xref: /openbmc/linux/net/bluetooth/hci_core.c (revision f3d7c2cd)
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4    Copyright (C) 2011 ProFUSION Embedded Systems
5 
6    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License version 2 as
10    published by the Free Software Foundation;
11 
12    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 
21    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23    SOFTWARE IS DISCLAIMED.
24 */
25 
26 /* Bluetooth HCI core. */
27 
28 #include <linux/export.h>
29 #include <linux/rfkill.h>
30 #include <linux/debugfs.h>
31 #include <linux/crypto.h>
32 #include <linux/property.h>
33 #include <linux/suspend.h>
34 #include <linux/wait.h>
35 #include <asm/unaligned.h>
36 
37 #include <net/bluetooth/bluetooth.h>
38 #include <net/bluetooth/hci_core.h>
39 #include <net/bluetooth/l2cap.h>
40 #include <net/bluetooth/mgmt.h>
41 
42 #include "hci_request.h"
43 #include "hci_debugfs.h"
44 #include "smp.h"
45 #include "leds.h"
46 #include "msft.h"
47 #include "aosp.h"
48 
49 static void hci_rx_work(struct work_struct *work);
50 static void hci_cmd_work(struct work_struct *work);
51 static void hci_tx_work(struct work_struct *work);
52 
53 /* HCI device list */
54 LIST_HEAD(hci_dev_list);
55 DEFINE_RWLOCK(hci_dev_list_lock);
56 
57 /* HCI callback list */
58 LIST_HEAD(hci_cb_list);
59 DEFINE_MUTEX(hci_cb_list_lock);
60 
61 /* HCI ID Numbering */
62 static DEFINE_IDA(hci_index_ida);
63 
64 /* ---- HCI debugfs entries ---- */
65 
66 static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
67 			     size_t count, loff_t *ppos)
68 {
69 	struct hci_dev *hdev = file->private_data;
70 	char buf[3];
71 
72 	buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
73 	buf[1] = '\n';
74 	buf[2] = '\0';
75 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
76 }
77 
78 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
79 			      size_t count, loff_t *ppos)
80 {
81 	struct hci_dev *hdev = file->private_data;
82 	struct sk_buff *skb;
83 	bool enable;
84 	int err;
85 
86 	if (!test_bit(HCI_UP, &hdev->flags))
87 		return -ENETDOWN;
88 
89 	err = kstrtobool_from_user(user_buf, count, &enable);
90 	if (err)
91 		return err;
92 
93 	if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
94 		return -EALREADY;
95 
96 	hci_req_sync_lock(hdev);
97 	if (enable)
98 		skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
99 				     HCI_CMD_TIMEOUT);
100 	else
101 		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
102 				     HCI_CMD_TIMEOUT);
103 	hci_req_sync_unlock(hdev);
104 
105 	if (IS_ERR(skb))
106 		return PTR_ERR(skb);
107 
108 	kfree_skb(skb);
109 
110 	hci_dev_change_flag(hdev, HCI_DUT_MODE);
111 
112 	return count;
113 }
114 
115 static const struct file_operations dut_mode_fops = {
116 	.open		= simple_open,
117 	.read		= dut_mode_read,
118 	.write		= dut_mode_write,
119 	.llseek		= default_llseek,
120 };
121 
122 static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
123 				size_t count, loff_t *ppos)
124 {
125 	struct hci_dev *hdev = file->private_data;
126 	char buf[3];
127 
128 	buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
129 	buf[1] = '\n';
130 	buf[2] = '\0';
131 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
132 }
133 
134 static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
135 				 size_t count, loff_t *ppos)
136 {
137 	struct hci_dev *hdev = file->private_data;
138 	bool enable;
139 	int err;
140 
141 	err = kstrtobool_from_user(user_buf, count, &enable);
142 	if (err)
143 		return err;
144 
145 	/* When the diagnostic flags are not persistent and the transport
146 	 * is not active or in user channel operation, then there is no need
147 	 * for the vendor callback. Instead just store the desired value and
148 	 * the setting will be programmed when the controller gets powered on.
149 	 */
150 	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
151 	    (!test_bit(HCI_RUNNING, &hdev->flags) ||
152 	     hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
153 		goto done;
154 
155 	hci_req_sync_lock(hdev);
156 	err = hdev->set_diag(hdev, enable);
157 	hci_req_sync_unlock(hdev);
158 
159 	if (err < 0)
160 		return err;
161 
162 done:
163 	if (enable)
164 		hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
165 	else
166 		hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
167 
168 	return count;
169 }
170 
171 static const struct file_operations vendor_diag_fops = {
172 	.open		= simple_open,
173 	.read		= vendor_diag_read,
174 	.write		= vendor_diag_write,
175 	.llseek		= default_llseek,
176 };
177 
178 static void hci_debugfs_create_basic(struct hci_dev *hdev)
179 {
180 	debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
181 			    &dut_mode_fops);
182 
183 	if (hdev->set_diag)
184 		debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
185 				    &vendor_diag_fops);
186 }
187 
188 static int hci_reset_req(struct hci_request *req, unsigned long opt)
189 {
190 	BT_DBG("%s %ld", req->hdev->name, opt);
191 
192 	/* Reset device */
193 	set_bit(HCI_RESET, &req->hdev->flags);
194 	hci_req_add(req, HCI_OP_RESET, 0, NULL);
195 	return 0;
196 }
197 
198 static void bredr_init(struct hci_request *req)
199 {
200 	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
201 
202 	/* Read Local Supported Features */
203 	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
204 
205 	/* Read Local Version */
206 	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
207 
208 	/* Read BD Address */
209 	hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
210 }
211 
212 static void amp_init1(struct hci_request *req)
213 {
214 	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
215 
216 	/* Read Local Version */
217 	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
218 
219 	/* Read Local Supported Commands */
220 	hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
221 
222 	/* Read Local AMP Info */
223 	hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
224 
225 	/* Read Data Blk size */
226 	hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
227 
228 	/* Read Flow Control Mode */
229 	hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
230 
231 	/* Read Location Data */
232 	hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
233 }
234 
235 static int amp_init2(struct hci_request *req)
236 {
237 	/* Read Local Supported Features. Not all AMP controllers
238 	 * support this so it's placed conditionally in the second
239 	 * stage init.
240 	 */
241 	if (req->hdev->commands[14] & 0x20)
242 		hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
243 
244 	return 0;
245 }
246 
247 static int hci_init1_req(struct hci_request *req, unsigned long opt)
248 {
249 	struct hci_dev *hdev = req->hdev;
250 
251 	BT_DBG("%s %ld", hdev->name, opt);
252 
253 	/* Reset */
254 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
255 		hci_reset_req(req, 0);
256 
257 	switch (hdev->dev_type) {
258 	case HCI_PRIMARY:
259 		bredr_init(req);
260 		break;
261 	case HCI_AMP:
262 		amp_init1(req);
263 		break;
264 	default:
265 		bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
266 		break;
267 	}
268 
269 	return 0;
270 }
271 
272 static void bredr_setup(struct hci_request *req)
273 {
274 	__le16 param;
275 	__u8 flt_type;
276 
277 	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
278 	hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
279 
280 	/* Read Class of Device */
281 	hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
282 
283 	/* Read Local Name */
284 	hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
285 
286 	/* Read Voice Setting */
287 	hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
288 
289 	/* Read Number of Supported IAC */
290 	hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
291 
292 	/* Read Current IAC LAP */
293 	hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
294 
295 	/* Clear Event Filters */
296 	flt_type = HCI_FLT_CLEAR_ALL;
297 	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
298 
299 	/* Connection accept timeout ~20 secs */
300 	param = cpu_to_le16(0x7d00);
301 	hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
302 }
303 
304 static void le_setup(struct hci_request *req)
305 {
306 	struct hci_dev *hdev = req->hdev;
307 
308 	/* Read LE Buffer Size */
309 	hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
310 
311 	/* Read LE Local Supported Features */
312 	hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
313 
314 	/* Read LE Supported States */
315 	hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
316 
317 	/* LE-only controllers have LE implicitly enabled */
318 	if (!lmp_bredr_capable(hdev))
319 		hci_dev_set_flag(hdev, HCI_LE_ENABLED);
320 }
321 
322 static void hci_setup_event_mask(struct hci_request *req)
323 {
324 	struct hci_dev *hdev = req->hdev;
325 
326 	/* The second byte is 0xff instead of 0x9f (two reserved bits
327 	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
328 	 * command otherwise.
329 	 */
330 	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
331 
332 	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
333 	 * any event mask for pre 1.2 devices.
334 	 */
335 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
336 		return;
337 
338 	if (lmp_bredr_capable(hdev)) {
339 		events[4] |= 0x01; /* Flow Specification Complete */
340 	} else {
341 		/* Use a different default for LE-only devices */
342 		memset(events, 0, sizeof(events));
343 		events[1] |= 0x20; /* Command Complete */
344 		events[1] |= 0x40; /* Command Status */
345 		events[1] |= 0x80; /* Hardware Error */
346 
347 		/* If the controller supports the Disconnect command, enable
348 		 * the corresponding event. In addition enable packet flow
349 		 * control related events.
350 		 */
351 		if (hdev->commands[0] & 0x20) {
352 			events[0] |= 0x10; /* Disconnection Complete */
353 			events[2] |= 0x04; /* Number of Completed Packets */
354 			events[3] |= 0x02; /* Data Buffer Overflow */
355 		}
356 
357 		/* If the controller supports the Read Remote Version
358 		 * Information command, enable the corresponding event.
359 		 */
360 		if (hdev->commands[2] & 0x80)
361 			events[1] |= 0x08; /* Read Remote Version Information
362 					    * Complete
363 					    */
364 
365 		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
366 			events[0] |= 0x80; /* Encryption Change */
367 			events[5] |= 0x80; /* Encryption Key Refresh Complete */
368 		}
369 	}
370 
371 	if (lmp_inq_rssi_capable(hdev) ||
372 	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
373 		events[4] |= 0x02; /* Inquiry Result with RSSI */
374 
375 	if (lmp_ext_feat_capable(hdev))
376 		events[4] |= 0x04; /* Read Remote Extended Features Complete */
377 
378 	if (lmp_esco_capable(hdev)) {
379 		events[5] |= 0x08; /* Synchronous Connection Complete */
380 		events[5] |= 0x10; /* Synchronous Connection Changed */
381 	}
382 
383 	if (lmp_sniffsubr_capable(hdev))
384 		events[5] |= 0x20; /* Sniff Subrating */
385 
386 	if (lmp_pause_enc_capable(hdev))
387 		events[5] |= 0x80; /* Encryption Key Refresh Complete */
388 
389 	if (lmp_ext_inq_capable(hdev))
390 		events[5] |= 0x40; /* Extended Inquiry Result */
391 
392 	if (lmp_no_flush_capable(hdev))
393 		events[7] |= 0x01; /* Enhanced Flush Complete */
394 
395 	if (lmp_lsto_capable(hdev))
396 		events[6] |= 0x80; /* Link Supervision Timeout Changed */
397 
398 	if (lmp_ssp_capable(hdev)) {
399 		events[6] |= 0x01;	/* IO Capability Request */
400 		events[6] |= 0x02;	/* IO Capability Response */
401 		events[6] |= 0x04;	/* User Confirmation Request */
402 		events[6] |= 0x08;	/* User Passkey Request */
403 		events[6] |= 0x10;	/* Remote OOB Data Request */
404 		events[6] |= 0x20;	/* Simple Pairing Complete */
405 		events[7] |= 0x04;	/* User Passkey Notification */
406 		events[7] |= 0x08;	/* Keypress Notification */
407 		events[7] |= 0x10;	/* Remote Host Supported
408 					 * Features Notification
409 					 */
410 	}
411 
412 	if (lmp_le_capable(hdev))
413 		events[7] |= 0x20;	/* LE Meta-Event */
414 
415 	hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
416 }
417 
418 static int hci_init2_req(struct hci_request *req, unsigned long opt)
419 {
420 	struct hci_dev *hdev = req->hdev;
421 
422 	if (hdev->dev_type == HCI_AMP)
423 		return amp_init2(req);
424 
425 	if (lmp_bredr_capable(hdev))
426 		bredr_setup(req);
427 	else
428 		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
429 
430 	if (lmp_le_capable(hdev))
431 		le_setup(req);
432 
433 	/* All Bluetooth 1.2 and later controllers should support the
434 	 * HCI command for reading the local supported commands.
435 	 *
436 	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
437 	 * but do not have support for this command. If that is the case,
438 	 * the driver can quirk the behavior and skip reading the local
439 	 * supported commands.
440 	 */
441 	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
442 	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
443 		hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
444 
445 	if (lmp_ssp_capable(hdev)) {
446 		/* When SSP is available, then the host features page
447 		 * should also be available as well. However some
448 		 * controllers list the max_page as 0 as long as SSP
449 		 * has not been enabled. To achieve proper debugging
450 		 * output, force the minimum max_page to 1 at least.
451 		 */
452 		hdev->max_page = 0x01;
453 
454 		if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
455 			u8 mode = 0x01;
456 
457 			hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
458 				    sizeof(mode), &mode);
459 		} else {
460 			struct hci_cp_write_eir cp;
461 
462 			memset(hdev->eir, 0, sizeof(hdev->eir));
463 			memset(&cp, 0, sizeof(cp));
464 
465 			hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
466 		}
467 	}
468 
469 	if (lmp_inq_rssi_capable(hdev) ||
470 	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
471 		u8 mode;
472 
473 		/* If Extended Inquiry Result events are supported, then
474 		 * they are clearly preferred over Inquiry Result with RSSI
475 		 * events.
476 		 */
477 		mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
478 
479 		hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
480 	}
481 
482 	if (lmp_inq_tx_pwr_capable(hdev))
483 		hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
484 
485 	if (lmp_ext_feat_capable(hdev)) {
486 		struct hci_cp_read_local_ext_features cp;
487 
488 		cp.page = 0x01;
489 		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
490 			    sizeof(cp), &cp);
491 	}
492 
493 	if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
494 		u8 enable = 1;
495 		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
496 			    &enable);
497 	}
498 
499 	return 0;
500 }
501 
502 static void hci_setup_link_policy(struct hci_request *req)
503 {
504 	struct hci_dev *hdev = req->hdev;
505 	struct hci_cp_write_def_link_policy cp;
506 	u16 link_policy = 0;
507 
508 	if (lmp_rswitch_capable(hdev))
509 		link_policy |= HCI_LP_RSWITCH;
510 	if (lmp_hold_capable(hdev))
511 		link_policy |= HCI_LP_HOLD;
512 	if (lmp_sniff_capable(hdev))
513 		link_policy |= HCI_LP_SNIFF;
514 	if (lmp_park_capable(hdev))
515 		link_policy |= HCI_LP_PARK;
516 
517 	cp.policy = cpu_to_le16(link_policy);
518 	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
519 }
520 
521 static void hci_set_le_support(struct hci_request *req)
522 {
523 	struct hci_dev *hdev = req->hdev;
524 	struct hci_cp_write_le_host_supported cp;
525 
526 	/* LE-only devices do not support explicit enablement */
527 	if (!lmp_bredr_capable(hdev))
528 		return;
529 
530 	memset(&cp, 0, sizeof(cp));
531 
532 	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
533 		cp.le = 0x01;
534 		cp.simul = 0x00;
535 	}
536 
537 	if (cp.le != lmp_host_le_capable(hdev))
538 		hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
539 			    &cp);
540 }
541 
542 static void hci_set_event_mask_page_2(struct hci_request *req)
543 {
544 	struct hci_dev *hdev = req->hdev;
545 	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
546 	bool changed = false;
547 
548 	/* If Connectionless Peripheral Broadcast central role is supported
549 	 * enable all necessary events for it.
550 	 */
551 	if (lmp_cpb_central_capable(hdev)) {
552 		events[1] |= 0x40;	/* Triggered Clock Capture */
553 		events[1] |= 0x80;	/* Synchronization Train Complete */
554 		events[2] |= 0x10;	/* Peripheral Page Response Timeout */
555 		events[2] |= 0x20;	/* CPB Channel Map Change */
556 		changed = true;
557 	}
558 
559 	/* If Connectionless Peripheral Broadcast peripheral role is supported
560 	 * enable all necessary events for it.
561 	 */
562 	if (lmp_cpb_peripheral_capable(hdev)) {
563 		events[2] |= 0x01;	/* Synchronization Train Received */
564 		events[2] |= 0x02;	/* CPB Receive */
565 		events[2] |= 0x04;	/* CPB Timeout */
566 		events[2] |= 0x08;	/* Truncated Page Complete */
567 		changed = true;
568 	}
569 
570 	/* Enable Authenticated Payload Timeout Expired event if supported */
571 	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
572 		events[2] |= 0x80;
573 		changed = true;
574 	}
575 
576 	/* Some Broadcom based controllers indicate support for Set Event
577 	 * Mask Page 2 command, but then actually do not support it. Since
578 	 * the default value is all bits set to zero, the command is only
579 	 * required if the event mask has to be changed. In case no change
580 	 * to the event mask is needed, skip this command.
581 	 */
582 	if (changed)
583 		hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
584 			    sizeof(events), events);
585 }
586 
587 static int hci_init3_req(struct hci_request *req, unsigned long opt)
588 {
589 	struct hci_dev *hdev = req->hdev;
590 	u8 p;
591 
592 	hci_setup_event_mask(req);
593 
594 	if (hdev->commands[6] & 0x20 &&
595 	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
596 		struct hci_cp_read_stored_link_key cp;
597 
598 		bacpy(&cp.bdaddr, BDADDR_ANY);
599 		cp.read_all = 0x01;
600 		hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
601 	}
602 
603 	if (hdev->commands[5] & 0x10)
604 		hci_setup_link_policy(req);
605 
606 	if (hdev->commands[8] & 0x01)
607 		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
608 
609 	if (hdev->commands[18] & 0x04 &&
610 	    !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
611 		hci_req_add(req, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 0, NULL);
612 
613 	/* Some older Broadcom based Bluetooth 1.2 controllers do not
614 	 * support the Read Page Scan Type command. Check support for
615 	 * this command in the bit mask of supported commands.
616 	 */
617 	if (hdev->commands[13] & 0x01)
618 		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
619 
620 	if (lmp_le_capable(hdev)) {
621 		u8 events[8];
622 
623 		memset(events, 0, sizeof(events));
624 
625 		if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
626 			events[0] |= 0x10;	/* LE Long Term Key Request */
627 
628 		/* If controller supports the Connection Parameters Request
629 		 * Link Layer Procedure, enable the corresponding event.
630 		 */
631 		if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
632 			events[0] |= 0x20;	/* LE Remote Connection
633 						 * Parameter Request
634 						 */
635 
636 		/* If the controller supports the Data Length Extension
637 		 * feature, enable the corresponding event.
638 		 */
639 		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
640 			events[0] |= 0x40;	/* LE Data Length Change */
641 
642 		/* If the controller supports LL Privacy feature, enable
643 		 * the corresponding event.
644 		 */
645 		if (hdev->le_features[0] & HCI_LE_LL_PRIVACY)
646 			events[1] |= 0x02;	/* LE Enhanced Connection
647 						 * Complete
648 						 */
649 
650 		/* If the controller supports Extended Scanner Filter
651 		 * Policies, enable the corresponding event.
652 		 */
653 		if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
654 			events[1] |= 0x04;	/* LE Direct Advertising
655 						 * Report
656 						 */
657 
658 		/* If the controller supports Channel Selection Algorithm #2
659 		 * feature, enable the corresponding event.
660 		 */
661 		if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
662 			events[2] |= 0x08;	/* LE Channel Selection
663 						 * Algorithm
664 						 */
665 
666 		/* If the controller supports the LE Set Scan Enable command,
667 		 * enable the corresponding advertising report event.
668 		 */
669 		if (hdev->commands[26] & 0x08)
670 			events[0] |= 0x02;	/* LE Advertising Report */
671 
672 		/* If the controller supports the LE Create Connection
673 		 * command, enable the corresponding event.
674 		 */
675 		if (hdev->commands[26] & 0x10)
676 			events[0] |= 0x01;	/* LE Connection Complete */
677 
678 		/* If the controller supports the LE Connection Update
679 		 * command, enable the corresponding event.
680 		 */
681 		if (hdev->commands[27] & 0x04)
682 			events[0] |= 0x04;	/* LE Connection Update
683 						 * Complete
684 						 */
685 
686 		/* If the controller supports the LE Read Remote Used Features
687 		 * command, enable the corresponding event.
688 		 */
689 		if (hdev->commands[27] & 0x20)
690 			events[0] |= 0x08;	/* LE Read Remote Used
691 						 * Features Complete
692 						 */
693 
694 		/* If the controller supports the LE Read Local P-256
695 		 * Public Key command, enable the corresponding event.
696 		 */
697 		if (hdev->commands[34] & 0x02)
698 			events[0] |= 0x80;	/* LE Read Local P-256
699 						 * Public Key Complete
700 						 */
701 
702 		/* If the controller supports the LE Generate DHKey
703 		 * command, enable the corresponding event.
704 		 */
705 		if (hdev->commands[34] & 0x04)
706 			events[1] |= 0x01;	/* LE Generate DHKey Complete */
707 
708 		/* If the controller supports the LE Set Default PHY or
709 		 * LE Set PHY commands, enable the corresponding event.
710 		 */
711 		if (hdev->commands[35] & (0x20 | 0x40))
712 			events[1] |= 0x08;        /* LE PHY Update Complete */
713 
714 		/* If the controller supports LE Set Extended Scan Parameters
715 		 * and LE Set Extended Scan Enable commands, enable the
716 		 * corresponding event.
717 		 */
718 		if (use_ext_scan(hdev))
719 			events[1] |= 0x10;	/* LE Extended Advertising
720 						 * Report
721 						 */
722 
723 		/* If the controller supports the LE Extended Advertising
724 		 * command, enable the corresponding event.
725 		 */
726 		if (ext_adv_capable(hdev))
727 			events[2] |= 0x02;	/* LE Advertising Set
728 						 * Terminated
729 						 */
730 
731 		hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
732 			    events);
733 
734 		/* Read LE Advertising Channel TX Power */
735 		if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
736 			/* HCI TS spec forbids mixing of legacy and extended
737 			 * advertising commands wherein READ_ADV_TX_POWER is
738 			 * also included. So do not call it if extended adv
739 			 * is supported otherwise controller will return
740 			 * COMMAND_DISALLOWED for extended commands.
741 			 */
742 			hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
743 		}
744 
745 		if (hdev->commands[38] & 0x80) {
746 			/* Read LE Min/Max Tx Power*/
747 			hci_req_add(req, HCI_OP_LE_READ_TRANSMIT_POWER,
748 				    0, NULL);
749 		}
750 
751 		if (hdev->commands[26] & 0x40) {
752 			/* Read LE Accept List Size */
753 			hci_req_add(req, HCI_OP_LE_READ_ACCEPT_LIST_SIZE,
754 				    0, NULL);
755 		}
756 
757 		if (hdev->commands[26] & 0x80) {
758 			/* Clear LE Accept List */
759 			hci_req_add(req, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL);
760 		}
761 
762 		if (hdev->commands[34] & 0x40) {
763 			/* Read LE Resolving List Size */
764 			hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
765 				    0, NULL);
766 		}
767 
768 		if (hdev->commands[34] & 0x20) {
769 			/* Clear LE Resolving List */
770 			hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL);
771 		}
772 
773 		if (hdev->commands[35] & 0x04) {
774 			__le16 rpa_timeout = cpu_to_le16(hdev->rpa_timeout);
775 
776 			/* Set RPA timeout */
777 			hci_req_add(req, HCI_OP_LE_SET_RPA_TIMEOUT, 2,
778 				    &rpa_timeout);
779 		}
780 
781 		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
782 			/* Read LE Maximum Data Length */
783 			hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
784 
785 			/* Read LE Suggested Default Data Length */
786 			hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
787 		}
788 
789 		if (ext_adv_capable(hdev)) {
790 			/* Read LE Number of Supported Advertising Sets */
791 			hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
792 				    0, NULL);
793 		}
794 
795 		hci_set_le_support(req);
796 	}
797 
798 	/* Read features beyond page 1 if available */
799 	for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
800 		struct hci_cp_read_local_ext_features cp;
801 
802 		cp.page = p;
803 		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
804 			    sizeof(cp), &cp);
805 	}
806 
807 	return 0;
808 }
809 
810 static int hci_init4_req(struct hci_request *req, unsigned long opt)
811 {
812 	struct hci_dev *hdev = req->hdev;
813 
814 	/* Some Broadcom based Bluetooth controllers do not support the
815 	 * Delete Stored Link Key command. They are clearly indicating its
816 	 * absence in the bit mask of supported commands.
817 	 *
818 	 * Check the supported commands and only if the command is marked
819 	 * as supported send it. If not supported assume that the controller
820 	 * does not have actual support for stored link keys which makes this
821 	 * command redundant anyway.
822 	 *
823 	 * Some controllers indicate that they support handling deleting
824 	 * stored link keys, but they don't. The quirk lets a driver
825 	 * just disable this command.
826 	 */
827 	if (hdev->commands[6] & 0x80 &&
828 	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
829 		struct hci_cp_delete_stored_link_key cp;
830 
831 		bacpy(&cp.bdaddr, BDADDR_ANY);
832 		cp.delete_all = 0x01;
833 		hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
834 			    sizeof(cp), &cp);
835 	}
836 
837 	/* Set event mask page 2 if the HCI command for it is supported */
838 	if (hdev->commands[22] & 0x04)
839 		hci_set_event_mask_page_2(req);
840 
841 	/* Read local codec list if the HCI command is supported */
842 	if (hdev->commands[29] & 0x20)
843 		hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
844 
845 	/* Read local pairing options if the HCI command is supported */
846 	if (hdev->commands[41] & 0x08)
847 		hci_req_add(req, HCI_OP_READ_LOCAL_PAIRING_OPTS, 0, NULL);
848 
849 	/* Get MWS transport configuration if the HCI command is supported */
850 	if (hdev->commands[30] & 0x08)
851 		hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
852 
853 	/* Check for Synchronization Train support */
854 	if (lmp_sync_train_capable(hdev))
855 		hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
856 
857 	/* Enable Secure Connections if supported and configured */
858 	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
859 	    bredr_sc_enabled(hdev)) {
860 		u8 support = 0x01;
861 
862 		hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
863 			    sizeof(support), &support);
864 	}
865 
866 	/* Set erroneous data reporting if supported to the wideband speech
867 	 * setting value
868 	 */
869 	if (hdev->commands[18] & 0x08 &&
870 	    !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) {
871 		bool enabled = hci_dev_test_flag(hdev,
872 						 HCI_WIDEBAND_SPEECH_ENABLED);
873 
874 		if (enabled !=
875 		    (hdev->err_data_reporting == ERR_DATA_REPORTING_ENABLED)) {
876 			struct hci_cp_write_def_err_data_reporting cp;
877 
878 			cp.err_data_reporting = enabled ?
879 						ERR_DATA_REPORTING_ENABLED :
880 						ERR_DATA_REPORTING_DISABLED;
881 
882 			hci_req_add(req, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
883 				    sizeof(cp), &cp);
884 		}
885 	}
886 
887 	/* Set Suggested Default Data Length to maximum if supported */
888 	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
889 		struct hci_cp_le_write_def_data_len cp;
890 
891 		cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
892 		cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
893 		hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
894 	}
895 
896 	/* Set Default PHY parameters if command is supported */
897 	if (hdev->commands[35] & 0x20) {
898 		struct hci_cp_le_set_default_phy cp;
899 
900 		cp.all_phys = 0x00;
901 		cp.tx_phys = hdev->le_tx_def_phys;
902 		cp.rx_phys = hdev->le_rx_def_phys;
903 
904 		hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
905 	}
906 
907 	return 0;
908 }
909 
910 static int __hci_init(struct hci_dev *hdev)
911 {
912 	int err;
913 
914 	err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
915 	if (err < 0)
916 		return err;
917 
918 	if (hci_dev_test_flag(hdev, HCI_SETUP))
919 		hci_debugfs_create_basic(hdev);
920 
921 	err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
922 	if (err < 0)
923 		return err;
924 
925 	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
926 	 * BR/EDR/LE type controllers. AMP controllers only need the
927 	 * first two stages of init.
928 	 */
929 	if (hdev->dev_type != HCI_PRIMARY)
930 		return 0;
931 
932 	err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
933 	if (err < 0)
934 		return err;
935 
936 	err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
937 	if (err < 0)
938 		return err;
939 
940 	/* This function is only called when the controller is actually in
941 	 * configured state. When the controller is marked as unconfigured,
942 	 * this initialization procedure is not run.
943 	 *
944 	 * It means that it is possible that a controller runs through its
945 	 * setup phase and then discovers missing settings. If that is the
946 	 * case, then this function will not be called. It then will only
947 	 * be called during the config phase.
948 	 *
949 	 * So only when in setup phase or config phase, create the debugfs
950 	 * entries and register the SMP channels.
951 	 */
952 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
953 	    !hci_dev_test_flag(hdev, HCI_CONFIG))
954 		return 0;
955 
956 	hci_debugfs_create_common(hdev);
957 
958 	if (lmp_bredr_capable(hdev))
959 		hci_debugfs_create_bredr(hdev);
960 
961 	if (lmp_le_capable(hdev))
962 		hci_debugfs_create_le(hdev);
963 
964 	return 0;
965 }
966 
967 static int hci_init0_req(struct hci_request *req, unsigned long opt)
968 {
969 	struct hci_dev *hdev = req->hdev;
970 
971 	BT_DBG("%s %ld", hdev->name, opt);
972 
973 	/* Reset */
974 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
975 		hci_reset_req(req, 0);
976 
977 	/* Read Local Version */
978 	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
979 
980 	/* Read BD Address */
981 	if (hdev->set_bdaddr)
982 		hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
983 
984 	return 0;
985 }
986 
987 static int __hci_unconf_init(struct hci_dev *hdev)
988 {
989 	int err;
990 
991 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
992 		return 0;
993 
994 	err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
995 	if (err < 0)
996 		return err;
997 
998 	if (hci_dev_test_flag(hdev, HCI_SETUP))
999 		hci_debugfs_create_basic(hdev);
1000 
1001 	return 0;
1002 }
1003 
1004 static int hci_scan_req(struct hci_request *req, unsigned long opt)
1005 {
1006 	__u8 scan = opt;
1007 
1008 	BT_DBG("%s %x", req->hdev->name, scan);
1009 
1010 	/* Inquiry and Page scans */
1011 	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1012 	return 0;
1013 }
1014 
1015 static int hci_auth_req(struct hci_request *req, unsigned long opt)
1016 {
1017 	__u8 auth = opt;
1018 
1019 	BT_DBG("%s %x", req->hdev->name, auth);
1020 
1021 	/* Authentication */
1022 	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
1023 	return 0;
1024 }
1025 
1026 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
1027 {
1028 	__u8 encrypt = opt;
1029 
1030 	BT_DBG("%s %x", req->hdev->name, encrypt);
1031 
1032 	/* Encryption */
1033 	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
1034 	return 0;
1035 }
1036 
1037 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
1038 {
1039 	__le16 policy = cpu_to_le16(opt);
1040 
1041 	BT_DBG("%s %x", req->hdev->name, policy);
1042 
1043 	/* Default link policy */
1044 	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
1045 	return 0;
1046 }
1047 
1048 /* Get HCI device by index.
1049  * Device is held on return. */
1050 struct hci_dev *hci_dev_get(int index)
1051 {
1052 	struct hci_dev *hdev = NULL, *d;
1053 
1054 	BT_DBG("%d", index);
1055 
1056 	if (index < 0)
1057 		return NULL;
1058 
1059 	read_lock(&hci_dev_list_lock);
1060 	list_for_each_entry(d, &hci_dev_list, list) {
1061 		if (d->id == index) {
1062 			hdev = hci_dev_hold(d);
1063 			break;
1064 		}
1065 	}
1066 	read_unlock(&hci_dev_list_lock);
1067 	return hdev;
1068 }
1069 
1070 /* ---- Inquiry support ---- */
1071 
1072 bool hci_discovery_active(struct hci_dev *hdev)
1073 {
1074 	struct discovery_state *discov = &hdev->discovery;
1075 
1076 	switch (discov->state) {
1077 	case DISCOVERY_FINDING:
1078 	case DISCOVERY_RESOLVING:
1079 		return true;
1080 
1081 	default:
1082 		return false;
1083 	}
1084 }
1085 
1086 void hci_discovery_set_state(struct hci_dev *hdev, int state)
1087 {
1088 	int old_state = hdev->discovery.state;
1089 
1090 	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1091 
1092 	if (old_state == state)
1093 		return;
1094 
1095 	hdev->discovery.state = state;
1096 
1097 	switch (state) {
1098 	case DISCOVERY_STOPPED:
1099 		hci_update_background_scan(hdev);
1100 
1101 		if (old_state != DISCOVERY_STARTING)
1102 			mgmt_discovering(hdev, 0);
1103 		break;
1104 	case DISCOVERY_STARTING:
1105 		break;
1106 	case DISCOVERY_FINDING:
1107 		mgmt_discovering(hdev, 1);
1108 		break;
1109 	case DISCOVERY_RESOLVING:
1110 		break;
1111 	case DISCOVERY_STOPPING:
1112 		break;
1113 	}
1114 }
1115 
1116 void hci_inquiry_cache_flush(struct hci_dev *hdev)
1117 {
1118 	struct discovery_state *cache = &hdev->discovery;
1119 	struct inquiry_entry *p, *n;
1120 
1121 	list_for_each_entry_safe(p, n, &cache->all, all) {
1122 		list_del(&p->all);
1123 		kfree(p);
1124 	}
1125 
1126 	INIT_LIST_HEAD(&cache->unknown);
1127 	INIT_LIST_HEAD(&cache->resolve);
1128 }
1129 
1130 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1131 					       bdaddr_t *bdaddr)
1132 {
1133 	struct discovery_state *cache = &hdev->discovery;
1134 	struct inquiry_entry *e;
1135 
1136 	BT_DBG("cache %p, %pMR", cache, bdaddr);
1137 
1138 	list_for_each_entry(e, &cache->all, all) {
1139 		if (!bacmp(&e->data.bdaddr, bdaddr))
1140 			return e;
1141 	}
1142 
1143 	return NULL;
1144 }
1145 
1146 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1147 						       bdaddr_t *bdaddr)
1148 {
1149 	struct discovery_state *cache = &hdev->discovery;
1150 	struct inquiry_entry *e;
1151 
1152 	BT_DBG("cache %p, %pMR", cache, bdaddr);
1153 
1154 	list_for_each_entry(e, &cache->unknown, list) {
1155 		if (!bacmp(&e->data.bdaddr, bdaddr))
1156 			return e;
1157 	}
1158 
1159 	return NULL;
1160 }
1161 
1162 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1163 						       bdaddr_t *bdaddr,
1164 						       int state)
1165 {
1166 	struct discovery_state *cache = &hdev->discovery;
1167 	struct inquiry_entry *e;
1168 
1169 	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1170 
1171 	list_for_each_entry(e, &cache->resolve, list) {
1172 		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1173 			return e;
1174 		if (!bacmp(&e->data.bdaddr, bdaddr))
1175 			return e;
1176 	}
1177 
1178 	return NULL;
1179 }
1180 
1181 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1182 				      struct inquiry_entry *ie)
1183 {
1184 	struct discovery_state *cache = &hdev->discovery;
1185 	struct list_head *pos = &cache->resolve;
1186 	struct inquiry_entry *p;
1187 
1188 	list_del(&ie->list);
1189 
1190 	list_for_each_entry(p, &cache->resolve, list) {
1191 		if (p->name_state != NAME_PENDING &&
1192 		    abs(p->data.rssi) >= abs(ie->data.rssi))
1193 			break;
1194 		pos = &p->list;
1195 	}
1196 
1197 	list_add(&ie->list, pos);
1198 }
1199 
1200 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1201 			     bool name_known)
1202 {
1203 	struct discovery_state *cache = &hdev->discovery;
1204 	struct inquiry_entry *ie;
1205 	u32 flags = 0;
1206 
1207 	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1208 
1209 	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1210 
1211 	if (!data->ssp_mode)
1212 		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1213 
1214 	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1215 	if (ie) {
1216 		if (!ie->data.ssp_mode)
1217 			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1218 
1219 		if (ie->name_state == NAME_NEEDED &&
1220 		    data->rssi != ie->data.rssi) {
1221 			ie->data.rssi = data->rssi;
1222 			hci_inquiry_cache_update_resolve(hdev, ie);
1223 		}
1224 
1225 		goto update;
1226 	}
1227 
1228 	/* Entry not in the cache. Add new one. */
1229 	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1230 	if (!ie) {
1231 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1232 		goto done;
1233 	}
1234 
1235 	list_add(&ie->all, &cache->all);
1236 
1237 	if (name_known) {
1238 		ie->name_state = NAME_KNOWN;
1239 	} else {
1240 		ie->name_state = NAME_NOT_KNOWN;
1241 		list_add(&ie->list, &cache->unknown);
1242 	}
1243 
1244 update:
1245 	if (name_known && ie->name_state != NAME_KNOWN &&
1246 	    ie->name_state != NAME_PENDING) {
1247 		ie->name_state = NAME_KNOWN;
1248 		list_del(&ie->list);
1249 	}
1250 
1251 	memcpy(&ie->data, data, sizeof(*data));
1252 	ie->timestamp = jiffies;
1253 	cache->timestamp = jiffies;
1254 
1255 	if (ie->name_state == NAME_NOT_KNOWN)
1256 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1257 
1258 done:
1259 	return flags;
1260 }
1261 
1262 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1263 {
1264 	struct discovery_state *cache = &hdev->discovery;
1265 	struct inquiry_info *info = (struct inquiry_info *) buf;
1266 	struct inquiry_entry *e;
1267 	int copied = 0;
1268 
1269 	list_for_each_entry(e, &cache->all, all) {
1270 		struct inquiry_data *data = &e->data;
1271 
1272 		if (copied >= num)
1273 			break;
1274 
1275 		bacpy(&info->bdaddr, &data->bdaddr);
1276 		info->pscan_rep_mode	= data->pscan_rep_mode;
1277 		info->pscan_period_mode	= data->pscan_period_mode;
1278 		info->pscan_mode	= data->pscan_mode;
1279 		memcpy(info->dev_class, data->dev_class, 3);
1280 		info->clock_offset	= data->clock_offset;
1281 
1282 		info++;
1283 		copied++;
1284 	}
1285 
1286 	BT_DBG("cache %p, copied %d", cache, copied);
1287 	return copied;
1288 }
1289 
1290 static int hci_inq_req(struct hci_request *req, unsigned long opt)
1291 {
1292 	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1293 	struct hci_dev *hdev = req->hdev;
1294 	struct hci_cp_inquiry cp;
1295 
1296 	BT_DBG("%s", hdev->name);
1297 
1298 	if (test_bit(HCI_INQUIRY, &hdev->flags))
1299 		return 0;
1300 
1301 	/* Start Inquiry */
1302 	memcpy(&cp.lap, &ir->lap, 3);
1303 	cp.length  = ir->length;
1304 	cp.num_rsp = ir->num_rsp;
1305 	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1306 
1307 	return 0;
1308 }
1309 
1310 int hci_inquiry(void __user *arg)
1311 {
1312 	__u8 __user *ptr = arg;
1313 	struct hci_inquiry_req ir;
1314 	struct hci_dev *hdev;
1315 	int err = 0, do_inquiry = 0, max_rsp;
1316 	long timeo;
1317 	__u8 *buf;
1318 
1319 	if (copy_from_user(&ir, ptr, sizeof(ir)))
1320 		return -EFAULT;
1321 
1322 	hdev = hci_dev_get(ir.dev_id);
1323 	if (!hdev)
1324 		return -ENODEV;
1325 
1326 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1327 		err = -EBUSY;
1328 		goto done;
1329 	}
1330 
1331 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1332 		err = -EOPNOTSUPP;
1333 		goto done;
1334 	}
1335 
1336 	if (hdev->dev_type != HCI_PRIMARY) {
1337 		err = -EOPNOTSUPP;
1338 		goto done;
1339 	}
1340 
1341 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1342 		err = -EOPNOTSUPP;
1343 		goto done;
1344 	}
1345 
1346 	/* Restrict maximum inquiry length to 60 seconds */
1347 	if (ir.length > 60) {
1348 		err = -EINVAL;
1349 		goto done;
1350 	}
1351 
1352 	hci_dev_lock(hdev);
1353 	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1354 	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1355 		hci_inquiry_cache_flush(hdev);
1356 		do_inquiry = 1;
1357 	}
1358 	hci_dev_unlock(hdev);
1359 
1360 	timeo = ir.length * msecs_to_jiffies(2000);
1361 
1362 	if (do_inquiry) {
1363 		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1364 				   timeo, NULL);
1365 		if (err < 0)
1366 			goto done;
1367 
1368 		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1369 		 * cleared). If it is interrupted by a signal, return -EINTR.
1370 		 */
1371 		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1372 				TASK_INTERRUPTIBLE)) {
1373 			err = -EINTR;
1374 			goto done;
1375 		}
1376 	}
1377 
1378 	/* for unlimited number of responses we will use buffer with
1379 	 * 255 entries
1380 	 */
1381 	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1382 
1383 	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
1384 	 * copy it to the user space.
1385 	 */
1386 	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
1387 	if (!buf) {
1388 		err = -ENOMEM;
1389 		goto done;
1390 	}
1391 
1392 	hci_dev_lock(hdev);
1393 	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1394 	hci_dev_unlock(hdev);
1395 
1396 	BT_DBG("num_rsp %d", ir.num_rsp);
1397 
1398 	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1399 		ptr += sizeof(ir);
1400 		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1401 				 ir.num_rsp))
1402 			err = -EFAULT;
1403 	} else
1404 		err = -EFAULT;
1405 
1406 	kfree(buf);
1407 
1408 done:
1409 	hci_dev_put(hdev);
1410 	return err;
1411 }
1412 
1413 /**
1414  * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
1415  *				       (BD_ADDR) for a HCI device from
1416  *				       a firmware node property.
1417  * @hdev:	The HCI device
1418  *
1419  * Search the firmware node for 'local-bd-address'.
1420  *
1421  * All-zero BD addresses are rejected, because those could be properties
1422  * that exist in the firmware tables, but were not updated by the firmware. For
1423  * example, the DTS could define 'local-bd-address', with zero BD addresses.
1424  */
1425 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
1426 {
1427 	struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
1428 	bdaddr_t ba;
1429 	int ret;
1430 
1431 	ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
1432 					    (u8 *)&ba, sizeof(ba));
1433 	if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
1434 		return;
1435 
1436 	bacpy(&hdev->public_addr, &ba);
1437 }
1438 
1439 static int hci_dev_do_open(struct hci_dev *hdev)
1440 {
1441 	int ret = 0;
1442 
1443 	BT_DBG("%s %p", hdev->name, hdev);
1444 
1445 	hci_req_sync_lock(hdev);
1446 
1447 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1448 		ret = -ENODEV;
1449 		goto done;
1450 	}
1451 
1452 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1453 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1454 		/* Check for rfkill but allow the HCI setup stage to
1455 		 * proceed (which in itself doesn't cause any RF activity).
1456 		 */
1457 		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1458 			ret = -ERFKILL;
1459 			goto done;
1460 		}
1461 
1462 		/* Check for valid public address or a configured static
1463 		 * random address, but let the HCI setup proceed to
1464 		 * be able to determine if there is a public address
1465 		 * or not.
1466 		 *
1467 		 * In case of user channel usage, it is not important
1468 		 * if a public address or static random address is
1469 		 * available.
1470 		 *
1471 		 * This check is only valid for BR/EDR controllers
1472 		 * since AMP controllers do not have an address.
1473 		 */
1474 		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1475 		    hdev->dev_type == HCI_PRIMARY &&
1476 		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1477 		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1478 			ret = -EADDRNOTAVAIL;
1479 			goto done;
1480 		}
1481 	}
1482 
1483 	if (test_bit(HCI_UP, &hdev->flags)) {
1484 		ret = -EALREADY;
1485 		goto done;
1486 	}
1487 
1488 	if (hdev->open(hdev)) {
1489 		ret = -EIO;
1490 		goto done;
1491 	}
1492 
1493 	set_bit(HCI_RUNNING, &hdev->flags);
1494 	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1495 
1496 	atomic_set(&hdev->cmd_cnt, 1);
1497 	set_bit(HCI_INIT, &hdev->flags);
1498 
1499 	if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1500 	    test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
1501 		bool invalid_bdaddr;
1502 
1503 		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1504 
1505 		if (hdev->setup)
1506 			ret = hdev->setup(hdev);
1507 
1508 		/* The transport driver can set the quirk to mark the
1509 		 * BD_ADDR invalid before creating the HCI device or in
1510 		 * its setup callback.
1511 		 */
1512 		invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR,
1513 					  &hdev->quirks);
1514 
1515 		if (ret)
1516 			goto setup_failed;
1517 
1518 		if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
1519 			if (!bacmp(&hdev->public_addr, BDADDR_ANY))
1520 				hci_dev_get_bd_addr_from_property(hdev);
1521 
1522 			if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1523 			    hdev->set_bdaddr) {
1524 				ret = hdev->set_bdaddr(hdev,
1525 						       &hdev->public_addr);
1526 
1527 				/* If setting of the BD_ADDR from the device
1528 				 * property succeeds, then treat the address
1529 				 * as valid even if the invalid BD_ADDR
1530 				 * quirk indicates otherwise.
1531 				 */
1532 				if (!ret)
1533 					invalid_bdaddr = false;
1534 			}
1535 		}
1536 
1537 setup_failed:
1538 		/* The transport driver can set these quirks before
1539 		 * creating the HCI device or in its setup callback.
1540 		 *
1541 		 * For the invalid BD_ADDR quirk it is possible that
1542 		 * it becomes a valid address if the bootloader does
1543 		 * provide it (see above).
1544 		 *
1545 		 * In case any of them is set, the controller has to
1546 		 * start up as unconfigured.
1547 		 */
1548 		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1549 		    invalid_bdaddr)
1550 			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1551 
1552 		/* For an unconfigured controller it is required to
1553 		 * read at least the version information provided by
1554 		 * the Read Local Version Information command.
1555 		 *
1556 		 * If the set_bdaddr driver callback is provided, then
1557 		 * also the original Bluetooth public device address
1558 		 * will be read using the Read BD Address command.
1559 		 */
1560 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1561 			ret = __hci_unconf_init(hdev);
1562 	}
1563 
1564 	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1565 		/* If public address change is configured, ensure that
1566 		 * the address gets programmed. If the driver does not
1567 		 * support changing the public address, fail the power
1568 		 * on procedure.
1569 		 */
1570 		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1571 		    hdev->set_bdaddr)
1572 			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1573 		else
1574 			ret = -EADDRNOTAVAIL;
1575 	}
1576 
1577 	if (!ret) {
1578 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1579 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1580 			ret = __hci_init(hdev);
1581 			if (!ret && hdev->post_init)
1582 				ret = hdev->post_init(hdev);
1583 		}
1584 	}
1585 
1586 	/* If the HCI Reset command is clearing all diagnostic settings,
1587 	 * then they need to be reprogrammed after the init procedure
1588 	 * completed.
1589 	 */
1590 	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1591 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1592 	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1593 		ret = hdev->set_diag(hdev, true);
1594 
1595 	msft_do_open(hdev);
1596 	aosp_do_open(hdev);
1597 
1598 	clear_bit(HCI_INIT, &hdev->flags);
1599 
1600 	if (!ret) {
1601 		hci_dev_hold(hdev);
1602 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1603 		hci_adv_instances_set_rpa_expired(hdev, true);
1604 		set_bit(HCI_UP, &hdev->flags);
1605 		hci_sock_dev_event(hdev, HCI_DEV_UP);
1606 		hci_leds_update_powered(hdev, true);
1607 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1608 		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1609 		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1610 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1611 		    hci_dev_test_flag(hdev, HCI_MGMT) &&
1612 		    hdev->dev_type == HCI_PRIMARY) {
1613 			ret = __hci_req_hci_power_on(hdev);
1614 			mgmt_power_on(hdev, ret);
1615 		}
1616 	} else {
1617 		/* Init failed, cleanup */
1618 		flush_work(&hdev->tx_work);
1619 
1620 		/* Since hci_rx_work() is possible to awake new cmd_work
1621 		 * it should be flushed first to avoid unexpected call of
1622 		 * hci_cmd_work()
1623 		 */
1624 		flush_work(&hdev->rx_work);
1625 		flush_work(&hdev->cmd_work);
1626 
1627 		skb_queue_purge(&hdev->cmd_q);
1628 		skb_queue_purge(&hdev->rx_q);
1629 
1630 		if (hdev->flush)
1631 			hdev->flush(hdev);
1632 
1633 		if (hdev->sent_cmd) {
1634 			kfree_skb(hdev->sent_cmd);
1635 			hdev->sent_cmd = NULL;
1636 		}
1637 
1638 		clear_bit(HCI_RUNNING, &hdev->flags);
1639 		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1640 
1641 		hdev->close(hdev);
1642 		hdev->flags &= BIT(HCI_RAW);
1643 	}
1644 
1645 done:
1646 	hci_req_sync_unlock(hdev);
1647 	return ret;
1648 }
1649 
1650 /* ---- HCI ioctl helpers ---- */
1651 
1652 int hci_dev_open(__u16 dev)
1653 {
1654 	struct hci_dev *hdev;
1655 	int err;
1656 
1657 	hdev = hci_dev_get(dev);
1658 	if (!hdev)
1659 		return -ENODEV;
1660 
1661 	/* Devices that are marked as unconfigured can only be powered
1662 	 * up as user channel. Trying to bring them up as normal devices
1663 	 * will result into a failure. Only user channel operation is
1664 	 * possible.
1665 	 *
1666 	 * When this function is called for a user channel, the flag
1667 	 * HCI_USER_CHANNEL will be set first before attempting to
1668 	 * open the device.
1669 	 */
1670 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1671 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1672 		err = -EOPNOTSUPP;
1673 		goto done;
1674 	}
1675 
1676 	/* We need to ensure that no other power on/off work is pending
1677 	 * before proceeding to call hci_dev_do_open. This is
1678 	 * particularly important if the setup procedure has not yet
1679 	 * completed.
1680 	 */
1681 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1682 		cancel_delayed_work(&hdev->power_off);
1683 
1684 	/* After this call it is guaranteed that the setup procedure
1685 	 * has finished. This means that error conditions like RFKILL
1686 	 * or no valid public or static random address apply.
1687 	 */
1688 	flush_workqueue(hdev->req_workqueue);
1689 
1690 	/* For controllers not using the management interface and that
1691 	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1692 	 * so that pairing works for them. Once the management interface
1693 	 * is in use this bit will be cleared again and userspace has
1694 	 * to explicitly enable it.
1695 	 */
1696 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1697 	    !hci_dev_test_flag(hdev, HCI_MGMT))
1698 		hci_dev_set_flag(hdev, HCI_BONDABLE);
1699 
1700 	err = hci_dev_do_open(hdev);
1701 
1702 done:
1703 	hci_dev_put(hdev);
1704 	return err;
1705 }
1706 
1707 /* This function requires the caller holds hdev->lock */
1708 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1709 {
1710 	struct hci_conn_params *p;
1711 
1712 	list_for_each_entry(p, &hdev->le_conn_params, list) {
1713 		if (p->conn) {
1714 			hci_conn_drop(p->conn);
1715 			hci_conn_put(p->conn);
1716 			p->conn = NULL;
1717 		}
1718 		list_del_init(&p->action);
1719 	}
1720 
1721 	BT_DBG("All LE pending actions cleared");
1722 }
1723 
1724 int hci_dev_do_close(struct hci_dev *hdev)
1725 {
1726 	bool auto_off;
1727 	int err = 0;
1728 
1729 	BT_DBG("%s %p", hdev->name, hdev);
1730 
1731 	cancel_delayed_work(&hdev->power_off);
1732 	cancel_delayed_work(&hdev->ncmd_timer);
1733 
1734 	hci_request_cancel_all(hdev);
1735 	hci_req_sync_lock(hdev);
1736 
1737 	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1738 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1739 	    test_bit(HCI_UP, &hdev->flags)) {
1740 		/* Execute vendor specific shutdown routine */
1741 		if (hdev->shutdown)
1742 			err = hdev->shutdown(hdev);
1743 	}
1744 
1745 	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1746 		cancel_delayed_work_sync(&hdev->cmd_timer);
1747 		hci_req_sync_unlock(hdev);
1748 		return err;
1749 	}
1750 
1751 	hci_leds_update_powered(hdev, false);
1752 
1753 	/* Flush RX and TX works */
1754 	flush_work(&hdev->tx_work);
1755 	flush_work(&hdev->rx_work);
1756 
1757 	if (hdev->discov_timeout > 0) {
1758 		hdev->discov_timeout = 0;
1759 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1760 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1761 	}
1762 
1763 	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1764 		cancel_delayed_work(&hdev->service_cache);
1765 
1766 	if (hci_dev_test_flag(hdev, HCI_MGMT)) {
1767 		struct adv_info *adv_instance;
1768 
1769 		cancel_delayed_work_sync(&hdev->rpa_expired);
1770 
1771 		list_for_each_entry(adv_instance, &hdev->adv_instances, list)
1772 			cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1773 	}
1774 
1775 	/* Avoid potential lockdep warnings from the *_flush() calls by
1776 	 * ensuring the workqueue is empty up front.
1777 	 */
1778 	drain_workqueue(hdev->workqueue);
1779 
1780 	hci_dev_lock(hdev);
1781 
1782 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1783 
1784 	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1785 
1786 	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1787 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1788 	    hci_dev_test_flag(hdev, HCI_MGMT))
1789 		__mgmt_power_off(hdev);
1790 
1791 	hci_inquiry_cache_flush(hdev);
1792 	hci_pend_le_actions_clear(hdev);
1793 	hci_conn_hash_flush(hdev);
1794 	hci_dev_unlock(hdev);
1795 
1796 	smp_unregister(hdev);
1797 
1798 	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1799 
1800 	aosp_do_close(hdev);
1801 	msft_do_close(hdev);
1802 
1803 	if (hdev->flush)
1804 		hdev->flush(hdev);
1805 
1806 	/* Reset device */
1807 	skb_queue_purge(&hdev->cmd_q);
1808 	atomic_set(&hdev->cmd_cnt, 1);
1809 	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1810 	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1811 		set_bit(HCI_INIT, &hdev->flags);
1812 		__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1813 		clear_bit(HCI_INIT, &hdev->flags);
1814 	}
1815 
1816 	/* flush cmd  work */
1817 	flush_work(&hdev->cmd_work);
1818 
1819 	/* Drop queues */
1820 	skb_queue_purge(&hdev->rx_q);
1821 	skb_queue_purge(&hdev->cmd_q);
1822 	skb_queue_purge(&hdev->raw_q);
1823 
1824 	/* Drop last sent command */
1825 	if (hdev->sent_cmd) {
1826 		cancel_delayed_work_sync(&hdev->cmd_timer);
1827 		kfree_skb(hdev->sent_cmd);
1828 		hdev->sent_cmd = NULL;
1829 	}
1830 
1831 	clear_bit(HCI_RUNNING, &hdev->flags);
1832 	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1833 
1834 	if (test_and_clear_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks))
1835 		wake_up(&hdev->suspend_wait_q);
1836 
1837 	/* After this point our queues are empty
1838 	 * and no tasks are scheduled. */
1839 	hdev->close(hdev);
1840 
1841 	/* Clear flags */
1842 	hdev->flags &= BIT(HCI_RAW);
1843 	hci_dev_clear_volatile_flags(hdev);
1844 
1845 	/* Controller radio is available but is currently powered down */
1846 	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1847 
1848 	memset(hdev->eir, 0, sizeof(hdev->eir));
1849 	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1850 	bacpy(&hdev->random_addr, BDADDR_ANY);
1851 
1852 	hci_req_sync_unlock(hdev);
1853 
1854 	hci_dev_put(hdev);
1855 	return err;
1856 }
1857 
1858 int hci_dev_close(__u16 dev)
1859 {
1860 	struct hci_dev *hdev;
1861 	int err;
1862 
1863 	hdev = hci_dev_get(dev);
1864 	if (!hdev)
1865 		return -ENODEV;
1866 
1867 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1868 		err = -EBUSY;
1869 		goto done;
1870 	}
1871 
1872 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1873 		cancel_delayed_work(&hdev->power_off);
1874 
1875 	err = hci_dev_do_close(hdev);
1876 
1877 done:
1878 	hci_dev_put(hdev);
1879 	return err;
1880 }
1881 
1882 static int hci_dev_do_reset(struct hci_dev *hdev)
1883 {
1884 	int ret;
1885 
1886 	BT_DBG("%s %p", hdev->name, hdev);
1887 
1888 	hci_req_sync_lock(hdev);
1889 
1890 	/* Drop queues */
1891 	skb_queue_purge(&hdev->rx_q);
1892 	skb_queue_purge(&hdev->cmd_q);
1893 
1894 	/* Avoid potential lockdep warnings from the *_flush() calls by
1895 	 * ensuring the workqueue is empty up front.
1896 	 */
1897 	drain_workqueue(hdev->workqueue);
1898 
1899 	hci_dev_lock(hdev);
1900 	hci_inquiry_cache_flush(hdev);
1901 	hci_conn_hash_flush(hdev);
1902 	hci_dev_unlock(hdev);
1903 
1904 	if (hdev->flush)
1905 		hdev->flush(hdev);
1906 
1907 	atomic_set(&hdev->cmd_cnt, 1);
1908 	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1909 
1910 	ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1911 
1912 	hci_req_sync_unlock(hdev);
1913 	return ret;
1914 }
1915 
1916 int hci_dev_reset(__u16 dev)
1917 {
1918 	struct hci_dev *hdev;
1919 	int err;
1920 
1921 	hdev = hci_dev_get(dev);
1922 	if (!hdev)
1923 		return -ENODEV;
1924 
1925 	if (!test_bit(HCI_UP, &hdev->flags)) {
1926 		err = -ENETDOWN;
1927 		goto done;
1928 	}
1929 
1930 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1931 		err = -EBUSY;
1932 		goto done;
1933 	}
1934 
1935 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1936 		err = -EOPNOTSUPP;
1937 		goto done;
1938 	}
1939 
1940 	err = hci_dev_do_reset(hdev);
1941 
1942 done:
1943 	hci_dev_put(hdev);
1944 	return err;
1945 }
1946 
1947 int hci_dev_reset_stat(__u16 dev)
1948 {
1949 	struct hci_dev *hdev;
1950 	int ret = 0;
1951 
1952 	hdev = hci_dev_get(dev);
1953 	if (!hdev)
1954 		return -ENODEV;
1955 
1956 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1957 		ret = -EBUSY;
1958 		goto done;
1959 	}
1960 
1961 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1962 		ret = -EOPNOTSUPP;
1963 		goto done;
1964 	}
1965 
1966 	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1967 
1968 done:
1969 	hci_dev_put(hdev);
1970 	return ret;
1971 }
1972 
1973 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1974 {
1975 	bool conn_changed, discov_changed;
1976 
1977 	BT_DBG("%s scan 0x%02x", hdev->name, scan);
1978 
1979 	if ((scan & SCAN_PAGE))
1980 		conn_changed = !hci_dev_test_and_set_flag(hdev,
1981 							  HCI_CONNECTABLE);
1982 	else
1983 		conn_changed = hci_dev_test_and_clear_flag(hdev,
1984 							   HCI_CONNECTABLE);
1985 
1986 	if ((scan & SCAN_INQUIRY)) {
1987 		discov_changed = !hci_dev_test_and_set_flag(hdev,
1988 							    HCI_DISCOVERABLE);
1989 	} else {
1990 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1991 		discov_changed = hci_dev_test_and_clear_flag(hdev,
1992 							     HCI_DISCOVERABLE);
1993 	}
1994 
1995 	if (!hci_dev_test_flag(hdev, HCI_MGMT))
1996 		return;
1997 
1998 	if (conn_changed || discov_changed) {
1999 		/* In case this was disabled through mgmt */
2000 		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
2001 
2002 		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2003 			hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
2004 
2005 		mgmt_new_settings(hdev);
2006 	}
2007 }
2008 
2009 int hci_dev_cmd(unsigned int cmd, void __user *arg)
2010 {
2011 	struct hci_dev *hdev;
2012 	struct hci_dev_req dr;
2013 	int err = 0;
2014 
2015 	if (copy_from_user(&dr, arg, sizeof(dr)))
2016 		return -EFAULT;
2017 
2018 	hdev = hci_dev_get(dr.dev_id);
2019 	if (!hdev)
2020 		return -ENODEV;
2021 
2022 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
2023 		err = -EBUSY;
2024 		goto done;
2025 	}
2026 
2027 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
2028 		err = -EOPNOTSUPP;
2029 		goto done;
2030 	}
2031 
2032 	if (hdev->dev_type != HCI_PRIMARY) {
2033 		err = -EOPNOTSUPP;
2034 		goto done;
2035 	}
2036 
2037 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
2038 		err = -EOPNOTSUPP;
2039 		goto done;
2040 	}
2041 
2042 	switch (cmd) {
2043 	case HCISETAUTH:
2044 		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2045 				   HCI_INIT_TIMEOUT, NULL);
2046 		break;
2047 
2048 	case HCISETENCRYPT:
2049 		if (!lmp_encrypt_capable(hdev)) {
2050 			err = -EOPNOTSUPP;
2051 			break;
2052 		}
2053 
2054 		if (!test_bit(HCI_AUTH, &hdev->flags)) {
2055 			/* Auth must be enabled first */
2056 			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2057 					   HCI_INIT_TIMEOUT, NULL);
2058 			if (err)
2059 				break;
2060 		}
2061 
2062 		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
2063 				   HCI_INIT_TIMEOUT, NULL);
2064 		break;
2065 
2066 	case HCISETSCAN:
2067 		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
2068 				   HCI_INIT_TIMEOUT, NULL);
2069 
2070 		/* Ensure that the connectable and discoverable states
2071 		 * get correctly modified as this was a non-mgmt change.
2072 		 */
2073 		if (!err)
2074 			hci_update_scan_state(hdev, dr.dev_opt);
2075 		break;
2076 
2077 	case HCISETLINKPOL:
2078 		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
2079 				   HCI_INIT_TIMEOUT, NULL);
2080 		break;
2081 
2082 	case HCISETLINKMODE:
2083 		hdev->link_mode = ((__u16) dr.dev_opt) &
2084 					(HCI_LM_MASTER | HCI_LM_ACCEPT);
2085 		break;
2086 
2087 	case HCISETPTYPE:
2088 		if (hdev->pkt_type == (__u16) dr.dev_opt)
2089 			break;
2090 
2091 		hdev->pkt_type = (__u16) dr.dev_opt;
2092 		mgmt_phy_configuration_changed(hdev, NULL);
2093 		break;
2094 
2095 	case HCISETACLMTU:
2096 		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
2097 		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2098 		break;
2099 
2100 	case HCISETSCOMTU:
2101 		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
2102 		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2103 		break;
2104 
2105 	default:
2106 		err = -EINVAL;
2107 		break;
2108 	}
2109 
2110 done:
2111 	hci_dev_put(hdev);
2112 	return err;
2113 }
2114 
2115 int hci_get_dev_list(void __user *arg)
2116 {
2117 	struct hci_dev *hdev;
2118 	struct hci_dev_list_req *dl;
2119 	struct hci_dev_req *dr;
2120 	int n = 0, size, err;
2121 	__u16 dev_num;
2122 
2123 	if (get_user(dev_num, (__u16 __user *) arg))
2124 		return -EFAULT;
2125 
2126 	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2127 		return -EINVAL;
2128 
2129 	size = sizeof(*dl) + dev_num * sizeof(*dr);
2130 
2131 	dl = kzalloc(size, GFP_KERNEL);
2132 	if (!dl)
2133 		return -ENOMEM;
2134 
2135 	dr = dl->dev_req;
2136 
2137 	read_lock(&hci_dev_list_lock);
2138 	list_for_each_entry(hdev, &hci_dev_list, list) {
2139 		unsigned long flags = hdev->flags;
2140 
2141 		/* When the auto-off is configured it means the transport
2142 		 * is running, but in that case still indicate that the
2143 		 * device is actually down.
2144 		 */
2145 		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2146 			flags &= ~BIT(HCI_UP);
2147 
2148 		(dr + n)->dev_id  = hdev->id;
2149 		(dr + n)->dev_opt = flags;
2150 
2151 		if (++n >= dev_num)
2152 			break;
2153 	}
2154 	read_unlock(&hci_dev_list_lock);
2155 
2156 	dl->dev_num = n;
2157 	size = sizeof(*dl) + n * sizeof(*dr);
2158 
2159 	err = copy_to_user(arg, dl, size);
2160 	kfree(dl);
2161 
2162 	return err ? -EFAULT : 0;
2163 }
2164 
2165 int hci_get_dev_info(void __user *arg)
2166 {
2167 	struct hci_dev *hdev;
2168 	struct hci_dev_info di;
2169 	unsigned long flags;
2170 	int err = 0;
2171 
2172 	if (copy_from_user(&di, arg, sizeof(di)))
2173 		return -EFAULT;
2174 
2175 	hdev = hci_dev_get(di.dev_id);
2176 	if (!hdev)
2177 		return -ENODEV;
2178 
2179 	/* When the auto-off is configured it means the transport
2180 	 * is running, but in that case still indicate that the
2181 	 * device is actually down.
2182 	 */
2183 	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2184 		flags = hdev->flags & ~BIT(HCI_UP);
2185 	else
2186 		flags = hdev->flags;
2187 
2188 	strcpy(di.name, hdev->name);
2189 	di.bdaddr   = hdev->bdaddr;
2190 	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2191 	di.flags    = flags;
2192 	di.pkt_type = hdev->pkt_type;
2193 	if (lmp_bredr_capable(hdev)) {
2194 		di.acl_mtu  = hdev->acl_mtu;
2195 		di.acl_pkts = hdev->acl_pkts;
2196 		di.sco_mtu  = hdev->sco_mtu;
2197 		di.sco_pkts = hdev->sco_pkts;
2198 	} else {
2199 		di.acl_mtu  = hdev->le_mtu;
2200 		di.acl_pkts = hdev->le_pkts;
2201 		di.sco_mtu  = 0;
2202 		di.sco_pkts = 0;
2203 	}
2204 	di.link_policy = hdev->link_policy;
2205 	di.link_mode   = hdev->link_mode;
2206 
2207 	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2208 	memcpy(&di.features, &hdev->features, sizeof(di.features));
2209 
2210 	if (copy_to_user(arg, &di, sizeof(di)))
2211 		err = -EFAULT;
2212 
2213 	hci_dev_put(hdev);
2214 
2215 	return err;
2216 }
2217 
2218 /* ---- Interface to HCI drivers ---- */
2219 
2220 static int hci_rfkill_set_block(void *data, bool blocked)
2221 {
2222 	struct hci_dev *hdev = data;
2223 
2224 	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2225 
2226 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2227 		return -EBUSY;
2228 
2229 	if (blocked) {
2230 		hci_dev_set_flag(hdev, HCI_RFKILLED);
2231 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2232 		    !hci_dev_test_flag(hdev, HCI_CONFIG))
2233 			hci_dev_do_close(hdev);
2234 	} else {
2235 		hci_dev_clear_flag(hdev, HCI_RFKILLED);
2236 	}
2237 
2238 	return 0;
2239 }
2240 
2241 static const struct rfkill_ops hci_rfkill_ops = {
2242 	.set_block = hci_rfkill_set_block,
2243 };
2244 
2245 static void hci_power_on(struct work_struct *work)
2246 {
2247 	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2248 	int err;
2249 
2250 	BT_DBG("%s", hdev->name);
2251 
2252 	if (test_bit(HCI_UP, &hdev->flags) &&
2253 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
2254 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2255 		cancel_delayed_work(&hdev->power_off);
2256 		hci_req_sync_lock(hdev);
2257 		err = __hci_req_hci_power_on(hdev);
2258 		hci_req_sync_unlock(hdev);
2259 		mgmt_power_on(hdev, err);
2260 		return;
2261 	}
2262 
2263 	err = hci_dev_do_open(hdev);
2264 	if (err < 0) {
2265 		hci_dev_lock(hdev);
2266 		mgmt_set_powered_failed(hdev, err);
2267 		hci_dev_unlock(hdev);
2268 		return;
2269 	}
2270 
2271 	/* During the HCI setup phase, a few error conditions are
2272 	 * ignored and they need to be checked now. If they are still
2273 	 * valid, it is important to turn the device back off.
2274 	 */
2275 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2276 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2277 	    (hdev->dev_type == HCI_PRIMARY &&
2278 	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2279 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2280 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2281 		hci_dev_do_close(hdev);
2282 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2283 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2284 				   HCI_AUTO_OFF_TIMEOUT);
2285 	}
2286 
2287 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2288 		/* For unconfigured devices, set the HCI_RAW flag
2289 		 * so that userspace can easily identify them.
2290 		 */
2291 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2292 			set_bit(HCI_RAW, &hdev->flags);
2293 
2294 		/* For fully configured devices, this will send
2295 		 * the Index Added event. For unconfigured devices,
2296 		 * it will send Unconfigued Index Added event.
2297 		 *
2298 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2299 		 * and no event will be send.
2300 		 */
2301 		mgmt_index_added(hdev);
2302 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2303 		/* When the controller is now configured, then it
2304 		 * is important to clear the HCI_RAW flag.
2305 		 */
2306 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2307 			clear_bit(HCI_RAW, &hdev->flags);
2308 
2309 		/* Powering on the controller with HCI_CONFIG set only
2310 		 * happens with the transition from unconfigured to
2311 		 * configured. This will send the Index Added event.
2312 		 */
2313 		mgmt_index_added(hdev);
2314 	}
2315 }
2316 
2317 static void hci_power_off(struct work_struct *work)
2318 {
2319 	struct hci_dev *hdev = container_of(work, struct hci_dev,
2320 					    power_off.work);
2321 
2322 	BT_DBG("%s", hdev->name);
2323 
2324 	hci_dev_do_close(hdev);
2325 }
2326 
2327 static void hci_error_reset(struct work_struct *work)
2328 {
2329 	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2330 
2331 	BT_DBG("%s", hdev->name);
2332 
2333 	if (hdev->hw_error)
2334 		hdev->hw_error(hdev, hdev->hw_error_code);
2335 	else
2336 		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
2337 
2338 	if (hci_dev_do_close(hdev))
2339 		return;
2340 
2341 	hci_dev_do_open(hdev);
2342 }
2343 
2344 void hci_uuids_clear(struct hci_dev *hdev)
2345 {
2346 	struct bt_uuid *uuid, *tmp;
2347 
2348 	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2349 		list_del(&uuid->list);
2350 		kfree(uuid);
2351 	}
2352 }
2353 
2354 void hci_link_keys_clear(struct hci_dev *hdev)
2355 {
2356 	struct link_key *key;
2357 
2358 	list_for_each_entry(key, &hdev->link_keys, list) {
2359 		list_del_rcu(&key->list);
2360 		kfree_rcu(key, rcu);
2361 	}
2362 }
2363 
2364 void hci_smp_ltks_clear(struct hci_dev *hdev)
2365 {
2366 	struct smp_ltk *k;
2367 
2368 	list_for_each_entry(k, &hdev->long_term_keys, list) {
2369 		list_del_rcu(&k->list);
2370 		kfree_rcu(k, rcu);
2371 	}
2372 }
2373 
2374 void hci_smp_irks_clear(struct hci_dev *hdev)
2375 {
2376 	struct smp_irk *k;
2377 
2378 	list_for_each_entry(k, &hdev->identity_resolving_keys, list) {
2379 		list_del_rcu(&k->list);
2380 		kfree_rcu(k, rcu);
2381 	}
2382 }
2383 
2384 void hci_blocked_keys_clear(struct hci_dev *hdev)
2385 {
2386 	struct blocked_key *b;
2387 
2388 	list_for_each_entry(b, &hdev->blocked_keys, list) {
2389 		list_del_rcu(&b->list);
2390 		kfree_rcu(b, rcu);
2391 	}
2392 }
2393 
2394 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
2395 {
2396 	bool blocked = false;
2397 	struct blocked_key *b;
2398 
2399 	rcu_read_lock();
2400 	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
2401 		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
2402 			blocked = true;
2403 			break;
2404 		}
2405 	}
2406 
2407 	rcu_read_unlock();
2408 	return blocked;
2409 }
2410 
2411 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2412 {
2413 	struct link_key *k;
2414 
2415 	rcu_read_lock();
2416 	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2417 		if (bacmp(bdaddr, &k->bdaddr) == 0) {
2418 			rcu_read_unlock();
2419 
2420 			if (hci_is_blocked_key(hdev,
2421 					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
2422 					       k->val)) {
2423 				bt_dev_warn_ratelimited(hdev,
2424 							"Link key blocked for %pMR",
2425 							&k->bdaddr);
2426 				return NULL;
2427 			}
2428 
2429 			return k;
2430 		}
2431 	}
2432 	rcu_read_unlock();
2433 
2434 	return NULL;
2435 }
2436 
2437 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2438 			       u8 key_type, u8 old_key_type)
2439 {
2440 	/* Legacy key */
2441 	if (key_type < 0x03)
2442 		return true;
2443 
2444 	/* Debug keys are insecure so don't store them persistently */
2445 	if (key_type == HCI_LK_DEBUG_COMBINATION)
2446 		return false;
2447 
2448 	/* Changed combination key and there's no previous one */
2449 	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2450 		return false;
2451 
2452 	/* Security mode 3 case */
2453 	if (!conn)
2454 		return true;
2455 
2456 	/* BR/EDR key derived using SC from an LE link */
2457 	if (conn->type == LE_LINK)
2458 		return true;
2459 
2460 	/* Neither local nor remote side had no-bonding as requirement */
2461 	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2462 		return true;
2463 
2464 	/* Local side had dedicated bonding as requirement */
2465 	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2466 		return true;
2467 
2468 	/* Remote side had dedicated bonding as requirement */
2469 	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2470 		return true;
2471 
2472 	/* If none of the above criteria match, then don't store the key
2473 	 * persistently */
2474 	return false;
2475 }
2476 
2477 static u8 ltk_role(u8 type)
2478 {
2479 	if (type == SMP_LTK)
2480 		return HCI_ROLE_MASTER;
2481 
2482 	return HCI_ROLE_SLAVE;
2483 }
2484 
2485 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2486 			     u8 addr_type, u8 role)
2487 {
2488 	struct smp_ltk *k;
2489 
2490 	rcu_read_lock();
2491 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2492 		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2493 			continue;
2494 
2495 		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2496 			rcu_read_unlock();
2497 
2498 			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
2499 					       k->val)) {
2500 				bt_dev_warn_ratelimited(hdev,
2501 							"LTK blocked for %pMR",
2502 							&k->bdaddr);
2503 				return NULL;
2504 			}
2505 
2506 			return k;
2507 		}
2508 	}
2509 	rcu_read_unlock();
2510 
2511 	return NULL;
2512 }
2513 
2514 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2515 {
2516 	struct smp_irk *irk_to_return = NULL;
2517 	struct smp_irk *irk;
2518 
2519 	rcu_read_lock();
2520 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2521 		if (!bacmp(&irk->rpa, rpa)) {
2522 			irk_to_return = irk;
2523 			goto done;
2524 		}
2525 	}
2526 
2527 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2528 		if (smp_irk_matches(hdev, irk->val, rpa)) {
2529 			bacpy(&irk->rpa, rpa);
2530 			irk_to_return = irk;
2531 			goto done;
2532 		}
2533 	}
2534 
2535 done:
2536 	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2537 						irk_to_return->val)) {
2538 		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2539 					&irk_to_return->bdaddr);
2540 		irk_to_return = NULL;
2541 	}
2542 
2543 	rcu_read_unlock();
2544 
2545 	return irk_to_return;
2546 }
2547 
2548 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2549 				     u8 addr_type)
2550 {
2551 	struct smp_irk *irk_to_return = NULL;
2552 	struct smp_irk *irk;
2553 
2554 	/* Identity Address must be public or static random */
2555 	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2556 		return NULL;
2557 
2558 	rcu_read_lock();
2559 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2560 		if (addr_type == irk->addr_type &&
2561 		    bacmp(bdaddr, &irk->bdaddr) == 0) {
2562 			irk_to_return = irk;
2563 			goto done;
2564 		}
2565 	}
2566 
2567 done:
2568 
2569 	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2570 						irk_to_return->val)) {
2571 		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2572 					&irk_to_return->bdaddr);
2573 		irk_to_return = NULL;
2574 	}
2575 
2576 	rcu_read_unlock();
2577 
2578 	return irk_to_return;
2579 }
2580 
2581 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2582 				  bdaddr_t *bdaddr, u8 *val, u8 type,
2583 				  u8 pin_len, bool *persistent)
2584 {
2585 	struct link_key *key, *old_key;
2586 	u8 old_key_type;
2587 
2588 	old_key = hci_find_link_key(hdev, bdaddr);
2589 	if (old_key) {
2590 		old_key_type = old_key->type;
2591 		key = old_key;
2592 	} else {
2593 		old_key_type = conn ? conn->key_type : 0xff;
2594 		key = kzalloc(sizeof(*key), GFP_KERNEL);
2595 		if (!key)
2596 			return NULL;
2597 		list_add_rcu(&key->list, &hdev->link_keys);
2598 	}
2599 
2600 	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2601 
2602 	/* Some buggy controller combinations generate a changed
2603 	 * combination key for legacy pairing even when there's no
2604 	 * previous key */
2605 	if (type == HCI_LK_CHANGED_COMBINATION &&
2606 	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2607 		type = HCI_LK_COMBINATION;
2608 		if (conn)
2609 			conn->key_type = type;
2610 	}
2611 
2612 	bacpy(&key->bdaddr, bdaddr);
2613 	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2614 	key->pin_len = pin_len;
2615 
2616 	if (type == HCI_LK_CHANGED_COMBINATION)
2617 		key->type = old_key_type;
2618 	else
2619 		key->type = type;
2620 
2621 	if (persistent)
2622 		*persistent = hci_persistent_key(hdev, conn, type,
2623 						 old_key_type);
2624 
2625 	return key;
2626 }
2627 
2628 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2629 			    u8 addr_type, u8 type, u8 authenticated,
2630 			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2631 {
2632 	struct smp_ltk *key, *old_key;
2633 	u8 role = ltk_role(type);
2634 
2635 	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2636 	if (old_key)
2637 		key = old_key;
2638 	else {
2639 		key = kzalloc(sizeof(*key), GFP_KERNEL);
2640 		if (!key)
2641 			return NULL;
2642 		list_add_rcu(&key->list, &hdev->long_term_keys);
2643 	}
2644 
2645 	bacpy(&key->bdaddr, bdaddr);
2646 	key->bdaddr_type = addr_type;
2647 	memcpy(key->val, tk, sizeof(key->val));
2648 	key->authenticated = authenticated;
2649 	key->ediv = ediv;
2650 	key->rand = rand;
2651 	key->enc_size = enc_size;
2652 	key->type = type;
2653 
2654 	return key;
2655 }
2656 
2657 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2658 			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
2659 {
2660 	struct smp_irk *irk;
2661 
2662 	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2663 	if (!irk) {
2664 		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2665 		if (!irk)
2666 			return NULL;
2667 
2668 		bacpy(&irk->bdaddr, bdaddr);
2669 		irk->addr_type = addr_type;
2670 
2671 		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2672 	}
2673 
2674 	memcpy(irk->val, val, 16);
2675 	bacpy(&irk->rpa, rpa);
2676 
2677 	return irk;
2678 }
2679 
2680 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2681 {
2682 	struct link_key *key;
2683 
2684 	key = hci_find_link_key(hdev, bdaddr);
2685 	if (!key)
2686 		return -ENOENT;
2687 
2688 	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2689 
2690 	list_del_rcu(&key->list);
2691 	kfree_rcu(key, rcu);
2692 
2693 	return 0;
2694 }
2695 
2696 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2697 {
2698 	struct smp_ltk *k;
2699 	int removed = 0;
2700 
2701 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2702 		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2703 			continue;
2704 
2705 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2706 
2707 		list_del_rcu(&k->list);
2708 		kfree_rcu(k, rcu);
2709 		removed++;
2710 	}
2711 
2712 	return removed ? 0 : -ENOENT;
2713 }
2714 
2715 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2716 {
2717 	struct smp_irk *k;
2718 
2719 	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2720 		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2721 			continue;
2722 
2723 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2724 
2725 		list_del_rcu(&k->list);
2726 		kfree_rcu(k, rcu);
2727 	}
2728 }
2729 
2730 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2731 {
2732 	struct smp_ltk *k;
2733 	struct smp_irk *irk;
2734 	u8 addr_type;
2735 
2736 	if (type == BDADDR_BREDR) {
2737 		if (hci_find_link_key(hdev, bdaddr))
2738 			return true;
2739 		return false;
2740 	}
2741 
2742 	/* Convert to HCI addr type which struct smp_ltk uses */
2743 	if (type == BDADDR_LE_PUBLIC)
2744 		addr_type = ADDR_LE_DEV_PUBLIC;
2745 	else
2746 		addr_type = ADDR_LE_DEV_RANDOM;
2747 
2748 	irk = hci_get_irk(hdev, bdaddr, addr_type);
2749 	if (irk) {
2750 		bdaddr = &irk->bdaddr;
2751 		addr_type = irk->addr_type;
2752 	}
2753 
2754 	rcu_read_lock();
2755 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2756 		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2757 			rcu_read_unlock();
2758 			return true;
2759 		}
2760 	}
2761 	rcu_read_unlock();
2762 
2763 	return false;
2764 }
2765 
2766 /* HCI command timer function */
2767 static void hci_cmd_timeout(struct work_struct *work)
2768 {
2769 	struct hci_dev *hdev = container_of(work, struct hci_dev,
2770 					    cmd_timer.work);
2771 
2772 	if (hdev->sent_cmd) {
2773 		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2774 		u16 opcode = __le16_to_cpu(sent->opcode);
2775 
2776 		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
2777 	} else {
2778 		bt_dev_err(hdev, "command tx timeout");
2779 	}
2780 
2781 	if (hdev->cmd_timeout)
2782 		hdev->cmd_timeout(hdev);
2783 
2784 	atomic_set(&hdev->cmd_cnt, 1);
2785 	queue_work(hdev->workqueue, &hdev->cmd_work);
2786 }
2787 
2788 /* HCI ncmd timer function */
2789 static void hci_ncmd_timeout(struct work_struct *work)
2790 {
2791 	struct hci_dev *hdev = container_of(work, struct hci_dev,
2792 					    ncmd_timer.work);
2793 
2794 	bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
2795 
2796 	/* During HCI_INIT phase no events can be injected if the ncmd timer
2797 	 * triggers since the procedure has its own timeout handling.
2798 	 */
2799 	if (test_bit(HCI_INIT, &hdev->flags))
2800 		return;
2801 
2802 	/* This is an irrecoverable state, inject hardware error event */
2803 	hci_reset_dev(hdev);
2804 }
2805 
2806 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2807 					  bdaddr_t *bdaddr, u8 bdaddr_type)
2808 {
2809 	struct oob_data *data;
2810 
2811 	list_for_each_entry(data, &hdev->remote_oob_data, list) {
2812 		if (bacmp(bdaddr, &data->bdaddr) != 0)
2813 			continue;
2814 		if (data->bdaddr_type != bdaddr_type)
2815 			continue;
2816 		return data;
2817 	}
2818 
2819 	return NULL;
2820 }
2821 
2822 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2823 			       u8 bdaddr_type)
2824 {
2825 	struct oob_data *data;
2826 
2827 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2828 	if (!data)
2829 		return -ENOENT;
2830 
2831 	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2832 
2833 	list_del(&data->list);
2834 	kfree(data);
2835 
2836 	return 0;
2837 }
2838 
2839 void hci_remote_oob_data_clear(struct hci_dev *hdev)
2840 {
2841 	struct oob_data *data, *n;
2842 
2843 	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2844 		list_del(&data->list);
2845 		kfree(data);
2846 	}
2847 }
2848 
2849 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2850 			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
2851 			    u8 *hash256, u8 *rand256)
2852 {
2853 	struct oob_data *data;
2854 
2855 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2856 	if (!data) {
2857 		data = kmalloc(sizeof(*data), GFP_KERNEL);
2858 		if (!data)
2859 			return -ENOMEM;
2860 
2861 		bacpy(&data->bdaddr, bdaddr);
2862 		data->bdaddr_type = bdaddr_type;
2863 		list_add(&data->list, &hdev->remote_oob_data);
2864 	}
2865 
2866 	if (hash192 && rand192) {
2867 		memcpy(data->hash192, hash192, sizeof(data->hash192));
2868 		memcpy(data->rand192, rand192, sizeof(data->rand192));
2869 		if (hash256 && rand256)
2870 			data->present = 0x03;
2871 	} else {
2872 		memset(data->hash192, 0, sizeof(data->hash192));
2873 		memset(data->rand192, 0, sizeof(data->rand192));
2874 		if (hash256 && rand256)
2875 			data->present = 0x02;
2876 		else
2877 			data->present = 0x00;
2878 	}
2879 
2880 	if (hash256 && rand256) {
2881 		memcpy(data->hash256, hash256, sizeof(data->hash256));
2882 		memcpy(data->rand256, rand256, sizeof(data->rand256));
2883 	} else {
2884 		memset(data->hash256, 0, sizeof(data->hash256));
2885 		memset(data->rand256, 0, sizeof(data->rand256));
2886 		if (hash192 && rand192)
2887 			data->present = 0x01;
2888 	}
2889 
2890 	BT_DBG("%s for %pMR", hdev->name, bdaddr);
2891 
2892 	return 0;
2893 }
2894 
2895 /* This function requires the caller holds hdev->lock */
2896 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2897 {
2898 	struct adv_info *adv_instance;
2899 
2900 	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2901 		if (adv_instance->instance == instance)
2902 			return adv_instance;
2903 	}
2904 
2905 	return NULL;
2906 }
2907 
2908 /* This function requires the caller holds hdev->lock */
2909 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2910 {
2911 	struct adv_info *cur_instance;
2912 
2913 	cur_instance = hci_find_adv_instance(hdev, instance);
2914 	if (!cur_instance)
2915 		return NULL;
2916 
2917 	if (cur_instance == list_last_entry(&hdev->adv_instances,
2918 					    struct adv_info, list))
2919 		return list_first_entry(&hdev->adv_instances,
2920 						 struct adv_info, list);
2921 	else
2922 		return list_next_entry(cur_instance, list);
2923 }
2924 
2925 /* This function requires the caller holds hdev->lock */
2926 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2927 {
2928 	struct adv_info *adv_instance;
2929 
2930 	adv_instance = hci_find_adv_instance(hdev, instance);
2931 	if (!adv_instance)
2932 		return -ENOENT;
2933 
2934 	BT_DBG("%s removing %dMR", hdev->name, instance);
2935 
2936 	if (hdev->cur_adv_instance == instance) {
2937 		if (hdev->adv_instance_timeout) {
2938 			cancel_delayed_work(&hdev->adv_instance_expire);
2939 			hdev->adv_instance_timeout = 0;
2940 		}
2941 		hdev->cur_adv_instance = 0x00;
2942 	}
2943 
2944 	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2945 
2946 	list_del(&adv_instance->list);
2947 	kfree(adv_instance);
2948 
2949 	hdev->adv_instance_cnt--;
2950 
2951 	return 0;
2952 }
2953 
2954 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
2955 {
2956 	struct adv_info *adv_instance, *n;
2957 
2958 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
2959 		adv_instance->rpa_expired = rpa_expired;
2960 }
2961 
2962 /* This function requires the caller holds hdev->lock */
2963 void hci_adv_instances_clear(struct hci_dev *hdev)
2964 {
2965 	struct adv_info *adv_instance, *n;
2966 
2967 	if (hdev->adv_instance_timeout) {
2968 		cancel_delayed_work(&hdev->adv_instance_expire);
2969 		hdev->adv_instance_timeout = 0;
2970 	}
2971 
2972 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2973 		cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2974 		list_del(&adv_instance->list);
2975 		kfree(adv_instance);
2976 	}
2977 
2978 	hdev->adv_instance_cnt = 0;
2979 	hdev->cur_adv_instance = 0x00;
2980 }
2981 
2982 static void adv_instance_rpa_expired(struct work_struct *work)
2983 {
2984 	struct adv_info *adv_instance = container_of(work, struct adv_info,
2985 						     rpa_expired_cb.work);
2986 
2987 	BT_DBG("");
2988 
2989 	adv_instance->rpa_expired = true;
2990 }
2991 
2992 /* This function requires the caller holds hdev->lock */
2993 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2994 			 u16 adv_data_len, u8 *adv_data,
2995 			 u16 scan_rsp_len, u8 *scan_rsp_data,
2996 			 u16 timeout, u16 duration, s8 tx_power,
2997 			 u32 min_interval, u32 max_interval)
2998 {
2999 	struct adv_info *adv_instance;
3000 
3001 	adv_instance = hci_find_adv_instance(hdev, instance);
3002 	if (adv_instance) {
3003 		memset(adv_instance->adv_data, 0,
3004 		       sizeof(adv_instance->adv_data));
3005 		memset(adv_instance->scan_rsp_data, 0,
3006 		       sizeof(adv_instance->scan_rsp_data));
3007 	} else {
3008 		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
3009 		    instance < 1 || instance > hdev->le_num_of_adv_sets)
3010 			return -EOVERFLOW;
3011 
3012 		adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
3013 		if (!adv_instance)
3014 			return -ENOMEM;
3015 
3016 		adv_instance->pending = true;
3017 		adv_instance->instance = instance;
3018 		list_add(&adv_instance->list, &hdev->adv_instances);
3019 		hdev->adv_instance_cnt++;
3020 	}
3021 
3022 	adv_instance->flags = flags;
3023 	adv_instance->adv_data_len = adv_data_len;
3024 	adv_instance->scan_rsp_len = scan_rsp_len;
3025 	adv_instance->min_interval = min_interval;
3026 	adv_instance->max_interval = max_interval;
3027 	adv_instance->tx_power = tx_power;
3028 
3029 	if (adv_data_len)
3030 		memcpy(adv_instance->adv_data, adv_data, adv_data_len);
3031 
3032 	if (scan_rsp_len)
3033 		memcpy(adv_instance->scan_rsp_data,
3034 		       scan_rsp_data, scan_rsp_len);
3035 
3036 	adv_instance->timeout = timeout;
3037 	adv_instance->remaining_time = timeout;
3038 
3039 	if (duration == 0)
3040 		adv_instance->duration = hdev->def_multi_adv_rotation_duration;
3041 	else
3042 		adv_instance->duration = duration;
3043 
3044 	INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb,
3045 			  adv_instance_rpa_expired);
3046 
3047 	BT_DBG("%s for %dMR", hdev->name, instance);
3048 
3049 	return 0;
3050 }
3051 
3052 /* This function requires the caller holds hdev->lock */
3053 int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
3054 			      u16 adv_data_len, u8 *adv_data,
3055 			      u16 scan_rsp_len, u8 *scan_rsp_data)
3056 {
3057 	struct adv_info *adv_instance;
3058 
3059 	adv_instance = hci_find_adv_instance(hdev, instance);
3060 
3061 	/* If advertisement doesn't exist, we can't modify its data */
3062 	if (!adv_instance)
3063 		return -ENOENT;
3064 
3065 	if (adv_data_len) {
3066 		memset(adv_instance->adv_data, 0,
3067 		       sizeof(adv_instance->adv_data));
3068 		memcpy(adv_instance->adv_data, adv_data, adv_data_len);
3069 		adv_instance->adv_data_len = adv_data_len;
3070 	}
3071 
3072 	if (scan_rsp_len) {
3073 		memset(adv_instance->scan_rsp_data, 0,
3074 		       sizeof(adv_instance->scan_rsp_data));
3075 		memcpy(adv_instance->scan_rsp_data,
3076 		       scan_rsp_data, scan_rsp_len);
3077 		adv_instance->scan_rsp_len = scan_rsp_len;
3078 	}
3079 
3080 	return 0;
3081 }
3082 
3083 /* This function requires the caller holds hdev->lock */
3084 void hci_adv_monitors_clear(struct hci_dev *hdev)
3085 {
3086 	struct adv_monitor *monitor;
3087 	int handle;
3088 
3089 	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
3090 		hci_free_adv_monitor(hdev, monitor);
3091 
3092 	idr_destroy(&hdev->adv_monitors_idr);
3093 }
3094 
3095 /* Frees the monitor structure and do some bookkeepings.
3096  * This function requires the caller holds hdev->lock.
3097  */
3098 void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
3099 {
3100 	struct adv_pattern *pattern;
3101 	struct adv_pattern *tmp;
3102 
3103 	if (!monitor)
3104 		return;
3105 
3106 	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
3107 		list_del(&pattern->list);
3108 		kfree(pattern);
3109 	}
3110 
3111 	if (monitor->handle)
3112 		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
3113 
3114 	if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
3115 		hdev->adv_monitors_cnt--;
3116 		mgmt_adv_monitor_removed(hdev, monitor->handle);
3117 	}
3118 
3119 	kfree(monitor);
3120 }
3121 
3122 int hci_add_adv_patterns_monitor_complete(struct hci_dev *hdev, u8 status)
3123 {
3124 	return mgmt_add_adv_patterns_monitor_complete(hdev, status);
3125 }
3126 
3127 int hci_remove_adv_monitor_complete(struct hci_dev *hdev, u8 status)
3128 {
3129 	return mgmt_remove_adv_monitor_complete(hdev, status);
3130 }
3131 
3132 /* Assigns handle to a monitor, and if offloading is supported and power is on,
3133  * also attempts to forward the request to the controller.
3134  * Returns true if request is forwarded (result is pending), false otherwise.
3135  * This function requires the caller holds hdev->lock.
3136  */
3137 bool hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor,
3138 			 int *err)
3139 {
3140 	int min, max, handle;
3141 
3142 	*err = 0;
3143 
3144 	if (!monitor) {
3145 		*err = -EINVAL;
3146 		return false;
3147 	}
3148 
3149 	min = HCI_MIN_ADV_MONITOR_HANDLE;
3150 	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
3151 	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
3152 			   GFP_KERNEL);
3153 	if (handle < 0) {
3154 		*err = handle;
3155 		return false;
3156 	}
3157 
3158 	monitor->handle = handle;
3159 
3160 	if (!hdev_is_powered(hdev))
3161 		return false;
3162 
3163 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
3164 	case HCI_ADV_MONITOR_EXT_NONE:
3165 		hci_update_background_scan(hdev);
3166 		bt_dev_dbg(hdev, "%s add monitor status %d", hdev->name, *err);
3167 		/* Message was not forwarded to controller - not an error */
3168 		return false;
3169 	case HCI_ADV_MONITOR_EXT_MSFT:
3170 		*err = msft_add_monitor_pattern(hdev, monitor);
3171 		bt_dev_dbg(hdev, "%s add monitor msft status %d", hdev->name,
3172 			   *err);
3173 		break;
3174 	}
3175 
3176 	return (*err == 0);
3177 }
3178 
3179 /* Attempts to tell the controller and free the monitor. If somehow the
3180  * controller doesn't have a corresponding handle, remove anyway.
3181  * Returns true if request is forwarded (result is pending), false otherwise.
3182  * This function requires the caller holds hdev->lock.
3183  */
3184 static bool hci_remove_adv_monitor(struct hci_dev *hdev,
3185 				   struct adv_monitor *monitor,
3186 				   u16 handle, int *err)
3187 {
3188 	*err = 0;
3189 
3190 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
3191 	case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
3192 		goto free_monitor;
3193 	case HCI_ADV_MONITOR_EXT_MSFT:
3194 		*err = msft_remove_monitor(hdev, monitor, handle);
3195 		break;
3196 	}
3197 
3198 	/* In case no matching handle registered, just free the monitor */
3199 	if (*err == -ENOENT)
3200 		goto free_monitor;
3201 
3202 	return (*err == 0);
3203 
3204 free_monitor:
3205 	if (*err == -ENOENT)
3206 		bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
3207 			    monitor->handle);
3208 	hci_free_adv_monitor(hdev, monitor);
3209 
3210 	*err = 0;
3211 	return false;
3212 }
3213 
3214 /* Returns true if request is forwarded (result is pending), false otherwise.
3215  * This function requires the caller holds hdev->lock.
3216  */
3217 bool hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle, int *err)
3218 {
3219 	struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
3220 	bool pending;
3221 
3222 	if (!monitor) {
3223 		*err = -EINVAL;
3224 		return false;
3225 	}
3226 
3227 	pending = hci_remove_adv_monitor(hdev, monitor, handle, err);
3228 	if (!*err && !pending)
3229 		hci_update_background_scan(hdev);
3230 
3231 	bt_dev_dbg(hdev, "%s remove monitor handle %d, status %d, %spending",
3232 		   hdev->name, handle, *err, pending ? "" : "not ");
3233 
3234 	return pending;
3235 }
3236 
3237 /* Returns true if request is forwarded (result is pending), false otherwise.
3238  * This function requires the caller holds hdev->lock.
3239  */
3240 bool hci_remove_all_adv_monitor(struct hci_dev *hdev, int *err)
3241 {
3242 	struct adv_monitor *monitor;
3243 	int idr_next_id = 0;
3244 	bool pending = false;
3245 	bool update = false;
3246 
3247 	*err = 0;
3248 
3249 	while (!*err && !pending) {
3250 		monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
3251 		if (!monitor)
3252 			break;
3253 
3254 		pending = hci_remove_adv_monitor(hdev, monitor, 0, err);
3255 
3256 		if (!*err && !pending)
3257 			update = true;
3258 	}
3259 
3260 	if (update)
3261 		hci_update_background_scan(hdev);
3262 
3263 	bt_dev_dbg(hdev, "%s remove all monitors status %d, %spending",
3264 		   hdev->name, *err, pending ? "" : "not ");
3265 
3266 	return pending;
3267 }
3268 
3269 /* This function requires the caller holds hdev->lock */
3270 bool hci_is_adv_monitoring(struct hci_dev *hdev)
3271 {
3272 	return !idr_is_empty(&hdev->adv_monitors_idr);
3273 }
3274 
3275 int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
3276 {
3277 	if (msft_monitor_supported(hdev))
3278 		return HCI_ADV_MONITOR_EXT_MSFT;
3279 
3280 	return HCI_ADV_MONITOR_EXT_NONE;
3281 }
3282 
3283 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
3284 					 bdaddr_t *bdaddr, u8 type)
3285 {
3286 	struct bdaddr_list *b;
3287 
3288 	list_for_each_entry(b, bdaddr_list, list) {
3289 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3290 			return b;
3291 	}
3292 
3293 	return NULL;
3294 }
3295 
3296 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
3297 				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
3298 				u8 type)
3299 {
3300 	struct bdaddr_list_with_irk *b;
3301 
3302 	list_for_each_entry(b, bdaddr_list, list) {
3303 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3304 			return b;
3305 	}
3306 
3307 	return NULL;
3308 }
3309 
3310 struct bdaddr_list_with_flags *
3311 hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
3312 				  bdaddr_t *bdaddr, u8 type)
3313 {
3314 	struct bdaddr_list_with_flags *b;
3315 
3316 	list_for_each_entry(b, bdaddr_list, list) {
3317 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3318 			return b;
3319 	}
3320 
3321 	return NULL;
3322 }
3323 
3324 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
3325 {
3326 	struct bdaddr_list *b, *n;
3327 
3328 	list_for_each_entry_safe(b, n, bdaddr_list, list) {
3329 		list_del(&b->list);
3330 		kfree(b);
3331 	}
3332 }
3333 
3334 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3335 {
3336 	struct bdaddr_list *entry;
3337 
3338 	if (!bacmp(bdaddr, BDADDR_ANY))
3339 		return -EBADF;
3340 
3341 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
3342 		return -EEXIST;
3343 
3344 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3345 	if (!entry)
3346 		return -ENOMEM;
3347 
3348 	bacpy(&entry->bdaddr, bdaddr);
3349 	entry->bdaddr_type = type;
3350 
3351 	list_add(&entry->list, list);
3352 
3353 	return 0;
3354 }
3355 
3356 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3357 					u8 type, u8 *peer_irk, u8 *local_irk)
3358 {
3359 	struct bdaddr_list_with_irk *entry;
3360 
3361 	if (!bacmp(bdaddr, BDADDR_ANY))
3362 		return -EBADF;
3363 
3364 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
3365 		return -EEXIST;
3366 
3367 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3368 	if (!entry)
3369 		return -ENOMEM;
3370 
3371 	bacpy(&entry->bdaddr, bdaddr);
3372 	entry->bdaddr_type = type;
3373 
3374 	if (peer_irk)
3375 		memcpy(entry->peer_irk, peer_irk, 16);
3376 
3377 	if (local_irk)
3378 		memcpy(entry->local_irk, local_irk, 16);
3379 
3380 	list_add(&entry->list, list);
3381 
3382 	return 0;
3383 }
3384 
3385 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3386 				   u8 type, u32 flags)
3387 {
3388 	struct bdaddr_list_with_flags *entry;
3389 
3390 	if (!bacmp(bdaddr, BDADDR_ANY))
3391 		return -EBADF;
3392 
3393 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
3394 		return -EEXIST;
3395 
3396 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3397 	if (!entry)
3398 		return -ENOMEM;
3399 
3400 	bacpy(&entry->bdaddr, bdaddr);
3401 	entry->bdaddr_type = type;
3402 	entry->current_flags = flags;
3403 
3404 	list_add(&entry->list, list);
3405 
3406 	return 0;
3407 }
3408 
3409 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3410 {
3411 	struct bdaddr_list *entry;
3412 
3413 	if (!bacmp(bdaddr, BDADDR_ANY)) {
3414 		hci_bdaddr_list_clear(list);
3415 		return 0;
3416 	}
3417 
3418 	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
3419 	if (!entry)
3420 		return -ENOENT;
3421 
3422 	list_del(&entry->list);
3423 	kfree(entry);
3424 
3425 	return 0;
3426 }
3427 
3428 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3429 							u8 type)
3430 {
3431 	struct bdaddr_list_with_irk *entry;
3432 
3433 	if (!bacmp(bdaddr, BDADDR_ANY)) {
3434 		hci_bdaddr_list_clear(list);
3435 		return 0;
3436 	}
3437 
3438 	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
3439 	if (!entry)
3440 		return -ENOENT;
3441 
3442 	list_del(&entry->list);
3443 	kfree(entry);
3444 
3445 	return 0;
3446 }
3447 
3448 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3449 				   u8 type)
3450 {
3451 	struct bdaddr_list_with_flags *entry;
3452 
3453 	if (!bacmp(bdaddr, BDADDR_ANY)) {
3454 		hci_bdaddr_list_clear(list);
3455 		return 0;
3456 	}
3457 
3458 	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
3459 	if (!entry)
3460 		return -ENOENT;
3461 
3462 	list_del(&entry->list);
3463 	kfree(entry);
3464 
3465 	return 0;
3466 }
3467 
3468 /* This function requires the caller holds hdev->lock */
3469 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3470 					       bdaddr_t *addr, u8 addr_type)
3471 {
3472 	struct hci_conn_params *params;
3473 
3474 	list_for_each_entry(params, &hdev->le_conn_params, list) {
3475 		if (bacmp(&params->addr, addr) == 0 &&
3476 		    params->addr_type == addr_type) {
3477 			return params;
3478 		}
3479 	}
3480 
3481 	return NULL;
3482 }
3483 
3484 /* This function requires the caller holds hdev->lock */
3485 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
3486 						  bdaddr_t *addr, u8 addr_type)
3487 {
3488 	struct hci_conn_params *param;
3489 
3490 	switch (addr_type) {
3491 	case ADDR_LE_DEV_PUBLIC_RESOLVED:
3492 		addr_type = ADDR_LE_DEV_PUBLIC;
3493 		break;
3494 	case ADDR_LE_DEV_RANDOM_RESOLVED:
3495 		addr_type = ADDR_LE_DEV_RANDOM;
3496 		break;
3497 	}
3498 
3499 	list_for_each_entry(param, list, action) {
3500 		if (bacmp(&param->addr, addr) == 0 &&
3501 		    param->addr_type == addr_type)
3502 			return param;
3503 	}
3504 
3505 	return NULL;
3506 }
3507 
3508 /* This function requires the caller holds hdev->lock */
3509 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
3510 					    bdaddr_t *addr, u8 addr_type)
3511 {
3512 	struct hci_conn_params *params;
3513 
3514 	params = hci_conn_params_lookup(hdev, addr, addr_type);
3515 	if (params)
3516 		return params;
3517 
3518 	params = kzalloc(sizeof(*params), GFP_KERNEL);
3519 	if (!params) {
3520 		bt_dev_err(hdev, "out of memory");
3521 		return NULL;
3522 	}
3523 
3524 	bacpy(&params->addr, addr);
3525 	params->addr_type = addr_type;
3526 
3527 	list_add(&params->list, &hdev->le_conn_params);
3528 	INIT_LIST_HEAD(&params->action);
3529 
3530 	params->conn_min_interval = hdev->le_conn_min_interval;
3531 	params->conn_max_interval = hdev->le_conn_max_interval;
3532 	params->conn_latency = hdev->le_conn_latency;
3533 	params->supervision_timeout = hdev->le_supv_timeout;
3534 	params->auto_connect = HCI_AUTO_CONN_DISABLED;
3535 
3536 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3537 
3538 	return params;
3539 }
3540 
3541 static void hci_conn_params_free(struct hci_conn_params *params)
3542 {
3543 	if (params->conn) {
3544 		hci_conn_drop(params->conn);
3545 		hci_conn_put(params->conn);
3546 	}
3547 
3548 	list_del(&params->action);
3549 	list_del(&params->list);
3550 	kfree(params);
3551 }
3552 
3553 /* This function requires the caller holds hdev->lock */
3554 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3555 {
3556 	struct hci_conn_params *params;
3557 
3558 	params = hci_conn_params_lookup(hdev, addr, addr_type);
3559 	if (!params)
3560 		return;
3561 
3562 	hci_conn_params_free(params);
3563 
3564 	hci_update_background_scan(hdev);
3565 
3566 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3567 }
3568 
3569 /* This function requires the caller holds hdev->lock */
3570 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
3571 {
3572 	struct hci_conn_params *params, *tmp;
3573 
3574 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3575 		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
3576 			continue;
3577 
3578 		/* If trying to establish one time connection to disabled
3579 		 * device, leave the params, but mark them as just once.
3580 		 */
3581 		if (params->explicit_connect) {
3582 			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
3583 			continue;
3584 		}
3585 
3586 		list_del(&params->list);
3587 		kfree(params);
3588 	}
3589 
3590 	BT_DBG("All LE disabled connection parameters were removed");
3591 }
3592 
3593 /* This function requires the caller holds hdev->lock */
3594 static void hci_conn_params_clear_all(struct hci_dev *hdev)
3595 {
3596 	struct hci_conn_params *params, *tmp;
3597 
3598 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
3599 		hci_conn_params_free(params);
3600 
3601 	BT_DBG("All LE connection parameters were removed");
3602 }
3603 
3604 /* Copy the Identity Address of the controller.
3605  *
3606  * If the controller has a public BD_ADDR, then by default use that one.
3607  * If this is a LE only controller without a public address, default to
3608  * the static random address.
3609  *
3610  * For debugging purposes it is possible to force controllers with a
3611  * public address to use the static random address instead.
3612  *
3613  * In case BR/EDR has been disabled on a dual-mode controller and
3614  * userspace has configured a static address, then that address
3615  * becomes the identity address instead of the public BR/EDR address.
3616  */
3617 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3618 			       u8 *bdaddr_type)
3619 {
3620 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3621 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
3622 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
3623 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
3624 		bacpy(bdaddr, &hdev->static_addr);
3625 		*bdaddr_type = ADDR_LE_DEV_RANDOM;
3626 	} else {
3627 		bacpy(bdaddr, &hdev->bdaddr);
3628 		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
3629 	}
3630 }
3631 
3632 static void hci_suspend_clear_tasks(struct hci_dev *hdev)
3633 {
3634 	int i;
3635 
3636 	for (i = 0; i < __SUSPEND_NUM_TASKS; i++)
3637 		clear_bit(i, hdev->suspend_tasks);
3638 
3639 	wake_up(&hdev->suspend_wait_q);
3640 }
3641 
3642 static int hci_suspend_wait_event(struct hci_dev *hdev)
3643 {
3644 #define WAKE_COND                                                              \
3645 	(find_first_bit(hdev->suspend_tasks, __SUSPEND_NUM_TASKS) ==           \
3646 	 __SUSPEND_NUM_TASKS)
3647 
3648 	int i;
3649 	int ret = wait_event_timeout(hdev->suspend_wait_q,
3650 				     WAKE_COND, SUSPEND_NOTIFIER_TIMEOUT);
3651 
3652 	if (ret == 0) {
3653 		bt_dev_err(hdev, "Timed out waiting for suspend events");
3654 		for (i = 0; i < __SUSPEND_NUM_TASKS; ++i) {
3655 			if (test_bit(i, hdev->suspend_tasks))
3656 				bt_dev_err(hdev, "Suspend timeout bit: %d", i);
3657 			clear_bit(i, hdev->suspend_tasks);
3658 		}
3659 
3660 		ret = -ETIMEDOUT;
3661 	} else {
3662 		ret = 0;
3663 	}
3664 
3665 	return ret;
3666 }
3667 
3668 static void hci_prepare_suspend(struct work_struct *work)
3669 {
3670 	struct hci_dev *hdev =
3671 		container_of(work, struct hci_dev, suspend_prepare);
3672 
3673 	hci_dev_lock(hdev);
3674 	hci_req_prepare_suspend(hdev, hdev->suspend_state_next);
3675 	hci_dev_unlock(hdev);
3676 }
3677 
3678 static int hci_change_suspend_state(struct hci_dev *hdev,
3679 				    enum suspended_state next)
3680 {
3681 	hdev->suspend_state_next = next;
3682 	set_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks);
3683 	queue_work(hdev->req_workqueue, &hdev->suspend_prepare);
3684 	return hci_suspend_wait_event(hdev);
3685 }
3686 
3687 static void hci_clear_wake_reason(struct hci_dev *hdev)
3688 {
3689 	hci_dev_lock(hdev);
3690 
3691 	hdev->wake_reason = 0;
3692 	bacpy(&hdev->wake_addr, BDADDR_ANY);
3693 	hdev->wake_addr_type = 0;
3694 
3695 	hci_dev_unlock(hdev);
3696 }
3697 
3698 static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
3699 				void *data)
3700 {
3701 	struct hci_dev *hdev =
3702 		container_of(nb, struct hci_dev, suspend_notifier);
3703 	int ret = 0;
3704 	u8 state = BT_RUNNING;
3705 
3706 	/* If powering down, wait for completion. */
3707 	if (mgmt_powering_down(hdev)) {
3708 		set_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks);
3709 		ret = hci_suspend_wait_event(hdev);
3710 		if (ret)
3711 			goto done;
3712 	}
3713 
3714 	/* Suspend notifier should only act on events when powered. */
3715 	if (!hdev_is_powered(hdev) ||
3716 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
3717 		goto done;
3718 
3719 	if (action == PM_SUSPEND_PREPARE) {
3720 		/* Suspend consists of two actions:
3721 		 *  - First, disconnect everything and make the controller not
3722 		 *    connectable (disabling scanning)
3723 		 *  - Second, program event filter/accept list and enable scan
3724 		 */
3725 		ret = hci_change_suspend_state(hdev, BT_SUSPEND_DISCONNECT);
3726 		if (!ret)
3727 			state = BT_SUSPEND_DISCONNECT;
3728 
3729 		/* Only configure accept list if disconnect succeeded and wake
3730 		 * isn't being prevented.
3731 		 */
3732 		if (!ret && !(hdev->prevent_wake && hdev->prevent_wake(hdev))) {
3733 			ret = hci_change_suspend_state(hdev,
3734 						BT_SUSPEND_CONFIGURE_WAKE);
3735 			if (!ret)
3736 				state = BT_SUSPEND_CONFIGURE_WAKE;
3737 		}
3738 
3739 		hci_clear_wake_reason(hdev);
3740 		mgmt_suspending(hdev, state);
3741 
3742 	} else if (action == PM_POST_SUSPEND) {
3743 		ret = hci_change_suspend_state(hdev, BT_RUNNING);
3744 
3745 		mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
3746 			      hdev->wake_addr_type);
3747 	}
3748 
3749 done:
3750 	/* We always allow suspend even if suspend preparation failed and
3751 	 * attempt to recover in resume.
3752 	 */
3753 	if (ret)
3754 		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
3755 			   action, ret);
3756 
3757 	return NOTIFY_DONE;
3758 }
3759 
3760 /* Alloc HCI device */
3761 struct hci_dev *hci_alloc_dev_priv(int sizeof_priv)
3762 {
3763 	struct hci_dev *hdev;
3764 	unsigned int alloc_size;
3765 
3766 	alloc_size = sizeof(*hdev);
3767 	if (sizeof_priv) {
3768 		/* Fixme: May need ALIGN-ment? */
3769 		alloc_size += sizeof_priv;
3770 	}
3771 
3772 	hdev = kzalloc(alloc_size, GFP_KERNEL);
3773 	if (!hdev)
3774 		return NULL;
3775 
3776 	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3777 	hdev->esco_type = (ESCO_HV1);
3778 	hdev->link_mode = (HCI_LM_ACCEPT);
3779 	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
3780 	hdev->io_capability = 0x03;	/* No Input No Output */
3781 	hdev->manufacturer = 0xffff;	/* Default to internal use */
3782 	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3783 	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3784 	hdev->adv_instance_cnt = 0;
3785 	hdev->cur_adv_instance = 0x00;
3786 	hdev->adv_instance_timeout = 0;
3787 
3788 	hdev->advmon_allowlist_duration = 300;
3789 	hdev->advmon_no_filter_duration = 500;
3790 	hdev->enable_advmon_interleave_scan = 0x00;	/* Default to disable */
3791 
3792 	hdev->sniff_max_interval = 800;
3793 	hdev->sniff_min_interval = 80;
3794 
3795 	hdev->le_adv_channel_map = 0x07;
3796 	hdev->le_adv_min_interval = 0x0800;
3797 	hdev->le_adv_max_interval = 0x0800;
3798 	hdev->le_scan_interval = 0x0060;
3799 	hdev->le_scan_window = 0x0030;
3800 	hdev->le_scan_int_suspend = 0x0400;
3801 	hdev->le_scan_window_suspend = 0x0012;
3802 	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
3803 	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
3804 	hdev->le_scan_int_adv_monitor = 0x0060;
3805 	hdev->le_scan_window_adv_monitor = 0x0030;
3806 	hdev->le_scan_int_connect = 0x0060;
3807 	hdev->le_scan_window_connect = 0x0060;
3808 	hdev->le_conn_min_interval = 0x0018;
3809 	hdev->le_conn_max_interval = 0x0028;
3810 	hdev->le_conn_latency = 0x0000;
3811 	hdev->le_supv_timeout = 0x002a;
3812 	hdev->le_def_tx_len = 0x001b;
3813 	hdev->le_def_tx_time = 0x0148;
3814 	hdev->le_max_tx_len = 0x001b;
3815 	hdev->le_max_tx_time = 0x0148;
3816 	hdev->le_max_rx_len = 0x001b;
3817 	hdev->le_max_rx_time = 0x0148;
3818 	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
3819 	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
3820 	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
3821 	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
3822 	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
3823 	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
3824 	hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
3825 	hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
3826 	hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
3827 
3828 	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3829 	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3830 	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3831 	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3832 	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
3833 	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
3834 
3835 	/* default 1.28 sec page scan */
3836 	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
3837 	hdev->def_page_scan_int = 0x0800;
3838 	hdev->def_page_scan_window = 0x0012;
3839 
3840 	mutex_init(&hdev->lock);
3841 	mutex_init(&hdev->req_lock);
3842 
3843 	INIT_LIST_HEAD(&hdev->mgmt_pending);
3844 	INIT_LIST_HEAD(&hdev->reject_list);
3845 	INIT_LIST_HEAD(&hdev->accept_list);
3846 	INIT_LIST_HEAD(&hdev->uuids);
3847 	INIT_LIST_HEAD(&hdev->link_keys);
3848 	INIT_LIST_HEAD(&hdev->long_term_keys);
3849 	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3850 	INIT_LIST_HEAD(&hdev->remote_oob_data);
3851 	INIT_LIST_HEAD(&hdev->le_accept_list);
3852 	INIT_LIST_HEAD(&hdev->le_resolv_list);
3853 	INIT_LIST_HEAD(&hdev->le_conn_params);
3854 	INIT_LIST_HEAD(&hdev->pend_le_conns);
3855 	INIT_LIST_HEAD(&hdev->pend_le_reports);
3856 	INIT_LIST_HEAD(&hdev->conn_hash.list);
3857 	INIT_LIST_HEAD(&hdev->adv_instances);
3858 	INIT_LIST_HEAD(&hdev->blocked_keys);
3859 
3860 	INIT_WORK(&hdev->rx_work, hci_rx_work);
3861 	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3862 	INIT_WORK(&hdev->tx_work, hci_tx_work);
3863 	INIT_WORK(&hdev->power_on, hci_power_on);
3864 	INIT_WORK(&hdev->error_reset, hci_error_reset);
3865 	INIT_WORK(&hdev->suspend_prepare, hci_prepare_suspend);
3866 
3867 	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3868 
3869 	skb_queue_head_init(&hdev->rx_q);
3870 	skb_queue_head_init(&hdev->cmd_q);
3871 	skb_queue_head_init(&hdev->raw_q);
3872 
3873 	init_waitqueue_head(&hdev->req_wait_q);
3874 	init_waitqueue_head(&hdev->suspend_wait_q);
3875 
3876 	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3877 	INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
3878 
3879 	hci_request_setup(hdev);
3880 
3881 	hci_init_sysfs(hdev);
3882 	discovery_init(hdev);
3883 
3884 	return hdev;
3885 }
3886 EXPORT_SYMBOL(hci_alloc_dev_priv);
3887 
3888 /* Free HCI device */
3889 void hci_free_dev(struct hci_dev *hdev)
3890 {
3891 	/* will free via device release */
3892 	put_device(&hdev->dev);
3893 }
3894 EXPORT_SYMBOL(hci_free_dev);
3895 
3896 /* Register HCI device */
3897 int hci_register_dev(struct hci_dev *hdev)
3898 {
3899 	int id, error;
3900 
3901 	if (!hdev->open || !hdev->close || !hdev->send)
3902 		return -EINVAL;
3903 
3904 	/* Do not allow HCI_AMP devices to register at index 0,
3905 	 * so the index can be used as the AMP controller ID.
3906 	 */
3907 	switch (hdev->dev_type) {
3908 	case HCI_PRIMARY:
3909 		id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3910 		break;
3911 	case HCI_AMP:
3912 		id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3913 		break;
3914 	default:
3915 		return -EINVAL;
3916 	}
3917 
3918 	if (id < 0)
3919 		return id;
3920 
3921 	sprintf(hdev->name, "hci%d", id);
3922 	hdev->id = id;
3923 
3924 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3925 
3926 	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
3927 	if (!hdev->workqueue) {
3928 		error = -ENOMEM;
3929 		goto err;
3930 	}
3931 
3932 	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3933 						      hdev->name);
3934 	if (!hdev->req_workqueue) {
3935 		destroy_workqueue(hdev->workqueue);
3936 		error = -ENOMEM;
3937 		goto err;
3938 	}
3939 
3940 	if (!IS_ERR_OR_NULL(bt_debugfs))
3941 		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3942 
3943 	dev_set_name(&hdev->dev, "%s", hdev->name);
3944 
3945 	error = device_add(&hdev->dev);
3946 	if (error < 0)
3947 		goto err_wqueue;
3948 
3949 	hci_leds_init(hdev);
3950 
3951 	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3952 				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3953 				    hdev);
3954 	if (hdev->rfkill) {
3955 		if (rfkill_register(hdev->rfkill) < 0) {
3956 			rfkill_destroy(hdev->rfkill);
3957 			hdev->rfkill = NULL;
3958 		}
3959 	}
3960 
3961 	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3962 		hci_dev_set_flag(hdev, HCI_RFKILLED);
3963 
3964 	hci_dev_set_flag(hdev, HCI_SETUP);
3965 	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3966 
3967 	if (hdev->dev_type == HCI_PRIMARY) {
3968 		/* Assume BR/EDR support until proven otherwise (such as
3969 		 * through reading supported features during init.
3970 		 */
3971 		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3972 	}
3973 
3974 	write_lock(&hci_dev_list_lock);
3975 	list_add(&hdev->list, &hci_dev_list);
3976 	write_unlock(&hci_dev_list_lock);
3977 
3978 	/* Devices that are marked for raw-only usage are unconfigured
3979 	 * and should not be included in normal operation.
3980 	 */
3981 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3982 		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3983 
3984 	hci_sock_dev_event(hdev, HCI_DEV_REG);
3985 	hci_dev_hold(hdev);
3986 
3987 	if (!test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
3988 		hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
3989 		error = register_pm_notifier(&hdev->suspend_notifier);
3990 		if (error)
3991 			goto err_wqueue;
3992 	}
3993 
3994 	queue_work(hdev->req_workqueue, &hdev->power_on);
3995 
3996 	idr_init(&hdev->adv_monitors_idr);
3997 
3998 	return id;
3999 
4000 err_wqueue:
4001 	destroy_workqueue(hdev->workqueue);
4002 	destroy_workqueue(hdev->req_workqueue);
4003 err:
4004 	ida_simple_remove(&hci_index_ida, hdev->id);
4005 
4006 	return error;
4007 }
4008 EXPORT_SYMBOL(hci_register_dev);
4009 
4010 /* Unregister HCI device */
4011 void hci_unregister_dev(struct hci_dev *hdev)
4012 {
4013 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
4014 
4015 	hci_dev_set_flag(hdev, HCI_UNREGISTER);
4016 
4017 	write_lock(&hci_dev_list_lock);
4018 	list_del(&hdev->list);
4019 	write_unlock(&hci_dev_list_lock);
4020 
4021 	cancel_work_sync(&hdev->power_on);
4022 
4023 	if (!test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
4024 		hci_suspend_clear_tasks(hdev);
4025 		unregister_pm_notifier(&hdev->suspend_notifier);
4026 		cancel_work_sync(&hdev->suspend_prepare);
4027 	}
4028 
4029 	hci_dev_do_close(hdev);
4030 
4031 	if (!test_bit(HCI_INIT, &hdev->flags) &&
4032 	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
4033 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
4034 		hci_dev_lock(hdev);
4035 		mgmt_index_removed(hdev);
4036 		hci_dev_unlock(hdev);
4037 	}
4038 
4039 	/* mgmt_index_removed should take care of emptying the
4040 	 * pending list */
4041 	BUG_ON(!list_empty(&hdev->mgmt_pending));
4042 
4043 	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
4044 
4045 	if (hdev->rfkill) {
4046 		rfkill_unregister(hdev->rfkill);
4047 		rfkill_destroy(hdev->rfkill);
4048 	}
4049 
4050 	device_del(&hdev->dev);
4051 	/* Actual cleanup is deferred until hci_release_dev(). */
4052 	hci_dev_put(hdev);
4053 }
4054 EXPORT_SYMBOL(hci_unregister_dev);
4055 
4056 /* Release HCI device */
4057 void hci_release_dev(struct hci_dev *hdev)
4058 {
4059 	debugfs_remove_recursive(hdev->debugfs);
4060 	kfree_const(hdev->hw_info);
4061 	kfree_const(hdev->fw_info);
4062 
4063 	destroy_workqueue(hdev->workqueue);
4064 	destroy_workqueue(hdev->req_workqueue);
4065 
4066 	hci_dev_lock(hdev);
4067 	hci_bdaddr_list_clear(&hdev->reject_list);
4068 	hci_bdaddr_list_clear(&hdev->accept_list);
4069 	hci_uuids_clear(hdev);
4070 	hci_link_keys_clear(hdev);
4071 	hci_smp_ltks_clear(hdev);
4072 	hci_smp_irks_clear(hdev);
4073 	hci_remote_oob_data_clear(hdev);
4074 	hci_adv_instances_clear(hdev);
4075 	hci_adv_monitors_clear(hdev);
4076 	hci_bdaddr_list_clear(&hdev->le_accept_list);
4077 	hci_bdaddr_list_clear(&hdev->le_resolv_list);
4078 	hci_conn_params_clear_all(hdev);
4079 	hci_discovery_filter_clear(hdev);
4080 	hci_blocked_keys_clear(hdev);
4081 	hci_dev_unlock(hdev);
4082 
4083 	ida_simple_remove(&hci_index_ida, hdev->id);
4084 	kfree(hdev);
4085 }
4086 EXPORT_SYMBOL(hci_release_dev);
4087 
4088 /* Suspend HCI device */
4089 int hci_suspend_dev(struct hci_dev *hdev)
4090 {
4091 	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
4092 	return 0;
4093 }
4094 EXPORT_SYMBOL(hci_suspend_dev);
4095 
4096 /* Resume HCI device */
4097 int hci_resume_dev(struct hci_dev *hdev)
4098 {
4099 	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
4100 	return 0;
4101 }
4102 EXPORT_SYMBOL(hci_resume_dev);
4103 
4104 /* Reset HCI device */
4105 int hci_reset_dev(struct hci_dev *hdev)
4106 {
4107 	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
4108 	struct sk_buff *skb;
4109 
4110 	skb = bt_skb_alloc(3, GFP_ATOMIC);
4111 	if (!skb)
4112 		return -ENOMEM;
4113 
4114 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
4115 	skb_put_data(skb, hw_err, 3);
4116 
4117 	bt_dev_err(hdev, "Injecting HCI hardware error event");
4118 
4119 	/* Send Hardware Error to upper stack */
4120 	return hci_recv_frame(hdev, skb);
4121 }
4122 EXPORT_SYMBOL(hci_reset_dev);
4123 
4124 /* Receive frame from HCI drivers */
4125 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
4126 {
4127 	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
4128 		      && !test_bit(HCI_INIT, &hdev->flags))) {
4129 		kfree_skb(skb);
4130 		return -ENXIO;
4131 	}
4132 
4133 	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
4134 	    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
4135 	    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
4136 	    hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
4137 		kfree_skb(skb);
4138 		return -EINVAL;
4139 	}
4140 
4141 	/* Incoming skb */
4142 	bt_cb(skb)->incoming = 1;
4143 
4144 	/* Time stamp */
4145 	__net_timestamp(skb);
4146 
4147 	skb_queue_tail(&hdev->rx_q, skb);
4148 	queue_work(hdev->workqueue, &hdev->rx_work);
4149 
4150 	return 0;
4151 }
4152 EXPORT_SYMBOL(hci_recv_frame);
4153 
4154 /* Receive diagnostic message from HCI drivers */
4155 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
4156 {
4157 	/* Mark as diagnostic packet */
4158 	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
4159 
4160 	/* Time stamp */
4161 	__net_timestamp(skb);
4162 
4163 	skb_queue_tail(&hdev->rx_q, skb);
4164 	queue_work(hdev->workqueue, &hdev->rx_work);
4165 
4166 	return 0;
4167 }
4168 EXPORT_SYMBOL(hci_recv_diag);
4169 
4170 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
4171 {
4172 	va_list vargs;
4173 
4174 	va_start(vargs, fmt);
4175 	kfree_const(hdev->hw_info);
4176 	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
4177 	va_end(vargs);
4178 }
4179 EXPORT_SYMBOL(hci_set_hw_info);
4180 
4181 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
4182 {
4183 	va_list vargs;
4184 
4185 	va_start(vargs, fmt);
4186 	kfree_const(hdev->fw_info);
4187 	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
4188 	va_end(vargs);
4189 }
4190 EXPORT_SYMBOL(hci_set_fw_info);
4191 
4192 /* ---- Interface to upper protocols ---- */
4193 
4194 int hci_register_cb(struct hci_cb *cb)
4195 {
4196 	BT_DBG("%p name %s", cb, cb->name);
4197 
4198 	mutex_lock(&hci_cb_list_lock);
4199 	list_add_tail(&cb->list, &hci_cb_list);
4200 	mutex_unlock(&hci_cb_list_lock);
4201 
4202 	return 0;
4203 }
4204 EXPORT_SYMBOL(hci_register_cb);
4205 
4206 int hci_unregister_cb(struct hci_cb *cb)
4207 {
4208 	BT_DBG("%p name %s", cb, cb->name);
4209 
4210 	mutex_lock(&hci_cb_list_lock);
4211 	list_del(&cb->list);
4212 	mutex_unlock(&hci_cb_list_lock);
4213 
4214 	return 0;
4215 }
4216 EXPORT_SYMBOL(hci_unregister_cb);
4217 
4218 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
4219 {
4220 	int err;
4221 
4222 	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
4223 	       skb->len);
4224 
4225 	/* Time stamp */
4226 	__net_timestamp(skb);
4227 
4228 	/* Send copy to monitor */
4229 	hci_send_to_monitor(hdev, skb);
4230 
4231 	if (atomic_read(&hdev->promisc)) {
4232 		/* Send copy to the sockets */
4233 		hci_send_to_sock(hdev, skb);
4234 	}
4235 
4236 	/* Get rid of skb owner, prior to sending to the driver. */
4237 	skb_orphan(skb);
4238 
4239 	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
4240 		kfree_skb(skb);
4241 		return;
4242 	}
4243 
4244 	err = hdev->send(hdev, skb);
4245 	if (err < 0) {
4246 		bt_dev_err(hdev, "sending frame failed (%d)", err);
4247 		kfree_skb(skb);
4248 	}
4249 }
4250 
4251 /* Send HCI command */
4252 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
4253 		 const void *param)
4254 {
4255 	struct sk_buff *skb;
4256 
4257 	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
4258 
4259 	skb = hci_prepare_cmd(hdev, opcode, plen, param);
4260 	if (!skb) {
4261 		bt_dev_err(hdev, "no memory for command");
4262 		return -ENOMEM;
4263 	}
4264 
4265 	/* Stand-alone HCI commands must be flagged as
4266 	 * single-command requests.
4267 	 */
4268 	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
4269 
4270 	skb_queue_tail(&hdev->cmd_q, skb);
4271 	queue_work(hdev->workqueue, &hdev->cmd_work);
4272 
4273 	return 0;
4274 }
4275 
4276 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
4277 		   const void *param)
4278 {
4279 	struct sk_buff *skb;
4280 
4281 	if (hci_opcode_ogf(opcode) != 0x3f) {
4282 		/* A controller receiving a command shall respond with either
4283 		 * a Command Status Event or a Command Complete Event.
4284 		 * Therefore, all standard HCI commands must be sent via the
4285 		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
4286 		 * Some vendors do not comply with this rule for vendor-specific
4287 		 * commands and do not return any event. We want to support
4288 		 * unresponded commands for such cases only.
4289 		 */
4290 		bt_dev_err(hdev, "unresponded command not supported");
4291 		return -EINVAL;
4292 	}
4293 
4294 	skb = hci_prepare_cmd(hdev, opcode, plen, param);
4295 	if (!skb) {
4296 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
4297 			   opcode);
4298 		return -ENOMEM;
4299 	}
4300 
4301 	hci_send_frame(hdev, skb);
4302 
4303 	return 0;
4304 }
4305 EXPORT_SYMBOL(__hci_cmd_send);
4306 
4307 /* Get data from the previously sent command */
4308 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
4309 {
4310 	struct hci_command_hdr *hdr;
4311 
4312 	if (!hdev->sent_cmd)
4313 		return NULL;
4314 
4315 	hdr = (void *) hdev->sent_cmd->data;
4316 
4317 	if (hdr->opcode != cpu_to_le16(opcode))
4318 		return NULL;
4319 
4320 	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
4321 
4322 	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
4323 }
4324 
4325 /* Send HCI command and wait for command complete event */
4326 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
4327 			     const void *param, u32 timeout)
4328 {
4329 	struct sk_buff *skb;
4330 
4331 	if (!test_bit(HCI_UP, &hdev->flags))
4332 		return ERR_PTR(-ENETDOWN);
4333 
4334 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
4335 
4336 	hci_req_sync_lock(hdev);
4337 	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
4338 	hci_req_sync_unlock(hdev);
4339 
4340 	return skb;
4341 }
4342 EXPORT_SYMBOL(hci_cmd_sync);
4343 
4344 /* Send ACL data */
4345 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
4346 {
4347 	struct hci_acl_hdr *hdr;
4348 	int len = skb->len;
4349 
4350 	skb_push(skb, HCI_ACL_HDR_SIZE);
4351 	skb_reset_transport_header(skb);
4352 	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
4353 	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
4354 	hdr->dlen   = cpu_to_le16(len);
4355 }
4356 
4357 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
4358 			  struct sk_buff *skb, __u16 flags)
4359 {
4360 	struct hci_conn *conn = chan->conn;
4361 	struct hci_dev *hdev = conn->hdev;
4362 	struct sk_buff *list;
4363 
4364 	skb->len = skb_headlen(skb);
4365 	skb->data_len = 0;
4366 
4367 	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4368 
4369 	switch (hdev->dev_type) {
4370 	case HCI_PRIMARY:
4371 		hci_add_acl_hdr(skb, conn->handle, flags);
4372 		break;
4373 	case HCI_AMP:
4374 		hci_add_acl_hdr(skb, chan->handle, flags);
4375 		break;
4376 	default:
4377 		bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
4378 		return;
4379 	}
4380 
4381 	list = skb_shinfo(skb)->frag_list;
4382 	if (!list) {
4383 		/* Non fragmented */
4384 		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
4385 
4386 		skb_queue_tail(queue, skb);
4387 	} else {
4388 		/* Fragmented */
4389 		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4390 
4391 		skb_shinfo(skb)->frag_list = NULL;
4392 
4393 		/* Queue all fragments atomically. We need to use spin_lock_bh
4394 		 * here because of 6LoWPAN links, as there this function is
4395 		 * called from softirq and using normal spin lock could cause
4396 		 * deadlocks.
4397 		 */
4398 		spin_lock_bh(&queue->lock);
4399 
4400 		__skb_queue_tail(queue, skb);
4401 
4402 		flags &= ~ACL_START;
4403 		flags |= ACL_CONT;
4404 		do {
4405 			skb = list; list = list->next;
4406 
4407 			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4408 			hci_add_acl_hdr(skb, conn->handle, flags);
4409 
4410 			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4411 
4412 			__skb_queue_tail(queue, skb);
4413 		} while (list);
4414 
4415 		spin_unlock_bh(&queue->lock);
4416 	}
4417 }
4418 
4419 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
4420 {
4421 	struct hci_dev *hdev = chan->conn->hdev;
4422 
4423 	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
4424 
4425 	hci_queue_acl(chan, &chan->data_q, skb, flags);
4426 
4427 	queue_work(hdev->workqueue, &hdev->tx_work);
4428 }
4429 
4430 /* Send SCO data */
4431 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
4432 {
4433 	struct hci_dev *hdev = conn->hdev;
4434 	struct hci_sco_hdr hdr;
4435 
4436 	BT_DBG("%s len %d", hdev->name, skb->len);
4437 
4438 	hdr.handle = cpu_to_le16(conn->handle);
4439 	hdr.dlen   = skb->len;
4440 
4441 	skb_push(skb, HCI_SCO_HDR_SIZE);
4442 	skb_reset_transport_header(skb);
4443 	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
4444 
4445 	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
4446 
4447 	skb_queue_tail(&conn->data_q, skb);
4448 	queue_work(hdev->workqueue, &hdev->tx_work);
4449 }
4450 
4451 /* ---- HCI TX task (outgoing data) ---- */
4452 
4453 /* HCI Connection scheduler */
4454 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
4455 				     int *quote)
4456 {
4457 	struct hci_conn_hash *h = &hdev->conn_hash;
4458 	struct hci_conn *conn = NULL, *c;
4459 	unsigned int num = 0, min = ~0;
4460 
4461 	/* We don't have to lock device here. Connections are always
4462 	 * added and removed with TX task disabled. */
4463 
4464 	rcu_read_lock();
4465 
4466 	list_for_each_entry_rcu(c, &h->list, list) {
4467 		if (c->type != type || skb_queue_empty(&c->data_q))
4468 			continue;
4469 
4470 		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
4471 			continue;
4472 
4473 		num++;
4474 
4475 		if (c->sent < min) {
4476 			min  = c->sent;
4477 			conn = c;
4478 		}
4479 
4480 		if (hci_conn_num(hdev, type) == num)
4481 			break;
4482 	}
4483 
4484 	rcu_read_unlock();
4485 
4486 	if (conn) {
4487 		int cnt, q;
4488 
4489 		switch (conn->type) {
4490 		case ACL_LINK:
4491 			cnt = hdev->acl_cnt;
4492 			break;
4493 		case SCO_LINK:
4494 		case ESCO_LINK:
4495 			cnt = hdev->sco_cnt;
4496 			break;
4497 		case LE_LINK:
4498 			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4499 			break;
4500 		default:
4501 			cnt = 0;
4502 			bt_dev_err(hdev, "unknown link type %d", conn->type);
4503 		}
4504 
4505 		q = cnt / num;
4506 		*quote = q ? q : 1;
4507 	} else
4508 		*quote = 0;
4509 
4510 	BT_DBG("conn %p quote %d", conn, *quote);
4511 	return conn;
4512 }
4513 
4514 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
4515 {
4516 	struct hci_conn_hash *h = &hdev->conn_hash;
4517 	struct hci_conn *c;
4518 
4519 	bt_dev_err(hdev, "link tx timeout");
4520 
4521 	rcu_read_lock();
4522 
4523 	/* Kill stalled connections */
4524 	list_for_each_entry_rcu(c, &h->list, list) {
4525 		if (c->type == type && c->sent) {
4526 			bt_dev_err(hdev, "killing stalled connection %pMR",
4527 				   &c->dst);
4528 			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
4529 		}
4530 	}
4531 
4532 	rcu_read_unlock();
4533 }
4534 
4535 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
4536 				      int *quote)
4537 {
4538 	struct hci_conn_hash *h = &hdev->conn_hash;
4539 	struct hci_chan *chan = NULL;
4540 	unsigned int num = 0, min = ~0, cur_prio = 0;
4541 	struct hci_conn *conn;
4542 	int cnt, q, conn_num = 0;
4543 
4544 	BT_DBG("%s", hdev->name);
4545 
4546 	rcu_read_lock();
4547 
4548 	list_for_each_entry_rcu(conn, &h->list, list) {
4549 		struct hci_chan *tmp;
4550 
4551 		if (conn->type != type)
4552 			continue;
4553 
4554 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4555 			continue;
4556 
4557 		conn_num++;
4558 
4559 		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
4560 			struct sk_buff *skb;
4561 
4562 			if (skb_queue_empty(&tmp->data_q))
4563 				continue;
4564 
4565 			skb = skb_peek(&tmp->data_q);
4566 			if (skb->priority < cur_prio)
4567 				continue;
4568 
4569 			if (skb->priority > cur_prio) {
4570 				num = 0;
4571 				min = ~0;
4572 				cur_prio = skb->priority;
4573 			}
4574 
4575 			num++;
4576 
4577 			if (conn->sent < min) {
4578 				min  = conn->sent;
4579 				chan = tmp;
4580 			}
4581 		}
4582 
4583 		if (hci_conn_num(hdev, type) == conn_num)
4584 			break;
4585 	}
4586 
4587 	rcu_read_unlock();
4588 
4589 	if (!chan)
4590 		return NULL;
4591 
4592 	switch (chan->conn->type) {
4593 	case ACL_LINK:
4594 		cnt = hdev->acl_cnt;
4595 		break;
4596 	case AMP_LINK:
4597 		cnt = hdev->block_cnt;
4598 		break;
4599 	case SCO_LINK:
4600 	case ESCO_LINK:
4601 		cnt = hdev->sco_cnt;
4602 		break;
4603 	case LE_LINK:
4604 		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4605 		break;
4606 	default:
4607 		cnt = 0;
4608 		bt_dev_err(hdev, "unknown link type %d", chan->conn->type);
4609 	}
4610 
4611 	q = cnt / num;
4612 	*quote = q ? q : 1;
4613 	BT_DBG("chan %p quote %d", chan, *quote);
4614 	return chan;
4615 }
4616 
4617 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
4618 {
4619 	struct hci_conn_hash *h = &hdev->conn_hash;
4620 	struct hci_conn *conn;
4621 	int num = 0;
4622 
4623 	BT_DBG("%s", hdev->name);
4624 
4625 	rcu_read_lock();
4626 
4627 	list_for_each_entry_rcu(conn, &h->list, list) {
4628 		struct hci_chan *chan;
4629 
4630 		if (conn->type != type)
4631 			continue;
4632 
4633 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4634 			continue;
4635 
4636 		num++;
4637 
4638 		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
4639 			struct sk_buff *skb;
4640 
4641 			if (chan->sent) {
4642 				chan->sent = 0;
4643 				continue;
4644 			}
4645 
4646 			if (skb_queue_empty(&chan->data_q))
4647 				continue;
4648 
4649 			skb = skb_peek(&chan->data_q);
4650 			if (skb->priority >= HCI_PRIO_MAX - 1)
4651 				continue;
4652 
4653 			skb->priority = HCI_PRIO_MAX - 1;
4654 
4655 			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
4656 			       skb->priority);
4657 		}
4658 
4659 		if (hci_conn_num(hdev, type) == num)
4660 			break;
4661 	}
4662 
4663 	rcu_read_unlock();
4664 
4665 }
4666 
4667 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4668 {
4669 	/* Calculate count of blocks used by this packet */
4670 	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4671 }
4672 
4673 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
4674 {
4675 	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4676 		/* ACL tx timeout must be longer than maximum
4677 		 * link supervision timeout (40.9 seconds) */
4678 		if (!cnt && time_after(jiffies, hdev->acl_last_tx +
4679 				       HCI_ACL_TX_TIMEOUT))
4680 			hci_link_tx_to(hdev, ACL_LINK);
4681 	}
4682 }
4683 
4684 /* Schedule SCO */
4685 static void hci_sched_sco(struct hci_dev *hdev)
4686 {
4687 	struct hci_conn *conn;
4688 	struct sk_buff *skb;
4689 	int quote;
4690 
4691 	BT_DBG("%s", hdev->name);
4692 
4693 	if (!hci_conn_num(hdev, SCO_LINK))
4694 		return;
4695 
4696 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
4697 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4698 			BT_DBG("skb %p len %d", skb, skb->len);
4699 			hci_send_frame(hdev, skb);
4700 
4701 			conn->sent++;
4702 			if (conn->sent == ~0)
4703 				conn->sent = 0;
4704 		}
4705 	}
4706 }
4707 
4708 static void hci_sched_esco(struct hci_dev *hdev)
4709 {
4710 	struct hci_conn *conn;
4711 	struct sk_buff *skb;
4712 	int quote;
4713 
4714 	BT_DBG("%s", hdev->name);
4715 
4716 	if (!hci_conn_num(hdev, ESCO_LINK))
4717 		return;
4718 
4719 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4720 						     &quote))) {
4721 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4722 			BT_DBG("skb %p len %d", skb, skb->len);
4723 			hci_send_frame(hdev, skb);
4724 
4725 			conn->sent++;
4726 			if (conn->sent == ~0)
4727 				conn->sent = 0;
4728 		}
4729 	}
4730 }
4731 
4732 static void hci_sched_acl_pkt(struct hci_dev *hdev)
4733 {
4734 	unsigned int cnt = hdev->acl_cnt;
4735 	struct hci_chan *chan;
4736 	struct sk_buff *skb;
4737 	int quote;
4738 
4739 	__check_timeout(hdev, cnt);
4740 
4741 	while (hdev->acl_cnt &&
4742 	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
4743 		u32 priority = (skb_peek(&chan->data_q))->priority;
4744 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4745 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4746 			       skb->len, skb->priority);
4747 
4748 			/* Stop if priority has changed */
4749 			if (skb->priority < priority)
4750 				break;
4751 
4752 			skb = skb_dequeue(&chan->data_q);
4753 
4754 			hci_conn_enter_active_mode(chan->conn,
4755 						   bt_cb(skb)->force_active);
4756 
4757 			hci_send_frame(hdev, skb);
4758 			hdev->acl_last_tx = jiffies;
4759 
4760 			hdev->acl_cnt--;
4761 			chan->sent++;
4762 			chan->conn->sent++;
4763 
4764 			/* Send pending SCO packets right away */
4765 			hci_sched_sco(hdev);
4766 			hci_sched_esco(hdev);
4767 		}
4768 	}
4769 
4770 	if (cnt != hdev->acl_cnt)
4771 		hci_prio_recalculate(hdev, ACL_LINK);
4772 }
4773 
4774 static void hci_sched_acl_blk(struct hci_dev *hdev)
4775 {
4776 	unsigned int cnt = hdev->block_cnt;
4777 	struct hci_chan *chan;
4778 	struct sk_buff *skb;
4779 	int quote;
4780 	u8 type;
4781 
4782 	__check_timeout(hdev, cnt);
4783 
4784 	BT_DBG("%s", hdev->name);
4785 
4786 	if (hdev->dev_type == HCI_AMP)
4787 		type = AMP_LINK;
4788 	else
4789 		type = ACL_LINK;
4790 
4791 	while (hdev->block_cnt > 0 &&
4792 	       (chan = hci_chan_sent(hdev, type, &quote))) {
4793 		u32 priority = (skb_peek(&chan->data_q))->priority;
4794 		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
4795 			int blocks;
4796 
4797 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4798 			       skb->len, skb->priority);
4799 
4800 			/* Stop if priority has changed */
4801 			if (skb->priority < priority)
4802 				break;
4803 
4804 			skb = skb_dequeue(&chan->data_q);
4805 
4806 			blocks = __get_blocks(hdev, skb);
4807 			if (blocks > hdev->block_cnt)
4808 				return;
4809 
4810 			hci_conn_enter_active_mode(chan->conn,
4811 						   bt_cb(skb)->force_active);
4812 
4813 			hci_send_frame(hdev, skb);
4814 			hdev->acl_last_tx = jiffies;
4815 
4816 			hdev->block_cnt -= blocks;
4817 			quote -= blocks;
4818 
4819 			chan->sent += blocks;
4820 			chan->conn->sent += blocks;
4821 		}
4822 	}
4823 
4824 	if (cnt != hdev->block_cnt)
4825 		hci_prio_recalculate(hdev, type);
4826 }
4827 
4828 static void hci_sched_acl(struct hci_dev *hdev)
4829 {
4830 	BT_DBG("%s", hdev->name);
4831 
4832 	/* No ACL link over BR/EDR controller */
4833 	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
4834 		return;
4835 
4836 	/* No AMP link over AMP controller */
4837 	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4838 		return;
4839 
4840 	switch (hdev->flow_ctl_mode) {
4841 	case HCI_FLOW_CTL_MODE_PACKET_BASED:
4842 		hci_sched_acl_pkt(hdev);
4843 		break;
4844 
4845 	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4846 		hci_sched_acl_blk(hdev);
4847 		break;
4848 	}
4849 }
4850 
4851 static void hci_sched_le(struct hci_dev *hdev)
4852 {
4853 	struct hci_chan *chan;
4854 	struct sk_buff *skb;
4855 	int quote, cnt, tmp;
4856 
4857 	BT_DBG("%s", hdev->name);
4858 
4859 	if (!hci_conn_num(hdev, LE_LINK))
4860 		return;
4861 
4862 	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4863 
4864 	__check_timeout(hdev, cnt);
4865 
4866 	tmp = cnt;
4867 	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
4868 		u32 priority = (skb_peek(&chan->data_q))->priority;
4869 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4870 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4871 			       skb->len, skb->priority);
4872 
4873 			/* Stop if priority has changed */
4874 			if (skb->priority < priority)
4875 				break;
4876 
4877 			skb = skb_dequeue(&chan->data_q);
4878 
4879 			hci_send_frame(hdev, skb);
4880 			hdev->le_last_tx = jiffies;
4881 
4882 			cnt--;
4883 			chan->sent++;
4884 			chan->conn->sent++;
4885 
4886 			/* Send pending SCO packets right away */
4887 			hci_sched_sco(hdev);
4888 			hci_sched_esco(hdev);
4889 		}
4890 	}
4891 
4892 	if (hdev->le_pkts)
4893 		hdev->le_cnt = cnt;
4894 	else
4895 		hdev->acl_cnt = cnt;
4896 
4897 	if (cnt != tmp)
4898 		hci_prio_recalculate(hdev, LE_LINK);
4899 }
4900 
4901 static void hci_tx_work(struct work_struct *work)
4902 {
4903 	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4904 	struct sk_buff *skb;
4905 
4906 	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4907 	       hdev->sco_cnt, hdev->le_cnt);
4908 
4909 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4910 		/* Schedule queues and send stuff to HCI driver */
4911 		hci_sched_sco(hdev);
4912 		hci_sched_esco(hdev);
4913 		hci_sched_acl(hdev);
4914 		hci_sched_le(hdev);
4915 	}
4916 
4917 	/* Send next queued raw (unknown type) packet */
4918 	while ((skb = skb_dequeue(&hdev->raw_q)))
4919 		hci_send_frame(hdev, skb);
4920 }
4921 
4922 /* ----- HCI RX task (incoming data processing) ----- */
4923 
4924 /* ACL data packet */
4925 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4926 {
4927 	struct hci_acl_hdr *hdr = (void *) skb->data;
4928 	struct hci_conn *conn;
4929 	__u16 handle, flags;
4930 
4931 	skb_pull(skb, HCI_ACL_HDR_SIZE);
4932 
4933 	handle = __le16_to_cpu(hdr->handle);
4934 	flags  = hci_flags(handle);
4935 	handle = hci_handle(handle);
4936 
4937 	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4938 	       handle, flags);
4939 
4940 	hdev->stat.acl_rx++;
4941 
4942 	hci_dev_lock(hdev);
4943 	conn = hci_conn_hash_lookup_handle(hdev, handle);
4944 	hci_dev_unlock(hdev);
4945 
4946 	if (conn) {
4947 		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4948 
4949 		/* Send to upper protocol */
4950 		l2cap_recv_acldata(conn, skb, flags);
4951 		return;
4952 	} else {
4953 		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
4954 			   handle);
4955 	}
4956 
4957 	kfree_skb(skb);
4958 }
4959 
4960 /* SCO data packet */
4961 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4962 {
4963 	struct hci_sco_hdr *hdr = (void *) skb->data;
4964 	struct hci_conn *conn;
4965 	__u16 handle, flags;
4966 
4967 	skb_pull(skb, HCI_SCO_HDR_SIZE);
4968 
4969 	handle = __le16_to_cpu(hdr->handle);
4970 	flags  = hci_flags(handle);
4971 	handle = hci_handle(handle);
4972 
4973 	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4974 	       handle, flags);
4975 
4976 	hdev->stat.sco_rx++;
4977 
4978 	hci_dev_lock(hdev);
4979 	conn = hci_conn_hash_lookup_handle(hdev, handle);
4980 	hci_dev_unlock(hdev);
4981 
4982 	if (conn) {
4983 		/* Send to upper protocol */
4984 		bt_cb(skb)->sco.pkt_status = flags & 0x03;
4985 		sco_recv_scodata(conn, skb);
4986 		return;
4987 	} else {
4988 		bt_dev_err(hdev, "SCO packet for unknown connection handle %d",
4989 			   handle);
4990 	}
4991 
4992 	kfree_skb(skb);
4993 }
4994 
4995 static bool hci_req_is_complete(struct hci_dev *hdev)
4996 {
4997 	struct sk_buff *skb;
4998 
4999 	skb = skb_peek(&hdev->cmd_q);
5000 	if (!skb)
5001 		return true;
5002 
5003 	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
5004 }
5005 
5006 static void hci_resend_last(struct hci_dev *hdev)
5007 {
5008 	struct hci_command_hdr *sent;
5009 	struct sk_buff *skb;
5010 	u16 opcode;
5011 
5012 	if (!hdev->sent_cmd)
5013 		return;
5014 
5015 	sent = (void *) hdev->sent_cmd->data;
5016 	opcode = __le16_to_cpu(sent->opcode);
5017 	if (opcode == HCI_OP_RESET)
5018 		return;
5019 
5020 	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
5021 	if (!skb)
5022 		return;
5023 
5024 	skb_queue_head(&hdev->cmd_q, skb);
5025 	queue_work(hdev->workqueue, &hdev->cmd_work);
5026 }
5027 
5028 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
5029 			  hci_req_complete_t *req_complete,
5030 			  hci_req_complete_skb_t *req_complete_skb)
5031 {
5032 	struct sk_buff *skb;
5033 	unsigned long flags;
5034 
5035 	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
5036 
5037 	/* If the completed command doesn't match the last one that was
5038 	 * sent we need to do special handling of it.
5039 	 */
5040 	if (!hci_sent_cmd_data(hdev, opcode)) {
5041 		/* Some CSR based controllers generate a spontaneous
5042 		 * reset complete event during init and any pending
5043 		 * command will never be completed. In such a case we
5044 		 * need to resend whatever was the last sent
5045 		 * command.
5046 		 */
5047 		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
5048 			hci_resend_last(hdev);
5049 
5050 		return;
5051 	}
5052 
5053 	/* If we reach this point this event matches the last command sent */
5054 	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
5055 
5056 	/* If the command succeeded and there's still more commands in
5057 	 * this request the request is not yet complete.
5058 	 */
5059 	if (!status && !hci_req_is_complete(hdev))
5060 		return;
5061 
5062 	/* If this was the last command in a request the complete
5063 	 * callback would be found in hdev->sent_cmd instead of the
5064 	 * command queue (hdev->cmd_q).
5065 	 */
5066 	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
5067 		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
5068 		return;
5069 	}
5070 
5071 	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
5072 		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
5073 		return;
5074 	}
5075 
5076 	/* Remove all pending commands belonging to this request */
5077 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
5078 	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
5079 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
5080 			__skb_queue_head(&hdev->cmd_q, skb);
5081 			break;
5082 		}
5083 
5084 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
5085 			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
5086 		else
5087 			*req_complete = bt_cb(skb)->hci.req_complete;
5088 		kfree_skb(skb);
5089 	}
5090 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
5091 }
5092 
5093 static void hci_rx_work(struct work_struct *work)
5094 {
5095 	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
5096 	struct sk_buff *skb;
5097 
5098 	BT_DBG("%s", hdev->name);
5099 
5100 	while ((skb = skb_dequeue(&hdev->rx_q))) {
5101 		/* Send copy to monitor */
5102 		hci_send_to_monitor(hdev, skb);
5103 
5104 		if (atomic_read(&hdev->promisc)) {
5105 			/* Send copy to the sockets */
5106 			hci_send_to_sock(hdev, skb);
5107 		}
5108 
5109 		/* If the device has been opened in HCI_USER_CHANNEL,
5110 		 * the userspace has exclusive access to device.
5111 		 * When device is HCI_INIT, we still need to process
5112 		 * the data packets to the driver in order
5113 		 * to complete its setup().
5114 		 */
5115 		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
5116 		    !test_bit(HCI_INIT, &hdev->flags)) {
5117 			kfree_skb(skb);
5118 			continue;
5119 		}
5120 
5121 		if (test_bit(HCI_INIT, &hdev->flags)) {
5122 			/* Don't process data packets in this states. */
5123 			switch (hci_skb_pkt_type(skb)) {
5124 			case HCI_ACLDATA_PKT:
5125 			case HCI_SCODATA_PKT:
5126 			case HCI_ISODATA_PKT:
5127 				kfree_skb(skb);
5128 				continue;
5129 			}
5130 		}
5131 
5132 		/* Process frame */
5133 		switch (hci_skb_pkt_type(skb)) {
5134 		case HCI_EVENT_PKT:
5135 			BT_DBG("%s Event packet", hdev->name);
5136 			hci_event_packet(hdev, skb);
5137 			break;
5138 
5139 		case HCI_ACLDATA_PKT:
5140 			BT_DBG("%s ACL data packet", hdev->name);
5141 			hci_acldata_packet(hdev, skb);
5142 			break;
5143 
5144 		case HCI_SCODATA_PKT:
5145 			BT_DBG("%s SCO data packet", hdev->name);
5146 			hci_scodata_packet(hdev, skb);
5147 			break;
5148 
5149 		default:
5150 			kfree_skb(skb);
5151 			break;
5152 		}
5153 	}
5154 }
5155 
5156 static void hci_cmd_work(struct work_struct *work)
5157 {
5158 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
5159 	struct sk_buff *skb;
5160 
5161 	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
5162 	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
5163 
5164 	/* Send queued commands */
5165 	if (atomic_read(&hdev->cmd_cnt)) {
5166 		skb = skb_dequeue(&hdev->cmd_q);
5167 		if (!skb)
5168 			return;
5169 
5170 		kfree_skb(hdev->sent_cmd);
5171 
5172 		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
5173 		if (hdev->sent_cmd) {
5174 			if (hci_req_status_pend(hdev))
5175 				hci_dev_set_flag(hdev, HCI_CMD_PENDING);
5176 			atomic_dec(&hdev->cmd_cnt);
5177 			hci_send_frame(hdev, skb);
5178 			if (test_bit(HCI_RESET, &hdev->flags))
5179 				cancel_delayed_work(&hdev->cmd_timer);
5180 			else
5181 				schedule_delayed_work(&hdev->cmd_timer,
5182 						      HCI_CMD_TIMEOUT);
5183 		} else {
5184 			skb_queue_head(&hdev->cmd_q, skb);
5185 			queue_work(hdev->workqueue, &hdev->cmd_work);
5186 		}
5187 	}
5188 }
5189