv_report(hdev, ev->evt_type, &ev->bdaddr, 5109 ev->bdaddr_type, &ev->direct_addr, 5110 ev->direct_addr_type, ev->rssi, NULL, 0); 5111 5112 ptr += sizeof(*ev); 5113 } 5114 5115 hci_dev_unlock(hdev); 5116 } 5117 5118 static void hci_le_meta_evt(struct hci_dev *hdev, struct sk_buff *skb) 5119 { 5120 struct hci_ev_le_meta *le_ev = (void *) skb->data; 5121 5122 skb_pull(skb, sizeof(*le_ev)); 5123 5124 switch (le_ev->subevent) { 5125 case HCI_EV_LE_CONN_COMPLETE: 5126 hci_le_conn_complete_evt(hdev, skb); 5127 break; 5128 5129 case HCI_EV_LE_CONN_UPDATE_COMPLETE: 5130 hci_le_conn_update_complete_evt(hdev, skb); 5131 break; 5132 5133 case HCI_EV_LE_ADVERTISING_REPORT: 5134 hci_le_adv_report_evt(hdev, skb); 5135 break; 5136 5137 case HCI_EV_LE_REMOTE_FEAT_COMPLETE: 5138 hci_le_remote_feat_complete_evt(hdev, skb); 5139 break; 5140 5141 case HCI_EV_LE_LTK_REQ: 5142 hci_le_ltk_request_evt(hdev, skb); 5143 break; 5144 5145 case HCI_EV_LE_REMOTE_CONN_PARAM_REQ: 5146 hci_le_remote_conn_param_req_evt(hdev, skb); 5147 break; 5148 5149 case HCI_EV_LE_DIRECT_ADV_REPORT: 5150 hci_le_direct_adv_report_evt(hdev, skb); 5151 break; 5152 5153 default: 5154 break; 5155 } 5156 } 5157 5158 static bool hci_get_cmd_complete(struct hci_dev *hdev, u16 opcode, 5159 u8 event, struct sk_buff *skb) 5160 { 5161 struct hci_ev_cmd_complete *ev; 5162 struct hci_event_hdr *hdr; 5163 5164 if (!skb) 5165 return false; 5166 5167 if (skb->len < sizeof(*hdr)) { 5168 BT_ERR("Too short HCI event"); 5169 return false; 5170 } 5171 5172 hdr = (void *) skb->data; 5173 skb_pull(skb, HCI_EVENT_HDR_SIZE); 5174 5175 if (event) { 5176 if (hdr->evt != event) 5177 return false; 5178 return true; 5179 } 5180 5181 if (hdr->evt != HCI_EV_CMD_COMPLETE) { 5182 BT_DBG("Last event is not cmd complete (0x%2.2x)", hdr->evt); 5183 return false; 5184 } 5185 5186 if (skb->len < sizeof(*ev)) { 5187 BT_ERR("Too short cmd_complete event"); 5188 return false; 5189 } 5190 5191 ev = (void *) skb->data; 5192 skb_pull(skb, sizeof(*ev)); 5193 5194 if (opcode != __le16_to_cpu(ev->opcode)) { 5195 BT_DBG("opcode doesn't match (0x%2.2x != 0x%2.2x)", opcode, 5196 __le16_to_cpu(ev->opcode)); 5197 return false; 5198 } 5199 5200 return true; 5201 } 5202 5203 void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb) 5204 { 5205 struct hci_event_hdr *hdr = (void *) skb->data; 5206 hci_req_complete_t req_complete = NULL; 5207 hci_req_complete_skb_t req_complete_skb = NULL; 5208 struct sk_buff *orig_skb = NULL; 5209 u8 status = 0, event = hdr->evt, req_evt = 0; 5210 u16 opcode = HCI_OP_NOP; 5211 5212 if (hdev->sent_cmd && bt_cb(hdev->sent_cmd)->hci.req_event == event) { 5213 struct hci_command_hdr *cmd_hdr = (void *) hdev->sent_cmd->data; 5214 opcode = __le16_to_cpu(cmd_hdr->opcode); 5215 hci_req_cmd_complete(hdev, opcode, status, &req_complete, 5216 &req_complete_skb); 5217 req_evt = event; 5218 } 5219 5220 /* If it looks like we might end up having to call 5221 * req_complete_skb, store a pristine copy of the skb since the 5222 * various handlers may modify the original one through 5223 * skb_pull() calls, etc. 5224 */ 5225 if (req_complete_skb || event == HCI_EV_CMD_STATUS || 5226 event == HCI_EV_CMD_COMPLETE) 5227 orig_skb = skb_clone(skb, GFP_KERNEL); 5228 5229 skb_pull(skb, HCI_EVENT_HDR_SIZE); 5230 5231 switch (event) { 5232 case HCI_EV_INQUIRY_COMPLETE: 5233 hci_inquiry_complete_evt(hdev, skb); 5234 break; 5235 5236 case HCI_EV_INQUIRY_RESULT: 5237 hci_inquiry_result_evt(hdev, skb); 5238 break; 5239 5240 case HCI_EV_CONN_COMPLETE: 5241 hci_conn_complete_evt(hdev, skb); 5242 break; 5243 5244 case HCI_EV_CONN_REQUEST: 5245 hci_conn_request_evt(hdev, skb); 5246 break; 5247 5248 case HCI_EV_DISCONN_COMPLETE: 5249 hci_disconn_complete_evt(hdev, skb); 5250 break; 5251 5252 case HCI_EV_AUTH_COMPLETE: 5253 hci_auth_complete_evt(hdev, skb); 5254 break; 5255 5256 case HCI_EV_REMOTE_NAME: 5257 hci_remote_name_evt(hdev, skb); 5258 break; 5259 5260 case HCI_EV_ENCRYPT_CHANGE: 5261 hci_encrypt_change_evt(hdev, skb); 5262 break; 5263 5264 case HCI_EV_CHANGE_LINK_KEY_COMPLETE: 5265 hci_change_link_key_complete_evt(hdev, skb); 5266 break; 5267 5268 case HCI_EV_REMOTE_FEATURES: 5269 hci_remote_features_evt(hdev, skb); 5270 break; 5271 5272 case HCI_EV_CMD_COMPLETE: 5273 hci_cmd_complete_evt(hdev, skb, &opcode, &status, 5274 &req_complete, &req_complete_skb); 5275 break; 5276 5277 case HCI_EV_CMD_STATUS: 5278 hci_cmd_status_evt(hdev, skb, &opcode, &status, &req_complete, 5279 &req_complete_skb); 5280 break; 5281 5282 case HCI_EV_HARDWARE_ERROR: 5283 hci_hardware_error_evt(hdev, skb); 5284 break; 5285 5286 case HCI_EV_ROLE_CHANGE: 5287 hci_role_change_evt(hdev, skb); 5288 break; 5289 5290 case HCI_EV_NUM_COMP_PKTS: 5291 hci_num_comp_pkts_evt(hdev, skb); 5292 break; 5293 5294 case HCI_EV_MODE_CHANGE: 5295 hci_mode_change_evt(hdev, skb); 5296 break; 5297 5298 case HCI_EV_PIN_CODE_REQ: 5299 hci_pin_code_request_evt(hdev, skb); 5300 break; 5301 5302 case HCI_EV_LINK_KEY_REQ: 5303 hci_link_key_request_evt(hdev, skb); 5304 break; 5305 5306 case HCI_EV_LINK_KEY_NOTIFY: 5307 hci_link_key_notify_evt(hdev, skb); 5308 break; 5309 5310 case HCI_EV_CLOCK_OFFSET: 5311 hci_clock_offset_evt(hdev, skb); 5312 break; 5313 5314 case HCI_EV_PKT_TYPE_CHANGE: 5315 hci_pkt_type_change_evt(hdev, skb); 5316 break; 5317 5318 case HCI_EV_PSCAN_REP_MODE: 5319 hci_pscan_rep_mode_evt(hdev, skb); 5320 break; 5321 5322 case HCI_EV_INQUIRY_RESULT_WITH_RSSI: 5323 hci_inquiry_result_with_rssi_evt(hdev, skb); 5324 break; 5325 5326 case HCI_EV_REMOTE_EXT_FEATURES: 5327 hci_remote_ext_features_evt(hdev, skb); 5328 break; 5329 5330 case HCI_EV_SYNC_CONN_COMPLETE: 5331 hci_sync_conn_complete_evt(hdev, skb); 5332 break; 5333 5334 case HCI_EV_EXTENDED_INQUIRY_RESULT: 5335 hci_extended_inquiry_result_evt(hdev, skb); 5336 break; 5337 5338 case HCI_EV_KEY_REFRESH_COMPLETE: 5339 hci_key_refresh_complete_evt(hdev, skb); 5340 break; 5341 5342 case HCI_EV_IO_CAPA_REQUEST: 5343 hci_io_capa_request_evt(hdev, skb); 5344 break; 5345 5346 case HCI_EV_IO_CAPA_REPLY: 5347 hci_io_capa_reply_evt(hdev, skb); 5348 break; 5349 5350 case HCI_EV_USER_CONFIRM_REQUEST: 5351 hci_user_confirm_request_evt(hdev, skb); 5352 break; 5353 5354 case HCI_EV_USER_PASSKEY_REQUEST: 5355 hci_user_passkey_request_evt(hdev, skb); 5356 break; 5357 5358 case HCI_EV_USER_PASSKEY_NOTIFY: 5359 hci_user_passkey_notify_evt(hdev, skb); 5360 break; 5361 5362 case HCI_EV_KEYPRESS_NOTIFY: 5363 hci_keypress_notify_evt(hdev, skb); 5364 break; 5365 5366 case HCI_EV_SIMPLE_PAIR_COMPLETE: 5367 hci_simple_pair_complete_evt(hdev, skb); 5368 break; 5369 5370 case HCI_EV_REMOTE_HOST_FEATURES: 5371 hci_remote_host_features_evt(hdev, skb); 5372 break; 5373 5374 case HCI_EV_LE_META: 5375 hci_le_meta_evt(hdev, skb); 5376 break; 5377 5378 case HCI_EV_REMOTE_OOB_DATA_REQUEST: 5379 hci_remote_oob_data_request_evt(hdev, skb); 5380 break; 5381 5382 #if IS_ENABLED(CONFIG_BT_HS) 5383 case HCI_EV_CHANNEL_SELECTED: 5384 hci_chan_selected_evt(hdev, skb); 5385 break; 5386 5387 case HCI_EV_PHY_LINK_COMPLETE: 5388 hci_phy_link_complete_evt(hdev, skb); 5389 break; 5390 5391 case HCI_EV_LOGICAL_LINK_COMPLETE: 5392 hci_loglink_complete_evt(hdev, skb); 5393 break; 5394 5395 case HCI_EV_DISCONN_LOGICAL_LINK_COMPLETE: 5396 hci_disconn_loglink_complete_evt(hdev, skb); 5397 break; 5398 5399 case HCI_EV_DISCONN_PHY_LINK_COMPLETE: 5400 hci_disconn_phylink_complete_evt(hdev, skb); 5401 break; 5402 #endif 5403 5404 case HCI_EV_NUM_COMP_BLOCKS: 5405 hci_num_comp_blocks_evt(hdev, skb); 5406 break; 5407 5408 default: 5409 BT_DBG("%s event 0x%2.2x", hdev->name, event); 5410 break; 5411 } 5412 5413 if (req_complete) { 5414 req_complete(hdev, status, opcode); 5415 } else if (req_complete_skb) { 5416 if (!hci_get_cmd_complete(hdev, opcode, req_evt, orig_skb)) { 5417 kfree_skb(orig_skb); 5418 orig_skb = NULL; 5419 } 5420 req_complete_skb(hdev, status, opcode, orig_skb); 5421 } 5422 5423 kfree_skb(orig_skb); 5424 kfree_skb(skb); 5425 hdev->stat.evt_rx++; 5426 } 5427