xref: /openbmc/linux/net/bluetooth/hci_core.c (revision f29119b301d598f245154edc797c69c712a8b7fe)
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4    Copyright (C) 2011 ProFUSION Embedded Systems
5 
6    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License version 2 as
10    published by the Free Software Foundation;
11 
12    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 
21    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23    SOFTWARE IS DISCLAIMED.
24 */
25 
26 /* Bluetooth HCI core. */
27 
28 #include <linux/export.h>
29 #include <linux/rfkill.h>
30 #include <linux/debugfs.h>
31 #include <linux/crypto.h>
32 #include <linux/kcov.h>
33 #include <linux/property.h>
34 #include <linux/suspend.h>
35 #include <linux/wait.h>
36 #include <asm/unaligned.h>
37 
38 #include <net/bluetooth/bluetooth.h>
39 #include <net/bluetooth/hci_core.h>
40 #include <net/bluetooth/l2cap.h>
41 #include <net/bluetooth/mgmt.h>
42 
43 #include "hci_request.h"
44 #include "hci_debugfs.h"
45 #include "smp.h"
46 #include "leds.h"
47 #include "msft.h"
48 #include "aosp.h"
49 #include "hci_codec.h"
50 
51 static void hci_rx_work(struct work_struct *work);
52 static void hci_cmd_work(struct work_struct *work);
53 static void hci_tx_work(struct work_struct *work);
54 
55 /* HCI device list */
56 LIST_HEAD(hci_dev_list);
57 DEFINE_RWLOCK(hci_dev_list_lock);
58 
59 /* HCI callback list */
60 LIST_HEAD(hci_cb_list);
61 DEFINE_MUTEX(hci_cb_list_lock);
62 
63 /* HCI ID Numbering */
64 static DEFINE_IDA(hci_index_ida);
65 
66 /* Get HCI device by index.
67  * Device is held on return. */
68 struct hci_dev *hci_dev_get(int index)
69 {
70 	struct hci_dev *hdev = NULL, *d;
71 
72 	BT_DBG("%d", index);
73 
74 	if (index < 0)
75 		return NULL;
76 
77 	read_lock(&hci_dev_list_lock);
78 	list_for_each_entry(d, &hci_dev_list, list) {
79 		if (d->id == index) {
80 			hdev = hci_dev_hold(d);
81 			break;
82 		}
83 	}
84 	read_unlock(&hci_dev_list_lock);
85 	return hdev;
86 }
87 
88 /* ---- Inquiry support ---- */
89 
90 bool hci_discovery_active(struct hci_dev *hdev)
91 {
92 	struct discovery_state *discov = &hdev->discovery;
93 
94 	switch (discov->state) {
95 	case DISCOVERY_FINDING:
96 	case DISCOVERY_RESOLVING:
97 		return true;
98 
99 	default:
100 		return false;
101 	}
102 }
103 
104 void hci_discovery_set_state(struct hci_dev *hdev, int state)
105 {
106 	int old_state = hdev->discovery.state;
107 
108 	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
109 
110 	if (old_state == state)
111 		return;
112 
113 	hdev->discovery.state = state;
114 
115 	switch (state) {
116 	case DISCOVERY_STOPPED:
117 		hci_update_passive_scan(hdev);
118 
119 		if (old_state != DISCOVERY_STARTING)
120 			mgmt_discovering(hdev, 0);
121 		break;
122 	case DISCOVERY_STARTING:
123 		break;
124 	case DISCOVERY_FINDING:
125 		mgmt_discovering(hdev, 1);
126 		break;
127 	case DISCOVERY_RESOLVING:
128 		break;
129 	case DISCOVERY_STOPPING:
130 		break;
131 	}
132 }
133 
134 void hci_inquiry_cache_flush(struct hci_dev *hdev)
135 {
136 	struct discovery_state *cache = &hdev->discovery;
137 	struct inquiry_entry *p, *n;
138 
139 	list_for_each_entry_safe(p, n, &cache->all, all) {
140 		list_del(&p->all);
141 		kfree(p);
142 	}
143 
144 	INIT_LIST_HEAD(&cache->unknown);
145 	INIT_LIST_HEAD(&cache->resolve);
146 }
147 
148 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
149 					       bdaddr_t *bdaddr)
150 {
151 	struct discovery_state *cache = &hdev->discovery;
152 	struct inquiry_entry *e;
153 
154 	BT_DBG("cache %p, %pMR", cache, bdaddr);
155 
156 	list_for_each_entry(e, &cache->all, all) {
157 		if (!bacmp(&e->data.bdaddr, bdaddr))
158 			return e;
159 	}
160 
161 	return NULL;
162 }
163 
164 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
165 						       bdaddr_t *bdaddr)
166 {
167 	struct discovery_state *cache = &hdev->discovery;
168 	struct inquiry_entry *e;
169 
170 	BT_DBG("cache %p, %pMR", cache, bdaddr);
171 
172 	list_for_each_entry(e, &cache->unknown, list) {
173 		if (!bacmp(&e->data.bdaddr, bdaddr))
174 			return e;
175 	}
176 
177 	return NULL;
178 }
179 
180 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
181 						       bdaddr_t *bdaddr,
182 						       int state)
183 {
184 	struct discovery_state *cache = &hdev->discovery;
185 	struct inquiry_entry *e;
186 
187 	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
188 
189 	list_for_each_entry(e, &cache->resolve, list) {
190 		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
191 			return e;
192 		if (!bacmp(&e->data.bdaddr, bdaddr))
193 			return e;
194 	}
195 
196 	return NULL;
197 }
198 
199 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
200 				      struct inquiry_entry *ie)
201 {
202 	struct discovery_state *cache = &hdev->discovery;
203 	struct list_head *pos = &cache->resolve;
204 	struct inquiry_entry *p;
205 
206 	list_del(&ie->list);
207 
208 	list_for_each_entry(p, &cache->resolve, list) {
209 		if (p->name_state != NAME_PENDING &&
210 		    abs(p->data.rssi) >= abs(ie->data.rssi))
211 			break;
212 		pos = &p->list;
213 	}
214 
215 	list_add(&ie->list, pos);
216 }
217 
218 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
219 			     bool name_known)
220 {
221 	struct discovery_state *cache = &hdev->discovery;
222 	struct inquiry_entry *ie;
223 	u32 flags = 0;
224 
225 	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
226 
227 	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
228 
229 	if (!data->ssp_mode)
230 		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
231 
232 	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
233 	if (ie) {
234 		if (!ie->data.ssp_mode)
235 			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
236 
237 		if (ie->name_state == NAME_NEEDED &&
238 		    data->rssi != ie->data.rssi) {
239 			ie->data.rssi = data->rssi;
240 			hci_inquiry_cache_update_resolve(hdev, ie);
241 		}
242 
243 		goto update;
244 	}
245 
246 	/* Entry not in the cache. Add new one. */
247 	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
248 	if (!ie) {
249 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
250 		goto done;
251 	}
252 
253 	list_add(&ie->all, &cache->all);
254 
255 	if (name_known) {
256 		ie->name_state = NAME_KNOWN;
257 	} else {
258 		ie->name_state = NAME_NOT_KNOWN;
259 		list_add(&ie->list, &cache->unknown);
260 	}
261 
262 update:
263 	if (name_known && ie->name_state != NAME_KNOWN &&
264 	    ie->name_state != NAME_PENDING) {
265 		ie->name_state = NAME_KNOWN;
266 		list_del(&ie->list);
267 	}
268 
269 	memcpy(&ie->data, data, sizeof(*data));
270 	ie->timestamp = jiffies;
271 	cache->timestamp = jiffies;
272 
273 	if (ie->name_state == NAME_NOT_KNOWN)
274 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
275 
276 done:
277 	return flags;
278 }
279 
280 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
281 {
282 	struct discovery_state *cache = &hdev->discovery;
283 	struct inquiry_info *info = (struct inquiry_info *) buf;
284 	struct inquiry_entry *e;
285 	int copied = 0;
286 
287 	list_for_each_entry(e, &cache->all, all) {
288 		struct inquiry_data *data = &e->data;
289 
290 		if (copied >= num)
291 			break;
292 
293 		bacpy(&info->bdaddr, &data->bdaddr);
294 		info->pscan_rep_mode	= data->pscan_rep_mode;
295 		info->pscan_period_mode	= data->pscan_period_mode;
296 		info->pscan_mode	= data->pscan_mode;
297 		memcpy(info->dev_class, data->dev_class, 3);
298 		info->clock_offset	= data->clock_offset;
299 
300 		info++;
301 		copied++;
302 	}
303 
304 	BT_DBG("cache %p, copied %d", cache, copied);
305 	return copied;
306 }
307 
308 static int hci_inq_req(struct hci_request *req, unsigned long opt)
309 {
310 	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
311 	struct hci_dev *hdev = req->hdev;
312 	struct hci_cp_inquiry cp;
313 
314 	BT_DBG("%s", hdev->name);
315 
316 	if (test_bit(HCI_INQUIRY, &hdev->flags))
317 		return 0;
318 
319 	/* Start Inquiry */
320 	memcpy(&cp.lap, &ir->lap, 3);
321 	cp.length  = ir->length;
322 	cp.num_rsp = ir->num_rsp;
323 	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
324 
325 	return 0;
326 }
327 
328 int hci_inquiry(void __user *arg)
329 {
330 	__u8 __user *ptr = arg;
331 	struct hci_inquiry_req ir;
332 	struct hci_dev *hdev;
333 	int err = 0, do_inquiry = 0, max_rsp;
334 	long timeo;
335 	__u8 *buf;
336 
337 	if (copy_from_user(&ir, ptr, sizeof(ir)))
338 		return -EFAULT;
339 
340 	hdev = hci_dev_get(ir.dev_id);
341 	if (!hdev)
342 		return -ENODEV;
343 
344 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
345 		err = -EBUSY;
346 		goto done;
347 	}
348 
349 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
350 		err = -EOPNOTSUPP;
351 		goto done;
352 	}
353 
354 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
355 		err = -EOPNOTSUPP;
356 		goto done;
357 	}
358 
359 	/* Restrict maximum inquiry length to 60 seconds */
360 	if (ir.length > 60) {
361 		err = -EINVAL;
362 		goto done;
363 	}
364 
365 	hci_dev_lock(hdev);
366 	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
367 	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
368 		hci_inquiry_cache_flush(hdev);
369 		do_inquiry = 1;
370 	}
371 	hci_dev_unlock(hdev);
372 
373 	timeo = ir.length * msecs_to_jiffies(2000);
374 
375 	if (do_inquiry) {
376 		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
377 				   timeo, NULL);
378 		if (err < 0)
379 			goto done;
380 
381 		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
382 		 * cleared). If it is interrupted by a signal, return -EINTR.
383 		 */
384 		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
385 				TASK_INTERRUPTIBLE)) {
386 			err = -EINTR;
387 			goto done;
388 		}
389 	}
390 
391 	/* for unlimited number of responses we will use buffer with
392 	 * 255 entries
393 	 */
394 	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
395 
396 	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
397 	 * copy it to the user space.
398 	 */
399 	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
400 	if (!buf) {
401 		err = -ENOMEM;
402 		goto done;
403 	}
404 
405 	hci_dev_lock(hdev);
406 	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
407 	hci_dev_unlock(hdev);
408 
409 	BT_DBG("num_rsp %d", ir.num_rsp);
410 
411 	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
412 		ptr += sizeof(ir);
413 		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
414 				 ir.num_rsp))
415 			err = -EFAULT;
416 	} else
417 		err = -EFAULT;
418 
419 	kfree(buf);
420 
421 done:
422 	hci_dev_put(hdev);
423 	return err;
424 }
425 
426 static int hci_dev_do_open(struct hci_dev *hdev)
427 {
428 	int ret = 0;
429 
430 	BT_DBG("%s %p", hdev->name, hdev);
431 
432 	hci_req_sync_lock(hdev);
433 
434 	ret = hci_dev_open_sync(hdev);
435 
436 	hci_req_sync_unlock(hdev);
437 	return ret;
438 }
439 
440 /* ---- HCI ioctl helpers ---- */
441 
442 int hci_dev_open(__u16 dev)
443 {
444 	struct hci_dev *hdev;
445 	int err;
446 
447 	hdev = hci_dev_get(dev);
448 	if (!hdev)
449 		return -ENODEV;
450 
451 	/* Devices that are marked as unconfigured can only be powered
452 	 * up as user channel. Trying to bring them up as normal devices
453 	 * will result into a failure. Only user channel operation is
454 	 * possible.
455 	 *
456 	 * When this function is called for a user channel, the flag
457 	 * HCI_USER_CHANNEL will be set first before attempting to
458 	 * open the device.
459 	 */
460 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
461 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
462 		err = -EOPNOTSUPP;
463 		goto done;
464 	}
465 
466 	/* We need to ensure that no other power on/off work is pending
467 	 * before proceeding to call hci_dev_do_open. This is
468 	 * particularly important if the setup procedure has not yet
469 	 * completed.
470 	 */
471 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
472 		cancel_delayed_work(&hdev->power_off);
473 
474 	/* After this call it is guaranteed that the setup procedure
475 	 * has finished. This means that error conditions like RFKILL
476 	 * or no valid public or static random address apply.
477 	 */
478 	flush_workqueue(hdev->req_workqueue);
479 
480 	/* For controllers not using the management interface and that
481 	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
482 	 * so that pairing works for them. Once the management interface
483 	 * is in use this bit will be cleared again and userspace has
484 	 * to explicitly enable it.
485 	 */
486 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
487 	    !hci_dev_test_flag(hdev, HCI_MGMT))
488 		hci_dev_set_flag(hdev, HCI_BONDABLE);
489 
490 	err = hci_dev_do_open(hdev);
491 
492 done:
493 	hci_dev_put(hdev);
494 	return err;
495 }
496 
497 int hci_dev_do_close(struct hci_dev *hdev)
498 {
499 	int err;
500 
501 	BT_DBG("%s %p", hdev->name, hdev);
502 
503 	hci_req_sync_lock(hdev);
504 
505 	err = hci_dev_close_sync(hdev);
506 
507 	hci_req_sync_unlock(hdev);
508 
509 	return err;
510 }
511 
512 int hci_dev_close(__u16 dev)
513 {
514 	struct hci_dev *hdev;
515 	int err;
516 
517 	hdev = hci_dev_get(dev);
518 	if (!hdev)
519 		return -ENODEV;
520 
521 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
522 		err = -EBUSY;
523 		goto done;
524 	}
525 
526 	cancel_work_sync(&hdev->power_on);
527 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
528 		cancel_delayed_work(&hdev->power_off);
529 
530 	err = hci_dev_do_close(hdev);
531 
532 done:
533 	hci_dev_put(hdev);
534 	return err;
535 }
536 
537 static int hci_dev_do_reset(struct hci_dev *hdev)
538 {
539 	int ret;
540 
541 	BT_DBG("%s %p", hdev->name, hdev);
542 
543 	hci_req_sync_lock(hdev);
544 
545 	/* Drop queues */
546 	skb_queue_purge(&hdev->rx_q);
547 	skb_queue_purge(&hdev->cmd_q);
548 
549 	/* Cancel these to avoid queueing non-chained pending work */
550 	hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
551 	/* Wait for
552 	 *
553 	 *    if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
554 	 *        queue_delayed_work(&hdev->{cmd,ncmd}_timer)
555 	 *
556 	 * inside RCU section to see the flag or complete scheduling.
557 	 */
558 	synchronize_rcu();
559 	/* Explicitly cancel works in case scheduled after setting the flag. */
560 	cancel_delayed_work(&hdev->cmd_timer);
561 	cancel_delayed_work(&hdev->ncmd_timer);
562 
563 	/* Avoid potential lockdep warnings from the *_flush() calls by
564 	 * ensuring the workqueue is empty up front.
565 	 */
566 	drain_workqueue(hdev->workqueue);
567 
568 	hci_dev_lock(hdev);
569 	hci_inquiry_cache_flush(hdev);
570 	hci_conn_hash_flush(hdev);
571 	hci_dev_unlock(hdev);
572 
573 	if (hdev->flush)
574 		hdev->flush(hdev);
575 
576 	hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
577 
578 	atomic_set(&hdev->cmd_cnt, 1);
579 	hdev->acl_cnt = 0;
580 	hdev->sco_cnt = 0;
581 	hdev->le_cnt = 0;
582 	hdev->iso_cnt = 0;
583 
584 	ret = hci_reset_sync(hdev);
585 
586 	hci_req_sync_unlock(hdev);
587 	return ret;
588 }
589 
590 int hci_dev_reset(__u16 dev)
591 {
592 	struct hci_dev *hdev;
593 	int err;
594 
595 	hdev = hci_dev_get(dev);
596 	if (!hdev)
597 		return -ENODEV;
598 
599 	if (!test_bit(HCI_UP, &hdev->flags)) {
600 		err = -ENETDOWN;
601 		goto done;
602 	}
603 
604 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
605 		err = -EBUSY;
606 		goto done;
607 	}
608 
609 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
610 		err = -EOPNOTSUPP;
611 		goto done;
612 	}
613 
614 	err = hci_dev_do_reset(hdev);
615 
616 done:
617 	hci_dev_put(hdev);
618 	return err;
619 }
620 
621 int hci_dev_reset_stat(__u16 dev)
622 {
623 	struct hci_dev *hdev;
624 	int ret = 0;
625 
626 	hdev = hci_dev_get(dev);
627 	if (!hdev)
628 		return -ENODEV;
629 
630 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
631 		ret = -EBUSY;
632 		goto done;
633 	}
634 
635 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
636 		ret = -EOPNOTSUPP;
637 		goto done;
638 	}
639 
640 	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
641 
642 done:
643 	hci_dev_put(hdev);
644 	return ret;
645 }
646 
647 static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan)
648 {
649 	bool conn_changed, discov_changed;
650 
651 	BT_DBG("%s scan 0x%02x", hdev->name, scan);
652 
653 	if ((scan & SCAN_PAGE))
654 		conn_changed = !hci_dev_test_and_set_flag(hdev,
655 							  HCI_CONNECTABLE);
656 	else
657 		conn_changed = hci_dev_test_and_clear_flag(hdev,
658 							   HCI_CONNECTABLE);
659 
660 	if ((scan & SCAN_INQUIRY)) {
661 		discov_changed = !hci_dev_test_and_set_flag(hdev,
662 							    HCI_DISCOVERABLE);
663 	} else {
664 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
665 		discov_changed = hci_dev_test_and_clear_flag(hdev,
666 							     HCI_DISCOVERABLE);
667 	}
668 
669 	if (!hci_dev_test_flag(hdev, HCI_MGMT))
670 		return;
671 
672 	if (conn_changed || discov_changed) {
673 		/* In case this was disabled through mgmt */
674 		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
675 
676 		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
677 			hci_update_adv_data(hdev, hdev->cur_adv_instance);
678 
679 		mgmt_new_settings(hdev);
680 	}
681 }
682 
683 int hci_dev_cmd(unsigned int cmd, void __user *arg)
684 {
685 	struct hci_dev *hdev;
686 	struct hci_dev_req dr;
687 	__le16 policy;
688 	int err = 0;
689 
690 	if (copy_from_user(&dr, arg, sizeof(dr)))
691 		return -EFAULT;
692 
693 	hdev = hci_dev_get(dr.dev_id);
694 	if (!hdev)
695 		return -ENODEV;
696 
697 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
698 		err = -EBUSY;
699 		goto done;
700 	}
701 
702 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
703 		err = -EOPNOTSUPP;
704 		goto done;
705 	}
706 
707 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
708 		err = -EOPNOTSUPP;
709 		goto done;
710 	}
711 
712 	switch (cmd) {
713 	case HCISETAUTH:
714 		err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
715 					    1, &dr.dev_opt, HCI_CMD_TIMEOUT);
716 		break;
717 
718 	case HCISETENCRYPT:
719 		if (!lmp_encrypt_capable(hdev)) {
720 			err = -EOPNOTSUPP;
721 			break;
722 		}
723 
724 		if (!test_bit(HCI_AUTH, &hdev->flags)) {
725 			/* Auth must be enabled first */
726 			err = __hci_cmd_sync_status(hdev,
727 						    HCI_OP_WRITE_AUTH_ENABLE,
728 						    1, &dr.dev_opt,
729 						    HCI_CMD_TIMEOUT);
730 			if (err)
731 				break;
732 		}
733 
734 		err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_ENCRYPT_MODE,
735 					    1, &dr.dev_opt,
736 					    HCI_CMD_TIMEOUT);
737 		break;
738 
739 	case HCISETSCAN:
740 		err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
741 					    1, &dr.dev_opt,
742 					    HCI_CMD_TIMEOUT);
743 
744 		/* Ensure that the connectable and discoverable states
745 		 * get correctly modified as this was a non-mgmt change.
746 		 */
747 		if (!err)
748 			hci_update_passive_scan_state(hdev, dr.dev_opt);
749 		break;
750 
751 	case HCISETLINKPOL:
752 		policy = cpu_to_le16(dr.dev_opt);
753 
754 		err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
755 					    2, &policy,
756 					    HCI_CMD_TIMEOUT);
757 		break;
758 
759 	case HCISETLINKMODE:
760 		hdev->link_mode = ((__u16) dr.dev_opt) &
761 					(HCI_LM_MASTER | HCI_LM_ACCEPT);
762 		break;
763 
764 	case HCISETPTYPE:
765 		if (hdev->pkt_type == (__u16) dr.dev_opt)
766 			break;
767 
768 		hdev->pkt_type = (__u16) dr.dev_opt;
769 		mgmt_phy_configuration_changed(hdev, NULL);
770 		break;
771 
772 	case HCISETACLMTU:
773 		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
774 		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
775 		break;
776 
777 	case HCISETSCOMTU:
778 		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
779 		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
780 		break;
781 
782 	default:
783 		err = -EINVAL;
784 		break;
785 	}
786 
787 done:
788 	hci_dev_put(hdev);
789 	return err;
790 }
791 
792 int hci_get_dev_list(void __user *arg)
793 {
794 	struct hci_dev *hdev;
795 	struct hci_dev_list_req *dl;
796 	struct hci_dev_req *dr;
797 	int n = 0, size, err;
798 	__u16 dev_num;
799 
800 	if (get_user(dev_num, (__u16 __user *) arg))
801 		return -EFAULT;
802 
803 	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
804 		return -EINVAL;
805 
806 	size = sizeof(*dl) + dev_num * sizeof(*dr);
807 
808 	dl = kzalloc(size, GFP_KERNEL);
809 	if (!dl)
810 		return -ENOMEM;
811 
812 	dr = dl->dev_req;
813 
814 	read_lock(&hci_dev_list_lock);
815 	list_for_each_entry(hdev, &hci_dev_list, list) {
816 		unsigned long flags = hdev->flags;
817 
818 		/* When the auto-off is configured it means the transport
819 		 * is running, but in that case still indicate that the
820 		 * device is actually down.
821 		 */
822 		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
823 			flags &= ~BIT(HCI_UP);
824 
825 		(dr + n)->dev_id  = hdev->id;
826 		(dr + n)->dev_opt = flags;
827 
828 		if (++n >= dev_num)
829 			break;
830 	}
831 	read_unlock(&hci_dev_list_lock);
832 
833 	dl->dev_num = n;
834 	size = sizeof(*dl) + n * sizeof(*dr);
835 
836 	err = copy_to_user(arg, dl, size);
837 	kfree(dl);
838 
839 	return err ? -EFAULT : 0;
840 }
841 
842 int hci_get_dev_info(void __user *arg)
843 {
844 	struct hci_dev *hdev;
845 	struct hci_dev_info di;
846 	unsigned long flags;
847 	int err = 0;
848 
849 	if (copy_from_user(&di, arg, sizeof(di)))
850 		return -EFAULT;
851 
852 	hdev = hci_dev_get(di.dev_id);
853 	if (!hdev)
854 		return -ENODEV;
855 
856 	/* When the auto-off is configured it means the transport
857 	 * is running, but in that case still indicate that the
858 	 * device is actually down.
859 	 */
860 	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
861 		flags = hdev->flags & ~BIT(HCI_UP);
862 	else
863 		flags = hdev->flags;
864 
865 	strscpy(di.name, hdev->name, sizeof(di.name));
866 	di.bdaddr   = hdev->bdaddr;
867 	di.type     = (hdev->bus & 0x0f);
868 	di.flags    = flags;
869 	di.pkt_type = hdev->pkt_type;
870 	if (lmp_bredr_capable(hdev)) {
871 		di.acl_mtu  = hdev->acl_mtu;
872 		di.acl_pkts = hdev->acl_pkts;
873 		di.sco_mtu  = hdev->sco_mtu;
874 		di.sco_pkts = hdev->sco_pkts;
875 	} else {
876 		di.acl_mtu  = hdev->le_mtu;
877 		di.acl_pkts = hdev->le_pkts;
878 		di.sco_mtu  = 0;
879 		di.sco_pkts = 0;
880 	}
881 	di.link_policy = hdev->link_policy;
882 	di.link_mode   = hdev->link_mode;
883 
884 	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
885 	memcpy(&di.features, &hdev->features, sizeof(di.features));
886 
887 	if (copy_to_user(arg, &di, sizeof(di)))
888 		err = -EFAULT;
889 
890 	hci_dev_put(hdev);
891 
892 	return err;
893 }
894 
895 /* ---- Interface to HCI drivers ---- */
896 
897 static int hci_rfkill_set_block(void *data, bool blocked)
898 {
899 	struct hci_dev *hdev = data;
900 
901 	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
902 
903 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
904 		return -EBUSY;
905 
906 	if (blocked) {
907 		hci_dev_set_flag(hdev, HCI_RFKILLED);
908 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
909 		    !hci_dev_test_flag(hdev, HCI_CONFIG))
910 			hci_dev_do_close(hdev);
911 	} else {
912 		hci_dev_clear_flag(hdev, HCI_RFKILLED);
913 	}
914 
915 	return 0;
916 }
917 
918 static const struct rfkill_ops hci_rfkill_ops = {
919 	.set_block = hci_rfkill_set_block,
920 };
921 
922 static void hci_power_on(struct work_struct *work)
923 {
924 	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
925 	int err;
926 
927 	BT_DBG("%s", hdev->name);
928 
929 	if (test_bit(HCI_UP, &hdev->flags) &&
930 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
931 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
932 		cancel_delayed_work(&hdev->power_off);
933 		err = hci_powered_update_sync(hdev);
934 		mgmt_power_on(hdev, err);
935 		return;
936 	}
937 
938 	err = hci_dev_do_open(hdev);
939 	if (err < 0) {
940 		hci_dev_lock(hdev);
941 		mgmt_set_powered_failed(hdev, err);
942 		hci_dev_unlock(hdev);
943 		return;
944 	}
945 
946 	/* During the HCI setup phase, a few error conditions are
947 	 * ignored and they need to be checked now. If they are still
948 	 * valid, it is important to turn the device back off.
949 	 */
950 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
951 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
952 	    (!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
953 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
954 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
955 		hci_dev_do_close(hdev);
956 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
957 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
958 				   HCI_AUTO_OFF_TIMEOUT);
959 	}
960 
961 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
962 		/* For unconfigured devices, set the HCI_RAW flag
963 		 * so that userspace can easily identify them.
964 		 */
965 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
966 			set_bit(HCI_RAW, &hdev->flags);
967 
968 		/* For fully configured devices, this will send
969 		 * the Index Added event. For unconfigured devices,
970 		 * it will send Unconfigued Index Added event.
971 		 *
972 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
973 		 * and no event will be send.
974 		 */
975 		mgmt_index_added(hdev);
976 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
977 		/* When the controller is now configured, then it
978 		 * is important to clear the HCI_RAW flag.
979 		 */
980 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
981 			clear_bit(HCI_RAW, &hdev->flags);
982 
983 		/* Powering on the controller with HCI_CONFIG set only
984 		 * happens with the transition from unconfigured to
985 		 * configured. This will send the Index Added event.
986 		 */
987 		mgmt_index_added(hdev);
988 	}
989 }
990 
991 static void hci_power_off(struct work_struct *work)
992 {
993 	struct hci_dev *hdev = container_of(work, struct hci_dev,
994 					    power_off.work);
995 
996 	BT_DBG("%s", hdev->name);
997 
998 	hci_dev_do_close(hdev);
999 }
1000 
1001 static void hci_error_reset(struct work_struct *work)
1002 {
1003 	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
1004 
1005 	hci_dev_hold(hdev);
1006 	BT_DBG("%s", hdev->name);
1007 
1008 	if (hdev->hw_error)
1009 		hdev->hw_error(hdev, hdev->hw_error_code);
1010 	else
1011 		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
1012 
1013 	if (!hci_dev_do_close(hdev))
1014 		hci_dev_do_open(hdev);
1015 
1016 	hci_dev_put(hdev);
1017 }
1018 
1019 void hci_uuids_clear(struct hci_dev *hdev)
1020 {
1021 	struct bt_uuid *uuid, *tmp;
1022 
1023 	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1024 		list_del(&uuid->list);
1025 		kfree(uuid);
1026 	}
1027 }
1028 
1029 void hci_link_keys_clear(struct hci_dev *hdev)
1030 {
1031 	struct link_key *key, *tmp;
1032 
1033 	list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) {
1034 		list_del_rcu(&key->list);
1035 		kfree_rcu(key, rcu);
1036 	}
1037 }
1038 
1039 void hci_smp_ltks_clear(struct hci_dev *hdev)
1040 {
1041 	struct smp_ltk *k, *tmp;
1042 
1043 	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1044 		list_del_rcu(&k->list);
1045 		kfree_rcu(k, rcu);
1046 	}
1047 }
1048 
1049 void hci_smp_irks_clear(struct hci_dev *hdev)
1050 {
1051 	struct smp_irk *k, *tmp;
1052 
1053 	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1054 		list_del_rcu(&k->list);
1055 		kfree_rcu(k, rcu);
1056 	}
1057 }
1058 
1059 void hci_blocked_keys_clear(struct hci_dev *hdev)
1060 {
1061 	struct blocked_key *b, *tmp;
1062 
1063 	list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) {
1064 		list_del_rcu(&b->list);
1065 		kfree_rcu(b, rcu);
1066 	}
1067 }
1068 
1069 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
1070 {
1071 	bool blocked = false;
1072 	struct blocked_key *b;
1073 
1074 	rcu_read_lock();
1075 	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
1076 		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
1077 			blocked = true;
1078 			break;
1079 		}
1080 	}
1081 
1082 	rcu_read_unlock();
1083 	return blocked;
1084 }
1085 
1086 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1087 {
1088 	struct link_key *k;
1089 
1090 	rcu_read_lock();
1091 	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
1092 		if (bacmp(bdaddr, &k->bdaddr) == 0) {
1093 			rcu_read_unlock();
1094 
1095 			if (hci_is_blocked_key(hdev,
1096 					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
1097 					       k->val)) {
1098 				bt_dev_warn_ratelimited(hdev,
1099 							"Link key blocked for %pMR",
1100 							&k->bdaddr);
1101 				return NULL;
1102 			}
1103 
1104 			return k;
1105 		}
1106 	}
1107 	rcu_read_unlock();
1108 
1109 	return NULL;
1110 }
1111 
1112 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1113 			       u8 key_type, u8 old_key_type)
1114 {
1115 	/* Legacy key */
1116 	if (key_type < 0x03)
1117 		return true;
1118 
1119 	/* Debug keys are insecure so don't store them persistently */
1120 	if (key_type == HCI_LK_DEBUG_COMBINATION)
1121 		return false;
1122 
1123 	/* Changed combination key and there's no previous one */
1124 	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1125 		return false;
1126 
1127 	/* Security mode 3 case */
1128 	if (!conn)
1129 		return true;
1130 
1131 	/* BR/EDR key derived using SC from an LE link */
1132 	if (conn->type == LE_LINK)
1133 		return true;
1134 
1135 	/* Neither local nor remote side had no-bonding as requirement */
1136 	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1137 		return true;
1138 
1139 	/* Local side had dedicated bonding as requirement */
1140 	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1141 		return true;
1142 
1143 	/* Remote side had dedicated bonding as requirement */
1144 	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1145 		return true;
1146 
1147 	/* If none of the above criteria match, then don't store the key
1148 	 * persistently */
1149 	return false;
1150 }
1151 
1152 static u8 ltk_role(u8 type)
1153 {
1154 	if (type == SMP_LTK)
1155 		return HCI_ROLE_MASTER;
1156 
1157 	return HCI_ROLE_SLAVE;
1158 }
1159 
1160 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1161 			     u8 addr_type, u8 role)
1162 {
1163 	struct smp_ltk *k;
1164 
1165 	rcu_read_lock();
1166 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1167 		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
1168 			continue;
1169 
1170 		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
1171 			rcu_read_unlock();
1172 
1173 			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
1174 					       k->val)) {
1175 				bt_dev_warn_ratelimited(hdev,
1176 							"LTK blocked for %pMR",
1177 							&k->bdaddr);
1178 				return NULL;
1179 			}
1180 
1181 			return k;
1182 		}
1183 	}
1184 	rcu_read_unlock();
1185 
1186 	return NULL;
1187 }
1188 
1189 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
1190 {
1191 	struct smp_irk *irk_to_return = NULL;
1192 	struct smp_irk *irk;
1193 
1194 	rcu_read_lock();
1195 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1196 		if (!bacmp(&irk->rpa, rpa)) {
1197 			irk_to_return = irk;
1198 			goto done;
1199 		}
1200 	}
1201 
1202 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1203 		if (smp_irk_matches(hdev, irk->val, rpa)) {
1204 			bacpy(&irk->rpa, rpa);
1205 			irk_to_return = irk;
1206 			goto done;
1207 		}
1208 	}
1209 
1210 done:
1211 	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1212 						irk_to_return->val)) {
1213 		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1214 					&irk_to_return->bdaddr);
1215 		irk_to_return = NULL;
1216 	}
1217 
1218 	rcu_read_unlock();
1219 
1220 	return irk_to_return;
1221 }
1222 
1223 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1224 				     u8 addr_type)
1225 {
1226 	struct smp_irk *irk_to_return = NULL;
1227 	struct smp_irk *irk;
1228 
1229 	/* Identity Address must be public or static random */
1230 	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
1231 		return NULL;
1232 
1233 	rcu_read_lock();
1234 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1235 		if (addr_type == irk->addr_type &&
1236 		    bacmp(bdaddr, &irk->bdaddr) == 0) {
1237 			irk_to_return = irk;
1238 			goto done;
1239 		}
1240 	}
1241 
1242 done:
1243 
1244 	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1245 						irk_to_return->val)) {
1246 		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1247 					&irk_to_return->bdaddr);
1248 		irk_to_return = NULL;
1249 	}
1250 
1251 	rcu_read_unlock();
1252 
1253 	return irk_to_return;
1254 }
1255 
1256 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1257 				  bdaddr_t *bdaddr, u8 *val, u8 type,
1258 				  u8 pin_len, bool *persistent)
1259 {
1260 	struct link_key *key, *old_key;
1261 	u8 old_key_type;
1262 
1263 	old_key = hci_find_link_key(hdev, bdaddr);
1264 	if (old_key) {
1265 		old_key_type = old_key->type;
1266 		key = old_key;
1267 	} else {
1268 		old_key_type = conn ? conn->key_type : 0xff;
1269 		key = kzalloc(sizeof(*key), GFP_KERNEL);
1270 		if (!key)
1271 			return NULL;
1272 		list_add_rcu(&key->list, &hdev->link_keys);
1273 	}
1274 
1275 	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1276 
1277 	/* Some buggy controller combinations generate a changed
1278 	 * combination key for legacy pairing even when there's no
1279 	 * previous key */
1280 	if (type == HCI_LK_CHANGED_COMBINATION &&
1281 	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1282 		type = HCI_LK_COMBINATION;
1283 		if (conn)
1284 			conn->key_type = type;
1285 	}
1286 
1287 	bacpy(&key->bdaddr, bdaddr);
1288 	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1289 	key->pin_len = pin_len;
1290 
1291 	if (type == HCI_LK_CHANGED_COMBINATION)
1292 		key->type = old_key_type;
1293 	else
1294 		key->type = type;
1295 
1296 	if (persistent)
1297 		*persistent = hci_persistent_key(hdev, conn, type,
1298 						 old_key_type);
1299 
1300 	return key;
1301 }
1302 
1303 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1304 			    u8 addr_type, u8 type, u8 authenticated,
1305 			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
1306 {
1307 	struct smp_ltk *key, *old_key;
1308 	u8 role = ltk_role(type);
1309 
1310 	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
1311 	if (old_key)
1312 		key = old_key;
1313 	else {
1314 		key = kzalloc(sizeof(*key), GFP_KERNEL);
1315 		if (!key)
1316 			return NULL;
1317 		list_add_rcu(&key->list, &hdev->long_term_keys);
1318 	}
1319 
1320 	bacpy(&key->bdaddr, bdaddr);
1321 	key->bdaddr_type = addr_type;
1322 	memcpy(key->val, tk, sizeof(key->val));
1323 	key->authenticated = authenticated;
1324 	key->ediv = ediv;
1325 	key->rand = rand;
1326 	key->enc_size = enc_size;
1327 	key->type = type;
1328 
1329 	return key;
1330 }
1331 
1332 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1333 			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
1334 {
1335 	struct smp_irk *irk;
1336 
1337 	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
1338 	if (!irk) {
1339 		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
1340 		if (!irk)
1341 			return NULL;
1342 
1343 		bacpy(&irk->bdaddr, bdaddr);
1344 		irk->addr_type = addr_type;
1345 
1346 		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
1347 	}
1348 
1349 	memcpy(irk->val, val, 16);
1350 	bacpy(&irk->rpa, rpa);
1351 
1352 	return irk;
1353 }
1354 
1355 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1356 {
1357 	struct link_key *key;
1358 
1359 	key = hci_find_link_key(hdev, bdaddr);
1360 	if (!key)
1361 		return -ENOENT;
1362 
1363 	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1364 
1365 	list_del_rcu(&key->list);
1366 	kfree_rcu(key, rcu);
1367 
1368 	return 0;
1369 }
1370 
1371 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
1372 {
1373 	struct smp_ltk *k, *tmp;
1374 	int removed = 0;
1375 
1376 	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1377 		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
1378 			continue;
1379 
1380 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1381 
1382 		list_del_rcu(&k->list);
1383 		kfree_rcu(k, rcu);
1384 		removed++;
1385 	}
1386 
1387 	return removed ? 0 : -ENOENT;
1388 }
1389 
1390 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
1391 {
1392 	struct smp_irk *k, *tmp;
1393 
1394 	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1395 		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
1396 			continue;
1397 
1398 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1399 
1400 		list_del_rcu(&k->list);
1401 		kfree_rcu(k, rcu);
1402 	}
1403 }
1404 
1405 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1406 {
1407 	struct smp_ltk *k;
1408 	struct smp_irk *irk;
1409 	u8 addr_type;
1410 
1411 	if (type == BDADDR_BREDR) {
1412 		if (hci_find_link_key(hdev, bdaddr))
1413 			return true;
1414 		return false;
1415 	}
1416 
1417 	/* Convert to HCI addr type which struct smp_ltk uses */
1418 	if (type == BDADDR_LE_PUBLIC)
1419 		addr_type = ADDR_LE_DEV_PUBLIC;
1420 	else
1421 		addr_type = ADDR_LE_DEV_RANDOM;
1422 
1423 	irk = hci_get_irk(hdev, bdaddr, addr_type);
1424 	if (irk) {
1425 		bdaddr = &irk->bdaddr;
1426 		addr_type = irk->addr_type;
1427 	}
1428 
1429 	rcu_read_lock();
1430 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1431 		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
1432 			rcu_read_unlock();
1433 			return true;
1434 		}
1435 	}
1436 	rcu_read_unlock();
1437 
1438 	return false;
1439 }
1440 
1441 /* HCI command timer function */
1442 static void hci_cmd_timeout(struct work_struct *work)
1443 {
1444 	struct hci_dev *hdev = container_of(work, struct hci_dev,
1445 					    cmd_timer.work);
1446 
1447 	if (hdev->req_skb) {
1448 		u16 opcode = hci_skb_opcode(hdev->req_skb);
1449 
1450 		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
1451 
1452 		hci_cmd_sync_cancel_sync(hdev, ETIMEDOUT);
1453 	} else {
1454 		bt_dev_err(hdev, "command tx timeout");
1455 	}
1456 
1457 	if (hdev->cmd_timeout)
1458 		hdev->cmd_timeout(hdev);
1459 
1460 	atomic_set(&hdev->cmd_cnt, 1);
1461 	queue_work(hdev->workqueue, &hdev->cmd_work);
1462 }
1463 
1464 /* HCI ncmd timer function */
1465 static void hci_ncmd_timeout(struct work_struct *work)
1466 {
1467 	struct hci_dev *hdev = container_of(work, struct hci_dev,
1468 					    ncmd_timer.work);
1469 
1470 	bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
1471 
1472 	/* During HCI_INIT phase no events can be injected if the ncmd timer
1473 	 * triggers since the procedure has its own timeout handling.
1474 	 */
1475 	if (test_bit(HCI_INIT, &hdev->flags))
1476 		return;
1477 
1478 	/* This is an irrecoverable state, inject hardware error event */
1479 	hci_reset_dev(hdev);
1480 }
1481 
1482 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1483 					  bdaddr_t *bdaddr, u8 bdaddr_type)
1484 {
1485 	struct oob_data *data;
1486 
1487 	list_for_each_entry(data, &hdev->remote_oob_data, list) {
1488 		if (bacmp(bdaddr, &data->bdaddr) != 0)
1489 			continue;
1490 		if (data->bdaddr_type != bdaddr_type)
1491 			continue;
1492 		return data;
1493 	}
1494 
1495 	return NULL;
1496 }
1497 
1498 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1499 			       u8 bdaddr_type)
1500 {
1501 	struct oob_data *data;
1502 
1503 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1504 	if (!data)
1505 		return -ENOENT;
1506 
1507 	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
1508 
1509 	list_del(&data->list);
1510 	kfree(data);
1511 
1512 	return 0;
1513 }
1514 
1515 void hci_remote_oob_data_clear(struct hci_dev *hdev)
1516 {
1517 	struct oob_data *data, *n;
1518 
1519 	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1520 		list_del(&data->list);
1521 		kfree(data);
1522 	}
1523 }
1524 
1525 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1526 			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
1527 			    u8 *hash256, u8 *rand256)
1528 {
1529 	struct oob_data *data;
1530 
1531 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1532 	if (!data) {
1533 		data = kmalloc(sizeof(*data), GFP_KERNEL);
1534 		if (!data)
1535 			return -ENOMEM;
1536 
1537 		bacpy(&data->bdaddr, bdaddr);
1538 		data->bdaddr_type = bdaddr_type;
1539 		list_add(&data->list, &hdev->remote_oob_data);
1540 	}
1541 
1542 	if (hash192 && rand192) {
1543 		memcpy(data->hash192, hash192, sizeof(data->hash192));
1544 		memcpy(data->rand192, rand192, sizeof(data->rand192));
1545 		if (hash256 && rand256)
1546 			data->present = 0x03;
1547 	} else {
1548 		memset(data->hash192, 0, sizeof(data->hash192));
1549 		memset(data->rand192, 0, sizeof(data->rand192));
1550 		if (hash256 && rand256)
1551 			data->present = 0x02;
1552 		else
1553 			data->present = 0x00;
1554 	}
1555 
1556 	if (hash256 && rand256) {
1557 		memcpy(data->hash256, hash256, sizeof(data->hash256));
1558 		memcpy(data->rand256, rand256, sizeof(data->rand256));
1559 	} else {
1560 		memset(data->hash256, 0, sizeof(data->hash256));
1561 		memset(data->rand256, 0, sizeof(data->rand256));
1562 		if (hash192 && rand192)
1563 			data->present = 0x01;
1564 	}
1565 
1566 	BT_DBG("%s for %pMR", hdev->name, bdaddr);
1567 
1568 	return 0;
1569 }
1570 
1571 /* This function requires the caller holds hdev->lock */
1572 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
1573 {
1574 	struct adv_info *adv_instance;
1575 
1576 	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
1577 		if (adv_instance->instance == instance)
1578 			return adv_instance;
1579 	}
1580 
1581 	return NULL;
1582 }
1583 
1584 /* This function requires the caller holds hdev->lock */
1585 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
1586 {
1587 	struct adv_info *cur_instance;
1588 
1589 	cur_instance = hci_find_adv_instance(hdev, instance);
1590 	if (!cur_instance)
1591 		return NULL;
1592 
1593 	if (cur_instance == list_last_entry(&hdev->adv_instances,
1594 					    struct adv_info, list))
1595 		return list_first_entry(&hdev->adv_instances,
1596 						 struct adv_info, list);
1597 	else
1598 		return list_next_entry(cur_instance, list);
1599 }
1600 
1601 /* This function requires the caller holds hdev->lock */
1602 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
1603 {
1604 	struct adv_info *adv_instance;
1605 
1606 	adv_instance = hci_find_adv_instance(hdev, instance);
1607 	if (!adv_instance)
1608 		return -ENOENT;
1609 
1610 	BT_DBG("%s removing %dMR", hdev->name, instance);
1611 
1612 	if (hdev->cur_adv_instance == instance) {
1613 		if (hdev->adv_instance_timeout) {
1614 			cancel_delayed_work(&hdev->adv_instance_expire);
1615 			hdev->adv_instance_timeout = 0;
1616 		}
1617 		hdev->cur_adv_instance = 0x00;
1618 	}
1619 
1620 	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1621 
1622 	list_del(&adv_instance->list);
1623 	kfree(adv_instance);
1624 
1625 	hdev->adv_instance_cnt--;
1626 
1627 	return 0;
1628 }
1629 
1630 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
1631 {
1632 	struct adv_info *adv_instance, *n;
1633 
1634 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
1635 		adv_instance->rpa_expired = rpa_expired;
1636 }
1637 
1638 /* This function requires the caller holds hdev->lock */
1639 void hci_adv_instances_clear(struct hci_dev *hdev)
1640 {
1641 	struct adv_info *adv_instance, *n;
1642 
1643 	if (hdev->adv_instance_timeout) {
1644 		cancel_delayed_work(&hdev->adv_instance_expire);
1645 		hdev->adv_instance_timeout = 0;
1646 	}
1647 
1648 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
1649 		cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1650 		list_del(&adv_instance->list);
1651 		kfree(adv_instance);
1652 	}
1653 
1654 	hdev->adv_instance_cnt = 0;
1655 	hdev->cur_adv_instance = 0x00;
1656 }
1657 
1658 static void adv_instance_rpa_expired(struct work_struct *work)
1659 {
1660 	struct adv_info *adv_instance = container_of(work, struct adv_info,
1661 						     rpa_expired_cb.work);
1662 
1663 	BT_DBG("");
1664 
1665 	adv_instance->rpa_expired = true;
1666 }
1667 
1668 /* This function requires the caller holds hdev->lock */
1669 struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance,
1670 				      u32 flags, u16 adv_data_len, u8 *adv_data,
1671 				      u16 scan_rsp_len, u8 *scan_rsp_data,
1672 				      u16 timeout, u16 duration, s8 tx_power,
1673 				      u32 min_interval, u32 max_interval,
1674 				      u8 mesh_handle)
1675 {
1676 	struct adv_info *adv;
1677 
1678 	adv = hci_find_adv_instance(hdev, instance);
1679 	if (adv) {
1680 		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1681 		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1682 		memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data));
1683 	} else {
1684 		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
1685 		    instance < 1 || instance > hdev->le_num_of_adv_sets + 1)
1686 			return ERR_PTR(-EOVERFLOW);
1687 
1688 		adv = kzalloc(sizeof(*adv), GFP_KERNEL);
1689 		if (!adv)
1690 			return ERR_PTR(-ENOMEM);
1691 
1692 		adv->pending = true;
1693 		adv->instance = instance;
1694 		list_add(&adv->list, &hdev->adv_instances);
1695 		hdev->adv_instance_cnt++;
1696 	}
1697 
1698 	adv->flags = flags;
1699 	adv->min_interval = min_interval;
1700 	adv->max_interval = max_interval;
1701 	adv->tx_power = tx_power;
1702 	/* Defining a mesh_handle changes the timing units to ms,
1703 	 * rather than seconds, and ties the instance to the requested
1704 	 * mesh_tx queue.
1705 	 */
1706 	adv->mesh = mesh_handle;
1707 
1708 	hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data,
1709 				  scan_rsp_len, scan_rsp_data);
1710 
1711 	adv->timeout = timeout;
1712 	adv->remaining_time = timeout;
1713 
1714 	if (duration == 0)
1715 		adv->duration = hdev->def_multi_adv_rotation_duration;
1716 	else
1717 		adv->duration = duration;
1718 
1719 	INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired);
1720 
1721 	BT_DBG("%s for %dMR", hdev->name, instance);
1722 
1723 	return adv;
1724 }
1725 
1726 /* This function requires the caller holds hdev->lock */
1727 struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance,
1728 				      u32 flags, u8 data_len, u8 *data,
1729 				      u32 min_interval, u32 max_interval)
1730 {
1731 	struct adv_info *adv;
1732 
1733 	adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL,
1734 				   0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE,
1735 				   min_interval, max_interval, 0);
1736 	if (IS_ERR(adv))
1737 		return adv;
1738 
1739 	adv->periodic = true;
1740 	adv->per_adv_data_len = data_len;
1741 
1742 	if (data)
1743 		memcpy(adv->per_adv_data, data, data_len);
1744 
1745 	return adv;
1746 }
1747 
1748 /* This function requires the caller holds hdev->lock */
1749 int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
1750 			      u16 adv_data_len, u8 *adv_data,
1751 			      u16 scan_rsp_len, u8 *scan_rsp_data)
1752 {
1753 	struct adv_info *adv;
1754 
1755 	adv = hci_find_adv_instance(hdev, instance);
1756 
1757 	/* If advertisement doesn't exist, we can't modify its data */
1758 	if (!adv)
1759 		return -ENOENT;
1760 
1761 	if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) {
1762 		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1763 		memcpy(adv->adv_data, adv_data, adv_data_len);
1764 		adv->adv_data_len = adv_data_len;
1765 		adv->adv_data_changed = true;
1766 	}
1767 
1768 	if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) {
1769 		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1770 		memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len);
1771 		adv->scan_rsp_len = scan_rsp_len;
1772 		adv->scan_rsp_changed = true;
1773 	}
1774 
1775 	/* Mark as changed if there are flags which would affect it */
1776 	if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) ||
1777 	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1778 		adv->scan_rsp_changed = true;
1779 
1780 	return 0;
1781 }
1782 
1783 /* This function requires the caller holds hdev->lock */
1784 u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1785 {
1786 	u32 flags;
1787 	struct adv_info *adv;
1788 
1789 	if (instance == 0x00) {
1790 		/* Instance 0 always manages the "Tx Power" and "Flags"
1791 		 * fields
1792 		 */
1793 		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1794 
1795 		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1796 		 * corresponds to the "connectable" instance flag.
1797 		 */
1798 		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1799 			flags |= MGMT_ADV_FLAG_CONNECTABLE;
1800 
1801 		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1802 			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1803 		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1804 			flags |= MGMT_ADV_FLAG_DISCOV;
1805 
1806 		return flags;
1807 	}
1808 
1809 	adv = hci_find_adv_instance(hdev, instance);
1810 
1811 	/* Return 0 when we got an invalid instance identifier. */
1812 	if (!adv)
1813 		return 0;
1814 
1815 	return adv->flags;
1816 }
1817 
1818 bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1819 {
1820 	struct adv_info *adv;
1821 
1822 	/* Instance 0x00 always set local name */
1823 	if (instance == 0x00)
1824 		return true;
1825 
1826 	adv = hci_find_adv_instance(hdev, instance);
1827 	if (!adv)
1828 		return false;
1829 
1830 	if (adv->flags & MGMT_ADV_FLAG_APPEARANCE ||
1831 	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1832 		return true;
1833 
1834 	return adv->scan_rsp_len ? true : false;
1835 }
1836 
1837 /* This function requires the caller holds hdev->lock */
1838 void hci_adv_monitors_clear(struct hci_dev *hdev)
1839 {
1840 	struct adv_monitor *monitor;
1841 	int handle;
1842 
1843 	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
1844 		hci_free_adv_monitor(hdev, monitor);
1845 
1846 	idr_destroy(&hdev->adv_monitors_idr);
1847 }
1848 
1849 /* Frees the monitor structure and do some bookkeepings.
1850  * This function requires the caller holds hdev->lock.
1851  */
1852 void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1853 {
1854 	struct adv_pattern *pattern;
1855 	struct adv_pattern *tmp;
1856 
1857 	if (!monitor)
1858 		return;
1859 
1860 	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
1861 		list_del(&pattern->list);
1862 		kfree(pattern);
1863 	}
1864 
1865 	if (monitor->handle)
1866 		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
1867 
1868 	if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
1869 		hdev->adv_monitors_cnt--;
1870 		mgmt_adv_monitor_removed(hdev, monitor->handle);
1871 	}
1872 
1873 	kfree(monitor);
1874 }
1875 
1876 /* Assigns handle to a monitor, and if offloading is supported and power is on,
1877  * also attempts to forward the request to the controller.
1878  * This function requires the caller holds hci_req_sync_lock.
1879  */
1880 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1881 {
1882 	int min, max, handle;
1883 	int status = 0;
1884 
1885 	if (!monitor)
1886 		return -EINVAL;
1887 
1888 	hci_dev_lock(hdev);
1889 
1890 	min = HCI_MIN_ADV_MONITOR_HANDLE;
1891 	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
1892 	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
1893 			   GFP_KERNEL);
1894 
1895 	hci_dev_unlock(hdev);
1896 
1897 	if (handle < 0)
1898 		return handle;
1899 
1900 	monitor->handle = handle;
1901 
1902 	if (!hdev_is_powered(hdev))
1903 		return status;
1904 
1905 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1906 	case HCI_ADV_MONITOR_EXT_NONE:
1907 		bt_dev_dbg(hdev, "add monitor %d status %d",
1908 			   monitor->handle, status);
1909 		/* Message was not forwarded to controller - not an error */
1910 		break;
1911 
1912 	case HCI_ADV_MONITOR_EXT_MSFT:
1913 		status = msft_add_monitor_pattern(hdev, monitor);
1914 		bt_dev_dbg(hdev, "add monitor %d msft status %d",
1915 			   handle, status);
1916 		break;
1917 	}
1918 
1919 	return status;
1920 }
1921 
1922 /* Attempts to tell the controller and free the monitor. If somehow the
1923  * controller doesn't have a corresponding handle, remove anyway.
1924  * This function requires the caller holds hci_req_sync_lock.
1925  */
1926 static int hci_remove_adv_monitor(struct hci_dev *hdev,
1927 				  struct adv_monitor *monitor)
1928 {
1929 	int status = 0;
1930 	int handle;
1931 
1932 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1933 	case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
1934 		bt_dev_dbg(hdev, "remove monitor %d status %d",
1935 			   monitor->handle, status);
1936 		goto free_monitor;
1937 
1938 	case HCI_ADV_MONITOR_EXT_MSFT:
1939 		handle = monitor->handle;
1940 		status = msft_remove_monitor(hdev, monitor);
1941 		bt_dev_dbg(hdev, "remove monitor %d msft status %d",
1942 			   handle, status);
1943 		break;
1944 	}
1945 
1946 	/* In case no matching handle registered, just free the monitor */
1947 	if (status == -ENOENT)
1948 		goto free_monitor;
1949 
1950 	return status;
1951 
1952 free_monitor:
1953 	if (status == -ENOENT)
1954 		bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
1955 			    monitor->handle);
1956 	hci_free_adv_monitor(hdev, monitor);
1957 
1958 	return status;
1959 }
1960 
1961 /* This function requires the caller holds hci_req_sync_lock */
1962 int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle)
1963 {
1964 	struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
1965 
1966 	if (!monitor)
1967 		return -EINVAL;
1968 
1969 	return hci_remove_adv_monitor(hdev, monitor);
1970 }
1971 
1972 /* This function requires the caller holds hci_req_sync_lock */
1973 int hci_remove_all_adv_monitor(struct hci_dev *hdev)
1974 {
1975 	struct adv_monitor *monitor;
1976 	int idr_next_id = 0;
1977 	int status = 0;
1978 
1979 	while (1) {
1980 		monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
1981 		if (!monitor)
1982 			break;
1983 
1984 		status = hci_remove_adv_monitor(hdev, monitor);
1985 		if (status)
1986 			return status;
1987 
1988 		idr_next_id++;
1989 	}
1990 
1991 	return status;
1992 }
1993 
1994 /* This function requires the caller holds hdev->lock */
1995 bool hci_is_adv_monitoring(struct hci_dev *hdev)
1996 {
1997 	return !idr_is_empty(&hdev->adv_monitors_idr);
1998 }
1999 
2000 int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
2001 {
2002 	if (msft_monitor_supported(hdev))
2003 		return HCI_ADV_MONITOR_EXT_MSFT;
2004 
2005 	return HCI_ADV_MONITOR_EXT_NONE;
2006 }
2007 
2008 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2009 					 bdaddr_t *bdaddr, u8 type)
2010 {
2011 	struct bdaddr_list *b;
2012 
2013 	list_for_each_entry(b, bdaddr_list, list) {
2014 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2015 			return b;
2016 	}
2017 
2018 	return NULL;
2019 }
2020 
2021 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2022 				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2023 				u8 type)
2024 {
2025 	struct bdaddr_list_with_irk *b;
2026 
2027 	list_for_each_entry(b, bdaddr_list, list) {
2028 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2029 			return b;
2030 	}
2031 
2032 	return NULL;
2033 }
2034 
2035 struct bdaddr_list_with_flags *
2036 hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
2037 				  bdaddr_t *bdaddr, u8 type)
2038 {
2039 	struct bdaddr_list_with_flags *b;
2040 
2041 	list_for_each_entry(b, bdaddr_list, list) {
2042 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2043 			return b;
2044 	}
2045 
2046 	return NULL;
2047 }
2048 
2049 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2050 {
2051 	struct bdaddr_list *b, *n;
2052 
2053 	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2054 		list_del(&b->list);
2055 		kfree(b);
2056 	}
2057 }
2058 
2059 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2060 {
2061 	struct bdaddr_list *entry;
2062 
2063 	if (!bacmp(bdaddr, BDADDR_ANY))
2064 		return -EBADF;
2065 
2066 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2067 		return -EEXIST;
2068 
2069 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2070 	if (!entry)
2071 		return -ENOMEM;
2072 
2073 	bacpy(&entry->bdaddr, bdaddr);
2074 	entry->bdaddr_type = type;
2075 
2076 	list_add(&entry->list, list);
2077 
2078 	return 0;
2079 }
2080 
2081 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2082 					u8 type, u8 *peer_irk, u8 *local_irk)
2083 {
2084 	struct bdaddr_list_with_irk *entry;
2085 
2086 	if (!bacmp(bdaddr, BDADDR_ANY))
2087 		return -EBADF;
2088 
2089 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2090 		return -EEXIST;
2091 
2092 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2093 	if (!entry)
2094 		return -ENOMEM;
2095 
2096 	bacpy(&entry->bdaddr, bdaddr);
2097 	entry->bdaddr_type = type;
2098 
2099 	if (peer_irk)
2100 		memcpy(entry->peer_irk, peer_irk, 16);
2101 
2102 	if (local_irk)
2103 		memcpy(entry->local_irk, local_irk, 16);
2104 
2105 	list_add(&entry->list, list);
2106 
2107 	return 0;
2108 }
2109 
2110 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2111 				   u8 type, u32 flags)
2112 {
2113 	struct bdaddr_list_with_flags *entry;
2114 
2115 	if (!bacmp(bdaddr, BDADDR_ANY))
2116 		return -EBADF;
2117 
2118 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2119 		return -EEXIST;
2120 
2121 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2122 	if (!entry)
2123 		return -ENOMEM;
2124 
2125 	bacpy(&entry->bdaddr, bdaddr);
2126 	entry->bdaddr_type = type;
2127 	entry->flags = flags;
2128 
2129 	list_add(&entry->list, list);
2130 
2131 	return 0;
2132 }
2133 
2134 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2135 {
2136 	struct bdaddr_list *entry;
2137 
2138 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2139 		hci_bdaddr_list_clear(list);
2140 		return 0;
2141 	}
2142 
2143 	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2144 	if (!entry)
2145 		return -ENOENT;
2146 
2147 	list_del(&entry->list);
2148 	kfree(entry);
2149 
2150 	return 0;
2151 }
2152 
2153 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2154 							u8 type)
2155 {
2156 	struct bdaddr_list_with_irk *entry;
2157 
2158 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2159 		hci_bdaddr_list_clear(list);
2160 		return 0;
2161 	}
2162 
2163 	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2164 	if (!entry)
2165 		return -ENOENT;
2166 
2167 	list_del(&entry->list);
2168 	kfree(entry);
2169 
2170 	return 0;
2171 }
2172 
2173 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2174 				   u8 type)
2175 {
2176 	struct bdaddr_list_with_flags *entry;
2177 
2178 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2179 		hci_bdaddr_list_clear(list);
2180 		return 0;
2181 	}
2182 
2183 	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
2184 	if (!entry)
2185 		return -ENOENT;
2186 
2187 	list_del(&entry->list);
2188 	kfree(entry);
2189 
2190 	return 0;
2191 }
2192 
2193 /* This function requires the caller holds hdev->lock */
2194 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2195 					       bdaddr_t *addr, u8 addr_type)
2196 {
2197 	struct hci_conn_params *params;
2198 
2199 	list_for_each_entry(params, &hdev->le_conn_params, list) {
2200 		if (bacmp(&params->addr, addr) == 0 &&
2201 		    params->addr_type == addr_type) {
2202 			return params;
2203 		}
2204 	}
2205 
2206 	return NULL;
2207 }
2208 
2209 /* This function requires the caller holds hdev->lock or rcu_read_lock */
2210 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2211 						  bdaddr_t *addr, u8 addr_type)
2212 {
2213 	struct hci_conn_params *param;
2214 
2215 	rcu_read_lock();
2216 
2217 	list_for_each_entry_rcu(param, list, action) {
2218 		if (bacmp(&param->addr, addr) == 0 &&
2219 		    param->addr_type == addr_type) {
2220 			rcu_read_unlock();
2221 			return param;
2222 		}
2223 	}
2224 
2225 	rcu_read_unlock();
2226 
2227 	return NULL;
2228 }
2229 
2230 /* This function requires the caller holds hdev->lock */
2231 void hci_pend_le_list_del_init(struct hci_conn_params *param)
2232 {
2233 	if (list_empty(&param->action))
2234 		return;
2235 
2236 	list_del_rcu(&param->action);
2237 	synchronize_rcu();
2238 	INIT_LIST_HEAD(&param->action);
2239 }
2240 
2241 /* This function requires the caller holds hdev->lock */
2242 void hci_pend_le_list_add(struct hci_conn_params *param,
2243 			  struct list_head *list)
2244 {
2245 	list_add_rcu(&param->action, list);
2246 }
2247 
2248 /* This function requires the caller holds hdev->lock */
2249 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2250 					    bdaddr_t *addr, u8 addr_type)
2251 {
2252 	struct hci_conn_params *params;
2253 
2254 	params = hci_conn_params_lookup(hdev, addr, addr_type);
2255 	if (params)
2256 		return params;
2257 
2258 	params = kzalloc(sizeof(*params), GFP_KERNEL);
2259 	if (!params) {
2260 		bt_dev_err(hdev, "out of memory");
2261 		return NULL;
2262 	}
2263 
2264 	bacpy(&params->addr, addr);
2265 	params->addr_type = addr_type;
2266 
2267 	list_add(&params->list, &hdev->le_conn_params);
2268 	INIT_LIST_HEAD(&params->action);
2269 
2270 	params->conn_min_interval = hdev->le_conn_min_interval;
2271 	params->conn_max_interval = hdev->le_conn_max_interval;
2272 	params->conn_latency = hdev->le_conn_latency;
2273 	params->supervision_timeout = hdev->le_supv_timeout;
2274 	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2275 
2276 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2277 
2278 	return params;
2279 }
2280 
2281 void hci_conn_params_free(struct hci_conn_params *params)
2282 {
2283 	hci_pend_le_list_del_init(params);
2284 
2285 	if (params->conn) {
2286 		hci_conn_drop(params->conn);
2287 		hci_conn_put(params->conn);
2288 	}
2289 
2290 	list_del(&params->list);
2291 	kfree(params);
2292 }
2293 
2294 /* This function requires the caller holds hdev->lock */
2295 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2296 {
2297 	struct hci_conn_params *params;
2298 
2299 	params = hci_conn_params_lookup(hdev, addr, addr_type);
2300 	if (!params)
2301 		return;
2302 
2303 	hci_conn_params_free(params);
2304 
2305 	hci_update_passive_scan(hdev);
2306 
2307 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2308 }
2309 
2310 /* This function requires the caller holds hdev->lock */
2311 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2312 {
2313 	struct hci_conn_params *params, *tmp;
2314 
2315 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2316 		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2317 			continue;
2318 
2319 		/* If trying to establish one time connection to disabled
2320 		 * device, leave the params, but mark them as just once.
2321 		 */
2322 		if (params->explicit_connect) {
2323 			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2324 			continue;
2325 		}
2326 
2327 		hci_conn_params_free(params);
2328 	}
2329 
2330 	BT_DBG("All LE disabled connection parameters were removed");
2331 }
2332 
2333 /* This function requires the caller holds hdev->lock */
2334 static void hci_conn_params_clear_all(struct hci_dev *hdev)
2335 {
2336 	struct hci_conn_params *params, *tmp;
2337 
2338 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2339 		hci_conn_params_free(params);
2340 
2341 	BT_DBG("All LE connection parameters were removed");
2342 }
2343 
2344 /* Copy the Identity Address of the controller.
2345  *
2346  * If the controller has a public BD_ADDR, then by default use that one.
2347  * If this is a LE only controller without a public address, default to
2348  * the static random address.
2349  *
2350  * For debugging purposes it is possible to force controllers with a
2351  * public address to use the static random address instead.
2352  *
2353  * In case BR/EDR has been disabled on a dual-mode controller and
2354  * userspace has configured a static address, then that address
2355  * becomes the identity address instead of the public BR/EDR address.
2356  */
2357 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2358 			       u8 *bdaddr_type)
2359 {
2360 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2361 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2362 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2363 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2364 		bacpy(bdaddr, &hdev->static_addr);
2365 		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2366 	} else {
2367 		bacpy(bdaddr, &hdev->bdaddr);
2368 		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2369 	}
2370 }
2371 
2372 static void hci_clear_wake_reason(struct hci_dev *hdev)
2373 {
2374 	hci_dev_lock(hdev);
2375 
2376 	hdev->wake_reason = 0;
2377 	bacpy(&hdev->wake_addr, BDADDR_ANY);
2378 	hdev->wake_addr_type = 0;
2379 
2380 	hci_dev_unlock(hdev);
2381 }
2382 
2383 static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
2384 				void *data)
2385 {
2386 	struct hci_dev *hdev =
2387 		container_of(nb, struct hci_dev, suspend_notifier);
2388 	int ret = 0;
2389 
2390 	/* Userspace has full control of this device. Do nothing. */
2391 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2392 		return NOTIFY_DONE;
2393 
2394 	/* To avoid a potential race with hci_unregister_dev. */
2395 	hci_dev_hold(hdev);
2396 
2397 	if (action == PM_SUSPEND_PREPARE)
2398 		ret = hci_suspend_dev(hdev);
2399 	else if (action == PM_POST_SUSPEND)
2400 		ret = hci_resume_dev(hdev);
2401 
2402 	if (ret)
2403 		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
2404 			   action, ret);
2405 
2406 	hci_dev_put(hdev);
2407 	return NOTIFY_DONE;
2408 }
2409 
2410 /* Alloc HCI device */
2411 struct hci_dev *hci_alloc_dev_priv(int sizeof_priv)
2412 {
2413 	struct hci_dev *hdev;
2414 	unsigned int alloc_size;
2415 
2416 	alloc_size = sizeof(*hdev);
2417 	if (sizeof_priv) {
2418 		/* Fixme: May need ALIGN-ment? */
2419 		alloc_size += sizeof_priv;
2420 	}
2421 
2422 	hdev = kzalloc(alloc_size, GFP_KERNEL);
2423 	if (!hdev)
2424 		return NULL;
2425 
2426 	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2427 	hdev->esco_type = (ESCO_HV1);
2428 	hdev->link_mode = (HCI_LM_ACCEPT);
2429 	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2430 	hdev->io_capability = 0x03;	/* No Input No Output */
2431 	hdev->manufacturer = 0xffff;	/* Default to internal use */
2432 	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2433 	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2434 	hdev->adv_instance_cnt = 0;
2435 	hdev->cur_adv_instance = 0x00;
2436 	hdev->adv_instance_timeout = 0;
2437 
2438 	hdev->advmon_allowlist_duration = 300;
2439 	hdev->advmon_no_filter_duration = 500;
2440 	hdev->enable_advmon_interleave_scan = 0x00;	/* Default to disable */
2441 
2442 	hdev->sniff_max_interval = 800;
2443 	hdev->sniff_min_interval = 80;
2444 
2445 	hdev->le_adv_channel_map = 0x07;
2446 	hdev->le_adv_min_interval = 0x0800;
2447 	hdev->le_adv_max_interval = 0x0800;
2448 	hdev->le_scan_interval = 0x0060;
2449 	hdev->le_scan_window = 0x0030;
2450 	hdev->le_scan_int_suspend = 0x0400;
2451 	hdev->le_scan_window_suspend = 0x0012;
2452 	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
2453 	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
2454 	hdev->le_scan_int_adv_monitor = 0x0060;
2455 	hdev->le_scan_window_adv_monitor = 0x0030;
2456 	hdev->le_scan_int_connect = 0x0060;
2457 	hdev->le_scan_window_connect = 0x0060;
2458 	hdev->le_conn_min_interval = 0x0018;
2459 	hdev->le_conn_max_interval = 0x0028;
2460 	hdev->le_conn_latency = 0x0000;
2461 	hdev->le_supv_timeout = 0x002a;
2462 	hdev->le_def_tx_len = 0x001b;
2463 	hdev->le_def_tx_time = 0x0148;
2464 	hdev->le_max_tx_len = 0x001b;
2465 	hdev->le_max_tx_time = 0x0148;
2466 	hdev->le_max_rx_len = 0x001b;
2467 	hdev->le_max_rx_time = 0x0148;
2468 	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
2469 	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
2470 	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
2471 	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
2472 	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
2473 	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
2474 	hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
2475 	hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
2476 	hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
2477 
2478 	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2479 	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2480 	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2481 	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2482 	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
2483 	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
2484 
2485 	/* default 1.28 sec page scan */
2486 	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
2487 	hdev->def_page_scan_int = 0x0800;
2488 	hdev->def_page_scan_window = 0x0012;
2489 
2490 	mutex_init(&hdev->lock);
2491 	mutex_init(&hdev->req_lock);
2492 
2493 	ida_init(&hdev->unset_handle_ida);
2494 
2495 	INIT_LIST_HEAD(&hdev->mesh_pending);
2496 	INIT_LIST_HEAD(&hdev->mgmt_pending);
2497 	INIT_LIST_HEAD(&hdev->reject_list);
2498 	INIT_LIST_HEAD(&hdev->accept_list);
2499 	INIT_LIST_HEAD(&hdev->uuids);
2500 	INIT_LIST_HEAD(&hdev->link_keys);
2501 	INIT_LIST_HEAD(&hdev->long_term_keys);
2502 	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2503 	INIT_LIST_HEAD(&hdev->remote_oob_data);
2504 	INIT_LIST_HEAD(&hdev->le_accept_list);
2505 	INIT_LIST_HEAD(&hdev->le_resolv_list);
2506 	INIT_LIST_HEAD(&hdev->le_conn_params);
2507 	INIT_LIST_HEAD(&hdev->pend_le_conns);
2508 	INIT_LIST_HEAD(&hdev->pend_le_reports);
2509 	INIT_LIST_HEAD(&hdev->conn_hash.list);
2510 	INIT_LIST_HEAD(&hdev->adv_instances);
2511 	INIT_LIST_HEAD(&hdev->blocked_keys);
2512 	INIT_LIST_HEAD(&hdev->monitored_devices);
2513 
2514 	INIT_LIST_HEAD(&hdev->local_codecs);
2515 	INIT_WORK(&hdev->rx_work, hci_rx_work);
2516 	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2517 	INIT_WORK(&hdev->tx_work, hci_tx_work);
2518 	INIT_WORK(&hdev->power_on, hci_power_on);
2519 	INIT_WORK(&hdev->error_reset, hci_error_reset);
2520 
2521 	hci_cmd_sync_init(hdev);
2522 
2523 	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2524 
2525 	skb_queue_head_init(&hdev->rx_q);
2526 	skb_queue_head_init(&hdev->cmd_q);
2527 	skb_queue_head_init(&hdev->raw_q);
2528 
2529 	init_waitqueue_head(&hdev->req_wait_q);
2530 
2531 	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
2532 	INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
2533 
2534 	hci_devcd_setup(hdev);
2535 	hci_request_setup(hdev);
2536 
2537 	hci_init_sysfs(hdev);
2538 	discovery_init(hdev);
2539 
2540 	return hdev;
2541 }
2542 EXPORT_SYMBOL(hci_alloc_dev_priv);
2543 
2544 /* Free HCI device */
2545 void hci_free_dev(struct hci_dev *hdev)
2546 {
2547 	/* will free via device release */
2548 	put_device(&hdev->dev);
2549 }
2550 EXPORT_SYMBOL(hci_free_dev);
2551 
2552 /* Register HCI device */
2553 int hci_register_dev(struct hci_dev *hdev)
2554 {
2555 	int id, error;
2556 
2557 	if (!hdev->open || !hdev->close || !hdev->send)
2558 		return -EINVAL;
2559 
2560 	id = ida_alloc_max(&hci_index_ida, HCI_MAX_ID - 1, GFP_KERNEL);
2561 	if (id < 0)
2562 		return id;
2563 
2564 	error = dev_set_name(&hdev->dev, "hci%u", id);
2565 	if (error)
2566 		return error;
2567 
2568 	hdev->name = dev_name(&hdev->dev);
2569 	hdev->id = id;
2570 
2571 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2572 
2573 	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
2574 	if (!hdev->workqueue) {
2575 		error = -ENOMEM;
2576 		goto err;
2577 	}
2578 
2579 	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
2580 						      hdev->name);
2581 	if (!hdev->req_workqueue) {
2582 		destroy_workqueue(hdev->workqueue);
2583 		error = -ENOMEM;
2584 		goto err;
2585 	}
2586 
2587 	if (!IS_ERR_OR_NULL(bt_debugfs))
2588 		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
2589 
2590 	error = device_add(&hdev->dev);
2591 	if (error < 0)
2592 		goto err_wqueue;
2593 
2594 	hci_leds_init(hdev);
2595 
2596 	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2597 				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2598 				    hdev);
2599 	if (hdev->rfkill) {
2600 		if (rfkill_register(hdev->rfkill) < 0) {
2601 			rfkill_destroy(hdev->rfkill);
2602 			hdev->rfkill = NULL;
2603 		}
2604 	}
2605 
2606 	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
2607 		hci_dev_set_flag(hdev, HCI_RFKILLED);
2608 
2609 	hci_dev_set_flag(hdev, HCI_SETUP);
2610 	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
2611 
2612 	/* Assume BR/EDR support until proven otherwise (such as
2613 	 * through reading supported features during init.
2614 	 */
2615 	hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
2616 
2617 	write_lock(&hci_dev_list_lock);
2618 	list_add(&hdev->list, &hci_dev_list);
2619 	write_unlock(&hci_dev_list_lock);
2620 
2621 	/* Devices that are marked for raw-only usage are unconfigured
2622 	 * and should not be included in normal operation.
2623 	 */
2624 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2625 		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
2626 
2627 	/* Mark Remote Wakeup connection flag as supported if driver has wakeup
2628 	 * callback.
2629 	 */
2630 	if (hdev->wakeup)
2631 		hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP;
2632 
2633 	hci_sock_dev_event(hdev, HCI_DEV_REG);
2634 	hci_dev_hold(hdev);
2635 
2636 	error = hci_register_suspend_notifier(hdev);
2637 	if (error)
2638 		BT_WARN("register suspend notifier failed error:%d\n", error);
2639 
2640 	queue_work(hdev->req_workqueue, &hdev->power_on);
2641 
2642 	idr_init(&hdev->adv_monitors_idr);
2643 	msft_register(hdev);
2644 
2645 	return id;
2646 
2647 err_wqueue:
2648 	debugfs_remove_recursive(hdev->debugfs);
2649 	destroy_workqueue(hdev->workqueue);
2650 	destroy_workqueue(hdev->req_workqueue);
2651 err:
2652 	ida_free(&hci_index_ida, hdev->id);
2653 
2654 	return error;
2655 }
2656 EXPORT_SYMBOL(hci_register_dev);
2657 
2658 /* Unregister HCI device */
2659 void hci_unregister_dev(struct hci_dev *hdev)
2660 {
2661 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2662 
2663 	mutex_lock(&hdev->unregister_lock);
2664 	hci_dev_set_flag(hdev, HCI_UNREGISTER);
2665 	mutex_unlock(&hdev->unregister_lock);
2666 
2667 	write_lock(&hci_dev_list_lock);
2668 	list_del(&hdev->list);
2669 	write_unlock(&hci_dev_list_lock);
2670 
2671 	cancel_work_sync(&hdev->rx_work);
2672 	cancel_work_sync(&hdev->cmd_work);
2673 	cancel_work_sync(&hdev->tx_work);
2674 	cancel_work_sync(&hdev->power_on);
2675 	cancel_work_sync(&hdev->error_reset);
2676 
2677 	hci_cmd_sync_clear(hdev);
2678 
2679 	hci_unregister_suspend_notifier(hdev);
2680 
2681 	hci_dev_do_close(hdev);
2682 
2683 	if (!test_bit(HCI_INIT, &hdev->flags) &&
2684 	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
2685 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
2686 		hci_dev_lock(hdev);
2687 		mgmt_index_removed(hdev);
2688 		hci_dev_unlock(hdev);
2689 	}
2690 
2691 	/* mgmt_index_removed should take care of emptying the
2692 	 * pending list */
2693 	BUG_ON(!list_empty(&hdev->mgmt_pending));
2694 
2695 	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
2696 
2697 	if (hdev->rfkill) {
2698 		rfkill_unregister(hdev->rfkill);
2699 		rfkill_destroy(hdev->rfkill);
2700 	}
2701 
2702 	device_del(&hdev->dev);
2703 	/* Actual cleanup is deferred until hci_release_dev(). */
2704 	hci_dev_put(hdev);
2705 }
2706 EXPORT_SYMBOL(hci_unregister_dev);
2707 
2708 /* Release HCI device */
2709 void hci_release_dev(struct hci_dev *hdev)
2710 {
2711 	debugfs_remove_recursive(hdev->debugfs);
2712 	kfree_const(hdev->hw_info);
2713 	kfree_const(hdev->fw_info);
2714 
2715 	destroy_workqueue(hdev->workqueue);
2716 	destroy_workqueue(hdev->req_workqueue);
2717 
2718 	hci_dev_lock(hdev);
2719 	hci_bdaddr_list_clear(&hdev->reject_list);
2720 	hci_bdaddr_list_clear(&hdev->accept_list);
2721 	hci_uuids_clear(hdev);
2722 	hci_link_keys_clear(hdev);
2723 	hci_smp_ltks_clear(hdev);
2724 	hci_smp_irks_clear(hdev);
2725 	hci_remote_oob_data_clear(hdev);
2726 	hci_adv_instances_clear(hdev);
2727 	hci_adv_monitors_clear(hdev);
2728 	hci_bdaddr_list_clear(&hdev->le_accept_list);
2729 	hci_bdaddr_list_clear(&hdev->le_resolv_list);
2730 	hci_conn_params_clear_all(hdev);
2731 	hci_discovery_filter_clear(hdev);
2732 	hci_blocked_keys_clear(hdev);
2733 	hci_codec_list_clear(&hdev->local_codecs);
2734 	msft_release(hdev);
2735 	hci_dev_unlock(hdev);
2736 
2737 	ida_destroy(&hdev->unset_handle_ida);
2738 	ida_free(&hci_index_ida, hdev->id);
2739 	kfree_skb(hdev->sent_cmd);
2740 	kfree_skb(hdev->req_skb);
2741 	kfree_skb(hdev->recv_event);
2742 	kfree(hdev);
2743 }
2744 EXPORT_SYMBOL(hci_release_dev);
2745 
2746 int hci_register_suspend_notifier(struct hci_dev *hdev)
2747 {
2748 	int ret = 0;
2749 
2750 	if (!hdev->suspend_notifier.notifier_call &&
2751 	    !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
2752 		hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
2753 		ret = register_pm_notifier(&hdev->suspend_notifier);
2754 	}
2755 
2756 	return ret;
2757 }
2758 
2759 int hci_unregister_suspend_notifier(struct hci_dev *hdev)
2760 {
2761 	int ret = 0;
2762 
2763 	if (hdev->suspend_notifier.notifier_call) {
2764 		ret = unregister_pm_notifier(&hdev->suspend_notifier);
2765 		if (!ret)
2766 			hdev->suspend_notifier.notifier_call = NULL;
2767 	}
2768 
2769 	return ret;
2770 }
2771 
2772 /* Cancel ongoing command synchronously:
2773  *
2774  * - Cancel command timer
2775  * - Reset command counter
2776  * - Cancel command request
2777  */
2778 static void hci_cancel_cmd_sync(struct hci_dev *hdev, int err)
2779 {
2780 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
2781 
2782 	cancel_delayed_work_sync(&hdev->cmd_timer);
2783 	cancel_delayed_work_sync(&hdev->ncmd_timer);
2784 	atomic_set(&hdev->cmd_cnt, 1);
2785 
2786 	hci_cmd_sync_cancel_sync(hdev, err);
2787 }
2788 
2789 /* Suspend HCI device */
2790 int hci_suspend_dev(struct hci_dev *hdev)
2791 {
2792 	int ret;
2793 
2794 	bt_dev_dbg(hdev, "");
2795 
2796 	/* Suspend should only act on when powered. */
2797 	if (!hdev_is_powered(hdev) ||
2798 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2799 		return 0;
2800 
2801 	/* If powering down don't attempt to suspend */
2802 	if (mgmt_powering_down(hdev))
2803 		return 0;
2804 
2805 	/* Cancel potentially blocking sync operation before suspend */
2806 	hci_cancel_cmd_sync(hdev, EHOSTDOWN);
2807 
2808 	hci_req_sync_lock(hdev);
2809 	ret = hci_suspend_sync(hdev);
2810 	hci_req_sync_unlock(hdev);
2811 
2812 	hci_clear_wake_reason(hdev);
2813 	mgmt_suspending(hdev, hdev->suspend_state);
2814 
2815 	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
2816 	return ret;
2817 }
2818 EXPORT_SYMBOL(hci_suspend_dev);
2819 
2820 /* Resume HCI device */
2821 int hci_resume_dev(struct hci_dev *hdev)
2822 {
2823 	int ret;
2824 
2825 	bt_dev_dbg(hdev, "");
2826 
2827 	/* Resume should only act on when powered. */
2828 	if (!hdev_is_powered(hdev) ||
2829 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2830 		return 0;
2831 
2832 	/* If powering down don't attempt to resume */
2833 	if (mgmt_powering_down(hdev))
2834 		return 0;
2835 
2836 	hci_req_sync_lock(hdev);
2837 	ret = hci_resume_sync(hdev);
2838 	hci_req_sync_unlock(hdev);
2839 
2840 	mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
2841 		      hdev->wake_addr_type);
2842 
2843 	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
2844 	return ret;
2845 }
2846 EXPORT_SYMBOL(hci_resume_dev);
2847 
2848 /* Reset HCI device */
2849 int hci_reset_dev(struct hci_dev *hdev)
2850 {
2851 	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
2852 	struct sk_buff *skb;
2853 
2854 	skb = bt_skb_alloc(3, GFP_ATOMIC);
2855 	if (!skb)
2856 		return -ENOMEM;
2857 
2858 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
2859 	skb_put_data(skb, hw_err, 3);
2860 
2861 	bt_dev_err(hdev, "Injecting HCI hardware error event");
2862 
2863 	/* Send Hardware Error to upper stack */
2864 	return hci_recv_frame(hdev, skb);
2865 }
2866 EXPORT_SYMBOL(hci_reset_dev);
2867 
2868 /* Receive frame from HCI drivers */
2869 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
2870 {
2871 	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2872 		      && !test_bit(HCI_INIT, &hdev->flags))) {
2873 		kfree_skb(skb);
2874 		return -ENXIO;
2875 	}
2876 
2877 	switch (hci_skb_pkt_type(skb)) {
2878 	case HCI_EVENT_PKT:
2879 		break;
2880 	case HCI_ACLDATA_PKT:
2881 		/* Detect if ISO packet has been sent as ACL */
2882 		if (hci_conn_num(hdev, ISO_LINK)) {
2883 			__u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2884 			__u8 type;
2885 
2886 			type = hci_conn_lookup_type(hdev, hci_handle(handle));
2887 			if (type == ISO_LINK)
2888 				hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
2889 		}
2890 		break;
2891 	case HCI_SCODATA_PKT:
2892 		break;
2893 	case HCI_ISODATA_PKT:
2894 		break;
2895 	default:
2896 		kfree_skb(skb);
2897 		return -EINVAL;
2898 	}
2899 
2900 	/* Incoming skb */
2901 	bt_cb(skb)->incoming = 1;
2902 
2903 	/* Time stamp */
2904 	__net_timestamp(skb);
2905 
2906 	skb_queue_tail(&hdev->rx_q, skb);
2907 	queue_work(hdev->workqueue, &hdev->rx_work);
2908 
2909 	return 0;
2910 }
2911 EXPORT_SYMBOL(hci_recv_frame);
2912 
2913 /* Receive diagnostic message from HCI drivers */
2914 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
2915 {
2916 	/* Mark as diagnostic packet */
2917 	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
2918 
2919 	/* Time stamp */
2920 	__net_timestamp(skb);
2921 
2922 	skb_queue_tail(&hdev->rx_q, skb);
2923 	queue_work(hdev->workqueue, &hdev->rx_work);
2924 
2925 	return 0;
2926 }
2927 EXPORT_SYMBOL(hci_recv_diag);
2928 
2929 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
2930 {
2931 	va_list vargs;
2932 
2933 	va_start(vargs, fmt);
2934 	kfree_const(hdev->hw_info);
2935 	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2936 	va_end(vargs);
2937 }
2938 EXPORT_SYMBOL(hci_set_hw_info);
2939 
2940 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
2941 {
2942 	va_list vargs;
2943 
2944 	va_start(vargs, fmt);
2945 	kfree_const(hdev->fw_info);
2946 	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2947 	va_end(vargs);
2948 }
2949 EXPORT_SYMBOL(hci_set_fw_info);
2950 
2951 /* ---- Interface to upper protocols ---- */
2952 
2953 int hci_register_cb(struct hci_cb *cb)
2954 {
2955 	BT_DBG("%p name %s", cb, cb->name);
2956 
2957 	mutex_lock(&hci_cb_list_lock);
2958 	list_add_tail(&cb->list, &hci_cb_list);
2959 	mutex_unlock(&hci_cb_list_lock);
2960 
2961 	return 0;
2962 }
2963 EXPORT_SYMBOL(hci_register_cb);
2964 
2965 int hci_unregister_cb(struct hci_cb *cb)
2966 {
2967 	BT_DBG("%p name %s", cb, cb->name);
2968 
2969 	mutex_lock(&hci_cb_list_lock);
2970 	list_del(&cb->list);
2971 	mutex_unlock(&hci_cb_list_lock);
2972 
2973 	return 0;
2974 }
2975 EXPORT_SYMBOL(hci_unregister_cb);
2976 
2977 static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
2978 {
2979 	int err;
2980 
2981 	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
2982 	       skb->len);
2983 
2984 	/* Time stamp */
2985 	__net_timestamp(skb);
2986 
2987 	/* Send copy to monitor */
2988 	hci_send_to_monitor(hdev, skb);
2989 
2990 	if (atomic_read(&hdev->promisc)) {
2991 		/* Send copy to the sockets */
2992 		hci_send_to_sock(hdev, skb);
2993 	}
2994 
2995 	/* Get rid of skb owner, prior to sending to the driver. */
2996 	skb_orphan(skb);
2997 
2998 	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
2999 		kfree_skb(skb);
3000 		return -EINVAL;
3001 	}
3002 
3003 	err = hdev->send(hdev, skb);
3004 	if (err < 0) {
3005 		bt_dev_err(hdev, "sending frame failed (%d)", err);
3006 		kfree_skb(skb);
3007 		return err;
3008 	}
3009 
3010 	return 0;
3011 }
3012 
3013 /* Send HCI command */
3014 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3015 		 const void *param)
3016 {
3017 	struct sk_buff *skb;
3018 
3019 	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3020 
3021 	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3022 	if (!skb) {
3023 		bt_dev_err(hdev, "no memory for command");
3024 		return -ENOMEM;
3025 	}
3026 
3027 	/* Stand-alone HCI commands must be flagged as
3028 	 * single-command requests.
3029 	 */
3030 	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3031 
3032 	skb_queue_tail(&hdev->cmd_q, skb);
3033 	queue_work(hdev->workqueue, &hdev->cmd_work);
3034 
3035 	return 0;
3036 }
3037 
3038 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3039 		   const void *param)
3040 {
3041 	struct sk_buff *skb;
3042 
3043 	if (hci_opcode_ogf(opcode) != 0x3f) {
3044 		/* A controller receiving a command shall respond with either
3045 		 * a Command Status Event or a Command Complete Event.
3046 		 * Therefore, all standard HCI commands must be sent via the
3047 		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3048 		 * Some vendors do not comply with this rule for vendor-specific
3049 		 * commands and do not return any event. We want to support
3050 		 * unresponded commands for such cases only.
3051 		 */
3052 		bt_dev_err(hdev, "unresponded command not supported");
3053 		return -EINVAL;
3054 	}
3055 
3056 	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3057 	if (!skb) {
3058 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3059 			   opcode);
3060 		return -ENOMEM;
3061 	}
3062 
3063 	hci_send_frame(hdev, skb);
3064 
3065 	return 0;
3066 }
3067 EXPORT_SYMBOL(__hci_cmd_send);
3068 
3069 /* Get data from the previously sent command */
3070 static void *hci_cmd_data(struct sk_buff *skb, __u16 opcode)
3071 {
3072 	struct hci_command_hdr *hdr;
3073 
3074 	if (!skb || skb->len < HCI_COMMAND_HDR_SIZE)
3075 		return NULL;
3076 
3077 	hdr = (void *)skb->data;
3078 
3079 	if (hdr->opcode != cpu_to_le16(opcode))
3080 		return NULL;
3081 
3082 	return skb->data + HCI_COMMAND_HDR_SIZE;
3083 }
3084 
3085 /* Get data from the previously sent command */
3086 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3087 {
3088 	void *data;
3089 
3090 	/* Check if opcode matches last sent command */
3091 	data = hci_cmd_data(hdev->sent_cmd, opcode);
3092 	if (!data)
3093 		/* Check if opcode matches last request */
3094 		data = hci_cmd_data(hdev->req_skb, opcode);
3095 
3096 	return data;
3097 }
3098 
3099 /* Get data from last received event */
3100 void *hci_recv_event_data(struct hci_dev *hdev, __u8 event)
3101 {
3102 	struct hci_event_hdr *hdr;
3103 	int offset;
3104 
3105 	if (!hdev->recv_event)
3106 		return NULL;
3107 
3108 	hdr = (void *)hdev->recv_event->data;
3109 	offset = sizeof(*hdr);
3110 
3111 	if (hdr->evt != event) {
3112 		/* In case of LE metaevent check the subevent match */
3113 		if (hdr->evt == HCI_EV_LE_META) {
3114 			struct hci_ev_le_meta *ev;
3115 
3116 			ev = (void *)hdev->recv_event->data + offset;
3117 			offset += sizeof(*ev);
3118 			if (ev->subevent == event)
3119 				goto found;
3120 		}
3121 		return NULL;
3122 	}
3123 
3124 found:
3125 	bt_dev_dbg(hdev, "event 0x%2.2x", event);
3126 
3127 	return hdev->recv_event->data + offset;
3128 }
3129 
3130 /* Send ACL data */
3131 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3132 {
3133 	struct hci_acl_hdr *hdr;
3134 	int len = skb->len;
3135 
3136 	skb_push(skb, HCI_ACL_HDR_SIZE);
3137 	skb_reset_transport_header(skb);
3138 	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3139 	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3140 	hdr->dlen   = cpu_to_le16(len);
3141 }
3142 
3143 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3144 			  struct sk_buff *skb, __u16 flags)
3145 {
3146 	struct hci_conn *conn = chan->conn;
3147 	struct hci_dev *hdev = conn->hdev;
3148 	struct sk_buff *list;
3149 
3150 	skb->len = skb_headlen(skb);
3151 	skb->data_len = 0;
3152 
3153 	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3154 
3155 	hci_add_acl_hdr(skb, conn->handle, flags);
3156 
3157 	list = skb_shinfo(skb)->frag_list;
3158 	if (!list) {
3159 		/* Non fragmented */
3160 		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3161 
3162 		skb_queue_tail(queue, skb);
3163 	} else {
3164 		/* Fragmented */
3165 		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3166 
3167 		skb_shinfo(skb)->frag_list = NULL;
3168 
3169 		/* Queue all fragments atomically. We need to use spin_lock_bh
3170 		 * here because of 6LoWPAN links, as there this function is
3171 		 * called from softirq and using normal spin lock could cause
3172 		 * deadlocks.
3173 		 */
3174 		spin_lock_bh(&queue->lock);
3175 
3176 		__skb_queue_tail(queue, skb);
3177 
3178 		flags &= ~ACL_START;
3179 		flags |= ACL_CONT;
3180 		do {
3181 			skb = list; list = list->next;
3182 
3183 			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3184 			hci_add_acl_hdr(skb, conn->handle, flags);
3185 
3186 			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3187 
3188 			__skb_queue_tail(queue, skb);
3189 		} while (list);
3190 
3191 		spin_unlock_bh(&queue->lock);
3192 	}
3193 }
3194 
3195 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3196 {
3197 	struct hci_dev *hdev = chan->conn->hdev;
3198 
3199 	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3200 
3201 	hci_queue_acl(chan, &chan->data_q, skb, flags);
3202 
3203 	queue_work(hdev->workqueue, &hdev->tx_work);
3204 }
3205 
3206 /* Send SCO data */
3207 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3208 {
3209 	struct hci_dev *hdev = conn->hdev;
3210 	struct hci_sco_hdr hdr;
3211 
3212 	BT_DBG("%s len %d", hdev->name, skb->len);
3213 
3214 	hdr.handle = cpu_to_le16(conn->handle);
3215 	hdr.dlen   = skb->len;
3216 
3217 	skb_push(skb, HCI_SCO_HDR_SIZE);
3218 	skb_reset_transport_header(skb);
3219 	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3220 
3221 	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3222 
3223 	skb_queue_tail(&conn->data_q, skb);
3224 	queue_work(hdev->workqueue, &hdev->tx_work);
3225 }
3226 
3227 /* Send ISO data */
3228 static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags)
3229 {
3230 	struct hci_iso_hdr *hdr;
3231 	int len = skb->len;
3232 
3233 	skb_push(skb, HCI_ISO_HDR_SIZE);
3234 	skb_reset_transport_header(skb);
3235 	hdr = (struct hci_iso_hdr *)skb_transport_header(skb);
3236 	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3237 	hdr->dlen   = cpu_to_le16(len);
3238 }
3239 
3240 static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue,
3241 			  struct sk_buff *skb)
3242 {
3243 	struct hci_dev *hdev = conn->hdev;
3244 	struct sk_buff *list;
3245 	__u16 flags;
3246 
3247 	skb->len = skb_headlen(skb);
3248 	skb->data_len = 0;
3249 
3250 	hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3251 
3252 	list = skb_shinfo(skb)->frag_list;
3253 
3254 	flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00);
3255 	hci_add_iso_hdr(skb, conn->handle, flags);
3256 
3257 	if (!list) {
3258 		/* Non fragmented */
3259 		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3260 
3261 		skb_queue_tail(queue, skb);
3262 	} else {
3263 		/* Fragmented */
3264 		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3265 
3266 		skb_shinfo(skb)->frag_list = NULL;
3267 
3268 		__skb_queue_tail(queue, skb);
3269 
3270 		do {
3271 			skb = list; list = list->next;
3272 
3273 			hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3274 			flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END,
3275 						   0x00);
3276 			hci_add_iso_hdr(skb, conn->handle, flags);
3277 
3278 			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3279 
3280 			__skb_queue_tail(queue, skb);
3281 		} while (list);
3282 	}
3283 }
3284 
3285 void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb)
3286 {
3287 	struct hci_dev *hdev = conn->hdev;
3288 
3289 	BT_DBG("%s len %d", hdev->name, skb->len);
3290 
3291 	hci_queue_iso(conn, &conn->data_q, skb);
3292 
3293 	queue_work(hdev->workqueue, &hdev->tx_work);
3294 }
3295 
3296 /* ---- HCI TX task (outgoing data) ---- */
3297 
3298 /* HCI Connection scheduler */
3299 static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote)
3300 {
3301 	struct hci_dev *hdev;
3302 	int cnt, q;
3303 
3304 	if (!conn) {
3305 		*quote = 0;
3306 		return;
3307 	}
3308 
3309 	hdev = conn->hdev;
3310 
3311 	switch (conn->type) {
3312 	case ACL_LINK:
3313 		cnt = hdev->acl_cnt;
3314 		break;
3315 	case SCO_LINK:
3316 	case ESCO_LINK:
3317 		cnt = hdev->sco_cnt;
3318 		break;
3319 	case LE_LINK:
3320 		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3321 		break;
3322 	case ISO_LINK:
3323 		cnt = hdev->iso_mtu ? hdev->iso_cnt :
3324 			hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3325 		break;
3326 	default:
3327 		cnt = 0;
3328 		bt_dev_err(hdev, "unknown link type %d", conn->type);
3329 	}
3330 
3331 	q = cnt / num;
3332 	*quote = q ? q : 1;
3333 }
3334 
3335 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3336 				     int *quote)
3337 {
3338 	struct hci_conn_hash *h = &hdev->conn_hash;
3339 	struct hci_conn *conn = NULL, *c;
3340 	unsigned int num = 0, min = ~0;
3341 
3342 	/* We don't have to lock device here. Connections are always
3343 	 * added and removed with TX task disabled. */
3344 
3345 	rcu_read_lock();
3346 
3347 	list_for_each_entry_rcu(c, &h->list, list) {
3348 		if (c->type != type || skb_queue_empty(&c->data_q))
3349 			continue;
3350 
3351 		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3352 			continue;
3353 
3354 		num++;
3355 
3356 		if (c->sent < min) {
3357 			min  = c->sent;
3358 			conn = c;
3359 		}
3360 
3361 		if (hci_conn_num(hdev, type) == num)
3362 			break;
3363 	}
3364 
3365 	rcu_read_unlock();
3366 
3367 	hci_quote_sent(conn, num, quote);
3368 
3369 	BT_DBG("conn %p quote %d", conn, *quote);
3370 	return conn;
3371 }
3372 
3373 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3374 {
3375 	struct hci_conn_hash *h = &hdev->conn_hash;
3376 	struct hci_conn *c;
3377 
3378 	bt_dev_err(hdev, "link tx timeout");
3379 
3380 	rcu_read_lock();
3381 
3382 	/* Kill stalled connections */
3383 	list_for_each_entry_rcu(c, &h->list, list) {
3384 		if (c->type == type && c->sent) {
3385 			bt_dev_err(hdev, "killing stalled connection %pMR",
3386 				   &c->dst);
3387 			/* hci_disconnect might sleep, so, we have to release
3388 			 * the RCU read lock before calling it.
3389 			 */
3390 			rcu_read_unlock();
3391 			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3392 			rcu_read_lock();
3393 		}
3394 	}
3395 
3396 	rcu_read_unlock();
3397 }
3398 
3399 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3400 				      int *quote)
3401 {
3402 	struct hci_conn_hash *h = &hdev->conn_hash;
3403 	struct hci_chan *chan = NULL;
3404 	unsigned int num = 0, min = ~0, cur_prio = 0;
3405 	struct hci_conn *conn;
3406 	int conn_num = 0;
3407 
3408 	BT_DBG("%s", hdev->name);
3409 
3410 	rcu_read_lock();
3411 
3412 	list_for_each_entry_rcu(conn, &h->list, list) {
3413 		struct hci_chan *tmp;
3414 
3415 		if (conn->type != type)
3416 			continue;
3417 
3418 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3419 			continue;
3420 
3421 		conn_num++;
3422 
3423 		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3424 			struct sk_buff *skb;
3425 
3426 			if (skb_queue_empty(&tmp->data_q))
3427 				continue;
3428 
3429 			skb = skb_peek(&tmp->data_q);
3430 			if (skb->priority < cur_prio)
3431 				continue;
3432 
3433 			if (skb->priority > cur_prio) {
3434 				num = 0;
3435 				min = ~0;
3436 				cur_prio = skb->priority;
3437 			}
3438 
3439 			num++;
3440 
3441 			if (conn->sent < min) {
3442 				min  = conn->sent;
3443 				chan = tmp;
3444 			}
3445 		}
3446 
3447 		if (hci_conn_num(hdev, type) == conn_num)
3448 			break;
3449 	}
3450 
3451 	rcu_read_unlock();
3452 
3453 	if (!chan)
3454 		return NULL;
3455 
3456 	hci_quote_sent(chan->conn, num, quote);
3457 
3458 	BT_DBG("chan %p quote %d", chan, *quote);
3459 	return chan;
3460 }
3461 
3462 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3463 {
3464 	struct hci_conn_hash *h = &hdev->conn_hash;
3465 	struct hci_conn *conn;
3466 	int num = 0;
3467 
3468 	BT_DBG("%s", hdev->name);
3469 
3470 	rcu_read_lock();
3471 
3472 	list_for_each_entry_rcu(conn, &h->list, list) {
3473 		struct hci_chan *chan;
3474 
3475 		if (conn->type != type)
3476 			continue;
3477 
3478 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3479 			continue;
3480 
3481 		num++;
3482 
3483 		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3484 			struct sk_buff *skb;
3485 
3486 			if (chan->sent) {
3487 				chan->sent = 0;
3488 				continue;
3489 			}
3490 
3491 			if (skb_queue_empty(&chan->data_q))
3492 				continue;
3493 
3494 			skb = skb_peek(&chan->data_q);
3495 			if (skb->priority >= HCI_PRIO_MAX - 1)
3496 				continue;
3497 
3498 			skb->priority = HCI_PRIO_MAX - 1;
3499 
3500 			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3501 			       skb->priority);
3502 		}
3503 
3504 		if (hci_conn_num(hdev, type) == num)
3505 			break;
3506 	}
3507 
3508 	rcu_read_unlock();
3509 
3510 }
3511 
3512 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
3513 {
3514 	unsigned long last_tx;
3515 
3516 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3517 		return;
3518 
3519 	switch (type) {
3520 	case LE_LINK:
3521 		last_tx = hdev->le_last_tx;
3522 		break;
3523 	default:
3524 		last_tx = hdev->acl_last_tx;
3525 		break;
3526 	}
3527 
3528 	/* tx timeout must be longer than maximum link supervision timeout
3529 	 * (40.9 seconds)
3530 	 */
3531 	if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
3532 		hci_link_tx_to(hdev, type);
3533 }
3534 
3535 /* Schedule SCO */
3536 static void hci_sched_sco(struct hci_dev *hdev)
3537 {
3538 	struct hci_conn *conn;
3539 	struct sk_buff *skb;
3540 	int quote;
3541 
3542 	BT_DBG("%s", hdev->name);
3543 
3544 	if (!hci_conn_num(hdev, SCO_LINK))
3545 		return;
3546 
3547 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3548 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3549 			BT_DBG("skb %p len %d", skb, skb->len);
3550 			hci_send_frame(hdev, skb);
3551 
3552 			conn->sent++;
3553 			if (conn->sent == ~0)
3554 				conn->sent = 0;
3555 		}
3556 	}
3557 }
3558 
3559 static void hci_sched_esco(struct hci_dev *hdev)
3560 {
3561 	struct hci_conn *conn;
3562 	struct sk_buff *skb;
3563 	int quote;
3564 
3565 	BT_DBG("%s", hdev->name);
3566 
3567 	if (!hci_conn_num(hdev, ESCO_LINK))
3568 		return;
3569 
3570 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3571 						     &quote))) {
3572 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3573 			BT_DBG("skb %p len %d", skb, skb->len);
3574 			hci_send_frame(hdev, skb);
3575 
3576 			conn->sent++;
3577 			if (conn->sent == ~0)
3578 				conn->sent = 0;
3579 		}
3580 	}
3581 }
3582 
3583 static void hci_sched_acl_pkt(struct hci_dev *hdev)
3584 {
3585 	unsigned int cnt = hdev->acl_cnt;
3586 	struct hci_chan *chan;
3587 	struct sk_buff *skb;
3588 	int quote;
3589 
3590 	__check_timeout(hdev, cnt, ACL_LINK);
3591 
3592 	while (hdev->acl_cnt &&
3593 	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3594 		u32 priority = (skb_peek(&chan->data_q))->priority;
3595 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3596 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3597 			       skb->len, skb->priority);
3598 
3599 			/* Stop if priority has changed */
3600 			if (skb->priority < priority)
3601 				break;
3602 
3603 			skb = skb_dequeue(&chan->data_q);
3604 
3605 			hci_conn_enter_active_mode(chan->conn,
3606 						   bt_cb(skb)->force_active);
3607 
3608 			hci_send_frame(hdev, skb);
3609 			hdev->acl_last_tx = jiffies;
3610 
3611 			hdev->acl_cnt--;
3612 			chan->sent++;
3613 			chan->conn->sent++;
3614 
3615 			/* Send pending SCO packets right away */
3616 			hci_sched_sco(hdev);
3617 			hci_sched_esco(hdev);
3618 		}
3619 	}
3620 
3621 	if (cnt != hdev->acl_cnt)
3622 		hci_prio_recalculate(hdev, ACL_LINK);
3623 }
3624 
3625 static void hci_sched_acl(struct hci_dev *hdev)
3626 {
3627 	BT_DBG("%s", hdev->name);
3628 
3629 	/* No ACL link over BR/EDR controller */
3630 	if (!hci_conn_num(hdev, ACL_LINK))
3631 		return;
3632 
3633 	hci_sched_acl_pkt(hdev);
3634 }
3635 
3636 static void hci_sched_le(struct hci_dev *hdev)
3637 {
3638 	struct hci_chan *chan;
3639 	struct sk_buff *skb;
3640 	int quote, cnt, tmp;
3641 
3642 	BT_DBG("%s", hdev->name);
3643 
3644 	if (!hci_conn_num(hdev, LE_LINK))
3645 		return;
3646 
3647 	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3648 
3649 	__check_timeout(hdev, cnt, LE_LINK);
3650 
3651 	tmp = cnt;
3652 	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3653 		u32 priority = (skb_peek(&chan->data_q))->priority;
3654 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3655 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3656 			       skb->len, skb->priority);
3657 
3658 			/* Stop if priority has changed */
3659 			if (skb->priority < priority)
3660 				break;
3661 
3662 			skb = skb_dequeue(&chan->data_q);
3663 
3664 			hci_send_frame(hdev, skb);
3665 			hdev->le_last_tx = jiffies;
3666 
3667 			cnt--;
3668 			chan->sent++;
3669 			chan->conn->sent++;
3670 
3671 			/* Send pending SCO packets right away */
3672 			hci_sched_sco(hdev);
3673 			hci_sched_esco(hdev);
3674 		}
3675 	}
3676 
3677 	if (hdev->le_pkts)
3678 		hdev->le_cnt = cnt;
3679 	else
3680 		hdev->acl_cnt = cnt;
3681 
3682 	if (cnt != tmp)
3683 		hci_prio_recalculate(hdev, LE_LINK);
3684 }
3685 
3686 /* Schedule CIS */
3687 static void hci_sched_iso(struct hci_dev *hdev)
3688 {
3689 	struct hci_conn *conn;
3690 	struct sk_buff *skb;
3691 	int quote, *cnt;
3692 
3693 	BT_DBG("%s", hdev->name);
3694 
3695 	if (!hci_conn_num(hdev, ISO_LINK))
3696 		return;
3697 
3698 	cnt = hdev->iso_pkts ? &hdev->iso_cnt :
3699 		hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3700 	while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, &quote))) {
3701 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3702 			BT_DBG("skb %p len %d", skb, skb->len);
3703 			hci_send_frame(hdev, skb);
3704 
3705 			conn->sent++;
3706 			if (conn->sent == ~0)
3707 				conn->sent = 0;
3708 			(*cnt)--;
3709 		}
3710 	}
3711 }
3712 
3713 static void hci_tx_work(struct work_struct *work)
3714 {
3715 	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3716 	struct sk_buff *skb;
3717 
3718 	BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt,
3719 	       hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt);
3720 
3721 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3722 		/* Schedule queues and send stuff to HCI driver */
3723 		hci_sched_sco(hdev);
3724 		hci_sched_esco(hdev);
3725 		hci_sched_iso(hdev);
3726 		hci_sched_acl(hdev);
3727 		hci_sched_le(hdev);
3728 	}
3729 
3730 	/* Send next queued raw (unknown type) packet */
3731 	while ((skb = skb_dequeue(&hdev->raw_q)))
3732 		hci_send_frame(hdev, skb);
3733 }
3734 
3735 /* ----- HCI RX task (incoming data processing) ----- */
3736 
3737 /* ACL data packet */
3738 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3739 {
3740 	struct hci_acl_hdr *hdr = (void *) skb->data;
3741 	struct hci_conn *conn;
3742 	__u16 handle, flags;
3743 
3744 	skb_pull(skb, HCI_ACL_HDR_SIZE);
3745 
3746 	handle = __le16_to_cpu(hdr->handle);
3747 	flags  = hci_flags(handle);
3748 	handle = hci_handle(handle);
3749 
3750 	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3751 	       handle, flags);
3752 
3753 	hdev->stat.acl_rx++;
3754 
3755 	hci_dev_lock(hdev);
3756 	conn = hci_conn_hash_lookup_handle(hdev, handle);
3757 	hci_dev_unlock(hdev);
3758 
3759 	if (conn) {
3760 		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3761 
3762 		/* Send to upper protocol */
3763 		l2cap_recv_acldata(conn, skb, flags);
3764 		return;
3765 	} else {
3766 		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
3767 			   handle);
3768 	}
3769 
3770 	kfree_skb(skb);
3771 }
3772 
3773 /* SCO data packet */
3774 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3775 {
3776 	struct hci_sco_hdr *hdr = (void *) skb->data;
3777 	struct hci_conn *conn;
3778 	__u16 handle, flags;
3779 
3780 	skb_pull(skb, HCI_SCO_HDR_SIZE);
3781 
3782 	handle = __le16_to_cpu(hdr->handle);
3783 	flags  = hci_flags(handle);
3784 	handle = hci_handle(handle);
3785 
3786 	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3787 	       handle, flags);
3788 
3789 	hdev->stat.sco_rx++;
3790 
3791 	hci_dev_lock(hdev);
3792 	conn = hci_conn_hash_lookup_handle(hdev, handle);
3793 	hci_dev_unlock(hdev);
3794 
3795 	if (conn) {
3796 		/* Send to upper protocol */
3797 		hci_skb_pkt_status(skb) = flags & 0x03;
3798 		sco_recv_scodata(conn, skb);
3799 		return;
3800 	} else {
3801 		bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d",
3802 				       handle);
3803 	}
3804 
3805 	kfree_skb(skb);
3806 }
3807 
3808 static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3809 {
3810 	struct hci_iso_hdr *hdr;
3811 	struct hci_conn *conn;
3812 	__u16 handle, flags;
3813 
3814 	hdr = skb_pull_data(skb, sizeof(*hdr));
3815 	if (!hdr) {
3816 		bt_dev_err(hdev, "ISO packet too small");
3817 		goto drop;
3818 	}
3819 
3820 	handle = __le16_to_cpu(hdr->handle);
3821 	flags  = hci_flags(handle);
3822 	handle = hci_handle(handle);
3823 
3824 	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3825 		   handle, flags);
3826 
3827 	hci_dev_lock(hdev);
3828 	conn = hci_conn_hash_lookup_handle(hdev, handle);
3829 	hci_dev_unlock(hdev);
3830 
3831 	if (!conn) {
3832 		bt_dev_err(hdev, "ISO packet for unknown connection handle %d",
3833 			   handle);
3834 		goto drop;
3835 	}
3836 
3837 	/* Send to upper protocol */
3838 	iso_recv(conn, skb, flags);
3839 	return;
3840 
3841 drop:
3842 	kfree_skb(skb);
3843 }
3844 
3845 static bool hci_req_is_complete(struct hci_dev *hdev)
3846 {
3847 	struct sk_buff *skb;
3848 
3849 	skb = skb_peek(&hdev->cmd_q);
3850 	if (!skb)
3851 		return true;
3852 
3853 	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
3854 }
3855 
3856 static void hci_resend_last(struct hci_dev *hdev)
3857 {
3858 	struct hci_command_hdr *sent;
3859 	struct sk_buff *skb;
3860 	u16 opcode;
3861 
3862 	if (!hdev->sent_cmd)
3863 		return;
3864 
3865 	sent = (void *) hdev->sent_cmd->data;
3866 	opcode = __le16_to_cpu(sent->opcode);
3867 	if (opcode == HCI_OP_RESET)
3868 		return;
3869 
3870 	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3871 	if (!skb)
3872 		return;
3873 
3874 	skb_queue_head(&hdev->cmd_q, skb);
3875 	queue_work(hdev->workqueue, &hdev->cmd_work);
3876 }
3877 
3878 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
3879 			  hci_req_complete_t *req_complete,
3880 			  hci_req_complete_skb_t *req_complete_skb)
3881 {
3882 	struct sk_buff *skb;
3883 	unsigned long flags;
3884 
3885 	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3886 
3887 	/* If the completed command doesn't match the last one that was
3888 	 * sent we need to do special handling of it.
3889 	 */
3890 	if (!hci_sent_cmd_data(hdev, opcode)) {
3891 		/* Some CSR based controllers generate a spontaneous
3892 		 * reset complete event during init and any pending
3893 		 * command will never be completed. In such a case we
3894 		 * need to resend whatever was the last sent
3895 		 * command.
3896 		 */
3897 		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
3898 			hci_resend_last(hdev);
3899 
3900 		return;
3901 	}
3902 
3903 	/* If we reach this point this event matches the last command sent */
3904 	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
3905 
3906 	/* If the command succeeded and there's still more commands in
3907 	 * this request the request is not yet complete.
3908 	 */
3909 	if (!status && !hci_req_is_complete(hdev))
3910 		return;
3911 
3912 	skb = hdev->req_skb;
3913 
3914 	/* If this was the last command in a request the complete
3915 	 * callback would be found in hdev->req_skb instead of the
3916 	 * command queue (hdev->cmd_q).
3917 	 */
3918 	if (skb && bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) {
3919 		*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
3920 		return;
3921 	}
3922 
3923 	if (skb && bt_cb(skb)->hci.req_complete) {
3924 		*req_complete = bt_cb(skb)->hci.req_complete;
3925 		return;
3926 	}
3927 
3928 	/* Remove all pending commands belonging to this request */
3929 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
3930 	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
3931 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
3932 			__skb_queue_head(&hdev->cmd_q, skb);
3933 			break;
3934 		}
3935 
3936 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
3937 			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
3938 		else
3939 			*req_complete = bt_cb(skb)->hci.req_complete;
3940 		dev_kfree_skb_irq(skb);
3941 	}
3942 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
3943 }
3944 
3945 static void hci_rx_work(struct work_struct *work)
3946 {
3947 	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
3948 	struct sk_buff *skb;
3949 
3950 	BT_DBG("%s", hdev->name);
3951 
3952 	/* The kcov_remote functions used for collecting packet parsing
3953 	 * coverage information from this background thread and associate
3954 	 * the coverage with the syscall's thread which originally injected
3955 	 * the packet. This helps fuzzing the kernel.
3956 	 */
3957 	for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) {
3958 		kcov_remote_start_common(skb_get_kcov_handle(skb));
3959 
3960 		/* Send copy to monitor */
3961 		hci_send_to_monitor(hdev, skb);
3962 
3963 		if (atomic_read(&hdev->promisc)) {
3964 			/* Send copy to the sockets */
3965 			hci_send_to_sock(hdev, skb);
3966 		}
3967 
3968 		/* If the device has been opened in HCI_USER_CHANNEL,
3969 		 * the userspace has exclusive access to device.
3970 		 * When device is HCI_INIT, we still need to process
3971 		 * the data packets to the driver in order
3972 		 * to complete its setup().
3973 		 */
3974 		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
3975 		    !test_bit(HCI_INIT, &hdev->flags)) {
3976 			kfree_skb(skb);
3977 			continue;
3978 		}
3979 
3980 		if (test_bit(HCI_INIT, &hdev->flags)) {
3981 			/* Don't process data packets in this states. */
3982 			switch (hci_skb_pkt_type(skb)) {
3983 			case HCI_ACLDATA_PKT:
3984 			case HCI_SCODATA_PKT:
3985 			case HCI_ISODATA_PKT:
3986 				kfree_skb(skb);
3987 				continue;
3988 			}
3989 		}
3990 
3991 		/* Process frame */
3992 		switch (hci_skb_pkt_type(skb)) {
3993 		case HCI_EVENT_PKT:
3994 			BT_DBG("%s Event packet", hdev->name);
3995 			hci_event_packet(hdev, skb);
3996 			break;
3997 
3998 		case HCI_ACLDATA_PKT:
3999 			BT_DBG("%s ACL data packet", hdev->name);
4000 			hci_acldata_packet(hdev, skb);
4001 			break;
4002 
4003 		case HCI_SCODATA_PKT:
4004 			BT_DBG("%s SCO data packet", hdev->name);
4005 			hci_scodata_packet(hdev, skb);
4006 			break;
4007 
4008 		case HCI_ISODATA_PKT:
4009 			BT_DBG("%s ISO data packet", hdev->name);
4010 			hci_isodata_packet(hdev, skb);
4011 			break;
4012 
4013 		default:
4014 			kfree_skb(skb);
4015 			break;
4016 		}
4017 	}
4018 }
4019 
4020 static void hci_send_cmd_sync(struct hci_dev *hdev, struct sk_buff *skb)
4021 {
4022 	int err;
4023 
4024 	bt_dev_dbg(hdev, "skb %p", skb);
4025 
4026 	kfree_skb(hdev->sent_cmd);
4027 
4028 	hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4029 	if (!hdev->sent_cmd) {
4030 		skb_queue_head(&hdev->cmd_q, skb);
4031 		queue_work(hdev->workqueue, &hdev->cmd_work);
4032 		return;
4033 	}
4034 
4035 	err = hci_send_frame(hdev, skb);
4036 	if (err < 0) {
4037 		hci_cmd_sync_cancel_sync(hdev, -err);
4038 		return;
4039 	}
4040 
4041 	if (hci_req_status_pend(hdev) &&
4042 	    !hci_dev_test_and_set_flag(hdev, HCI_CMD_PENDING)) {
4043 		kfree_skb(hdev->req_skb);
4044 		hdev->req_skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4045 	}
4046 
4047 	atomic_dec(&hdev->cmd_cnt);
4048 }
4049 
4050 static void hci_cmd_work(struct work_struct *work)
4051 {
4052 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4053 	struct sk_buff *skb;
4054 
4055 	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4056 	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4057 
4058 	/* Send queued commands */
4059 	if (atomic_read(&hdev->cmd_cnt)) {
4060 		skb = skb_dequeue(&hdev->cmd_q);
4061 		if (!skb)
4062 			return;
4063 
4064 		hci_send_cmd_sync(hdev, skb);
4065 
4066 		rcu_read_lock();
4067 		if (test_bit(HCI_RESET, &hdev->flags) ||
4068 		    hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
4069 			cancel_delayed_work(&hdev->cmd_timer);
4070 		else
4071 			queue_delayed_work(hdev->workqueue, &hdev->cmd_timer,
4072 					   HCI_CMD_TIMEOUT);
4073 		rcu_read_unlock();
4074 	}
4075 }
4076