1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (C) 2000-2001 Qualcomm Incorporated 4 Copyright (C) 2011 ProFUSION Embedded Systems 5 6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License version 2 as 10 published by the Free Software Foundation; 11 12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 23 SOFTWARE IS DISCLAIMED. 24 */ 25 26 /* Bluetooth HCI core. */ 27 28 #include <linux/export.h> 29 #include <linux/rfkill.h> 30 #include <linux/debugfs.h> 31 #include <linux/crypto.h> 32 #include <linux/kcov.h> 33 #include <linux/property.h> 34 #include <linux/suspend.h> 35 #include <linux/wait.h> 36 #include <asm/unaligned.h> 37 38 #include <net/bluetooth/bluetooth.h> 39 #include <net/bluetooth/hci_core.h> 40 #include <net/bluetooth/l2cap.h> 41 #include <net/bluetooth/mgmt.h> 42 43 #include "hci_request.h" 44 #include "hci_debugfs.h" 45 #include "smp.h" 46 #include "leds.h" 47 #include "msft.h" 48 #include "aosp.h" 49 #include "hci_codec.h" 50 51 static void hci_rx_work(struct work_struct *work); 52 static void hci_cmd_work(struct work_struct *work); 53 static void hci_tx_work(struct work_struct *work); 54 55 /* HCI device list */ 56 LIST_HEAD(hci_dev_list); 57 DEFINE_RWLOCK(hci_dev_list_lock); 58 59 /* HCI callback list */ 60 LIST_HEAD(hci_cb_list); 61 DEFINE_MUTEX(hci_cb_list_lock); 62 63 /* HCI ID Numbering */ 64 static DEFINE_IDA(hci_index_ida); 65 66 static int hci_scan_req(struct hci_request *req, unsigned long opt) 67 { 68 __u8 scan = opt; 69 70 BT_DBG("%s %x", req->hdev->name, scan); 71 72 /* Inquiry and Page scans */ 73 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); 74 return 0; 75 } 76 77 static int hci_auth_req(struct hci_request *req, unsigned long opt) 78 { 79 __u8 auth = opt; 80 81 BT_DBG("%s %x", req->hdev->name, auth); 82 83 /* Authentication */ 84 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth); 85 return 0; 86 } 87 88 static int hci_encrypt_req(struct hci_request *req, unsigned long opt) 89 { 90 __u8 encrypt = opt; 91 92 BT_DBG("%s %x", req->hdev->name, encrypt); 93 94 /* Encryption */ 95 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt); 96 return 0; 97 } 98 99 static int hci_linkpol_req(struct hci_request *req, unsigned long opt) 100 { 101 __le16 policy = cpu_to_le16(opt); 102 103 BT_DBG("%s %x", req->hdev->name, policy); 104 105 /* Default link policy */ 106 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy); 107 return 0; 108 } 109 110 /* Get HCI device by index. 111 * Device is held on return. */ 112 struct hci_dev *hci_dev_get(int index) 113 { 114 struct hci_dev *hdev = NULL, *d; 115 116 BT_DBG("%d", index); 117 118 if (index < 0) 119 return NULL; 120 121 read_lock(&hci_dev_list_lock); 122 list_for_each_entry(d, &hci_dev_list, list) { 123 if (d->id == index) { 124 hdev = hci_dev_hold(d); 125 break; 126 } 127 } 128 read_unlock(&hci_dev_list_lock); 129 return hdev; 130 } 131 132 /* ---- Inquiry support ---- */ 133 134 bool hci_discovery_active(struct hci_dev *hdev) 135 { 136 struct discovery_state *discov = &hdev->discovery; 137 138 switch (discov->state) { 139 case DISCOVERY_FINDING: 140 case DISCOVERY_RESOLVING: 141 return true; 142 143 default: 144 return false; 145 } 146 } 147 148 void hci_discovery_set_state(struct hci_dev *hdev, int state) 149 { 150 int old_state = hdev->discovery.state; 151 152 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state); 153 154 if (old_state == state) 155 return; 156 157 hdev->discovery.state = state; 158 159 switch (state) { 160 case DISCOVERY_STOPPED: 161 hci_update_passive_scan(hdev); 162 163 if (old_state != DISCOVERY_STARTING) 164 mgmt_discovering(hdev, 0); 165 break; 166 case DISCOVERY_STARTING: 167 break; 168 case DISCOVERY_FINDING: 169 mgmt_discovering(hdev, 1); 170 break; 171 case DISCOVERY_RESOLVING: 172 break; 173 case DISCOVERY_STOPPING: 174 break; 175 } 176 } 177 178 void hci_inquiry_cache_flush(struct hci_dev *hdev) 179 { 180 struct discovery_state *cache = &hdev->discovery; 181 struct inquiry_entry *p, *n; 182 183 list_for_each_entry_safe(p, n, &cache->all, all) { 184 list_del(&p->all); 185 kfree(p); 186 } 187 188 INIT_LIST_HEAD(&cache->unknown); 189 INIT_LIST_HEAD(&cache->resolve); 190 } 191 192 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, 193 bdaddr_t *bdaddr) 194 { 195 struct discovery_state *cache = &hdev->discovery; 196 struct inquiry_entry *e; 197 198 BT_DBG("cache %p, %pMR", cache, bdaddr); 199 200 list_for_each_entry(e, &cache->all, all) { 201 if (!bacmp(&e->data.bdaddr, bdaddr)) 202 return e; 203 } 204 205 return NULL; 206 } 207 208 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, 209 bdaddr_t *bdaddr) 210 { 211 struct discovery_state *cache = &hdev->discovery; 212 struct inquiry_entry *e; 213 214 BT_DBG("cache %p, %pMR", cache, bdaddr); 215 216 list_for_each_entry(e, &cache->unknown, list) { 217 if (!bacmp(&e->data.bdaddr, bdaddr)) 218 return e; 219 } 220 221 return NULL; 222 } 223 224 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, 225 bdaddr_t *bdaddr, 226 int state) 227 { 228 struct discovery_state *cache = &hdev->discovery; 229 struct inquiry_entry *e; 230 231 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state); 232 233 list_for_each_entry(e, &cache->resolve, list) { 234 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state) 235 return e; 236 if (!bacmp(&e->data.bdaddr, bdaddr)) 237 return e; 238 } 239 240 return NULL; 241 } 242 243 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, 244 struct inquiry_entry *ie) 245 { 246 struct discovery_state *cache = &hdev->discovery; 247 struct list_head *pos = &cache->resolve; 248 struct inquiry_entry *p; 249 250 list_del(&ie->list); 251 252 list_for_each_entry(p, &cache->resolve, list) { 253 if (p->name_state != NAME_PENDING && 254 abs(p->data.rssi) >= abs(ie->data.rssi)) 255 break; 256 pos = &p->list; 257 } 258 259 list_add(&ie->list, pos); 260 } 261 262 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, 263 bool name_known) 264 { 265 struct discovery_state *cache = &hdev->discovery; 266 struct inquiry_entry *ie; 267 u32 flags = 0; 268 269 BT_DBG("cache %p, %pMR", cache, &data->bdaddr); 270 271 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR); 272 273 if (!data->ssp_mode) 274 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 275 276 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr); 277 if (ie) { 278 if (!ie->data.ssp_mode) 279 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 280 281 if (ie->name_state == NAME_NEEDED && 282 data->rssi != ie->data.rssi) { 283 ie->data.rssi = data->rssi; 284 hci_inquiry_cache_update_resolve(hdev, ie); 285 } 286 287 goto update; 288 } 289 290 /* Entry not in the cache. Add new one. */ 291 ie = kzalloc(sizeof(*ie), GFP_KERNEL); 292 if (!ie) { 293 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 294 goto done; 295 } 296 297 list_add(&ie->all, &cache->all); 298 299 if (name_known) { 300 ie->name_state = NAME_KNOWN; 301 } else { 302 ie->name_state = NAME_NOT_KNOWN; 303 list_add(&ie->list, &cache->unknown); 304 } 305 306 update: 307 if (name_known && ie->name_state != NAME_KNOWN && 308 ie->name_state != NAME_PENDING) { 309 ie->name_state = NAME_KNOWN; 310 list_del(&ie->list); 311 } 312 313 memcpy(&ie->data, data, sizeof(*data)); 314 ie->timestamp = jiffies; 315 cache->timestamp = jiffies; 316 317 if (ie->name_state == NAME_NOT_KNOWN) 318 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 319 320 done: 321 return flags; 322 } 323 324 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf) 325 { 326 struct discovery_state *cache = &hdev->discovery; 327 struct inquiry_info *info = (struct inquiry_info *) buf; 328 struct inquiry_entry *e; 329 int copied = 0; 330 331 list_for_each_entry(e, &cache->all, all) { 332 struct inquiry_data *data = &e->data; 333 334 if (copied >= num) 335 break; 336 337 bacpy(&info->bdaddr, &data->bdaddr); 338 info->pscan_rep_mode = data->pscan_rep_mode; 339 info->pscan_period_mode = data->pscan_period_mode; 340 info->pscan_mode = data->pscan_mode; 341 memcpy(info->dev_class, data->dev_class, 3); 342 info->clock_offset = data->clock_offset; 343 344 info++; 345 copied++; 346 } 347 348 BT_DBG("cache %p, copied %d", cache, copied); 349 return copied; 350 } 351 352 static int hci_inq_req(struct hci_request *req, unsigned long opt) 353 { 354 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt; 355 struct hci_dev *hdev = req->hdev; 356 struct hci_cp_inquiry cp; 357 358 BT_DBG("%s", hdev->name); 359 360 if (test_bit(HCI_INQUIRY, &hdev->flags)) 361 return 0; 362 363 /* Start Inquiry */ 364 memcpy(&cp.lap, &ir->lap, 3); 365 cp.length = ir->length; 366 cp.num_rsp = ir->num_rsp; 367 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp); 368 369 return 0; 370 } 371 372 int hci_inquiry(void __user *arg) 373 { 374 __u8 __user *ptr = arg; 375 struct hci_inquiry_req ir; 376 struct hci_dev *hdev; 377 int err = 0, do_inquiry = 0, max_rsp; 378 long timeo; 379 __u8 *buf; 380 381 if (copy_from_user(&ir, ptr, sizeof(ir))) 382 return -EFAULT; 383 384 hdev = hci_dev_get(ir.dev_id); 385 if (!hdev) 386 return -ENODEV; 387 388 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 389 err = -EBUSY; 390 goto done; 391 } 392 393 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 394 err = -EOPNOTSUPP; 395 goto done; 396 } 397 398 if (hdev->dev_type != HCI_PRIMARY) { 399 err = -EOPNOTSUPP; 400 goto done; 401 } 402 403 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 404 err = -EOPNOTSUPP; 405 goto done; 406 } 407 408 /* Restrict maximum inquiry length to 60 seconds */ 409 if (ir.length > 60) { 410 err = -EINVAL; 411 goto done; 412 } 413 414 hci_dev_lock(hdev); 415 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX || 416 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) { 417 hci_inquiry_cache_flush(hdev); 418 do_inquiry = 1; 419 } 420 hci_dev_unlock(hdev); 421 422 timeo = ir.length * msecs_to_jiffies(2000); 423 424 if (do_inquiry) { 425 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir, 426 timeo, NULL); 427 if (err < 0) 428 goto done; 429 430 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is 431 * cleared). If it is interrupted by a signal, return -EINTR. 432 */ 433 if (wait_on_bit(&hdev->flags, HCI_INQUIRY, 434 TASK_INTERRUPTIBLE)) { 435 err = -EINTR; 436 goto done; 437 } 438 } 439 440 /* for unlimited number of responses we will use buffer with 441 * 255 entries 442 */ 443 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp; 444 445 /* cache_dump can't sleep. Therefore we allocate temp buffer and then 446 * copy it to the user space. 447 */ 448 buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL); 449 if (!buf) { 450 err = -ENOMEM; 451 goto done; 452 } 453 454 hci_dev_lock(hdev); 455 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf); 456 hci_dev_unlock(hdev); 457 458 BT_DBG("num_rsp %d", ir.num_rsp); 459 460 if (!copy_to_user(ptr, &ir, sizeof(ir))) { 461 ptr += sizeof(ir); 462 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) * 463 ir.num_rsp)) 464 err = -EFAULT; 465 } else 466 err = -EFAULT; 467 468 kfree(buf); 469 470 done: 471 hci_dev_put(hdev); 472 return err; 473 } 474 475 static int hci_dev_do_open(struct hci_dev *hdev) 476 { 477 int ret = 0; 478 479 BT_DBG("%s %p", hdev->name, hdev); 480 481 hci_req_sync_lock(hdev); 482 483 ret = hci_dev_open_sync(hdev); 484 485 hci_req_sync_unlock(hdev); 486 return ret; 487 } 488 489 /* ---- HCI ioctl helpers ---- */ 490 491 int hci_dev_open(__u16 dev) 492 { 493 struct hci_dev *hdev; 494 int err; 495 496 hdev = hci_dev_get(dev); 497 if (!hdev) 498 return -ENODEV; 499 500 /* Devices that are marked as unconfigured can only be powered 501 * up as user channel. Trying to bring them up as normal devices 502 * will result into a failure. Only user channel operation is 503 * possible. 504 * 505 * When this function is called for a user channel, the flag 506 * HCI_USER_CHANNEL will be set first before attempting to 507 * open the device. 508 */ 509 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 510 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 511 err = -EOPNOTSUPP; 512 goto done; 513 } 514 515 /* We need to ensure that no other power on/off work is pending 516 * before proceeding to call hci_dev_do_open. This is 517 * particularly important if the setup procedure has not yet 518 * completed. 519 */ 520 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) 521 cancel_delayed_work(&hdev->power_off); 522 523 /* After this call it is guaranteed that the setup procedure 524 * has finished. This means that error conditions like RFKILL 525 * or no valid public or static random address apply. 526 */ 527 flush_workqueue(hdev->req_workqueue); 528 529 /* For controllers not using the management interface and that 530 * are brought up using legacy ioctl, set the HCI_BONDABLE bit 531 * so that pairing works for them. Once the management interface 532 * is in use this bit will be cleared again and userspace has 533 * to explicitly enable it. 534 */ 535 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 536 !hci_dev_test_flag(hdev, HCI_MGMT)) 537 hci_dev_set_flag(hdev, HCI_BONDABLE); 538 539 err = hci_dev_do_open(hdev); 540 541 done: 542 hci_dev_put(hdev); 543 return err; 544 } 545 546 int hci_dev_do_close(struct hci_dev *hdev) 547 { 548 int err; 549 550 BT_DBG("%s %p", hdev->name, hdev); 551 552 hci_req_sync_lock(hdev); 553 554 err = hci_dev_close_sync(hdev); 555 556 hci_req_sync_unlock(hdev); 557 558 return err; 559 } 560 561 int hci_dev_close(__u16 dev) 562 { 563 struct hci_dev *hdev; 564 int err; 565 566 hdev = hci_dev_get(dev); 567 if (!hdev) 568 return -ENODEV; 569 570 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 571 err = -EBUSY; 572 goto done; 573 } 574 575 cancel_work_sync(&hdev->power_on); 576 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) 577 cancel_delayed_work(&hdev->power_off); 578 579 err = hci_dev_do_close(hdev); 580 581 done: 582 hci_dev_put(hdev); 583 return err; 584 } 585 586 static int hci_dev_do_reset(struct hci_dev *hdev) 587 { 588 int ret; 589 590 BT_DBG("%s %p", hdev->name, hdev); 591 592 hci_req_sync_lock(hdev); 593 594 /* Drop queues */ 595 skb_queue_purge(&hdev->rx_q); 596 skb_queue_purge(&hdev->cmd_q); 597 598 /* Cancel these to avoid queueing non-chained pending work */ 599 hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE); 600 /* Wait for 601 * 602 * if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE)) 603 * queue_delayed_work(&hdev->{cmd,ncmd}_timer) 604 * 605 * inside RCU section to see the flag or complete scheduling. 606 */ 607 synchronize_rcu(); 608 /* Explicitly cancel works in case scheduled after setting the flag. */ 609 cancel_delayed_work(&hdev->cmd_timer); 610 cancel_delayed_work(&hdev->ncmd_timer); 611 612 /* Avoid potential lockdep warnings from the *_flush() calls by 613 * ensuring the workqueue is empty up front. 614 */ 615 drain_workqueue(hdev->workqueue); 616 617 hci_dev_lock(hdev); 618 hci_inquiry_cache_flush(hdev); 619 hci_conn_hash_flush(hdev); 620 hci_dev_unlock(hdev); 621 622 if (hdev->flush) 623 hdev->flush(hdev); 624 625 hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE); 626 627 atomic_set(&hdev->cmd_cnt, 1); 628 hdev->acl_cnt = 0; 629 hdev->sco_cnt = 0; 630 hdev->le_cnt = 0; 631 hdev->iso_cnt = 0; 632 633 ret = hci_reset_sync(hdev); 634 635 hci_req_sync_unlock(hdev); 636 return ret; 637 } 638 639 int hci_dev_reset(__u16 dev) 640 { 641 struct hci_dev *hdev; 642 int err; 643 644 hdev = hci_dev_get(dev); 645 if (!hdev) 646 return -ENODEV; 647 648 if (!test_bit(HCI_UP, &hdev->flags)) { 649 err = -ENETDOWN; 650 goto done; 651 } 652 653 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 654 err = -EBUSY; 655 goto done; 656 } 657 658 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 659 err = -EOPNOTSUPP; 660 goto done; 661 } 662 663 err = hci_dev_do_reset(hdev); 664 665 done: 666 hci_dev_put(hdev); 667 return err; 668 } 669 670 int hci_dev_reset_stat(__u16 dev) 671 { 672 struct hci_dev *hdev; 673 int ret = 0; 674 675 hdev = hci_dev_get(dev); 676 if (!hdev) 677 return -ENODEV; 678 679 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 680 ret = -EBUSY; 681 goto done; 682 } 683 684 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 685 ret = -EOPNOTSUPP; 686 goto done; 687 } 688 689 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats)); 690 691 done: 692 hci_dev_put(hdev); 693 return ret; 694 } 695 696 static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan) 697 { 698 bool conn_changed, discov_changed; 699 700 BT_DBG("%s scan 0x%02x", hdev->name, scan); 701 702 if ((scan & SCAN_PAGE)) 703 conn_changed = !hci_dev_test_and_set_flag(hdev, 704 HCI_CONNECTABLE); 705 else 706 conn_changed = hci_dev_test_and_clear_flag(hdev, 707 HCI_CONNECTABLE); 708 709 if ((scan & SCAN_INQUIRY)) { 710 discov_changed = !hci_dev_test_and_set_flag(hdev, 711 HCI_DISCOVERABLE); 712 } else { 713 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 714 discov_changed = hci_dev_test_and_clear_flag(hdev, 715 HCI_DISCOVERABLE); 716 } 717 718 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 719 return; 720 721 if (conn_changed || discov_changed) { 722 /* In case this was disabled through mgmt */ 723 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); 724 725 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 726 hci_update_adv_data(hdev, hdev->cur_adv_instance); 727 728 mgmt_new_settings(hdev); 729 } 730 } 731 732 int hci_dev_cmd(unsigned int cmd, void __user *arg) 733 { 734 struct hci_dev *hdev; 735 struct hci_dev_req dr; 736 int err = 0; 737 738 if (copy_from_user(&dr, arg, sizeof(dr))) 739 return -EFAULT; 740 741 hdev = hci_dev_get(dr.dev_id); 742 if (!hdev) 743 return -ENODEV; 744 745 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 746 err = -EBUSY; 747 goto done; 748 } 749 750 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 751 err = -EOPNOTSUPP; 752 goto done; 753 } 754 755 if (hdev->dev_type != HCI_PRIMARY) { 756 err = -EOPNOTSUPP; 757 goto done; 758 } 759 760 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 761 err = -EOPNOTSUPP; 762 goto done; 763 } 764 765 switch (cmd) { 766 case HCISETAUTH: 767 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt, 768 HCI_INIT_TIMEOUT, NULL); 769 break; 770 771 case HCISETENCRYPT: 772 if (!lmp_encrypt_capable(hdev)) { 773 err = -EOPNOTSUPP; 774 break; 775 } 776 777 if (!test_bit(HCI_AUTH, &hdev->flags)) { 778 /* Auth must be enabled first */ 779 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt, 780 HCI_INIT_TIMEOUT, NULL); 781 if (err) 782 break; 783 } 784 785 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt, 786 HCI_INIT_TIMEOUT, NULL); 787 break; 788 789 case HCISETSCAN: 790 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt, 791 HCI_INIT_TIMEOUT, NULL); 792 793 /* Ensure that the connectable and discoverable states 794 * get correctly modified as this was a non-mgmt change. 795 */ 796 if (!err) 797 hci_update_passive_scan_state(hdev, dr.dev_opt); 798 break; 799 800 case HCISETLINKPOL: 801 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt, 802 HCI_INIT_TIMEOUT, NULL); 803 break; 804 805 case HCISETLINKMODE: 806 hdev->link_mode = ((__u16) dr.dev_opt) & 807 (HCI_LM_MASTER | HCI_LM_ACCEPT); 808 break; 809 810 case HCISETPTYPE: 811 if (hdev->pkt_type == (__u16) dr.dev_opt) 812 break; 813 814 hdev->pkt_type = (__u16) dr.dev_opt; 815 mgmt_phy_configuration_changed(hdev, NULL); 816 break; 817 818 case HCISETACLMTU: 819 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1); 820 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0); 821 break; 822 823 case HCISETSCOMTU: 824 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1); 825 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0); 826 break; 827 828 default: 829 err = -EINVAL; 830 break; 831 } 832 833 done: 834 hci_dev_put(hdev); 835 return err; 836 } 837 838 int hci_get_dev_list(void __user *arg) 839 { 840 struct hci_dev *hdev; 841 struct hci_dev_list_req *dl; 842 struct hci_dev_req *dr; 843 int n = 0, size, err; 844 __u16 dev_num; 845 846 if (get_user(dev_num, (__u16 __user *) arg)) 847 return -EFAULT; 848 849 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr)) 850 return -EINVAL; 851 852 size = sizeof(*dl) + dev_num * sizeof(*dr); 853 854 dl = kzalloc(size, GFP_KERNEL); 855 if (!dl) 856 return -ENOMEM; 857 858 dr = dl->dev_req; 859 860 read_lock(&hci_dev_list_lock); 861 list_for_each_entry(hdev, &hci_dev_list, list) { 862 unsigned long flags = hdev->flags; 863 864 /* When the auto-off is configured it means the transport 865 * is running, but in that case still indicate that the 866 * device is actually down. 867 */ 868 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) 869 flags &= ~BIT(HCI_UP); 870 871 (dr + n)->dev_id = hdev->id; 872 (dr + n)->dev_opt = flags; 873 874 if (++n >= dev_num) 875 break; 876 } 877 read_unlock(&hci_dev_list_lock); 878 879 dl->dev_num = n; 880 size = sizeof(*dl) + n * sizeof(*dr); 881 882 err = copy_to_user(arg, dl, size); 883 kfree(dl); 884 885 return err ? -EFAULT : 0; 886 } 887 888 int hci_get_dev_info(void __user *arg) 889 { 890 struct hci_dev *hdev; 891 struct hci_dev_info di; 892 unsigned long flags; 893 int err = 0; 894 895 if (copy_from_user(&di, arg, sizeof(di))) 896 return -EFAULT; 897 898 hdev = hci_dev_get(di.dev_id); 899 if (!hdev) 900 return -ENODEV; 901 902 /* When the auto-off is configured it means the transport 903 * is running, but in that case still indicate that the 904 * device is actually down. 905 */ 906 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) 907 flags = hdev->flags & ~BIT(HCI_UP); 908 else 909 flags = hdev->flags; 910 911 strcpy(di.name, hdev->name); 912 di.bdaddr = hdev->bdaddr; 913 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4); 914 di.flags = flags; 915 di.pkt_type = hdev->pkt_type; 916 if (lmp_bredr_capable(hdev)) { 917 di.acl_mtu = hdev->acl_mtu; 918 di.acl_pkts = hdev->acl_pkts; 919 di.sco_mtu = hdev->sco_mtu; 920 di.sco_pkts = hdev->sco_pkts; 921 } else { 922 di.acl_mtu = hdev->le_mtu; 923 di.acl_pkts = hdev->le_pkts; 924 di.sco_mtu = 0; 925 di.sco_pkts = 0; 926 } 927 di.link_policy = hdev->link_policy; 928 di.link_mode = hdev->link_mode; 929 930 memcpy(&di.stat, &hdev->stat, sizeof(di.stat)); 931 memcpy(&di.features, &hdev->features, sizeof(di.features)); 932 933 if (copy_to_user(arg, &di, sizeof(di))) 934 err = -EFAULT; 935 936 hci_dev_put(hdev); 937 938 return err; 939 } 940 941 /* ---- Interface to HCI drivers ---- */ 942 943 static int hci_rfkill_set_block(void *data, bool blocked) 944 { 945 struct hci_dev *hdev = data; 946 947 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked); 948 949 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) 950 return -EBUSY; 951 952 if (blocked) { 953 hci_dev_set_flag(hdev, HCI_RFKILLED); 954 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 955 !hci_dev_test_flag(hdev, HCI_CONFIG)) 956 hci_dev_do_close(hdev); 957 } else { 958 hci_dev_clear_flag(hdev, HCI_RFKILLED); 959 } 960 961 return 0; 962 } 963 964 static const struct rfkill_ops hci_rfkill_ops = { 965 .set_block = hci_rfkill_set_block, 966 }; 967 968 static void hci_power_on(struct work_struct *work) 969 { 970 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on); 971 int err; 972 973 BT_DBG("%s", hdev->name); 974 975 if (test_bit(HCI_UP, &hdev->flags) && 976 hci_dev_test_flag(hdev, HCI_MGMT) && 977 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 978 cancel_delayed_work(&hdev->power_off); 979 err = hci_powered_update_sync(hdev); 980 mgmt_power_on(hdev, err); 981 return; 982 } 983 984 err = hci_dev_do_open(hdev); 985 if (err < 0) { 986 hci_dev_lock(hdev); 987 mgmt_set_powered_failed(hdev, err); 988 hci_dev_unlock(hdev); 989 return; 990 } 991 992 /* During the HCI setup phase, a few error conditions are 993 * ignored and they need to be checked now. If they are still 994 * valid, it is important to turn the device back off. 995 */ 996 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 997 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 998 (hdev->dev_type == HCI_PRIMARY && 999 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 1000 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 1001 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 1002 hci_dev_do_close(hdev); 1003 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 1004 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 1005 HCI_AUTO_OFF_TIMEOUT); 1006 } 1007 1008 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 1009 /* For unconfigured devices, set the HCI_RAW flag 1010 * so that userspace can easily identify them. 1011 */ 1012 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 1013 set_bit(HCI_RAW, &hdev->flags); 1014 1015 /* For fully configured devices, this will send 1016 * the Index Added event. For unconfigured devices, 1017 * it will send Unconfigued Index Added event. 1018 * 1019 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 1020 * and no event will be send. 1021 */ 1022 mgmt_index_added(hdev); 1023 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 1024 /* When the controller is now configured, then it 1025 * is important to clear the HCI_RAW flag. 1026 */ 1027 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 1028 clear_bit(HCI_RAW, &hdev->flags); 1029 1030 /* Powering on the controller with HCI_CONFIG set only 1031 * happens with the transition from unconfigured to 1032 * configured. This will send the Index Added event. 1033 */ 1034 mgmt_index_added(hdev); 1035 } 1036 } 1037 1038 static void hci_power_off(struct work_struct *work) 1039 { 1040 struct hci_dev *hdev = container_of(work, struct hci_dev, 1041 power_off.work); 1042 1043 BT_DBG("%s", hdev->name); 1044 1045 hci_dev_do_close(hdev); 1046 } 1047 1048 static void hci_error_reset(struct work_struct *work) 1049 { 1050 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset); 1051 1052 BT_DBG("%s", hdev->name); 1053 1054 if (hdev->hw_error) 1055 hdev->hw_error(hdev, hdev->hw_error_code); 1056 else 1057 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code); 1058 1059 if (hci_dev_do_close(hdev)) 1060 return; 1061 1062 hci_dev_do_open(hdev); 1063 } 1064 1065 void hci_uuids_clear(struct hci_dev *hdev) 1066 { 1067 struct bt_uuid *uuid, *tmp; 1068 1069 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) { 1070 list_del(&uuid->list); 1071 kfree(uuid); 1072 } 1073 } 1074 1075 void hci_link_keys_clear(struct hci_dev *hdev) 1076 { 1077 struct link_key *key, *tmp; 1078 1079 list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) { 1080 list_del_rcu(&key->list); 1081 kfree_rcu(key, rcu); 1082 } 1083 } 1084 1085 void hci_smp_ltks_clear(struct hci_dev *hdev) 1086 { 1087 struct smp_ltk *k, *tmp; 1088 1089 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) { 1090 list_del_rcu(&k->list); 1091 kfree_rcu(k, rcu); 1092 } 1093 } 1094 1095 void hci_smp_irks_clear(struct hci_dev *hdev) 1096 { 1097 struct smp_irk *k, *tmp; 1098 1099 list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) { 1100 list_del_rcu(&k->list); 1101 kfree_rcu(k, rcu); 1102 } 1103 } 1104 1105 void hci_blocked_keys_clear(struct hci_dev *hdev) 1106 { 1107 struct blocked_key *b, *tmp; 1108 1109 list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) { 1110 list_del_rcu(&b->list); 1111 kfree_rcu(b, rcu); 1112 } 1113 } 1114 1115 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16]) 1116 { 1117 bool blocked = false; 1118 struct blocked_key *b; 1119 1120 rcu_read_lock(); 1121 list_for_each_entry_rcu(b, &hdev->blocked_keys, list) { 1122 if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) { 1123 blocked = true; 1124 break; 1125 } 1126 } 1127 1128 rcu_read_unlock(); 1129 return blocked; 1130 } 1131 1132 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 1133 { 1134 struct link_key *k; 1135 1136 rcu_read_lock(); 1137 list_for_each_entry_rcu(k, &hdev->link_keys, list) { 1138 if (bacmp(bdaddr, &k->bdaddr) == 0) { 1139 rcu_read_unlock(); 1140 1141 if (hci_is_blocked_key(hdev, 1142 HCI_BLOCKED_KEY_TYPE_LINKKEY, 1143 k->val)) { 1144 bt_dev_warn_ratelimited(hdev, 1145 "Link key blocked for %pMR", 1146 &k->bdaddr); 1147 return NULL; 1148 } 1149 1150 return k; 1151 } 1152 } 1153 rcu_read_unlock(); 1154 1155 return NULL; 1156 } 1157 1158 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn, 1159 u8 key_type, u8 old_key_type) 1160 { 1161 /* Legacy key */ 1162 if (key_type < 0x03) 1163 return true; 1164 1165 /* Debug keys are insecure so don't store them persistently */ 1166 if (key_type == HCI_LK_DEBUG_COMBINATION) 1167 return false; 1168 1169 /* Changed combination key and there's no previous one */ 1170 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff) 1171 return false; 1172 1173 /* Security mode 3 case */ 1174 if (!conn) 1175 return true; 1176 1177 /* BR/EDR key derived using SC from an LE link */ 1178 if (conn->type == LE_LINK) 1179 return true; 1180 1181 /* Neither local nor remote side had no-bonding as requirement */ 1182 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01) 1183 return true; 1184 1185 /* Local side had dedicated bonding as requirement */ 1186 if (conn->auth_type == 0x02 || conn->auth_type == 0x03) 1187 return true; 1188 1189 /* Remote side had dedicated bonding as requirement */ 1190 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03) 1191 return true; 1192 1193 /* If none of the above criteria match, then don't store the key 1194 * persistently */ 1195 return false; 1196 } 1197 1198 static u8 ltk_role(u8 type) 1199 { 1200 if (type == SMP_LTK) 1201 return HCI_ROLE_MASTER; 1202 1203 return HCI_ROLE_SLAVE; 1204 } 1205 1206 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1207 u8 addr_type, u8 role) 1208 { 1209 struct smp_ltk *k; 1210 1211 rcu_read_lock(); 1212 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 1213 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr)) 1214 continue; 1215 1216 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) { 1217 rcu_read_unlock(); 1218 1219 if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK, 1220 k->val)) { 1221 bt_dev_warn_ratelimited(hdev, 1222 "LTK blocked for %pMR", 1223 &k->bdaddr); 1224 return NULL; 1225 } 1226 1227 return k; 1228 } 1229 } 1230 rcu_read_unlock(); 1231 1232 return NULL; 1233 } 1234 1235 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa) 1236 { 1237 struct smp_irk *irk_to_return = NULL; 1238 struct smp_irk *irk; 1239 1240 rcu_read_lock(); 1241 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 1242 if (!bacmp(&irk->rpa, rpa)) { 1243 irk_to_return = irk; 1244 goto done; 1245 } 1246 } 1247 1248 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 1249 if (smp_irk_matches(hdev, irk->val, rpa)) { 1250 bacpy(&irk->rpa, rpa); 1251 irk_to_return = irk; 1252 goto done; 1253 } 1254 } 1255 1256 done: 1257 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK, 1258 irk_to_return->val)) { 1259 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR", 1260 &irk_to_return->bdaddr); 1261 irk_to_return = NULL; 1262 } 1263 1264 rcu_read_unlock(); 1265 1266 return irk_to_return; 1267 } 1268 1269 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, 1270 u8 addr_type) 1271 { 1272 struct smp_irk *irk_to_return = NULL; 1273 struct smp_irk *irk; 1274 1275 /* Identity Address must be public or static random */ 1276 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0) 1277 return NULL; 1278 1279 rcu_read_lock(); 1280 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 1281 if (addr_type == irk->addr_type && 1282 bacmp(bdaddr, &irk->bdaddr) == 0) { 1283 irk_to_return = irk; 1284 goto done; 1285 } 1286 } 1287 1288 done: 1289 1290 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK, 1291 irk_to_return->val)) { 1292 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR", 1293 &irk_to_return->bdaddr); 1294 irk_to_return = NULL; 1295 } 1296 1297 rcu_read_unlock(); 1298 1299 return irk_to_return; 1300 } 1301 1302 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, 1303 bdaddr_t *bdaddr, u8 *val, u8 type, 1304 u8 pin_len, bool *persistent) 1305 { 1306 struct link_key *key, *old_key; 1307 u8 old_key_type; 1308 1309 old_key = hci_find_link_key(hdev, bdaddr); 1310 if (old_key) { 1311 old_key_type = old_key->type; 1312 key = old_key; 1313 } else { 1314 old_key_type = conn ? conn->key_type : 0xff; 1315 key = kzalloc(sizeof(*key), GFP_KERNEL); 1316 if (!key) 1317 return NULL; 1318 list_add_rcu(&key->list, &hdev->link_keys); 1319 } 1320 1321 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type); 1322 1323 /* Some buggy controller combinations generate a changed 1324 * combination key for legacy pairing even when there's no 1325 * previous key */ 1326 if (type == HCI_LK_CHANGED_COMBINATION && 1327 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) { 1328 type = HCI_LK_COMBINATION; 1329 if (conn) 1330 conn->key_type = type; 1331 } 1332 1333 bacpy(&key->bdaddr, bdaddr); 1334 memcpy(key->val, val, HCI_LINK_KEY_SIZE); 1335 key->pin_len = pin_len; 1336 1337 if (type == HCI_LK_CHANGED_COMBINATION) 1338 key->type = old_key_type; 1339 else 1340 key->type = type; 1341 1342 if (persistent) 1343 *persistent = hci_persistent_key(hdev, conn, type, 1344 old_key_type); 1345 1346 return key; 1347 } 1348 1349 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1350 u8 addr_type, u8 type, u8 authenticated, 1351 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand) 1352 { 1353 struct smp_ltk *key, *old_key; 1354 u8 role = ltk_role(type); 1355 1356 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role); 1357 if (old_key) 1358 key = old_key; 1359 else { 1360 key = kzalloc(sizeof(*key), GFP_KERNEL); 1361 if (!key) 1362 return NULL; 1363 list_add_rcu(&key->list, &hdev->long_term_keys); 1364 } 1365 1366 bacpy(&key->bdaddr, bdaddr); 1367 key->bdaddr_type = addr_type; 1368 memcpy(key->val, tk, sizeof(key->val)); 1369 key->authenticated = authenticated; 1370 key->ediv = ediv; 1371 key->rand = rand; 1372 key->enc_size = enc_size; 1373 key->type = type; 1374 1375 return key; 1376 } 1377 1378 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1379 u8 addr_type, u8 val[16], bdaddr_t *rpa) 1380 { 1381 struct smp_irk *irk; 1382 1383 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type); 1384 if (!irk) { 1385 irk = kzalloc(sizeof(*irk), GFP_KERNEL); 1386 if (!irk) 1387 return NULL; 1388 1389 bacpy(&irk->bdaddr, bdaddr); 1390 irk->addr_type = addr_type; 1391 1392 list_add_rcu(&irk->list, &hdev->identity_resolving_keys); 1393 } 1394 1395 memcpy(irk->val, val, 16); 1396 bacpy(&irk->rpa, rpa); 1397 1398 return irk; 1399 } 1400 1401 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 1402 { 1403 struct link_key *key; 1404 1405 key = hci_find_link_key(hdev, bdaddr); 1406 if (!key) 1407 return -ENOENT; 1408 1409 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 1410 1411 list_del_rcu(&key->list); 1412 kfree_rcu(key, rcu); 1413 1414 return 0; 1415 } 1416 1417 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type) 1418 { 1419 struct smp_ltk *k, *tmp; 1420 int removed = 0; 1421 1422 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) { 1423 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type) 1424 continue; 1425 1426 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 1427 1428 list_del_rcu(&k->list); 1429 kfree_rcu(k, rcu); 1430 removed++; 1431 } 1432 1433 return removed ? 0 : -ENOENT; 1434 } 1435 1436 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type) 1437 { 1438 struct smp_irk *k, *tmp; 1439 1440 list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) { 1441 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type) 1442 continue; 1443 1444 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 1445 1446 list_del_rcu(&k->list); 1447 kfree_rcu(k, rcu); 1448 } 1449 } 1450 1451 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type) 1452 { 1453 struct smp_ltk *k; 1454 struct smp_irk *irk; 1455 u8 addr_type; 1456 1457 if (type == BDADDR_BREDR) { 1458 if (hci_find_link_key(hdev, bdaddr)) 1459 return true; 1460 return false; 1461 } 1462 1463 /* Convert to HCI addr type which struct smp_ltk uses */ 1464 if (type == BDADDR_LE_PUBLIC) 1465 addr_type = ADDR_LE_DEV_PUBLIC; 1466 else 1467 addr_type = ADDR_LE_DEV_RANDOM; 1468 1469 irk = hci_get_irk(hdev, bdaddr, addr_type); 1470 if (irk) { 1471 bdaddr = &irk->bdaddr; 1472 addr_type = irk->addr_type; 1473 } 1474 1475 rcu_read_lock(); 1476 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 1477 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) { 1478 rcu_read_unlock(); 1479 return true; 1480 } 1481 } 1482 rcu_read_unlock(); 1483 1484 return false; 1485 } 1486 1487 /* HCI command timer function */ 1488 static void hci_cmd_timeout(struct work_struct *work) 1489 { 1490 struct hci_dev *hdev = container_of(work, struct hci_dev, 1491 cmd_timer.work); 1492 1493 if (hdev->sent_cmd) { 1494 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data; 1495 u16 opcode = __le16_to_cpu(sent->opcode); 1496 1497 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode); 1498 } else { 1499 bt_dev_err(hdev, "command tx timeout"); 1500 } 1501 1502 if (hdev->cmd_timeout) 1503 hdev->cmd_timeout(hdev); 1504 1505 atomic_set(&hdev->cmd_cnt, 1); 1506 queue_work(hdev->workqueue, &hdev->cmd_work); 1507 } 1508 1509 /* HCI ncmd timer function */ 1510 static void hci_ncmd_timeout(struct work_struct *work) 1511 { 1512 struct hci_dev *hdev = container_of(work, struct hci_dev, 1513 ncmd_timer.work); 1514 1515 bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0"); 1516 1517 /* During HCI_INIT phase no events can be injected if the ncmd timer 1518 * triggers since the procedure has its own timeout handling. 1519 */ 1520 if (test_bit(HCI_INIT, &hdev->flags)) 1521 return; 1522 1523 /* This is an irrecoverable state, inject hardware error event */ 1524 hci_reset_dev(hdev); 1525 } 1526 1527 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, 1528 bdaddr_t *bdaddr, u8 bdaddr_type) 1529 { 1530 struct oob_data *data; 1531 1532 list_for_each_entry(data, &hdev->remote_oob_data, list) { 1533 if (bacmp(bdaddr, &data->bdaddr) != 0) 1534 continue; 1535 if (data->bdaddr_type != bdaddr_type) 1536 continue; 1537 return data; 1538 } 1539 1540 return NULL; 1541 } 1542 1543 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1544 u8 bdaddr_type) 1545 { 1546 struct oob_data *data; 1547 1548 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); 1549 if (!data) 1550 return -ENOENT; 1551 1552 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type); 1553 1554 list_del(&data->list); 1555 kfree(data); 1556 1557 return 0; 1558 } 1559 1560 void hci_remote_oob_data_clear(struct hci_dev *hdev) 1561 { 1562 struct oob_data *data, *n; 1563 1564 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) { 1565 list_del(&data->list); 1566 kfree(data); 1567 } 1568 } 1569 1570 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1571 u8 bdaddr_type, u8 *hash192, u8 *rand192, 1572 u8 *hash256, u8 *rand256) 1573 { 1574 struct oob_data *data; 1575 1576 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); 1577 if (!data) { 1578 data = kmalloc(sizeof(*data), GFP_KERNEL); 1579 if (!data) 1580 return -ENOMEM; 1581 1582 bacpy(&data->bdaddr, bdaddr); 1583 data->bdaddr_type = bdaddr_type; 1584 list_add(&data->list, &hdev->remote_oob_data); 1585 } 1586 1587 if (hash192 && rand192) { 1588 memcpy(data->hash192, hash192, sizeof(data->hash192)); 1589 memcpy(data->rand192, rand192, sizeof(data->rand192)); 1590 if (hash256 && rand256) 1591 data->present = 0x03; 1592 } else { 1593 memset(data->hash192, 0, sizeof(data->hash192)); 1594 memset(data->rand192, 0, sizeof(data->rand192)); 1595 if (hash256 && rand256) 1596 data->present = 0x02; 1597 else 1598 data->present = 0x00; 1599 } 1600 1601 if (hash256 && rand256) { 1602 memcpy(data->hash256, hash256, sizeof(data->hash256)); 1603 memcpy(data->rand256, rand256, sizeof(data->rand256)); 1604 } else { 1605 memset(data->hash256, 0, sizeof(data->hash256)); 1606 memset(data->rand256, 0, sizeof(data->rand256)); 1607 if (hash192 && rand192) 1608 data->present = 0x01; 1609 } 1610 1611 BT_DBG("%s for %pMR", hdev->name, bdaddr); 1612 1613 return 0; 1614 } 1615 1616 /* This function requires the caller holds hdev->lock */ 1617 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance) 1618 { 1619 struct adv_info *adv_instance; 1620 1621 list_for_each_entry(adv_instance, &hdev->adv_instances, list) { 1622 if (adv_instance->instance == instance) 1623 return adv_instance; 1624 } 1625 1626 return NULL; 1627 } 1628 1629 /* This function requires the caller holds hdev->lock */ 1630 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance) 1631 { 1632 struct adv_info *cur_instance; 1633 1634 cur_instance = hci_find_adv_instance(hdev, instance); 1635 if (!cur_instance) 1636 return NULL; 1637 1638 if (cur_instance == list_last_entry(&hdev->adv_instances, 1639 struct adv_info, list)) 1640 return list_first_entry(&hdev->adv_instances, 1641 struct adv_info, list); 1642 else 1643 return list_next_entry(cur_instance, list); 1644 } 1645 1646 /* This function requires the caller holds hdev->lock */ 1647 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance) 1648 { 1649 struct adv_info *adv_instance; 1650 1651 adv_instance = hci_find_adv_instance(hdev, instance); 1652 if (!adv_instance) 1653 return -ENOENT; 1654 1655 BT_DBG("%s removing %dMR", hdev->name, instance); 1656 1657 if (hdev->cur_adv_instance == instance) { 1658 if (hdev->adv_instance_timeout) { 1659 cancel_delayed_work(&hdev->adv_instance_expire); 1660 hdev->adv_instance_timeout = 0; 1661 } 1662 hdev->cur_adv_instance = 0x00; 1663 } 1664 1665 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 1666 1667 list_del(&adv_instance->list); 1668 kfree(adv_instance); 1669 1670 hdev->adv_instance_cnt--; 1671 1672 return 0; 1673 } 1674 1675 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired) 1676 { 1677 struct adv_info *adv_instance, *n; 1678 1679 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) 1680 adv_instance->rpa_expired = rpa_expired; 1681 } 1682 1683 /* This function requires the caller holds hdev->lock */ 1684 void hci_adv_instances_clear(struct hci_dev *hdev) 1685 { 1686 struct adv_info *adv_instance, *n; 1687 1688 if (hdev->adv_instance_timeout) { 1689 cancel_delayed_work(&hdev->adv_instance_expire); 1690 hdev->adv_instance_timeout = 0; 1691 } 1692 1693 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) { 1694 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 1695 list_del(&adv_instance->list); 1696 kfree(adv_instance); 1697 } 1698 1699 hdev->adv_instance_cnt = 0; 1700 hdev->cur_adv_instance = 0x00; 1701 } 1702 1703 static void adv_instance_rpa_expired(struct work_struct *work) 1704 { 1705 struct adv_info *adv_instance = container_of(work, struct adv_info, 1706 rpa_expired_cb.work); 1707 1708 BT_DBG(""); 1709 1710 adv_instance->rpa_expired = true; 1711 } 1712 1713 /* This function requires the caller holds hdev->lock */ 1714 struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance, 1715 u32 flags, u16 adv_data_len, u8 *adv_data, 1716 u16 scan_rsp_len, u8 *scan_rsp_data, 1717 u16 timeout, u16 duration, s8 tx_power, 1718 u32 min_interval, u32 max_interval, 1719 u8 mesh_handle) 1720 { 1721 struct adv_info *adv; 1722 1723 adv = hci_find_adv_instance(hdev, instance); 1724 if (adv) { 1725 memset(adv->adv_data, 0, sizeof(adv->adv_data)); 1726 memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data)); 1727 memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data)); 1728 } else { 1729 if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets || 1730 instance < 1 || instance > hdev->le_num_of_adv_sets + 1) 1731 return ERR_PTR(-EOVERFLOW); 1732 1733 adv = kzalloc(sizeof(*adv), GFP_KERNEL); 1734 if (!adv) 1735 return ERR_PTR(-ENOMEM); 1736 1737 adv->pending = true; 1738 adv->instance = instance; 1739 list_add(&adv->list, &hdev->adv_instances); 1740 hdev->adv_instance_cnt++; 1741 } 1742 1743 adv->flags = flags; 1744 adv->min_interval = min_interval; 1745 adv->max_interval = max_interval; 1746 adv->tx_power = tx_power; 1747 /* Defining a mesh_handle changes the timing units to ms, 1748 * rather than seconds, and ties the instance to the requested 1749 * mesh_tx queue. 1750 */ 1751 adv->mesh = mesh_handle; 1752 1753 hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data, 1754 scan_rsp_len, scan_rsp_data); 1755 1756 adv->timeout = timeout; 1757 adv->remaining_time = timeout; 1758 1759 if (duration == 0) 1760 adv->duration = hdev->def_multi_adv_rotation_duration; 1761 else 1762 adv->duration = duration; 1763 1764 INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired); 1765 1766 BT_DBG("%s for %dMR", hdev->name, instance); 1767 1768 return adv; 1769 } 1770 1771 /* This function requires the caller holds hdev->lock */ 1772 struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance, 1773 u32 flags, u8 data_len, u8 *data, 1774 u32 min_interval, u32 max_interval) 1775 { 1776 struct adv_info *adv; 1777 1778 adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL, 1779 0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE, 1780 min_interval, max_interval, 0); 1781 if (IS_ERR(adv)) 1782 return adv; 1783 1784 adv->periodic = true; 1785 adv->per_adv_data_len = data_len; 1786 1787 if (data) 1788 memcpy(adv->per_adv_data, data, data_len); 1789 1790 return adv; 1791 } 1792 1793 /* This function requires the caller holds hdev->lock */ 1794 int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance, 1795 u16 adv_data_len, u8 *adv_data, 1796 u16 scan_rsp_len, u8 *scan_rsp_data) 1797 { 1798 struct adv_info *adv; 1799 1800 adv = hci_find_adv_instance(hdev, instance); 1801 1802 /* If advertisement doesn't exist, we can't modify its data */ 1803 if (!adv) 1804 return -ENOENT; 1805 1806 if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) { 1807 memset(adv->adv_data, 0, sizeof(adv->adv_data)); 1808 memcpy(adv->adv_data, adv_data, adv_data_len); 1809 adv->adv_data_len = adv_data_len; 1810 adv->adv_data_changed = true; 1811 } 1812 1813 if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) { 1814 memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data)); 1815 memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len); 1816 adv->scan_rsp_len = scan_rsp_len; 1817 adv->scan_rsp_changed = true; 1818 } 1819 1820 /* Mark as changed if there are flags which would affect it */ 1821 if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) || 1822 adv->flags & MGMT_ADV_FLAG_LOCAL_NAME) 1823 adv->scan_rsp_changed = true; 1824 1825 return 0; 1826 } 1827 1828 /* This function requires the caller holds hdev->lock */ 1829 u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance) 1830 { 1831 u32 flags; 1832 struct adv_info *adv; 1833 1834 if (instance == 0x00) { 1835 /* Instance 0 always manages the "Tx Power" and "Flags" 1836 * fields 1837 */ 1838 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS; 1839 1840 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting 1841 * corresponds to the "connectable" instance flag. 1842 */ 1843 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE)) 1844 flags |= MGMT_ADV_FLAG_CONNECTABLE; 1845 1846 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 1847 flags |= MGMT_ADV_FLAG_LIMITED_DISCOV; 1848 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 1849 flags |= MGMT_ADV_FLAG_DISCOV; 1850 1851 return flags; 1852 } 1853 1854 adv = hci_find_adv_instance(hdev, instance); 1855 1856 /* Return 0 when we got an invalid instance identifier. */ 1857 if (!adv) 1858 return 0; 1859 1860 return adv->flags; 1861 } 1862 1863 bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance) 1864 { 1865 struct adv_info *adv; 1866 1867 /* Instance 0x00 always set local name */ 1868 if (instance == 0x00) 1869 return true; 1870 1871 adv = hci_find_adv_instance(hdev, instance); 1872 if (!adv) 1873 return false; 1874 1875 if (adv->flags & MGMT_ADV_FLAG_APPEARANCE || 1876 adv->flags & MGMT_ADV_FLAG_LOCAL_NAME) 1877 return true; 1878 1879 return adv->scan_rsp_len ? true : false; 1880 } 1881 1882 /* This function requires the caller holds hdev->lock */ 1883 void hci_adv_monitors_clear(struct hci_dev *hdev) 1884 { 1885 struct adv_monitor *monitor; 1886 int handle; 1887 1888 idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle) 1889 hci_free_adv_monitor(hdev, monitor); 1890 1891 idr_destroy(&hdev->adv_monitors_idr); 1892 } 1893 1894 /* Frees the monitor structure and do some bookkeepings. 1895 * This function requires the caller holds hdev->lock. 1896 */ 1897 void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor) 1898 { 1899 struct adv_pattern *pattern; 1900 struct adv_pattern *tmp; 1901 1902 if (!monitor) 1903 return; 1904 1905 list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) { 1906 list_del(&pattern->list); 1907 kfree(pattern); 1908 } 1909 1910 if (monitor->handle) 1911 idr_remove(&hdev->adv_monitors_idr, monitor->handle); 1912 1913 if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) { 1914 hdev->adv_monitors_cnt--; 1915 mgmt_adv_monitor_removed(hdev, monitor->handle); 1916 } 1917 1918 kfree(monitor); 1919 } 1920 1921 /* Assigns handle to a monitor, and if offloading is supported and power is on, 1922 * also attempts to forward the request to the controller. 1923 * This function requires the caller holds hci_req_sync_lock. 1924 */ 1925 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor) 1926 { 1927 int min, max, handle; 1928 int status = 0; 1929 1930 if (!monitor) 1931 return -EINVAL; 1932 1933 hci_dev_lock(hdev); 1934 1935 min = HCI_MIN_ADV_MONITOR_HANDLE; 1936 max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES; 1937 handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max, 1938 GFP_KERNEL); 1939 1940 hci_dev_unlock(hdev); 1941 1942 if (handle < 0) 1943 return handle; 1944 1945 monitor->handle = handle; 1946 1947 if (!hdev_is_powered(hdev)) 1948 return status; 1949 1950 switch (hci_get_adv_monitor_offload_ext(hdev)) { 1951 case HCI_ADV_MONITOR_EXT_NONE: 1952 bt_dev_dbg(hdev, "add monitor %d status %d", 1953 monitor->handle, status); 1954 /* Message was not forwarded to controller - not an error */ 1955 break; 1956 1957 case HCI_ADV_MONITOR_EXT_MSFT: 1958 status = msft_add_monitor_pattern(hdev, monitor); 1959 bt_dev_dbg(hdev, "add monitor %d msft status %d", 1960 handle, status); 1961 break; 1962 } 1963 1964 return status; 1965 } 1966 1967 /* Attempts to tell the controller and free the monitor. If somehow the 1968 * controller doesn't have a corresponding handle, remove anyway. 1969 * This function requires the caller holds hci_req_sync_lock. 1970 */ 1971 static int hci_remove_adv_monitor(struct hci_dev *hdev, 1972 struct adv_monitor *monitor) 1973 { 1974 int status = 0; 1975 int handle; 1976 1977 switch (hci_get_adv_monitor_offload_ext(hdev)) { 1978 case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */ 1979 bt_dev_dbg(hdev, "remove monitor %d status %d", 1980 monitor->handle, status); 1981 goto free_monitor; 1982 1983 case HCI_ADV_MONITOR_EXT_MSFT: 1984 handle = monitor->handle; 1985 status = msft_remove_monitor(hdev, monitor); 1986 bt_dev_dbg(hdev, "remove monitor %d msft status %d", 1987 handle, status); 1988 break; 1989 } 1990 1991 /* In case no matching handle registered, just free the monitor */ 1992 if (status == -ENOENT) 1993 goto free_monitor; 1994 1995 return status; 1996 1997 free_monitor: 1998 if (status == -ENOENT) 1999 bt_dev_warn(hdev, "Removing monitor with no matching handle %d", 2000 monitor->handle); 2001 hci_free_adv_monitor(hdev, monitor); 2002 2003 return status; 2004 } 2005 2006 /* This function requires the caller holds hci_req_sync_lock */ 2007 int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle) 2008 { 2009 struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle); 2010 2011 if (!monitor) 2012 return -EINVAL; 2013 2014 return hci_remove_adv_monitor(hdev, monitor); 2015 } 2016 2017 /* This function requires the caller holds hci_req_sync_lock */ 2018 int hci_remove_all_adv_monitor(struct hci_dev *hdev) 2019 { 2020 struct adv_monitor *monitor; 2021 int idr_next_id = 0; 2022 int status = 0; 2023 2024 while (1) { 2025 monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id); 2026 if (!monitor) 2027 break; 2028 2029 status = hci_remove_adv_monitor(hdev, monitor); 2030 if (status) 2031 return status; 2032 2033 idr_next_id++; 2034 } 2035 2036 return status; 2037 } 2038 2039 /* This function requires the caller holds hdev->lock */ 2040 bool hci_is_adv_monitoring(struct hci_dev *hdev) 2041 { 2042 return !idr_is_empty(&hdev->adv_monitors_idr); 2043 } 2044 2045 int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev) 2046 { 2047 if (msft_monitor_supported(hdev)) 2048 return HCI_ADV_MONITOR_EXT_MSFT; 2049 2050 return HCI_ADV_MONITOR_EXT_NONE; 2051 } 2052 2053 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list, 2054 bdaddr_t *bdaddr, u8 type) 2055 { 2056 struct bdaddr_list *b; 2057 2058 list_for_each_entry(b, bdaddr_list, list) { 2059 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 2060 return b; 2061 } 2062 2063 return NULL; 2064 } 2065 2066 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk( 2067 struct list_head *bdaddr_list, bdaddr_t *bdaddr, 2068 u8 type) 2069 { 2070 struct bdaddr_list_with_irk *b; 2071 2072 list_for_each_entry(b, bdaddr_list, list) { 2073 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 2074 return b; 2075 } 2076 2077 return NULL; 2078 } 2079 2080 struct bdaddr_list_with_flags * 2081 hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list, 2082 bdaddr_t *bdaddr, u8 type) 2083 { 2084 struct bdaddr_list_with_flags *b; 2085 2086 list_for_each_entry(b, bdaddr_list, list) { 2087 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 2088 return b; 2089 } 2090 2091 return NULL; 2092 } 2093 2094 void hci_bdaddr_list_clear(struct list_head *bdaddr_list) 2095 { 2096 struct bdaddr_list *b, *n; 2097 2098 list_for_each_entry_safe(b, n, bdaddr_list, list) { 2099 list_del(&b->list); 2100 kfree(b); 2101 } 2102 } 2103 2104 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type) 2105 { 2106 struct bdaddr_list *entry; 2107 2108 if (!bacmp(bdaddr, BDADDR_ANY)) 2109 return -EBADF; 2110 2111 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 2112 return -EEXIST; 2113 2114 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 2115 if (!entry) 2116 return -ENOMEM; 2117 2118 bacpy(&entry->bdaddr, bdaddr); 2119 entry->bdaddr_type = type; 2120 2121 list_add(&entry->list, list); 2122 2123 return 0; 2124 } 2125 2126 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr, 2127 u8 type, u8 *peer_irk, u8 *local_irk) 2128 { 2129 struct bdaddr_list_with_irk *entry; 2130 2131 if (!bacmp(bdaddr, BDADDR_ANY)) 2132 return -EBADF; 2133 2134 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 2135 return -EEXIST; 2136 2137 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 2138 if (!entry) 2139 return -ENOMEM; 2140 2141 bacpy(&entry->bdaddr, bdaddr); 2142 entry->bdaddr_type = type; 2143 2144 if (peer_irk) 2145 memcpy(entry->peer_irk, peer_irk, 16); 2146 2147 if (local_irk) 2148 memcpy(entry->local_irk, local_irk, 16); 2149 2150 list_add(&entry->list, list); 2151 2152 return 0; 2153 } 2154 2155 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr, 2156 u8 type, u32 flags) 2157 { 2158 struct bdaddr_list_with_flags *entry; 2159 2160 if (!bacmp(bdaddr, BDADDR_ANY)) 2161 return -EBADF; 2162 2163 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 2164 return -EEXIST; 2165 2166 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 2167 if (!entry) 2168 return -ENOMEM; 2169 2170 bacpy(&entry->bdaddr, bdaddr); 2171 entry->bdaddr_type = type; 2172 entry->flags = flags; 2173 2174 list_add(&entry->list, list); 2175 2176 return 0; 2177 } 2178 2179 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type) 2180 { 2181 struct bdaddr_list *entry; 2182 2183 if (!bacmp(bdaddr, BDADDR_ANY)) { 2184 hci_bdaddr_list_clear(list); 2185 return 0; 2186 } 2187 2188 entry = hci_bdaddr_list_lookup(list, bdaddr, type); 2189 if (!entry) 2190 return -ENOENT; 2191 2192 list_del(&entry->list); 2193 kfree(entry); 2194 2195 return 0; 2196 } 2197 2198 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr, 2199 u8 type) 2200 { 2201 struct bdaddr_list_with_irk *entry; 2202 2203 if (!bacmp(bdaddr, BDADDR_ANY)) { 2204 hci_bdaddr_list_clear(list); 2205 return 0; 2206 } 2207 2208 entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type); 2209 if (!entry) 2210 return -ENOENT; 2211 2212 list_del(&entry->list); 2213 kfree(entry); 2214 2215 return 0; 2216 } 2217 2218 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr, 2219 u8 type) 2220 { 2221 struct bdaddr_list_with_flags *entry; 2222 2223 if (!bacmp(bdaddr, BDADDR_ANY)) { 2224 hci_bdaddr_list_clear(list); 2225 return 0; 2226 } 2227 2228 entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type); 2229 if (!entry) 2230 return -ENOENT; 2231 2232 list_del(&entry->list); 2233 kfree(entry); 2234 2235 return 0; 2236 } 2237 2238 /* This function requires the caller holds hdev->lock */ 2239 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev, 2240 bdaddr_t *addr, u8 addr_type) 2241 { 2242 struct hci_conn_params *params; 2243 2244 list_for_each_entry(params, &hdev->le_conn_params, list) { 2245 if (bacmp(¶ms->addr, addr) == 0 && 2246 params->addr_type == addr_type) { 2247 return params; 2248 } 2249 } 2250 2251 return NULL; 2252 } 2253 2254 /* This function requires the caller holds hdev->lock or rcu_read_lock */ 2255 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list, 2256 bdaddr_t *addr, u8 addr_type) 2257 { 2258 struct hci_conn_params *param; 2259 2260 rcu_read_lock(); 2261 2262 list_for_each_entry_rcu(param, list, action) { 2263 if (bacmp(¶m->addr, addr) == 0 && 2264 param->addr_type == addr_type) { 2265 rcu_read_unlock(); 2266 return param; 2267 } 2268 } 2269 2270 rcu_read_unlock(); 2271 2272 return NULL; 2273 } 2274 2275 /* This function requires the caller holds hdev->lock */ 2276 void hci_pend_le_list_del_init(struct hci_conn_params *param) 2277 { 2278 if (list_empty(¶m->action)) 2279 return; 2280 2281 list_del_rcu(¶m->action); 2282 synchronize_rcu(); 2283 INIT_LIST_HEAD(¶m->action); 2284 } 2285 2286 /* This function requires the caller holds hdev->lock */ 2287 void hci_pend_le_list_add(struct hci_conn_params *param, 2288 struct list_head *list) 2289 { 2290 list_add_rcu(¶m->action, list); 2291 } 2292 2293 /* This function requires the caller holds hdev->lock */ 2294 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev, 2295 bdaddr_t *addr, u8 addr_type) 2296 { 2297 struct hci_conn_params *params; 2298 2299 params = hci_conn_params_lookup(hdev, addr, addr_type); 2300 if (params) 2301 return params; 2302 2303 params = kzalloc(sizeof(*params), GFP_KERNEL); 2304 if (!params) { 2305 bt_dev_err(hdev, "out of memory"); 2306 return NULL; 2307 } 2308 2309 bacpy(¶ms->addr, addr); 2310 params->addr_type = addr_type; 2311 2312 list_add(¶ms->list, &hdev->le_conn_params); 2313 INIT_LIST_HEAD(¶ms->action); 2314 2315 params->conn_min_interval = hdev->le_conn_min_interval; 2316 params->conn_max_interval = hdev->le_conn_max_interval; 2317 params->conn_latency = hdev->le_conn_latency; 2318 params->supervision_timeout = hdev->le_supv_timeout; 2319 params->auto_connect = HCI_AUTO_CONN_DISABLED; 2320 2321 BT_DBG("addr %pMR (type %u)", addr, addr_type); 2322 2323 return params; 2324 } 2325 2326 void hci_conn_params_free(struct hci_conn_params *params) 2327 { 2328 hci_pend_le_list_del_init(params); 2329 2330 if (params->conn) { 2331 hci_conn_drop(params->conn); 2332 hci_conn_put(params->conn); 2333 } 2334 2335 list_del(¶ms->list); 2336 kfree(params); 2337 } 2338 2339 /* This function requires the caller holds hdev->lock */ 2340 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type) 2341 { 2342 struct hci_conn_params *params; 2343 2344 params = hci_conn_params_lookup(hdev, addr, addr_type); 2345 if (!params) 2346 return; 2347 2348 hci_conn_params_free(params); 2349 2350 hci_update_passive_scan(hdev); 2351 2352 BT_DBG("addr %pMR (type %u)", addr, addr_type); 2353 } 2354 2355 /* This function requires the caller holds hdev->lock */ 2356 void hci_conn_params_clear_disabled(struct hci_dev *hdev) 2357 { 2358 struct hci_conn_params *params, *tmp; 2359 2360 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) { 2361 if (params->auto_connect != HCI_AUTO_CONN_DISABLED) 2362 continue; 2363 2364 /* If trying to establish one time connection to disabled 2365 * device, leave the params, but mark them as just once. 2366 */ 2367 if (params->explicit_connect) { 2368 params->auto_connect = HCI_AUTO_CONN_EXPLICIT; 2369 continue; 2370 } 2371 2372 hci_conn_params_free(params); 2373 } 2374 2375 BT_DBG("All LE disabled connection parameters were removed"); 2376 } 2377 2378 /* This function requires the caller holds hdev->lock */ 2379 static void hci_conn_params_clear_all(struct hci_dev *hdev) 2380 { 2381 struct hci_conn_params *params, *tmp; 2382 2383 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) 2384 hci_conn_params_free(params); 2385 2386 BT_DBG("All LE connection parameters were removed"); 2387 } 2388 2389 /* Copy the Identity Address of the controller. 2390 * 2391 * If the controller has a public BD_ADDR, then by default use that one. 2392 * If this is a LE only controller without a public address, default to 2393 * the static random address. 2394 * 2395 * For debugging purposes it is possible to force controllers with a 2396 * public address to use the static random address instead. 2397 * 2398 * In case BR/EDR has been disabled on a dual-mode controller and 2399 * userspace has configured a static address, then that address 2400 * becomes the identity address instead of the public BR/EDR address. 2401 */ 2402 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr, 2403 u8 *bdaddr_type) 2404 { 2405 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 2406 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 2407 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 2408 bacmp(&hdev->static_addr, BDADDR_ANY))) { 2409 bacpy(bdaddr, &hdev->static_addr); 2410 *bdaddr_type = ADDR_LE_DEV_RANDOM; 2411 } else { 2412 bacpy(bdaddr, &hdev->bdaddr); 2413 *bdaddr_type = ADDR_LE_DEV_PUBLIC; 2414 } 2415 } 2416 2417 static void hci_clear_wake_reason(struct hci_dev *hdev) 2418 { 2419 hci_dev_lock(hdev); 2420 2421 hdev->wake_reason = 0; 2422 bacpy(&hdev->wake_addr, BDADDR_ANY); 2423 hdev->wake_addr_type = 0; 2424 2425 hci_dev_unlock(hdev); 2426 } 2427 2428 static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action, 2429 void *data) 2430 { 2431 struct hci_dev *hdev = 2432 container_of(nb, struct hci_dev, suspend_notifier); 2433 int ret = 0; 2434 2435 /* Userspace has full control of this device. Do nothing. */ 2436 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) 2437 return NOTIFY_DONE; 2438 2439 /* To avoid a potential race with hci_unregister_dev. */ 2440 hci_dev_hold(hdev); 2441 2442 if (action == PM_SUSPEND_PREPARE) 2443 ret = hci_suspend_dev(hdev); 2444 else if (action == PM_POST_SUSPEND) 2445 ret = hci_resume_dev(hdev); 2446 2447 if (ret) 2448 bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d", 2449 action, ret); 2450 2451 hci_dev_put(hdev); 2452 return NOTIFY_DONE; 2453 } 2454 2455 /* Alloc HCI device */ 2456 struct hci_dev *hci_alloc_dev_priv(int sizeof_priv) 2457 { 2458 struct hci_dev *hdev; 2459 unsigned int alloc_size; 2460 2461 alloc_size = sizeof(*hdev); 2462 if (sizeof_priv) { 2463 /* Fixme: May need ALIGN-ment? */ 2464 alloc_size += sizeof_priv; 2465 } 2466 2467 hdev = kzalloc(alloc_size, GFP_KERNEL); 2468 if (!hdev) 2469 return NULL; 2470 2471 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1); 2472 hdev->esco_type = (ESCO_HV1); 2473 hdev->link_mode = (HCI_LM_ACCEPT); 2474 hdev->num_iac = 0x01; /* One IAC support is mandatory */ 2475 hdev->io_capability = 0x03; /* No Input No Output */ 2476 hdev->manufacturer = 0xffff; /* Default to internal use */ 2477 hdev->inq_tx_power = HCI_TX_POWER_INVALID; 2478 hdev->adv_tx_power = HCI_TX_POWER_INVALID; 2479 hdev->adv_instance_cnt = 0; 2480 hdev->cur_adv_instance = 0x00; 2481 hdev->adv_instance_timeout = 0; 2482 2483 hdev->advmon_allowlist_duration = 300; 2484 hdev->advmon_no_filter_duration = 500; 2485 hdev->enable_advmon_interleave_scan = 0x00; /* Default to disable */ 2486 2487 hdev->sniff_max_interval = 800; 2488 hdev->sniff_min_interval = 80; 2489 2490 hdev->le_adv_channel_map = 0x07; 2491 hdev->le_adv_min_interval = 0x0800; 2492 hdev->le_adv_max_interval = 0x0800; 2493 hdev->le_scan_interval = 0x0060; 2494 hdev->le_scan_window = 0x0030; 2495 hdev->le_scan_int_suspend = 0x0400; 2496 hdev->le_scan_window_suspend = 0x0012; 2497 hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT; 2498 hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN; 2499 hdev->le_scan_int_adv_monitor = 0x0060; 2500 hdev->le_scan_window_adv_monitor = 0x0030; 2501 hdev->le_scan_int_connect = 0x0060; 2502 hdev->le_scan_window_connect = 0x0060; 2503 hdev->le_conn_min_interval = 0x0018; 2504 hdev->le_conn_max_interval = 0x0028; 2505 hdev->le_conn_latency = 0x0000; 2506 hdev->le_supv_timeout = 0x002a; 2507 hdev->le_def_tx_len = 0x001b; 2508 hdev->le_def_tx_time = 0x0148; 2509 hdev->le_max_tx_len = 0x001b; 2510 hdev->le_max_tx_time = 0x0148; 2511 hdev->le_max_rx_len = 0x001b; 2512 hdev->le_max_rx_time = 0x0148; 2513 hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE; 2514 hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE; 2515 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M; 2516 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M; 2517 hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES; 2518 hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION; 2519 hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT; 2520 hdev->min_le_tx_power = HCI_TX_POWER_INVALID; 2521 hdev->max_le_tx_power = HCI_TX_POWER_INVALID; 2522 2523 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT; 2524 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT; 2525 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE; 2526 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE; 2527 hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT; 2528 hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE; 2529 2530 /* default 1.28 sec page scan */ 2531 hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD; 2532 hdev->def_page_scan_int = 0x0800; 2533 hdev->def_page_scan_window = 0x0012; 2534 2535 mutex_init(&hdev->lock); 2536 mutex_init(&hdev->req_lock); 2537 2538 ida_init(&hdev->unset_handle_ida); 2539 2540 INIT_LIST_HEAD(&hdev->mesh_pending); 2541 INIT_LIST_HEAD(&hdev->mgmt_pending); 2542 INIT_LIST_HEAD(&hdev->reject_list); 2543 INIT_LIST_HEAD(&hdev->accept_list); 2544 INIT_LIST_HEAD(&hdev->uuids); 2545 INIT_LIST_HEAD(&hdev->link_keys); 2546 INIT_LIST_HEAD(&hdev->long_term_keys); 2547 INIT_LIST_HEAD(&hdev->identity_resolving_keys); 2548 INIT_LIST_HEAD(&hdev->remote_oob_data); 2549 INIT_LIST_HEAD(&hdev->le_accept_list); 2550 INIT_LIST_HEAD(&hdev->le_resolv_list); 2551 INIT_LIST_HEAD(&hdev->le_conn_params); 2552 INIT_LIST_HEAD(&hdev->pend_le_conns); 2553 INIT_LIST_HEAD(&hdev->pend_le_reports); 2554 INIT_LIST_HEAD(&hdev->conn_hash.list); 2555 INIT_LIST_HEAD(&hdev->adv_instances); 2556 INIT_LIST_HEAD(&hdev->blocked_keys); 2557 INIT_LIST_HEAD(&hdev->monitored_devices); 2558 2559 INIT_LIST_HEAD(&hdev->local_codecs); 2560 INIT_WORK(&hdev->rx_work, hci_rx_work); 2561 INIT_WORK(&hdev->cmd_work, hci_cmd_work); 2562 INIT_WORK(&hdev->tx_work, hci_tx_work); 2563 INIT_WORK(&hdev->power_on, hci_power_on); 2564 INIT_WORK(&hdev->error_reset, hci_error_reset); 2565 2566 hci_cmd_sync_init(hdev); 2567 2568 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off); 2569 2570 skb_queue_head_init(&hdev->rx_q); 2571 skb_queue_head_init(&hdev->cmd_q); 2572 skb_queue_head_init(&hdev->raw_q); 2573 2574 init_waitqueue_head(&hdev->req_wait_q); 2575 2576 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout); 2577 INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout); 2578 2579 hci_devcd_setup(hdev); 2580 hci_request_setup(hdev); 2581 2582 hci_init_sysfs(hdev); 2583 discovery_init(hdev); 2584 2585 return hdev; 2586 } 2587 EXPORT_SYMBOL(hci_alloc_dev_priv); 2588 2589 /* Free HCI device */ 2590 void hci_free_dev(struct hci_dev *hdev) 2591 { 2592 /* will free via device release */ 2593 put_device(&hdev->dev); 2594 } 2595 EXPORT_SYMBOL(hci_free_dev); 2596 2597 /* Register HCI device */ 2598 int hci_register_dev(struct hci_dev *hdev) 2599 { 2600 int id, error; 2601 2602 if (!hdev->open || !hdev->close || !hdev->send) 2603 return -EINVAL; 2604 2605 /* Do not allow HCI_AMP devices to register at index 0, 2606 * so the index can be used as the AMP controller ID. 2607 */ 2608 switch (hdev->dev_type) { 2609 case HCI_PRIMARY: 2610 id = ida_simple_get(&hci_index_ida, 0, HCI_MAX_ID, GFP_KERNEL); 2611 break; 2612 case HCI_AMP: 2613 id = ida_simple_get(&hci_index_ida, 1, HCI_MAX_ID, GFP_KERNEL); 2614 break; 2615 default: 2616 return -EINVAL; 2617 } 2618 2619 if (id < 0) 2620 return id; 2621 2622 error = dev_set_name(&hdev->dev, "hci%u", id); 2623 if (error) 2624 return error; 2625 2626 hdev->name = dev_name(&hdev->dev); 2627 hdev->id = id; 2628 2629 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 2630 2631 hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name); 2632 if (!hdev->workqueue) { 2633 error = -ENOMEM; 2634 goto err; 2635 } 2636 2637 hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, 2638 hdev->name); 2639 if (!hdev->req_workqueue) { 2640 destroy_workqueue(hdev->workqueue); 2641 error = -ENOMEM; 2642 goto err; 2643 } 2644 2645 if (!IS_ERR_OR_NULL(bt_debugfs)) 2646 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs); 2647 2648 error = device_add(&hdev->dev); 2649 if (error < 0) 2650 goto err_wqueue; 2651 2652 hci_leds_init(hdev); 2653 2654 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev, 2655 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, 2656 hdev); 2657 if (hdev->rfkill) { 2658 if (rfkill_register(hdev->rfkill) < 0) { 2659 rfkill_destroy(hdev->rfkill); 2660 hdev->rfkill = NULL; 2661 } 2662 } 2663 2664 if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) 2665 hci_dev_set_flag(hdev, HCI_RFKILLED); 2666 2667 hci_dev_set_flag(hdev, HCI_SETUP); 2668 hci_dev_set_flag(hdev, HCI_AUTO_OFF); 2669 2670 if (hdev->dev_type == HCI_PRIMARY) { 2671 /* Assume BR/EDR support until proven otherwise (such as 2672 * through reading supported features during init. 2673 */ 2674 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); 2675 } 2676 2677 write_lock(&hci_dev_list_lock); 2678 list_add(&hdev->list, &hci_dev_list); 2679 write_unlock(&hci_dev_list_lock); 2680 2681 /* Devices that are marked for raw-only usage are unconfigured 2682 * and should not be included in normal operation. 2683 */ 2684 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 2685 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 2686 2687 /* Mark Remote Wakeup connection flag as supported if driver has wakeup 2688 * callback. 2689 */ 2690 if (hdev->wakeup) 2691 hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP; 2692 2693 hci_sock_dev_event(hdev, HCI_DEV_REG); 2694 hci_dev_hold(hdev); 2695 2696 error = hci_register_suspend_notifier(hdev); 2697 if (error) 2698 BT_WARN("register suspend notifier failed error:%d\n", error); 2699 2700 queue_work(hdev->req_workqueue, &hdev->power_on); 2701 2702 idr_init(&hdev->adv_monitors_idr); 2703 msft_register(hdev); 2704 2705 return id; 2706 2707 err_wqueue: 2708 debugfs_remove_recursive(hdev->debugfs); 2709 destroy_workqueue(hdev->workqueue); 2710 destroy_workqueue(hdev->req_workqueue); 2711 err: 2712 ida_simple_remove(&hci_index_ida, hdev->id); 2713 2714 return error; 2715 } 2716 EXPORT_SYMBOL(hci_register_dev); 2717 2718 /* Unregister HCI device */ 2719 void hci_unregister_dev(struct hci_dev *hdev) 2720 { 2721 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 2722 2723 mutex_lock(&hdev->unregister_lock); 2724 hci_dev_set_flag(hdev, HCI_UNREGISTER); 2725 mutex_unlock(&hdev->unregister_lock); 2726 2727 write_lock(&hci_dev_list_lock); 2728 list_del(&hdev->list); 2729 write_unlock(&hci_dev_list_lock); 2730 2731 cancel_work_sync(&hdev->power_on); 2732 2733 hci_cmd_sync_clear(hdev); 2734 2735 hci_unregister_suspend_notifier(hdev); 2736 2737 msft_unregister(hdev); 2738 2739 hci_dev_do_close(hdev); 2740 2741 if (!test_bit(HCI_INIT, &hdev->flags) && 2742 !hci_dev_test_flag(hdev, HCI_SETUP) && 2743 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 2744 hci_dev_lock(hdev); 2745 mgmt_index_removed(hdev); 2746 hci_dev_unlock(hdev); 2747 } 2748 2749 /* mgmt_index_removed should take care of emptying the 2750 * pending list */ 2751 BUG_ON(!list_empty(&hdev->mgmt_pending)); 2752 2753 hci_sock_dev_event(hdev, HCI_DEV_UNREG); 2754 2755 if (hdev->rfkill) { 2756 rfkill_unregister(hdev->rfkill); 2757 rfkill_destroy(hdev->rfkill); 2758 } 2759 2760 device_del(&hdev->dev); 2761 /* Actual cleanup is deferred until hci_release_dev(). */ 2762 hci_dev_put(hdev); 2763 } 2764 EXPORT_SYMBOL(hci_unregister_dev); 2765 2766 /* Release HCI device */ 2767 void hci_release_dev(struct hci_dev *hdev) 2768 { 2769 debugfs_remove_recursive(hdev->debugfs); 2770 kfree_const(hdev->hw_info); 2771 kfree_const(hdev->fw_info); 2772 2773 destroy_workqueue(hdev->workqueue); 2774 destroy_workqueue(hdev->req_workqueue); 2775 2776 hci_dev_lock(hdev); 2777 hci_bdaddr_list_clear(&hdev->reject_list); 2778 hci_bdaddr_list_clear(&hdev->accept_list); 2779 hci_uuids_clear(hdev); 2780 hci_link_keys_clear(hdev); 2781 hci_smp_ltks_clear(hdev); 2782 hci_smp_irks_clear(hdev); 2783 hci_remote_oob_data_clear(hdev); 2784 hci_adv_instances_clear(hdev); 2785 hci_adv_monitors_clear(hdev); 2786 hci_bdaddr_list_clear(&hdev->le_accept_list); 2787 hci_bdaddr_list_clear(&hdev->le_resolv_list); 2788 hci_conn_params_clear_all(hdev); 2789 hci_discovery_filter_clear(hdev); 2790 hci_blocked_keys_clear(hdev); 2791 hci_codec_list_clear(&hdev->local_codecs); 2792 hci_dev_unlock(hdev); 2793 2794 ida_destroy(&hdev->unset_handle_ida); 2795 ida_simple_remove(&hci_index_ida, hdev->id); 2796 kfree_skb(hdev->sent_cmd); 2797 kfree_skb(hdev->recv_event); 2798 kfree(hdev); 2799 } 2800 EXPORT_SYMBOL(hci_release_dev); 2801 2802 int hci_register_suspend_notifier(struct hci_dev *hdev) 2803 { 2804 int ret = 0; 2805 2806 if (!hdev->suspend_notifier.notifier_call && 2807 !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) { 2808 hdev->suspend_notifier.notifier_call = hci_suspend_notifier; 2809 ret = register_pm_notifier(&hdev->suspend_notifier); 2810 } 2811 2812 return ret; 2813 } 2814 2815 int hci_unregister_suspend_notifier(struct hci_dev *hdev) 2816 { 2817 int ret = 0; 2818 2819 if (hdev->suspend_notifier.notifier_call) { 2820 ret = unregister_pm_notifier(&hdev->suspend_notifier); 2821 if (!ret) 2822 hdev->suspend_notifier.notifier_call = NULL; 2823 } 2824 2825 return ret; 2826 } 2827 2828 /* Suspend HCI device */ 2829 int hci_suspend_dev(struct hci_dev *hdev) 2830 { 2831 int ret; 2832 2833 bt_dev_dbg(hdev, ""); 2834 2835 /* Suspend should only act on when powered. */ 2836 if (!hdev_is_powered(hdev) || 2837 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2838 return 0; 2839 2840 /* If powering down don't attempt to suspend */ 2841 if (mgmt_powering_down(hdev)) 2842 return 0; 2843 2844 /* Cancel potentially blocking sync operation before suspend */ 2845 __hci_cmd_sync_cancel(hdev, -EHOSTDOWN); 2846 2847 hci_req_sync_lock(hdev); 2848 ret = hci_suspend_sync(hdev); 2849 hci_req_sync_unlock(hdev); 2850 2851 hci_clear_wake_reason(hdev); 2852 mgmt_suspending(hdev, hdev->suspend_state); 2853 2854 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND); 2855 return ret; 2856 } 2857 EXPORT_SYMBOL(hci_suspend_dev); 2858 2859 /* Resume HCI device */ 2860 int hci_resume_dev(struct hci_dev *hdev) 2861 { 2862 int ret; 2863 2864 bt_dev_dbg(hdev, ""); 2865 2866 /* Resume should only act on when powered. */ 2867 if (!hdev_is_powered(hdev) || 2868 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2869 return 0; 2870 2871 /* If powering down don't attempt to resume */ 2872 if (mgmt_powering_down(hdev)) 2873 return 0; 2874 2875 hci_req_sync_lock(hdev); 2876 ret = hci_resume_sync(hdev); 2877 hci_req_sync_unlock(hdev); 2878 2879 mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr, 2880 hdev->wake_addr_type); 2881 2882 hci_sock_dev_event(hdev, HCI_DEV_RESUME); 2883 return ret; 2884 } 2885 EXPORT_SYMBOL(hci_resume_dev); 2886 2887 /* Reset HCI device */ 2888 int hci_reset_dev(struct hci_dev *hdev) 2889 { 2890 static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 }; 2891 struct sk_buff *skb; 2892 2893 skb = bt_skb_alloc(3, GFP_ATOMIC); 2894 if (!skb) 2895 return -ENOMEM; 2896 2897 hci_skb_pkt_type(skb) = HCI_EVENT_PKT; 2898 skb_put_data(skb, hw_err, 3); 2899 2900 bt_dev_err(hdev, "Injecting HCI hardware error event"); 2901 2902 /* Send Hardware Error to upper stack */ 2903 return hci_recv_frame(hdev, skb); 2904 } 2905 EXPORT_SYMBOL(hci_reset_dev); 2906 2907 /* Receive frame from HCI drivers */ 2908 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb) 2909 { 2910 if (!hdev || (!test_bit(HCI_UP, &hdev->flags) 2911 && !test_bit(HCI_INIT, &hdev->flags))) { 2912 kfree_skb(skb); 2913 return -ENXIO; 2914 } 2915 2916 switch (hci_skb_pkt_type(skb)) { 2917 case HCI_EVENT_PKT: 2918 break; 2919 case HCI_ACLDATA_PKT: 2920 /* Detect if ISO packet has been sent as ACL */ 2921 if (hci_conn_num(hdev, ISO_LINK)) { 2922 __u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle); 2923 __u8 type; 2924 2925 type = hci_conn_lookup_type(hdev, hci_handle(handle)); 2926 if (type == ISO_LINK) 2927 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT; 2928 } 2929 break; 2930 case HCI_SCODATA_PKT: 2931 break; 2932 case HCI_ISODATA_PKT: 2933 break; 2934 default: 2935 kfree_skb(skb); 2936 return -EINVAL; 2937 } 2938 2939 /* Incoming skb */ 2940 bt_cb(skb)->incoming = 1; 2941 2942 /* Time stamp */ 2943 __net_timestamp(skb); 2944 2945 skb_queue_tail(&hdev->rx_q, skb); 2946 queue_work(hdev->workqueue, &hdev->rx_work); 2947 2948 return 0; 2949 } 2950 EXPORT_SYMBOL(hci_recv_frame); 2951 2952 /* Receive diagnostic message from HCI drivers */ 2953 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb) 2954 { 2955 /* Mark as diagnostic packet */ 2956 hci_skb_pkt_type(skb) = HCI_DIAG_PKT; 2957 2958 /* Time stamp */ 2959 __net_timestamp(skb); 2960 2961 skb_queue_tail(&hdev->rx_q, skb); 2962 queue_work(hdev->workqueue, &hdev->rx_work); 2963 2964 return 0; 2965 } 2966 EXPORT_SYMBOL(hci_recv_diag); 2967 2968 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...) 2969 { 2970 va_list vargs; 2971 2972 va_start(vargs, fmt); 2973 kfree_const(hdev->hw_info); 2974 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs); 2975 va_end(vargs); 2976 } 2977 EXPORT_SYMBOL(hci_set_hw_info); 2978 2979 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...) 2980 { 2981 va_list vargs; 2982 2983 va_start(vargs, fmt); 2984 kfree_const(hdev->fw_info); 2985 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs); 2986 va_end(vargs); 2987 } 2988 EXPORT_SYMBOL(hci_set_fw_info); 2989 2990 /* ---- Interface to upper protocols ---- */ 2991 2992 int hci_register_cb(struct hci_cb *cb) 2993 { 2994 BT_DBG("%p name %s", cb, cb->name); 2995 2996 mutex_lock(&hci_cb_list_lock); 2997 list_add_tail(&cb->list, &hci_cb_list); 2998 mutex_unlock(&hci_cb_list_lock); 2999 3000 return 0; 3001 } 3002 EXPORT_SYMBOL(hci_register_cb); 3003 3004 int hci_unregister_cb(struct hci_cb *cb) 3005 { 3006 BT_DBG("%p name %s", cb, cb->name); 3007 3008 mutex_lock(&hci_cb_list_lock); 3009 list_del(&cb->list); 3010 mutex_unlock(&hci_cb_list_lock); 3011 3012 return 0; 3013 } 3014 EXPORT_SYMBOL(hci_unregister_cb); 3015 3016 static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb) 3017 { 3018 int err; 3019 3020 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb), 3021 skb->len); 3022 3023 /* Time stamp */ 3024 __net_timestamp(skb); 3025 3026 /* Send copy to monitor */ 3027 hci_send_to_monitor(hdev, skb); 3028 3029 if (atomic_read(&hdev->promisc)) { 3030 /* Send copy to the sockets */ 3031 hci_send_to_sock(hdev, skb); 3032 } 3033 3034 /* Get rid of skb owner, prior to sending to the driver. */ 3035 skb_orphan(skb); 3036 3037 if (!test_bit(HCI_RUNNING, &hdev->flags)) { 3038 kfree_skb(skb); 3039 return -EINVAL; 3040 } 3041 3042 err = hdev->send(hdev, skb); 3043 if (err < 0) { 3044 bt_dev_err(hdev, "sending frame failed (%d)", err); 3045 kfree_skb(skb); 3046 return err; 3047 } 3048 3049 return 0; 3050 } 3051 3052 /* Send HCI command */ 3053 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, 3054 const void *param) 3055 { 3056 struct sk_buff *skb; 3057 3058 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen); 3059 3060 skb = hci_prepare_cmd(hdev, opcode, plen, param); 3061 if (!skb) { 3062 bt_dev_err(hdev, "no memory for command"); 3063 return -ENOMEM; 3064 } 3065 3066 /* Stand-alone HCI commands must be flagged as 3067 * single-command requests. 3068 */ 3069 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 3070 3071 skb_queue_tail(&hdev->cmd_q, skb); 3072 queue_work(hdev->workqueue, &hdev->cmd_work); 3073 3074 return 0; 3075 } 3076 3077 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen, 3078 const void *param) 3079 { 3080 struct sk_buff *skb; 3081 3082 if (hci_opcode_ogf(opcode) != 0x3f) { 3083 /* A controller receiving a command shall respond with either 3084 * a Command Status Event or a Command Complete Event. 3085 * Therefore, all standard HCI commands must be sent via the 3086 * standard API, using hci_send_cmd or hci_cmd_sync helpers. 3087 * Some vendors do not comply with this rule for vendor-specific 3088 * commands and do not return any event. We want to support 3089 * unresponded commands for such cases only. 3090 */ 3091 bt_dev_err(hdev, "unresponded command not supported"); 3092 return -EINVAL; 3093 } 3094 3095 skb = hci_prepare_cmd(hdev, opcode, plen, param); 3096 if (!skb) { 3097 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 3098 opcode); 3099 return -ENOMEM; 3100 } 3101 3102 hci_send_frame(hdev, skb); 3103 3104 return 0; 3105 } 3106 EXPORT_SYMBOL(__hci_cmd_send); 3107 3108 /* Get data from the previously sent command */ 3109 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode) 3110 { 3111 struct hci_command_hdr *hdr; 3112 3113 if (!hdev->sent_cmd) 3114 return NULL; 3115 3116 hdr = (void *) hdev->sent_cmd->data; 3117 3118 if (hdr->opcode != cpu_to_le16(opcode)) 3119 return NULL; 3120 3121 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode); 3122 3123 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE; 3124 } 3125 3126 /* Get data from last received event */ 3127 void *hci_recv_event_data(struct hci_dev *hdev, __u8 event) 3128 { 3129 struct hci_event_hdr *hdr; 3130 int offset; 3131 3132 if (!hdev->recv_event) 3133 return NULL; 3134 3135 hdr = (void *)hdev->recv_event->data; 3136 offset = sizeof(*hdr); 3137 3138 if (hdr->evt != event) { 3139 /* In case of LE metaevent check the subevent match */ 3140 if (hdr->evt == HCI_EV_LE_META) { 3141 struct hci_ev_le_meta *ev; 3142 3143 ev = (void *)hdev->recv_event->data + offset; 3144 offset += sizeof(*ev); 3145 if (ev->subevent == event) 3146 goto found; 3147 } 3148 return NULL; 3149 } 3150 3151 found: 3152 bt_dev_dbg(hdev, "event 0x%2.2x", event); 3153 3154 return hdev->recv_event->data + offset; 3155 } 3156 3157 /* Send ACL data */ 3158 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags) 3159 { 3160 struct hci_acl_hdr *hdr; 3161 int len = skb->len; 3162 3163 skb_push(skb, HCI_ACL_HDR_SIZE); 3164 skb_reset_transport_header(skb); 3165 hdr = (struct hci_acl_hdr *)skb_transport_header(skb); 3166 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags)); 3167 hdr->dlen = cpu_to_le16(len); 3168 } 3169 3170 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue, 3171 struct sk_buff *skb, __u16 flags) 3172 { 3173 struct hci_conn *conn = chan->conn; 3174 struct hci_dev *hdev = conn->hdev; 3175 struct sk_buff *list; 3176 3177 skb->len = skb_headlen(skb); 3178 skb->data_len = 0; 3179 3180 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT; 3181 3182 switch (hdev->dev_type) { 3183 case HCI_PRIMARY: 3184 hci_add_acl_hdr(skb, conn->handle, flags); 3185 break; 3186 case HCI_AMP: 3187 hci_add_acl_hdr(skb, chan->handle, flags); 3188 break; 3189 default: 3190 bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type); 3191 return; 3192 } 3193 3194 list = skb_shinfo(skb)->frag_list; 3195 if (!list) { 3196 /* Non fragmented */ 3197 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len); 3198 3199 skb_queue_tail(queue, skb); 3200 } else { 3201 /* Fragmented */ 3202 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3203 3204 skb_shinfo(skb)->frag_list = NULL; 3205 3206 /* Queue all fragments atomically. We need to use spin_lock_bh 3207 * here because of 6LoWPAN links, as there this function is 3208 * called from softirq and using normal spin lock could cause 3209 * deadlocks. 3210 */ 3211 spin_lock_bh(&queue->lock); 3212 3213 __skb_queue_tail(queue, skb); 3214 3215 flags &= ~ACL_START; 3216 flags |= ACL_CONT; 3217 do { 3218 skb = list; list = list->next; 3219 3220 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT; 3221 hci_add_acl_hdr(skb, conn->handle, flags); 3222 3223 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3224 3225 __skb_queue_tail(queue, skb); 3226 } while (list); 3227 3228 spin_unlock_bh(&queue->lock); 3229 } 3230 } 3231 3232 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags) 3233 { 3234 struct hci_dev *hdev = chan->conn->hdev; 3235 3236 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags); 3237 3238 hci_queue_acl(chan, &chan->data_q, skb, flags); 3239 3240 queue_work(hdev->workqueue, &hdev->tx_work); 3241 } 3242 3243 /* Send SCO data */ 3244 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb) 3245 { 3246 struct hci_dev *hdev = conn->hdev; 3247 struct hci_sco_hdr hdr; 3248 3249 BT_DBG("%s len %d", hdev->name, skb->len); 3250 3251 hdr.handle = cpu_to_le16(conn->handle); 3252 hdr.dlen = skb->len; 3253 3254 skb_push(skb, HCI_SCO_HDR_SIZE); 3255 skb_reset_transport_header(skb); 3256 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE); 3257 3258 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT; 3259 3260 skb_queue_tail(&conn->data_q, skb); 3261 queue_work(hdev->workqueue, &hdev->tx_work); 3262 } 3263 3264 /* Send ISO data */ 3265 static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags) 3266 { 3267 struct hci_iso_hdr *hdr; 3268 int len = skb->len; 3269 3270 skb_push(skb, HCI_ISO_HDR_SIZE); 3271 skb_reset_transport_header(skb); 3272 hdr = (struct hci_iso_hdr *)skb_transport_header(skb); 3273 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags)); 3274 hdr->dlen = cpu_to_le16(len); 3275 } 3276 3277 static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue, 3278 struct sk_buff *skb) 3279 { 3280 struct hci_dev *hdev = conn->hdev; 3281 struct sk_buff *list; 3282 __u16 flags; 3283 3284 skb->len = skb_headlen(skb); 3285 skb->data_len = 0; 3286 3287 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT; 3288 3289 list = skb_shinfo(skb)->frag_list; 3290 3291 flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00); 3292 hci_add_iso_hdr(skb, conn->handle, flags); 3293 3294 if (!list) { 3295 /* Non fragmented */ 3296 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len); 3297 3298 skb_queue_tail(queue, skb); 3299 } else { 3300 /* Fragmented */ 3301 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3302 3303 skb_shinfo(skb)->frag_list = NULL; 3304 3305 __skb_queue_tail(queue, skb); 3306 3307 do { 3308 skb = list; list = list->next; 3309 3310 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT; 3311 flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END, 3312 0x00); 3313 hci_add_iso_hdr(skb, conn->handle, flags); 3314 3315 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3316 3317 __skb_queue_tail(queue, skb); 3318 } while (list); 3319 } 3320 } 3321 3322 void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb) 3323 { 3324 struct hci_dev *hdev = conn->hdev; 3325 3326 BT_DBG("%s len %d", hdev->name, skb->len); 3327 3328 hci_queue_iso(conn, &conn->data_q, skb); 3329 3330 queue_work(hdev->workqueue, &hdev->tx_work); 3331 } 3332 3333 /* ---- HCI TX task (outgoing data) ---- */ 3334 3335 /* HCI Connection scheduler */ 3336 static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote) 3337 { 3338 struct hci_dev *hdev; 3339 int cnt, q; 3340 3341 if (!conn) { 3342 *quote = 0; 3343 return; 3344 } 3345 3346 hdev = conn->hdev; 3347 3348 switch (conn->type) { 3349 case ACL_LINK: 3350 cnt = hdev->acl_cnt; 3351 break; 3352 case AMP_LINK: 3353 cnt = hdev->block_cnt; 3354 break; 3355 case SCO_LINK: 3356 case ESCO_LINK: 3357 cnt = hdev->sco_cnt; 3358 break; 3359 case LE_LINK: 3360 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 3361 break; 3362 case ISO_LINK: 3363 cnt = hdev->iso_mtu ? hdev->iso_cnt : 3364 hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 3365 break; 3366 default: 3367 cnt = 0; 3368 bt_dev_err(hdev, "unknown link type %d", conn->type); 3369 } 3370 3371 q = cnt / num; 3372 *quote = q ? q : 1; 3373 } 3374 3375 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, 3376 int *quote) 3377 { 3378 struct hci_conn_hash *h = &hdev->conn_hash; 3379 struct hci_conn *conn = NULL, *c; 3380 unsigned int num = 0, min = ~0; 3381 3382 /* We don't have to lock device here. Connections are always 3383 * added and removed with TX task disabled. */ 3384 3385 rcu_read_lock(); 3386 3387 list_for_each_entry_rcu(c, &h->list, list) { 3388 if (c->type != type || skb_queue_empty(&c->data_q)) 3389 continue; 3390 3391 if (c->state != BT_CONNECTED && c->state != BT_CONFIG) 3392 continue; 3393 3394 num++; 3395 3396 if (c->sent < min) { 3397 min = c->sent; 3398 conn = c; 3399 } 3400 3401 if (hci_conn_num(hdev, type) == num) 3402 break; 3403 } 3404 3405 rcu_read_unlock(); 3406 3407 hci_quote_sent(conn, num, quote); 3408 3409 BT_DBG("conn %p quote %d", conn, *quote); 3410 return conn; 3411 } 3412 3413 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type) 3414 { 3415 struct hci_conn_hash *h = &hdev->conn_hash; 3416 struct hci_conn *c; 3417 3418 bt_dev_err(hdev, "link tx timeout"); 3419 3420 rcu_read_lock(); 3421 3422 /* Kill stalled connections */ 3423 list_for_each_entry_rcu(c, &h->list, list) { 3424 if (c->type == type && c->sent) { 3425 bt_dev_err(hdev, "killing stalled connection %pMR", 3426 &c->dst); 3427 /* hci_disconnect might sleep, so, we have to release 3428 * the RCU read lock before calling it. 3429 */ 3430 rcu_read_unlock(); 3431 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM); 3432 rcu_read_lock(); 3433 } 3434 } 3435 3436 rcu_read_unlock(); 3437 } 3438 3439 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type, 3440 int *quote) 3441 { 3442 struct hci_conn_hash *h = &hdev->conn_hash; 3443 struct hci_chan *chan = NULL; 3444 unsigned int num = 0, min = ~0, cur_prio = 0; 3445 struct hci_conn *conn; 3446 int conn_num = 0; 3447 3448 BT_DBG("%s", hdev->name); 3449 3450 rcu_read_lock(); 3451 3452 list_for_each_entry_rcu(conn, &h->list, list) { 3453 struct hci_chan *tmp; 3454 3455 if (conn->type != type) 3456 continue; 3457 3458 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3459 continue; 3460 3461 conn_num++; 3462 3463 list_for_each_entry_rcu(tmp, &conn->chan_list, list) { 3464 struct sk_buff *skb; 3465 3466 if (skb_queue_empty(&tmp->data_q)) 3467 continue; 3468 3469 skb = skb_peek(&tmp->data_q); 3470 if (skb->priority < cur_prio) 3471 continue; 3472 3473 if (skb->priority > cur_prio) { 3474 num = 0; 3475 min = ~0; 3476 cur_prio = skb->priority; 3477 } 3478 3479 num++; 3480 3481 if (conn->sent < min) { 3482 min = conn->sent; 3483 chan = tmp; 3484 } 3485 } 3486 3487 if (hci_conn_num(hdev, type) == conn_num) 3488 break; 3489 } 3490 3491 rcu_read_unlock(); 3492 3493 if (!chan) 3494 return NULL; 3495 3496 hci_quote_sent(chan->conn, num, quote); 3497 3498 BT_DBG("chan %p quote %d", chan, *quote); 3499 return chan; 3500 } 3501 3502 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type) 3503 { 3504 struct hci_conn_hash *h = &hdev->conn_hash; 3505 struct hci_conn *conn; 3506 int num = 0; 3507 3508 BT_DBG("%s", hdev->name); 3509 3510 rcu_read_lock(); 3511 3512 list_for_each_entry_rcu(conn, &h->list, list) { 3513 struct hci_chan *chan; 3514 3515 if (conn->type != type) 3516 continue; 3517 3518 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3519 continue; 3520 3521 num++; 3522 3523 list_for_each_entry_rcu(chan, &conn->chan_list, list) { 3524 struct sk_buff *skb; 3525 3526 if (chan->sent) { 3527 chan->sent = 0; 3528 continue; 3529 } 3530 3531 if (skb_queue_empty(&chan->data_q)) 3532 continue; 3533 3534 skb = skb_peek(&chan->data_q); 3535 if (skb->priority >= HCI_PRIO_MAX - 1) 3536 continue; 3537 3538 skb->priority = HCI_PRIO_MAX - 1; 3539 3540 BT_DBG("chan %p skb %p promoted to %d", chan, skb, 3541 skb->priority); 3542 } 3543 3544 if (hci_conn_num(hdev, type) == num) 3545 break; 3546 } 3547 3548 rcu_read_unlock(); 3549 3550 } 3551 3552 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb) 3553 { 3554 /* Calculate count of blocks used by this packet */ 3555 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len); 3556 } 3557 3558 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type) 3559 { 3560 unsigned long last_tx; 3561 3562 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 3563 return; 3564 3565 switch (type) { 3566 case LE_LINK: 3567 last_tx = hdev->le_last_tx; 3568 break; 3569 default: 3570 last_tx = hdev->acl_last_tx; 3571 break; 3572 } 3573 3574 /* tx timeout must be longer than maximum link supervision timeout 3575 * (40.9 seconds) 3576 */ 3577 if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT)) 3578 hci_link_tx_to(hdev, type); 3579 } 3580 3581 /* Schedule SCO */ 3582 static void hci_sched_sco(struct hci_dev *hdev) 3583 { 3584 struct hci_conn *conn; 3585 struct sk_buff *skb; 3586 int quote; 3587 3588 BT_DBG("%s", hdev->name); 3589 3590 if (!hci_conn_num(hdev, SCO_LINK)) 3591 return; 3592 3593 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) { 3594 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 3595 BT_DBG("skb %p len %d", skb, skb->len); 3596 hci_send_frame(hdev, skb); 3597 3598 conn->sent++; 3599 if (conn->sent == ~0) 3600 conn->sent = 0; 3601 } 3602 } 3603 } 3604 3605 static void hci_sched_esco(struct hci_dev *hdev) 3606 { 3607 struct hci_conn *conn; 3608 struct sk_buff *skb; 3609 int quote; 3610 3611 BT_DBG("%s", hdev->name); 3612 3613 if (!hci_conn_num(hdev, ESCO_LINK)) 3614 return; 3615 3616 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, 3617 "e))) { 3618 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 3619 BT_DBG("skb %p len %d", skb, skb->len); 3620 hci_send_frame(hdev, skb); 3621 3622 conn->sent++; 3623 if (conn->sent == ~0) 3624 conn->sent = 0; 3625 } 3626 } 3627 } 3628 3629 static void hci_sched_acl_pkt(struct hci_dev *hdev) 3630 { 3631 unsigned int cnt = hdev->acl_cnt; 3632 struct hci_chan *chan; 3633 struct sk_buff *skb; 3634 int quote; 3635 3636 __check_timeout(hdev, cnt, ACL_LINK); 3637 3638 while (hdev->acl_cnt && 3639 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) { 3640 u32 priority = (skb_peek(&chan->data_q))->priority; 3641 while (quote-- && (skb = skb_peek(&chan->data_q))) { 3642 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 3643 skb->len, skb->priority); 3644 3645 /* Stop if priority has changed */ 3646 if (skb->priority < priority) 3647 break; 3648 3649 skb = skb_dequeue(&chan->data_q); 3650 3651 hci_conn_enter_active_mode(chan->conn, 3652 bt_cb(skb)->force_active); 3653 3654 hci_send_frame(hdev, skb); 3655 hdev->acl_last_tx = jiffies; 3656 3657 hdev->acl_cnt--; 3658 chan->sent++; 3659 chan->conn->sent++; 3660 3661 /* Send pending SCO packets right away */ 3662 hci_sched_sco(hdev); 3663 hci_sched_esco(hdev); 3664 } 3665 } 3666 3667 if (cnt != hdev->acl_cnt) 3668 hci_prio_recalculate(hdev, ACL_LINK); 3669 } 3670 3671 static void hci_sched_acl_blk(struct hci_dev *hdev) 3672 { 3673 unsigned int cnt = hdev->block_cnt; 3674 struct hci_chan *chan; 3675 struct sk_buff *skb; 3676 int quote; 3677 u8 type; 3678 3679 BT_DBG("%s", hdev->name); 3680 3681 if (hdev->dev_type == HCI_AMP) 3682 type = AMP_LINK; 3683 else 3684 type = ACL_LINK; 3685 3686 __check_timeout(hdev, cnt, type); 3687 3688 while (hdev->block_cnt > 0 && 3689 (chan = hci_chan_sent(hdev, type, "e))) { 3690 u32 priority = (skb_peek(&chan->data_q))->priority; 3691 while (quote > 0 && (skb = skb_peek(&chan->data_q))) { 3692 int blocks; 3693 3694 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 3695 skb->len, skb->priority); 3696 3697 /* Stop if priority has changed */ 3698 if (skb->priority < priority) 3699 break; 3700 3701 skb = skb_dequeue(&chan->data_q); 3702 3703 blocks = __get_blocks(hdev, skb); 3704 if (blocks > hdev->block_cnt) 3705 return; 3706 3707 hci_conn_enter_active_mode(chan->conn, 3708 bt_cb(skb)->force_active); 3709 3710 hci_send_frame(hdev, skb); 3711 hdev->acl_last_tx = jiffies; 3712 3713 hdev->block_cnt -= blocks; 3714 quote -= blocks; 3715 3716 chan->sent += blocks; 3717 chan->conn->sent += blocks; 3718 } 3719 } 3720 3721 if (cnt != hdev->block_cnt) 3722 hci_prio_recalculate(hdev, type); 3723 } 3724 3725 static void hci_sched_acl(struct hci_dev *hdev) 3726 { 3727 BT_DBG("%s", hdev->name); 3728 3729 /* No ACL link over BR/EDR controller */ 3730 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY) 3731 return; 3732 3733 /* No AMP link over AMP controller */ 3734 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP) 3735 return; 3736 3737 switch (hdev->flow_ctl_mode) { 3738 case HCI_FLOW_CTL_MODE_PACKET_BASED: 3739 hci_sched_acl_pkt(hdev); 3740 break; 3741 3742 case HCI_FLOW_CTL_MODE_BLOCK_BASED: 3743 hci_sched_acl_blk(hdev); 3744 break; 3745 } 3746 } 3747 3748 static void hci_sched_le(struct hci_dev *hdev) 3749 { 3750 struct hci_chan *chan; 3751 struct sk_buff *skb; 3752 int quote, cnt, tmp; 3753 3754 BT_DBG("%s", hdev->name); 3755 3756 if (!hci_conn_num(hdev, LE_LINK)) 3757 return; 3758 3759 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt; 3760 3761 __check_timeout(hdev, cnt, LE_LINK); 3762 3763 tmp = cnt; 3764 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) { 3765 u32 priority = (skb_peek(&chan->data_q))->priority; 3766 while (quote-- && (skb = skb_peek(&chan->data_q))) { 3767 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 3768 skb->len, skb->priority); 3769 3770 /* Stop if priority has changed */ 3771 if (skb->priority < priority) 3772 break; 3773 3774 skb = skb_dequeue(&chan->data_q); 3775 3776 hci_send_frame(hdev, skb); 3777 hdev->le_last_tx = jiffies; 3778 3779 cnt--; 3780 chan->sent++; 3781 chan->conn->sent++; 3782 3783 /* Send pending SCO packets right away */ 3784 hci_sched_sco(hdev); 3785 hci_sched_esco(hdev); 3786 } 3787 } 3788 3789 if (hdev->le_pkts) 3790 hdev->le_cnt = cnt; 3791 else 3792 hdev->acl_cnt = cnt; 3793 3794 if (cnt != tmp) 3795 hci_prio_recalculate(hdev, LE_LINK); 3796 } 3797 3798 /* Schedule CIS */ 3799 static void hci_sched_iso(struct hci_dev *hdev) 3800 { 3801 struct hci_conn *conn; 3802 struct sk_buff *skb; 3803 int quote, *cnt; 3804 3805 BT_DBG("%s", hdev->name); 3806 3807 if (!hci_conn_num(hdev, ISO_LINK)) 3808 return; 3809 3810 cnt = hdev->iso_pkts ? &hdev->iso_cnt : 3811 hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt; 3812 while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, "e))) { 3813 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 3814 BT_DBG("skb %p len %d", skb, skb->len); 3815 hci_send_frame(hdev, skb); 3816 3817 conn->sent++; 3818 if (conn->sent == ~0) 3819 conn->sent = 0; 3820 (*cnt)--; 3821 } 3822 } 3823 } 3824 3825 static void hci_tx_work(struct work_struct *work) 3826 { 3827 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work); 3828 struct sk_buff *skb; 3829 3830 BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt, 3831 hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt); 3832 3833 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 3834 /* Schedule queues and send stuff to HCI driver */ 3835 hci_sched_sco(hdev); 3836 hci_sched_esco(hdev); 3837 hci_sched_iso(hdev); 3838 hci_sched_acl(hdev); 3839 hci_sched_le(hdev); 3840 } 3841 3842 /* Send next queued raw (unknown type) packet */ 3843 while ((skb = skb_dequeue(&hdev->raw_q))) 3844 hci_send_frame(hdev, skb); 3845 } 3846 3847 /* ----- HCI RX task (incoming data processing) ----- */ 3848 3849 /* ACL data packet */ 3850 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb) 3851 { 3852 struct hci_acl_hdr *hdr = (void *) skb->data; 3853 struct hci_conn *conn; 3854 __u16 handle, flags; 3855 3856 skb_pull(skb, HCI_ACL_HDR_SIZE); 3857 3858 handle = __le16_to_cpu(hdr->handle); 3859 flags = hci_flags(handle); 3860 handle = hci_handle(handle); 3861 3862 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len, 3863 handle, flags); 3864 3865 hdev->stat.acl_rx++; 3866 3867 hci_dev_lock(hdev); 3868 conn = hci_conn_hash_lookup_handle(hdev, handle); 3869 hci_dev_unlock(hdev); 3870 3871 if (conn) { 3872 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF); 3873 3874 /* Send to upper protocol */ 3875 l2cap_recv_acldata(conn, skb, flags); 3876 return; 3877 } else { 3878 bt_dev_err(hdev, "ACL packet for unknown connection handle %d", 3879 handle); 3880 } 3881 3882 kfree_skb(skb); 3883 } 3884 3885 /* SCO data packet */ 3886 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb) 3887 { 3888 struct hci_sco_hdr *hdr = (void *) skb->data; 3889 struct hci_conn *conn; 3890 __u16 handle, flags; 3891 3892 skb_pull(skb, HCI_SCO_HDR_SIZE); 3893 3894 handle = __le16_to_cpu(hdr->handle); 3895 flags = hci_flags(handle); 3896 handle = hci_handle(handle); 3897 3898 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len, 3899 handle, flags); 3900 3901 hdev->stat.sco_rx++; 3902 3903 hci_dev_lock(hdev); 3904 conn = hci_conn_hash_lookup_handle(hdev, handle); 3905 hci_dev_unlock(hdev); 3906 3907 if (conn) { 3908 /* Send to upper protocol */ 3909 hci_skb_pkt_status(skb) = flags & 0x03; 3910 sco_recv_scodata(conn, skb); 3911 return; 3912 } else { 3913 bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d", 3914 handle); 3915 } 3916 3917 kfree_skb(skb); 3918 } 3919 3920 static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb) 3921 { 3922 struct hci_iso_hdr *hdr; 3923 struct hci_conn *conn; 3924 __u16 handle, flags; 3925 3926 hdr = skb_pull_data(skb, sizeof(*hdr)); 3927 if (!hdr) { 3928 bt_dev_err(hdev, "ISO packet too small"); 3929 goto drop; 3930 } 3931 3932 handle = __le16_to_cpu(hdr->handle); 3933 flags = hci_flags(handle); 3934 handle = hci_handle(handle); 3935 3936 bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len, 3937 handle, flags); 3938 3939 hci_dev_lock(hdev); 3940 conn = hci_conn_hash_lookup_handle(hdev, handle); 3941 hci_dev_unlock(hdev); 3942 3943 if (!conn) { 3944 bt_dev_err(hdev, "ISO packet for unknown connection handle %d", 3945 handle); 3946 goto drop; 3947 } 3948 3949 /* Send to upper protocol */ 3950 iso_recv(conn, skb, flags); 3951 return; 3952 3953 drop: 3954 kfree_skb(skb); 3955 } 3956 3957 static bool hci_req_is_complete(struct hci_dev *hdev) 3958 { 3959 struct sk_buff *skb; 3960 3961 skb = skb_peek(&hdev->cmd_q); 3962 if (!skb) 3963 return true; 3964 3965 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START); 3966 } 3967 3968 static void hci_resend_last(struct hci_dev *hdev) 3969 { 3970 struct hci_command_hdr *sent; 3971 struct sk_buff *skb; 3972 u16 opcode; 3973 3974 if (!hdev->sent_cmd) 3975 return; 3976 3977 sent = (void *) hdev->sent_cmd->data; 3978 opcode = __le16_to_cpu(sent->opcode); 3979 if (opcode == HCI_OP_RESET) 3980 return; 3981 3982 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL); 3983 if (!skb) 3984 return; 3985 3986 skb_queue_head(&hdev->cmd_q, skb); 3987 queue_work(hdev->workqueue, &hdev->cmd_work); 3988 } 3989 3990 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status, 3991 hci_req_complete_t *req_complete, 3992 hci_req_complete_skb_t *req_complete_skb) 3993 { 3994 struct sk_buff *skb; 3995 unsigned long flags; 3996 3997 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status); 3998 3999 /* If the completed command doesn't match the last one that was 4000 * sent we need to do special handling of it. 4001 */ 4002 if (!hci_sent_cmd_data(hdev, opcode)) { 4003 /* Some CSR based controllers generate a spontaneous 4004 * reset complete event during init and any pending 4005 * command will never be completed. In such a case we 4006 * need to resend whatever was the last sent 4007 * command. 4008 */ 4009 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET) 4010 hci_resend_last(hdev); 4011 4012 return; 4013 } 4014 4015 /* If we reach this point this event matches the last command sent */ 4016 hci_dev_clear_flag(hdev, HCI_CMD_PENDING); 4017 4018 /* If the command succeeded and there's still more commands in 4019 * this request the request is not yet complete. 4020 */ 4021 if (!status && !hci_req_is_complete(hdev)) 4022 return; 4023 4024 /* If this was the last command in a request the complete 4025 * callback would be found in hdev->sent_cmd instead of the 4026 * command queue (hdev->cmd_q). 4027 */ 4028 if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) { 4029 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb; 4030 return; 4031 } 4032 4033 if (bt_cb(hdev->sent_cmd)->hci.req_complete) { 4034 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete; 4035 return; 4036 } 4037 4038 /* Remove all pending commands belonging to this request */ 4039 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 4040 while ((skb = __skb_dequeue(&hdev->cmd_q))) { 4041 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) { 4042 __skb_queue_head(&hdev->cmd_q, skb); 4043 break; 4044 } 4045 4046 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) 4047 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb; 4048 else 4049 *req_complete = bt_cb(skb)->hci.req_complete; 4050 dev_kfree_skb_irq(skb); 4051 } 4052 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 4053 } 4054 4055 static void hci_rx_work(struct work_struct *work) 4056 { 4057 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work); 4058 struct sk_buff *skb; 4059 4060 BT_DBG("%s", hdev->name); 4061 4062 /* The kcov_remote functions used for collecting packet parsing 4063 * coverage information from this background thread and associate 4064 * the coverage with the syscall's thread which originally injected 4065 * the packet. This helps fuzzing the kernel. 4066 */ 4067 for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) { 4068 kcov_remote_start_common(skb_get_kcov_handle(skb)); 4069 4070 /* Send copy to monitor */ 4071 hci_send_to_monitor(hdev, skb); 4072 4073 if (atomic_read(&hdev->promisc)) { 4074 /* Send copy to the sockets */ 4075 hci_send_to_sock(hdev, skb); 4076 } 4077 4078 /* If the device has been opened in HCI_USER_CHANNEL, 4079 * the userspace has exclusive access to device. 4080 * When device is HCI_INIT, we still need to process 4081 * the data packets to the driver in order 4082 * to complete its setup(). 4083 */ 4084 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4085 !test_bit(HCI_INIT, &hdev->flags)) { 4086 kfree_skb(skb); 4087 continue; 4088 } 4089 4090 if (test_bit(HCI_INIT, &hdev->flags)) { 4091 /* Don't process data packets in this states. */ 4092 switch (hci_skb_pkt_type(skb)) { 4093 case HCI_ACLDATA_PKT: 4094 case HCI_SCODATA_PKT: 4095 case HCI_ISODATA_PKT: 4096 kfree_skb(skb); 4097 continue; 4098 } 4099 } 4100 4101 /* Process frame */ 4102 switch (hci_skb_pkt_type(skb)) { 4103 case HCI_EVENT_PKT: 4104 BT_DBG("%s Event packet", hdev->name); 4105 hci_event_packet(hdev, skb); 4106 break; 4107 4108 case HCI_ACLDATA_PKT: 4109 BT_DBG("%s ACL data packet", hdev->name); 4110 hci_acldata_packet(hdev, skb); 4111 break; 4112 4113 case HCI_SCODATA_PKT: 4114 BT_DBG("%s SCO data packet", hdev->name); 4115 hci_scodata_packet(hdev, skb); 4116 break; 4117 4118 case HCI_ISODATA_PKT: 4119 BT_DBG("%s ISO data packet", hdev->name); 4120 hci_isodata_packet(hdev, skb); 4121 break; 4122 4123 default: 4124 kfree_skb(skb); 4125 break; 4126 } 4127 } 4128 } 4129 4130 static void hci_cmd_work(struct work_struct *work) 4131 { 4132 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work); 4133 struct sk_buff *skb; 4134 4135 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name, 4136 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q)); 4137 4138 /* Send queued commands */ 4139 if (atomic_read(&hdev->cmd_cnt)) { 4140 skb = skb_dequeue(&hdev->cmd_q); 4141 if (!skb) 4142 return; 4143 4144 kfree_skb(hdev->sent_cmd); 4145 4146 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL); 4147 if (hdev->sent_cmd) { 4148 int res; 4149 if (hci_req_status_pend(hdev)) 4150 hci_dev_set_flag(hdev, HCI_CMD_PENDING); 4151 atomic_dec(&hdev->cmd_cnt); 4152 4153 res = hci_send_frame(hdev, skb); 4154 if (res < 0) 4155 __hci_cmd_sync_cancel(hdev, -res); 4156 4157 rcu_read_lock(); 4158 if (test_bit(HCI_RESET, &hdev->flags) || 4159 hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE)) 4160 cancel_delayed_work(&hdev->cmd_timer); 4161 else 4162 queue_delayed_work(hdev->workqueue, &hdev->cmd_timer, 4163 HCI_CMD_TIMEOUT); 4164 rcu_read_unlock(); 4165 } else { 4166 skb_queue_head(&hdev->cmd_q, skb); 4167 queue_work(hdev->workqueue, &hdev->cmd_work); 4168 } 4169 } 4170 } 4171