1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 Copyright 2023 NXP 5 6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License version 2 as 10 published by the Free Software Foundation; 11 12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 23 SOFTWARE IS DISCLAIMED. 24 */ 25 26 /* Bluetooth HCI event handling. */ 27 28 #include <asm/unaligned.h> 29 #include <linux/crypto.h> 30 #include <crypto/algapi.h> 31 32 #include <net/bluetooth/bluetooth.h> 33 #include <net/bluetooth/hci_core.h> 34 #include <net/bluetooth/mgmt.h> 35 36 #include "hci_request.h" 37 #include "hci_debugfs.h" 38 #include "hci_codec.h" 39 #include "smp.h" 40 #include "msft.h" 41 #include "eir.h" 42 43 #define ZERO_KEY "\x00\x00\x00\x00\x00\x00\x00\x00" \ 44 "\x00\x00\x00\x00\x00\x00\x00\x00" 45 46 #define secs_to_jiffies(_secs) msecs_to_jiffies((_secs) * 1000) 47 48 /* Handle HCI Event packets */ 49 50 static void *hci_ev_skb_pull(struct hci_dev *hdev, struct sk_buff *skb, 51 u8 ev, size_t len) 52 { 53 void *data; 54 55 data = skb_pull_data(skb, len); 56 if (!data) 57 bt_dev_err(hdev, "Malformed Event: 0x%2.2x", ev); 58 59 return data; 60 } 61 62 static void *hci_cc_skb_pull(struct hci_dev *hdev, struct sk_buff *skb, 63 u16 op, size_t len) 64 { 65 void *data; 66 67 data = skb_pull_data(skb, len); 68 if (!data) 69 bt_dev_err(hdev, "Malformed Command Complete: 0x%4.4x", op); 70 71 return data; 72 } 73 74 static void *hci_le_ev_skb_pull(struct hci_dev *hdev, struct sk_buff *skb, 75 u8 ev, size_t len) 76 { 77 void *data; 78 79 data = skb_pull_data(skb, len); 80 if (!data) 81 bt_dev_err(hdev, "Malformed LE Event: 0x%2.2x", ev); 82 83 return data; 84 } 85 86 static u8 hci_cc_inquiry_cancel(struct hci_dev *hdev, void *data, 87 struct sk_buff *skb) 88 { 89 struct hci_ev_status *rp = data; 90 91 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 92 93 /* It is possible that we receive Inquiry Complete event right 94 * before we receive Inquiry Cancel Command Complete event, in 95 * which case the latter event should have status of Command 96 * Disallowed (0x0c). This should not be treated as error, since 97 * we actually achieve what Inquiry Cancel wants to achieve, 98 * which is to end the last Inquiry session. 99 */ 100 if (rp->status == 0x0c && !test_bit(HCI_INQUIRY, &hdev->flags)) { 101 bt_dev_warn(hdev, "Ignoring error of Inquiry Cancel command"); 102 rp->status = 0x00; 103 } 104 105 if (rp->status) 106 return rp->status; 107 108 clear_bit(HCI_INQUIRY, &hdev->flags); 109 smp_mb__after_atomic(); /* wake_up_bit advises about this barrier */ 110 wake_up_bit(&hdev->flags, HCI_INQUIRY); 111 112 hci_dev_lock(hdev); 113 /* Set discovery state to stopped if we're not doing LE active 114 * scanning. 115 */ 116 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN) || 117 hdev->le_scan_type != LE_SCAN_ACTIVE) 118 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 119 hci_dev_unlock(hdev); 120 121 hci_conn_check_pending(hdev); 122 123 return rp->status; 124 } 125 126 static u8 hci_cc_periodic_inq(struct hci_dev *hdev, void *data, 127 struct sk_buff *skb) 128 { 129 struct hci_ev_status *rp = data; 130 131 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 132 133 if (rp->status) 134 return rp->status; 135 136 hci_dev_set_flag(hdev, HCI_PERIODIC_INQ); 137 138 return rp->status; 139 } 140 141 static u8 hci_cc_exit_periodic_inq(struct hci_dev *hdev, void *data, 142 struct sk_buff *skb) 143 { 144 struct hci_ev_status *rp = data; 145 146 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 147 148 if (rp->status) 149 return rp->status; 150 151 hci_dev_clear_flag(hdev, HCI_PERIODIC_INQ); 152 153 hci_conn_check_pending(hdev); 154 155 return rp->status; 156 } 157 158 static u8 hci_cc_remote_name_req_cancel(struct hci_dev *hdev, void *data, 159 struct sk_buff *skb) 160 { 161 struct hci_ev_status *rp = data; 162 163 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 164 165 return rp->status; 166 } 167 168 static u8 hci_cc_role_discovery(struct hci_dev *hdev, void *data, 169 struct sk_buff *skb) 170 { 171 struct hci_rp_role_discovery *rp = data; 172 struct hci_conn *conn; 173 174 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 175 176 if (rp->status) 177 return rp->status; 178 179 hci_dev_lock(hdev); 180 181 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 182 if (conn) 183 conn->role = rp->role; 184 185 hci_dev_unlock(hdev); 186 187 return rp->status; 188 } 189 190 static u8 hci_cc_read_link_policy(struct hci_dev *hdev, void *data, 191 struct sk_buff *skb) 192 { 193 struct hci_rp_read_link_policy *rp = data; 194 struct hci_conn *conn; 195 196 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 197 198 if (rp->status) 199 return rp->status; 200 201 hci_dev_lock(hdev); 202 203 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 204 if (conn) 205 conn->link_policy = __le16_to_cpu(rp->policy); 206 207 hci_dev_unlock(hdev); 208 209 return rp->status; 210 } 211 212 static u8 hci_cc_write_link_policy(struct hci_dev *hdev, void *data, 213 struct sk_buff *skb) 214 { 215 struct hci_rp_write_link_policy *rp = data; 216 struct hci_conn *conn; 217 void *sent; 218 219 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 220 221 if (rp->status) 222 return rp->status; 223 224 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_LINK_POLICY); 225 if (!sent) 226 return rp->status; 227 228 hci_dev_lock(hdev); 229 230 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 231 if (conn) 232 conn->link_policy = get_unaligned_le16(sent + 2); 233 234 hci_dev_unlock(hdev); 235 236 return rp->status; 237 } 238 239 static u8 hci_cc_read_def_link_policy(struct hci_dev *hdev, void *data, 240 struct sk_buff *skb) 241 { 242 struct hci_rp_read_def_link_policy *rp = data; 243 244 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 245 246 if (rp->status) 247 return rp->status; 248 249 hdev->link_policy = __le16_to_cpu(rp->policy); 250 251 return rp->status; 252 } 253 254 static u8 hci_cc_write_def_link_policy(struct hci_dev *hdev, void *data, 255 struct sk_buff *skb) 256 { 257 struct hci_ev_status *rp = data; 258 void *sent; 259 260 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 261 262 if (rp->status) 263 return rp->status; 264 265 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_DEF_LINK_POLICY); 266 if (!sent) 267 return rp->status; 268 269 hdev->link_policy = get_unaligned_le16(sent); 270 271 return rp->status; 272 } 273 274 static u8 hci_cc_reset(struct hci_dev *hdev, void *data, struct sk_buff *skb) 275 { 276 struct hci_ev_status *rp = data; 277 278 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 279 280 clear_bit(HCI_RESET, &hdev->flags); 281 282 if (rp->status) 283 return rp->status; 284 285 /* Reset all non-persistent flags */ 286 hci_dev_clear_volatile_flags(hdev); 287 288 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 289 290 hdev->inq_tx_power = HCI_TX_POWER_INVALID; 291 hdev->adv_tx_power = HCI_TX_POWER_INVALID; 292 293 memset(hdev->adv_data, 0, sizeof(hdev->adv_data)); 294 hdev->adv_data_len = 0; 295 296 memset(hdev->scan_rsp_data, 0, sizeof(hdev->scan_rsp_data)); 297 hdev->scan_rsp_data_len = 0; 298 299 hdev->le_scan_type = LE_SCAN_PASSIVE; 300 301 hdev->ssp_debug_mode = 0; 302 303 hci_bdaddr_list_clear(&hdev->le_accept_list); 304 hci_bdaddr_list_clear(&hdev->le_resolv_list); 305 306 return rp->status; 307 } 308 309 static u8 hci_cc_read_stored_link_key(struct hci_dev *hdev, void *data, 310 struct sk_buff *skb) 311 { 312 struct hci_rp_read_stored_link_key *rp = data; 313 struct hci_cp_read_stored_link_key *sent; 314 315 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 316 317 sent = hci_sent_cmd_data(hdev, HCI_OP_READ_STORED_LINK_KEY); 318 if (!sent) 319 return rp->status; 320 321 if (!rp->status && sent->read_all == 0x01) { 322 hdev->stored_max_keys = le16_to_cpu(rp->max_keys); 323 hdev->stored_num_keys = le16_to_cpu(rp->num_keys); 324 } 325 326 return rp->status; 327 } 328 329 static u8 hci_cc_delete_stored_link_key(struct hci_dev *hdev, void *data, 330 struct sk_buff *skb) 331 { 332 struct hci_rp_delete_stored_link_key *rp = data; 333 u16 num_keys; 334 335 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 336 337 if (rp->status) 338 return rp->status; 339 340 num_keys = le16_to_cpu(rp->num_keys); 341 342 if (num_keys <= hdev->stored_num_keys) 343 hdev->stored_num_keys -= num_keys; 344 else 345 hdev->stored_num_keys = 0; 346 347 return rp->status; 348 } 349 350 static u8 hci_cc_write_local_name(struct hci_dev *hdev, void *data, 351 struct sk_buff *skb) 352 { 353 struct hci_ev_status *rp = data; 354 void *sent; 355 356 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 357 358 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_LOCAL_NAME); 359 if (!sent) 360 return rp->status; 361 362 hci_dev_lock(hdev); 363 364 if (hci_dev_test_flag(hdev, HCI_MGMT)) 365 mgmt_set_local_name_complete(hdev, sent, rp->status); 366 else if (!rp->status) 367 memcpy(hdev->dev_name, sent, HCI_MAX_NAME_LENGTH); 368 369 hci_dev_unlock(hdev); 370 371 return rp->status; 372 } 373 374 static u8 hci_cc_read_local_name(struct hci_dev *hdev, void *data, 375 struct sk_buff *skb) 376 { 377 struct hci_rp_read_local_name *rp = data; 378 379 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 380 381 if (rp->status) 382 return rp->status; 383 384 if (hci_dev_test_flag(hdev, HCI_SETUP) || 385 hci_dev_test_flag(hdev, HCI_CONFIG)) 386 memcpy(hdev->dev_name, rp->name, HCI_MAX_NAME_LENGTH); 387 388 return rp->status; 389 } 390 391 static u8 hci_cc_write_auth_enable(struct hci_dev *hdev, void *data, 392 struct sk_buff *skb) 393 { 394 struct hci_ev_status *rp = data; 395 void *sent; 396 397 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 398 399 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_AUTH_ENABLE); 400 if (!sent) 401 return rp->status; 402 403 hci_dev_lock(hdev); 404 405 if (!rp->status) { 406 __u8 param = *((__u8 *) sent); 407 408 if (param == AUTH_ENABLED) 409 set_bit(HCI_AUTH, &hdev->flags); 410 else 411 clear_bit(HCI_AUTH, &hdev->flags); 412 } 413 414 if (hci_dev_test_flag(hdev, HCI_MGMT)) 415 mgmt_auth_enable_complete(hdev, rp->status); 416 417 hci_dev_unlock(hdev); 418 419 return rp->status; 420 } 421 422 static u8 hci_cc_write_encrypt_mode(struct hci_dev *hdev, void *data, 423 struct sk_buff *skb) 424 { 425 struct hci_ev_status *rp = data; 426 __u8 param; 427 void *sent; 428 429 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 430 431 if (rp->status) 432 return rp->status; 433 434 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_ENCRYPT_MODE); 435 if (!sent) 436 return rp->status; 437 438 param = *((__u8 *) sent); 439 440 if (param) 441 set_bit(HCI_ENCRYPT, &hdev->flags); 442 else 443 clear_bit(HCI_ENCRYPT, &hdev->flags); 444 445 return rp->status; 446 } 447 448 static u8 hci_cc_write_scan_enable(struct hci_dev *hdev, void *data, 449 struct sk_buff *skb) 450 { 451 struct hci_ev_status *rp = data; 452 __u8 param; 453 void *sent; 454 455 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 456 457 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_SCAN_ENABLE); 458 if (!sent) 459 return rp->status; 460 461 param = *((__u8 *) sent); 462 463 hci_dev_lock(hdev); 464 465 if (rp->status) { 466 hdev->discov_timeout = 0; 467 goto done; 468 } 469 470 if (param & SCAN_INQUIRY) 471 set_bit(HCI_ISCAN, &hdev->flags); 472 else 473 clear_bit(HCI_ISCAN, &hdev->flags); 474 475 if (param & SCAN_PAGE) 476 set_bit(HCI_PSCAN, &hdev->flags); 477 else 478 clear_bit(HCI_PSCAN, &hdev->flags); 479 480 done: 481 hci_dev_unlock(hdev); 482 483 return rp->status; 484 } 485 486 static u8 hci_cc_set_event_filter(struct hci_dev *hdev, void *data, 487 struct sk_buff *skb) 488 { 489 struct hci_ev_status *rp = data; 490 struct hci_cp_set_event_filter *cp; 491 void *sent; 492 493 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 494 495 if (rp->status) 496 return rp->status; 497 498 sent = hci_sent_cmd_data(hdev, HCI_OP_SET_EVENT_FLT); 499 if (!sent) 500 return rp->status; 501 502 cp = (struct hci_cp_set_event_filter *)sent; 503 504 if (cp->flt_type == HCI_FLT_CLEAR_ALL) 505 hci_dev_clear_flag(hdev, HCI_EVENT_FILTER_CONFIGURED); 506 else 507 hci_dev_set_flag(hdev, HCI_EVENT_FILTER_CONFIGURED); 508 509 return rp->status; 510 } 511 512 static u8 hci_cc_read_class_of_dev(struct hci_dev *hdev, void *data, 513 struct sk_buff *skb) 514 { 515 struct hci_rp_read_class_of_dev *rp = data; 516 517 if (WARN_ON(!hdev)) 518 return HCI_ERROR_UNSPECIFIED; 519 520 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 521 522 if (rp->status) 523 return rp->status; 524 525 memcpy(hdev->dev_class, rp->dev_class, 3); 526 527 bt_dev_dbg(hdev, "class 0x%.2x%.2x%.2x", hdev->dev_class[2], 528 hdev->dev_class[1], hdev->dev_class[0]); 529 530 return rp->status; 531 } 532 533 static u8 hci_cc_write_class_of_dev(struct hci_dev *hdev, void *data, 534 struct sk_buff *skb) 535 { 536 struct hci_ev_status *rp = data; 537 void *sent; 538 539 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 540 541 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_CLASS_OF_DEV); 542 if (!sent) 543 return rp->status; 544 545 hci_dev_lock(hdev); 546 547 if (!rp->status) 548 memcpy(hdev->dev_class, sent, 3); 549 550 if (hci_dev_test_flag(hdev, HCI_MGMT)) 551 mgmt_set_class_of_dev_complete(hdev, sent, rp->status); 552 553 hci_dev_unlock(hdev); 554 555 return rp->status; 556 } 557 558 static u8 hci_cc_read_voice_setting(struct hci_dev *hdev, void *data, 559 struct sk_buff *skb) 560 { 561 struct hci_rp_read_voice_setting *rp = data; 562 __u16 setting; 563 564 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 565 566 if (rp->status) 567 return rp->status; 568 569 setting = __le16_to_cpu(rp->voice_setting); 570 571 if (hdev->voice_setting == setting) 572 return rp->status; 573 574 hdev->voice_setting = setting; 575 576 bt_dev_dbg(hdev, "voice setting 0x%4.4x", setting); 577 578 if (hdev->notify) 579 hdev->notify(hdev, HCI_NOTIFY_VOICE_SETTING); 580 581 return rp->status; 582 } 583 584 static u8 hci_cc_write_voice_setting(struct hci_dev *hdev, void *data, 585 struct sk_buff *skb) 586 { 587 struct hci_ev_status *rp = data; 588 __u16 setting; 589 void *sent; 590 591 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 592 593 if (rp->status) 594 return rp->status; 595 596 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_VOICE_SETTING); 597 if (!sent) 598 return rp->status; 599 600 setting = get_unaligned_le16(sent); 601 602 if (hdev->voice_setting == setting) 603 return rp->status; 604 605 hdev->voice_setting = setting; 606 607 bt_dev_dbg(hdev, "voice setting 0x%4.4x", setting); 608 609 if (hdev->notify) 610 hdev->notify(hdev, HCI_NOTIFY_VOICE_SETTING); 611 612 return rp->status; 613 } 614 615 static u8 hci_cc_read_num_supported_iac(struct hci_dev *hdev, void *data, 616 struct sk_buff *skb) 617 { 618 struct hci_rp_read_num_supported_iac *rp = data; 619 620 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 621 622 if (rp->status) 623 return rp->status; 624 625 hdev->num_iac = rp->num_iac; 626 627 bt_dev_dbg(hdev, "num iac %d", hdev->num_iac); 628 629 return rp->status; 630 } 631 632 static u8 hci_cc_write_ssp_mode(struct hci_dev *hdev, void *data, 633 struct sk_buff *skb) 634 { 635 struct hci_ev_status *rp = data; 636 struct hci_cp_write_ssp_mode *sent; 637 638 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 639 640 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_SSP_MODE); 641 if (!sent) 642 return rp->status; 643 644 hci_dev_lock(hdev); 645 646 if (!rp->status) { 647 if (sent->mode) 648 hdev->features[1][0] |= LMP_HOST_SSP; 649 else 650 hdev->features[1][0] &= ~LMP_HOST_SSP; 651 } 652 653 if (!rp->status) { 654 if (sent->mode) 655 hci_dev_set_flag(hdev, HCI_SSP_ENABLED); 656 else 657 hci_dev_clear_flag(hdev, HCI_SSP_ENABLED); 658 } 659 660 hci_dev_unlock(hdev); 661 662 return rp->status; 663 } 664 665 static u8 hci_cc_write_sc_support(struct hci_dev *hdev, void *data, 666 struct sk_buff *skb) 667 { 668 struct hci_ev_status *rp = data; 669 struct hci_cp_write_sc_support *sent; 670 671 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 672 673 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_SC_SUPPORT); 674 if (!sent) 675 return rp->status; 676 677 hci_dev_lock(hdev); 678 679 if (!rp->status) { 680 if (sent->support) 681 hdev->features[1][0] |= LMP_HOST_SC; 682 else 683 hdev->features[1][0] &= ~LMP_HOST_SC; 684 } 685 686 if (!hci_dev_test_flag(hdev, HCI_MGMT) && !rp->status) { 687 if (sent->support) 688 hci_dev_set_flag(hdev, HCI_SC_ENABLED); 689 else 690 hci_dev_clear_flag(hdev, HCI_SC_ENABLED); 691 } 692 693 hci_dev_unlock(hdev); 694 695 return rp->status; 696 } 697 698 static u8 hci_cc_read_local_version(struct hci_dev *hdev, void *data, 699 struct sk_buff *skb) 700 { 701 struct hci_rp_read_local_version *rp = data; 702 703 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 704 705 if (rp->status) 706 return rp->status; 707 708 if (hci_dev_test_flag(hdev, HCI_SETUP) || 709 hci_dev_test_flag(hdev, HCI_CONFIG)) { 710 hdev->hci_ver = rp->hci_ver; 711 hdev->hci_rev = __le16_to_cpu(rp->hci_rev); 712 hdev->lmp_ver = rp->lmp_ver; 713 hdev->manufacturer = __le16_to_cpu(rp->manufacturer); 714 hdev->lmp_subver = __le16_to_cpu(rp->lmp_subver); 715 } 716 717 return rp->status; 718 } 719 720 static u8 hci_cc_read_enc_key_size(struct hci_dev *hdev, void *data, 721 struct sk_buff *skb) 722 { 723 struct hci_rp_read_enc_key_size *rp = data; 724 struct hci_conn *conn; 725 u16 handle; 726 u8 status = rp->status; 727 728 bt_dev_dbg(hdev, "status 0x%2.2x", status); 729 730 handle = le16_to_cpu(rp->handle); 731 732 hci_dev_lock(hdev); 733 734 conn = hci_conn_hash_lookup_handle(hdev, handle); 735 if (!conn) { 736 status = 0xFF; 737 goto done; 738 } 739 740 /* While unexpected, the read_enc_key_size command may fail. The most 741 * secure approach is to then assume the key size is 0 to force a 742 * disconnection. 743 */ 744 if (status) { 745 bt_dev_err(hdev, "failed to read key size for handle %u", 746 handle); 747 conn->enc_key_size = 0; 748 } else { 749 conn->enc_key_size = rp->key_size; 750 status = 0; 751 752 if (conn->enc_key_size < hdev->min_enc_key_size) { 753 /* As slave role, the conn->state has been set to 754 * BT_CONNECTED and l2cap conn req might not be received 755 * yet, at this moment the l2cap layer almost does 756 * nothing with the non-zero status. 757 * So we also clear encrypt related bits, and then the 758 * handler of l2cap conn req will get the right secure 759 * state at a later time. 760 */ 761 status = HCI_ERROR_AUTH_FAILURE; 762 clear_bit(HCI_CONN_ENCRYPT, &conn->flags); 763 clear_bit(HCI_CONN_AES_CCM, &conn->flags); 764 } 765 } 766 767 hci_encrypt_cfm(conn, status); 768 769 done: 770 hci_dev_unlock(hdev); 771 772 return status; 773 } 774 775 static u8 hci_cc_read_local_commands(struct hci_dev *hdev, void *data, 776 struct sk_buff *skb) 777 { 778 struct hci_rp_read_local_commands *rp = data; 779 780 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 781 782 if (rp->status) 783 return rp->status; 784 785 if (hci_dev_test_flag(hdev, HCI_SETUP) || 786 hci_dev_test_flag(hdev, HCI_CONFIG)) 787 memcpy(hdev->commands, rp->commands, sizeof(hdev->commands)); 788 789 return rp->status; 790 } 791 792 static u8 hci_cc_read_auth_payload_timeout(struct hci_dev *hdev, void *data, 793 struct sk_buff *skb) 794 { 795 struct hci_rp_read_auth_payload_to *rp = data; 796 struct hci_conn *conn; 797 798 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 799 800 if (rp->status) 801 return rp->status; 802 803 hci_dev_lock(hdev); 804 805 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 806 if (conn) 807 conn->auth_payload_timeout = __le16_to_cpu(rp->timeout); 808 809 hci_dev_unlock(hdev); 810 811 return rp->status; 812 } 813 814 static u8 hci_cc_write_auth_payload_timeout(struct hci_dev *hdev, void *data, 815 struct sk_buff *skb) 816 { 817 struct hci_rp_write_auth_payload_to *rp = data; 818 struct hci_conn *conn; 819 void *sent; 820 821 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 822 823 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_AUTH_PAYLOAD_TO); 824 if (!sent) 825 return rp->status; 826 827 hci_dev_lock(hdev); 828 829 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 830 if (!conn) { 831 rp->status = 0xff; 832 goto unlock; 833 } 834 835 if (!rp->status) 836 conn->auth_payload_timeout = get_unaligned_le16(sent + 2); 837 838 unlock: 839 hci_dev_unlock(hdev); 840 841 return rp->status; 842 } 843 844 static u8 hci_cc_read_local_features(struct hci_dev *hdev, void *data, 845 struct sk_buff *skb) 846 { 847 struct hci_rp_read_local_features *rp = data; 848 849 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 850 851 if (rp->status) 852 return rp->status; 853 854 memcpy(hdev->features, rp->features, 8); 855 856 /* Adjust default settings according to features 857 * supported by device. */ 858 859 if (hdev->features[0][0] & LMP_3SLOT) 860 hdev->pkt_type |= (HCI_DM3 | HCI_DH3); 861 862 if (hdev->features[0][0] & LMP_5SLOT) 863 hdev->pkt_type |= (HCI_DM5 | HCI_DH5); 864 865 if (hdev->features[0][1] & LMP_HV2) { 866 hdev->pkt_type |= (HCI_HV2); 867 hdev->esco_type |= (ESCO_HV2); 868 } 869 870 if (hdev->features[0][1] & LMP_HV3) { 871 hdev->pkt_type |= (HCI_HV3); 872 hdev->esco_type |= (ESCO_HV3); 873 } 874 875 if (lmp_esco_capable(hdev)) 876 hdev->esco_type |= (ESCO_EV3); 877 878 if (hdev->features[0][4] & LMP_EV4) 879 hdev->esco_type |= (ESCO_EV4); 880 881 if (hdev->features[0][4] & LMP_EV5) 882 hdev->esco_type |= (ESCO_EV5); 883 884 if (hdev->features[0][5] & LMP_EDR_ESCO_2M) 885 hdev->esco_type |= (ESCO_2EV3); 886 887 if (hdev->features[0][5] & LMP_EDR_ESCO_3M) 888 hdev->esco_type |= (ESCO_3EV3); 889 890 if (hdev->features[0][5] & LMP_EDR_3S_ESCO) 891 hdev->esco_type |= (ESCO_2EV5 | ESCO_3EV5); 892 893 return rp->status; 894 } 895 896 static u8 hci_cc_read_local_ext_features(struct hci_dev *hdev, void *data, 897 struct sk_buff *skb) 898 { 899 struct hci_rp_read_local_ext_features *rp = data; 900 901 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 902 903 if (rp->status) 904 return rp->status; 905 906 if (hdev->max_page < rp->max_page) { 907 if (test_bit(HCI_QUIRK_BROKEN_LOCAL_EXT_FEATURES_PAGE_2, 908 &hdev->quirks)) 909 bt_dev_warn(hdev, "broken local ext features page 2"); 910 else 911 hdev->max_page = rp->max_page; 912 } 913 914 if (rp->page < HCI_MAX_PAGES) 915 memcpy(hdev->features[rp->page], rp->features, 8); 916 917 return rp->status; 918 } 919 920 static u8 hci_cc_read_flow_control_mode(struct hci_dev *hdev, void *data, 921 struct sk_buff *skb) 922 { 923 struct hci_rp_read_flow_control_mode *rp = data; 924 925 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 926 927 if (rp->status) 928 return rp->status; 929 930 hdev->flow_ctl_mode = rp->mode; 931 932 return rp->status; 933 } 934 935 static u8 hci_cc_read_buffer_size(struct hci_dev *hdev, void *data, 936 struct sk_buff *skb) 937 { 938 struct hci_rp_read_buffer_size *rp = data; 939 940 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 941 942 if (rp->status) 943 return rp->status; 944 945 hdev->acl_mtu = __le16_to_cpu(rp->acl_mtu); 946 hdev->sco_mtu = rp->sco_mtu; 947 hdev->acl_pkts = __le16_to_cpu(rp->acl_max_pkt); 948 hdev->sco_pkts = __le16_to_cpu(rp->sco_max_pkt); 949 950 if (test_bit(HCI_QUIRK_FIXUP_BUFFER_SIZE, &hdev->quirks)) { 951 hdev->sco_mtu = 64; 952 hdev->sco_pkts = 8; 953 } 954 955 hdev->acl_cnt = hdev->acl_pkts; 956 hdev->sco_cnt = hdev->sco_pkts; 957 958 BT_DBG("%s acl mtu %d:%d sco mtu %d:%d", hdev->name, hdev->acl_mtu, 959 hdev->acl_pkts, hdev->sco_mtu, hdev->sco_pkts); 960 961 return rp->status; 962 } 963 964 static u8 hci_cc_read_bd_addr(struct hci_dev *hdev, void *data, 965 struct sk_buff *skb) 966 { 967 struct hci_rp_read_bd_addr *rp = data; 968 969 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 970 971 if (rp->status) 972 return rp->status; 973 974 if (test_bit(HCI_INIT, &hdev->flags)) 975 bacpy(&hdev->bdaddr, &rp->bdaddr); 976 977 if (hci_dev_test_flag(hdev, HCI_SETUP)) 978 bacpy(&hdev->setup_addr, &rp->bdaddr); 979 980 return rp->status; 981 } 982 983 static u8 hci_cc_read_local_pairing_opts(struct hci_dev *hdev, void *data, 984 struct sk_buff *skb) 985 { 986 struct hci_rp_read_local_pairing_opts *rp = data; 987 988 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 989 990 if (rp->status) 991 return rp->status; 992 993 if (hci_dev_test_flag(hdev, HCI_SETUP) || 994 hci_dev_test_flag(hdev, HCI_CONFIG)) { 995 hdev->pairing_opts = rp->pairing_opts; 996 hdev->max_enc_key_size = rp->max_key_size; 997 } 998 999 return rp->status; 1000 } 1001 1002 static u8 hci_cc_read_page_scan_activity(struct hci_dev *hdev, void *data, 1003 struct sk_buff *skb) 1004 { 1005 struct hci_rp_read_page_scan_activity *rp = data; 1006 1007 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1008 1009 if (rp->status) 1010 return rp->status; 1011 1012 if (test_bit(HCI_INIT, &hdev->flags)) { 1013 hdev->page_scan_interval = __le16_to_cpu(rp->interval); 1014 hdev->page_scan_window = __le16_to_cpu(rp->window); 1015 } 1016 1017 return rp->status; 1018 } 1019 1020 static u8 hci_cc_write_page_scan_activity(struct hci_dev *hdev, void *data, 1021 struct sk_buff *skb) 1022 { 1023 struct hci_ev_status *rp = data; 1024 struct hci_cp_write_page_scan_activity *sent; 1025 1026 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1027 1028 if (rp->status) 1029 return rp->status; 1030 1031 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY); 1032 if (!sent) 1033 return rp->status; 1034 1035 hdev->page_scan_interval = __le16_to_cpu(sent->interval); 1036 hdev->page_scan_window = __le16_to_cpu(sent->window); 1037 1038 return rp->status; 1039 } 1040 1041 static u8 hci_cc_read_page_scan_type(struct hci_dev *hdev, void *data, 1042 struct sk_buff *skb) 1043 { 1044 struct hci_rp_read_page_scan_type *rp = data; 1045 1046 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1047 1048 if (rp->status) 1049 return rp->status; 1050 1051 if (test_bit(HCI_INIT, &hdev->flags)) 1052 hdev->page_scan_type = rp->type; 1053 1054 return rp->status; 1055 } 1056 1057 static u8 hci_cc_write_page_scan_type(struct hci_dev *hdev, void *data, 1058 struct sk_buff *skb) 1059 { 1060 struct hci_ev_status *rp = data; 1061 u8 *type; 1062 1063 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1064 1065 if (rp->status) 1066 return rp->status; 1067 1068 type = hci_sent_cmd_data(hdev, HCI_OP_WRITE_PAGE_SCAN_TYPE); 1069 if (type) 1070 hdev->page_scan_type = *type; 1071 1072 return rp->status; 1073 } 1074 1075 static u8 hci_cc_read_data_block_size(struct hci_dev *hdev, void *data, 1076 struct sk_buff *skb) 1077 { 1078 struct hci_rp_read_data_block_size *rp = data; 1079 1080 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1081 1082 if (rp->status) 1083 return rp->status; 1084 1085 hdev->block_mtu = __le16_to_cpu(rp->max_acl_len); 1086 hdev->block_len = __le16_to_cpu(rp->block_len); 1087 hdev->num_blocks = __le16_to_cpu(rp->num_blocks); 1088 1089 hdev->block_cnt = hdev->num_blocks; 1090 1091 BT_DBG("%s blk mtu %d cnt %d len %d", hdev->name, hdev->block_mtu, 1092 hdev->block_cnt, hdev->block_len); 1093 1094 return rp->status; 1095 } 1096 1097 static u8 hci_cc_read_clock(struct hci_dev *hdev, void *data, 1098 struct sk_buff *skb) 1099 { 1100 struct hci_rp_read_clock *rp = data; 1101 struct hci_cp_read_clock *cp; 1102 struct hci_conn *conn; 1103 1104 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1105 1106 if (rp->status) 1107 return rp->status; 1108 1109 hci_dev_lock(hdev); 1110 1111 cp = hci_sent_cmd_data(hdev, HCI_OP_READ_CLOCK); 1112 if (!cp) 1113 goto unlock; 1114 1115 if (cp->which == 0x00) { 1116 hdev->clock = le32_to_cpu(rp->clock); 1117 goto unlock; 1118 } 1119 1120 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 1121 if (conn) { 1122 conn->clock = le32_to_cpu(rp->clock); 1123 conn->clock_accuracy = le16_to_cpu(rp->accuracy); 1124 } 1125 1126 unlock: 1127 hci_dev_unlock(hdev); 1128 return rp->status; 1129 } 1130 1131 static u8 hci_cc_read_local_amp_info(struct hci_dev *hdev, void *data, 1132 struct sk_buff *skb) 1133 { 1134 struct hci_rp_read_local_amp_info *rp = data; 1135 1136 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1137 1138 if (rp->status) 1139 return rp->status; 1140 1141 hdev->amp_status = rp->amp_status; 1142 hdev->amp_total_bw = __le32_to_cpu(rp->total_bw); 1143 hdev->amp_max_bw = __le32_to_cpu(rp->max_bw); 1144 hdev->amp_min_latency = __le32_to_cpu(rp->min_latency); 1145 hdev->amp_max_pdu = __le32_to_cpu(rp->max_pdu); 1146 hdev->amp_type = rp->amp_type; 1147 hdev->amp_pal_cap = __le16_to_cpu(rp->pal_cap); 1148 hdev->amp_assoc_size = __le16_to_cpu(rp->max_assoc_size); 1149 hdev->amp_be_flush_to = __le32_to_cpu(rp->be_flush_to); 1150 hdev->amp_max_flush_to = __le32_to_cpu(rp->max_flush_to); 1151 1152 return rp->status; 1153 } 1154 1155 static u8 hci_cc_read_inq_rsp_tx_power(struct hci_dev *hdev, void *data, 1156 struct sk_buff *skb) 1157 { 1158 struct hci_rp_read_inq_rsp_tx_power *rp = data; 1159 1160 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1161 1162 if (rp->status) 1163 return rp->status; 1164 1165 hdev->inq_tx_power = rp->tx_power; 1166 1167 return rp->status; 1168 } 1169 1170 static u8 hci_cc_read_def_err_data_reporting(struct hci_dev *hdev, void *data, 1171 struct sk_buff *skb) 1172 { 1173 struct hci_rp_read_def_err_data_reporting *rp = data; 1174 1175 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1176 1177 if (rp->status) 1178 return rp->status; 1179 1180 hdev->err_data_reporting = rp->err_data_reporting; 1181 1182 return rp->status; 1183 } 1184 1185 static u8 hci_cc_write_def_err_data_reporting(struct hci_dev *hdev, void *data, 1186 struct sk_buff *skb) 1187 { 1188 struct hci_ev_status *rp = data; 1189 struct hci_cp_write_def_err_data_reporting *cp; 1190 1191 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1192 1193 if (rp->status) 1194 return rp->status; 1195 1196 cp = hci_sent_cmd_data(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING); 1197 if (!cp) 1198 return rp->status; 1199 1200 hdev->err_data_reporting = cp->err_data_reporting; 1201 1202 return rp->status; 1203 } 1204 1205 static u8 hci_cc_pin_code_reply(struct hci_dev *hdev, void *data, 1206 struct sk_buff *skb) 1207 { 1208 struct hci_rp_pin_code_reply *rp = data; 1209 struct hci_cp_pin_code_reply *cp; 1210 struct hci_conn *conn; 1211 1212 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1213 1214 hci_dev_lock(hdev); 1215 1216 if (hci_dev_test_flag(hdev, HCI_MGMT)) 1217 mgmt_pin_code_reply_complete(hdev, &rp->bdaddr, rp->status); 1218 1219 if (rp->status) 1220 goto unlock; 1221 1222 cp = hci_sent_cmd_data(hdev, HCI_OP_PIN_CODE_REPLY); 1223 if (!cp) 1224 goto unlock; 1225 1226 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->bdaddr); 1227 if (conn) 1228 conn->pin_length = cp->pin_len; 1229 1230 unlock: 1231 hci_dev_unlock(hdev); 1232 return rp->status; 1233 } 1234 1235 static u8 hci_cc_pin_code_neg_reply(struct hci_dev *hdev, void *data, 1236 struct sk_buff *skb) 1237 { 1238 struct hci_rp_pin_code_neg_reply *rp = data; 1239 1240 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1241 1242 hci_dev_lock(hdev); 1243 1244 if (hci_dev_test_flag(hdev, HCI_MGMT)) 1245 mgmt_pin_code_neg_reply_complete(hdev, &rp->bdaddr, 1246 rp->status); 1247 1248 hci_dev_unlock(hdev); 1249 1250 return rp->status; 1251 } 1252 1253 static u8 hci_cc_le_read_buffer_size(struct hci_dev *hdev, void *data, 1254 struct sk_buff *skb) 1255 { 1256 struct hci_rp_le_read_buffer_size *rp = data; 1257 1258 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1259 1260 if (rp->status) 1261 return rp->status; 1262 1263 hdev->le_mtu = __le16_to_cpu(rp->le_mtu); 1264 hdev->le_pkts = rp->le_max_pkt; 1265 1266 hdev->le_cnt = hdev->le_pkts; 1267 1268 BT_DBG("%s le mtu %d:%d", hdev->name, hdev->le_mtu, hdev->le_pkts); 1269 1270 return rp->status; 1271 } 1272 1273 static u8 hci_cc_le_read_local_features(struct hci_dev *hdev, void *data, 1274 struct sk_buff *skb) 1275 { 1276 struct hci_rp_le_read_local_features *rp = data; 1277 1278 BT_DBG("%s status 0x%2.2x", hdev->name, rp->status); 1279 1280 if (rp->status) 1281 return rp->status; 1282 1283 memcpy(hdev->le_features, rp->features, 8); 1284 1285 return rp->status; 1286 } 1287 1288 static u8 hci_cc_le_read_adv_tx_power(struct hci_dev *hdev, void *data, 1289 struct sk_buff *skb) 1290 { 1291 struct hci_rp_le_read_adv_tx_power *rp = data; 1292 1293 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1294 1295 if (rp->status) 1296 return rp->status; 1297 1298 hdev->adv_tx_power = rp->tx_power; 1299 1300 return rp->status; 1301 } 1302 1303 static u8 hci_cc_user_confirm_reply(struct hci_dev *hdev, void *data, 1304 struct sk_buff *skb) 1305 { 1306 struct hci_rp_user_confirm_reply *rp = data; 1307 1308 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1309 1310 hci_dev_lock(hdev); 1311 1312 if (hci_dev_test_flag(hdev, HCI_MGMT)) 1313 mgmt_user_confirm_reply_complete(hdev, &rp->bdaddr, ACL_LINK, 0, 1314 rp->status); 1315 1316 hci_dev_unlock(hdev); 1317 1318 return rp->status; 1319 } 1320 1321 static u8 hci_cc_user_confirm_neg_reply(struct hci_dev *hdev, void *data, 1322 struct sk_buff *skb) 1323 { 1324 struct hci_rp_user_confirm_reply *rp = data; 1325 1326 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1327 1328 hci_dev_lock(hdev); 1329 1330 if (hci_dev_test_flag(hdev, HCI_MGMT)) 1331 mgmt_user_confirm_neg_reply_complete(hdev, &rp->bdaddr, 1332 ACL_LINK, 0, rp->status); 1333 1334 hci_dev_unlock(hdev); 1335 1336 return rp->status; 1337 } 1338 1339 static u8 hci_cc_user_passkey_reply(struct hci_dev *hdev, void *data, 1340 struct sk_buff *skb) 1341 { 1342 struct hci_rp_user_confirm_reply *rp = data; 1343 1344 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1345 1346 hci_dev_lock(hdev); 1347 1348 if (hci_dev_test_flag(hdev, HCI_MGMT)) 1349 mgmt_user_passkey_reply_complete(hdev, &rp->bdaddr, ACL_LINK, 1350 0, rp->status); 1351 1352 hci_dev_unlock(hdev); 1353 1354 return rp->status; 1355 } 1356 1357 static u8 hci_cc_user_passkey_neg_reply(struct hci_dev *hdev, void *data, 1358 struct sk_buff *skb) 1359 { 1360 struct hci_rp_user_confirm_reply *rp = data; 1361 1362 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1363 1364 hci_dev_lock(hdev); 1365 1366 if (hci_dev_test_flag(hdev, HCI_MGMT)) 1367 mgmt_user_passkey_neg_reply_complete(hdev, &rp->bdaddr, 1368 ACL_LINK, 0, rp->status); 1369 1370 hci_dev_unlock(hdev); 1371 1372 return rp->status; 1373 } 1374 1375 static u8 hci_cc_read_local_oob_data(struct hci_dev *hdev, void *data, 1376 struct sk_buff *skb) 1377 { 1378 struct hci_rp_read_local_oob_data *rp = data; 1379 1380 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1381 1382 return rp->status; 1383 } 1384 1385 static u8 hci_cc_read_local_oob_ext_data(struct hci_dev *hdev, void *data, 1386 struct sk_buff *skb) 1387 { 1388 struct hci_rp_read_local_oob_ext_data *rp = data; 1389 1390 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1391 1392 return rp->status; 1393 } 1394 1395 static u8 hci_cc_le_set_random_addr(struct hci_dev *hdev, void *data, 1396 struct sk_buff *skb) 1397 { 1398 struct hci_ev_status *rp = data; 1399 bdaddr_t *sent; 1400 1401 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1402 1403 if (rp->status) 1404 return rp->status; 1405 1406 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_RANDOM_ADDR); 1407 if (!sent) 1408 return rp->status; 1409 1410 hci_dev_lock(hdev); 1411 1412 bacpy(&hdev->random_addr, sent); 1413 1414 if (!bacmp(&hdev->rpa, sent)) { 1415 hci_dev_clear_flag(hdev, HCI_RPA_EXPIRED); 1416 queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, 1417 secs_to_jiffies(hdev->rpa_timeout)); 1418 } 1419 1420 hci_dev_unlock(hdev); 1421 1422 return rp->status; 1423 } 1424 1425 static u8 hci_cc_le_set_default_phy(struct hci_dev *hdev, void *data, 1426 struct sk_buff *skb) 1427 { 1428 struct hci_ev_status *rp = data; 1429 struct hci_cp_le_set_default_phy *cp; 1430 1431 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1432 1433 if (rp->status) 1434 return rp->status; 1435 1436 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_DEFAULT_PHY); 1437 if (!cp) 1438 return rp->status; 1439 1440 hci_dev_lock(hdev); 1441 1442 hdev->le_tx_def_phys = cp->tx_phys; 1443 hdev->le_rx_def_phys = cp->rx_phys; 1444 1445 hci_dev_unlock(hdev); 1446 1447 return rp->status; 1448 } 1449 1450 static u8 hci_cc_le_set_adv_set_random_addr(struct hci_dev *hdev, void *data, 1451 struct sk_buff *skb) 1452 { 1453 struct hci_ev_status *rp = data; 1454 struct hci_cp_le_set_adv_set_rand_addr *cp; 1455 struct adv_info *adv; 1456 1457 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1458 1459 if (rp->status) 1460 return rp->status; 1461 1462 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR); 1463 /* Update only in case the adv instance since handle 0x00 shall be using 1464 * HCI_OP_LE_SET_RANDOM_ADDR since that allows both extended and 1465 * non-extended adverting. 1466 */ 1467 if (!cp || !cp->handle) 1468 return rp->status; 1469 1470 hci_dev_lock(hdev); 1471 1472 adv = hci_find_adv_instance(hdev, cp->handle); 1473 if (adv) { 1474 bacpy(&adv->random_addr, &cp->bdaddr); 1475 if (!bacmp(&hdev->rpa, &cp->bdaddr)) { 1476 adv->rpa_expired = false; 1477 queue_delayed_work(hdev->workqueue, 1478 &adv->rpa_expired_cb, 1479 secs_to_jiffies(hdev->rpa_timeout)); 1480 } 1481 } 1482 1483 hci_dev_unlock(hdev); 1484 1485 return rp->status; 1486 } 1487 1488 static u8 hci_cc_le_remove_adv_set(struct hci_dev *hdev, void *data, 1489 struct sk_buff *skb) 1490 { 1491 struct hci_ev_status *rp = data; 1492 u8 *instance; 1493 int err; 1494 1495 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1496 1497 if (rp->status) 1498 return rp->status; 1499 1500 instance = hci_sent_cmd_data(hdev, HCI_OP_LE_REMOVE_ADV_SET); 1501 if (!instance) 1502 return rp->status; 1503 1504 hci_dev_lock(hdev); 1505 1506 err = hci_remove_adv_instance(hdev, *instance); 1507 if (!err) 1508 mgmt_advertising_removed(hci_skb_sk(hdev->sent_cmd), hdev, 1509 *instance); 1510 1511 hci_dev_unlock(hdev); 1512 1513 return rp->status; 1514 } 1515 1516 static u8 hci_cc_le_clear_adv_sets(struct hci_dev *hdev, void *data, 1517 struct sk_buff *skb) 1518 { 1519 struct hci_ev_status *rp = data; 1520 struct adv_info *adv, *n; 1521 int err; 1522 1523 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1524 1525 if (rp->status) 1526 return rp->status; 1527 1528 if (!hci_sent_cmd_data(hdev, HCI_OP_LE_CLEAR_ADV_SETS)) 1529 return rp->status; 1530 1531 hci_dev_lock(hdev); 1532 1533 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { 1534 u8 instance = adv->instance; 1535 1536 err = hci_remove_adv_instance(hdev, instance); 1537 if (!err) 1538 mgmt_advertising_removed(hci_skb_sk(hdev->sent_cmd), 1539 hdev, instance); 1540 } 1541 1542 hci_dev_unlock(hdev); 1543 1544 return rp->status; 1545 } 1546 1547 static u8 hci_cc_le_read_transmit_power(struct hci_dev *hdev, void *data, 1548 struct sk_buff *skb) 1549 { 1550 struct hci_rp_le_read_transmit_power *rp = data; 1551 1552 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1553 1554 if (rp->status) 1555 return rp->status; 1556 1557 hdev->min_le_tx_power = rp->min_le_tx_power; 1558 hdev->max_le_tx_power = rp->max_le_tx_power; 1559 1560 return rp->status; 1561 } 1562 1563 static u8 hci_cc_le_set_privacy_mode(struct hci_dev *hdev, void *data, 1564 struct sk_buff *skb) 1565 { 1566 struct hci_ev_status *rp = data; 1567 struct hci_cp_le_set_privacy_mode *cp; 1568 struct hci_conn_params *params; 1569 1570 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1571 1572 if (rp->status) 1573 return rp->status; 1574 1575 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_PRIVACY_MODE); 1576 if (!cp) 1577 return rp->status; 1578 1579 hci_dev_lock(hdev); 1580 1581 params = hci_conn_params_lookup(hdev, &cp->bdaddr, cp->bdaddr_type); 1582 if (params) 1583 WRITE_ONCE(params->privacy_mode, cp->mode); 1584 1585 hci_dev_unlock(hdev); 1586 1587 return rp->status; 1588 } 1589 1590 static u8 hci_cc_le_set_adv_enable(struct hci_dev *hdev, void *data, 1591 struct sk_buff *skb) 1592 { 1593 struct hci_ev_status *rp = data; 1594 __u8 *sent; 1595 1596 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1597 1598 if (rp->status) 1599 return rp->status; 1600 1601 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_ADV_ENABLE); 1602 if (!sent) 1603 return rp->status; 1604 1605 hci_dev_lock(hdev); 1606 1607 /* If we're doing connection initiation as peripheral. Set a 1608 * timeout in case something goes wrong. 1609 */ 1610 if (*sent) { 1611 struct hci_conn *conn; 1612 1613 hci_dev_set_flag(hdev, HCI_LE_ADV); 1614 1615 conn = hci_lookup_le_connect(hdev); 1616 if (conn) 1617 queue_delayed_work(hdev->workqueue, 1618 &conn->le_conn_timeout, 1619 conn->conn_timeout); 1620 } else { 1621 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1622 } 1623 1624 hci_dev_unlock(hdev); 1625 1626 return rp->status; 1627 } 1628 1629 static u8 hci_cc_le_set_ext_adv_enable(struct hci_dev *hdev, void *data, 1630 struct sk_buff *skb) 1631 { 1632 struct hci_cp_le_set_ext_adv_enable *cp; 1633 struct hci_cp_ext_adv_set *set; 1634 struct adv_info *adv = NULL, *n; 1635 struct hci_ev_status *rp = data; 1636 1637 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1638 1639 if (rp->status) 1640 return rp->status; 1641 1642 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE); 1643 if (!cp) 1644 return rp->status; 1645 1646 set = (void *)cp->data; 1647 1648 hci_dev_lock(hdev); 1649 1650 if (cp->num_of_sets) 1651 adv = hci_find_adv_instance(hdev, set->handle); 1652 1653 if (cp->enable) { 1654 struct hci_conn *conn; 1655 1656 hci_dev_set_flag(hdev, HCI_LE_ADV); 1657 1658 if (adv && !adv->periodic) 1659 adv->enabled = true; 1660 1661 conn = hci_lookup_le_connect(hdev); 1662 if (conn) 1663 queue_delayed_work(hdev->workqueue, 1664 &conn->le_conn_timeout, 1665 conn->conn_timeout); 1666 } else { 1667 if (cp->num_of_sets) { 1668 if (adv) 1669 adv->enabled = false; 1670 1671 /* If just one instance was disabled check if there are 1672 * any other instance enabled before clearing HCI_LE_ADV 1673 */ 1674 list_for_each_entry_safe(adv, n, &hdev->adv_instances, 1675 list) { 1676 if (adv->enabled) 1677 goto unlock; 1678 } 1679 } else { 1680 /* All instances shall be considered disabled */ 1681 list_for_each_entry_safe(adv, n, &hdev->adv_instances, 1682 list) 1683 adv->enabled = false; 1684 } 1685 1686 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1687 } 1688 1689 unlock: 1690 hci_dev_unlock(hdev); 1691 return rp->status; 1692 } 1693 1694 static u8 hci_cc_le_set_scan_param(struct hci_dev *hdev, void *data, 1695 struct sk_buff *skb) 1696 { 1697 struct hci_cp_le_set_scan_param *cp; 1698 struct hci_ev_status *rp = data; 1699 1700 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1701 1702 if (rp->status) 1703 return rp->status; 1704 1705 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_SCAN_PARAM); 1706 if (!cp) 1707 return rp->status; 1708 1709 hci_dev_lock(hdev); 1710 1711 hdev->le_scan_type = cp->type; 1712 1713 hci_dev_unlock(hdev); 1714 1715 return rp->status; 1716 } 1717 1718 static u8 hci_cc_le_set_ext_scan_param(struct hci_dev *hdev, void *data, 1719 struct sk_buff *skb) 1720 { 1721 struct hci_cp_le_set_ext_scan_params *cp; 1722 struct hci_ev_status *rp = data; 1723 struct hci_cp_le_scan_phy_params *phy_param; 1724 1725 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1726 1727 if (rp->status) 1728 return rp->status; 1729 1730 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS); 1731 if (!cp) 1732 return rp->status; 1733 1734 phy_param = (void *)cp->data; 1735 1736 hci_dev_lock(hdev); 1737 1738 hdev->le_scan_type = phy_param->type; 1739 1740 hci_dev_unlock(hdev); 1741 1742 return rp->status; 1743 } 1744 1745 static bool has_pending_adv_report(struct hci_dev *hdev) 1746 { 1747 struct discovery_state *d = &hdev->discovery; 1748 1749 return bacmp(&d->last_adv_addr, BDADDR_ANY); 1750 } 1751 1752 static void clear_pending_adv_report(struct hci_dev *hdev) 1753 { 1754 struct discovery_state *d = &hdev->discovery; 1755 1756 bacpy(&d->last_adv_addr, BDADDR_ANY); 1757 d->last_adv_data_len = 0; 1758 } 1759 1760 static void store_pending_adv_report(struct hci_dev *hdev, bdaddr_t *bdaddr, 1761 u8 bdaddr_type, s8 rssi, u32 flags, 1762 u8 *data, u8 len) 1763 { 1764 struct discovery_state *d = &hdev->discovery; 1765 1766 if (len > max_adv_len(hdev)) 1767 return; 1768 1769 bacpy(&d->last_adv_addr, bdaddr); 1770 d->last_adv_addr_type = bdaddr_type; 1771 d->last_adv_rssi = rssi; 1772 d->last_adv_flags = flags; 1773 memcpy(d->last_adv_data, data, len); 1774 d->last_adv_data_len = len; 1775 } 1776 1777 static void le_set_scan_enable_complete(struct hci_dev *hdev, u8 enable) 1778 { 1779 hci_dev_lock(hdev); 1780 1781 switch (enable) { 1782 case LE_SCAN_ENABLE: 1783 hci_dev_set_flag(hdev, HCI_LE_SCAN); 1784 if (hdev->le_scan_type == LE_SCAN_ACTIVE) 1785 clear_pending_adv_report(hdev); 1786 if (hci_dev_test_flag(hdev, HCI_MESH)) 1787 hci_discovery_set_state(hdev, DISCOVERY_FINDING); 1788 break; 1789 1790 case LE_SCAN_DISABLE: 1791 /* We do this here instead of when setting DISCOVERY_STOPPED 1792 * since the latter would potentially require waiting for 1793 * inquiry to stop too. 1794 */ 1795 if (has_pending_adv_report(hdev)) { 1796 struct discovery_state *d = &hdev->discovery; 1797 1798 mgmt_device_found(hdev, &d->last_adv_addr, LE_LINK, 1799 d->last_adv_addr_type, NULL, 1800 d->last_adv_rssi, d->last_adv_flags, 1801 d->last_adv_data, 1802 d->last_adv_data_len, NULL, 0, 0); 1803 } 1804 1805 /* Cancel this timer so that we don't try to disable scanning 1806 * when it's already disabled. 1807 */ 1808 cancel_delayed_work(&hdev->le_scan_disable); 1809 1810 hci_dev_clear_flag(hdev, HCI_LE_SCAN); 1811 1812 /* The HCI_LE_SCAN_INTERRUPTED flag indicates that we 1813 * interrupted scanning due to a connect request. Mark 1814 * therefore discovery as stopped. 1815 */ 1816 if (hci_dev_test_and_clear_flag(hdev, HCI_LE_SCAN_INTERRUPTED)) 1817 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 1818 else if (!hci_dev_test_flag(hdev, HCI_LE_ADV) && 1819 hdev->discovery.state == DISCOVERY_FINDING) 1820 queue_work(hdev->workqueue, &hdev->reenable_adv_work); 1821 1822 break; 1823 1824 default: 1825 bt_dev_err(hdev, "use of reserved LE_Scan_Enable param %d", 1826 enable); 1827 break; 1828 } 1829 1830 hci_dev_unlock(hdev); 1831 } 1832 1833 static u8 hci_cc_le_set_scan_enable(struct hci_dev *hdev, void *data, 1834 struct sk_buff *skb) 1835 { 1836 struct hci_cp_le_set_scan_enable *cp; 1837 struct hci_ev_status *rp = data; 1838 1839 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1840 1841 if (rp->status) 1842 return rp->status; 1843 1844 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_SCAN_ENABLE); 1845 if (!cp) 1846 return rp->status; 1847 1848 le_set_scan_enable_complete(hdev, cp->enable); 1849 1850 return rp->status; 1851 } 1852 1853 static u8 hci_cc_le_set_ext_scan_enable(struct hci_dev *hdev, void *data, 1854 struct sk_buff *skb) 1855 { 1856 struct hci_cp_le_set_ext_scan_enable *cp; 1857 struct hci_ev_status *rp = data; 1858 1859 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1860 1861 if (rp->status) 1862 return rp->status; 1863 1864 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE); 1865 if (!cp) 1866 return rp->status; 1867 1868 le_set_scan_enable_complete(hdev, cp->enable); 1869 1870 return rp->status; 1871 } 1872 1873 static u8 hci_cc_le_read_num_adv_sets(struct hci_dev *hdev, void *data, 1874 struct sk_buff *skb) 1875 { 1876 struct hci_rp_le_read_num_supported_adv_sets *rp = data; 1877 1878 bt_dev_dbg(hdev, "status 0x%2.2x No of Adv sets %u", rp->status, 1879 rp->num_of_sets); 1880 1881 if (rp->status) 1882 return rp->status; 1883 1884 hdev->le_num_of_adv_sets = rp->num_of_sets; 1885 1886 return rp->status; 1887 } 1888 1889 static u8 hci_cc_le_read_accept_list_size(struct hci_dev *hdev, void *data, 1890 struct sk_buff *skb) 1891 { 1892 struct hci_rp_le_read_accept_list_size *rp = data; 1893 1894 bt_dev_dbg(hdev, "status 0x%2.2x size %u", rp->status, rp->size); 1895 1896 if (rp->status) 1897 return rp->status; 1898 1899 hdev->le_accept_list_size = rp->size; 1900 1901 return rp->status; 1902 } 1903 1904 static u8 hci_cc_le_clear_accept_list(struct hci_dev *hdev, void *data, 1905 struct sk_buff *skb) 1906 { 1907 struct hci_ev_status *rp = data; 1908 1909 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1910 1911 if (rp->status) 1912 return rp->status; 1913 1914 hci_dev_lock(hdev); 1915 hci_bdaddr_list_clear(&hdev->le_accept_list); 1916 hci_dev_unlock(hdev); 1917 1918 return rp->status; 1919 } 1920 1921 static u8 hci_cc_le_add_to_accept_list(struct hci_dev *hdev, void *data, 1922 struct sk_buff *skb) 1923 { 1924 struct hci_cp_le_add_to_accept_list *sent; 1925 struct hci_ev_status *rp = data; 1926 1927 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1928 1929 if (rp->status) 1930 return rp->status; 1931 1932 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST); 1933 if (!sent) 1934 return rp->status; 1935 1936 hci_dev_lock(hdev); 1937 hci_bdaddr_list_add(&hdev->le_accept_list, &sent->bdaddr, 1938 sent->bdaddr_type); 1939 hci_dev_unlock(hdev); 1940 1941 return rp->status; 1942 } 1943 1944 static u8 hci_cc_le_del_from_accept_list(struct hci_dev *hdev, void *data, 1945 struct sk_buff *skb) 1946 { 1947 struct hci_cp_le_del_from_accept_list *sent; 1948 struct hci_ev_status *rp = data; 1949 1950 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1951 1952 if (rp->status) 1953 return rp->status; 1954 1955 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST); 1956 if (!sent) 1957 return rp->status; 1958 1959 hci_dev_lock(hdev); 1960 hci_bdaddr_list_del(&hdev->le_accept_list, &sent->bdaddr, 1961 sent->bdaddr_type); 1962 hci_dev_unlock(hdev); 1963 1964 return rp->status; 1965 } 1966 1967 static u8 hci_cc_le_read_supported_states(struct hci_dev *hdev, void *data, 1968 struct sk_buff *skb) 1969 { 1970 struct hci_rp_le_read_supported_states *rp = data; 1971 1972 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1973 1974 if (rp->status) 1975 return rp->status; 1976 1977 memcpy(hdev->le_states, rp->le_states, 8); 1978 1979 return rp->status; 1980 } 1981 1982 static u8 hci_cc_le_read_def_data_len(struct hci_dev *hdev, void *data, 1983 struct sk_buff *skb) 1984 { 1985 struct hci_rp_le_read_def_data_len *rp = data; 1986 1987 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 1988 1989 if (rp->status) 1990 return rp->status; 1991 1992 hdev->le_def_tx_len = le16_to_cpu(rp->tx_len); 1993 hdev->le_def_tx_time = le16_to_cpu(rp->tx_time); 1994 1995 return rp->status; 1996 } 1997 1998 static u8 hci_cc_le_write_def_data_len(struct hci_dev *hdev, void *data, 1999 struct sk_buff *skb) 2000 { 2001 struct hci_cp_le_write_def_data_len *sent; 2002 struct hci_ev_status *rp = data; 2003 2004 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2005 2006 if (rp->status) 2007 return rp->status; 2008 2009 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN); 2010 if (!sent) 2011 return rp->status; 2012 2013 hdev->le_def_tx_len = le16_to_cpu(sent->tx_len); 2014 hdev->le_def_tx_time = le16_to_cpu(sent->tx_time); 2015 2016 return rp->status; 2017 } 2018 2019 static u8 hci_cc_le_add_to_resolv_list(struct hci_dev *hdev, void *data, 2020 struct sk_buff *skb) 2021 { 2022 struct hci_cp_le_add_to_resolv_list *sent; 2023 struct hci_ev_status *rp = data; 2024 2025 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2026 2027 if (rp->status) 2028 return rp->status; 2029 2030 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST); 2031 if (!sent) 2032 return rp->status; 2033 2034 hci_dev_lock(hdev); 2035 hci_bdaddr_list_add_with_irk(&hdev->le_resolv_list, &sent->bdaddr, 2036 sent->bdaddr_type, sent->peer_irk, 2037 sent->local_irk); 2038 hci_dev_unlock(hdev); 2039 2040 return rp->status; 2041 } 2042 2043 static u8 hci_cc_le_del_from_resolv_list(struct hci_dev *hdev, void *data, 2044 struct sk_buff *skb) 2045 { 2046 struct hci_cp_le_del_from_resolv_list *sent; 2047 struct hci_ev_status *rp = data; 2048 2049 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2050 2051 if (rp->status) 2052 return rp->status; 2053 2054 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST); 2055 if (!sent) 2056 return rp->status; 2057 2058 hci_dev_lock(hdev); 2059 hci_bdaddr_list_del_with_irk(&hdev->le_resolv_list, &sent->bdaddr, 2060 sent->bdaddr_type); 2061 hci_dev_unlock(hdev); 2062 2063 return rp->status; 2064 } 2065 2066 static u8 hci_cc_le_clear_resolv_list(struct hci_dev *hdev, void *data, 2067 struct sk_buff *skb) 2068 { 2069 struct hci_ev_status *rp = data; 2070 2071 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2072 2073 if (rp->status) 2074 return rp->status; 2075 2076 hci_dev_lock(hdev); 2077 hci_bdaddr_list_clear(&hdev->le_resolv_list); 2078 hci_dev_unlock(hdev); 2079 2080 return rp->status; 2081 } 2082 2083 static u8 hci_cc_le_read_resolv_list_size(struct hci_dev *hdev, void *data, 2084 struct sk_buff *skb) 2085 { 2086 struct hci_rp_le_read_resolv_list_size *rp = data; 2087 2088 bt_dev_dbg(hdev, "status 0x%2.2x size %u", rp->status, rp->size); 2089 2090 if (rp->status) 2091 return rp->status; 2092 2093 hdev->le_resolv_list_size = rp->size; 2094 2095 return rp->status; 2096 } 2097 2098 static u8 hci_cc_le_set_addr_resolution_enable(struct hci_dev *hdev, void *data, 2099 struct sk_buff *skb) 2100 { 2101 struct hci_ev_status *rp = data; 2102 __u8 *sent; 2103 2104 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2105 2106 if (rp->status) 2107 return rp->status; 2108 2109 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE); 2110 if (!sent) 2111 return rp->status; 2112 2113 hci_dev_lock(hdev); 2114 2115 if (*sent) 2116 hci_dev_set_flag(hdev, HCI_LL_RPA_RESOLUTION); 2117 else 2118 hci_dev_clear_flag(hdev, HCI_LL_RPA_RESOLUTION); 2119 2120 hci_dev_unlock(hdev); 2121 2122 return rp->status; 2123 } 2124 2125 static u8 hci_cc_le_read_max_data_len(struct hci_dev *hdev, void *data, 2126 struct sk_buff *skb) 2127 { 2128 struct hci_rp_le_read_max_data_len *rp = data; 2129 2130 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2131 2132 if (rp->status) 2133 return rp->status; 2134 2135 hdev->le_max_tx_len = le16_to_cpu(rp->tx_len); 2136 hdev->le_max_tx_time = le16_to_cpu(rp->tx_time); 2137 hdev->le_max_rx_len = le16_to_cpu(rp->rx_len); 2138 hdev->le_max_rx_time = le16_to_cpu(rp->rx_time); 2139 2140 return rp->status; 2141 } 2142 2143 static u8 hci_cc_write_le_host_supported(struct hci_dev *hdev, void *data, 2144 struct sk_buff *skb) 2145 { 2146 struct hci_cp_write_le_host_supported *sent; 2147 struct hci_ev_status *rp = data; 2148 2149 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2150 2151 if (rp->status) 2152 return rp->status; 2153 2154 sent = hci_sent_cmd_data(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED); 2155 if (!sent) 2156 return rp->status; 2157 2158 hci_dev_lock(hdev); 2159 2160 if (sent->le) { 2161 hdev->features[1][0] |= LMP_HOST_LE; 2162 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 2163 } else { 2164 hdev->features[1][0] &= ~LMP_HOST_LE; 2165 hci_dev_clear_flag(hdev, HCI_LE_ENABLED); 2166 hci_dev_clear_flag(hdev, HCI_ADVERTISING); 2167 } 2168 2169 if (sent->simul) 2170 hdev->features[1][0] |= LMP_HOST_LE_BREDR; 2171 else 2172 hdev->features[1][0] &= ~LMP_HOST_LE_BREDR; 2173 2174 hci_dev_unlock(hdev); 2175 2176 return rp->status; 2177 } 2178 2179 static u8 hci_cc_set_adv_param(struct hci_dev *hdev, void *data, 2180 struct sk_buff *skb) 2181 { 2182 struct hci_cp_le_set_adv_param *cp; 2183 struct hci_ev_status *rp = data; 2184 2185 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2186 2187 if (rp->status) 2188 return rp->status; 2189 2190 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_ADV_PARAM); 2191 if (!cp) 2192 return rp->status; 2193 2194 hci_dev_lock(hdev); 2195 hdev->adv_addr_type = cp->own_address_type; 2196 hci_dev_unlock(hdev); 2197 2198 return rp->status; 2199 } 2200 2201 static u8 hci_cc_set_ext_adv_param(struct hci_dev *hdev, void *data, 2202 struct sk_buff *skb) 2203 { 2204 struct hci_rp_le_set_ext_adv_params *rp = data; 2205 struct hci_cp_le_set_ext_adv_params *cp; 2206 struct adv_info *adv_instance; 2207 2208 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2209 2210 if (rp->status) 2211 return rp->status; 2212 2213 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS); 2214 if (!cp) 2215 return rp->status; 2216 2217 hci_dev_lock(hdev); 2218 hdev->adv_addr_type = cp->own_addr_type; 2219 if (!cp->handle) { 2220 /* Store in hdev for instance 0 */ 2221 hdev->adv_tx_power = rp->tx_power; 2222 } else { 2223 adv_instance = hci_find_adv_instance(hdev, cp->handle); 2224 if (adv_instance) 2225 adv_instance->tx_power = rp->tx_power; 2226 } 2227 /* Update adv data as tx power is known now */ 2228 hci_update_adv_data(hdev, cp->handle); 2229 2230 hci_dev_unlock(hdev); 2231 2232 return rp->status; 2233 } 2234 2235 static u8 hci_cc_read_rssi(struct hci_dev *hdev, void *data, 2236 struct sk_buff *skb) 2237 { 2238 struct hci_rp_read_rssi *rp = data; 2239 struct hci_conn *conn; 2240 2241 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2242 2243 if (rp->status) 2244 return rp->status; 2245 2246 hci_dev_lock(hdev); 2247 2248 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 2249 if (conn) 2250 conn->rssi = rp->rssi; 2251 2252 hci_dev_unlock(hdev); 2253 2254 return rp->status; 2255 } 2256 2257 static u8 hci_cc_read_tx_power(struct hci_dev *hdev, void *data, 2258 struct sk_buff *skb) 2259 { 2260 struct hci_cp_read_tx_power *sent; 2261 struct hci_rp_read_tx_power *rp = data; 2262 struct hci_conn *conn; 2263 2264 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2265 2266 if (rp->status) 2267 return rp->status; 2268 2269 sent = hci_sent_cmd_data(hdev, HCI_OP_READ_TX_POWER); 2270 if (!sent) 2271 return rp->status; 2272 2273 hci_dev_lock(hdev); 2274 2275 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(rp->handle)); 2276 if (!conn) 2277 goto unlock; 2278 2279 switch (sent->type) { 2280 case 0x00: 2281 conn->tx_power = rp->tx_power; 2282 break; 2283 case 0x01: 2284 conn->max_tx_power = rp->tx_power; 2285 break; 2286 } 2287 2288 unlock: 2289 hci_dev_unlock(hdev); 2290 return rp->status; 2291 } 2292 2293 static u8 hci_cc_write_ssp_debug_mode(struct hci_dev *hdev, void *data, 2294 struct sk_buff *skb) 2295 { 2296 struct hci_ev_status *rp = data; 2297 u8 *mode; 2298 2299 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 2300 2301 if (rp->status) 2302 return rp->status; 2303 2304 mode = hci_sent_cmd_data(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE); 2305 if (mode) 2306 hdev->ssp_debug_mode = *mode; 2307 2308 return rp->status; 2309 } 2310 2311 static void hci_cs_inquiry(struct hci_dev *hdev, __u8 status) 2312 { 2313 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2314 2315 if (status) { 2316 hci_conn_check_pending(hdev); 2317 return; 2318 } 2319 2320 if (hci_sent_cmd_data(hdev, HCI_OP_INQUIRY)) 2321 set_bit(HCI_INQUIRY, &hdev->flags); 2322 } 2323 2324 static void hci_cs_create_conn(struct hci_dev *hdev, __u8 status) 2325 { 2326 struct hci_cp_create_conn *cp; 2327 struct hci_conn *conn; 2328 2329 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2330 2331 cp = hci_sent_cmd_data(hdev, HCI_OP_CREATE_CONN); 2332 if (!cp) 2333 return; 2334 2335 hci_dev_lock(hdev); 2336 2337 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->bdaddr); 2338 2339 bt_dev_dbg(hdev, "bdaddr %pMR hcon %p", &cp->bdaddr, conn); 2340 2341 if (status) { 2342 if (conn && conn->state == BT_CONNECT) { 2343 if (status != 0x0c || conn->attempt > 2) { 2344 conn->state = BT_CLOSED; 2345 hci_connect_cfm(conn, status); 2346 hci_conn_del(conn); 2347 } else 2348 conn->state = BT_CONNECT2; 2349 } 2350 } else { 2351 if (!conn) { 2352 conn = hci_conn_add_unset(hdev, ACL_LINK, &cp->bdaddr, 2353 HCI_ROLE_MASTER); 2354 if (!conn) 2355 bt_dev_err(hdev, "no memory for new connection"); 2356 } 2357 } 2358 2359 hci_dev_unlock(hdev); 2360 } 2361 2362 static void hci_cs_add_sco(struct hci_dev *hdev, __u8 status) 2363 { 2364 struct hci_cp_add_sco *cp; 2365 struct hci_conn *acl; 2366 struct hci_link *link; 2367 __u16 handle; 2368 2369 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2370 2371 if (!status) 2372 return; 2373 2374 cp = hci_sent_cmd_data(hdev, HCI_OP_ADD_SCO); 2375 if (!cp) 2376 return; 2377 2378 handle = __le16_to_cpu(cp->handle); 2379 2380 bt_dev_dbg(hdev, "handle 0x%4.4x", handle); 2381 2382 hci_dev_lock(hdev); 2383 2384 acl = hci_conn_hash_lookup_handle(hdev, handle); 2385 if (acl) { 2386 link = list_first_entry_or_null(&acl->link_list, 2387 struct hci_link, list); 2388 if (link && link->conn) { 2389 link->conn->state = BT_CLOSED; 2390 2391 hci_connect_cfm(link->conn, status); 2392 hci_conn_del(link->conn); 2393 } 2394 } 2395 2396 hci_dev_unlock(hdev); 2397 } 2398 2399 static void hci_cs_auth_requested(struct hci_dev *hdev, __u8 status) 2400 { 2401 struct hci_cp_auth_requested *cp; 2402 struct hci_conn *conn; 2403 2404 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2405 2406 if (!status) 2407 return; 2408 2409 cp = hci_sent_cmd_data(hdev, HCI_OP_AUTH_REQUESTED); 2410 if (!cp) 2411 return; 2412 2413 hci_dev_lock(hdev); 2414 2415 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2416 if (conn) { 2417 if (conn->state == BT_CONFIG) { 2418 hci_connect_cfm(conn, status); 2419 hci_conn_drop(conn); 2420 } 2421 } 2422 2423 hci_dev_unlock(hdev); 2424 } 2425 2426 static void hci_cs_set_conn_encrypt(struct hci_dev *hdev, __u8 status) 2427 { 2428 struct hci_cp_set_conn_encrypt *cp; 2429 struct hci_conn *conn; 2430 2431 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2432 2433 if (!status) 2434 return; 2435 2436 cp = hci_sent_cmd_data(hdev, HCI_OP_SET_CONN_ENCRYPT); 2437 if (!cp) 2438 return; 2439 2440 hci_dev_lock(hdev); 2441 2442 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2443 if (conn) { 2444 if (conn->state == BT_CONFIG) { 2445 hci_connect_cfm(conn, status); 2446 hci_conn_drop(conn); 2447 } 2448 } 2449 2450 hci_dev_unlock(hdev); 2451 } 2452 2453 static int hci_outgoing_auth_needed(struct hci_dev *hdev, 2454 struct hci_conn *conn) 2455 { 2456 if (conn->state != BT_CONFIG || !conn->out) 2457 return 0; 2458 2459 if (conn->pending_sec_level == BT_SECURITY_SDP) 2460 return 0; 2461 2462 /* Only request authentication for SSP connections or non-SSP 2463 * devices with sec_level MEDIUM or HIGH or if MITM protection 2464 * is requested. 2465 */ 2466 if (!hci_conn_ssp_enabled(conn) && !(conn->auth_type & 0x01) && 2467 conn->pending_sec_level != BT_SECURITY_FIPS && 2468 conn->pending_sec_level != BT_SECURITY_HIGH && 2469 conn->pending_sec_level != BT_SECURITY_MEDIUM) 2470 return 0; 2471 2472 return 1; 2473 } 2474 2475 static int hci_resolve_name(struct hci_dev *hdev, 2476 struct inquiry_entry *e) 2477 { 2478 struct hci_cp_remote_name_req cp; 2479 2480 memset(&cp, 0, sizeof(cp)); 2481 2482 bacpy(&cp.bdaddr, &e->data.bdaddr); 2483 cp.pscan_rep_mode = e->data.pscan_rep_mode; 2484 cp.pscan_mode = e->data.pscan_mode; 2485 cp.clock_offset = e->data.clock_offset; 2486 2487 return hci_send_cmd(hdev, HCI_OP_REMOTE_NAME_REQ, sizeof(cp), &cp); 2488 } 2489 2490 static bool hci_resolve_next_name(struct hci_dev *hdev) 2491 { 2492 struct discovery_state *discov = &hdev->discovery; 2493 struct inquiry_entry *e; 2494 2495 if (list_empty(&discov->resolve)) 2496 return false; 2497 2498 /* We should stop if we already spent too much time resolving names. */ 2499 if (time_after(jiffies, discov->name_resolve_timeout)) { 2500 bt_dev_warn_ratelimited(hdev, "Name resolve takes too long."); 2501 return false; 2502 } 2503 2504 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, NAME_NEEDED); 2505 if (!e) 2506 return false; 2507 2508 if (hci_resolve_name(hdev, e) == 0) { 2509 e->name_state = NAME_PENDING; 2510 return true; 2511 } 2512 2513 return false; 2514 } 2515 2516 static void hci_check_pending_name(struct hci_dev *hdev, struct hci_conn *conn, 2517 bdaddr_t *bdaddr, u8 *name, u8 name_len) 2518 { 2519 struct discovery_state *discov = &hdev->discovery; 2520 struct inquiry_entry *e; 2521 2522 /* Update the mgmt connected state if necessary. Be careful with 2523 * conn objects that exist but are not (yet) connected however. 2524 * Only those in BT_CONFIG or BT_CONNECTED states can be 2525 * considered connected. 2526 */ 2527 if (conn && (conn->state == BT_CONFIG || conn->state == BT_CONNECTED)) 2528 mgmt_device_connected(hdev, conn, name, name_len); 2529 2530 if (discov->state == DISCOVERY_STOPPED) 2531 return; 2532 2533 if (discov->state == DISCOVERY_STOPPING) 2534 goto discov_complete; 2535 2536 if (discov->state != DISCOVERY_RESOLVING) 2537 return; 2538 2539 e = hci_inquiry_cache_lookup_resolve(hdev, bdaddr, NAME_PENDING); 2540 /* If the device was not found in a list of found devices names of which 2541 * are pending. there is no need to continue resolving a next name as it 2542 * will be done upon receiving another Remote Name Request Complete 2543 * Event */ 2544 if (!e) 2545 return; 2546 2547 list_del(&e->list); 2548 2549 e->name_state = name ? NAME_KNOWN : NAME_NOT_KNOWN; 2550 mgmt_remote_name(hdev, bdaddr, ACL_LINK, 0x00, e->data.rssi, 2551 name, name_len); 2552 2553 if (hci_resolve_next_name(hdev)) 2554 return; 2555 2556 discov_complete: 2557 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 2558 } 2559 2560 static void hci_cs_remote_name_req(struct hci_dev *hdev, __u8 status) 2561 { 2562 struct hci_cp_remote_name_req *cp; 2563 struct hci_conn *conn; 2564 2565 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2566 2567 /* If successful wait for the name req complete event before 2568 * checking for the need to do authentication */ 2569 if (!status) 2570 return; 2571 2572 cp = hci_sent_cmd_data(hdev, HCI_OP_REMOTE_NAME_REQ); 2573 if (!cp) 2574 return; 2575 2576 hci_dev_lock(hdev); 2577 2578 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->bdaddr); 2579 2580 if (hci_dev_test_flag(hdev, HCI_MGMT)) 2581 hci_check_pending_name(hdev, conn, &cp->bdaddr, NULL, 0); 2582 2583 if (!conn) 2584 goto unlock; 2585 2586 if (!hci_outgoing_auth_needed(hdev, conn)) 2587 goto unlock; 2588 2589 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) { 2590 struct hci_cp_auth_requested auth_cp; 2591 2592 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags); 2593 2594 auth_cp.handle = __cpu_to_le16(conn->handle); 2595 hci_send_cmd(hdev, HCI_OP_AUTH_REQUESTED, 2596 sizeof(auth_cp), &auth_cp); 2597 } 2598 2599 unlock: 2600 hci_dev_unlock(hdev); 2601 } 2602 2603 static void hci_cs_read_remote_features(struct hci_dev *hdev, __u8 status) 2604 { 2605 struct hci_cp_read_remote_features *cp; 2606 struct hci_conn *conn; 2607 2608 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2609 2610 if (!status) 2611 return; 2612 2613 cp = hci_sent_cmd_data(hdev, HCI_OP_READ_REMOTE_FEATURES); 2614 if (!cp) 2615 return; 2616 2617 hci_dev_lock(hdev); 2618 2619 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2620 if (conn) { 2621 if (conn->state == BT_CONFIG) { 2622 hci_connect_cfm(conn, status); 2623 hci_conn_drop(conn); 2624 } 2625 } 2626 2627 hci_dev_unlock(hdev); 2628 } 2629 2630 static void hci_cs_read_remote_ext_features(struct hci_dev *hdev, __u8 status) 2631 { 2632 struct hci_cp_read_remote_ext_features *cp; 2633 struct hci_conn *conn; 2634 2635 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2636 2637 if (!status) 2638 return; 2639 2640 cp = hci_sent_cmd_data(hdev, HCI_OP_READ_REMOTE_EXT_FEATURES); 2641 if (!cp) 2642 return; 2643 2644 hci_dev_lock(hdev); 2645 2646 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2647 if (conn) { 2648 if (conn->state == BT_CONFIG) { 2649 hci_connect_cfm(conn, status); 2650 hci_conn_drop(conn); 2651 } 2652 } 2653 2654 hci_dev_unlock(hdev); 2655 } 2656 2657 static void hci_setup_sync_conn_status(struct hci_dev *hdev, __u16 handle, 2658 __u8 status) 2659 { 2660 struct hci_conn *acl; 2661 struct hci_link *link; 2662 2663 bt_dev_dbg(hdev, "handle 0x%4.4x status 0x%2.2x", handle, status); 2664 2665 hci_dev_lock(hdev); 2666 2667 acl = hci_conn_hash_lookup_handle(hdev, handle); 2668 if (acl) { 2669 link = list_first_entry_or_null(&acl->link_list, 2670 struct hci_link, list); 2671 if (link && link->conn) { 2672 link->conn->state = BT_CLOSED; 2673 2674 hci_connect_cfm(link->conn, status); 2675 hci_conn_del(link->conn); 2676 } 2677 } 2678 2679 hci_dev_unlock(hdev); 2680 } 2681 2682 static void hci_cs_setup_sync_conn(struct hci_dev *hdev, __u8 status) 2683 { 2684 struct hci_cp_setup_sync_conn *cp; 2685 2686 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2687 2688 if (!status) 2689 return; 2690 2691 cp = hci_sent_cmd_data(hdev, HCI_OP_SETUP_SYNC_CONN); 2692 if (!cp) 2693 return; 2694 2695 hci_setup_sync_conn_status(hdev, __le16_to_cpu(cp->handle), status); 2696 } 2697 2698 static void hci_cs_enhanced_setup_sync_conn(struct hci_dev *hdev, __u8 status) 2699 { 2700 struct hci_cp_enhanced_setup_sync_conn *cp; 2701 2702 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2703 2704 if (!status) 2705 return; 2706 2707 cp = hci_sent_cmd_data(hdev, HCI_OP_ENHANCED_SETUP_SYNC_CONN); 2708 if (!cp) 2709 return; 2710 2711 hci_setup_sync_conn_status(hdev, __le16_to_cpu(cp->handle), status); 2712 } 2713 2714 static void hci_cs_sniff_mode(struct hci_dev *hdev, __u8 status) 2715 { 2716 struct hci_cp_sniff_mode *cp; 2717 struct hci_conn *conn; 2718 2719 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2720 2721 if (!status) 2722 return; 2723 2724 cp = hci_sent_cmd_data(hdev, HCI_OP_SNIFF_MODE); 2725 if (!cp) 2726 return; 2727 2728 hci_dev_lock(hdev); 2729 2730 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2731 if (conn) { 2732 clear_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags); 2733 2734 if (test_and_clear_bit(HCI_CONN_SCO_SETUP_PEND, &conn->flags)) 2735 hci_sco_setup(conn, status); 2736 } 2737 2738 hci_dev_unlock(hdev); 2739 } 2740 2741 static void hci_cs_exit_sniff_mode(struct hci_dev *hdev, __u8 status) 2742 { 2743 struct hci_cp_exit_sniff_mode *cp; 2744 struct hci_conn *conn; 2745 2746 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2747 2748 if (!status) 2749 return; 2750 2751 cp = hci_sent_cmd_data(hdev, HCI_OP_EXIT_SNIFF_MODE); 2752 if (!cp) 2753 return; 2754 2755 hci_dev_lock(hdev); 2756 2757 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2758 if (conn) { 2759 clear_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags); 2760 2761 if (test_and_clear_bit(HCI_CONN_SCO_SETUP_PEND, &conn->flags)) 2762 hci_sco_setup(conn, status); 2763 } 2764 2765 hci_dev_unlock(hdev); 2766 } 2767 2768 static void hci_cs_disconnect(struct hci_dev *hdev, u8 status) 2769 { 2770 struct hci_cp_disconnect *cp; 2771 struct hci_conn_params *params; 2772 struct hci_conn *conn; 2773 bool mgmt_conn; 2774 2775 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2776 2777 /* Wait for HCI_EV_DISCONN_COMPLETE if status 0x00 and not suspended 2778 * otherwise cleanup the connection immediately. 2779 */ 2780 if (!status && !hdev->suspended) 2781 return; 2782 2783 cp = hci_sent_cmd_data(hdev, HCI_OP_DISCONNECT); 2784 if (!cp) 2785 return; 2786 2787 hci_dev_lock(hdev); 2788 2789 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2790 if (!conn) 2791 goto unlock; 2792 2793 if (status) { 2794 mgmt_disconnect_failed(hdev, &conn->dst, conn->type, 2795 conn->dst_type, status); 2796 2797 if (conn->type == LE_LINK && conn->role == HCI_ROLE_SLAVE) { 2798 hdev->cur_adv_instance = conn->adv_instance; 2799 hci_enable_advertising(hdev); 2800 } 2801 2802 /* Inform sockets conn is gone before we delete it */ 2803 hci_disconn_cfm(conn, HCI_ERROR_UNSPECIFIED); 2804 2805 goto done; 2806 } 2807 2808 mgmt_conn = test_and_clear_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags); 2809 2810 if (conn->type == ACL_LINK) { 2811 if (test_and_clear_bit(HCI_CONN_FLUSH_KEY, &conn->flags)) 2812 hci_remove_link_key(hdev, &conn->dst); 2813 } 2814 2815 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 2816 if (params) { 2817 switch (params->auto_connect) { 2818 case HCI_AUTO_CONN_LINK_LOSS: 2819 if (cp->reason != HCI_ERROR_CONNECTION_TIMEOUT) 2820 break; 2821 fallthrough; 2822 2823 case HCI_AUTO_CONN_DIRECT: 2824 case HCI_AUTO_CONN_ALWAYS: 2825 hci_pend_le_list_del_init(params); 2826 hci_pend_le_list_add(params, &hdev->pend_le_conns); 2827 break; 2828 2829 default: 2830 break; 2831 } 2832 } 2833 2834 mgmt_device_disconnected(hdev, &conn->dst, conn->type, conn->dst_type, 2835 cp->reason, mgmt_conn); 2836 2837 hci_disconn_cfm(conn, cp->reason); 2838 2839 done: 2840 /* If the disconnection failed for any reason, the upper layer 2841 * does not retry to disconnect in current implementation. 2842 * Hence, we need to do some basic cleanup here and re-enable 2843 * advertising if necessary. 2844 */ 2845 hci_conn_del(conn); 2846 unlock: 2847 hci_dev_unlock(hdev); 2848 } 2849 2850 static u8 ev_bdaddr_type(struct hci_dev *hdev, u8 type, bool *resolved) 2851 { 2852 /* When using controller based address resolution, then the new 2853 * address types 0x02 and 0x03 are used. These types need to be 2854 * converted back into either public address or random address type 2855 */ 2856 switch (type) { 2857 case ADDR_LE_DEV_PUBLIC_RESOLVED: 2858 if (resolved) 2859 *resolved = true; 2860 return ADDR_LE_DEV_PUBLIC; 2861 case ADDR_LE_DEV_RANDOM_RESOLVED: 2862 if (resolved) 2863 *resolved = true; 2864 return ADDR_LE_DEV_RANDOM; 2865 } 2866 2867 if (resolved) 2868 *resolved = false; 2869 return type; 2870 } 2871 2872 static void cs_le_create_conn(struct hci_dev *hdev, bdaddr_t *peer_addr, 2873 u8 peer_addr_type, u8 own_address_type, 2874 u8 filter_policy) 2875 { 2876 struct hci_conn *conn; 2877 2878 conn = hci_conn_hash_lookup_le(hdev, peer_addr, 2879 peer_addr_type); 2880 if (!conn) 2881 return; 2882 2883 own_address_type = ev_bdaddr_type(hdev, own_address_type, NULL); 2884 2885 /* Store the initiator and responder address information which 2886 * is needed for SMP. These values will not change during the 2887 * lifetime of the connection. 2888 */ 2889 conn->init_addr_type = own_address_type; 2890 if (own_address_type == ADDR_LE_DEV_RANDOM) 2891 bacpy(&conn->init_addr, &hdev->random_addr); 2892 else 2893 bacpy(&conn->init_addr, &hdev->bdaddr); 2894 2895 conn->resp_addr_type = peer_addr_type; 2896 bacpy(&conn->resp_addr, peer_addr); 2897 } 2898 2899 static void hci_cs_le_create_conn(struct hci_dev *hdev, u8 status) 2900 { 2901 struct hci_cp_le_create_conn *cp; 2902 2903 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2904 2905 /* All connection failure handling is taken care of by the 2906 * hci_conn_failed function which is triggered by the HCI 2907 * request completion callbacks used for connecting. 2908 */ 2909 if (status) 2910 return; 2911 2912 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_CREATE_CONN); 2913 if (!cp) 2914 return; 2915 2916 hci_dev_lock(hdev); 2917 2918 cs_le_create_conn(hdev, &cp->peer_addr, cp->peer_addr_type, 2919 cp->own_address_type, cp->filter_policy); 2920 2921 hci_dev_unlock(hdev); 2922 } 2923 2924 static void hci_cs_le_ext_create_conn(struct hci_dev *hdev, u8 status) 2925 { 2926 struct hci_cp_le_ext_create_conn *cp; 2927 2928 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2929 2930 /* All connection failure handling is taken care of by the 2931 * hci_conn_failed function which is triggered by the HCI 2932 * request completion callbacks used for connecting. 2933 */ 2934 if (status) 2935 return; 2936 2937 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_EXT_CREATE_CONN); 2938 if (!cp) 2939 return; 2940 2941 hci_dev_lock(hdev); 2942 2943 cs_le_create_conn(hdev, &cp->peer_addr, cp->peer_addr_type, 2944 cp->own_addr_type, cp->filter_policy); 2945 2946 hci_dev_unlock(hdev); 2947 } 2948 2949 static void hci_cs_le_read_remote_features(struct hci_dev *hdev, u8 status) 2950 { 2951 struct hci_cp_le_read_remote_features *cp; 2952 struct hci_conn *conn; 2953 2954 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2955 2956 if (!status) 2957 return; 2958 2959 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_READ_REMOTE_FEATURES); 2960 if (!cp) 2961 return; 2962 2963 hci_dev_lock(hdev); 2964 2965 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2966 if (conn) { 2967 if (conn->state == BT_CONFIG) { 2968 hci_connect_cfm(conn, status); 2969 hci_conn_drop(conn); 2970 } 2971 } 2972 2973 hci_dev_unlock(hdev); 2974 } 2975 2976 static void hci_cs_le_start_enc(struct hci_dev *hdev, u8 status) 2977 { 2978 struct hci_cp_le_start_enc *cp; 2979 struct hci_conn *conn; 2980 2981 bt_dev_dbg(hdev, "status 0x%2.2x", status); 2982 2983 if (!status) 2984 return; 2985 2986 hci_dev_lock(hdev); 2987 2988 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_START_ENC); 2989 if (!cp) 2990 goto unlock; 2991 2992 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 2993 if (!conn) 2994 goto unlock; 2995 2996 if (conn->state != BT_CONNECTED) 2997 goto unlock; 2998 2999 hci_disconnect(conn, HCI_ERROR_AUTH_FAILURE); 3000 hci_conn_drop(conn); 3001 3002 unlock: 3003 hci_dev_unlock(hdev); 3004 } 3005 3006 static void hci_cs_switch_role(struct hci_dev *hdev, u8 status) 3007 { 3008 struct hci_cp_switch_role *cp; 3009 struct hci_conn *conn; 3010 3011 BT_DBG("%s status 0x%2.2x", hdev->name, status); 3012 3013 if (!status) 3014 return; 3015 3016 cp = hci_sent_cmd_data(hdev, HCI_OP_SWITCH_ROLE); 3017 if (!cp) 3018 return; 3019 3020 hci_dev_lock(hdev); 3021 3022 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &cp->bdaddr); 3023 if (conn) 3024 clear_bit(HCI_CONN_RSWITCH_PEND, &conn->flags); 3025 3026 hci_dev_unlock(hdev); 3027 } 3028 3029 static void hci_inquiry_complete_evt(struct hci_dev *hdev, void *data, 3030 struct sk_buff *skb) 3031 { 3032 struct hci_ev_status *ev = data; 3033 struct discovery_state *discov = &hdev->discovery; 3034 struct inquiry_entry *e; 3035 3036 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 3037 3038 hci_conn_check_pending(hdev); 3039 3040 if (!test_and_clear_bit(HCI_INQUIRY, &hdev->flags)) 3041 return; 3042 3043 smp_mb__after_atomic(); /* wake_up_bit advises about this barrier */ 3044 wake_up_bit(&hdev->flags, HCI_INQUIRY); 3045 3046 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 3047 return; 3048 3049 hci_dev_lock(hdev); 3050 3051 if (discov->state != DISCOVERY_FINDING) 3052 goto unlock; 3053 3054 if (list_empty(&discov->resolve)) { 3055 /* When BR/EDR inquiry is active and no LE scanning is in 3056 * progress, then change discovery state to indicate completion. 3057 * 3058 * When running LE scanning and BR/EDR inquiry simultaneously 3059 * and the LE scan already finished, then change the discovery 3060 * state to indicate completion. 3061 */ 3062 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN) || 3063 !test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) 3064 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 3065 goto unlock; 3066 } 3067 3068 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, NAME_NEEDED); 3069 if (e && hci_resolve_name(hdev, e) == 0) { 3070 e->name_state = NAME_PENDING; 3071 hci_discovery_set_state(hdev, DISCOVERY_RESOLVING); 3072 discov->name_resolve_timeout = jiffies + NAME_RESOLVE_DURATION; 3073 } else { 3074 /* When BR/EDR inquiry is active and no LE scanning is in 3075 * progress, then change discovery state to indicate completion. 3076 * 3077 * When running LE scanning and BR/EDR inquiry simultaneously 3078 * and the LE scan already finished, then change the discovery 3079 * state to indicate completion. 3080 */ 3081 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN) || 3082 !test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) 3083 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 3084 } 3085 3086 unlock: 3087 hci_dev_unlock(hdev); 3088 } 3089 3090 static void hci_inquiry_result_evt(struct hci_dev *hdev, void *edata, 3091 struct sk_buff *skb) 3092 { 3093 struct hci_ev_inquiry_result *ev = edata; 3094 struct inquiry_data data; 3095 int i; 3096 3097 if (!hci_ev_skb_pull(hdev, skb, HCI_EV_INQUIRY_RESULT, 3098 flex_array_size(ev, info, ev->num))) 3099 return; 3100 3101 bt_dev_dbg(hdev, "num %d", ev->num); 3102 3103 if (!ev->num) 3104 return; 3105 3106 if (hci_dev_test_flag(hdev, HCI_PERIODIC_INQ)) 3107 return; 3108 3109 hci_dev_lock(hdev); 3110 3111 for (i = 0; i < ev->num; i++) { 3112 struct inquiry_info *info = &ev->info[i]; 3113 u32 flags; 3114 3115 bacpy(&data.bdaddr, &info->bdaddr); 3116 data.pscan_rep_mode = info->pscan_rep_mode; 3117 data.pscan_period_mode = info->pscan_period_mode; 3118 data.pscan_mode = info->pscan_mode; 3119 memcpy(data.dev_class, info->dev_class, 3); 3120 data.clock_offset = info->clock_offset; 3121 data.rssi = HCI_RSSI_INVALID; 3122 data.ssp_mode = 0x00; 3123 3124 flags = hci_inquiry_cache_update(hdev, &data, false); 3125 3126 mgmt_device_found(hdev, &info->bdaddr, ACL_LINK, 0x00, 3127 info->dev_class, HCI_RSSI_INVALID, 3128 flags, NULL, 0, NULL, 0, 0); 3129 } 3130 3131 hci_dev_unlock(hdev); 3132 } 3133 3134 static void hci_conn_complete_evt(struct hci_dev *hdev, void *data, 3135 struct sk_buff *skb) 3136 { 3137 struct hci_ev_conn_complete *ev = data; 3138 struct hci_conn *conn; 3139 u8 status = ev->status; 3140 3141 bt_dev_dbg(hdev, "status 0x%2.2x", status); 3142 3143 hci_dev_lock(hdev); 3144 3145 conn = hci_conn_hash_lookup_ba(hdev, ev->link_type, &ev->bdaddr); 3146 if (!conn) { 3147 /* In case of error status and there is no connection pending 3148 * just unlock as there is nothing to cleanup. 3149 */ 3150 if (ev->status) 3151 goto unlock; 3152 3153 /* Connection may not exist if auto-connected. Check the bredr 3154 * allowlist to see if this device is allowed to auto connect. 3155 * If link is an ACL type, create a connection class 3156 * automatically. 3157 * 3158 * Auto-connect will only occur if the event filter is 3159 * programmed with a given address. Right now, event filter is 3160 * only used during suspend. 3161 */ 3162 if (ev->link_type == ACL_LINK && 3163 hci_bdaddr_list_lookup_with_flags(&hdev->accept_list, 3164 &ev->bdaddr, 3165 BDADDR_BREDR)) { 3166 conn = hci_conn_add_unset(hdev, ev->link_type, 3167 &ev->bdaddr, HCI_ROLE_SLAVE); 3168 if (!conn) { 3169 bt_dev_err(hdev, "no memory for new conn"); 3170 goto unlock; 3171 } 3172 } else { 3173 if (ev->link_type != SCO_LINK) 3174 goto unlock; 3175 3176 conn = hci_conn_hash_lookup_ba(hdev, ESCO_LINK, 3177 &ev->bdaddr); 3178 if (!conn) 3179 goto unlock; 3180 3181 conn->type = SCO_LINK; 3182 } 3183 } 3184 3185 /* The HCI_Connection_Complete event is only sent once per connection. 3186 * Processing it more than once per connection can corrupt kernel memory. 3187 * 3188 * As the connection handle is set here for the first time, it indicates 3189 * whether the connection is already set up. 3190 */ 3191 if (!HCI_CONN_HANDLE_UNSET(conn->handle)) { 3192 bt_dev_err(hdev, "Ignoring HCI_Connection_Complete for existing connection"); 3193 goto unlock; 3194 } 3195 3196 if (!status) { 3197 status = hci_conn_set_handle(conn, __le16_to_cpu(ev->handle)); 3198 if (status) 3199 goto done; 3200 3201 if (conn->type == ACL_LINK) { 3202 conn->state = BT_CONFIG; 3203 hci_conn_hold(conn); 3204 3205 if (!conn->out && !hci_conn_ssp_enabled(conn) && 3206 !hci_find_link_key(hdev, &ev->bdaddr)) 3207 conn->disc_timeout = HCI_PAIRING_TIMEOUT; 3208 else 3209 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 3210 } else 3211 conn->state = BT_CONNECTED; 3212 3213 hci_debugfs_create_conn(conn); 3214 hci_conn_add_sysfs(conn); 3215 3216 if (test_bit(HCI_AUTH, &hdev->flags)) 3217 set_bit(HCI_CONN_AUTH, &conn->flags); 3218 3219 if (test_bit(HCI_ENCRYPT, &hdev->flags)) 3220 set_bit(HCI_CONN_ENCRYPT, &conn->flags); 3221 3222 /* "Link key request" completed ahead of "connect request" completes */ 3223 if (ev->encr_mode == 1 && !test_bit(HCI_CONN_ENCRYPT, &conn->flags) && 3224 ev->link_type == ACL_LINK) { 3225 struct link_key *key; 3226 struct hci_cp_read_enc_key_size cp; 3227 3228 key = hci_find_link_key(hdev, &ev->bdaddr); 3229 if (key) { 3230 set_bit(HCI_CONN_ENCRYPT, &conn->flags); 3231 3232 if (!(hdev->commands[20] & 0x10)) { 3233 conn->enc_key_size = HCI_LINK_KEY_SIZE; 3234 } else { 3235 cp.handle = cpu_to_le16(conn->handle); 3236 if (hci_send_cmd(hdev, HCI_OP_READ_ENC_KEY_SIZE, 3237 sizeof(cp), &cp)) { 3238 bt_dev_err(hdev, "sending read key size failed"); 3239 conn->enc_key_size = HCI_LINK_KEY_SIZE; 3240 } 3241 } 3242 3243 hci_encrypt_cfm(conn, ev->status); 3244 } 3245 } 3246 3247 /* Get remote features */ 3248 if (conn->type == ACL_LINK) { 3249 struct hci_cp_read_remote_features cp; 3250 cp.handle = ev->handle; 3251 hci_send_cmd(hdev, HCI_OP_READ_REMOTE_FEATURES, 3252 sizeof(cp), &cp); 3253 3254 hci_update_scan(hdev); 3255 } 3256 3257 /* Set packet type for incoming connection */ 3258 if (!conn->out && hdev->hci_ver < BLUETOOTH_VER_2_0) { 3259 struct hci_cp_change_conn_ptype cp; 3260 cp.handle = ev->handle; 3261 cp.pkt_type = cpu_to_le16(conn->pkt_type); 3262 hci_send_cmd(hdev, HCI_OP_CHANGE_CONN_PTYPE, sizeof(cp), 3263 &cp); 3264 } 3265 } 3266 3267 if (conn->type == ACL_LINK) 3268 hci_sco_setup(conn, ev->status); 3269 3270 done: 3271 if (status) { 3272 hci_conn_failed(conn, status); 3273 } else if (ev->link_type == SCO_LINK) { 3274 switch (conn->setting & SCO_AIRMODE_MASK) { 3275 case SCO_AIRMODE_CVSD: 3276 if (hdev->notify) 3277 hdev->notify(hdev, HCI_NOTIFY_ENABLE_SCO_CVSD); 3278 break; 3279 } 3280 3281 hci_connect_cfm(conn, status); 3282 } 3283 3284 unlock: 3285 hci_dev_unlock(hdev); 3286 3287 hci_conn_check_pending(hdev); 3288 } 3289 3290 static void hci_reject_conn(struct hci_dev *hdev, bdaddr_t *bdaddr) 3291 { 3292 struct hci_cp_reject_conn_req cp; 3293 3294 bacpy(&cp.bdaddr, bdaddr); 3295 cp.reason = HCI_ERROR_REJ_BAD_ADDR; 3296 hci_send_cmd(hdev, HCI_OP_REJECT_CONN_REQ, sizeof(cp), &cp); 3297 } 3298 3299 static void hci_conn_request_evt(struct hci_dev *hdev, void *data, 3300 struct sk_buff *skb) 3301 { 3302 struct hci_ev_conn_request *ev = data; 3303 int mask = hdev->link_mode; 3304 struct inquiry_entry *ie; 3305 struct hci_conn *conn; 3306 __u8 flags = 0; 3307 3308 bt_dev_dbg(hdev, "bdaddr %pMR type 0x%x", &ev->bdaddr, ev->link_type); 3309 3310 /* Reject incoming connection from device with same BD ADDR against 3311 * CVE-2020-26555 3312 */ 3313 if (hdev && !bacmp(&hdev->bdaddr, &ev->bdaddr)) { 3314 bt_dev_dbg(hdev, "Reject connection with same BD_ADDR %pMR\n", 3315 &ev->bdaddr); 3316 hci_reject_conn(hdev, &ev->bdaddr); 3317 return; 3318 } 3319 3320 mask |= hci_proto_connect_ind(hdev, &ev->bdaddr, ev->link_type, 3321 &flags); 3322 3323 if (!(mask & HCI_LM_ACCEPT)) { 3324 hci_reject_conn(hdev, &ev->bdaddr); 3325 return; 3326 } 3327 3328 hci_dev_lock(hdev); 3329 3330 if (hci_bdaddr_list_lookup(&hdev->reject_list, &ev->bdaddr, 3331 BDADDR_BREDR)) { 3332 hci_reject_conn(hdev, &ev->bdaddr); 3333 goto unlock; 3334 } 3335 3336 /* Require HCI_CONNECTABLE or an accept list entry to accept the 3337 * connection. These features are only touched through mgmt so 3338 * only do the checks if HCI_MGMT is set. 3339 */ 3340 if (hci_dev_test_flag(hdev, HCI_MGMT) && 3341 !hci_dev_test_flag(hdev, HCI_CONNECTABLE) && 3342 !hci_bdaddr_list_lookup_with_flags(&hdev->accept_list, &ev->bdaddr, 3343 BDADDR_BREDR)) { 3344 hci_reject_conn(hdev, &ev->bdaddr); 3345 goto unlock; 3346 } 3347 3348 /* Connection accepted */ 3349 3350 ie = hci_inquiry_cache_lookup(hdev, &ev->bdaddr); 3351 if (ie) 3352 memcpy(ie->data.dev_class, ev->dev_class, 3); 3353 3354 conn = hci_conn_hash_lookup_ba(hdev, ev->link_type, 3355 &ev->bdaddr); 3356 if (!conn) { 3357 conn = hci_conn_add_unset(hdev, ev->link_type, &ev->bdaddr, 3358 HCI_ROLE_SLAVE); 3359 if (!conn) { 3360 bt_dev_err(hdev, "no memory for new connection"); 3361 goto unlock; 3362 } 3363 } 3364 3365 memcpy(conn->dev_class, ev->dev_class, 3); 3366 3367 hci_dev_unlock(hdev); 3368 3369 if (ev->link_type == ACL_LINK || 3370 (!(flags & HCI_PROTO_DEFER) && !lmp_esco_capable(hdev))) { 3371 struct hci_cp_accept_conn_req cp; 3372 conn->state = BT_CONNECT; 3373 3374 bacpy(&cp.bdaddr, &ev->bdaddr); 3375 3376 if (lmp_rswitch_capable(hdev) && (mask & HCI_LM_MASTER)) 3377 cp.role = 0x00; /* Become central */ 3378 else 3379 cp.role = 0x01; /* Remain peripheral */ 3380 3381 hci_send_cmd(hdev, HCI_OP_ACCEPT_CONN_REQ, sizeof(cp), &cp); 3382 } else if (!(flags & HCI_PROTO_DEFER)) { 3383 struct hci_cp_accept_sync_conn_req cp; 3384 conn->state = BT_CONNECT; 3385 3386 bacpy(&cp.bdaddr, &ev->bdaddr); 3387 cp.pkt_type = cpu_to_le16(conn->pkt_type); 3388 3389 cp.tx_bandwidth = cpu_to_le32(0x00001f40); 3390 cp.rx_bandwidth = cpu_to_le32(0x00001f40); 3391 cp.max_latency = cpu_to_le16(0xffff); 3392 cp.content_format = cpu_to_le16(hdev->voice_setting); 3393 cp.retrans_effort = 0xff; 3394 3395 hci_send_cmd(hdev, HCI_OP_ACCEPT_SYNC_CONN_REQ, sizeof(cp), 3396 &cp); 3397 } else { 3398 conn->state = BT_CONNECT2; 3399 hci_connect_cfm(conn, 0); 3400 } 3401 3402 return; 3403 unlock: 3404 hci_dev_unlock(hdev); 3405 } 3406 3407 static u8 hci_to_mgmt_reason(u8 err) 3408 { 3409 switch (err) { 3410 case HCI_ERROR_CONNECTION_TIMEOUT: 3411 return MGMT_DEV_DISCONN_TIMEOUT; 3412 case HCI_ERROR_REMOTE_USER_TERM: 3413 case HCI_ERROR_REMOTE_LOW_RESOURCES: 3414 case HCI_ERROR_REMOTE_POWER_OFF: 3415 return MGMT_DEV_DISCONN_REMOTE; 3416 case HCI_ERROR_LOCAL_HOST_TERM: 3417 return MGMT_DEV_DISCONN_LOCAL_HOST; 3418 default: 3419 return MGMT_DEV_DISCONN_UNKNOWN; 3420 } 3421 } 3422 3423 static void hci_disconn_complete_evt(struct hci_dev *hdev, void *data, 3424 struct sk_buff *skb) 3425 { 3426 struct hci_ev_disconn_complete *ev = data; 3427 u8 reason; 3428 struct hci_conn_params *params; 3429 struct hci_conn *conn; 3430 bool mgmt_connected; 3431 3432 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 3433 3434 hci_dev_lock(hdev); 3435 3436 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 3437 if (!conn) 3438 goto unlock; 3439 3440 if (ev->status) { 3441 mgmt_disconnect_failed(hdev, &conn->dst, conn->type, 3442 conn->dst_type, ev->status); 3443 goto unlock; 3444 } 3445 3446 conn->state = BT_CLOSED; 3447 3448 mgmt_connected = test_and_clear_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags); 3449 3450 if (test_bit(HCI_CONN_AUTH_FAILURE, &conn->flags)) 3451 reason = MGMT_DEV_DISCONN_AUTH_FAILURE; 3452 else 3453 reason = hci_to_mgmt_reason(ev->reason); 3454 3455 mgmt_device_disconnected(hdev, &conn->dst, conn->type, conn->dst_type, 3456 reason, mgmt_connected); 3457 3458 if (conn->type == ACL_LINK) { 3459 if (test_and_clear_bit(HCI_CONN_FLUSH_KEY, &conn->flags)) 3460 hci_remove_link_key(hdev, &conn->dst); 3461 3462 hci_update_scan(hdev); 3463 } 3464 3465 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 3466 if (params) { 3467 switch (params->auto_connect) { 3468 case HCI_AUTO_CONN_LINK_LOSS: 3469 if (ev->reason != HCI_ERROR_CONNECTION_TIMEOUT) 3470 break; 3471 fallthrough; 3472 3473 case HCI_AUTO_CONN_DIRECT: 3474 case HCI_AUTO_CONN_ALWAYS: 3475 hci_pend_le_list_del_init(params); 3476 hci_pend_le_list_add(params, &hdev->pend_le_conns); 3477 hci_update_passive_scan(hdev); 3478 break; 3479 3480 default: 3481 break; 3482 } 3483 } 3484 3485 hci_disconn_cfm(conn, ev->reason); 3486 3487 /* Re-enable advertising if necessary, since it might 3488 * have been disabled by the connection. From the 3489 * HCI_LE_Set_Advertise_Enable command description in 3490 * the core specification (v4.0): 3491 * "The Controller shall continue advertising until the Host 3492 * issues an LE_Set_Advertise_Enable command with 3493 * Advertising_Enable set to 0x00 (Advertising is disabled) 3494 * or until a connection is created or until the Advertising 3495 * is timed out due to Directed Advertising." 3496 */ 3497 if (conn->type == LE_LINK && conn->role == HCI_ROLE_SLAVE) { 3498 hdev->cur_adv_instance = conn->adv_instance; 3499 hci_enable_advertising(hdev); 3500 } 3501 3502 hci_conn_del(conn); 3503 3504 unlock: 3505 hci_dev_unlock(hdev); 3506 } 3507 3508 static void hci_auth_complete_evt(struct hci_dev *hdev, void *data, 3509 struct sk_buff *skb) 3510 { 3511 struct hci_ev_auth_complete *ev = data; 3512 struct hci_conn *conn; 3513 3514 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 3515 3516 hci_dev_lock(hdev); 3517 3518 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 3519 if (!conn) 3520 goto unlock; 3521 3522 if (!ev->status) { 3523 clear_bit(HCI_CONN_AUTH_FAILURE, &conn->flags); 3524 set_bit(HCI_CONN_AUTH, &conn->flags); 3525 conn->sec_level = conn->pending_sec_level; 3526 } else { 3527 if (ev->status == HCI_ERROR_PIN_OR_KEY_MISSING) 3528 set_bit(HCI_CONN_AUTH_FAILURE, &conn->flags); 3529 3530 mgmt_auth_failed(conn, ev->status); 3531 } 3532 3533 clear_bit(HCI_CONN_AUTH_PEND, &conn->flags); 3534 3535 if (conn->state == BT_CONFIG) { 3536 if (!ev->status && hci_conn_ssp_enabled(conn)) { 3537 struct hci_cp_set_conn_encrypt cp; 3538 cp.handle = ev->handle; 3539 cp.encrypt = 0x01; 3540 hci_send_cmd(hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp), 3541 &cp); 3542 } else { 3543 conn->state = BT_CONNECTED; 3544 hci_connect_cfm(conn, ev->status); 3545 hci_conn_drop(conn); 3546 } 3547 } else { 3548 hci_auth_cfm(conn, ev->status); 3549 3550 hci_conn_hold(conn); 3551 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 3552 hci_conn_drop(conn); 3553 } 3554 3555 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) { 3556 if (!ev->status) { 3557 struct hci_cp_set_conn_encrypt cp; 3558 cp.handle = ev->handle; 3559 cp.encrypt = 0x01; 3560 hci_send_cmd(hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp), 3561 &cp); 3562 } else { 3563 clear_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); 3564 hci_encrypt_cfm(conn, ev->status); 3565 } 3566 } 3567 3568 unlock: 3569 hci_dev_unlock(hdev); 3570 } 3571 3572 static void hci_remote_name_evt(struct hci_dev *hdev, void *data, 3573 struct sk_buff *skb) 3574 { 3575 struct hci_ev_remote_name *ev = data; 3576 struct hci_conn *conn; 3577 3578 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 3579 3580 hci_dev_lock(hdev); 3581 3582 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 3583 3584 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 3585 goto check_auth; 3586 3587 if (ev->status == 0) 3588 hci_check_pending_name(hdev, conn, &ev->bdaddr, ev->name, 3589 strnlen(ev->name, HCI_MAX_NAME_LENGTH)); 3590 else 3591 hci_check_pending_name(hdev, conn, &ev->bdaddr, NULL, 0); 3592 3593 check_auth: 3594 if (!conn) 3595 goto unlock; 3596 3597 if (!hci_outgoing_auth_needed(hdev, conn)) 3598 goto unlock; 3599 3600 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) { 3601 struct hci_cp_auth_requested cp; 3602 3603 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags); 3604 3605 cp.handle = __cpu_to_le16(conn->handle); 3606 hci_send_cmd(hdev, HCI_OP_AUTH_REQUESTED, sizeof(cp), &cp); 3607 } 3608 3609 unlock: 3610 hci_dev_unlock(hdev); 3611 } 3612 3613 static void hci_encrypt_change_evt(struct hci_dev *hdev, void *data, 3614 struct sk_buff *skb) 3615 { 3616 struct hci_ev_encrypt_change *ev = data; 3617 struct hci_conn *conn; 3618 3619 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 3620 3621 hci_dev_lock(hdev); 3622 3623 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 3624 if (!conn) 3625 goto unlock; 3626 3627 if (!ev->status) { 3628 if (ev->encrypt) { 3629 /* Encryption implies authentication */ 3630 set_bit(HCI_CONN_AUTH, &conn->flags); 3631 set_bit(HCI_CONN_ENCRYPT, &conn->flags); 3632 conn->sec_level = conn->pending_sec_level; 3633 3634 /* P-256 authentication key implies FIPS */ 3635 if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256) 3636 set_bit(HCI_CONN_FIPS, &conn->flags); 3637 3638 if ((conn->type == ACL_LINK && ev->encrypt == 0x02) || 3639 conn->type == LE_LINK) 3640 set_bit(HCI_CONN_AES_CCM, &conn->flags); 3641 } else { 3642 clear_bit(HCI_CONN_ENCRYPT, &conn->flags); 3643 clear_bit(HCI_CONN_AES_CCM, &conn->flags); 3644 } 3645 } 3646 3647 /* We should disregard the current RPA and generate a new one 3648 * whenever the encryption procedure fails. 3649 */ 3650 if (ev->status && conn->type == LE_LINK) { 3651 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 3652 hci_adv_instances_set_rpa_expired(hdev, true); 3653 } 3654 3655 clear_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); 3656 3657 /* Check link security requirements are met */ 3658 if (!hci_conn_check_link_mode(conn)) 3659 ev->status = HCI_ERROR_AUTH_FAILURE; 3660 3661 if (ev->status && conn->state == BT_CONNECTED) { 3662 if (ev->status == HCI_ERROR_PIN_OR_KEY_MISSING) 3663 set_bit(HCI_CONN_AUTH_FAILURE, &conn->flags); 3664 3665 /* Notify upper layers so they can cleanup before 3666 * disconnecting. 3667 */ 3668 hci_encrypt_cfm(conn, ev->status); 3669 hci_disconnect(conn, HCI_ERROR_AUTH_FAILURE); 3670 hci_conn_drop(conn); 3671 goto unlock; 3672 } 3673 3674 /* Try reading the encryption key size for encrypted ACL links */ 3675 if (!ev->status && ev->encrypt && conn->type == ACL_LINK) { 3676 struct hci_cp_read_enc_key_size cp; 3677 3678 /* Only send HCI_Read_Encryption_Key_Size if the 3679 * controller really supports it. If it doesn't, assume 3680 * the default size (16). 3681 */ 3682 if (!(hdev->commands[20] & 0x10) || 3683 test_bit(HCI_QUIRK_BROKEN_READ_ENC_KEY_SIZE, &hdev->quirks)) { 3684 conn->enc_key_size = HCI_LINK_KEY_SIZE; 3685 goto notify; 3686 } 3687 3688 cp.handle = cpu_to_le16(conn->handle); 3689 if (hci_send_cmd(hdev, HCI_OP_READ_ENC_KEY_SIZE, 3690 sizeof(cp), &cp)) { 3691 bt_dev_err(hdev, "sending read key size failed"); 3692 conn->enc_key_size = HCI_LINK_KEY_SIZE; 3693 goto notify; 3694 } 3695 3696 goto unlock; 3697 } 3698 3699 /* Set the default Authenticated Payload Timeout after 3700 * an LE Link is established. As per Core Spec v5.0, Vol 2, Part B 3701 * Section 3.3, the HCI command WRITE_AUTH_PAYLOAD_TIMEOUT should be 3702 * sent when the link is active and Encryption is enabled, the conn 3703 * type can be either LE or ACL and controller must support LMP Ping. 3704 * Ensure for AES-CCM encryption as well. 3705 */ 3706 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags) && 3707 test_bit(HCI_CONN_AES_CCM, &conn->flags) && 3708 ((conn->type == ACL_LINK && lmp_ping_capable(hdev)) || 3709 (conn->type == LE_LINK && (hdev->le_features[0] & HCI_LE_PING)))) { 3710 struct hci_cp_write_auth_payload_to cp; 3711 3712 cp.handle = cpu_to_le16(conn->handle); 3713 cp.timeout = cpu_to_le16(hdev->auth_payload_timeout); 3714 if (hci_send_cmd(conn->hdev, HCI_OP_WRITE_AUTH_PAYLOAD_TO, 3715 sizeof(cp), &cp)) 3716 bt_dev_err(hdev, "write auth payload timeout failed"); 3717 } 3718 3719 notify: 3720 hci_encrypt_cfm(conn, ev->status); 3721 3722 unlock: 3723 hci_dev_unlock(hdev); 3724 } 3725 3726 static void hci_change_link_key_complete_evt(struct hci_dev *hdev, void *data, 3727 struct sk_buff *skb) 3728 { 3729 struct hci_ev_change_link_key_complete *ev = data; 3730 struct hci_conn *conn; 3731 3732 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 3733 3734 hci_dev_lock(hdev); 3735 3736 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 3737 if (conn) { 3738 if (!ev->status) 3739 set_bit(HCI_CONN_SECURE, &conn->flags); 3740 3741 clear_bit(HCI_CONN_AUTH_PEND, &conn->flags); 3742 3743 hci_key_change_cfm(conn, ev->status); 3744 } 3745 3746 hci_dev_unlock(hdev); 3747 } 3748 3749 static void hci_remote_features_evt(struct hci_dev *hdev, void *data, 3750 struct sk_buff *skb) 3751 { 3752 struct hci_ev_remote_features *ev = data; 3753 struct hci_conn *conn; 3754 3755 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 3756 3757 hci_dev_lock(hdev); 3758 3759 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 3760 if (!conn) 3761 goto unlock; 3762 3763 if (!ev->status) 3764 memcpy(conn->features[0], ev->features, 8); 3765 3766 if (conn->state != BT_CONFIG) 3767 goto unlock; 3768 3769 if (!ev->status && lmp_ext_feat_capable(hdev) && 3770 lmp_ext_feat_capable(conn)) { 3771 struct hci_cp_read_remote_ext_features cp; 3772 cp.handle = ev->handle; 3773 cp.page = 0x01; 3774 hci_send_cmd(hdev, HCI_OP_READ_REMOTE_EXT_FEATURES, 3775 sizeof(cp), &cp); 3776 goto unlock; 3777 } 3778 3779 if (!ev->status && !test_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags)) { 3780 struct hci_cp_remote_name_req cp; 3781 memset(&cp, 0, sizeof(cp)); 3782 bacpy(&cp.bdaddr, &conn->dst); 3783 cp.pscan_rep_mode = 0x02; 3784 hci_send_cmd(hdev, HCI_OP_REMOTE_NAME_REQ, sizeof(cp), &cp); 3785 } else { 3786 mgmt_device_connected(hdev, conn, NULL, 0); 3787 } 3788 3789 if (!hci_outgoing_auth_needed(hdev, conn)) { 3790 conn->state = BT_CONNECTED; 3791 hci_connect_cfm(conn, ev->status); 3792 hci_conn_drop(conn); 3793 } 3794 3795 unlock: 3796 hci_dev_unlock(hdev); 3797 } 3798 3799 static inline void handle_cmd_cnt_and_timer(struct hci_dev *hdev, u8 ncmd) 3800 { 3801 cancel_delayed_work(&hdev->cmd_timer); 3802 3803 rcu_read_lock(); 3804 if (!test_bit(HCI_RESET, &hdev->flags)) { 3805 if (ncmd) { 3806 cancel_delayed_work(&hdev->ncmd_timer); 3807 atomic_set(&hdev->cmd_cnt, 1); 3808 } else { 3809 if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE)) 3810 queue_delayed_work(hdev->workqueue, &hdev->ncmd_timer, 3811 HCI_NCMD_TIMEOUT); 3812 } 3813 } 3814 rcu_read_unlock(); 3815 } 3816 3817 static u8 hci_cc_le_read_buffer_size_v2(struct hci_dev *hdev, void *data, 3818 struct sk_buff *skb) 3819 { 3820 struct hci_rp_le_read_buffer_size_v2 *rp = data; 3821 3822 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 3823 3824 if (rp->status) 3825 return rp->status; 3826 3827 hdev->le_mtu = __le16_to_cpu(rp->acl_mtu); 3828 hdev->le_pkts = rp->acl_max_pkt; 3829 hdev->iso_mtu = __le16_to_cpu(rp->iso_mtu); 3830 hdev->iso_pkts = rp->iso_max_pkt; 3831 3832 hdev->le_cnt = hdev->le_pkts; 3833 hdev->iso_cnt = hdev->iso_pkts; 3834 3835 BT_DBG("%s acl mtu %d:%d iso mtu %d:%d", hdev->name, hdev->acl_mtu, 3836 hdev->acl_pkts, hdev->iso_mtu, hdev->iso_pkts); 3837 3838 return rp->status; 3839 } 3840 3841 static void hci_unbound_cis_failed(struct hci_dev *hdev, u8 cig, u8 status) 3842 { 3843 struct hci_conn *conn, *tmp; 3844 3845 lockdep_assert_held(&hdev->lock); 3846 3847 list_for_each_entry_safe(conn, tmp, &hdev->conn_hash.list, list) { 3848 if (conn->type != ISO_LINK || !bacmp(&conn->dst, BDADDR_ANY) || 3849 conn->state == BT_OPEN || conn->iso_qos.ucast.cig != cig) 3850 continue; 3851 3852 if (HCI_CONN_HANDLE_UNSET(conn->handle)) 3853 hci_conn_failed(conn, status); 3854 } 3855 } 3856 3857 static u8 hci_cc_le_set_cig_params(struct hci_dev *hdev, void *data, 3858 struct sk_buff *skb) 3859 { 3860 struct hci_rp_le_set_cig_params *rp = data; 3861 struct hci_cp_le_set_cig_params *cp; 3862 struct hci_conn *conn; 3863 u8 status = rp->status; 3864 bool pending = false; 3865 int i; 3866 3867 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 3868 3869 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_CIG_PARAMS); 3870 if (!rp->status && (!cp || rp->num_handles != cp->num_cis || 3871 rp->cig_id != cp->cig_id)) { 3872 bt_dev_err(hdev, "unexpected Set CIG Parameters response data"); 3873 status = HCI_ERROR_UNSPECIFIED; 3874 } 3875 3876 hci_dev_lock(hdev); 3877 3878 /* BLUETOOTH CORE SPECIFICATION Version 5.4 | Vol 4, Part E page 2554 3879 * 3880 * If the Status return parameter is non-zero, then the state of the CIG 3881 * and its CIS configurations shall not be changed by the command. If 3882 * the CIG did not already exist, it shall not be created. 3883 */ 3884 if (status) { 3885 /* Keep current configuration, fail only the unbound CIS */ 3886 hci_unbound_cis_failed(hdev, rp->cig_id, status); 3887 goto unlock; 3888 } 3889 3890 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2553 3891 * 3892 * If the Status return parameter is zero, then the Controller shall 3893 * set the Connection_Handle arrayed return parameter to the connection 3894 * handle(s) corresponding to the CIS configurations specified in 3895 * the CIS_IDs command parameter, in the same order. 3896 */ 3897 for (i = 0; i < rp->num_handles; ++i) { 3898 conn = hci_conn_hash_lookup_cis(hdev, NULL, 0, rp->cig_id, 3899 cp->cis[i].cis_id); 3900 if (!conn || !bacmp(&conn->dst, BDADDR_ANY)) 3901 continue; 3902 3903 if (conn->state != BT_BOUND && conn->state != BT_CONNECT) 3904 continue; 3905 3906 if (hci_conn_set_handle(conn, __le16_to_cpu(rp->handle[i]))) 3907 continue; 3908 3909 if (conn->state == BT_CONNECT) 3910 pending = true; 3911 } 3912 3913 unlock: 3914 if (pending) 3915 hci_le_create_cis_pending(hdev); 3916 3917 hci_dev_unlock(hdev); 3918 3919 return rp->status; 3920 } 3921 3922 static u8 hci_cc_le_setup_iso_path(struct hci_dev *hdev, void *data, 3923 struct sk_buff *skb) 3924 { 3925 struct hci_rp_le_setup_iso_path *rp = data; 3926 struct hci_cp_le_setup_iso_path *cp; 3927 struct hci_conn *conn; 3928 3929 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 3930 3931 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SETUP_ISO_PATH); 3932 if (!cp) 3933 return rp->status; 3934 3935 hci_dev_lock(hdev); 3936 3937 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(cp->handle)); 3938 if (!conn) 3939 goto unlock; 3940 3941 if (rp->status) { 3942 hci_connect_cfm(conn, rp->status); 3943 hci_conn_del(conn); 3944 goto unlock; 3945 } 3946 3947 switch (cp->direction) { 3948 /* Input (Host to Controller) */ 3949 case 0x00: 3950 /* Only confirm connection if output only */ 3951 if (conn->iso_qos.ucast.out.sdu && !conn->iso_qos.ucast.in.sdu) 3952 hci_connect_cfm(conn, rp->status); 3953 break; 3954 /* Output (Controller to Host) */ 3955 case 0x01: 3956 /* Confirm connection since conn->iso_qos is always configured 3957 * last. 3958 */ 3959 hci_connect_cfm(conn, rp->status); 3960 3961 /* Notify device connected in case it is a BIG Sync */ 3962 if (!rp->status && test_bit(HCI_CONN_BIG_SYNC, &conn->flags)) 3963 mgmt_device_connected(hdev, conn, NULL, 0); 3964 3965 break; 3966 } 3967 3968 unlock: 3969 hci_dev_unlock(hdev); 3970 return rp->status; 3971 } 3972 3973 static void hci_cs_le_create_big(struct hci_dev *hdev, u8 status) 3974 { 3975 bt_dev_dbg(hdev, "status 0x%2.2x", status); 3976 } 3977 3978 static u8 hci_cc_set_per_adv_param(struct hci_dev *hdev, void *data, 3979 struct sk_buff *skb) 3980 { 3981 struct hci_ev_status *rp = data; 3982 struct hci_cp_le_set_per_adv_params *cp; 3983 3984 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 3985 3986 if (rp->status) 3987 return rp->status; 3988 3989 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS); 3990 if (!cp) 3991 return rp->status; 3992 3993 /* TODO: set the conn state */ 3994 return rp->status; 3995 } 3996 3997 static u8 hci_cc_le_set_per_adv_enable(struct hci_dev *hdev, void *data, 3998 struct sk_buff *skb) 3999 { 4000 struct hci_ev_status *rp = data; 4001 struct hci_cp_le_set_per_adv_enable *cp; 4002 struct adv_info *adv = NULL, *n; 4003 u8 per_adv_cnt = 0; 4004 4005 bt_dev_dbg(hdev, "status 0x%2.2x", rp->status); 4006 4007 if (rp->status) 4008 return rp->status; 4009 4010 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE); 4011 if (!cp) 4012 return rp->status; 4013 4014 hci_dev_lock(hdev); 4015 4016 adv = hci_find_adv_instance(hdev, cp->handle); 4017 4018 if (cp->enable) { 4019 hci_dev_set_flag(hdev, HCI_LE_PER_ADV); 4020 4021 if (adv) 4022 adv->enabled = true; 4023 } else { 4024 /* If just one instance was disabled check if there are 4025 * any other instance enabled before clearing HCI_LE_PER_ADV. 4026 * The current periodic adv instance will be marked as 4027 * disabled once extended advertising is also disabled. 4028 */ 4029 list_for_each_entry_safe(adv, n, &hdev->adv_instances, 4030 list) { 4031 if (adv->periodic && adv->enabled) 4032 per_adv_cnt++; 4033 } 4034 4035 if (per_adv_cnt > 1) 4036 goto unlock; 4037 4038 hci_dev_clear_flag(hdev, HCI_LE_PER_ADV); 4039 } 4040 4041 unlock: 4042 hci_dev_unlock(hdev); 4043 4044 return rp->status; 4045 } 4046 4047 #define HCI_CC_VL(_op, _func, _min, _max) \ 4048 { \ 4049 .op = _op, \ 4050 .func = _func, \ 4051 .min_len = _min, \ 4052 .max_len = _max, \ 4053 } 4054 4055 #define HCI_CC(_op, _func, _len) \ 4056 HCI_CC_VL(_op, _func, _len, _len) 4057 4058 #define HCI_CC_STATUS(_op, _func) \ 4059 HCI_CC(_op, _func, sizeof(struct hci_ev_status)) 4060 4061 static const struct hci_cc { 4062 u16 op; 4063 u8 (*func)(struct hci_dev *hdev, void *data, struct sk_buff *skb); 4064 u16 min_len; 4065 u16 max_len; 4066 } hci_cc_table[] = { 4067 HCI_CC_STATUS(HCI_OP_INQUIRY_CANCEL, hci_cc_inquiry_cancel), 4068 HCI_CC_STATUS(HCI_OP_PERIODIC_INQ, hci_cc_periodic_inq), 4069 HCI_CC_STATUS(HCI_OP_EXIT_PERIODIC_INQ, hci_cc_exit_periodic_inq), 4070 HCI_CC_STATUS(HCI_OP_REMOTE_NAME_REQ_CANCEL, 4071 hci_cc_remote_name_req_cancel), 4072 HCI_CC(HCI_OP_ROLE_DISCOVERY, hci_cc_role_discovery, 4073 sizeof(struct hci_rp_role_discovery)), 4074 HCI_CC(HCI_OP_READ_LINK_POLICY, hci_cc_read_link_policy, 4075 sizeof(struct hci_rp_read_link_policy)), 4076 HCI_CC(HCI_OP_WRITE_LINK_POLICY, hci_cc_write_link_policy, 4077 sizeof(struct hci_rp_write_link_policy)), 4078 HCI_CC(HCI_OP_READ_DEF_LINK_POLICY, hci_cc_read_def_link_policy, 4079 sizeof(struct hci_rp_read_def_link_policy)), 4080 HCI_CC_STATUS(HCI_OP_WRITE_DEF_LINK_POLICY, 4081 hci_cc_write_def_link_policy), 4082 HCI_CC_STATUS(HCI_OP_RESET, hci_cc_reset), 4083 HCI_CC(HCI_OP_READ_STORED_LINK_KEY, hci_cc_read_stored_link_key, 4084 sizeof(struct hci_rp_read_stored_link_key)), 4085 HCI_CC(HCI_OP_DELETE_STORED_LINK_KEY, hci_cc_delete_stored_link_key, 4086 sizeof(struct hci_rp_delete_stored_link_key)), 4087 HCI_CC_STATUS(HCI_OP_WRITE_LOCAL_NAME, hci_cc_write_local_name), 4088 HCI_CC(HCI_OP_READ_LOCAL_NAME, hci_cc_read_local_name, 4089 sizeof(struct hci_rp_read_local_name)), 4090 HCI_CC_STATUS(HCI_OP_WRITE_AUTH_ENABLE, hci_cc_write_auth_enable), 4091 HCI_CC_STATUS(HCI_OP_WRITE_ENCRYPT_MODE, hci_cc_write_encrypt_mode), 4092 HCI_CC_STATUS(HCI_OP_WRITE_SCAN_ENABLE, hci_cc_write_scan_enable), 4093 HCI_CC_STATUS(HCI_OP_SET_EVENT_FLT, hci_cc_set_event_filter), 4094 HCI_CC(HCI_OP_READ_CLASS_OF_DEV, hci_cc_read_class_of_dev, 4095 sizeof(struct hci_rp_read_class_of_dev)), 4096 HCI_CC_STATUS(HCI_OP_WRITE_CLASS_OF_DEV, hci_cc_write_class_of_dev), 4097 HCI_CC(HCI_OP_READ_VOICE_SETTING, hci_cc_read_voice_setting, 4098 sizeof(struct hci_rp_read_voice_setting)), 4099 HCI_CC_STATUS(HCI_OP_WRITE_VOICE_SETTING, hci_cc_write_voice_setting), 4100 HCI_CC(HCI_OP_READ_NUM_SUPPORTED_IAC, hci_cc_read_num_supported_iac, 4101 sizeof(struct hci_rp_read_num_supported_iac)), 4102 HCI_CC_STATUS(HCI_OP_WRITE_SSP_MODE, hci_cc_write_ssp_mode), 4103 HCI_CC_STATUS(HCI_OP_WRITE_SC_SUPPORT, hci_cc_write_sc_support), 4104 HCI_CC(HCI_OP_READ_AUTH_PAYLOAD_TO, hci_cc_read_auth_payload_timeout, 4105 sizeof(struct hci_rp_read_auth_payload_to)), 4106 HCI_CC(HCI_OP_WRITE_AUTH_PAYLOAD_TO, hci_cc_write_auth_payload_timeout, 4107 sizeof(struct hci_rp_write_auth_payload_to)), 4108 HCI_CC(HCI_OP_READ_LOCAL_VERSION, hci_cc_read_local_version, 4109 sizeof(struct hci_rp_read_local_version)), 4110 HCI_CC(HCI_OP_READ_LOCAL_COMMANDS, hci_cc_read_local_commands, 4111 sizeof(struct hci_rp_read_local_commands)), 4112 HCI_CC(HCI_OP_READ_LOCAL_FEATURES, hci_cc_read_local_features, 4113 sizeof(struct hci_rp_read_local_features)), 4114 HCI_CC(HCI_OP_READ_LOCAL_EXT_FEATURES, hci_cc_read_local_ext_features, 4115 sizeof(struct hci_rp_read_local_ext_features)), 4116 HCI_CC(HCI_OP_READ_BUFFER_SIZE, hci_cc_read_buffer_size, 4117 sizeof(struct hci_rp_read_buffer_size)), 4118 HCI_CC(HCI_OP_READ_BD_ADDR, hci_cc_read_bd_addr, 4119 sizeof(struct hci_rp_read_bd_addr)), 4120 HCI_CC(HCI_OP_READ_LOCAL_PAIRING_OPTS, hci_cc_read_local_pairing_opts, 4121 sizeof(struct hci_rp_read_local_pairing_opts)), 4122 HCI_CC(HCI_OP_READ_PAGE_SCAN_ACTIVITY, hci_cc_read_page_scan_activity, 4123 sizeof(struct hci_rp_read_page_scan_activity)), 4124 HCI_CC_STATUS(HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, 4125 hci_cc_write_page_scan_activity), 4126 HCI_CC(HCI_OP_READ_PAGE_SCAN_TYPE, hci_cc_read_page_scan_type, 4127 sizeof(struct hci_rp_read_page_scan_type)), 4128 HCI_CC_STATUS(HCI_OP_WRITE_PAGE_SCAN_TYPE, hci_cc_write_page_scan_type), 4129 HCI_CC(HCI_OP_READ_DATA_BLOCK_SIZE, hci_cc_read_data_block_size, 4130 sizeof(struct hci_rp_read_data_block_size)), 4131 HCI_CC(HCI_OP_READ_FLOW_CONTROL_MODE, hci_cc_read_flow_control_mode, 4132 sizeof(struct hci_rp_read_flow_control_mode)), 4133 HCI_CC(HCI_OP_READ_LOCAL_AMP_INFO, hci_cc_read_local_amp_info, 4134 sizeof(struct hci_rp_read_local_amp_info)), 4135 HCI_CC(HCI_OP_READ_CLOCK, hci_cc_read_clock, 4136 sizeof(struct hci_rp_read_clock)), 4137 HCI_CC(HCI_OP_READ_ENC_KEY_SIZE, hci_cc_read_enc_key_size, 4138 sizeof(struct hci_rp_read_enc_key_size)), 4139 HCI_CC(HCI_OP_READ_INQ_RSP_TX_POWER, hci_cc_read_inq_rsp_tx_power, 4140 sizeof(struct hci_rp_read_inq_rsp_tx_power)), 4141 HCI_CC(HCI_OP_READ_DEF_ERR_DATA_REPORTING, 4142 hci_cc_read_def_err_data_reporting, 4143 sizeof(struct hci_rp_read_def_err_data_reporting)), 4144 HCI_CC_STATUS(HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, 4145 hci_cc_write_def_err_data_reporting), 4146 HCI_CC(HCI_OP_PIN_CODE_REPLY, hci_cc_pin_code_reply, 4147 sizeof(struct hci_rp_pin_code_reply)), 4148 HCI_CC(HCI_OP_PIN_CODE_NEG_REPLY, hci_cc_pin_code_neg_reply, 4149 sizeof(struct hci_rp_pin_code_neg_reply)), 4150 HCI_CC(HCI_OP_READ_LOCAL_OOB_DATA, hci_cc_read_local_oob_data, 4151 sizeof(struct hci_rp_read_local_oob_data)), 4152 HCI_CC(HCI_OP_READ_LOCAL_OOB_EXT_DATA, hci_cc_read_local_oob_ext_data, 4153 sizeof(struct hci_rp_read_local_oob_ext_data)), 4154 HCI_CC(HCI_OP_LE_READ_BUFFER_SIZE, hci_cc_le_read_buffer_size, 4155 sizeof(struct hci_rp_le_read_buffer_size)), 4156 HCI_CC(HCI_OP_LE_READ_LOCAL_FEATURES, hci_cc_le_read_local_features, 4157 sizeof(struct hci_rp_le_read_local_features)), 4158 HCI_CC(HCI_OP_LE_READ_ADV_TX_POWER, hci_cc_le_read_adv_tx_power, 4159 sizeof(struct hci_rp_le_read_adv_tx_power)), 4160 HCI_CC(HCI_OP_USER_CONFIRM_REPLY, hci_cc_user_confirm_reply, 4161 sizeof(struct hci_rp_user_confirm_reply)), 4162 HCI_CC(HCI_OP_USER_CONFIRM_NEG_REPLY, hci_cc_user_confirm_neg_reply, 4163 sizeof(struct hci_rp_user_confirm_reply)), 4164 HCI_CC(HCI_OP_USER_PASSKEY_REPLY, hci_cc_user_passkey_reply, 4165 sizeof(struct hci_rp_user_confirm_reply)), 4166 HCI_CC(HCI_OP_USER_PASSKEY_NEG_REPLY, hci_cc_user_passkey_neg_reply, 4167 sizeof(struct hci_rp_user_confirm_reply)), 4168 HCI_CC_STATUS(HCI_OP_LE_SET_RANDOM_ADDR, hci_cc_le_set_random_addr), 4169 HCI_CC_STATUS(HCI_OP_LE_SET_ADV_ENABLE, hci_cc_le_set_adv_enable), 4170 HCI_CC_STATUS(HCI_OP_LE_SET_SCAN_PARAM, hci_cc_le_set_scan_param), 4171 HCI_CC_STATUS(HCI_OP_LE_SET_SCAN_ENABLE, hci_cc_le_set_scan_enable), 4172 HCI_CC(HCI_OP_LE_READ_ACCEPT_LIST_SIZE, 4173 hci_cc_le_read_accept_list_size, 4174 sizeof(struct hci_rp_le_read_accept_list_size)), 4175 HCI_CC_STATUS(HCI_OP_LE_CLEAR_ACCEPT_LIST, hci_cc_le_clear_accept_list), 4176 HCI_CC_STATUS(HCI_OP_LE_ADD_TO_ACCEPT_LIST, 4177 hci_cc_le_add_to_accept_list), 4178 HCI_CC_STATUS(HCI_OP_LE_DEL_FROM_ACCEPT_LIST, 4179 hci_cc_le_del_from_accept_list), 4180 HCI_CC(HCI_OP_LE_READ_SUPPORTED_STATES, hci_cc_le_read_supported_states, 4181 sizeof(struct hci_rp_le_read_supported_states)), 4182 HCI_CC(HCI_OP_LE_READ_DEF_DATA_LEN, hci_cc_le_read_def_data_len, 4183 sizeof(struct hci_rp_le_read_def_data_len)), 4184 HCI_CC_STATUS(HCI_OP_LE_WRITE_DEF_DATA_LEN, 4185 hci_cc_le_write_def_data_len), 4186 HCI_CC_STATUS(HCI_OP_LE_ADD_TO_RESOLV_LIST, 4187 hci_cc_le_add_to_resolv_list), 4188 HCI_CC_STATUS(HCI_OP_LE_DEL_FROM_RESOLV_LIST, 4189 hci_cc_le_del_from_resolv_list), 4190 HCI_CC_STATUS(HCI_OP_LE_CLEAR_RESOLV_LIST, 4191 hci_cc_le_clear_resolv_list), 4192 HCI_CC(HCI_OP_LE_READ_RESOLV_LIST_SIZE, hci_cc_le_read_resolv_list_size, 4193 sizeof(struct hci_rp_le_read_resolv_list_size)), 4194 HCI_CC_STATUS(HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 4195 hci_cc_le_set_addr_resolution_enable), 4196 HCI_CC(HCI_OP_LE_READ_MAX_DATA_LEN, hci_cc_le_read_max_data_len, 4197 sizeof(struct hci_rp_le_read_max_data_len)), 4198 HCI_CC_STATUS(HCI_OP_WRITE_LE_HOST_SUPPORTED, 4199 hci_cc_write_le_host_supported), 4200 HCI_CC_STATUS(HCI_OP_LE_SET_ADV_PARAM, hci_cc_set_adv_param), 4201 HCI_CC(HCI_OP_READ_RSSI, hci_cc_read_rssi, 4202 sizeof(struct hci_rp_read_rssi)), 4203 HCI_CC(HCI_OP_READ_TX_POWER, hci_cc_read_tx_power, 4204 sizeof(struct hci_rp_read_tx_power)), 4205 HCI_CC_STATUS(HCI_OP_WRITE_SSP_DEBUG_MODE, hci_cc_write_ssp_debug_mode), 4206 HCI_CC_STATUS(HCI_OP_LE_SET_EXT_SCAN_PARAMS, 4207 hci_cc_le_set_ext_scan_param), 4208 HCI_CC_STATUS(HCI_OP_LE_SET_EXT_SCAN_ENABLE, 4209 hci_cc_le_set_ext_scan_enable), 4210 HCI_CC_STATUS(HCI_OP_LE_SET_DEFAULT_PHY, hci_cc_le_set_default_phy), 4211 HCI_CC(HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 4212 hci_cc_le_read_num_adv_sets, 4213 sizeof(struct hci_rp_le_read_num_supported_adv_sets)), 4214 HCI_CC(HCI_OP_LE_SET_EXT_ADV_PARAMS, hci_cc_set_ext_adv_param, 4215 sizeof(struct hci_rp_le_set_ext_adv_params)), 4216 HCI_CC_STATUS(HCI_OP_LE_SET_EXT_ADV_ENABLE, 4217 hci_cc_le_set_ext_adv_enable), 4218 HCI_CC_STATUS(HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 4219 hci_cc_le_set_adv_set_random_addr), 4220 HCI_CC_STATUS(HCI_OP_LE_REMOVE_ADV_SET, hci_cc_le_remove_adv_set), 4221 HCI_CC_STATUS(HCI_OP_LE_CLEAR_ADV_SETS, hci_cc_le_clear_adv_sets), 4222 HCI_CC_STATUS(HCI_OP_LE_SET_PER_ADV_PARAMS, hci_cc_set_per_adv_param), 4223 HCI_CC_STATUS(HCI_OP_LE_SET_PER_ADV_ENABLE, 4224 hci_cc_le_set_per_adv_enable), 4225 HCI_CC(HCI_OP_LE_READ_TRANSMIT_POWER, hci_cc_le_read_transmit_power, 4226 sizeof(struct hci_rp_le_read_transmit_power)), 4227 HCI_CC_STATUS(HCI_OP_LE_SET_PRIVACY_MODE, hci_cc_le_set_privacy_mode), 4228 HCI_CC(HCI_OP_LE_READ_BUFFER_SIZE_V2, hci_cc_le_read_buffer_size_v2, 4229 sizeof(struct hci_rp_le_read_buffer_size_v2)), 4230 HCI_CC_VL(HCI_OP_LE_SET_CIG_PARAMS, hci_cc_le_set_cig_params, 4231 sizeof(struct hci_rp_le_set_cig_params), HCI_MAX_EVENT_SIZE), 4232 HCI_CC(HCI_OP_LE_SETUP_ISO_PATH, hci_cc_le_setup_iso_path, 4233 sizeof(struct hci_rp_le_setup_iso_path)), 4234 }; 4235 4236 static u8 hci_cc_func(struct hci_dev *hdev, const struct hci_cc *cc, 4237 struct sk_buff *skb) 4238 { 4239 void *data; 4240 4241 if (skb->len < cc->min_len) { 4242 bt_dev_err(hdev, "unexpected cc 0x%4.4x length: %u < %u", 4243 cc->op, skb->len, cc->min_len); 4244 return HCI_ERROR_UNSPECIFIED; 4245 } 4246 4247 /* Just warn if the length is over max_len size it still be possible to 4248 * partially parse the cc so leave to callback to decide if that is 4249 * acceptable. 4250 */ 4251 if (skb->len > cc->max_len) 4252 bt_dev_warn(hdev, "unexpected cc 0x%4.4x length: %u > %u", 4253 cc->op, skb->len, cc->max_len); 4254 4255 data = hci_cc_skb_pull(hdev, skb, cc->op, cc->min_len); 4256 if (!data) 4257 return HCI_ERROR_UNSPECIFIED; 4258 4259 return cc->func(hdev, data, skb); 4260 } 4261 4262 static void hci_cmd_complete_evt(struct hci_dev *hdev, void *data, 4263 struct sk_buff *skb, u16 *opcode, u8 *status, 4264 hci_req_complete_t *req_complete, 4265 hci_req_complete_skb_t *req_complete_skb) 4266 { 4267 struct hci_ev_cmd_complete *ev = data; 4268 int i; 4269 4270 *opcode = __le16_to_cpu(ev->opcode); 4271 4272 bt_dev_dbg(hdev, "opcode 0x%4.4x", *opcode); 4273 4274 for (i = 0; i < ARRAY_SIZE(hci_cc_table); i++) { 4275 if (hci_cc_table[i].op == *opcode) { 4276 *status = hci_cc_func(hdev, &hci_cc_table[i], skb); 4277 break; 4278 } 4279 } 4280 4281 if (i == ARRAY_SIZE(hci_cc_table)) { 4282 /* Unknown opcode, assume byte 0 contains the status, so 4283 * that e.g. __hci_cmd_sync() properly returns errors 4284 * for vendor specific commands send by HCI drivers. 4285 * If a vendor doesn't actually follow this convention we may 4286 * need to introduce a vendor CC table in order to properly set 4287 * the status. 4288 */ 4289 *status = skb->data[0]; 4290 } 4291 4292 handle_cmd_cnt_and_timer(hdev, ev->ncmd); 4293 4294 hci_req_cmd_complete(hdev, *opcode, *status, req_complete, 4295 req_complete_skb); 4296 4297 if (hci_dev_test_flag(hdev, HCI_CMD_PENDING)) { 4298 bt_dev_err(hdev, 4299 "unexpected event for opcode 0x%4.4x", *opcode); 4300 return; 4301 } 4302 4303 if (atomic_read(&hdev->cmd_cnt) && !skb_queue_empty(&hdev->cmd_q)) 4304 queue_work(hdev->workqueue, &hdev->cmd_work); 4305 } 4306 4307 static void hci_cs_le_create_cis(struct hci_dev *hdev, u8 status) 4308 { 4309 struct hci_cp_le_create_cis *cp; 4310 bool pending = false; 4311 int i; 4312 4313 bt_dev_dbg(hdev, "status 0x%2.2x", status); 4314 4315 if (!status) 4316 return; 4317 4318 cp = hci_sent_cmd_data(hdev, HCI_OP_LE_CREATE_CIS); 4319 if (!cp) 4320 return; 4321 4322 hci_dev_lock(hdev); 4323 4324 /* Remove connection if command failed */ 4325 for (i = 0; cp->num_cis; cp->num_cis--, i++) { 4326 struct hci_conn *conn; 4327 u16 handle; 4328 4329 handle = __le16_to_cpu(cp->cis[i].cis_handle); 4330 4331 conn = hci_conn_hash_lookup_handle(hdev, handle); 4332 if (conn) { 4333 if (test_and_clear_bit(HCI_CONN_CREATE_CIS, 4334 &conn->flags)) 4335 pending = true; 4336 conn->state = BT_CLOSED; 4337 hci_connect_cfm(conn, status); 4338 hci_conn_del(conn); 4339 } 4340 } 4341 4342 if (pending) 4343 hci_le_create_cis_pending(hdev); 4344 4345 hci_dev_unlock(hdev); 4346 } 4347 4348 #define HCI_CS(_op, _func) \ 4349 { \ 4350 .op = _op, \ 4351 .func = _func, \ 4352 } 4353 4354 static const struct hci_cs { 4355 u16 op; 4356 void (*func)(struct hci_dev *hdev, __u8 status); 4357 } hci_cs_table[] = { 4358 HCI_CS(HCI_OP_INQUIRY, hci_cs_inquiry), 4359 HCI_CS(HCI_OP_CREATE_CONN, hci_cs_create_conn), 4360 HCI_CS(HCI_OP_DISCONNECT, hci_cs_disconnect), 4361 HCI_CS(HCI_OP_ADD_SCO, hci_cs_add_sco), 4362 HCI_CS(HCI_OP_AUTH_REQUESTED, hci_cs_auth_requested), 4363 HCI_CS(HCI_OP_SET_CONN_ENCRYPT, hci_cs_set_conn_encrypt), 4364 HCI_CS(HCI_OP_REMOTE_NAME_REQ, hci_cs_remote_name_req), 4365 HCI_CS(HCI_OP_READ_REMOTE_FEATURES, hci_cs_read_remote_features), 4366 HCI_CS(HCI_OP_READ_REMOTE_EXT_FEATURES, 4367 hci_cs_read_remote_ext_features), 4368 HCI_CS(HCI_OP_SETUP_SYNC_CONN, hci_cs_setup_sync_conn), 4369 HCI_CS(HCI_OP_ENHANCED_SETUP_SYNC_CONN, 4370 hci_cs_enhanced_setup_sync_conn), 4371 HCI_CS(HCI_OP_SNIFF_MODE, hci_cs_sniff_mode), 4372 HCI_CS(HCI_OP_EXIT_SNIFF_MODE, hci_cs_exit_sniff_mode), 4373 HCI_CS(HCI_OP_SWITCH_ROLE, hci_cs_switch_role), 4374 HCI_CS(HCI_OP_LE_CREATE_CONN, hci_cs_le_create_conn), 4375 HCI_CS(HCI_OP_LE_READ_REMOTE_FEATURES, hci_cs_le_read_remote_features), 4376 HCI_CS(HCI_OP_LE_START_ENC, hci_cs_le_start_enc), 4377 HCI_CS(HCI_OP_LE_EXT_CREATE_CONN, hci_cs_le_ext_create_conn), 4378 HCI_CS(HCI_OP_LE_CREATE_CIS, hci_cs_le_create_cis), 4379 HCI_CS(HCI_OP_LE_CREATE_BIG, hci_cs_le_create_big), 4380 }; 4381 4382 static void hci_cmd_status_evt(struct hci_dev *hdev, void *data, 4383 struct sk_buff *skb, u16 *opcode, u8 *status, 4384 hci_req_complete_t *req_complete, 4385 hci_req_complete_skb_t *req_complete_skb) 4386 { 4387 struct hci_ev_cmd_status *ev = data; 4388 int i; 4389 4390 *opcode = __le16_to_cpu(ev->opcode); 4391 *status = ev->status; 4392 4393 bt_dev_dbg(hdev, "opcode 0x%4.4x", *opcode); 4394 4395 for (i = 0; i < ARRAY_SIZE(hci_cs_table); i++) { 4396 if (hci_cs_table[i].op == *opcode) { 4397 hci_cs_table[i].func(hdev, ev->status); 4398 break; 4399 } 4400 } 4401 4402 handle_cmd_cnt_and_timer(hdev, ev->ncmd); 4403 4404 /* Indicate request completion if the command failed. Also, if 4405 * we're not waiting for a special event and we get a success 4406 * command status we should try to flag the request as completed 4407 * (since for this kind of commands there will not be a command 4408 * complete event). 4409 */ 4410 if (ev->status || (hdev->req_skb && !hci_skb_event(hdev->req_skb))) { 4411 hci_req_cmd_complete(hdev, *opcode, ev->status, req_complete, 4412 req_complete_skb); 4413 if (hci_dev_test_flag(hdev, HCI_CMD_PENDING)) { 4414 bt_dev_err(hdev, "unexpected event for opcode 0x%4.4x", 4415 *opcode); 4416 return; 4417 } 4418 } 4419 4420 if (atomic_read(&hdev->cmd_cnt) && !skb_queue_empty(&hdev->cmd_q)) 4421 queue_work(hdev->workqueue, &hdev->cmd_work); 4422 } 4423 4424 static void hci_hardware_error_evt(struct hci_dev *hdev, void *data, 4425 struct sk_buff *skb) 4426 { 4427 struct hci_ev_hardware_error *ev = data; 4428 4429 bt_dev_dbg(hdev, "code 0x%2.2x", ev->code); 4430 4431 hdev->hw_error_code = ev->code; 4432 4433 queue_work(hdev->req_workqueue, &hdev->error_reset); 4434 } 4435 4436 static void hci_role_change_evt(struct hci_dev *hdev, void *data, 4437 struct sk_buff *skb) 4438 { 4439 struct hci_ev_role_change *ev = data; 4440 struct hci_conn *conn; 4441 4442 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 4443 4444 hci_dev_lock(hdev); 4445 4446 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 4447 if (conn) { 4448 if (!ev->status) 4449 conn->role = ev->role; 4450 4451 clear_bit(HCI_CONN_RSWITCH_PEND, &conn->flags); 4452 4453 hci_role_switch_cfm(conn, ev->status, ev->role); 4454 } 4455 4456 hci_dev_unlock(hdev); 4457 } 4458 4459 static void hci_num_comp_pkts_evt(struct hci_dev *hdev, void *data, 4460 struct sk_buff *skb) 4461 { 4462 struct hci_ev_num_comp_pkts *ev = data; 4463 int i; 4464 4465 if (!hci_ev_skb_pull(hdev, skb, HCI_EV_NUM_COMP_PKTS, 4466 flex_array_size(ev, handles, ev->num))) 4467 return; 4468 4469 if (hdev->flow_ctl_mode != HCI_FLOW_CTL_MODE_PACKET_BASED) { 4470 bt_dev_err(hdev, "wrong event for mode %d", hdev->flow_ctl_mode); 4471 return; 4472 } 4473 4474 bt_dev_dbg(hdev, "num %d", ev->num); 4475 4476 for (i = 0; i < ev->num; i++) { 4477 struct hci_comp_pkts_info *info = &ev->handles[i]; 4478 struct hci_conn *conn; 4479 __u16 handle, count; 4480 4481 handle = __le16_to_cpu(info->handle); 4482 count = __le16_to_cpu(info->count); 4483 4484 conn = hci_conn_hash_lookup_handle(hdev, handle); 4485 if (!conn) 4486 continue; 4487 4488 conn->sent -= count; 4489 4490 switch (conn->type) { 4491 case ACL_LINK: 4492 hdev->acl_cnt += count; 4493 if (hdev->acl_cnt > hdev->acl_pkts) 4494 hdev->acl_cnt = hdev->acl_pkts; 4495 break; 4496 4497 case LE_LINK: 4498 if (hdev->le_pkts) { 4499 hdev->le_cnt += count; 4500 if (hdev->le_cnt > hdev->le_pkts) 4501 hdev->le_cnt = hdev->le_pkts; 4502 } else { 4503 hdev->acl_cnt += count; 4504 if (hdev->acl_cnt > hdev->acl_pkts) 4505 hdev->acl_cnt = hdev->acl_pkts; 4506 } 4507 break; 4508 4509 case SCO_LINK: 4510 hdev->sco_cnt += count; 4511 if (hdev->sco_cnt > hdev->sco_pkts) 4512 hdev->sco_cnt = hdev->sco_pkts; 4513 break; 4514 4515 case ISO_LINK: 4516 if (hdev->iso_pkts) { 4517 hdev->iso_cnt += count; 4518 if (hdev->iso_cnt > hdev->iso_pkts) 4519 hdev->iso_cnt = hdev->iso_pkts; 4520 } else if (hdev->le_pkts) { 4521 hdev->le_cnt += count; 4522 if (hdev->le_cnt > hdev->le_pkts) 4523 hdev->le_cnt = hdev->le_pkts; 4524 } else { 4525 hdev->acl_cnt += count; 4526 if (hdev->acl_cnt > hdev->acl_pkts) 4527 hdev->acl_cnt = hdev->acl_pkts; 4528 } 4529 break; 4530 4531 default: 4532 bt_dev_err(hdev, "unknown type %d conn %p", 4533 conn->type, conn); 4534 break; 4535 } 4536 } 4537 4538 queue_work(hdev->workqueue, &hdev->tx_work); 4539 } 4540 4541 static struct hci_conn *__hci_conn_lookup_handle(struct hci_dev *hdev, 4542 __u16 handle) 4543 { 4544 struct hci_chan *chan; 4545 4546 switch (hdev->dev_type) { 4547 case HCI_PRIMARY: 4548 return hci_conn_hash_lookup_handle(hdev, handle); 4549 case HCI_AMP: 4550 chan = hci_chan_lookup_handle(hdev, handle); 4551 if (chan) 4552 return chan->conn; 4553 break; 4554 default: 4555 bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type); 4556 break; 4557 } 4558 4559 return NULL; 4560 } 4561 4562 static void hci_num_comp_blocks_evt(struct hci_dev *hdev, void *data, 4563 struct sk_buff *skb) 4564 { 4565 struct hci_ev_num_comp_blocks *ev = data; 4566 int i; 4567 4568 if (!hci_ev_skb_pull(hdev, skb, HCI_EV_NUM_COMP_BLOCKS, 4569 flex_array_size(ev, handles, ev->num_hndl))) 4570 return; 4571 4572 if (hdev->flow_ctl_mode != HCI_FLOW_CTL_MODE_BLOCK_BASED) { 4573 bt_dev_err(hdev, "wrong event for mode %d", 4574 hdev->flow_ctl_mode); 4575 return; 4576 } 4577 4578 bt_dev_dbg(hdev, "num_blocks %d num_hndl %d", ev->num_blocks, 4579 ev->num_hndl); 4580 4581 for (i = 0; i < ev->num_hndl; i++) { 4582 struct hci_comp_blocks_info *info = &ev->handles[i]; 4583 struct hci_conn *conn = NULL; 4584 __u16 handle, block_count; 4585 4586 handle = __le16_to_cpu(info->handle); 4587 block_count = __le16_to_cpu(info->blocks); 4588 4589 conn = __hci_conn_lookup_handle(hdev, handle); 4590 if (!conn) 4591 continue; 4592 4593 conn->sent -= block_count; 4594 4595 switch (conn->type) { 4596 case ACL_LINK: 4597 case AMP_LINK: 4598 hdev->block_cnt += block_count; 4599 if (hdev->block_cnt > hdev->num_blocks) 4600 hdev->block_cnt = hdev->num_blocks; 4601 break; 4602 4603 default: 4604 bt_dev_err(hdev, "unknown type %d conn %p", 4605 conn->type, conn); 4606 break; 4607 } 4608 } 4609 4610 queue_work(hdev->workqueue, &hdev->tx_work); 4611 } 4612 4613 static void hci_mode_change_evt(struct hci_dev *hdev, void *data, 4614 struct sk_buff *skb) 4615 { 4616 struct hci_ev_mode_change *ev = data; 4617 struct hci_conn *conn; 4618 4619 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 4620 4621 hci_dev_lock(hdev); 4622 4623 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 4624 if (conn) { 4625 conn->mode = ev->mode; 4626 4627 if (!test_and_clear_bit(HCI_CONN_MODE_CHANGE_PEND, 4628 &conn->flags)) { 4629 if (conn->mode == HCI_CM_ACTIVE) 4630 set_bit(HCI_CONN_POWER_SAVE, &conn->flags); 4631 else 4632 clear_bit(HCI_CONN_POWER_SAVE, &conn->flags); 4633 } 4634 4635 if (test_and_clear_bit(HCI_CONN_SCO_SETUP_PEND, &conn->flags)) 4636 hci_sco_setup(conn, ev->status); 4637 } 4638 4639 hci_dev_unlock(hdev); 4640 } 4641 4642 static void hci_pin_code_request_evt(struct hci_dev *hdev, void *data, 4643 struct sk_buff *skb) 4644 { 4645 struct hci_ev_pin_code_req *ev = data; 4646 struct hci_conn *conn; 4647 4648 bt_dev_dbg(hdev, ""); 4649 4650 hci_dev_lock(hdev); 4651 4652 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 4653 if (!conn) 4654 goto unlock; 4655 4656 if (conn->state == BT_CONNECTED) { 4657 hci_conn_hold(conn); 4658 conn->disc_timeout = HCI_PAIRING_TIMEOUT; 4659 hci_conn_drop(conn); 4660 } 4661 4662 if (!hci_dev_test_flag(hdev, HCI_BONDABLE) && 4663 !test_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags)) { 4664 hci_send_cmd(hdev, HCI_OP_PIN_CODE_NEG_REPLY, 4665 sizeof(ev->bdaddr), &ev->bdaddr); 4666 } else if (hci_dev_test_flag(hdev, HCI_MGMT)) { 4667 u8 secure; 4668 4669 if (conn->pending_sec_level == BT_SECURITY_HIGH) 4670 secure = 1; 4671 else 4672 secure = 0; 4673 4674 mgmt_pin_code_request(hdev, &ev->bdaddr, secure); 4675 } 4676 4677 unlock: 4678 hci_dev_unlock(hdev); 4679 } 4680 4681 static void conn_set_key(struct hci_conn *conn, u8 key_type, u8 pin_len) 4682 { 4683 if (key_type == HCI_LK_CHANGED_COMBINATION) 4684 return; 4685 4686 conn->pin_length = pin_len; 4687 conn->key_type = key_type; 4688 4689 switch (key_type) { 4690 case HCI_LK_LOCAL_UNIT: 4691 case HCI_LK_REMOTE_UNIT: 4692 case HCI_LK_DEBUG_COMBINATION: 4693 return; 4694 case HCI_LK_COMBINATION: 4695 if (pin_len == 16) 4696 conn->pending_sec_level = BT_SECURITY_HIGH; 4697 else 4698 conn->pending_sec_level = BT_SECURITY_MEDIUM; 4699 break; 4700 case HCI_LK_UNAUTH_COMBINATION_P192: 4701 case HCI_LK_UNAUTH_COMBINATION_P256: 4702 conn->pending_sec_level = BT_SECURITY_MEDIUM; 4703 break; 4704 case HCI_LK_AUTH_COMBINATION_P192: 4705 conn->pending_sec_level = BT_SECURITY_HIGH; 4706 break; 4707 case HCI_LK_AUTH_COMBINATION_P256: 4708 conn->pending_sec_level = BT_SECURITY_FIPS; 4709 break; 4710 } 4711 } 4712 4713 static void hci_link_key_request_evt(struct hci_dev *hdev, void *data, 4714 struct sk_buff *skb) 4715 { 4716 struct hci_ev_link_key_req *ev = data; 4717 struct hci_cp_link_key_reply cp; 4718 struct hci_conn *conn; 4719 struct link_key *key; 4720 4721 bt_dev_dbg(hdev, ""); 4722 4723 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 4724 return; 4725 4726 hci_dev_lock(hdev); 4727 4728 key = hci_find_link_key(hdev, &ev->bdaddr); 4729 if (!key) { 4730 bt_dev_dbg(hdev, "link key not found for %pMR", &ev->bdaddr); 4731 goto not_found; 4732 } 4733 4734 bt_dev_dbg(hdev, "found key type %u for %pMR", key->type, &ev->bdaddr); 4735 4736 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 4737 if (conn) { 4738 clear_bit(HCI_CONN_NEW_LINK_KEY, &conn->flags); 4739 4740 if ((key->type == HCI_LK_UNAUTH_COMBINATION_P192 || 4741 key->type == HCI_LK_UNAUTH_COMBINATION_P256) && 4742 conn->auth_type != 0xff && (conn->auth_type & 0x01)) { 4743 bt_dev_dbg(hdev, "ignoring unauthenticated key"); 4744 goto not_found; 4745 } 4746 4747 if (key->type == HCI_LK_COMBINATION && key->pin_len < 16 && 4748 (conn->pending_sec_level == BT_SECURITY_HIGH || 4749 conn->pending_sec_level == BT_SECURITY_FIPS)) { 4750 bt_dev_dbg(hdev, "ignoring key unauthenticated for high security"); 4751 goto not_found; 4752 } 4753 4754 conn_set_key(conn, key->type, key->pin_len); 4755 } 4756 4757 bacpy(&cp.bdaddr, &ev->bdaddr); 4758 memcpy(cp.link_key, key->val, HCI_LINK_KEY_SIZE); 4759 4760 hci_send_cmd(hdev, HCI_OP_LINK_KEY_REPLY, sizeof(cp), &cp); 4761 4762 hci_dev_unlock(hdev); 4763 4764 return; 4765 4766 not_found: 4767 hci_send_cmd(hdev, HCI_OP_LINK_KEY_NEG_REPLY, 6, &ev->bdaddr); 4768 hci_dev_unlock(hdev); 4769 } 4770 4771 static void hci_link_key_notify_evt(struct hci_dev *hdev, void *data, 4772 struct sk_buff *skb) 4773 { 4774 struct hci_ev_link_key_notify *ev = data; 4775 struct hci_conn *conn; 4776 struct link_key *key; 4777 bool persistent; 4778 u8 pin_len = 0; 4779 4780 bt_dev_dbg(hdev, ""); 4781 4782 hci_dev_lock(hdev); 4783 4784 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 4785 if (!conn) 4786 goto unlock; 4787 4788 /* Ignore NULL link key against CVE-2020-26555 */ 4789 if (!crypto_memneq(ev->link_key, ZERO_KEY, HCI_LINK_KEY_SIZE)) { 4790 bt_dev_dbg(hdev, "Ignore NULL link key (ZERO KEY) for %pMR", 4791 &ev->bdaddr); 4792 hci_disconnect(conn, HCI_ERROR_AUTH_FAILURE); 4793 hci_conn_drop(conn); 4794 goto unlock; 4795 } 4796 4797 hci_conn_hold(conn); 4798 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 4799 hci_conn_drop(conn); 4800 4801 set_bit(HCI_CONN_NEW_LINK_KEY, &conn->flags); 4802 conn_set_key(conn, ev->key_type, conn->pin_length); 4803 4804 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 4805 goto unlock; 4806 4807 key = hci_add_link_key(hdev, conn, &ev->bdaddr, ev->link_key, 4808 ev->key_type, pin_len, &persistent); 4809 if (!key) 4810 goto unlock; 4811 4812 /* Update connection information since adding the key will have 4813 * fixed up the type in the case of changed combination keys. 4814 */ 4815 if (ev->key_type == HCI_LK_CHANGED_COMBINATION) 4816 conn_set_key(conn, key->type, key->pin_len); 4817 4818 mgmt_new_link_key(hdev, key, persistent); 4819 4820 /* Keep debug keys around only if the HCI_KEEP_DEBUG_KEYS flag 4821 * is set. If it's not set simply remove the key from the kernel 4822 * list (we've still notified user space about it but with 4823 * store_hint being 0). 4824 */ 4825 if (key->type == HCI_LK_DEBUG_COMBINATION && 4826 !hci_dev_test_flag(hdev, HCI_KEEP_DEBUG_KEYS)) { 4827 list_del_rcu(&key->list); 4828 kfree_rcu(key, rcu); 4829 goto unlock; 4830 } 4831 4832 if (persistent) 4833 clear_bit(HCI_CONN_FLUSH_KEY, &conn->flags); 4834 else 4835 set_bit(HCI_CONN_FLUSH_KEY, &conn->flags); 4836 4837 unlock: 4838 hci_dev_unlock(hdev); 4839 } 4840 4841 static void hci_clock_offset_evt(struct hci_dev *hdev, void *data, 4842 struct sk_buff *skb) 4843 { 4844 struct hci_ev_clock_offset *ev = data; 4845 struct hci_conn *conn; 4846 4847 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 4848 4849 hci_dev_lock(hdev); 4850 4851 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 4852 if (conn && !ev->status) { 4853 struct inquiry_entry *ie; 4854 4855 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 4856 if (ie) { 4857 ie->data.clock_offset = ev->clock_offset; 4858 ie->timestamp = jiffies; 4859 } 4860 } 4861 4862 hci_dev_unlock(hdev); 4863 } 4864 4865 static void hci_pkt_type_change_evt(struct hci_dev *hdev, void *data, 4866 struct sk_buff *skb) 4867 { 4868 struct hci_ev_pkt_type_change *ev = data; 4869 struct hci_conn *conn; 4870 4871 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 4872 4873 hci_dev_lock(hdev); 4874 4875 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 4876 if (conn && !ev->status) 4877 conn->pkt_type = __le16_to_cpu(ev->pkt_type); 4878 4879 hci_dev_unlock(hdev); 4880 } 4881 4882 static void hci_pscan_rep_mode_evt(struct hci_dev *hdev, void *data, 4883 struct sk_buff *skb) 4884 { 4885 struct hci_ev_pscan_rep_mode *ev = data; 4886 struct inquiry_entry *ie; 4887 4888 bt_dev_dbg(hdev, ""); 4889 4890 hci_dev_lock(hdev); 4891 4892 ie = hci_inquiry_cache_lookup(hdev, &ev->bdaddr); 4893 if (ie) { 4894 ie->data.pscan_rep_mode = ev->pscan_rep_mode; 4895 ie->timestamp = jiffies; 4896 } 4897 4898 hci_dev_unlock(hdev); 4899 } 4900 4901 static void hci_inquiry_result_with_rssi_evt(struct hci_dev *hdev, void *edata, 4902 struct sk_buff *skb) 4903 { 4904 struct hci_ev_inquiry_result_rssi *ev = edata; 4905 struct inquiry_data data; 4906 int i; 4907 4908 bt_dev_dbg(hdev, "num_rsp %d", ev->num); 4909 4910 if (!ev->num) 4911 return; 4912 4913 if (hci_dev_test_flag(hdev, HCI_PERIODIC_INQ)) 4914 return; 4915 4916 hci_dev_lock(hdev); 4917 4918 if (skb->len == array_size(ev->num, 4919 sizeof(struct inquiry_info_rssi_pscan))) { 4920 struct inquiry_info_rssi_pscan *info; 4921 4922 for (i = 0; i < ev->num; i++) { 4923 u32 flags; 4924 4925 info = hci_ev_skb_pull(hdev, skb, 4926 HCI_EV_INQUIRY_RESULT_WITH_RSSI, 4927 sizeof(*info)); 4928 if (!info) { 4929 bt_dev_err(hdev, "Malformed HCI Event: 0x%2.2x", 4930 HCI_EV_INQUIRY_RESULT_WITH_RSSI); 4931 goto unlock; 4932 } 4933 4934 bacpy(&data.bdaddr, &info->bdaddr); 4935 data.pscan_rep_mode = info->pscan_rep_mode; 4936 data.pscan_period_mode = info->pscan_period_mode; 4937 data.pscan_mode = info->pscan_mode; 4938 memcpy(data.dev_class, info->dev_class, 3); 4939 data.clock_offset = info->clock_offset; 4940 data.rssi = info->rssi; 4941 data.ssp_mode = 0x00; 4942 4943 flags = hci_inquiry_cache_update(hdev, &data, false); 4944 4945 mgmt_device_found(hdev, &info->bdaddr, ACL_LINK, 0x00, 4946 info->dev_class, info->rssi, 4947 flags, NULL, 0, NULL, 0, 0); 4948 } 4949 } else if (skb->len == array_size(ev->num, 4950 sizeof(struct inquiry_info_rssi))) { 4951 struct inquiry_info_rssi *info; 4952 4953 for (i = 0; i < ev->num; i++) { 4954 u32 flags; 4955 4956 info = hci_ev_skb_pull(hdev, skb, 4957 HCI_EV_INQUIRY_RESULT_WITH_RSSI, 4958 sizeof(*info)); 4959 if (!info) { 4960 bt_dev_err(hdev, "Malformed HCI Event: 0x%2.2x", 4961 HCI_EV_INQUIRY_RESULT_WITH_RSSI); 4962 goto unlock; 4963 } 4964 4965 bacpy(&data.bdaddr, &info->bdaddr); 4966 data.pscan_rep_mode = info->pscan_rep_mode; 4967 data.pscan_period_mode = info->pscan_period_mode; 4968 data.pscan_mode = 0x00; 4969 memcpy(data.dev_class, info->dev_class, 3); 4970 data.clock_offset = info->clock_offset; 4971 data.rssi = info->rssi; 4972 data.ssp_mode = 0x00; 4973 4974 flags = hci_inquiry_cache_update(hdev, &data, false); 4975 4976 mgmt_device_found(hdev, &info->bdaddr, ACL_LINK, 0x00, 4977 info->dev_class, info->rssi, 4978 flags, NULL, 0, NULL, 0, 0); 4979 } 4980 } else { 4981 bt_dev_err(hdev, "Malformed HCI Event: 0x%2.2x", 4982 HCI_EV_INQUIRY_RESULT_WITH_RSSI); 4983 } 4984 unlock: 4985 hci_dev_unlock(hdev); 4986 } 4987 4988 static void hci_remote_ext_features_evt(struct hci_dev *hdev, void *data, 4989 struct sk_buff *skb) 4990 { 4991 struct hci_ev_remote_ext_features *ev = data; 4992 struct hci_conn *conn; 4993 4994 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 4995 4996 hci_dev_lock(hdev); 4997 4998 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 4999 if (!conn) 5000 goto unlock; 5001 5002 if (ev->page < HCI_MAX_PAGES) 5003 memcpy(conn->features[ev->page], ev->features, 8); 5004 5005 if (!ev->status && ev->page == 0x01) { 5006 struct inquiry_entry *ie; 5007 5008 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 5009 if (ie) 5010 ie->data.ssp_mode = (ev->features[0] & LMP_HOST_SSP); 5011 5012 if (ev->features[0] & LMP_HOST_SSP) { 5013 set_bit(HCI_CONN_SSP_ENABLED, &conn->flags); 5014 } else { 5015 /* It is mandatory by the Bluetooth specification that 5016 * Extended Inquiry Results are only used when Secure 5017 * Simple Pairing is enabled, but some devices violate 5018 * this. 5019 * 5020 * To make these devices work, the internal SSP 5021 * enabled flag needs to be cleared if the remote host 5022 * features do not indicate SSP support */ 5023 clear_bit(HCI_CONN_SSP_ENABLED, &conn->flags); 5024 } 5025 5026 if (ev->features[0] & LMP_HOST_SC) 5027 set_bit(HCI_CONN_SC_ENABLED, &conn->flags); 5028 } 5029 5030 if (conn->state != BT_CONFIG) 5031 goto unlock; 5032 5033 if (!ev->status && !test_bit(HCI_CONN_MGMT_CONNECTED, &conn->flags)) { 5034 struct hci_cp_remote_name_req cp; 5035 memset(&cp, 0, sizeof(cp)); 5036 bacpy(&cp.bdaddr, &conn->dst); 5037 cp.pscan_rep_mode = 0x02; 5038 hci_send_cmd(hdev, HCI_OP_REMOTE_NAME_REQ, sizeof(cp), &cp); 5039 } else { 5040 mgmt_device_connected(hdev, conn, NULL, 0); 5041 } 5042 5043 if (!hci_outgoing_auth_needed(hdev, conn)) { 5044 conn->state = BT_CONNECTED; 5045 hci_connect_cfm(conn, ev->status); 5046 hci_conn_drop(conn); 5047 } 5048 5049 unlock: 5050 hci_dev_unlock(hdev); 5051 } 5052 5053 static void hci_sync_conn_complete_evt(struct hci_dev *hdev, void *data, 5054 struct sk_buff *skb) 5055 { 5056 struct hci_ev_sync_conn_complete *ev = data; 5057 struct hci_conn *conn; 5058 u8 status = ev->status; 5059 5060 switch (ev->link_type) { 5061 case SCO_LINK: 5062 case ESCO_LINK: 5063 break; 5064 default: 5065 /* As per Core 5.3 Vol 4 Part E 7.7.35 (p.2219), Link_Type 5066 * for HCI_Synchronous_Connection_Complete is limited to 5067 * either SCO or eSCO 5068 */ 5069 bt_dev_err(hdev, "Ignoring connect complete event for invalid link type"); 5070 return; 5071 } 5072 5073 bt_dev_dbg(hdev, "status 0x%2.2x", status); 5074 5075 hci_dev_lock(hdev); 5076 5077 conn = hci_conn_hash_lookup_ba(hdev, ev->link_type, &ev->bdaddr); 5078 if (!conn) { 5079 if (ev->link_type == ESCO_LINK) 5080 goto unlock; 5081 5082 /* When the link type in the event indicates SCO connection 5083 * and lookup of the connection object fails, then check 5084 * if an eSCO connection object exists. 5085 * 5086 * The core limits the synchronous connections to either 5087 * SCO or eSCO. The eSCO connection is preferred and tried 5088 * to be setup first and until successfully established, 5089 * the link type will be hinted as eSCO. 5090 */ 5091 conn = hci_conn_hash_lookup_ba(hdev, ESCO_LINK, &ev->bdaddr); 5092 if (!conn) 5093 goto unlock; 5094 } 5095 5096 /* The HCI_Synchronous_Connection_Complete event is only sent once per connection. 5097 * Processing it more than once per connection can corrupt kernel memory. 5098 * 5099 * As the connection handle is set here for the first time, it indicates 5100 * whether the connection is already set up. 5101 */ 5102 if (!HCI_CONN_HANDLE_UNSET(conn->handle)) { 5103 bt_dev_err(hdev, "Ignoring HCI_Sync_Conn_Complete event for existing connection"); 5104 goto unlock; 5105 } 5106 5107 switch (status) { 5108 case 0x00: 5109 status = hci_conn_set_handle(conn, __le16_to_cpu(ev->handle)); 5110 if (status) { 5111 conn->state = BT_CLOSED; 5112 break; 5113 } 5114 5115 conn->state = BT_CONNECTED; 5116 conn->type = ev->link_type; 5117 5118 hci_debugfs_create_conn(conn); 5119 hci_conn_add_sysfs(conn); 5120 break; 5121 5122 case 0x10: /* Connection Accept Timeout */ 5123 case 0x0d: /* Connection Rejected due to Limited Resources */ 5124 case 0x11: /* Unsupported Feature or Parameter Value */ 5125 case 0x1c: /* SCO interval rejected */ 5126 case 0x1a: /* Unsupported Remote Feature */ 5127 case 0x1e: /* Invalid LMP Parameters */ 5128 case 0x1f: /* Unspecified error */ 5129 case 0x20: /* Unsupported LMP Parameter value */ 5130 if (conn->out) { 5131 conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) | 5132 (hdev->esco_type & EDR_ESCO_MASK); 5133 if (hci_setup_sync(conn, conn->parent->handle)) 5134 goto unlock; 5135 } 5136 fallthrough; 5137 5138 default: 5139 conn->state = BT_CLOSED; 5140 break; 5141 } 5142 5143 bt_dev_dbg(hdev, "SCO connected with air mode: %02x", ev->air_mode); 5144 /* Notify only in case of SCO over HCI transport data path which 5145 * is zero and non-zero value shall be non-HCI transport data path 5146 */ 5147 if (conn->codec.data_path == 0 && hdev->notify) { 5148 switch (ev->air_mode) { 5149 case 0x02: 5150 hdev->notify(hdev, HCI_NOTIFY_ENABLE_SCO_CVSD); 5151 break; 5152 case 0x03: 5153 hdev->notify(hdev, HCI_NOTIFY_ENABLE_SCO_TRANSP); 5154 break; 5155 } 5156 } 5157 5158 hci_connect_cfm(conn, status); 5159 if (status) 5160 hci_conn_del(conn); 5161 5162 unlock: 5163 hci_dev_unlock(hdev); 5164 } 5165 5166 static inline size_t eir_get_length(u8 *eir, size_t eir_len) 5167 { 5168 size_t parsed = 0; 5169 5170 while (parsed < eir_len) { 5171 u8 field_len = eir[0]; 5172 5173 if (field_len == 0) 5174 return parsed; 5175 5176 parsed += field_len + 1; 5177 eir += field_len + 1; 5178 } 5179 5180 return eir_len; 5181 } 5182 5183 static void hci_extended_inquiry_result_evt(struct hci_dev *hdev, void *edata, 5184 struct sk_buff *skb) 5185 { 5186 struct hci_ev_ext_inquiry_result *ev = edata; 5187 struct inquiry_data data; 5188 size_t eir_len; 5189 int i; 5190 5191 if (!hci_ev_skb_pull(hdev, skb, HCI_EV_EXTENDED_INQUIRY_RESULT, 5192 flex_array_size(ev, info, ev->num))) 5193 return; 5194 5195 bt_dev_dbg(hdev, "num %d", ev->num); 5196 5197 if (!ev->num) 5198 return; 5199 5200 if (hci_dev_test_flag(hdev, HCI_PERIODIC_INQ)) 5201 return; 5202 5203 hci_dev_lock(hdev); 5204 5205 for (i = 0; i < ev->num; i++) { 5206 struct extended_inquiry_info *info = &ev->info[i]; 5207 u32 flags; 5208 bool name_known; 5209 5210 bacpy(&data.bdaddr, &info->bdaddr); 5211 data.pscan_rep_mode = info->pscan_rep_mode; 5212 data.pscan_period_mode = info->pscan_period_mode; 5213 data.pscan_mode = 0x00; 5214 memcpy(data.dev_class, info->dev_class, 3); 5215 data.clock_offset = info->clock_offset; 5216 data.rssi = info->rssi; 5217 data.ssp_mode = 0x01; 5218 5219 if (hci_dev_test_flag(hdev, HCI_MGMT)) 5220 name_known = eir_get_data(info->data, 5221 sizeof(info->data), 5222 EIR_NAME_COMPLETE, NULL); 5223 else 5224 name_known = true; 5225 5226 flags = hci_inquiry_cache_update(hdev, &data, name_known); 5227 5228 eir_len = eir_get_length(info->data, sizeof(info->data)); 5229 5230 mgmt_device_found(hdev, &info->bdaddr, ACL_LINK, 0x00, 5231 info->dev_class, info->rssi, 5232 flags, info->data, eir_len, NULL, 0, 0); 5233 } 5234 5235 hci_dev_unlock(hdev); 5236 } 5237 5238 static void hci_key_refresh_complete_evt(struct hci_dev *hdev, void *data, 5239 struct sk_buff *skb) 5240 { 5241 struct hci_ev_key_refresh_complete *ev = data; 5242 struct hci_conn *conn; 5243 5244 bt_dev_dbg(hdev, "status 0x%2.2x handle 0x%4.4x", ev->status, 5245 __le16_to_cpu(ev->handle)); 5246 5247 hci_dev_lock(hdev); 5248 5249 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 5250 if (!conn) 5251 goto unlock; 5252 5253 /* For BR/EDR the necessary steps are taken through the 5254 * auth_complete event. 5255 */ 5256 if (conn->type != LE_LINK) 5257 goto unlock; 5258 5259 if (!ev->status) 5260 conn->sec_level = conn->pending_sec_level; 5261 5262 clear_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); 5263 5264 if (ev->status && conn->state == BT_CONNECTED) { 5265 hci_disconnect(conn, HCI_ERROR_AUTH_FAILURE); 5266 hci_conn_drop(conn); 5267 goto unlock; 5268 } 5269 5270 if (conn->state == BT_CONFIG) { 5271 if (!ev->status) 5272 conn->state = BT_CONNECTED; 5273 5274 hci_connect_cfm(conn, ev->status); 5275 hci_conn_drop(conn); 5276 } else { 5277 hci_auth_cfm(conn, ev->status); 5278 5279 hci_conn_hold(conn); 5280 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 5281 hci_conn_drop(conn); 5282 } 5283 5284 unlock: 5285 hci_dev_unlock(hdev); 5286 } 5287 5288 static u8 hci_get_auth_req(struct hci_conn *conn) 5289 { 5290 /* If remote requests no-bonding follow that lead */ 5291 if (conn->remote_auth == HCI_AT_NO_BONDING || 5292 conn->remote_auth == HCI_AT_NO_BONDING_MITM) 5293 return conn->remote_auth | (conn->auth_type & 0x01); 5294 5295 /* If both remote and local have enough IO capabilities, require 5296 * MITM protection 5297 */ 5298 if (conn->remote_cap != HCI_IO_NO_INPUT_OUTPUT && 5299 conn->io_capability != HCI_IO_NO_INPUT_OUTPUT) 5300 return conn->remote_auth | 0x01; 5301 5302 /* No MITM protection possible so ignore remote requirement */ 5303 return (conn->remote_auth & ~0x01) | (conn->auth_type & 0x01); 5304 } 5305 5306 static u8 bredr_oob_data_present(struct hci_conn *conn) 5307 { 5308 struct hci_dev *hdev = conn->hdev; 5309 struct oob_data *data; 5310 5311 data = hci_find_remote_oob_data(hdev, &conn->dst, BDADDR_BREDR); 5312 if (!data) 5313 return 0x00; 5314 5315 if (bredr_sc_enabled(hdev)) { 5316 /* When Secure Connections is enabled, then just 5317 * return the present value stored with the OOB 5318 * data. The stored value contains the right present 5319 * information. However it can only be trusted when 5320 * not in Secure Connection Only mode. 5321 */ 5322 if (!hci_dev_test_flag(hdev, HCI_SC_ONLY)) 5323 return data->present; 5324 5325 /* When Secure Connections Only mode is enabled, then 5326 * the P-256 values are required. If they are not 5327 * available, then do not declare that OOB data is 5328 * present. 5329 */ 5330 if (!crypto_memneq(data->rand256, ZERO_KEY, 16) || 5331 !crypto_memneq(data->hash256, ZERO_KEY, 16)) 5332 return 0x00; 5333 5334 return 0x02; 5335 } 5336 5337 /* When Secure Connections is not enabled or actually 5338 * not supported by the hardware, then check that if 5339 * P-192 data values are present. 5340 */ 5341 if (!crypto_memneq(data->rand192, ZERO_KEY, 16) || 5342 !crypto_memneq(data->hash192, ZERO_KEY, 16)) 5343 return 0x00; 5344 5345 return 0x01; 5346 } 5347 5348 static void hci_io_capa_request_evt(struct hci_dev *hdev, void *data, 5349 struct sk_buff *skb) 5350 { 5351 struct hci_ev_io_capa_request *ev = data; 5352 struct hci_conn *conn; 5353 5354 bt_dev_dbg(hdev, ""); 5355 5356 hci_dev_lock(hdev); 5357 5358 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 5359 if (!conn || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) 5360 goto unlock; 5361 5362 /* Assume remote supports SSP since it has triggered this event */ 5363 set_bit(HCI_CONN_SSP_ENABLED, &conn->flags); 5364 5365 hci_conn_hold(conn); 5366 5367 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 5368 goto unlock; 5369 5370 /* Allow pairing if we're pairable, the initiators of the 5371 * pairing or if the remote is not requesting bonding. 5372 */ 5373 if (hci_dev_test_flag(hdev, HCI_BONDABLE) || 5374 test_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags) || 5375 (conn->remote_auth & ~0x01) == HCI_AT_NO_BONDING) { 5376 struct hci_cp_io_capability_reply cp; 5377 5378 bacpy(&cp.bdaddr, &ev->bdaddr); 5379 /* Change the IO capability from KeyboardDisplay 5380 * to DisplayYesNo as it is not supported by BT spec. */ 5381 cp.capability = (conn->io_capability == 0x04) ? 5382 HCI_IO_DISPLAY_YESNO : conn->io_capability; 5383 5384 /* If we are initiators, there is no remote information yet */ 5385 if (conn->remote_auth == 0xff) { 5386 /* Request MITM protection if our IO caps allow it 5387 * except for the no-bonding case. 5388 */ 5389 if (conn->io_capability != HCI_IO_NO_INPUT_OUTPUT && 5390 conn->auth_type != HCI_AT_NO_BONDING) 5391 conn->auth_type |= 0x01; 5392 } else { 5393 conn->auth_type = hci_get_auth_req(conn); 5394 } 5395 5396 /* If we're not bondable, force one of the non-bondable 5397 * authentication requirement values. 5398 */ 5399 if (!hci_dev_test_flag(hdev, HCI_BONDABLE)) 5400 conn->auth_type &= HCI_AT_NO_BONDING_MITM; 5401 5402 cp.authentication = conn->auth_type; 5403 cp.oob_data = bredr_oob_data_present(conn); 5404 5405 hci_send_cmd(hdev, HCI_OP_IO_CAPABILITY_REPLY, 5406 sizeof(cp), &cp); 5407 } else { 5408 struct hci_cp_io_capability_neg_reply cp; 5409 5410 bacpy(&cp.bdaddr, &ev->bdaddr); 5411 cp.reason = HCI_ERROR_PAIRING_NOT_ALLOWED; 5412 5413 hci_send_cmd(hdev, HCI_OP_IO_CAPABILITY_NEG_REPLY, 5414 sizeof(cp), &cp); 5415 } 5416 5417 unlock: 5418 hci_dev_unlock(hdev); 5419 } 5420 5421 static void hci_io_capa_reply_evt(struct hci_dev *hdev, void *data, 5422 struct sk_buff *skb) 5423 { 5424 struct hci_ev_io_capa_reply *ev = data; 5425 struct hci_conn *conn; 5426 5427 bt_dev_dbg(hdev, ""); 5428 5429 hci_dev_lock(hdev); 5430 5431 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 5432 if (!conn) 5433 goto unlock; 5434 5435 conn->remote_cap = ev->capability; 5436 conn->remote_auth = ev->authentication; 5437 5438 unlock: 5439 hci_dev_unlock(hdev); 5440 } 5441 5442 static void hci_user_confirm_request_evt(struct hci_dev *hdev, void *data, 5443 struct sk_buff *skb) 5444 { 5445 struct hci_ev_user_confirm_req *ev = data; 5446 int loc_mitm, rem_mitm, confirm_hint = 0; 5447 struct hci_conn *conn; 5448 5449 bt_dev_dbg(hdev, ""); 5450 5451 hci_dev_lock(hdev); 5452 5453 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 5454 goto unlock; 5455 5456 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 5457 if (!conn) 5458 goto unlock; 5459 5460 loc_mitm = (conn->auth_type & 0x01); 5461 rem_mitm = (conn->remote_auth & 0x01); 5462 5463 /* If we require MITM but the remote device can't provide that 5464 * (it has NoInputNoOutput) then reject the confirmation 5465 * request. We check the security level here since it doesn't 5466 * necessarily match conn->auth_type. 5467 */ 5468 if (conn->pending_sec_level > BT_SECURITY_MEDIUM && 5469 conn->remote_cap == HCI_IO_NO_INPUT_OUTPUT) { 5470 bt_dev_dbg(hdev, "Rejecting request: remote device can't provide MITM"); 5471 hci_send_cmd(hdev, HCI_OP_USER_CONFIRM_NEG_REPLY, 5472 sizeof(ev->bdaddr), &ev->bdaddr); 5473 goto unlock; 5474 } 5475 5476 /* If no side requires MITM protection; auto-accept */ 5477 if ((!loc_mitm || conn->remote_cap == HCI_IO_NO_INPUT_OUTPUT) && 5478 (!rem_mitm || conn->io_capability == HCI_IO_NO_INPUT_OUTPUT)) { 5479 5480 /* If we're not the initiators request authorization to 5481 * proceed from user space (mgmt_user_confirm with 5482 * confirm_hint set to 1). The exception is if neither 5483 * side had MITM or if the local IO capability is 5484 * NoInputNoOutput, in which case we do auto-accept 5485 */ 5486 if (!test_bit(HCI_CONN_AUTH_PEND, &conn->flags) && 5487 conn->io_capability != HCI_IO_NO_INPUT_OUTPUT && 5488 (loc_mitm || rem_mitm)) { 5489 bt_dev_dbg(hdev, "Confirming auto-accept as acceptor"); 5490 confirm_hint = 1; 5491 goto confirm; 5492 } 5493 5494 /* If there already exists link key in local host, leave the 5495 * decision to user space since the remote device could be 5496 * legitimate or malicious. 5497 */ 5498 if (hci_find_link_key(hdev, &ev->bdaddr)) { 5499 bt_dev_dbg(hdev, "Local host already has link key"); 5500 confirm_hint = 1; 5501 goto confirm; 5502 } 5503 5504 BT_DBG("Auto-accept of user confirmation with %ums delay", 5505 hdev->auto_accept_delay); 5506 5507 if (hdev->auto_accept_delay > 0) { 5508 int delay = msecs_to_jiffies(hdev->auto_accept_delay); 5509 queue_delayed_work(conn->hdev->workqueue, 5510 &conn->auto_accept_work, delay); 5511 goto unlock; 5512 } 5513 5514 hci_send_cmd(hdev, HCI_OP_USER_CONFIRM_REPLY, 5515 sizeof(ev->bdaddr), &ev->bdaddr); 5516 goto unlock; 5517 } 5518 5519 confirm: 5520 mgmt_user_confirm_request(hdev, &ev->bdaddr, ACL_LINK, 0, 5521 le32_to_cpu(ev->passkey), confirm_hint); 5522 5523 unlock: 5524 hci_dev_unlock(hdev); 5525 } 5526 5527 static void hci_user_passkey_request_evt(struct hci_dev *hdev, void *data, 5528 struct sk_buff *skb) 5529 { 5530 struct hci_ev_user_passkey_req *ev = data; 5531 5532 bt_dev_dbg(hdev, ""); 5533 5534 if (hci_dev_test_flag(hdev, HCI_MGMT)) 5535 mgmt_user_passkey_request(hdev, &ev->bdaddr, ACL_LINK, 0); 5536 } 5537 5538 static void hci_user_passkey_notify_evt(struct hci_dev *hdev, void *data, 5539 struct sk_buff *skb) 5540 { 5541 struct hci_ev_user_passkey_notify *ev = data; 5542 struct hci_conn *conn; 5543 5544 bt_dev_dbg(hdev, ""); 5545 5546 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 5547 if (!conn) 5548 return; 5549 5550 conn->passkey_notify = __le32_to_cpu(ev->passkey); 5551 conn->passkey_entered = 0; 5552 5553 if (hci_dev_test_flag(hdev, HCI_MGMT)) 5554 mgmt_user_passkey_notify(hdev, &conn->dst, conn->type, 5555 conn->dst_type, conn->passkey_notify, 5556 conn->passkey_entered); 5557 } 5558 5559 static void hci_keypress_notify_evt(struct hci_dev *hdev, void *data, 5560 struct sk_buff *skb) 5561 { 5562 struct hci_ev_keypress_notify *ev = data; 5563 struct hci_conn *conn; 5564 5565 bt_dev_dbg(hdev, ""); 5566 5567 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 5568 if (!conn) 5569 return; 5570 5571 switch (ev->type) { 5572 case HCI_KEYPRESS_STARTED: 5573 conn->passkey_entered = 0; 5574 return; 5575 5576 case HCI_KEYPRESS_ENTERED: 5577 conn->passkey_entered++; 5578 break; 5579 5580 case HCI_KEYPRESS_ERASED: 5581 conn->passkey_entered--; 5582 break; 5583 5584 case HCI_KEYPRESS_CLEARED: 5585 conn->passkey_entered = 0; 5586 break; 5587 5588 case HCI_KEYPRESS_COMPLETED: 5589 return; 5590 } 5591 5592 if (hci_dev_test_flag(hdev, HCI_MGMT)) 5593 mgmt_user_passkey_notify(hdev, &conn->dst, conn->type, 5594 conn->dst_type, conn->passkey_notify, 5595 conn->passkey_entered); 5596 } 5597 5598 static void hci_simple_pair_complete_evt(struct hci_dev *hdev, void *data, 5599 struct sk_buff *skb) 5600 { 5601 struct hci_ev_simple_pair_complete *ev = data; 5602 struct hci_conn *conn; 5603 5604 bt_dev_dbg(hdev, ""); 5605 5606 hci_dev_lock(hdev); 5607 5608 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 5609 if (!conn || !hci_conn_ssp_enabled(conn)) 5610 goto unlock; 5611 5612 /* Reset the authentication requirement to unknown */ 5613 conn->remote_auth = 0xff; 5614 5615 /* To avoid duplicate auth_failed events to user space we check 5616 * the HCI_CONN_AUTH_PEND flag which will be set if we 5617 * initiated the authentication. A traditional auth_complete 5618 * event gets always produced as initiator and is also mapped to 5619 * the mgmt_auth_failed event */ 5620 if (!test_bit(HCI_CONN_AUTH_PEND, &conn->flags) && ev->status) 5621 mgmt_auth_failed(conn, ev->status); 5622 5623 hci_conn_drop(conn); 5624 5625 unlock: 5626 hci_dev_unlock(hdev); 5627 } 5628 5629 static void hci_remote_host_features_evt(struct hci_dev *hdev, void *data, 5630 struct sk_buff *skb) 5631 { 5632 struct hci_ev_remote_host_features *ev = data; 5633 struct inquiry_entry *ie; 5634 struct hci_conn *conn; 5635 5636 bt_dev_dbg(hdev, ""); 5637 5638 hci_dev_lock(hdev); 5639 5640 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &ev->bdaddr); 5641 if (conn) 5642 memcpy(conn->features[1], ev->features, 8); 5643 5644 ie = hci_inquiry_cache_lookup(hdev, &ev->bdaddr); 5645 if (ie) 5646 ie->data.ssp_mode = (ev->features[0] & LMP_HOST_SSP); 5647 5648 hci_dev_unlock(hdev); 5649 } 5650 5651 static void hci_remote_oob_data_request_evt(struct hci_dev *hdev, void *edata, 5652 struct sk_buff *skb) 5653 { 5654 struct hci_ev_remote_oob_data_request *ev = edata; 5655 struct oob_data *data; 5656 5657 bt_dev_dbg(hdev, ""); 5658 5659 hci_dev_lock(hdev); 5660 5661 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 5662 goto unlock; 5663 5664 data = hci_find_remote_oob_data(hdev, &ev->bdaddr, BDADDR_BREDR); 5665 if (!data) { 5666 struct hci_cp_remote_oob_data_neg_reply cp; 5667 5668 bacpy(&cp.bdaddr, &ev->bdaddr); 5669 hci_send_cmd(hdev, HCI_OP_REMOTE_OOB_DATA_NEG_REPLY, 5670 sizeof(cp), &cp); 5671 goto unlock; 5672 } 5673 5674 if (bredr_sc_enabled(hdev)) { 5675 struct hci_cp_remote_oob_ext_data_reply cp; 5676 5677 bacpy(&cp.bdaddr, &ev->bdaddr); 5678 if (hci_dev_test_flag(hdev, HCI_SC_ONLY)) { 5679 memset(cp.hash192, 0, sizeof(cp.hash192)); 5680 memset(cp.rand192, 0, sizeof(cp.rand192)); 5681 } else { 5682 memcpy(cp.hash192, data->hash192, sizeof(cp.hash192)); 5683 memcpy(cp.rand192, data->rand192, sizeof(cp.rand192)); 5684 } 5685 memcpy(cp.hash256, data->hash256, sizeof(cp.hash256)); 5686 memcpy(cp.rand256, data->rand256, sizeof(cp.rand256)); 5687 5688 hci_send_cmd(hdev, HCI_OP_REMOTE_OOB_EXT_DATA_REPLY, 5689 sizeof(cp), &cp); 5690 } else { 5691 struct hci_cp_remote_oob_data_reply cp; 5692 5693 bacpy(&cp.bdaddr, &ev->bdaddr); 5694 memcpy(cp.hash, data->hash192, sizeof(cp.hash)); 5695 memcpy(cp.rand, data->rand192, sizeof(cp.rand)); 5696 5697 hci_send_cmd(hdev, HCI_OP_REMOTE_OOB_DATA_REPLY, 5698 sizeof(cp), &cp); 5699 } 5700 5701 unlock: 5702 hci_dev_unlock(hdev); 5703 } 5704 5705 #if IS_ENABLED(CONFIG_BT_HS) 5706 static void hci_chan_selected_evt(struct hci_dev *hdev, void *data, 5707 struct sk_buff *skb) 5708 { 5709 struct hci_ev_channel_selected *ev = data; 5710 struct hci_conn *hcon; 5711 5712 bt_dev_dbg(hdev, "handle 0x%2.2x", ev->phy_handle); 5713 5714 hcon = hci_conn_hash_lookup_handle(hdev, ev->phy_handle); 5715 if (!hcon) 5716 return; 5717 5718 amp_read_loc_assoc_final_data(hdev, hcon); 5719 } 5720 5721 static void hci_phy_link_complete_evt(struct hci_dev *hdev, void *data, 5722 struct sk_buff *skb) 5723 { 5724 struct hci_ev_phy_link_complete *ev = data; 5725 struct hci_conn *hcon, *bredr_hcon; 5726 5727 bt_dev_dbg(hdev, "handle 0x%2.2x status 0x%2.2x", ev->phy_handle, 5728 ev->status); 5729 5730 hci_dev_lock(hdev); 5731 5732 hcon = hci_conn_hash_lookup_handle(hdev, ev->phy_handle); 5733 if (!hcon) 5734 goto unlock; 5735 5736 if (!hcon->amp_mgr) 5737 goto unlock; 5738 5739 if (ev->status) { 5740 hci_conn_del(hcon); 5741 goto unlock; 5742 } 5743 5744 bredr_hcon = hcon->amp_mgr->l2cap_conn->hcon; 5745 5746 hcon->state = BT_CONNECTED; 5747 bacpy(&hcon->dst, &bredr_hcon->dst); 5748 5749 hci_conn_hold(hcon); 5750 hcon->disc_timeout = HCI_DISCONN_TIMEOUT; 5751 hci_conn_drop(hcon); 5752 5753 hci_debugfs_create_conn(hcon); 5754 hci_conn_add_sysfs(hcon); 5755 5756 amp_physical_cfm(bredr_hcon, hcon); 5757 5758 unlock: 5759 hci_dev_unlock(hdev); 5760 } 5761 5762 static void hci_loglink_complete_evt(struct hci_dev *hdev, void *data, 5763 struct sk_buff *skb) 5764 { 5765 struct hci_ev_logical_link_complete *ev = data; 5766 struct hci_conn *hcon; 5767 struct hci_chan *hchan; 5768 struct amp_mgr *mgr; 5769 5770 bt_dev_dbg(hdev, "log_handle 0x%4.4x phy_handle 0x%2.2x status 0x%2.2x", 5771 le16_to_cpu(ev->handle), ev->phy_handle, ev->status); 5772 5773 hcon = hci_conn_hash_lookup_handle(hdev, ev->phy_handle); 5774 if (!hcon) 5775 return; 5776 5777 /* Create AMP hchan */ 5778 hchan = hci_chan_create(hcon); 5779 if (!hchan) 5780 return; 5781 5782 hchan->handle = le16_to_cpu(ev->handle); 5783 hchan->amp = true; 5784 5785 BT_DBG("hcon %p mgr %p hchan %p", hcon, hcon->amp_mgr, hchan); 5786 5787 mgr = hcon->amp_mgr; 5788 if (mgr && mgr->bredr_chan) { 5789 struct l2cap_chan *bredr_chan = mgr->bredr_chan; 5790 5791 l2cap_chan_lock(bredr_chan); 5792 5793 bredr_chan->conn->mtu = hdev->block_mtu; 5794 l2cap_logical_cfm(bredr_chan, hchan, 0); 5795 hci_conn_hold(hcon); 5796 5797 l2cap_chan_unlock(bredr_chan); 5798 } 5799 } 5800 5801 static void hci_disconn_loglink_complete_evt(struct hci_dev *hdev, void *data, 5802 struct sk_buff *skb) 5803 { 5804 struct hci_ev_disconn_logical_link_complete *ev = data; 5805 struct hci_chan *hchan; 5806 5807 bt_dev_dbg(hdev, "handle 0x%4.4x status 0x%2.2x", 5808 le16_to_cpu(ev->handle), ev->status); 5809 5810 if (ev->status) 5811 return; 5812 5813 hci_dev_lock(hdev); 5814 5815 hchan = hci_chan_lookup_handle(hdev, le16_to_cpu(ev->handle)); 5816 if (!hchan || !hchan->amp) 5817 goto unlock; 5818 5819 amp_destroy_logical_link(hchan, ev->reason); 5820 5821 unlock: 5822 hci_dev_unlock(hdev); 5823 } 5824 5825 static void hci_disconn_phylink_complete_evt(struct hci_dev *hdev, void *data, 5826 struct sk_buff *skb) 5827 { 5828 struct hci_ev_disconn_phy_link_complete *ev = data; 5829 struct hci_conn *hcon; 5830 5831 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 5832 5833 if (ev->status) 5834 return; 5835 5836 hci_dev_lock(hdev); 5837 5838 hcon = hci_conn_hash_lookup_handle(hdev, ev->phy_handle); 5839 if (hcon && hcon->type == AMP_LINK) { 5840 hcon->state = BT_CLOSED; 5841 hci_disconn_cfm(hcon, ev->reason); 5842 hci_conn_del(hcon); 5843 } 5844 5845 hci_dev_unlock(hdev); 5846 } 5847 #endif 5848 5849 static void le_conn_update_addr(struct hci_conn *conn, bdaddr_t *bdaddr, 5850 u8 bdaddr_type, bdaddr_t *local_rpa) 5851 { 5852 if (conn->out) { 5853 conn->dst_type = bdaddr_type; 5854 conn->resp_addr_type = bdaddr_type; 5855 bacpy(&conn->resp_addr, bdaddr); 5856 5857 /* Check if the controller has set a Local RPA then it must be 5858 * used instead or hdev->rpa. 5859 */ 5860 if (local_rpa && bacmp(local_rpa, BDADDR_ANY)) { 5861 conn->init_addr_type = ADDR_LE_DEV_RANDOM; 5862 bacpy(&conn->init_addr, local_rpa); 5863 } else if (hci_dev_test_flag(conn->hdev, HCI_PRIVACY)) { 5864 conn->init_addr_type = ADDR_LE_DEV_RANDOM; 5865 bacpy(&conn->init_addr, &conn->hdev->rpa); 5866 } else { 5867 hci_copy_identity_address(conn->hdev, &conn->init_addr, 5868 &conn->init_addr_type); 5869 } 5870 } else { 5871 conn->resp_addr_type = conn->hdev->adv_addr_type; 5872 /* Check if the controller has set a Local RPA then it must be 5873 * used instead or hdev->rpa. 5874 */ 5875 if (local_rpa && bacmp(local_rpa, BDADDR_ANY)) { 5876 conn->resp_addr_type = ADDR_LE_DEV_RANDOM; 5877 bacpy(&conn->resp_addr, local_rpa); 5878 } else if (conn->hdev->adv_addr_type == ADDR_LE_DEV_RANDOM) { 5879 /* In case of ext adv, resp_addr will be updated in 5880 * Adv Terminated event. 5881 */ 5882 if (!ext_adv_capable(conn->hdev)) 5883 bacpy(&conn->resp_addr, 5884 &conn->hdev->random_addr); 5885 } else { 5886 bacpy(&conn->resp_addr, &conn->hdev->bdaddr); 5887 } 5888 5889 conn->init_addr_type = bdaddr_type; 5890 bacpy(&conn->init_addr, bdaddr); 5891 5892 /* For incoming connections, set the default minimum 5893 * and maximum connection interval. They will be used 5894 * to check if the parameters are in range and if not 5895 * trigger the connection update procedure. 5896 */ 5897 conn->le_conn_min_interval = conn->hdev->le_conn_min_interval; 5898 conn->le_conn_max_interval = conn->hdev->le_conn_max_interval; 5899 } 5900 } 5901 5902 static void le_conn_complete_evt(struct hci_dev *hdev, u8 status, 5903 bdaddr_t *bdaddr, u8 bdaddr_type, 5904 bdaddr_t *local_rpa, u8 role, u16 handle, 5905 u16 interval, u16 latency, 5906 u16 supervision_timeout) 5907 { 5908 struct hci_conn_params *params; 5909 struct hci_conn *conn; 5910 struct smp_irk *irk; 5911 u8 addr_type; 5912 5913 hci_dev_lock(hdev); 5914 5915 /* All controllers implicitly stop advertising in the event of a 5916 * connection, so ensure that the state bit is cleared. 5917 */ 5918 hci_dev_clear_flag(hdev, HCI_LE_ADV); 5919 5920 conn = hci_conn_hash_lookup_ba(hdev, LE_LINK, bdaddr); 5921 if (!conn) { 5922 /* In case of error status and there is no connection pending 5923 * just unlock as there is nothing to cleanup. 5924 */ 5925 if (status) 5926 goto unlock; 5927 5928 conn = hci_conn_add_unset(hdev, LE_LINK, bdaddr, role); 5929 if (!conn) { 5930 bt_dev_err(hdev, "no memory for new connection"); 5931 goto unlock; 5932 } 5933 5934 conn->dst_type = bdaddr_type; 5935 5936 /* If we didn't have a hci_conn object previously 5937 * but we're in central role this must be something 5938 * initiated using an accept list. Since accept list based 5939 * connections are not "first class citizens" we don't 5940 * have full tracking of them. Therefore, we go ahead 5941 * with a "best effort" approach of determining the 5942 * initiator address based on the HCI_PRIVACY flag. 5943 */ 5944 if (conn->out) { 5945 conn->resp_addr_type = bdaddr_type; 5946 bacpy(&conn->resp_addr, bdaddr); 5947 if (hci_dev_test_flag(hdev, HCI_PRIVACY)) { 5948 conn->init_addr_type = ADDR_LE_DEV_RANDOM; 5949 bacpy(&conn->init_addr, &hdev->rpa); 5950 } else { 5951 hci_copy_identity_address(hdev, 5952 &conn->init_addr, 5953 &conn->init_addr_type); 5954 } 5955 } 5956 } else { 5957 cancel_delayed_work(&conn->le_conn_timeout); 5958 } 5959 5960 /* The HCI_LE_Connection_Complete event is only sent once per connection. 5961 * Processing it more than once per connection can corrupt kernel memory. 5962 * 5963 * As the connection handle is set here for the first time, it indicates 5964 * whether the connection is already set up. 5965 */ 5966 if (!HCI_CONN_HANDLE_UNSET(conn->handle)) { 5967 bt_dev_err(hdev, "Ignoring HCI_Connection_Complete for existing connection"); 5968 goto unlock; 5969 } 5970 5971 le_conn_update_addr(conn, bdaddr, bdaddr_type, local_rpa); 5972 5973 /* Lookup the identity address from the stored connection 5974 * address and address type. 5975 * 5976 * When establishing connections to an identity address, the 5977 * connection procedure will store the resolvable random 5978 * address first. Now if it can be converted back into the 5979 * identity address, start using the identity address from 5980 * now on. 5981 */ 5982 irk = hci_get_irk(hdev, &conn->dst, conn->dst_type); 5983 if (irk) { 5984 bacpy(&conn->dst, &irk->bdaddr); 5985 conn->dst_type = irk->addr_type; 5986 } 5987 5988 conn->dst_type = ev_bdaddr_type(hdev, conn->dst_type, NULL); 5989 5990 /* All connection failure handling is taken care of by the 5991 * hci_conn_failed function which is triggered by the HCI 5992 * request completion callbacks used for connecting. 5993 */ 5994 if (status || hci_conn_set_handle(conn, handle)) 5995 goto unlock; 5996 5997 /* Drop the connection if it has been aborted */ 5998 if (test_bit(HCI_CONN_CANCEL, &conn->flags)) { 5999 hci_conn_drop(conn); 6000 goto unlock; 6001 } 6002 6003 if (conn->dst_type == ADDR_LE_DEV_PUBLIC) 6004 addr_type = BDADDR_LE_PUBLIC; 6005 else 6006 addr_type = BDADDR_LE_RANDOM; 6007 6008 /* Drop the connection if the device is blocked */ 6009 if (hci_bdaddr_list_lookup(&hdev->reject_list, &conn->dst, addr_type)) { 6010 hci_conn_drop(conn); 6011 goto unlock; 6012 } 6013 6014 mgmt_device_connected(hdev, conn, NULL, 0); 6015 6016 conn->sec_level = BT_SECURITY_LOW; 6017 conn->state = BT_CONFIG; 6018 6019 /* Store current advertising instance as connection advertising instance 6020 * when sotfware rotation is in use so it can be re-enabled when 6021 * disconnected. 6022 */ 6023 if (!ext_adv_capable(hdev)) 6024 conn->adv_instance = hdev->cur_adv_instance; 6025 6026 conn->le_conn_interval = interval; 6027 conn->le_conn_latency = latency; 6028 conn->le_supv_timeout = supervision_timeout; 6029 6030 hci_debugfs_create_conn(conn); 6031 hci_conn_add_sysfs(conn); 6032 6033 /* The remote features procedure is defined for central 6034 * role only. So only in case of an initiated connection 6035 * request the remote features. 6036 * 6037 * If the local controller supports peripheral-initiated features 6038 * exchange, then requesting the remote features in peripheral 6039 * role is possible. Otherwise just transition into the 6040 * connected state without requesting the remote features. 6041 */ 6042 if (conn->out || 6043 (hdev->le_features[0] & HCI_LE_PERIPHERAL_FEATURES)) { 6044 struct hci_cp_le_read_remote_features cp; 6045 6046 cp.handle = __cpu_to_le16(conn->handle); 6047 6048 hci_send_cmd(hdev, HCI_OP_LE_READ_REMOTE_FEATURES, 6049 sizeof(cp), &cp); 6050 6051 hci_conn_hold(conn); 6052 } else { 6053 conn->state = BT_CONNECTED; 6054 hci_connect_cfm(conn, status); 6055 } 6056 6057 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst, 6058 conn->dst_type); 6059 if (params) { 6060 hci_pend_le_list_del_init(params); 6061 if (params->conn) { 6062 hci_conn_drop(params->conn); 6063 hci_conn_put(params->conn); 6064 params->conn = NULL; 6065 } 6066 } 6067 6068 unlock: 6069 hci_update_passive_scan(hdev); 6070 hci_dev_unlock(hdev); 6071 } 6072 6073 static void hci_le_conn_complete_evt(struct hci_dev *hdev, void *data, 6074 struct sk_buff *skb) 6075 { 6076 struct hci_ev_le_conn_complete *ev = data; 6077 6078 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 6079 6080 le_conn_complete_evt(hdev, ev->status, &ev->bdaddr, ev->bdaddr_type, 6081 NULL, ev->role, le16_to_cpu(ev->handle), 6082 le16_to_cpu(ev->interval), 6083 le16_to_cpu(ev->latency), 6084 le16_to_cpu(ev->supervision_timeout)); 6085 } 6086 6087 static void hci_le_enh_conn_complete_evt(struct hci_dev *hdev, void *data, 6088 struct sk_buff *skb) 6089 { 6090 struct hci_ev_le_enh_conn_complete *ev = data; 6091 6092 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 6093 6094 le_conn_complete_evt(hdev, ev->status, &ev->bdaddr, ev->bdaddr_type, 6095 &ev->local_rpa, ev->role, le16_to_cpu(ev->handle), 6096 le16_to_cpu(ev->interval), 6097 le16_to_cpu(ev->latency), 6098 le16_to_cpu(ev->supervision_timeout)); 6099 } 6100 6101 static void hci_le_ext_adv_term_evt(struct hci_dev *hdev, void *data, 6102 struct sk_buff *skb) 6103 { 6104 struct hci_evt_le_ext_adv_set_term *ev = data; 6105 struct hci_conn *conn; 6106 struct adv_info *adv, *n; 6107 6108 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 6109 6110 /* The Bluetooth Core 5.3 specification clearly states that this event 6111 * shall not be sent when the Host disables the advertising set. So in 6112 * case of HCI_ERROR_CANCELLED_BY_HOST, just ignore the event. 6113 * 6114 * When the Host disables an advertising set, all cleanup is done via 6115 * its command callback and not needed to be duplicated here. 6116 */ 6117 if (ev->status == HCI_ERROR_CANCELLED_BY_HOST) { 6118 bt_dev_warn_ratelimited(hdev, "Unexpected advertising set terminated event"); 6119 return; 6120 } 6121 6122 hci_dev_lock(hdev); 6123 6124 adv = hci_find_adv_instance(hdev, ev->handle); 6125 6126 if (ev->status) { 6127 if (!adv) 6128 goto unlock; 6129 6130 /* Remove advertising as it has been terminated */ 6131 hci_remove_adv_instance(hdev, ev->handle); 6132 mgmt_advertising_removed(NULL, hdev, ev->handle); 6133 6134 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) { 6135 if (adv->enabled) 6136 goto unlock; 6137 } 6138 6139 /* We are no longer advertising, clear HCI_LE_ADV */ 6140 hci_dev_clear_flag(hdev, HCI_LE_ADV); 6141 goto unlock; 6142 } 6143 6144 if (adv) 6145 adv->enabled = false; 6146 6147 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->conn_handle)); 6148 if (conn) { 6149 /* Store handle in the connection so the correct advertising 6150 * instance can be re-enabled when disconnected. 6151 */ 6152 conn->adv_instance = ev->handle; 6153 6154 if (hdev->adv_addr_type != ADDR_LE_DEV_RANDOM || 6155 bacmp(&conn->resp_addr, BDADDR_ANY)) 6156 goto unlock; 6157 6158 if (!ev->handle) { 6159 bacpy(&conn->resp_addr, &hdev->random_addr); 6160 goto unlock; 6161 } 6162 6163 if (adv) 6164 bacpy(&conn->resp_addr, &adv->random_addr); 6165 } 6166 6167 unlock: 6168 hci_dev_unlock(hdev); 6169 } 6170 6171 static void hci_le_conn_update_complete_evt(struct hci_dev *hdev, void *data, 6172 struct sk_buff *skb) 6173 { 6174 struct hci_ev_le_conn_update_complete *ev = data; 6175 struct hci_conn *conn; 6176 6177 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 6178 6179 if (ev->status) 6180 return; 6181 6182 hci_dev_lock(hdev); 6183 6184 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 6185 if (conn) { 6186 conn->le_conn_interval = le16_to_cpu(ev->interval); 6187 conn->le_conn_latency = le16_to_cpu(ev->latency); 6188 conn->le_supv_timeout = le16_to_cpu(ev->supervision_timeout); 6189 } 6190 6191 hci_dev_unlock(hdev); 6192 } 6193 6194 /* This function requires the caller holds hdev->lock */ 6195 static struct hci_conn *check_pending_le_conn(struct hci_dev *hdev, 6196 bdaddr_t *addr, 6197 u8 addr_type, bool addr_resolved, 6198 u8 adv_type) 6199 { 6200 struct hci_conn *conn; 6201 struct hci_conn_params *params; 6202 6203 /* If the event is not connectable don't proceed further */ 6204 if (adv_type != LE_ADV_IND && adv_type != LE_ADV_DIRECT_IND) 6205 return NULL; 6206 6207 /* Ignore if the device is blocked or hdev is suspended */ 6208 if (hci_bdaddr_list_lookup(&hdev->reject_list, addr, addr_type) || 6209 hdev->suspended) 6210 return NULL; 6211 6212 /* Most controller will fail if we try to create new connections 6213 * while we have an existing one in peripheral role. 6214 */ 6215 if (hdev->conn_hash.le_num_peripheral > 0 && 6216 (!test_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks) || 6217 !(hdev->le_states[3] & 0x10))) 6218 return NULL; 6219 6220 /* If we're not connectable only connect devices that we have in 6221 * our pend_le_conns list. 6222 */ 6223 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, addr, 6224 addr_type); 6225 if (!params) 6226 return NULL; 6227 6228 if (!params->explicit_connect) { 6229 switch (params->auto_connect) { 6230 case HCI_AUTO_CONN_DIRECT: 6231 /* Only devices advertising with ADV_DIRECT_IND are 6232 * triggering a connection attempt. This is allowing 6233 * incoming connections from peripheral devices. 6234 */ 6235 if (adv_type != LE_ADV_DIRECT_IND) 6236 return NULL; 6237 break; 6238 case HCI_AUTO_CONN_ALWAYS: 6239 /* Devices advertising with ADV_IND or ADV_DIRECT_IND 6240 * are triggering a connection attempt. This means 6241 * that incoming connections from peripheral device are 6242 * accepted and also outgoing connections to peripheral 6243 * devices are established when found. 6244 */ 6245 break; 6246 default: 6247 return NULL; 6248 } 6249 } 6250 6251 conn = hci_connect_le(hdev, addr, addr_type, addr_resolved, 6252 BT_SECURITY_LOW, hdev->def_le_autoconnect_timeout, 6253 HCI_ROLE_MASTER); 6254 if (!IS_ERR(conn)) { 6255 /* If HCI_AUTO_CONN_EXPLICIT is set, conn is already owned 6256 * by higher layer that tried to connect, if no then 6257 * store the pointer since we don't really have any 6258 * other owner of the object besides the params that 6259 * triggered it. This way we can abort the connection if 6260 * the parameters get removed and keep the reference 6261 * count consistent once the connection is established. 6262 */ 6263 6264 if (!params->explicit_connect) 6265 params->conn = hci_conn_get(conn); 6266 6267 return conn; 6268 } 6269 6270 switch (PTR_ERR(conn)) { 6271 case -EBUSY: 6272 /* If hci_connect() returns -EBUSY it means there is already 6273 * an LE connection attempt going on. Since controllers don't 6274 * support more than one connection attempt at the time, we 6275 * don't consider this an error case. 6276 */ 6277 break; 6278 default: 6279 BT_DBG("Failed to connect: err %ld", PTR_ERR(conn)); 6280 return NULL; 6281 } 6282 6283 return NULL; 6284 } 6285 6286 static void process_adv_report(struct hci_dev *hdev, u8 type, bdaddr_t *bdaddr, 6287 u8 bdaddr_type, bdaddr_t *direct_addr, 6288 u8 direct_addr_type, s8 rssi, u8 *data, u8 len, 6289 bool ext_adv, bool ctl_time, u64 instant) 6290 { 6291 struct discovery_state *d = &hdev->discovery; 6292 struct smp_irk *irk; 6293 struct hci_conn *conn; 6294 bool match, bdaddr_resolved; 6295 u32 flags; 6296 u8 *ptr; 6297 6298 switch (type) { 6299 case LE_ADV_IND: 6300 case LE_ADV_DIRECT_IND: 6301 case LE_ADV_SCAN_IND: 6302 case LE_ADV_NONCONN_IND: 6303 case LE_ADV_SCAN_RSP: 6304 break; 6305 default: 6306 bt_dev_err_ratelimited(hdev, "unknown advertising packet " 6307 "type: 0x%02x", type); 6308 return; 6309 } 6310 6311 if (len > max_adv_len(hdev)) { 6312 bt_dev_err_ratelimited(hdev, 6313 "adv larger than maximum supported"); 6314 return; 6315 } 6316 6317 /* Find the end of the data in case the report contains padded zero 6318 * bytes at the end causing an invalid length value. 6319 * 6320 * When data is NULL, len is 0 so there is no need for extra ptr 6321 * check as 'ptr < data + 0' is already false in such case. 6322 */ 6323 for (ptr = data; ptr < data + len && *ptr; ptr += *ptr + 1) { 6324 if (ptr + 1 + *ptr > data + len) 6325 break; 6326 } 6327 6328 /* Adjust for actual length. This handles the case when remote 6329 * device is advertising with incorrect data length. 6330 */ 6331 len = ptr - data; 6332 6333 /* If the direct address is present, then this report is from 6334 * a LE Direct Advertising Report event. In that case it is 6335 * important to see if the address is matching the local 6336 * controller address. 6337 */ 6338 if (!hci_dev_test_flag(hdev, HCI_MESH) && direct_addr) { 6339 direct_addr_type = ev_bdaddr_type(hdev, direct_addr_type, 6340 &bdaddr_resolved); 6341 6342 /* Only resolvable random addresses are valid for these 6343 * kind of reports and others can be ignored. 6344 */ 6345 if (!hci_bdaddr_is_rpa(direct_addr, direct_addr_type)) 6346 return; 6347 6348 /* If the controller is not using resolvable random 6349 * addresses, then this report can be ignored. 6350 */ 6351 if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) 6352 return; 6353 6354 /* If the local IRK of the controller does not match 6355 * with the resolvable random address provided, then 6356 * this report can be ignored. 6357 */ 6358 if (!smp_irk_matches(hdev, hdev->irk, direct_addr)) 6359 return; 6360 } 6361 6362 /* Check if we need to convert to identity address */ 6363 irk = hci_get_irk(hdev, bdaddr, bdaddr_type); 6364 if (irk) { 6365 bdaddr = &irk->bdaddr; 6366 bdaddr_type = irk->addr_type; 6367 } 6368 6369 bdaddr_type = ev_bdaddr_type(hdev, bdaddr_type, &bdaddr_resolved); 6370 6371 /* Check if we have been requested to connect to this device. 6372 * 6373 * direct_addr is set only for directed advertising reports (it is NULL 6374 * for advertising reports) and is already verified to be RPA above. 6375 */ 6376 conn = check_pending_le_conn(hdev, bdaddr, bdaddr_type, bdaddr_resolved, 6377 type); 6378 if (!ext_adv && conn && type == LE_ADV_IND && 6379 len <= max_adv_len(hdev)) { 6380 /* Store report for later inclusion by 6381 * mgmt_device_connected 6382 */ 6383 memcpy(conn->le_adv_data, data, len); 6384 conn->le_adv_data_len = len; 6385 } 6386 6387 if (type == LE_ADV_NONCONN_IND || type == LE_ADV_SCAN_IND) 6388 flags = MGMT_DEV_FOUND_NOT_CONNECTABLE; 6389 else 6390 flags = 0; 6391 6392 /* All scan results should be sent up for Mesh systems */ 6393 if (hci_dev_test_flag(hdev, HCI_MESH)) { 6394 mgmt_device_found(hdev, bdaddr, LE_LINK, bdaddr_type, NULL, 6395 rssi, flags, data, len, NULL, 0, instant); 6396 return; 6397 } 6398 6399 /* Passive scanning shouldn't trigger any device found events, 6400 * except for devices marked as CONN_REPORT for which we do send 6401 * device found events, or advertisement monitoring requested. 6402 */ 6403 if (hdev->le_scan_type == LE_SCAN_PASSIVE) { 6404 if (type == LE_ADV_DIRECT_IND) 6405 return; 6406 6407 if (!hci_pend_le_action_lookup(&hdev->pend_le_reports, 6408 bdaddr, bdaddr_type) && 6409 idr_is_empty(&hdev->adv_monitors_idr)) 6410 return; 6411 6412 mgmt_device_found(hdev, bdaddr, LE_LINK, bdaddr_type, NULL, 6413 rssi, flags, data, len, NULL, 0, 0); 6414 return; 6415 } 6416 6417 /* When receiving a scan response, then there is no way to 6418 * know if the remote device is connectable or not. However 6419 * since scan responses are merged with a previously seen 6420 * advertising report, the flags field from that report 6421 * will be used. 6422 * 6423 * In the unlikely case that a controller just sends a scan 6424 * response event that doesn't match the pending report, then 6425 * it is marked as a standalone SCAN_RSP. 6426 */ 6427 if (type == LE_ADV_SCAN_RSP) 6428 flags = MGMT_DEV_FOUND_SCAN_RSP; 6429 6430 /* If there's nothing pending either store the data from this 6431 * event or send an immediate device found event if the data 6432 * should not be stored for later. 6433 */ 6434 if (!ext_adv && !has_pending_adv_report(hdev)) { 6435 /* If the report will trigger a SCAN_REQ store it for 6436 * later merging. 6437 */ 6438 if (type == LE_ADV_IND || type == LE_ADV_SCAN_IND) { 6439 store_pending_adv_report(hdev, bdaddr, bdaddr_type, 6440 rssi, flags, data, len); 6441 return; 6442 } 6443 6444 mgmt_device_found(hdev, bdaddr, LE_LINK, bdaddr_type, NULL, 6445 rssi, flags, data, len, NULL, 0, 0); 6446 return; 6447 } 6448 6449 /* Check if the pending report is for the same device as the new one */ 6450 match = (!bacmp(bdaddr, &d->last_adv_addr) && 6451 bdaddr_type == d->last_adv_addr_type); 6452 6453 /* If the pending data doesn't match this report or this isn't a 6454 * scan response (e.g. we got a duplicate ADV_IND) then force 6455 * sending of the pending data. 6456 */ 6457 if (type != LE_ADV_SCAN_RSP || !match) { 6458 /* Send out whatever is in the cache, but skip duplicates */ 6459 if (!match) 6460 mgmt_device_found(hdev, &d->last_adv_addr, LE_LINK, 6461 d->last_adv_addr_type, NULL, 6462 d->last_adv_rssi, d->last_adv_flags, 6463 d->last_adv_data, 6464 d->last_adv_data_len, NULL, 0, 0); 6465 6466 /* If the new report will trigger a SCAN_REQ store it for 6467 * later merging. 6468 */ 6469 if (!ext_adv && (type == LE_ADV_IND || 6470 type == LE_ADV_SCAN_IND)) { 6471 store_pending_adv_report(hdev, bdaddr, bdaddr_type, 6472 rssi, flags, data, len); 6473 return; 6474 } 6475 6476 /* The advertising reports cannot be merged, so clear 6477 * the pending report and send out a device found event. 6478 */ 6479 clear_pending_adv_report(hdev); 6480 mgmt_device_found(hdev, bdaddr, LE_LINK, bdaddr_type, NULL, 6481 rssi, flags, data, len, NULL, 0, 0); 6482 return; 6483 } 6484 6485 /* If we get here we've got a pending ADV_IND or ADV_SCAN_IND and 6486 * the new event is a SCAN_RSP. We can therefore proceed with 6487 * sending a merged device found event. 6488 */ 6489 mgmt_device_found(hdev, &d->last_adv_addr, LE_LINK, 6490 d->last_adv_addr_type, NULL, rssi, d->last_adv_flags, 6491 d->last_adv_data, d->last_adv_data_len, data, len, 0); 6492 clear_pending_adv_report(hdev); 6493 } 6494 6495 static void hci_le_adv_report_evt(struct hci_dev *hdev, void *data, 6496 struct sk_buff *skb) 6497 { 6498 struct hci_ev_le_advertising_report *ev = data; 6499 u64 instant = jiffies; 6500 6501 if (!ev->num) 6502 return; 6503 6504 hci_dev_lock(hdev); 6505 6506 while (ev->num--) { 6507 struct hci_ev_le_advertising_info *info; 6508 s8 rssi; 6509 6510 info = hci_le_ev_skb_pull(hdev, skb, 6511 HCI_EV_LE_ADVERTISING_REPORT, 6512 sizeof(*info)); 6513 if (!info) 6514 break; 6515 6516 if (!hci_le_ev_skb_pull(hdev, skb, HCI_EV_LE_ADVERTISING_REPORT, 6517 info->length + 1)) 6518 break; 6519 6520 if (info->length <= max_adv_len(hdev)) { 6521 rssi = info->data[info->length]; 6522 process_adv_report(hdev, info->type, &info->bdaddr, 6523 info->bdaddr_type, NULL, 0, rssi, 6524 info->data, info->length, false, 6525 false, instant); 6526 } else { 6527 bt_dev_err(hdev, "Dropping invalid advertising data"); 6528 } 6529 } 6530 6531 hci_dev_unlock(hdev); 6532 } 6533 6534 static u8 ext_evt_type_to_legacy(struct hci_dev *hdev, u16 evt_type) 6535 { 6536 if (evt_type & LE_EXT_ADV_LEGACY_PDU) { 6537 switch (evt_type) { 6538 case LE_LEGACY_ADV_IND: 6539 return LE_ADV_IND; 6540 case LE_LEGACY_ADV_DIRECT_IND: 6541 return LE_ADV_DIRECT_IND; 6542 case LE_LEGACY_ADV_SCAN_IND: 6543 return LE_ADV_SCAN_IND; 6544 case LE_LEGACY_NONCONN_IND: 6545 return LE_ADV_NONCONN_IND; 6546 case LE_LEGACY_SCAN_RSP_ADV: 6547 case LE_LEGACY_SCAN_RSP_ADV_SCAN: 6548 return LE_ADV_SCAN_RSP; 6549 } 6550 6551 goto invalid; 6552 } 6553 6554 if (evt_type & LE_EXT_ADV_CONN_IND) { 6555 if (evt_type & LE_EXT_ADV_DIRECT_IND) 6556 return LE_ADV_DIRECT_IND; 6557 6558 return LE_ADV_IND; 6559 } 6560 6561 if (evt_type & LE_EXT_ADV_SCAN_RSP) 6562 return LE_ADV_SCAN_RSP; 6563 6564 if (evt_type & LE_EXT_ADV_SCAN_IND) 6565 return LE_ADV_SCAN_IND; 6566 6567 if (evt_type == LE_EXT_ADV_NON_CONN_IND || 6568 evt_type & LE_EXT_ADV_DIRECT_IND) 6569 return LE_ADV_NONCONN_IND; 6570 6571 invalid: 6572 bt_dev_err_ratelimited(hdev, "Unknown advertising packet type: 0x%02x", 6573 evt_type); 6574 6575 return LE_ADV_INVALID; 6576 } 6577 6578 static void hci_le_ext_adv_report_evt(struct hci_dev *hdev, void *data, 6579 struct sk_buff *skb) 6580 { 6581 struct hci_ev_le_ext_adv_report *ev = data; 6582 u64 instant = jiffies; 6583 6584 if (!ev->num) 6585 return; 6586 6587 hci_dev_lock(hdev); 6588 6589 while (ev->num--) { 6590 struct hci_ev_le_ext_adv_info *info; 6591 u8 legacy_evt_type; 6592 u16 evt_type; 6593 6594 info = hci_le_ev_skb_pull(hdev, skb, HCI_EV_LE_EXT_ADV_REPORT, 6595 sizeof(*info)); 6596 if (!info) 6597 break; 6598 6599 if (!hci_le_ev_skb_pull(hdev, skb, HCI_EV_LE_EXT_ADV_REPORT, 6600 info->length)) 6601 break; 6602 6603 evt_type = __le16_to_cpu(info->type) & LE_EXT_ADV_EVT_TYPE_MASK; 6604 legacy_evt_type = ext_evt_type_to_legacy(hdev, evt_type); 6605 if (legacy_evt_type != LE_ADV_INVALID) { 6606 process_adv_report(hdev, legacy_evt_type, &info->bdaddr, 6607 info->bdaddr_type, NULL, 0, 6608 info->rssi, info->data, info->length, 6609 !(evt_type & LE_EXT_ADV_LEGACY_PDU), 6610 false, instant); 6611 } 6612 } 6613 6614 hci_dev_unlock(hdev); 6615 } 6616 6617 static int hci_le_pa_term_sync(struct hci_dev *hdev, __le16 handle) 6618 { 6619 struct hci_cp_le_pa_term_sync cp; 6620 6621 memset(&cp, 0, sizeof(cp)); 6622 cp.handle = handle; 6623 6624 return hci_send_cmd(hdev, HCI_OP_LE_PA_TERM_SYNC, sizeof(cp), &cp); 6625 } 6626 6627 static void hci_le_pa_sync_estabilished_evt(struct hci_dev *hdev, void *data, 6628 struct sk_buff *skb) 6629 { 6630 struct hci_ev_le_pa_sync_established *ev = data; 6631 int mask = hdev->link_mode; 6632 __u8 flags = 0; 6633 struct hci_conn *pa_sync; 6634 6635 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 6636 6637 hci_dev_lock(hdev); 6638 6639 hci_dev_clear_flag(hdev, HCI_PA_SYNC); 6640 6641 mask |= hci_proto_connect_ind(hdev, &ev->bdaddr, ISO_LINK, &flags); 6642 if (!(mask & HCI_LM_ACCEPT)) { 6643 hci_le_pa_term_sync(hdev, ev->handle); 6644 goto unlock; 6645 } 6646 6647 if (!(flags & HCI_PROTO_DEFER)) 6648 goto unlock; 6649 6650 if (ev->status) { 6651 /* Add connection to indicate the failed PA sync event */ 6652 pa_sync = hci_conn_add_unset(hdev, ISO_LINK, BDADDR_ANY, 6653 HCI_ROLE_SLAVE); 6654 6655 if (!pa_sync) 6656 goto unlock; 6657 6658 set_bit(HCI_CONN_PA_SYNC_FAILED, &pa_sync->flags); 6659 6660 /* Notify iso layer */ 6661 hci_connect_cfm(pa_sync, ev->status); 6662 } 6663 6664 unlock: 6665 hci_dev_unlock(hdev); 6666 } 6667 6668 static void hci_le_per_adv_report_evt(struct hci_dev *hdev, void *data, 6669 struct sk_buff *skb) 6670 { 6671 struct hci_ev_le_per_adv_report *ev = data; 6672 int mask = hdev->link_mode; 6673 __u8 flags = 0; 6674 6675 bt_dev_dbg(hdev, "sync_handle 0x%4.4x", le16_to_cpu(ev->sync_handle)); 6676 6677 hci_dev_lock(hdev); 6678 6679 mask |= hci_proto_connect_ind(hdev, BDADDR_ANY, ISO_LINK, &flags); 6680 if (!(mask & HCI_LM_ACCEPT)) 6681 hci_le_pa_term_sync(hdev, ev->sync_handle); 6682 6683 hci_dev_unlock(hdev); 6684 } 6685 6686 static void hci_le_remote_feat_complete_evt(struct hci_dev *hdev, void *data, 6687 struct sk_buff *skb) 6688 { 6689 struct hci_ev_le_remote_feat_complete *ev = data; 6690 struct hci_conn *conn; 6691 6692 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 6693 6694 hci_dev_lock(hdev); 6695 6696 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 6697 if (conn) { 6698 if (!ev->status) 6699 memcpy(conn->features[0], ev->features, 8); 6700 6701 if (conn->state == BT_CONFIG) { 6702 __u8 status; 6703 6704 /* If the local controller supports peripheral-initiated 6705 * features exchange, but the remote controller does 6706 * not, then it is possible that the error code 0x1a 6707 * for unsupported remote feature gets returned. 6708 * 6709 * In this specific case, allow the connection to 6710 * transition into connected state and mark it as 6711 * successful. 6712 */ 6713 if (!conn->out && ev->status == 0x1a && 6714 (hdev->le_features[0] & HCI_LE_PERIPHERAL_FEATURES)) 6715 status = 0x00; 6716 else 6717 status = ev->status; 6718 6719 conn->state = BT_CONNECTED; 6720 hci_connect_cfm(conn, status); 6721 hci_conn_drop(conn); 6722 } 6723 } 6724 6725 hci_dev_unlock(hdev); 6726 } 6727 6728 static void hci_le_ltk_request_evt(struct hci_dev *hdev, void *data, 6729 struct sk_buff *skb) 6730 { 6731 struct hci_ev_le_ltk_req *ev = data; 6732 struct hci_cp_le_ltk_reply cp; 6733 struct hci_cp_le_ltk_neg_reply neg; 6734 struct hci_conn *conn; 6735 struct smp_ltk *ltk; 6736 6737 bt_dev_dbg(hdev, "handle 0x%4.4x", __le16_to_cpu(ev->handle)); 6738 6739 hci_dev_lock(hdev); 6740 6741 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 6742 if (conn == NULL) 6743 goto not_found; 6744 6745 ltk = hci_find_ltk(hdev, &conn->dst, conn->dst_type, conn->role); 6746 if (!ltk) 6747 goto not_found; 6748 6749 if (smp_ltk_is_sc(ltk)) { 6750 /* With SC both EDiv and Rand are set to zero */ 6751 if (ev->ediv || ev->rand) 6752 goto not_found; 6753 } else { 6754 /* For non-SC keys check that EDiv and Rand match */ 6755 if (ev->ediv != ltk->ediv || ev->rand != ltk->rand) 6756 goto not_found; 6757 } 6758 6759 memcpy(cp.ltk, ltk->val, ltk->enc_size); 6760 memset(cp.ltk + ltk->enc_size, 0, sizeof(cp.ltk) - ltk->enc_size); 6761 cp.handle = cpu_to_le16(conn->handle); 6762 6763 conn->pending_sec_level = smp_ltk_sec_level(ltk); 6764 6765 conn->enc_key_size = ltk->enc_size; 6766 6767 hci_send_cmd(hdev, HCI_OP_LE_LTK_REPLY, sizeof(cp), &cp); 6768 6769 /* Ref. Bluetooth Core SPEC pages 1975 and 2004. STK is a 6770 * temporary key used to encrypt a connection following 6771 * pairing. It is used during the Encrypted Session Setup to 6772 * distribute the keys. Later, security can be re-established 6773 * using a distributed LTK. 6774 */ 6775 if (ltk->type == SMP_STK) { 6776 set_bit(HCI_CONN_STK_ENCRYPT, &conn->flags); 6777 list_del_rcu(<k->list); 6778 kfree_rcu(ltk, rcu); 6779 } else { 6780 clear_bit(HCI_CONN_STK_ENCRYPT, &conn->flags); 6781 } 6782 6783 hci_dev_unlock(hdev); 6784 6785 return; 6786 6787 not_found: 6788 neg.handle = ev->handle; 6789 hci_send_cmd(hdev, HCI_OP_LE_LTK_NEG_REPLY, sizeof(neg), &neg); 6790 hci_dev_unlock(hdev); 6791 } 6792 6793 static void send_conn_param_neg_reply(struct hci_dev *hdev, u16 handle, 6794 u8 reason) 6795 { 6796 struct hci_cp_le_conn_param_req_neg_reply cp; 6797 6798 cp.handle = cpu_to_le16(handle); 6799 cp.reason = reason; 6800 6801 hci_send_cmd(hdev, HCI_OP_LE_CONN_PARAM_REQ_NEG_REPLY, sizeof(cp), 6802 &cp); 6803 } 6804 6805 static void hci_le_remote_conn_param_req_evt(struct hci_dev *hdev, void *data, 6806 struct sk_buff *skb) 6807 { 6808 struct hci_ev_le_remote_conn_param_req *ev = data; 6809 struct hci_cp_le_conn_param_req_reply cp; 6810 struct hci_conn *hcon; 6811 u16 handle, min, max, latency, timeout; 6812 6813 bt_dev_dbg(hdev, "handle 0x%4.4x", __le16_to_cpu(ev->handle)); 6814 6815 handle = le16_to_cpu(ev->handle); 6816 min = le16_to_cpu(ev->interval_min); 6817 max = le16_to_cpu(ev->interval_max); 6818 latency = le16_to_cpu(ev->latency); 6819 timeout = le16_to_cpu(ev->timeout); 6820 6821 hcon = hci_conn_hash_lookup_handle(hdev, handle); 6822 if (!hcon || hcon->state != BT_CONNECTED) 6823 return send_conn_param_neg_reply(hdev, handle, 6824 HCI_ERROR_UNKNOWN_CONN_ID); 6825 6826 if (max > hcon->le_conn_max_interval) 6827 return send_conn_param_neg_reply(hdev, handle, 6828 HCI_ERROR_INVALID_LL_PARAMS); 6829 6830 if (hci_check_conn_params(min, max, latency, timeout)) 6831 return send_conn_param_neg_reply(hdev, handle, 6832 HCI_ERROR_INVALID_LL_PARAMS); 6833 6834 if (hcon->role == HCI_ROLE_MASTER) { 6835 struct hci_conn_params *params; 6836 u8 store_hint; 6837 6838 hci_dev_lock(hdev); 6839 6840 params = hci_conn_params_lookup(hdev, &hcon->dst, 6841 hcon->dst_type); 6842 if (params) { 6843 params->conn_min_interval = min; 6844 params->conn_max_interval = max; 6845 params->conn_latency = latency; 6846 params->supervision_timeout = timeout; 6847 store_hint = 0x01; 6848 } else { 6849 store_hint = 0x00; 6850 } 6851 6852 hci_dev_unlock(hdev); 6853 6854 mgmt_new_conn_param(hdev, &hcon->dst, hcon->dst_type, 6855 store_hint, min, max, latency, timeout); 6856 } 6857 6858 cp.handle = ev->handle; 6859 cp.interval_min = ev->interval_min; 6860 cp.interval_max = ev->interval_max; 6861 cp.latency = ev->latency; 6862 cp.timeout = ev->timeout; 6863 cp.min_ce_len = 0; 6864 cp.max_ce_len = 0; 6865 6866 hci_send_cmd(hdev, HCI_OP_LE_CONN_PARAM_REQ_REPLY, sizeof(cp), &cp); 6867 } 6868 6869 static void hci_le_direct_adv_report_evt(struct hci_dev *hdev, void *data, 6870 struct sk_buff *skb) 6871 { 6872 struct hci_ev_le_direct_adv_report *ev = data; 6873 u64 instant = jiffies; 6874 int i; 6875 6876 if (!hci_le_ev_skb_pull(hdev, skb, HCI_EV_LE_DIRECT_ADV_REPORT, 6877 flex_array_size(ev, info, ev->num))) 6878 return; 6879 6880 if (!ev->num) 6881 return; 6882 6883 hci_dev_lock(hdev); 6884 6885 for (i = 0; i < ev->num; i++) { 6886 struct hci_ev_le_direct_adv_info *info = &ev->info[i]; 6887 6888 process_adv_report(hdev, info->type, &info->bdaddr, 6889 info->bdaddr_type, &info->direct_addr, 6890 info->direct_addr_type, info->rssi, NULL, 0, 6891 false, false, instant); 6892 } 6893 6894 hci_dev_unlock(hdev); 6895 } 6896 6897 static void hci_le_phy_update_evt(struct hci_dev *hdev, void *data, 6898 struct sk_buff *skb) 6899 { 6900 struct hci_ev_le_phy_update_complete *ev = data; 6901 struct hci_conn *conn; 6902 6903 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 6904 6905 if (ev->status) 6906 return; 6907 6908 hci_dev_lock(hdev); 6909 6910 conn = hci_conn_hash_lookup_handle(hdev, __le16_to_cpu(ev->handle)); 6911 if (!conn) 6912 goto unlock; 6913 6914 conn->le_tx_phy = ev->tx_phy; 6915 conn->le_rx_phy = ev->rx_phy; 6916 6917 unlock: 6918 hci_dev_unlock(hdev); 6919 } 6920 6921 static void hci_le_cis_estabilished_evt(struct hci_dev *hdev, void *data, 6922 struct sk_buff *skb) 6923 { 6924 struct hci_evt_le_cis_established *ev = data; 6925 struct hci_conn *conn; 6926 struct bt_iso_qos *qos; 6927 bool pending = false; 6928 u16 handle = __le16_to_cpu(ev->handle); 6929 6930 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 6931 6932 hci_dev_lock(hdev); 6933 6934 conn = hci_conn_hash_lookup_handle(hdev, handle); 6935 if (!conn) { 6936 bt_dev_err(hdev, 6937 "Unable to find connection with handle 0x%4.4x", 6938 handle); 6939 goto unlock; 6940 } 6941 6942 if (conn->type != ISO_LINK) { 6943 bt_dev_err(hdev, 6944 "Invalid connection link type handle 0x%4.4x", 6945 handle); 6946 goto unlock; 6947 } 6948 6949 qos = &conn->iso_qos; 6950 6951 pending = test_and_clear_bit(HCI_CONN_CREATE_CIS, &conn->flags); 6952 6953 /* Convert ISO Interval (1.25 ms slots) to SDU Interval (us) */ 6954 qos->ucast.in.interval = le16_to_cpu(ev->interval) * 1250; 6955 qos->ucast.out.interval = qos->ucast.in.interval; 6956 6957 switch (conn->role) { 6958 case HCI_ROLE_SLAVE: 6959 /* Convert Transport Latency (us) to Latency (msec) */ 6960 qos->ucast.in.latency = 6961 DIV_ROUND_CLOSEST(get_unaligned_le24(ev->c_latency), 6962 1000); 6963 qos->ucast.out.latency = 6964 DIV_ROUND_CLOSEST(get_unaligned_le24(ev->p_latency), 6965 1000); 6966 qos->ucast.in.sdu = le16_to_cpu(ev->c_mtu); 6967 qos->ucast.out.sdu = le16_to_cpu(ev->p_mtu); 6968 qos->ucast.in.phy = ev->c_phy; 6969 qos->ucast.out.phy = ev->p_phy; 6970 break; 6971 case HCI_ROLE_MASTER: 6972 /* Convert Transport Latency (us) to Latency (msec) */ 6973 qos->ucast.out.latency = 6974 DIV_ROUND_CLOSEST(get_unaligned_le24(ev->c_latency), 6975 1000); 6976 qos->ucast.in.latency = 6977 DIV_ROUND_CLOSEST(get_unaligned_le24(ev->p_latency), 6978 1000); 6979 qos->ucast.out.sdu = le16_to_cpu(ev->c_mtu); 6980 qos->ucast.in.sdu = le16_to_cpu(ev->p_mtu); 6981 qos->ucast.out.phy = ev->c_phy; 6982 qos->ucast.in.phy = ev->p_phy; 6983 break; 6984 } 6985 6986 if (!ev->status) { 6987 conn->state = BT_CONNECTED; 6988 hci_debugfs_create_conn(conn); 6989 hci_conn_add_sysfs(conn); 6990 hci_iso_setup_path(conn); 6991 goto unlock; 6992 } 6993 6994 conn->state = BT_CLOSED; 6995 hci_connect_cfm(conn, ev->status); 6996 hci_conn_del(conn); 6997 6998 unlock: 6999 if (pending) 7000 hci_le_create_cis_pending(hdev); 7001 7002 hci_dev_unlock(hdev); 7003 } 7004 7005 static void hci_le_reject_cis(struct hci_dev *hdev, __le16 handle) 7006 { 7007 struct hci_cp_le_reject_cis cp; 7008 7009 memset(&cp, 0, sizeof(cp)); 7010 cp.handle = handle; 7011 cp.reason = HCI_ERROR_REJ_BAD_ADDR; 7012 hci_send_cmd(hdev, HCI_OP_LE_REJECT_CIS, sizeof(cp), &cp); 7013 } 7014 7015 static void hci_le_accept_cis(struct hci_dev *hdev, __le16 handle) 7016 { 7017 struct hci_cp_le_accept_cis cp; 7018 7019 memset(&cp, 0, sizeof(cp)); 7020 cp.handle = handle; 7021 hci_send_cmd(hdev, HCI_OP_LE_ACCEPT_CIS, sizeof(cp), &cp); 7022 } 7023 7024 static void hci_le_cis_req_evt(struct hci_dev *hdev, void *data, 7025 struct sk_buff *skb) 7026 { 7027 struct hci_evt_le_cis_req *ev = data; 7028 u16 acl_handle, cis_handle; 7029 struct hci_conn *acl, *cis; 7030 int mask; 7031 __u8 flags = 0; 7032 7033 acl_handle = __le16_to_cpu(ev->acl_handle); 7034 cis_handle = __le16_to_cpu(ev->cis_handle); 7035 7036 bt_dev_dbg(hdev, "acl 0x%4.4x handle 0x%4.4x cig 0x%2.2x cis 0x%2.2x", 7037 acl_handle, cis_handle, ev->cig_id, ev->cis_id); 7038 7039 hci_dev_lock(hdev); 7040 7041 acl = hci_conn_hash_lookup_handle(hdev, acl_handle); 7042 if (!acl) 7043 goto unlock; 7044 7045 mask = hci_proto_connect_ind(hdev, &acl->dst, ISO_LINK, &flags); 7046 if (!(mask & HCI_LM_ACCEPT)) { 7047 hci_le_reject_cis(hdev, ev->cis_handle); 7048 goto unlock; 7049 } 7050 7051 cis = hci_conn_hash_lookup_handle(hdev, cis_handle); 7052 if (!cis) { 7053 cis = hci_conn_add(hdev, ISO_LINK, &acl->dst, HCI_ROLE_SLAVE, 7054 cis_handle); 7055 if (!cis) { 7056 hci_le_reject_cis(hdev, ev->cis_handle); 7057 goto unlock; 7058 } 7059 } 7060 7061 cis->iso_qos.ucast.cig = ev->cig_id; 7062 cis->iso_qos.ucast.cis = ev->cis_id; 7063 7064 if (!(flags & HCI_PROTO_DEFER)) { 7065 hci_le_accept_cis(hdev, ev->cis_handle); 7066 } else { 7067 cis->state = BT_CONNECT2; 7068 hci_connect_cfm(cis, 0); 7069 } 7070 7071 unlock: 7072 hci_dev_unlock(hdev); 7073 } 7074 7075 static int hci_iso_term_big_sync(struct hci_dev *hdev, void *data) 7076 { 7077 u8 handle = PTR_UINT(data); 7078 7079 return hci_le_terminate_big_sync(hdev, handle, 7080 HCI_ERROR_LOCAL_HOST_TERM); 7081 } 7082 7083 static void hci_le_create_big_complete_evt(struct hci_dev *hdev, void *data, 7084 struct sk_buff *skb) 7085 { 7086 struct hci_evt_le_create_big_complete *ev = data; 7087 struct hci_conn *conn; 7088 __u8 i = 0; 7089 7090 BT_DBG("%s status 0x%2.2x", hdev->name, ev->status); 7091 7092 if (!hci_le_ev_skb_pull(hdev, skb, HCI_EVT_LE_CREATE_BIG_COMPLETE, 7093 flex_array_size(ev, bis_handle, ev->num_bis))) 7094 return; 7095 7096 hci_dev_lock(hdev); 7097 rcu_read_lock(); 7098 7099 /* Connect all BISes that are bound to the BIG */ 7100 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 7101 if (bacmp(&conn->dst, BDADDR_ANY) || 7102 conn->type != ISO_LINK || 7103 conn->iso_qos.bcast.big != ev->handle) 7104 continue; 7105 7106 if (hci_conn_set_handle(conn, 7107 __le16_to_cpu(ev->bis_handle[i++]))) 7108 continue; 7109 7110 if (!ev->status) { 7111 conn->state = BT_CONNECTED; 7112 set_bit(HCI_CONN_BIG_CREATED, &conn->flags); 7113 rcu_read_unlock(); 7114 hci_debugfs_create_conn(conn); 7115 hci_conn_add_sysfs(conn); 7116 hci_iso_setup_path(conn); 7117 rcu_read_lock(); 7118 continue; 7119 } 7120 7121 hci_connect_cfm(conn, ev->status); 7122 rcu_read_unlock(); 7123 hci_conn_del(conn); 7124 rcu_read_lock(); 7125 } 7126 7127 rcu_read_unlock(); 7128 7129 if (!ev->status && !i) 7130 /* If no BISes have been connected for the BIG, 7131 * terminate. This is in case all bound connections 7132 * have been closed before the BIG creation 7133 * has completed. 7134 */ 7135 hci_cmd_sync_queue(hdev, hci_iso_term_big_sync, 7136 UINT_PTR(ev->handle), NULL); 7137 7138 hci_dev_unlock(hdev); 7139 } 7140 7141 static void hci_le_big_sync_established_evt(struct hci_dev *hdev, void *data, 7142 struct sk_buff *skb) 7143 { 7144 struct hci_evt_le_big_sync_estabilished *ev = data; 7145 struct hci_conn *bis; 7146 struct hci_conn *pa_sync; 7147 int i; 7148 7149 bt_dev_dbg(hdev, "status 0x%2.2x", ev->status); 7150 7151 if (!hci_le_ev_skb_pull(hdev, skb, HCI_EVT_LE_BIG_SYNC_ESTABILISHED, 7152 flex_array_size(ev, bis, ev->num_bis))) 7153 return; 7154 7155 hci_dev_lock(hdev); 7156 7157 if (!ev->status) { 7158 pa_sync = hci_conn_hash_lookup_pa_sync_big_handle(hdev, ev->handle); 7159 if (pa_sync) 7160 /* Also mark the BIG sync established event on the 7161 * associated PA sync hcon 7162 */ 7163 set_bit(HCI_CONN_BIG_SYNC, &pa_sync->flags); 7164 } 7165 7166 for (i = 0; i < ev->num_bis; i++) { 7167 u16 handle = le16_to_cpu(ev->bis[i]); 7168 __le32 interval; 7169 7170 bis = hci_conn_hash_lookup_handle(hdev, handle); 7171 if (!bis) { 7172 bis = hci_conn_add(hdev, ISO_LINK, BDADDR_ANY, 7173 HCI_ROLE_SLAVE, handle); 7174 if (!bis) 7175 continue; 7176 } 7177 7178 if (ev->status != 0x42) 7179 /* Mark PA sync as established */ 7180 set_bit(HCI_CONN_PA_SYNC, &bis->flags); 7181 7182 bis->iso_qos.bcast.big = ev->handle; 7183 memset(&interval, 0, sizeof(interval)); 7184 memcpy(&interval, ev->latency, sizeof(ev->latency)); 7185 bis->iso_qos.bcast.in.interval = le32_to_cpu(interval); 7186 /* Convert ISO Interval (1.25 ms slots) to latency (ms) */ 7187 bis->iso_qos.bcast.in.latency = le16_to_cpu(ev->interval) * 125 / 100; 7188 bis->iso_qos.bcast.in.sdu = le16_to_cpu(ev->max_pdu); 7189 7190 if (!ev->status) { 7191 set_bit(HCI_CONN_BIG_SYNC, &bis->flags); 7192 hci_iso_setup_path(bis); 7193 } 7194 } 7195 7196 /* In case BIG sync failed, notify each failed connection to 7197 * the user after all hci connections have been added 7198 */ 7199 if (ev->status) 7200 for (i = 0; i < ev->num_bis; i++) { 7201 u16 handle = le16_to_cpu(ev->bis[i]); 7202 7203 bis = hci_conn_hash_lookup_handle(hdev, handle); 7204 7205 set_bit(HCI_CONN_BIG_SYNC_FAILED, &bis->flags); 7206 hci_connect_cfm(bis, ev->status); 7207 } 7208 7209 hci_dev_unlock(hdev); 7210 } 7211 7212 static void hci_le_big_info_adv_report_evt(struct hci_dev *hdev, void *data, 7213 struct sk_buff *skb) 7214 { 7215 struct hci_evt_le_big_info_adv_report *ev = data; 7216 int mask = hdev->link_mode; 7217 __u8 flags = 0; 7218 struct hci_conn *pa_sync; 7219 7220 bt_dev_dbg(hdev, "sync_handle 0x%4.4x", le16_to_cpu(ev->sync_handle)); 7221 7222 hci_dev_lock(hdev); 7223 7224 mask |= hci_proto_connect_ind(hdev, BDADDR_ANY, ISO_LINK, &flags); 7225 if (!(mask & HCI_LM_ACCEPT)) { 7226 hci_le_pa_term_sync(hdev, ev->sync_handle); 7227 goto unlock; 7228 } 7229 7230 if (!(flags & HCI_PROTO_DEFER)) 7231 goto unlock; 7232 7233 pa_sync = hci_conn_hash_lookup_pa_sync_handle 7234 (hdev, 7235 le16_to_cpu(ev->sync_handle)); 7236 7237 if (pa_sync) 7238 goto unlock; 7239 7240 /* Add connection to indicate the PA sync event */ 7241 pa_sync = hci_conn_add_unset(hdev, ISO_LINK, BDADDR_ANY, 7242 HCI_ROLE_SLAVE); 7243 7244 if (!pa_sync) 7245 goto unlock; 7246 7247 pa_sync->sync_handle = le16_to_cpu(ev->sync_handle); 7248 set_bit(HCI_CONN_PA_SYNC, &pa_sync->flags); 7249 7250 /* Notify iso layer */ 7251 hci_connect_cfm(pa_sync, 0x00); 7252 7253 /* Notify MGMT layer */ 7254 mgmt_device_connected(hdev, pa_sync, NULL, 0); 7255 7256 unlock: 7257 hci_dev_unlock(hdev); 7258 } 7259 7260 #define HCI_LE_EV_VL(_op, _func, _min_len, _max_len) \ 7261 [_op] = { \ 7262 .func = _func, \ 7263 .min_len = _min_len, \ 7264 .max_len = _max_len, \ 7265 } 7266 7267 #define HCI_LE_EV(_op, _func, _len) \ 7268 HCI_LE_EV_VL(_op, _func, _len, _len) 7269 7270 #define HCI_LE_EV_STATUS(_op, _func) \ 7271 HCI_LE_EV(_op, _func, sizeof(struct hci_ev_status)) 7272 7273 /* Entries in this table shall have their position according to the subevent 7274 * opcode they handle so the use of the macros above is recommend since it does 7275 * attempt to initialize at its proper index using Designated Initializers that 7276 * way events without a callback function can be ommited. 7277 */ 7278 static const struct hci_le_ev { 7279 void (*func)(struct hci_dev *hdev, void *data, struct sk_buff *skb); 7280 u16 min_len; 7281 u16 max_len; 7282 } hci_le_ev_table[U8_MAX + 1] = { 7283 /* [0x01 = HCI_EV_LE_CONN_COMPLETE] */ 7284 HCI_LE_EV(HCI_EV_LE_CONN_COMPLETE, hci_le_conn_complete_evt, 7285 sizeof(struct hci_ev_le_conn_complete)), 7286 /* [0x02 = HCI_EV_LE_ADVERTISING_REPORT] */ 7287 HCI_LE_EV_VL(HCI_EV_LE_ADVERTISING_REPORT, hci_le_adv_report_evt, 7288 sizeof(struct hci_ev_le_advertising_report), 7289 HCI_MAX_EVENT_SIZE), 7290 /* [0x03 = HCI_EV_LE_CONN_UPDATE_COMPLETE] */ 7291 HCI_LE_EV(HCI_EV_LE_CONN_UPDATE_COMPLETE, 7292 hci_le_conn_update_complete_evt, 7293 sizeof(struct hci_ev_le_conn_update_complete)), 7294 /* [0x04 = HCI_EV_LE_REMOTE_FEAT_COMPLETE] */ 7295 HCI_LE_EV(HCI_EV_LE_REMOTE_FEAT_COMPLETE, 7296 hci_le_remote_feat_complete_evt, 7297 sizeof(struct hci_ev_le_remote_feat_complete)), 7298 /* [0x05 = HCI_EV_LE_LTK_REQ] */ 7299 HCI_LE_EV(HCI_EV_LE_LTK_REQ, hci_le_ltk_request_evt, 7300 sizeof(struct hci_ev_le_ltk_req)), 7301 /* [0x06 = HCI_EV_LE_REMOTE_CONN_PARAM_REQ] */ 7302 HCI_LE_EV(HCI_EV_LE_REMOTE_CONN_PARAM_REQ, 7303 hci_le_remote_conn_param_req_evt, 7304 sizeof(struct hci_ev_le_remote_conn_param_req)), 7305 /* [0x0a = HCI_EV_LE_ENHANCED_CONN_COMPLETE] */ 7306 HCI_LE_EV(HCI_EV_LE_ENHANCED_CONN_COMPLETE, 7307 hci_le_enh_conn_complete_evt, 7308 sizeof(struct hci_ev_le_enh_conn_complete)), 7309 /* [0x0b = HCI_EV_LE_DIRECT_ADV_REPORT] */ 7310 HCI_LE_EV_VL(HCI_EV_LE_DIRECT_ADV_REPORT, hci_le_direct_adv_report_evt, 7311 sizeof(struct hci_ev_le_direct_adv_report), 7312 HCI_MAX_EVENT_SIZE), 7313 /* [0x0c = HCI_EV_LE_PHY_UPDATE_COMPLETE] */ 7314 HCI_LE_EV(HCI_EV_LE_PHY_UPDATE_COMPLETE, hci_le_phy_update_evt, 7315 sizeof(struct hci_ev_le_phy_update_complete)), 7316 /* [0x0d = HCI_EV_LE_EXT_ADV_REPORT] */ 7317 HCI_LE_EV_VL(HCI_EV_LE_EXT_ADV_REPORT, hci_le_ext_adv_report_evt, 7318 sizeof(struct hci_ev_le_ext_adv_report), 7319 HCI_MAX_EVENT_SIZE), 7320 /* [0x0e = HCI_EV_LE_PA_SYNC_ESTABLISHED] */ 7321 HCI_LE_EV(HCI_EV_LE_PA_SYNC_ESTABLISHED, 7322 hci_le_pa_sync_estabilished_evt, 7323 sizeof(struct hci_ev_le_pa_sync_established)), 7324 /* [0x0f = HCI_EV_LE_PER_ADV_REPORT] */ 7325 HCI_LE_EV_VL(HCI_EV_LE_PER_ADV_REPORT, 7326 hci_le_per_adv_report_evt, 7327 sizeof(struct hci_ev_le_per_adv_report), 7328 HCI_MAX_EVENT_SIZE), 7329 /* [0x12 = HCI_EV_LE_EXT_ADV_SET_TERM] */ 7330 HCI_LE_EV(HCI_EV_LE_EXT_ADV_SET_TERM, hci_le_ext_adv_term_evt, 7331 sizeof(struct hci_evt_le_ext_adv_set_term)), 7332 /* [0x19 = HCI_EVT_LE_CIS_ESTABLISHED] */ 7333 HCI_LE_EV(HCI_EVT_LE_CIS_ESTABLISHED, hci_le_cis_estabilished_evt, 7334 sizeof(struct hci_evt_le_cis_established)), 7335 /* [0x1a = HCI_EVT_LE_CIS_REQ] */ 7336 HCI_LE_EV(HCI_EVT_LE_CIS_REQ, hci_le_cis_req_evt, 7337 sizeof(struct hci_evt_le_cis_req)), 7338 /* [0x1b = HCI_EVT_LE_CREATE_BIG_COMPLETE] */ 7339 HCI_LE_EV_VL(HCI_EVT_LE_CREATE_BIG_COMPLETE, 7340 hci_le_create_big_complete_evt, 7341 sizeof(struct hci_evt_le_create_big_complete), 7342 HCI_MAX_EVENT_SIZE), 7343 /* [0x1d = HCI_EV_LE_BIG_SYNC_ESTABILISHED] */ 7344 HCI_LE_EV_VL(HCI_EVT_LE_BIG_SYNC_ESTABILISHED, 7345 hci_le_big_sync_established_evt, 7346 sizeof(struct hci_evt_le_big_sync_estabilished), 7347 HCI_MAX_EVENT_SIZE), 7348 /* [0x22 = HCI_EVT_LE_BIG_INFO_ADV_REPORT] */ 7349 HCI_LE_EV_VL(HCI_EVT_LE_BIG_INFO_ADV_REPORT, 7350 hci_le_big_info_adv_report_evt, 7351 sizeof(struct hci_evt_le_big_info_adv_report), 7352 HCI_MAX_EVENT_SIZE), 7353 }; 7354 7355 static void hci_le_meta_evt(struct hci_dev *hdev, void *data, 7356 struct sk_buff *skb, u16 *opcode, u8 *status, 7357 hci_req_complete_t *req_complete, 7358 hci_req_complete_skb_t *req_complete_skb) 7359 { 7360 struct hci_ev_le_meta *ev = data; 7361 const struct hci_le_ev *subev; 7362 7363 bt_dev_dbg(hdev, "subevent 0x%2.2x", ev->subevent); 7364 7365 /* Only match event if command OGF is for LE */ 7366 if (hdev->req_skb && 7367 hci_opcode_ogf(hci_skb_opcode(hdev->req_skb)) == 0x08 && 7368 hci_skb_event(hdev->req_skb) == ev->subevent) { 7369 *opcode = hci_skb_opcode(hdev->req_skb); 7370 hci_req_cmd_complete(hdev, *opcode, 0x00, req_complete, 7371 req_complete_skb); 7372 } 7373 7374 subev = &hci_le_ev_table[ev->subevent]; 7375 if (!subev->func) 7376 return; 7377 7378 if (skb->len < subev->min_len) { 7379 bt_dev_err(hdev, "unexpected subevent 0x%2.2x length: %u < %u", 7380 ev->subevent, skb->len, subev->min_len); 7381 return; 7382 } 7383 7384 /* Just warn if the length is over max_len size it still be 7385 * possible to partially parse the event so leave to callback to 7386 * decide if that is acceptable. 7387 */ 7388 if (skb->len > subev->max_len) 7389 bt_dev_warn(hdev, "unexpected subevent 0x%2.2x length: %u > %u", 7390 ev->subevent, skb->len, subev->max_len); 7391 data = hci_le_ev_skb_pull(hdev, skb, ev->subevent, subev->min_len); 7392 if (!data) 7393 return; 7394 7395 subev->func(hdev, data, skb); 7396 } 7397 7398 static bool hci_get_cmd_complete(struct hci_dev *hdev, u16 opcode, 7399 u8 event, struct sk_buff *skb) 7400 { 7401 struct hci_ev_cmd_complete *ev; 7402 struct hci_event_hdr *hdr; 7403 7404 if (!skb) 7405 return false; 7406 7407 hdr = hci_ev_skb_pull(hdev, skb, event, sizeof(*hdr)); 7408 if (!hdr) 7409 return false; 7410 7411 if (event) { 7412 if (hdr->evt != event) 7413 return false; 7414 return true; 7415 } 7416 7417 /* Check if request ended in Command Status - no way to retrieve 7418 * any extra parameters in this case. 7419 */ 7420 if (hdr->evt == HCI_EV_CMD_STATUS) 7421 return false; 7422 7423 if (hdr->evt != HCI_EV_CMD_COMPLETE) { 7424 bt_dev_err(hdev, "last event is not cmd complete (0x%2.2x)", 7425 hdr->evt); 7426 return false; 7427 } 7428 7429 ev = hci_cc_skb_pull(hdev, skb, opcode, sizeof(*ev)); 7430 if (!ev) 7431 return false; 7432 7433 if (opcode != __le16_to_cpu(ev->opcode)) { 7434 BT_DBG("opcode doesn't match (0x%2.2x != 0x%2.2x)", opcode, 7435 __le16_to_cpu(ev->opcode)); 7436 return false; 7437 } 7438 7439 return true; 7440 } 7441 7442 static void hci_store_wake_reason(struct hci_dev *hdev, u8 event, 7443 struct sk_buff *skb) 7444 { 7445 struct hci_ev_le_advertising_info *adv; 7446 struct hci_ev_le_direct_adv_info *direct_adv; 7447 struct hci_ev_le_ext_adv_info *ext_adv; 7448 const struct hci_ev_conn_complete *conn_complete = (void *)skb->data; 7449 const struct hci_ev_conn_request *conn_request = (void *)skb->data; 7450 7451 hci_dev_lock(hdev); 7452 7453 /* If we are currently suspended and this is the first BT event seen, 7454 * save the wake reason associated with the event. 7455 */ 7456 if (!hdev->suspended || hdev->wake_reason) 7457 goto unlock; 7458 7459 /* Default to remote wake. Values for wake_reason are documented in the 7460 * Bluez mgmt api docs. 7461 */ 7462 hdev->wake_reason = MGMT_WAKE_REASON_REMOTE_WAKE; 7463 7464 /* Once configured for remote wakeup, we should only wake up for 7465 * reconnections. It's useful to see which device is waking us up so 7466 * keep track of the bdaddr of the connection event that woke us up. 7467 */ 7468 if (event == HCI_EV_CONN_REQUEST) { 7469 bacpy(&hdev->wake_addr, &conn_request->bdaddr); 7470 hdev->wake_addr_type = BDADDR_BREDR; 7471 } else if (event == HCI_EV_CONN_COMPLETE) { 7472 bacpy(&hdev->wake_addr, &conn_complete->bdaddr); 7473 hdev->wake_addr_type = BDADDR_BREDR; 7474 } else if (event == HCI_EV_LE_META) { 7475 struct hci_ev_le_meta *le_ev = (void *)skb->data; 7476 u8 subevent = le_ev->subevent; 7477 u8 *ptr = &skb->data[sizeof(*le_ev)]; 7478 u8 num_reports = *ptr; 7479 7480 if ((subevent == HCI_EV_LE_ADVERTISING_REPORT || 7481 subevent == HCI_EV_LE_DIRECT_ADV_REPORT || 7482 subevent == HCI_EV_LE_EXT_ADV_REPORT) && 7483 num_reports) { 7484 adv = (void *)(ptr + 1); 7485 direct_adv = (void *)(ptr + 1); 7486 ext_adv = (void *)(ptr + 1); 7487 7488 switch (subevent) { 7489 case HCI_EV_LE_ADVERTISING_REPORT: 7490 bacpy(&hdev->wake_addr, &adv->bdaddr); 7491 hdev->wake_addr_type = adv->bdaddr_type; 7492 break; 7493 case HCI_EV_LE_DIRECT_ADV_REPORT: 7494 bacpy(&hdev->wake_addr, &direct_adv->bdaddr); 7495 hdev->wake_addr_type = direct_adv->bdaddr_type; 7496 break; 7497 case HCI_EV_LE_EXT_ADV_REPORT: 7498 bacpy(&hdev->wake_addr, &ext_adv->bdaddr); 7499 hdev->wake_addr_type = ext_adv->bdaddr_type; 7500 break; 7501 } 7502 } 7503 } else { 7504 hdev->wake_reason = MGMT_WAKE_REASON_UNEXPECTED; 7505 } 7506 7507 unlock: 7508 hci_dev_unlock(hdev); 7509 } 7510 7511 #define HCI_EV_VL(_op, _func, _min_len, _max_len) \ 7512 [_op] = { \ 7513 .req = false, \ 7514 .func = _func, \ 7515 .min_len = _min_len, \ 7516 .max_len = _max_len, \ 7517 } 7518 7519 #define HCI_EV(_op, _func, _len) \ 7520 HCI_EV_VL(_op, _func, _len, _len) 7521 7522 #define HCI_EV_STATUS(_op, _func) \ 7523 HCI_EV(_op, _func, sizeof(struct hci_ev_status)) 7524 7525 #define HCI_EV_REQ_VL(_op, _func, _min_len, _max_len) \ 7526 [_op] = { \ 7527 .req = true, \ 7528 .func_req = _func, \ 7529 .min_len = _min_len, \ 7530 .max_len = _max_len, \ 7531 } 7532 7533 #define HCI_EV_REQ(_op, _func, _len) \ 7534 HCI_EV_REQ_VL(_op, _func, _len, _len) 7535 7536 /* Entries in this table shall have their position according to the event opcode 7537 * they handle so the use of the macros above is recommend since it does attempt 7538 * to initialize at its proper index using Designated Initializers that way 7539 * events without a callback function don't have entered. 7540 */ 7541 static const struct hci_ev { 7542 bool req; 7543 union { 7544 void (*func)(struct hci_dev *hdev, void *data, 7545 struct sk_buff *skb); 7546 void (*func_req)(struct hci_dev *hdev, void *data, 7547 struct sk_buff *skb, u16 *opcode, u8 *status, 7548 hci_req_complete_t *req_complete, 7549 hci_req_complete_skb_t *req_complete_skb); 7550 }; 7551 u16 min_len; 7552 u16 max_len; 7553 } hci_ev_table[U8_MAX + 1] = { 7554 /* [0x01 = HCI_EV_INQUIRY_COMPLETE] */ 7555 HCI_EV_STATUS(HCI_EV_INQUIRY_COMPLETE, hci_inquiry_complete_evt), 7556 /* [0x02 = HCI_EV_INQUIRY_RESULT] */ 7557 HCI_EV_VL(HCI_EV_INQUIRY_RESULT, hci_inquiry_result_evt, 7558 sizeof(struct hci_ev_inquiry_result), HCI_MAX_EVENT_SIZE), 7559 /* [0x03 = HCI_EV_CONN_COMPLETE] */ 7560 HCI_EV(HCI_EV_CONN_COMPLETE, hci_conn_complete_evt, 7561 sizeof(struct hci_ev_conn_complete)), 7562 /* [0x04 = HCI_EV_CONN_REQUEST] */ 7563 HCI_EV(HCI_EV_CONN_REQUEST, hci_conn_request_evt, 7564 sizeof(struct hci_ev_conn_request)), 7565 /* [0x05 = HCI_EV_DISCONN_COMPLETE] */ 7566 HCI_EV(HCI_EV_DISCONN_COMPLETE, hci_disconn_complete_evt, 7567 sizeof(struct hci_ev_disconn_complete)), 7568 /* [0x06 = HCI_EV_AUTH_COMPLETE] */ 7569 HCI_EV(HCI_EV_AUTH_COMPLETE, hci_auth_complete_evt, 7570 sizeof(struct hci_ev_auth_complete)), 7571 /* [0x07 = HCI_EV_REMOTE_NAME] */ 7572 HCI_EV(HCI_EV_REMOTE_NAME, hci_remote_name_evt, 7573 sizeof(struct hci_ev_remote_name)), 7574 /* [0x08 = HCI_EV_ENCRYPT_CHANGE] */ 7575 HCI_EV(HCI_EV_ENCRYPT_CHANGE, hci_encrypt_change_evt, 7576 sizeof(struct hci_ev_encrypt_change)), 7577 /* [0x09 = HCI_EV_CHANGE_LINK_KEY_COMPLETE] */ 7578 HCI_EV(HCI_EV_CHANGE_LINK_KEY_COMPLETE, 7579 hci_change_link_key_complete_evt, 7580 sizeof(struct hci_ev_change_link_key_complete)), 7581 /* [0x0b = HCI_EV_REMOTE_FEATURES] */ 7582 HCI_EV(HCI_EV_REMOTE_FEATURES, hci_remote_features_evt, 7583 sizeof(struct hci_ev_remote_features)), 7584 /* [0x0e = HCI_EV_CMD_COMPLETE] */ 7585 HCI_EV_REQ_VL(HCI_EV_CMD_COMPLETE, hci_cmd_complete_evt, 7586 sizeof(struct hci_ev_cmd_complete), HCI_MAX_EVENT_SIZE), 7587 /* [0x0f = HCI_EV_CMD_STATUS] */ 7588 HCI_EV_REQ(HCI_EV_CMD_STATUS, hci_cmd_status_evt, 7589 sizeof(struct hci_ev_cmd_status)), 7590 /* [0x10 = HCI_EV_CMD_STATUS] */ 7591 HCI_EV(HCI_EV_HARDWARE_ERROR, hci_hardware_error_evt, 7592 sizeof(struct hci_ev_hardware_error)), 7593 /* [0x12 = HCI_EV_ROLE_CHANGE] */ 7594 HCI_EV(HCI_EV_ROLE_CHANGE, hci_role_change_evt, 7595 sizeof(struct hci_ev_role_change)), 7596 /* [0x13 = HCI_EV_NUM_COMP_PKTS] */ 7597 HCI_EV_VL(HCI_EV_NUM_COMP_PKTS, hci_num_comp_pkts_evt, 7598 sizeof(struct hci_ev_num_comp_pkts), HCI_MAX_EVENT_SIZE), 7599 /* [0x14 = HCI_EV_MODE_CHANGE] */ 7600 HCI_EV(HCI_EV_MODE_CHANGE, hci_mode_change_evt, 7601 sizeof(struct hci_ev_mode_change)), 7602 /* [0x16 = HCI_EV_PIN_CODE_REQ] */ 7603 HCI_EV(HCI_EV_PIN_CODE_REQ, hci_pin_code_request_evt, 7604 sizeof(struct hci_ev_pin_code_req)), 7605 /* [0x17 = HCI_EV_LINK_KEY_REQ] */ 7606 HCI_EV(HCI_EV_LINK_KEY_REQ, hci_link_key_request_evt, 7607 sizeof(struct hci_ev_link_key_req)), 7608 /* [0x18 = HCI_EV_LINK_KEY_NOTIFY] */ 7609 HCI_EV(HCI_EV_LINK_KEY_NOTIFY, hci_link_key_notify_evt, 7610 sizeof(struct hci_ev_link_key_notify)), 7611 /* [0x1c = HCI_EV_CLOCK_OFFSET] */ 7612 HCI_EV(HCI_EV_CLOCK_OFFSET, hci_clock_offset_evt, 7613 sizeof(struct hci_ev_clock_offset)), 7614 /* [0x1d = HCI_EV_PKT_TYPE_CHANGE] */ 7615 HCI_EV(HCI_EV_PKT_TYPE_CHANGE, hci_pkt_type_change_evt, 7616 sizeof(struct hci_ev_pkt_type_change)), 7617 /* [0x20 = HCI_EV_PSCAN_REP_MODE] */ 7618 HCI_EV(HCI_EV_PSCAN_REP_MODE, hci_pscan_rep_mode_evt, 7619 sizeof(struct hci_ev_pscan_rep_mode)), 7620 /* [0x22 = HCI_EV_INQUIRY_RESULT_WITH_RSSI] */ 7621 HCI_EV_VL(HCI_EV_INQUIRY_RESULT_WITH_RSSI, 7622 hci_inquiry_result_with_rssi_evt, 7623 sizeof(struct hci_ev_inquiry_result_rssi), 7624 HCI_MAX_EVENT_SIZE), 7625 /* [0x23 = HCI_EV_REMOTE_EXT_FEATURES] */ 7626 HCI_EV(HCI_EV_REMOTE_EXT_FEATURES, hci_remote_ext_features_evt, 7627 sizeof(struct hci_ev_remote_ext_features)), 7628 /* [0x2c = HCI_EV_SYNC_CONN_COMPLETE] */ 7629 HCI_EV(HCI_EV_SYNC_CONN_COMPLETE, hci_sync_conn_complete_evt, 7630 sizeof(struct hci_ev_sync_conn_complete)), 7631 /* [0x2d = HCI_EV_EXTENDED_INQUIRY_RESULT] */ 7632 HCI_EV_VL(HCI_EV_EXTENDED_INQUIRY_RESULT, 7633 hci_extended_inquiry_result_evt, 7634 sizeof(struct hci_ev_ext_inquiry_result), HCI_MAX_EVENT_SIZE), 7635 /* [0x30 = HCI_EV_KEY_REFRESH_COMPLETE] */ 7636 HCI_EV(HCI_EV_KEY_REFRESH_COMPLETE, hci_key_refresh_complete_evt, 7637 sizeof(struct hci_ev_key_refresh_complete)), 7638 /* [0x31 = HCI_EV_IO_CAPA_REQUEST] */ 7639 HCI_EV(HCI_EV_IO_CAPA_REQUEST, hci_io_capa_request_evt, 7640 sizeof(struct hci_ev_io_capa_request)), 7641 /* [0x32 = HCI_EV_IO_CAPA_REPLY] */ 7642 HCI_EV(HCI_EV_IO_CAPA_REPLY, hci_io_capa_reply_evt, 7643 sizeof(struct hci_ev_io_capa_reply)), 7644 /* [0x33 = HCI_EV_USER_CONFIRM_REQUEST] */ 7645 HCI_EV(HCI_EV_USER_CONFIRM_REQUEST, hci_user_confirm_request_evt, 7646 sizeof(struct hci_ev_user_confirm_req)), 7647 /* [0x34 = HCI_EV_USER_PASSKEY_REQUEST] */ 7648 HCI_EV(HCI_EV_USER_PASSKEY_REQUEST, hci_user_passkey_request_evt, 7649 sizeof(struct hci_ev_user_passkey_req)), 7650 /* [0x35 = HCI_EV_REMOTE_OOB_DATA_REQUEST] */ 7651 HCI_EV(HCI_EV_REMOTE_OOB_DATA_REQUEST, hci_remote_oob_data_request_evt, 7652 sizeof(struct hci_ev_remote_oob_data_request)), 7653 /* [0x36 = HCI_EV_SIMPLE_PAIR_COMPLETE] */ 7654 HCI_EV(HCI_EV_SIMPLE_PAIR_COMPLETE, hci_simple_pair_complete_evt, 7655 sizeof(struct hci_ev_simple_pair_complete)), 7656 /* [0x3b = HCI_EV_USER_PASSKEY_NOTIFY] */ 7657 HCI_EV(HCI_EV_USER_PASSKEY_NOTIFY, hci_user_passkey_notify_evt, 7658 sizeof(struct hci_ev_user_passkey_notify)), 7659 /* [0x3c = HCI_EV_KEYPRESS_NOTIFY] */ 7660 HCI_EV(HCI_EV_KEYPRESS_NOTIFY, hci_keypress_notify_evt, 7661 sizeof(struct hci_ev_keypress_notify)), 7662 /* [0x3d = HCI_EV_REMOTE_HOST_FEATURES] */ 7663 HCI_EV(HCI_EV_REMOTE_HOST_FEATURES, hci_remote_host_features_evt, 7664 sizeof(struct hci_ev_remote_host_features)), 7665 /* [0x3e = HCI_EV_LE_META] */ 7666 HCI_EV_REQ_VL(HCI_EV_LE_META, hci_le_meta_evt, 7667 sizeof(struct hci_ev_le_meta), HCI_MAX_EVENT_SIZE), 7668 #if IS_ENABLED(CONFIG_BT_HS) 7669 /* [0x40 = HCI_EV_PHY_LINK_COMPLETE] */ 7670 HCI_EV(HCI_EV_PHY_LINK_COMPLETE, hci_phy_link_complete_evt, 7671 sizeof(struct hci_ev_phy_link_complete)), 7672 /* [0x41 = HCI_EV_CHANNEL_SELECTED] */ 7673 HCI_EV(HCI_EV_CHANNEL_SELECTED, hci_chan_selected_evt, 7674 sizeof(struct hci_ev_channel_selected)), 7675 /* [0x42 = HCI_EV_DISCONN_PHY_LINK_COMPLETE] */ 7676 HCI_EV(HCI_EV_DISCONN_LOGICAL_LINK_COMPLETE, 7677 hci_disconn_loglink_complete_evt, 7678 sizeof(struct hci_ev_disconn_logical_link_complete)), 7679 /* [0x45 = HCI_EV_LOGICAL_LINK_COMPLETE] */ 7680 HCI_EV(HCI_EV_LOGICAL_LINK_COMPLETE, hci_loglink_complete_evt, 7681 sizeof(struct hci_ev_logical_link_complete)), 7682 /* [0x46 = HCI_EV_DISCONN_LOGICAL_LINK_COMPLETE] */ 7683 HCI_EV(HCI_EV_DISCONN_PHY_LINK_COMPLETE, 7684 hci_disconn_phylink_complete_evt, 7685 sizeof(struct hci_ev_disconn_phy_link_complete)), 7686 #endif 7687 /* [0x48 = HCI_EV_NUM_COMP_BLOCKS] */ 7688 HCI_EV(HCI_EV_NUM_COMP_BLOCKS, hci_num_comp_blocks_evt, 7689 sizeof(struct hci_ev_num_comp_blocks)), 7690 /* [0xff = HCI_EV_VENDOR] */ 7691 HCI_EV_VL(HCI_EV_VENDOR, msft_vendor_evt, 0, HCI_MAX_EVENT_SIZE), 7692 }; 7693 7694 static void hci_event_func(struct hci_dev *hdev, u8 event, struct sk_buff *skb, 7695 u16 *opcode, u8 *status, 7696 hci_req_complete_t *req_complete, 7697 hci_req_complete_skb_t *req_complete_skb) 7698 { 7699 const struct hci_ev *ev = &hci_ev_table[event]; 7700 void *data; 7701 7702 if (!ev->func) 7703 return; 7704 7705 if (skb->len < ev->min_len) { 7706 bt_dev_err(hdev, "unexpected event 0x%2.2x length: %u < %u", 7707 event, skb->len, ev->min_len); 7708 return; 7709 } 7710 7711 /* Just warn if the length is over max_len size it still be 7712 * possible to partially parse the event so leave to callback to 7713 * decide if that is acceptable. 7714 */ 7715 if (skb->len > ev->max_len) 7716 bt_dev_warn_ratelimited(hdev, 7717 "unexpected event 0x%2.2x length: %u > %u", 7718 event, skb->len, ev->max_len); 7719 7720 data = hci_ev_skb_pull(hdev, skb, event, ev->min_len); 7721 if (!data) 7722 return; 7723 7724 if (ev->req) 7725 ev->func_req(hdev, data, skb, opcode, status, req_complete, 7726 req_complete_skb); 7727 else 7728 ev->func(hdev, data, skb); 7729 } 7730 7731 void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb) 7732 { 7733 struct hci_event_hdr *hdr = (void *) skb->data; 7734 hci_req_complete_t req_complete = NULL; 7735 hci_req_complete_skb_t req_complete_skb = NULL; 7736 struct sk_buff *orig_skb = NULL; 7737 u8 status = 0, event, req_evt = 0; 7738 u16 opcode = HCI_OP_NOP; 7739 7740 if (skb->len < sizeof(*hdr)) { 7741 bt_dev_err(hdev, "Malformed HCI Event"); 7742 goto done; 7743 } 7744 7745 kfree_skb(hdev->recv_event); 7746 hdev->recv_event = skb_clone(skb, GFP_KERNEL); 7747 7748 event = hdr->evt; 7749 if (!event) { 7750 bt_dev_warn(hdev, "Received unexpected HCI Event 0x%2.2x", 7751 event); 7752 goto done; 7753 } 7754 7755 /* Only match event if command OGF is not for LE */ 7756 if (hdev->req_skb && 7757 hci_opcode_ogf(hci_skb_opcode(hdev->req_skb)) != 0x08 && 7758 hci_skb_event(hdev->req_skb) == event) { 7759 hci_req_cmd_complete(hdev, hci_skb_opcode(hdev->req_skb), 7760 status, &req_complete, &req_complete_skb); 7761 req_evt = event; 7762 } 7763 7764 /* If it looks like we might end up having to call 7765 * req_complete_skb, store a pristine copy of the skb since the 7766 * various handlers may modify the original one through 7767 * skb_pull() calls, etc. 7768 */ 7769 if (req_complete_skb || event == HCI_EV_CMD_STATUS || 7770 event == HCI_EV_CMD_COMPLETE) 7771 orig_skb = skb_clone(skb, GFP_KERNEL); 7772 7773 skb_pull(skb, HCI_EVENT_HDR_SIZE); 7774 7775 /* Store wake reason if we're suspended */ 7776 hci_store_wake_reason(hdev, event, skb); 7777 7778 bt_dev_dbg(hdev, "event 0x%2.2x", event); 7779 7780 hci_event_func(hdev, event, skb, &opcode, &status, &req_complete, 7781 &req_complete_skb); 7782 7783 if (req_complete) { 7784 req_complete(hdev, status, opcode); 7785 } else if (req_complete_skb) { 7786 if (!hci_get_cmd_complete(hdev, opcode, req_evt, orig_skb)) { 7787 kfree_skb(orig_skb); 7788 orig_skb = NULL; 7789 } 7790 req_complete_skb(hdev, status, opcode, orig_skb); 7791 } 7792 7793 done: 7794 kfree_skb(orig_skb); 7795 kfree_skb(skb); 7796 hdev->stat.evt_rx++; 7797 } 7798