1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (C) 2000-2001 Qualcomm Incorporated 4 Copyright (C) 2011 ProFUSION Embedded Systems 5 6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License version 2 as 10 published by the Free Software Foundation; 11 12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 23 SOFTWARE IS DISCLAIMED. 24 */ 25 26 /* Bluetooth HCI core. */ 27 28 #include <linux/export.h> 29 #include <linux/rfkill.h> 30 #include <linux/debugfs.h> 31 #include <linux/crypto.h> 32 #include <linux/property.h> 33 #include <linux/suspend.h> 34 #include <linux/wait.h> 35 #include <asm/unaligned.h> 36 37 #include <net/bluetooth/bluetooth.h> 38 #include <net/bluetooth/hci_core.h> 39 #include <net/bluetooth/l2cap.h> 40 #include <net/bluetooth/mgmt.h> 41 42 #include "hci_request.h" 43 #include "hci_debugfs.h" 44 #include "smp.h" 45 #include "leds.h" 46 #include "msft.h" 47 48 static void hci_rx_work(struct work_struct *work); 49 static void hci_cmd_work(struct work_struct *work); 50 static void hci_tx_work(struct work_struct *work); 51 52 /* HCI device list */ 53 LIST_HEAD(hci_dev_list); 54 DEFINE_RWLOCK(hci_dev_list_lock); 55 56 /* HCI callback list */ 57 LIST_HEAD(hci_cb_list); 58 DEFINE_MUTEX(hci_cb_list_lock); 59 60 /* HCI ID Numbering */ 61 static DEFINE_IDA(hci_index_ida); 62 63 /* ---- HCI debugfs entries ---- */ 64 65 static ssize_t dut_mode_read(struct file *file, char __user *user_buf, 66 size_t count, loff_t *ppos) 67 { 68 struct hci_dev *hdev = file->private_data; 69 char buf[3]; 70 71 buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N'; 72 buf[1] = '\n'; 73 buf[2] = '\0'; 74 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 75 } 76 77 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf, 78 size_t count, loff_t *ppos) 79 { 80 struct hci_dev *hdev = file->private_data; 81 struct sk_buff *skb; 82 bool enable; 83 int err; 84 85 if (!test_bit(HCI_UP, &hdev->flags)) 86 return -ENETDOWN; 87 88 err = kstrtobool_from_user(user_buf, count, &enable); 89 if (err) 90 return err; 91 92 if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE)) 93 return -EALREADY; 94 95 hci_req_sync_lock(hdev); 96 if (enable) 97 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL, 98 HCI_CMD_TIMEOUT); 99 else 100 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, 101 HCI_CMD_TIMEOUT); 102 hci_req_sync_unlock(hdev); 103 104 if (IS_ERR(skb)) 105 return PTR_ERR(skb); 106 107 kfree_skb(skb); 108 109 hci_dev_change_flag(hdev, HCI_DUT_MODE); 110 111 return count; 112 } 113 114 static const struct file_operations dut_mode_fops = { 115 .open = simple_open, 116 .read = dut_mode_read, 117 .write = dut_mode_write, 118 .llseek = default_llseek, 119 }; 120 121 static ssize_t vendor_diag_read(struct file *file, char __user *user_buf, 122 size_t count, loff_t *ppos) 123 { 124 struct hci_dev *hdev = file->private_data; 125 char buf[3]; 126 127 buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N'; 128 buf[1] = '\n'; 129 buf[2] = '\0'; 130 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 131 } 132 133 static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf, 134 size_t count, loff_t *ppos) 135 { 136 struct hci_dev *hdev = file->private_data; 137 bool enable; 138 int err; 139 140 err = kstrtobool_from_user(user_buf, count, &enable); 141 if (err) 142 return err; 143 144 /* When the diagnostic flags are not persistent and the transport 145 * is not active or in user channel operation, then there is no need 146 * for the vendor callback. Instead just store the desired value and 147 * the setting will be programmed when the controller gets powered on. 148 */ 149 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 150 (!test_bit(HCI_RUNNING, &hdev->flags) || 151 hci_dev_test_flag(hdev, HCI_USER_CHANNEL))) 152 goto done; 153 154 hci_req_sync_lock(hdev); 155 err = hdev->set_diag(hdev, enable); 156 hci_req_sync_unlock(hdev); 157 158 if (err < 0) 159 return err; 160 161 done: 162 if (enable) 163 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG); 164 else 165 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG); 166 167 return count; 168 } 169 170 static const struct file_operations vendor_diag_fops = { 171 .open = simple_open, 172 .read = vendor_diag_read, 173 .write = vendor_diag_write, 174 .llseek = default_llseek, 175 }; 176 177 static void hci_debugfs_create_basic(struct hci_dev *hdev) 178 { 179 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev, 180 &dut_mode_fops); 181 182 if (hdev->set_diag) 183 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev, 184 &vendor_diag_fops); 185 } 186 187 static int hci_reset_req(struct hci_request *req, unsigned long opt) 188 { 189 BT_DBG("%s %ld", req->hdev->name, opt); 190 191 /* Reset device */ 192 set_bit(HCI_RESET, &req->hdev->flags); 193 hci_req_add(req, HCI_OP_RESET, 0, NULL); 194 return 0; 195 } 196 197 static void bredr_init(struct hci_request *req) 198 { 199 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED; 200 201 /* Read Local Supported Features */ 202 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL); 203 204 /* Read Local Version */ 205 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL); 206 207 /* Read BD Address */ 208 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL); 209 } 210 211 static void amp_init1(struct hci_request *req) 212 { 213 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED; 214 215 /* Read Local Version */ 216 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL); 217 218 /* Read Local Supported Commands */ 219 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL); 220 221 /* Read Local AMP Info */ 222 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL); 223 224 /* Read Data Blk size */ 225 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL); 226 227 /* Read Flow Control Mode */ 228 hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL); 229 230 /* Read Location Data */ 231 hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL); 232 } 233 234 static int amp_init2(struct hci_request *req) 235 { 236 /* Read Local Supported Features. Not all AMP controllers 237 * support this so it's placed conditionally in the second 238 * stage init. 239 */ 240 if (req->hdev->commands[14] & 0x20) 241 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL); 242 243 return 0; 244 } 245 246 static int hci_init1_req(struct hci_request *req, unsigned long opt) 247 { 248 struct hci_dev *hdev = req->hdev; 249 250 BT_DBG("%s %ld", hdev->name, opt); 251 252 /* Reset */ 253 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) 254 hci_reset_req(req, 0); 255 256 switch (hdev->dev_type) { 257 case HCI_PRIMARY: 258 bredr_init(req); 259 break; 260 case HCI_AMP: 261 amp_init1(req); 262 break; 263 default: 264 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type); 265 break; 266 } 267 268 return 0; 269 } 270 271 static void bredr_setup(struct hci_request *req) 272 { 273 __le16 param; 274 __u8 flt_type; 275 276 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 277 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL); 278 279 /* Read Class of Device */ 280 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL); 281 282 /* Read Local Name */ 283 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL); 284 285 /* Read Voice Setting */ 286 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL); 287 288 /* Read Number of Supported IAC */ 289 hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL); 290 291 /* Read Current IAC LAP */ 292 hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL); 293 294 /* Clear Event Filters */ 295 flt_type = HCI_FLT_CLEAR_ALL; 296 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type); 297 298 /* Connection accept timeout ~20 secs */ 299 param = cpu_to_le16(0x7d00); 300 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, ¶m); 301 } 302 303 static void le_setup(struct hci_request *req) 304 { 305 struct hci_dev *hdev = req->hdev; 306 307 /* Read LE Buffer Size */ 308 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL); 309 310 /* Read LE Local Supported Features */ 311 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL); 312 313 /* Read LE Supported States */ 314 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL); 315 316 /* LE-only controllers have LE implicitly enabled */ 317 if (!lmp_bredr_capable(hdev)) 318 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 319 } 320 321 static void hci_setup_event_mask(struct hci_request *req) 322 { 323 struct hci_dev *hdev = req->hdev; 324 325 /* The second byte is 0xff instead of 0x9f (two reserved bits 326 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 327 * command otherwise. 328 */ 329 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 330 331 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 332 * any event mask for pre 1.2 devices. 333 */ 334 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 335 return; 336 337 if (lmp_bredr_capable(hdev)) { 338 events[4] |= 0x01; /* Flow Specification Complete */ 339 } else { 340 /* Use a different default for LE-only devices */ 341 memset(events, 0, sizeof(events)); 342 events[1] |= 0x20; /* Command Complete */ 343 events[1] |= 0x40; /* Command Status */ 344 events[1] |= 0x80; /* Hardware Error */ 345 346 /* If the controller supports the Disconnect command, enable 347 * the corresponding event. In addition enable packet flow 348 * control related events. 349 */ 350 if (hdev->commands[0] & 0x20) { 351 events[0] |= 0x10; /* Disconnection Complete */ 352 events[2] |= 0x04; /* Number of Completed Packets */ 353 events[3] |= 0x02; /* Data Buffer Overflow */ 354 } 355 356 /* If the controller supports the Read Remote Version 357 * Information command, enable the corresponding event. 358 */ 359 if (hdev->commands[2] & 0x80) 360 events[1] |= 0x08; /* Read Remote Version Information 361 * Complete 362 */ 363 364 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 365 events[0] |= 0x80; /* Encryption Change */ 366 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 367 } 368 } 369 370 if (lmp_inq_rssi_capable(hdev) || 371 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 372 events[4] |= 0x02; /* Inquiry Result with RSSI */ 373 374 if (lmp_ext_feat_capable(hdev)) 375 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 376 377 if (lmp_esco_capable(hdev)) { 378 events[5] |= 0x08; /* Synchronous Connection Complete */ 379 events[5] |= 0x10; /* Synchronous Connection Changed */ 380 } 381 382 if (lmp_sniffsubr_capable(hdev)) 383 events[5] |= 0x20; /* Sniff Subrating */ 384 385 if (lmp_pause_enc_capable(hdev)) 386 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 387 388 if (lmp_ext_inq_capable(hdev)) 389 events[5] |= 0x40; /* Extended Inquiry Result */ 390 391 if (lmp_no_flush_capable(hdev)) 392 events[7] |= 0x01; /* Enhanced Flush Complete */ 393 394 if (lmp_lsto_capable(hdev)) 395 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 396 397 if (lmp_ssp_capable(hdev)) { 398 events[6] |= 0x01; /* IO Capability Request */ 399 events[6] |= 0x02; /* IO Capability Response */ 400 events[6] |= 0x04; /* User Confirmation Request */ 401 events[6] |= 0x08; /* User Passkey Request */ 402 events[6] |= 0x10; /* Remote OOB Data Request */ 403 events[6] |= 0x20; /* Simple Pairing Complete */ 404 events[7] |= 0x04; /* User Passkey Notification */ 405 events[7] |= 0x08; /* Keypress Notification */ 406 events[7] |= 0x10; /* Remote Host Supported 407 * Features Notification 408 */ 409 } 410 411 if (lmp_le_capable(hdev)) 412 events[7] |= 0x20; /* LE Meta-Event */ 413 414 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events); 415 } 416 417 static int hci_init2_req(struct hci_request *req, unsigned long opt) 418 { 419 struct hci_dev *hdev = req->hdev; 420 421 if (hdev->dev_type == HCI_AMP) 422 return amp_init2(req); 423 424 if (lmp_bredr_capable(hdev)) 425 bredr_setup(req); 426 else 427 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); 428 429 if (lmp_le_capable(hdev)) 430 le_setup(req); 431 432 /* All Bluetooth 1.2 and later controllers should support the 433 * HCI command for reading the local supported commands. 434 * 435 * Unfortunately some controllers indicate Bluetooth 1.2 support, 436 * but do not have support for this command. If that is the case, 437 * the driver can quirk the behavior and skip reading the local 438 * supported commands. 439 */ 440 if (hdev->hci_ver > BLUETOOTH_VER_1_1 && 441 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) 442 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL); 443 444 if (lmp_ssp_capable(hdev)) { 445 /* When SSP is available, then the host features page 446 * should also be available as well. However some 447 * controllers list the max_page as 0 as long as SSP 448 * has not been enabled. To achieve proper debugging 449 * output, force the minimum max_page to 1 at least. 450 */ 451 hdev->max_page = 0x01; 452 453 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) { 454 u8 mode = 0x01; 455 456 hci_req_add(req, HCI_OP_WRITE_SSP_MODE, 457 sizeof(mode), &mode); 458 } else { 459 struct hci_cp_write_eir cp; 460 461 memset(hdev->eir, 0, sizeof(hdev->eir)); 462 memset(&cp, 0, sizeof(cp)); 463 464 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp); 465 } 466 } 467 468 if (lmp_inq_rssi_capable(hdev) || 469 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) { 470 u8 mode; 471 472 /* If Extended Inquiry Result events are supported, then 473 * they are clearly preferred over Inquiry Result with RSSI 474 * events. 475 */ 476 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; 477 478 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode); 479 } 480 481 if (lmp_inq_tx_pwr_capable(hdev)) 482 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL); 483 484 if (lmp_ext_feat_capable(hdev)) { 485 struct hci_cp_read_local_ext_features cp; 486 487 cp.page = 0x01; 488 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES, 489 sizeof(cp), &cp); 490 } 491 492 if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) { 493 u8 enable = 1; 494 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable), 495 &enable); 496 } 497 498 return 0; 499 } 500 501 static void hci_setup_link_policy(struct hci_request *req) 502 { 503 struct hci_dev *hdev = req->hdev; 504 struct hci_cp_write_def_link_policy cp; 505 u16 link_policy = 0; 506 507 if (lmp_rswitch_capable(hdev)) 508 link_policy |= HCI_LP_RSWITCH; 509 if (lmp_hold_capable(hdev)) 510 link_policy |= HCI_LP_HOLD; 511 if (lmp_sniff_capable(hdev)) 512 link_policy |= HCI_LP_SNIFF; 513 if (lmp_park_capable(hdev)) 514 link_policy |= HCI_LP_PARK; 515 516 cp.policy = cpu_to_le16(link_policy); 517 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp); 518 } 519 520 static void hci_set_le_support(struct hci_request *req) 521 { 522 struct hci_dev *hdev = req->hdev; 523 struct hci_cp_write_le_host_supported cp; 524 525 /* LE-only devices do not support explicit enablement */ 526 if (!lmp_bredr_capable(hdev)) 527 return; 528 529 memset(&cp, 0, sizeof(cp)); 530 531 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 532 cp.le = 0x01; 533 cp.simul = 0x00; 534 } 535 536 if (cp.le != lmp_host_le_capable(hdev)) 537 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp), 538 &cp); 539 } 540 541 static void hci_set_event_mask_page_2(struct hci_request *req) 542 { 543 struct hci_dev *hdev = req->hdev; 544 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 545 bool changed = false; 546 547 /* If Connectionless Slave Broadcast master role is supported 548 * enable all necessary events for it. 549 */ 550 if (lmp_csb_master_capable(hdev)) { 551 events[1] |= 0x40; /* Triggered Clock Capture */ 552 events[1] |= 0x80; /* Synchronization Train Complete */ 553 events[2] |= 0x10; /* Slave Page Response Timeout */ 554 events[2] |= 0x20; /* CSB Channel Map Change */ 555 changed = true; 556 } 557 558 /* If Connectionless Slave Broadcast slave role is supported 559 * enable all necessary events for it. 560 */ 561 if (lmp_csb_slave_capable(hdev)) { 562 events[2] |= 0x01; /* Synchronization Train Received */ 563 events[2] |= 0x02; /* CSB Receive */ 564 events[2] |= 0x04; /* CSB Timeout */ 565 events[2] |= 0x08; /* Truncated Page Complete */ 566 changed = true; 567 } 568 569 /* Enable Authenticated Payload Timeout Expired event if supported */ 570 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { 571 events[2] |= 0x80; 572 changed = true; 573 } 574 575 /* Some Broadcom based controllers indicate support for Set Event 576 * Mask Page 2 command, but then actually do not support it. Since 577 * the default value is all bits set to zero, the command is only 578 * required if the event mask has to be changed. In case no change 579 * to the event mask is needed, skip this command. 580 */ 581 if (changed) 582 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, 583 sizeof(events), events); 584 } 585 586 static int hci_init3_req(struct hci_request *req, unsigned long opt) 587 { 588 struct hci_dev *hdev = req->hdev; 589 u8 p; 590 591 hci_setup_event_mask(req); 592 593 if (hdev->commands[6] & 0x20 && 594 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) { 595 struct hci_cp_read_stored_link_key cp; 596 597 bacpy(&cp.bdaddr, BDADDR_ANY); 598 cp.read_all = 0x01; 599 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp); 600 } 601 602 if (hdev->commands[5] & 0x10) 603 hci_setup_link_policy(req); 604 605 if (hdev->commands[8] & 0x01) 606 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL); 607 608 if (hdev->commands[18] & 0x04 && 609 !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 610 hci_req_add(req, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 0, NULL); 611 612 /* Some older Broadcom based Bluetooth 1.2 controllers do not 613 * support the Read Page Scan Type command. Check support for 614 * this command in the bit mask of supported commands. 615 */ 616 if (hdev->commands[13] & 0x01) 617 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL); 618 619 if (lmp_le_capable(hdev)) { 620 u8 events[8]; 621 622 memset(events, 0, sizeof(events)); 623 624 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 625 events[0] |= 0x10; /* LE Long Term Key Request */ 626 627 /* If controller supports the Connection Parameters Request 628 * Link Layer Procedure, enable the corresponding event. 629 */ 630 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 631 events[0] |= 0x20; /* LE Remote Connection 632 * Parameter Request 633 */ 634 635 /* If the controller supports the Data Length Extension 636 * feature, enable the corresponding event. 637 */ 638 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) 639 events[0] |= 0x40; /* LE Data Length Change */ 640 641 /* If the controller supports LL Privacy feature, enable 642 * the corresponding event. 643 */ 644 if (hdev->le_features[0] & HCI_LE_LL_PRIVACY) 645 events[1] |= 0x02; /* LE Enhanced Connection 646 * Complete 647 */ 648 649 /* If the controller supports Extended Scanner Filter 650 * Policies, enable the correspondig event. 651 */ 652 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) 653 events[1] |= 0x04; /* LE Direct Advertising 654 * Report 655 */ 656 657 /* If the controller supports Channel Selection Algorithm #2 658 * feature, enable the corresponding event. 659 */ 660 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) 661 events[2] |= 0x08; /* LE Channel Selection 662 * Algorithm 663 */ 664 665 /* If the controller supports the LE Set Scan Enable command, 666 * enable the corresponding advertising report event. 667 */ 668 if (hdev->commands[26] & 0x08) 669 events[0] |= 0x02; /* LE Advertising Report */ 670 671 /* If the controller supports the LE Create Connection 672 * command, enable the corresponding event. 673 */ 674 if (hdev->commands[26] & 0x10) 675 events[0] |= 0x01; /* LE Connection Complete */ 676 677 /* If the controller supports the LE Connection Update 678 * command, enable the corresponding event. 679 */ 680 if (hdev->commands[27] & 0x04) 681 events[0] |= 0x04; /* LE Connection Update 682 * Complete 683 */ 684 685 /* If the controller supports the LE Read Remote Used Features 686 * command, enable the corresponding event. 687 */ 688 if (hdev->commands[27] & 0x20) 689 events[0] |= 0x08; /* LE Read Remote Used 690 * Features Complete 691 */ 692 693 /* If the controller supports the LE Read Local P-256 694 * Public Key command, enable the corresponding event. 695 */ 696 if (hdev->commands[34] & 0x02) 697 events[0] |= 0x80; /* LE Read Local P-256 698 * Public Key Complete 699 */ 700 701 /* If the controller supports the LE Generate DHKey 702 * command, enable the corresponding event. 703 */ 704 if (hdev->commands[34] & 0x04) 705 events[1] |= 0x01; /* LE Generate DHKey Complete */ 706 707 /* If the controller supports the LE Set Default PHY or 708 * LE Set PHY commands, enable the corresponding event. 709 */ 710 if (hdev->commands[35] & (0x20 | 0x40)) 711 events[1] |= 0x08; /* LE PHY Update Complete */ 712 713 /* If the controller supports LE Set Extended Scan Parameters 714 * and LE Set Extended Scan Enable commands, enable the 715 * corresponding event. 716 */ 717 if (use_ext_scan(hdev)) 718 events[1] |= 0x10; /* LE Extended Advertising 719 * Report 720 */ 721 722 /* If the controller supports the LE Extended Advertising 723 * command, enable the corresponding event. 724 */ 725 if (ext_adv_capable(hdev)) 726 events[2] |= 0x02; /* LE Advertising Set 727 * Terminated 728 */ 729 730 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events), 731 events); 732 733 /* Read LE Advertising Channel TX Power */ 734 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) { 735 /* HCI TS spec forbids mixing of legacy and extended 736 * advertising commands wherein READ_ADV_TX_POWER is 737 * also included. So do not call it if extended adv 738 * is supported otherwise controller will return 739 * COMMAND_DISALLOWED for extended commands. 740 */ 741 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL); 742 } 743 744 if (hdev->commands[26] & 0x40) { 745 /* Read LE White List Size */ 746 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE, 747 0, NULL); 748 } 749 750 if (hdev->commands[26] & 0x80) { 751 /* Clear LE White List */ 752 hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL); 753 } 754 755 if (hdev->commands[34] & 0x40) { 756 /* Read LE Resolving List Size */ 757 hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE, 758 0, NULL); 759 } 760 761 if (hdev->commands[34] & 0x20) { 762 /* Clear LE Resolving List */ 763 hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL); 764 } 765 766 if (hdev->commands[35] & 0x40) { 767 __le16 rpa_timeout = cpu_to_le16(hdev->rpa_timeout); 768 769 /* Set RPA timeout */ 770 hci_req_add(req, HCI_OP_LE_SET_RPA_TIMEOUT, 2, 771 &rpa_timeout); 772 } 773 774 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) { 775 /* Read LE Maximum Data Length */ 776 hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL); 777 778 /* Read LE Suggested Default Data Length */ 779 hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL); 780 } 781 782 if (ext_adv_capable(hdev)) { 783 /* Read LE Number of Supported Advertising Sets */ 784 hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 785 0, NULL); 786 } 787 788 hci_set_le_support(req); 789 } 790 791 /* Read features beyond page 1 if available */ 792 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) { 793 struct hci_cp_read_local_ext_features cp; 794 795 cp.page = p; 796 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES, 797 sizeof(cp), &cp); 798 } 799 800 return 0; 801 } 802 803 static int hci_init4_req(struct hci_request *req, unsigned long opt) 804 { 805 struct hci_dev *hdev = req->hdev; 806 807 /* Some Broadcom based Bluetooth controllers do not support the 808 * Delete Stored Link Key command. They are clearly indicating its 809 * absence in the bit mask of supported commands. 810 * 811 * Check the supported commands and only if the command is marked 812 * as supported send it. If not supported assume that the controller 813 * does not have actual support for stored link keys which makes this 814 * command redundant anyway. 815 * 816 * Some controllers indicate that they support handling deleting 817 * stored link keys, but they don't. The quirk lets a driver 818 * just disable this command. 819 */ 820 if (hdev->commands[6] & 0x80 && 821 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) { 822 struct hci_cp_delete_stored_link_key cp; 823 824 bacpy(&cp.bdaddr, BDADDR_ANY); 825 cp.delete_all = 0x01; 826 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY, 827 sizeof(cp), &cp); 828 } 829 830 /* Set event mask page 2 if the HCI command for it is supported */ 831 if (hdev->commands[22] & 0x04) 832 hci_set_event_mask_page_2(req); 833 834 /* Read local codec list if the HCI command is supported */ 835 if (hdev->commands[29] & 0x20) 836 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL); 837 838 /* Read local pairing options if the HCI command is supported */ 839 if (hdev->commands[41] & 0x08) 840 hci_req_add(req, HCI_OP_READ_LOCAL_PAIRING_OPTS, 0, NULL); 841 842 /* Get MWS transport configuration if the HCI command is supported */ 843 if (hdev->commands[30] & 0x08) 844 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL); 845 846 /* Check for Synchronization Train support */ 847 if (lmp_sync_train_capable(hdev)) 848 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL); 849 850 /* Enable Secure Connections if supported and configured */ 851 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) && 852 bredr_sc_enabled(hdev)) { 853 u8 support = 0x01; 854 855 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT, 856 sizeof(support), &support); 857 } 858 859 /* Set erroneous data reporting if supported to the wideband speech 860 * setting value 861 */ 862 if (hdev->commands[18] & 0x08 && 863 !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) { 864 bool enabled = hci_dev_test_flag(hdev, 865 HCI_WIDEBAND_SPEECH_ENABLED); 866 867 if (enabled != 868 (hdev->err_data_reporting == ERR_DATA_REPORTING_ENABLED)) { 869 struct hci_cp_write_def_err_data_reporting cp; 870 871 cp.err_data_reporting = enabled ? 872 ERR_DATA_REPORTING_ENABLED : 873 ERR_DATA_REPORTING_DISABLED; 874 875 hci_req_add(req, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, 876 sizeof(cp), &cp); 877 } 878 } 879 880 /* Set Suggested Default Data Length to maximum if supported */ 881 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) { 882 struct hci_cp_le_write_def_data_len cp; 883 884 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len); 885 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time); 886 hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp); 887 } 888 889 /* Set Default PHY parameters if command is supported */ 890 if (hdev->commands[35] & 0x20) { 891 struct hci_cp_le_set_default_phy cp; 892 893 cp.all_phys = 0x00; 894 cp.tx_phys = hdev->le_tx_def_phys; 895 cp.rx_phys = hdev->le_rx_def_phys; 896 897 hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp); 898 } 899 900 return 0; 901 } 902 903 static int __hci_init(struct hci_dev *hdev) 904 { 905 int err; 906 907 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL); 908 if (err < 0) 909 return err; 910 911 if (hci_dev_test_flag(hdev, HCI_SETUP)) 912 hci_debugfs_create_basic(hdev); 913 914 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL); 915 if (err < 0) 916 return err; 917 918 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode 919 * BR/EDR/LE type controllers. AMP controllers only need the 920 * first two stages of init. 921 */ 922 if (hdev->dev_type != HCI_PRIMARY) 923 return 0; 924 925 err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL); 926 if (err < 0) 927 return err; 928 929 err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL); 930 if (err < 0) 931 return err; 932 933 /* This function is only called when the controller is actually in 934 * configured state. When the controller is marked as unconfigured, 935 * this initialization procedure is not run. 936 * 937 * It means that it is possible that a controller runs through its 938 * setup phase and then discovers missing settings. If that is the 939 * case, then this function will not be called. It then will only 940 * be called during the config phase. 941 * 942 * So only when in setup phase or config phase, create the debugfs 943 * entries and register the SMP channels. 944 */ 945 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 946 !hci_dev_test_flag(hdev, HCI_CONFIG)) 947 return 0; 948 949 hci_debugfs_create_common(hdev); 950 951 if (lmp_bredr_capable(hdev)) 952 hci_debugfs_create_bredr(hdev); 953 954 if (lmp_le_capable(hdev)) 955 hci_debugfs_create_le(hdev); 956 957 return 0; 958 } 959 960 static int hci_init0_req(struct hci_request *req, unsigned long opt) 961 { 962 struct hci_dev *hdev = req->hdev; 963 964 BT_DBG("%s %ld", hdev->name, opt); 965 966 /* Reset */ 967 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) 968 hci_reset_req(req, 0); 969 970 /* Read Local Version */ 971 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL); 972 973 /* Read BD Address */ 974 if (hdev->set_bdaddr) 975 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL); 976 977 return 0; 978 } 979 980 static int __hci_unconf_init(struct hci_dev *hdev) 981 { 982 int err; 983 984 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 985 return 0; 986 987 err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL); 988 if (err < 0) 989 return err; 990 991 if (hci_dev_test_flag(hdev, HCI_SETUP)) 992 hci_debugfs_create_basic(hdev); 993 994 return 0; 995 } 996 997 static int hci_scan_req(struct hci_request *req, unsigned long opt) 998 { 999 __u8 scan = opt; 1000 1001 BT_DBG("%s %x", req->hdev->name, scan); 1002 1003 /* Inquiry and Page scans */ 1004 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); 1005 return 0; 1006 } 1007 1008 static int hci_auth_req(struct hci_request *req, unsigned long opt) 1009 { 1010 __u8 auth = opt; 1011 1012 BT_DBG("%s %x", req->hdev->name, auth); 1013 1014 /* Authentication */ 1015 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth); 1016 return 0; 1017 } 1018 1019 static int hci_encrypt_req(struct hci_request *req, unsigned long opt) 1020 { 1021 __u8 encrypt = opt; 1022 1023 BT_DBG("%s %x", req->hdev->name, encrypt); 1024 1025 /* Encryption */ 1026 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt); 1027 return 0; 1028 } 1029 1030 static int hci_linkpol_req(struct hci_request *req, unsigned long opt) 1031 { 1032 __le16 policy = cpu_to_le16(opt); 1033 1034 BT_DBG("%s %x", req->hdev->name, policy); 1035 1036 /* Default link policy */ 1037 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy); 1038 return 0; 1039 } 1040 1041 /* Get HCI device by index. 1042 * Device is held on return. */ 1043 struct hci_dev *hci_dev_get(int index) 1044 { 1045 struct hci_dev *hdev = NULL, *d; 1046 1047 BT_DBG("%d", index); 1048 1049 if (index < 0) 1050 return NULL; 1051 1052 read_lock(&hci_dev_list_lock); 1053 list_for_each_entry(d, &hci_dev_list, list) { 1054 if (d->id == index) { 1055 hdev = hci_dev_hold(d); 1056 break; 1057 } 1058 } 1059 read_unlock(&hci_dev_list_lock); 1060 return hdev; 1061 } 1062 1063 /* ---- Inquiry support ---- */ 1064 1065 bool hci_discovery_active(struct hci_dev *hdev) 1066 { 1067 struct discovery_state *discov = &hdev->discovery; 1068 1069 switch (discov->state) { 1070 case DISCOVERY_FINDING: 1071 case DISCOVERY_RESOLVING: 1072 return true; 1073 1074 default: 1075 return false; 1076 } 1077 } 1078 1079 void hci_discovery_set_state(struct hci_dev *hdev, int state) 1080 { 1081 int old_state = hdev->discovery.state; 1082 1083 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state); 1084 1085 if (old_state == state) 1086 return; 1087 1088 hdev->discovery.state = state; 1089 1090 switch (state) { 1091 case DISCOVERY_STOPPED: 1092 hci_update_background_scan(hdev); 1093 1094 if (old_state != DISCOVERY_STARTING) 1095 mgmt_discovering(hdev, 0); 1096 break; 1097 case DISCOVERY_STARTING: 1098 break; 1099 case DISCOVERY_FINDING: 1100 mgmt_discovering(hdev, 1); 1101 break; 1102 case DISCOVERY_RESOLVING: 1103 break; 1104 case DISCOVERY_STOPPING: 1105 break; 1106 } 1107 } 1108 1109 void hci_inquiry_cache_flush(struct hci_dev *hdev) 1110 { 1111 struct discovery_state *cache = &hdev->discovery; 1112 struct inquiry_entry *p, *n; 1113 1114 list_for_each_entry_safe(p, n, &cache->all, all) { 1115 list_del(&p->all); 1116 kfree(p); 1117 } 1118 1119 INIT_LIST_HEAD(&cache->unknown); 1120 INIT_LIST_HEAD(&cache->resolve); 1121 } 1122 1123 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, 1124 bdaddr_t *bdaddr) 1125 { 1126 struct discovery_state *cache = &hdev->discovery; 1127 struct inquiry_entry *e; 1128 1129 BT_DBG("cache %p, %pMR", cache, bdaddr); 1130 1131 list_for_each_entry(e, &cache->all, all) { 1132 if (!bacmp(&e->data.bdaddr, bdaddr)) 1133 return e; 1134 } 1135 1136 return NULL; 1137 } 1138 1139 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, 1140 bdaddr_t *bdaddr) 1141 { 1142 struct discovery_state *cache = &hdev->discovery; 1143 struct inquiry_entry *e; 1144 1145 BT_DBG("cache %p, %pMR", cache, bdaddr); 1146 1147 list_for_each_entry(e, &cache->unknown, list) { 1148 if (!bacmp(&e->data.bdaddr, bdaddr)) 1149 return e; 1150 } 1151 1152 return NULL; 1153 } 1154 1155 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, 1156 bdaddr_t *bdaddr, 1157 int state) 1158 { 1159 struct discovery_state *cache = &hdev->discovery; 1160 struct inquiry_entry *e; 1161 1162 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state); 1163 1164 list_for_each_entry(e, &cache->resolve, list) { 1165 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state) 1166 return e; 1167 if (!bacmp(&e->data.bdaddr, bdaddr)) 1168 return e; 1169 } 1170 1171 return NULL; 1172 } 1173 1174 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, 1175 struct inquiry_entry *ie) 1176 { 1177 struct discovery_state *cache = &hdev->discovery; 1178 struct list_head *pos = &cache->resolve; 1179 struct inquiry_entry *p; 1180 1181 list_del(&ie->list); 1182 1183 list_for_each_entry(p, &cache->resolve, list) { 1184 if (p->name_state != NAME_PENDING && 1185 abs(p->data.rssi) >= abs(ie->data.rssi)) 1186 break; 1187 pos = &p->list; 1188 } 1189 1190 list_add(&ie->list, pos); 1191 } 1192 1193 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, 1194 bool name_known) 1195 { 1196 struct discovery_state *cache = &hdev->discovery; 1197 struct inquiry_entry *ie; 1198 u32 flags = 0; 1199 1200 BT_DBG("cache %p, %pMR", cache, &data->bdaddr); 1201 1202 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR); 1203 1204 if (!data->ssp_mode) 1205 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 1206 1207 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr); 1208 if (ie) { 1209 if (!ie->data.ssp_mode) 1210 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 1211 1212 if (ie->name_state == NAME_NEEDED && 1213 data->rssi != ie->data.rssi) { 1214 ie->data.rssi = data->rssi; 1215 hci_inquiry_cache_update_resolve(hdev, ie); 1216 } 1217 1218 goto update; 1219 } 1220 1221 /* Entry not in the cache. Add new one. */ 1222 ie = kzalloc(sizeof(*ie), GFP_KERNEL); 1223 if (!ie) { 1224 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 1225 goto done; 1226 } 1227 1228 list_add(&ie->all, &cache->all); 1229 1230 if (name_known) { 1231 ie->name_state = NAME_KNOWN; 1232 } else { 1233 ie->name_state = NAME_NOT_KNOWN; 1234 list_add(&ie->list, &cache->unknown); 1235 } 1236 1237 update: 1238 if (name_known && ie->name_state != NAME_KNOWN && 1239 ie->name_state != NAME_PENDING) { 1240 ie->name_state = NAME_KNOWN; 1241 list_del(&ie->list); 1242 } 1243 1244 memcpy(&ie->data, data, sizeof(*data)); 1245 ie->timestamp = jiffies; 1246 cache->timestamp = jiffies; 1247 1248 if (ie->name_state == NAME_NOT_KNOWN) 1249 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 1250 1251 done: 1252 return flags; 1253 } 1254 1255 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf) 1256 { 1257 struct discovery_state *cache = &hdev->discovery; 1258 struct inquiry_info *info = (struct inquiry_info *) buf; 1259 struct inquiry_entry *e; 1260 int copied = 0; 1261 1262 list_for_each_entry(e, &cache->all, all) { 1263 struct inquiry_data *data = &e->data; 1264 1265 if (copied >= num) 1266 break; 1267 1268 bacpy(&info->bdaddr, &data->bdaddr); 1269 info->pscan_rep_mode = data->pscan_rep_mode; 1270 info->pscan_period_mode = data->pscan_period_mode; 1271 info->pscan_mode = data->pscan_mode; 1272 memcpy(info->dev_class, data->dev_class, 3); 1273 info->clock_offset = data->clock_offset; 1274 1275 info++; 1276 copied++; 1277 } 1278 1279 BT_DBG("cache %p, copied %d", cache, copied); 1280 return copied; 1281 } 1282 1283 static int hci_inq_req(struct hci_request *req, unsigned long opt) 1284 { 1285 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt; 1286 struct hci_dev *hdev = req->hdev; 1287 struct hci_cp_inquiry cp; 1288 1289 BT_DBG("%s", hdev->name); 1290 1291 if (test_bit(HCI_INQUIRY, &hdev->flags)) 1292 return 0; 1293 1294 /* Start Inquiry */ 1295 memcpy(&cp.lap, &ir->lap, 3); 1296 cp.length = ir->length; 1297 cp.num_rsp = ir->num_rsp; 1298 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp); 1299 1300 return 0; 1301 } 1302 1303 int hci_inquiry(void __user *arg) 1304 { 1305 __u8 __user *ptr = arg; 1306 struct hci_inquiry_req ir; 1307 struct hci_dev *hdev; 1308 int err = 0, do_inquiry = 0, max_rsp; 1309 long timeo; 1310 __u8 *buf; 1311 1312 if (copy_from_user(&ir, ptr, sizeof(ir))) 1313 return -EFAULT; 1314 1315 hdev = hci_dev_get(ir.dev_id); 1316 if (!hdev) 1317 return -ENODEV; 1318 1319 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1320 err = -EBUSY; 1321 goto done; 1322 } 1323 1324 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1325 err = -EOPNOTSUPP; 1326 goto done; 1327 } 1328 1329 if (hdev->dev_type != HCI_PRIMARY) { 1330 err = -EOPNOTSUPP; 1331 goto done; 1332 } 1333 1334 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 1335 err = -EOPNOTSUPP; 1336 goto done; 1337 } 1338 1339 hci_dev_lock(hdev); 1340 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX || 1341 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) { 1342 hci_inquiry_cache_flush(hdev); 1343 do_inquiry = 1; 1344 } 1345 hci_dev_unlock(hdev); 1346 1347 timeo = ir.length * msecs_to_jiffies(2000); 1348 1349 if (do_inquiry) { 1350 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir, 1351 timeo, NULL); 1352 if (err < 0) 1353 goto done; 1354 1355 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is 1356 * cleared). If it is interrupted by a signal, return -EINTR. 1357 */ 1358 if (wait_on_bit(&hdev->flags, HCI_INQUIRY, 1359 TASK_INTERRUPTIBLE)) 1360 return -EINTR; 1361 } 1362 1363 /* for unlimited number of responses we will use buffer with 1364 * 255 entries 1365 */ 1366 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp; 1367 1368 /* cache_dump can't sleep. Therefore we allocate temp buffer and then 1369 * copy it to the user space. 1370 */ 1371 buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL); 1372 if (!buf) { 1373 err = -ENOMEM; 1374 goto done; 1375 } 1376 1377 hci_dev_lock(hdev); 1378 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf); 1379 hci_dev_unlock(hdev); 1380 1381 BT_DBG("num_rsp %d", ir.num_rsp); 1382 1383 if (!copy_to_user(ptr, &ir, sizeof(ir))) { 1384 ptr += sizeof(ir); 1385 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) * 1386 ir.num_rsp)) 1387 err = -EFAULT; 1388 } else 1389 err = -EFAULT; 1390 1391 kfree(buf); 1392 1393 done: 1394 hci_dev_put(hdev); 1395 return err; 1396 } 1397 1398 /** 1399 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address 1400 * (BD_ADDR) for a HCI device from 1401 * a firmware node property. 1402 * @hdev: The HCI device 1403 * 1404 * Search the firmware node for 'local-bd-address'. 1405 * 1406 * All-zero BD addresses are rejected, because those could be properties 1407 * that exist in the firmware tables, but were not updated by the firmware. For 1408 * example, the DTS could define 'local-bd-address', with zero BD addresses. 1409 */ 1410 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev) 1411 { 1412 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent); 1413 bdaddr_t ba; 1414 int ret; 1415 1416 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address", 1417 (u8 *)&ba, sizeof(ba)); 1418 if (ret < 0 || !bacmp(&ba, BDADDR_ANY)) 1419 return; 1420 1421 bacpy(&hdev->public_addr, &ba); 1422 } 1423 1424 static int hci_dev_do_open(struct hci_dev *hdev) 1425 { 1426 int ret = 0; 1427 1428 BT_DBG("%s %p", hdev->name, hdev); 1429 1430 hci_req_sync_lock(hdev); 1431 1432 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 1433 ret = -ENODEV; 1434 goto done; 1435 } 1436 1437 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 1438 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 1439 /* Check for rfkill but allow the HCI setup stage to 1440 * proceed (which in itself doesn't cause any RF activity). 1441 */ 1442 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { 1443 ret = -ERFKILL; 1444 goto done; 1445 } 1446 1447 /* Check for valid public address or a configured static 1448 * random adddress, but let the HCI setup proceed to 1449 * be able to determine if there is a public address 1450 * or not. 1451 * 1452 * In case of user channel usage, it is not important 1453 * if a public address or static random address is 1454 * available. 1455 * 1456 * This check is only valid for BR/EDR controllers 1457 * since AMP controllers do not have an address. 1458 */ 1459 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1460 hdev->dev_type == HCI_PRIMARY && 1461 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 1462 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 1463 ret = -EADDRNOTAVAIL; 1464 goto done; 1465 } 1466 } 1467 1468 if (test_bit(HCI_UP, &hdev->flags)) { 1469 ret = -EALREADY; 1470 goto done; 1471 } 1472 1473 if (hdev->open(hdev)) { 1474 ret = -EIO; 1475 goto done; 1476 } 1477 1478 set_bit(HCI_RUNNING, &hdev->flags); 1479 hci_sock_dev_event(hdev, HCI_DEV_OPEN); 1480 1481 atomic_set(&hdev->cmd_cnt, 1); 1482 set_bit(HCI_INIT, &hdev->flags); 1483 1484 if (hci_dev_test_flag(hdev, HCI_SETUP) || 1485 test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) { 1486 bool invalid_bdaddr; 1487 1488 hci_sock_dev_event(hdev, HCI_DEV_SETUP); 1489 1490 if (hdev->setup) 1491 ret = hdev->setup(hdev); 1492 1493 /* The transport driver can set the quirk to mark the 1494 * BD_ADDR invalid before creating the HCI device or in 1495 * its setup callback. 1496 */ 1497 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, 1498 &hdev->quirks); 1499 1500 if (ret) 1501 goto setup_failed; 1502 1503 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) { 1504 if (!bacmp(&hdev->public_addr, BDADDR_ANY)) 1505 hci_dev_get_bd_addr_from_property(hdev); 1506 1507 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 1508 hdev->set_bdaddr) { 1509 ret = hdev->set_bdaddr(hdev, 1510 &hdev->public_addr); 1511 1512 /* If setting of the BD_ADDR from the device 1513 * property succeeds, then treat the address 1514 * as valid even if the invalid BD_ADDR 1515 * quirk indicates otherwise. 1516 */ 1517 if (!ret) 1518 invalid_bdaddr = false; 1519 } 1520 } 1521 1522 setup_failed: 1523 /* The transport driver can set these quirks before 1524 * creating the HCI device or in its setup callback. 1525 * 1526 * For the invalid BD_ADDR quirk it is possible that 1527 * it becomes a valid address if the bootloader does 1528 * provide it (see above). 1529 * 1530 * In case any of them is set, the controller has to 1531 * start up as unconfigured. 1532 */ 1533 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || 1534 invalid_bdaddr) 1535 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 1536 1537 /* For an unconfigured controller it is required to 1538 * read at least the version information provided by 1539 * the Read Local Version Information command. 1540 * 1541 * If the set_bdaddr driver callback is provided, then 1542 * also the original Bluetooth public device address 1543 * will be read using the Read BD Address command. 1544 */ 1545 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 1546 ret = __hci_unconf_init(hdev); 1547 } 1548 1549 if (hci_dev_test_flag(hdev, HCI_CONFIG)) { 1550 /* If public address change is configured, ensure that 1551 * the address gets programmed. If the driver does not 1552 * support changing the public address, fail the power 1553 * on procedure. 1554 */ 1555 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 1556 hdev->set_bdaddr) 1557 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 1558 else 1559 ret = -EADDRNOTAVAIL; 1560 } 1561 1562 if (!ret) { 1563 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 1564 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1565 ret = __hci_init(hdev); 1566 if (!ret && hdev->post_init) 1567 ret = hdev->post_init(hdev); 1568 } 1569 } 1570 1571 /* If the HCI Reset command is clearing all diagnostic settings, 1572 * then they need to be reprogrammed after the init procedure 1573 * completed. 1574 */ 1575 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 1576 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1577 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) 1578 ret = hdev->set_diag(hdev, true); 1579 1580 msft_do_open(hdev); 1581 1582 clear_bit(HCI_INIT, &hdev->flags); 1583 1584 if (!ret) { 1585 hci_dev_hold(hdev); 1586 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 1587 hci_adv_instances_set_rpa_expired(hdev, true); 1588 set_bit(HCI_UP, &hdev->flags); 1589 hci_sock_dev_event(hdev, HCI_DEV_UP); 1590 hci_leds_update_powered(hdev, true); 1591 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 1592 !hci_dev_test_flag(hdev, HCI_CONFIG) && 1593 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 1594 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1595 hci_dev_test_flag(hdev, HCI_MGMT) && 1596 hdev->dev_type == HCI_PRIMARY) { 1597 ret = __hci_req_hci_power_on(hdev); 1598 mgmt_power_on(hdev, ret); 1599 } 1600 } else { 1601 /* Init failed, cleanup */ 1602 flush_work(&hdev->tx_work); 1603 flush_work(&hdev->cmd_work); 1604 flush_work(&hdev->rx_work); 1605 1606 skb_queue_purge(&hdev->cmd_q); 1607 skb_queue_purge(&hdev->rx_q); 1608 1609 if (hdev->flush) 1610 hdev->flush(hdev); 1611 1612 if (hdev->sent_cmd) { 1613 kfree_skb(hdev->sent_cmd); 1614 hdev->sent_cmd = NULL; 1615 } 1616 1617 clear_bit(HCI_RUNNING, &hdev->flags); 1618 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 1619 1620 hdev->close(hdev); 1621 hdev->flags &= BIT(HCI_RAW); 1622 } 1623 1624 done: 1625 hci_req_sync_unlock(hdev); 1626 return ret; 1627 } 1628 1629 /* ---- HCI ioctl helpers ---- */ 1630 1631 int hci_dev_open(__u16 dev) 1632 { 1633 struct hci_dev *hdev; 1634 int err; 1635 1636 hdev = hci_dev_get(dev); 1637 if (!hdev) 1638 return -ENODEV; 1639 1640 /* Devices that are marked as unconfigured can only be powered 1641 * up as user channel. Trying to bring them up as normal devices 1642 * will result into a failure. Only user channel operation is 1643 * possible. 1644 * 1645 * When this function is called for a user channel, the flag 1646 * HCI_USER_CHANNEL will be set first before attempting to 1647 * open the device. 1648 */ 1649 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 1650 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1651 err = -EOPNOTSUPP; 1652 goto done; 1653 } 1654 1655 /* We need to ensure that no other power on/off work is pending 1656 * before proceeding to call hci_dev_do_open. This is 1657 * particularly important if the setup procedure has not yet 1658 * completed. 1659 */ 1660 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) 1661 cancel_delayed_work(&hdev->power_off); 1662 1663 /* After this call it is guaranteed that the setup procedure 1664 * has finished. This means that error conditions like RFKILL 1665 * or no valid public or static random address apply. 1666 */ 1667 flush_workqueue(hdev->req_workqueue); 1668 1669 /* For controllers not using the management interface and that 1670 * are brought up using legacy ioctl, set the HCI_BONDABLE bit 1671 * so that pairing works for them. Once the management interface 1672 * is in use this bit will be cleared again and userspace has 1673 * to explicitly enable it. 1674 */ 1675 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1676 !hci_dev_test_flag(hdev, HCI_MGMT)) 1677 hci_dev_set_flag(hdev, HCI_BONDABLE); 1678 1679 err = hci_dev_do_open(hdev); 1680 1681 done: 1682 hci_dev_put(hdev); 1683 return err; 1684 } 1685 1686 /* This function requires the caller holds hdev->lock */ 1687 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 1688 { 1689 struct hci_conn_params *p; 1690 1691 list_for_each_entry(p, &hdev->le_conn_params, list) { 1692 if (p->conn) { 1693 hci_conn_drop(p->conn); 1694 hci_conn_put(p->conn); 1695 p->conn = NULL; 1696 } 1697 list_del_init(&p->action); 1698 } 1699 1700 BT_DBG("All LE pending actions cleared"); 1701 } 1702 1703 int hci_dev_do_close(struct hci_dev *hdev) 1704 { 1705 bool auto_off; 1706 1707 BT_DBG("%s %p", hdev->name, hdev); 1708 1709 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && 1710 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1711 test_bit(HCI_UP, &hdev->flags)) { 1712 /* Execute vendor specific shutdown routine */ 1713 if (hdev->shutdown) 1714 hdev->shutdown(hdev); 1715 } 1716 1717 cancel_delayed_work(&hdev->power_off); 1718 1719 hci_request_cancel_all(hdev); 1720 hci_req_sync_lock(hdev); 1721 1722 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 1723 cancel_delayed_work_sync(&hdev->cmd_timer); 1724 hci_req_sync_unlock(hdev); 1725 return 0; 1726 } 1727 1728 hci_leds_update_powered(hdev, false); 1729 1730 /* Flush RX and TX works */ 1731 flush_work(&hdev->tx_work); 1732 flush_work(&hdev->rx_work); 1733 1734 if (hdev->discov_timeout > 0) { 1735 hdev->discov_timeout = 0; 1736 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 1737 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 1738 } 1739 1740 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) 1741 cancel_delayed_work(&hdev->service_cache); 1742 1743 if (hci_dev_test_flag(hdev, HCI_MGMT)) { 1744 struct adv_info *adv_instance; 1745 1746 cancel_delayed_work_sync(&hdev->rpa_expired); 1747 1748 list_for_each_entry(adv_instance, &hdev->adv_instances, list) 1749 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 1750 } 1751 1752 /* Avoid potential lockdep warnings from the *_flush() calls by 1753 * ensuring the workqueue is empty up front. 1754 */ 1755 drain_workqueue(hdev->workqueue); 1756 1757 hci_dev_lock(hdev); 1758 1759 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 1760 1761 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); 1762 1763 if (!auto_off && hdev->dev_type == HCI_PRIMARY && 1764 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1765 hci_dev_test_flag(hdev, HCI_MGMT)) 1766 __mgmt_power_off(hdev); 1767 1768 hci_inquiry_cache_flush(hdev); 1769 hci_pend_le_actions_clear(hdev); 1770 hci_conn_hash_flush(hdev); 1771 hci_dev_unlock(hdev); 1772 1773 smp_unregister(hdev); 1774 1775 hci_sock_dev_event(hdev, HCI_DEV_DOWN); 1776 1777 msft_do_close(hdev); 1778 1779 if (hdev->flush) 1780 hdev->flush(hdev); 1781 1782 /* Reset device */ 1783 skb_queue_purge(&hdev->cmd_q); 1784 atomic_set(&hdev->cmd_cnt, 1); 1785 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && 1786 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1787 set_bit(HCI_INIT, &hdev->flags); 1788 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL); 1789 clear_bit(HCI_INIT, &hdev->flags); 1790 } 1791 1792 /* flush cmd work */ 1793 flush_work(&hdev->cmd_work); 1794 1795 /* Drop queues */ 1796 skb_queue_purge(&hdev->rx_q); 1797 skb_queue_purge(&hdev->cmd_q); 1798 skb_queue_purge(&hdev->raw_q); 1799 1800 /* Drop last sent command */ 1801 if (hdev->sent_cmd) { 1802 cancel_delayed_work_sync(&hdev->cmd_timer); 1803 kfree_skb(hdev->sent_cmd); 1804 hdev->sent_cmd = NULL; 1805 } 1806 1807 clear_bit(HCI_RUNNING, &hdev->flags); 1808 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 1809 1810 if (test_and_clear_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks)) 1811 wake_up(&hdev->suspend_wait_q); 1812 1813 /* After this point our queues are empty 1814 * and no tasks are scheduled. */ 1815 hdev->close(hdev); 1816 1817 /* Clear flags */ 1818 hdev->flags &= BIT(HCI_RAW); 1819 hci_dev_clear_volatile_flags(hdev); 1820 1821 /* Controller radio is available but is currently powered down */ 1822 hdev->amp_status = AMP_STATUS_POWERED_DOWN; 1823 1824 memset(hdev->eir, 0, sizeof(hdev->eir)); 1825 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 1826 bacpy(&hdev->random_addr, BDADDR_ANY); 1827 1828 hci_req_sync_unlock(hdev); 1829 1830 hci_dev_put(hdev); 1831 return 0; 1832 } 1833 1834 int hci_dev_close(__u16 dev) 1835 { 1836 struct hci_dev *hdev; 1837 int err; 1838 1839 hdev = hci_dev_get(dev); 1840 if (!hdev) 1841 return -ENODEV; 1842 1843 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1844 err = -EBUSY; 1845 goto done; 1846 } 1847 1848 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) 1849 cancel_delayed_work(&hdev->power_off); 1850 1851 err = hci_dev_do_close(hdev); 1852 1853 done: 1854 hci_dev_put(hdev); 1855 return err; 1856 } 1857 1858 static int hci_dev_do_reset(struct hci_dev *hdev) 1859 { 1860 int ret; 1861 1862 BT_DBG("%s %p", hdev->name, hdev); 1863 1864 hci_req_sync_lock(hdev); 1865 1866 /* Drop queues */ 1867 skb_queue_purge(&hdev->rx_q); 1868 skb_queue_purge(&hdev->cmd_q); 1869 1870 /* Avoid potential lockdep warnings from the *_flush() calls by 1871 * ensuring the workqueue is empty up front. 1872 */ 1873 drain_workqueue(hdev->workqueue); 1874 1875 hci_dev_lock(hdev); 1876 hci_inquiry_cache_flush(hdev); 1877 hci_conn_hash_flush(hdev); 1878 hci_dev_unlock(hdev); 1879 1880 if (hdev->flush) 1881 hdev->flush(hdev); 1882 1883 atomic_set(&hdev->cmd_cnt, 1); 1884 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0; 1885 1886 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL); 1887 1888 hci_req_sync_unlock(hdev); 1889 return ret; 1890 } 1891 1892 int hci_dev_reset(__u16 dev) 1893 { 1894 struct hci_dev *hdev; 1895 int err; 1896 1897 hdev = hci_dev_get(dev); 1898 if (!hdev) 1899 return -ENODEV; 1900 1901 if (!test_bit(HCI_UP, &hdev->flags)) { 1902 err = -ENETDOWN; 1903 goto done; 1904 } 1905 1906 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1907 err = -EBUSY; 1908 goto done; 1909 } 1910 1911 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1912 err = -EOPNOTSUPP; 1913 goto done; 1914 } 1915 1916 err = hci_dev_do_reset(hdev); 1917 1918 done: 1919 hci_dev_put(hdev); 1920 return err; 1921 } 1922 1923 int hci_dev_reset_stat(__u16 dev) 1924 { 1925 struct hci_dev *hdev; 1926 int ret = 0; 1927 1928 hdev = hci_dev_get(dev); 1929 if (!hdev) 1930 return -ENODEV; 1931 1932 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1933 ret = -EBUSY; 1934 goto done; 1935 } 1936 1937 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1938 ret = -EOPNOTSUPP; 1939 goto done; 1940 } 1941 1942 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats)); 1943 1944 done: 1945 hci_dev_put(hdev); 1946 return ret; 1947 } 1948 1949 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan) 1950 { 1951 bool conn_changed, discov_changed; 1952 1953 BT_DBG("%s scan 0x%02x", hdev->name, scan); 1954 1955 if ((scan & SCAN_PAGE)) 1956 conn_changed = !hci_dev_test_and_set_flag(hdev, 1957 HCI_CONNECTABLE); 1958 else 1959 conn_changed = hci_dev_test_and_clear_flag(hdev, 1960 HCI_CONNECTABLE); 1961 1962 if ((scan & SCAN_INQUIRY)) { 1963 discov_changed = !hci_dev_test_and_set_flag(hdev, 1964 HCI_DISCOVERABLE); 1965 } else { 1966 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 1967 discov_changed = hci_dev_test_and_clear_flag(hdev, 1968 HCI_DISCOVERABLE); 1969 } 1970 1971 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 1972 return; 1973 1974 if (conn_changed || discov_changed) { 1975 /* In case this was disabled through mgmt */ 1976 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); 1977 1978 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1979 hci_req_update_adv_data(hdev, hdev->cur_adv_instance); 1980 1981 mgmt_new_settings(hdev); 1982 } 1983 } 1984 1985 int hci_dev_cmd(unsigned int cmd, void __user *arg) 1986 { 1987 struct hci_dev *hdev; 1988 struct hci_dev_req dr; 1989 int err = 0; 1990 1991 if (copy_from_user(&dr, arg, sizeof(dr))) 1992 return -EFAULT; 1993 1994 hdev = hci_dev_get(dr.dev_id); 1995 if (!hdev) 1996 return -ENODEV; 1997 1998 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1999 err = -EBUSY; 2000 goto done; 2001 } 2002 2003 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 2004 err = -EOPNOTSUPP; 2005 goto done; 2006 } 2007 2008 if (hdev->dev_type != HCI_PRIMARY) { 2009 err = -EOPNOTSUPP; 2010 goto done; 2011 } 2012 2013 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 2014 err = -EOPNOTSUPP; 2015 goto done; 2016 } 2017 2018 switch (cmd) { 2019 case HCISETAUTH: 2020 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt, 2021 HCI_INIT_TIMEOUT, NULL); 2022 break; 2023 2024 case HCISETENCRYPT: 2025 if (!lmp_encrypt_capable(hdev)) { 2026 err = -EOPNOTSUPP; 2027 break; 2028 } 2029 2030 if (!test_bit(HCI_AUTH, &hdev->flags)) { 2031 /* Auth must be enabled first */ 2032 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt, 2033 HCI_INIT_TIMEOUT, NULL); 2034 if (err) 2035 break; 2036 } 2037 2038 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt, 2039 HCI_INIT_TIMEOUT, NULL); 2040 break; 2041 2042 case HCISETSCAN: 2043 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt, 2044 HCI_INIT_TIMEOUT, NULL); 2045 2046 /* Ensure that the connectable and discoverable states 2047 * get correctly modified as this was a non-mgmt change. 2048 */ 2049 if (!err) 2050 hci_update_scan_state(hdev, dr.dev_opt); 2051 break; 2052 2053 case HCISETLINKPOL: 2054 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt, 2055 HCI_INIT_TIMEOUT, NULL); 2056 break; 2057 2058 case HCISETLINKMODE: 2059 hdev->link_mode = ((__u16) dr.dev_opt) & 2060 (HCI_LM_MASTER | HCI_LM_ACCEPT); 2061 break; 2062 2063 case HCISETPTYPE: 2064 if (hdev->pkt_type == (__u16) dr.dev_opt) 2065 break; 2066 2067 hdev->pkt_type = (__u16) dr.dev_opt; 2068 mgmt_phy_configuration_changed(hdev, NULL); 2069 break; 2070 2071 case HCISETACLMTU: 2072 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1); 2073 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0); 2074 break; 2075 2076 case HCISETSCOMTU: 2077 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1); 2078 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0); 2079 break; 2080 2081 default: 2082 err = -EINVAL; 2083 break; 2084 } 2085 2086 done: 2087 hci_dev_put(hdev); 2088 return err; 2089 } 2090 2091 int hci_get_dev_list(void __user *arg) 2092 { 2093 struct hci_dev *hdev; 2094 struct hci_dev_list_req *dl; 2095 struct hci_dev_req *dr; 2096 int n = 0, size, err; 2097 __u16 dev_num; 2098 2099 if (get_user(dev_num, (__u16 __user *) arg)) 2100 return -EFAULT; 2101 2102 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr)) 2103 return -EINVAL; 2104 2105 size = sizeof(*dl) + dev_num * sizeof(*dr); 2106 2107 dl = kzalloc(size, GFP_KERNEL); 2108 if (!dl) 2109 return -ENOMEM; 2110 2111 dr = dl->dev_req; 2112 2113 read_lock(&hci_dev_list_lock); 2114 list_for_each_entry(hdev, &hci_dev_list, list) { 2115 unsigned long flags = hdev->flags; 2116 2117 /* When the auto-off is configured it means the transport 2118 * is running, but in that case still indicate that the 2119 * device is actually down. 2120 */ 2121 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) 2122 flags &= ~BIT(HCI_UP); 2123 2124 (dr + n)->dev_id = hdev->id; 2125 (dr + n)->dev_opt = flags; 2126 2127 if (++n >= dev_num) 2128 break; 2129 } 2130 read_unlock(&hci_dev_list_lock); 2131 2132 dl->dev_num = n; 2133 size = sizeof(*dl) + n * sizeof(*dr); 2134 2135 err = copy_to_user(arg, dl, size); 2136 kfree(dl); 2137 2138 return err ? -EFAULT : 0; 2139 } 2140 2141 int hci_get_dev_info(void __user *arg) 2142 { 2143 struct hci_dev *hdev; 2144 struct hci_dev_info di; 2145 unsigned long flags; 2146 int err = 0; 2147 2148 if (copy_from_user(&di, arg, sizeof(di))) 2149 return -EFAULT; 2150 2151 hdev = hci_dev_get(di.dev_id); 2152 if (!hdev) 2153 return -ENODEV; 2154 2155 /* When the auto-off is configured it means the transport 2156 * is running, but in that case still indicate that the 2157 * device is actually down. 2158 */ 2159 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) 2160 flags = hdev->flags & ~BIT(HCI_UP); 2161 else 2162 flags = hdev->flags; 2163 2164 strcpy(di.name, hdev->name); 2165 di.bdaddr = hdev->bdaddr; 2166 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4); 2167 di.flags = flags; 2168 di.pkt_type = hdev->pkt_type; 2169 if (lmp_bredr_capable(hdev)) { 2170 di.acl_mtu = hdev->acl_mtu; 2171 di.acl_pkts = hdev->acl_pkts; 2172 di.sco_mtu = hdev->sco_mtu; 2173 di.sco_pkts = hdev->sco_pkts; 2174 } else { 2175 di.acl_mtu = hdev->le_mtu; 2176 di.acl_pkts = hdev->le_pkts; 2177 di.sco_mtu = 0; 2178 di.sco_pkts = 0; 2179 } 2180 di.link_policy = hdev->link_policy; 2181 di.link_mode = hdev->link_mode; 2182 2183 memcpy(&di.stat, &hdev->stat, sizeof(di.stat)); 2184 memcpy(&di.features, &hdev->features, sizeof(di.features)); 2185 2186 if (copy_to_user(arg, &di, sizeof(di))) 2187 err = -EFAULT; 2188 2189 hci_dev_put(hdev); 2190 2191 return err; 2192 } 2193 2194 /* ---- Interface to HCI drivers ---- */ 2195 2196 static int hci_rfkill_set_block(void *data, bool blocked) 2197 { 2198 struct hci_dev *hdev = data; 2199 2200 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked); 2201 2202 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) 2203 return -EBUSY; 2204 2205 if (blocked) { 2206 hci_dev_set_flag(hdev, HCI_RFKILLED); 2207 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 2208 !hci_dev_test_flag(hdev, HCI_CONFIG)) 2209 hci_dev_do_close(hdev); 2210 } else { 2211 hci_dev_clear_flag(hdev, HCI_RFKILLED); 2212 } 2213 2214 return 0; 2215 } 2216 2217 static const struct rfkill_ops hci_rfkill_ops = { 2218 .set_block = hci_rfkill_set_block, 2219 }; 2220 2221 static void hci_power_on(struct work_struct *work) 2222 { 2223 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on); 2224 int err; 2225 2226 BT_DBG("%s", hdev->name); 2227 2228 if (test_bit(HCI_UP, &hdev->flags) && 2229 hci_dev_test_flag(hdev, HCI_MGMT) && 2230 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 2231 cancel_delayed_work(&hdev->power_off); 2232 hci_req_sync_lock(hdev); 2233 err = __hci_req_hci_power_on(hdev); 2234 hci_req_sync_unlock(hdev); 2235 mgmt_power_on(hdev, err); 2236 return; 2237 } 2238 2239 err = hci_dev_do_open(hdev); 2240 if (err < 0) { 2241 hci_dev_lock(hdev); 2242 mgmt_set_powered_failed(hdev, err); 2243 hci_dev_unlock(hdev); 2244 return; 2245 } 2246 2247 /* During the HCI setup phase, a few error conditions are 2248 * ignored and they need to be checked now. If they are still 2249 * valid, it is important to turn the device back off. 2250 */ 2251 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 2252 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 2253 (hdev->dev_type == HCI_PRIMARY && 2254 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 2255 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 2256 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 2257 hci_dev_do_close(hdev); 2258 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 2259 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 2260 HCI_AUTO_OFF_TIMEOUT); 2261 } 2262 2263 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 2264 /* For unconfigured devices, set the HCI_RAW flag 2265 * so that userspace can easily identify them. 2266 */ 2267 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 2268 set_bit(HCI_RAW, &hdev->flags); 2269 2270 /* For fully configured devices, this will send 2271 * the Index Added event. For unconfigured devices, 2272 * it will send Unconfigued Index Added event. 2273 * 2274 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 2275 * and no event will be send. 2276 */ 2277 mgmt_index_added(hdev); 2278 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 2279 /* When the controller is now configured, then it 2280 * is important to clear the HCI_RAW flag. 2281 */ 2282 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 2283 clear_bit(HCI_RAW, &hdev->flags); 2284 2285 /* Powering on the controller with HCI_CONFIG set only 2286 * happens with the transition from unconfigured to 2287 * configured. This will send the Index Added event. 2288 */ 2289 mgmt_index_added(hdev); 2290 } 2291 } 2292 2293 static void hci_power_off(struct work_struct *work) 2294 { 2295 struct hci_dev *hdev = container_of(work, struct hci_dev, 2296 power_off.work); 2297 2298 BT_DBG("%s", hdev->name); 2299 2300 hci_dev_do_close(hdev); 2301 } 2302 2303 static void hci_error_reset(struct work_struct *work) 2304 { 2305 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset); 2306 2307 BT_DBG("%s", hdev->name); 2308 2309 if (hdev->hw_error) 2310 hdev->hw_error(hdev, hdev->hw_error_code); 2311 else 2312 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code); 2313 2314 if (hci_dev_do_close(hdev)) 2315 return; 2316 2317 hci_dev_do_open(hdev); 2318 } 2319 2320 void hci_uuids_clear(struct hci_dev *hdev) 2321 { 2322 struct bt_uuid *uuid, *tmp; 2323 2324 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) { 2325 list_del(&uuid->list); 2326 kfree(uuid); 2327 } 2328 } 2329 2330 void hci_link_keys_clear(struct hci_dev *hdev) 2331 { 2332 struct link_key *key; 2333 2334 list_for_each_entry(key, &hdev->link_keys, list) { 2335 list_del_rcu(&key->list); 2336 kfree_rcu(key, rcu); 2337 } 2338 } 2339 2340 void hci_smp_ltks_clear(struct hci_dev *hdev) 2341 { 2342 struct smp_ltk *k; 2343 2344 list_for_each_entry(k, &hdev->long_term_keys, list) { 2345 list_del_rcu(&k->list); 2346 kfree_rcu(k, rcu); 2347 } 2348 } 2349 2350 void hci_smp_irks_clear(struct hci_dev *hdev) 2351 { 2352 struct smp_irk *k; 2353 2354 list_for_each_entry(k, &hdev->identity_resolving_keys, list) { 2355 list_del_rcu(&k->list); 2356 kfree_rcu(k, rcu); 2357 } 2358 } 2359 2360 void hci_blocked_keys_clear(struct hci_dev *hdev) 2361 { 2362 struct blocked_key *b; 2363 2364 list_for_each_entry(b, &hdev->blocked_keys, list) { 2365 list_del_rcu(&b->list); 2366 kfree_rcu(b, rcu); 2367 } 2368 } 2369 2370 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16]) 2371 { 2372 bool blocked = false; 2373 struct blocked_key *b; 2374 2375 rcu_read_lock(); 2376 list_for_each_entry_rcu(b, &hdev->blocked_keys, list) { 2377 if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) { 2378 blocked = true; 2379 break; 2380 } 2381 } 2382 2383 rcu_read_unlock(); 2384 return blocked; 2385 } 2386 2387 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 2388 { 2389 struct link_key *k; 2390 2391 rcu_read_lock(); 2392 list_for_each_entry_rcu(k, &hdev->link_keys, list) { 2393 if (bacmp(bdaddr, &k->bdaddr) == 0) { 2394 rcu_read_unlock(); 2395 2396 if (hci_is_blocked_key(hdev, 2397 HCI_BLOCKED_KEY_TYPE_LINKKEY, 2398 k->val)) { 2399 bt_dev_warn_ratelimited(hdev, 2400 "Link key blocked for %pMR", 2401 &k->bdaddr); 2402 return NULL; 2403 } 2404 2405 return k; 2406 } 2407 } 2408 rcu_read_unlock(); 2409 2410 return NULL; 2411 } 2412 2413 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn, 2414 u8 key_type, u8 old_key_type) 2415 { 2416 /* Legacy key */ 2417 if (key_type < 0x03) 2418 return true; 2419 2420 /* Debug keys are insecure so don't store them persistently */ 2421 if (key_type == HCI_LK_DEBUG_COMBINATION) 2422 return false; 2423 2424 /* Changed combination key and there's no previous one */ 2425 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff) 2426 return false; 2427 2428 /* Security mode 3 case */ 2429 if (!conn) 2430 return true; 2431 2432 /* BR/EDR key derived using SC from an LE link */ 2433 if (conn->type == LE_LINK) 2434 return true; 2435 2436 /* Neither local nor remote side had no-bonding as requirement */ 2437 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01) 2438 return true; 2439 2440 /* Local side had dedicated bonding as requirement */ 2441 if (conn->auth_type == 0x02 || conn->auth_type == 0x03) 2442 return true; 2443 2444 /* Remote side had dedicated bonding as requirement */ 2445 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03) 2446 return true; 2447 2448 /* If none of the above criteria match, then don't store the key 2449 * persistently */ 2450 return false; 2451 } 2452 2453 static u8 ltk_role(u8 type) 2454 { 2455 if (type == SMP_LTK) 2456 return HCI_ROLE_MASTER; 2457 2458 return HCI_ROLE_SLAVE; 2459 } 2460 2461 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 2462 u8 addr_type, u8 role) 2463 { 2464 struct smp_ltk *k; 2465 2466 rcu_read_lock(); 2467 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 2468 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr)) 2469 continue; 2470 2471 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) { 2472 rcu_read_unlock(); 2473 2474 if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK, 2475 k->val)) { 2476 bt_dev_warn_ratelimited(hdev, 2477 "LTK blocked for %pMR", 2478 &k->bdaddr); 2479 return NULL; 2480 } 2481 2482 return k; 2483 } 2484 } 2485 rcu_read_unlock(); 2486 2487 return NULL; 2488 } 2489 2490 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa) 2491 { 2492 struct smp_irk *irk_to_return = NULL; 2493 struct smp_irk *irk; 2494 2495 rcu_read_lock(); 2496 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 2497 if (!bacmp(&irk->rpa, rpa)) { 2498 irk_to_return = irk; 2499 goto done; 2500 } 2501 } 2502 2503 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 2504 if (smp_irk_matches(hdev, irk->val, rpa)) { 2505 bacpy(&irk->rpa, rpa); 2506 irk_to_return = irk; 2507 goto done; 2508 } 2509 } 2510 2511 done: 2512 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK, 2513 irk_to_return->val)) { 2514 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR", 2515 &irk_to_return->bdaddr); 2516 irk_to_return = NULL; 2517 } 2518 2519 rcu_read_unlock(); 2520 2521 return irk_to_return; 2522 } 2523 2524 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, 2525 u8 addr_type) 2526 { 2527 struct smp_irk *irk_to_return = NULL; 2528 struct smp_irk *irk; 2529 2530 /* Identity Address must be public or static random */ 2531 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0) 2532 return NULL; 2533 2534 rcu_read_lock(); 2535 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 2536 if (addr_type == irk->addr_type && 2537 bacmp(bdaddr, &irk->bdaddr) == 0) { 2538 irk_to_return = irk; 2539 goto done; 2540 } 2541 } 2542 2543 done: 2544 2545 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK, 2546 irk_to_return->val)) { 2547 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR", 2548 &irk_to_return->bdaddr); 2549 irk_to_return = NULL; 2550 } 2551 2552 rcu_read_unlock(); 2553 2554 return irk_to_return; 2555 } 2556 2557 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, 2558 bdaddr_t *bdaddr, u8 *val, u8 type, 2559 u8 pin_len, bool *persistent) 2560 { 2561 struct link_key *key, *old_key; 2562 u8 old_key_type; 2563 2564 old_key = hci_find_link_key(hdev, bdaddr); 2565 if (old_key) { 2566 old_key_type = old_key->type; 2567 key = old_key; 2568 } else { 2569 old_key_type = conn ? conn->key_type : 0xff; 2570 key = kzalloc(sizeof(*key), GFP_KERNEL); 2571 if (!key) 2572 return NULL; 2573 list_add_rcu(&key->list, &hdev->link_keys); 2574 } 2575 2576 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type); 2577 2578 /* Some buggy controller combinations generate a changed 2579 * combination key for legacy pairing even when there's no 2580 * previous key */ 2581 if (type == HCI_LK_CHANGED_COMBINATION && 2582 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) { 2583 type = HCI_LK_COMBINATION; 2584 if (conn) 2585 conn->key_type = type; 2586 } 2587 2588 bacpy(&key->bdaddr, bdaddr); 2589 memcpy(key->val, val, HCI_LINK_KEY_SIZE); 2590 key->pin_len = pin_len; 2591 2592 if (type == HCI_LK_CHANGED_COMBINATION) 2593 key->type = old_key_type; 2594 else 2595 key->type = type; 2596 2597 if (persistent) 2598 *persistent = hci_persistent_key(hdev, conn, type, 2599 old_key_type); 2600 2601 return key; 2602 } 2603 2604 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 2605 u8 addr_type, u8 type, u8 authenticated, 2606 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand) 2607 { 2608 struct smp_ltk *key, *old_key; 2609 u8 role = ltk_role(type); 2610 2611 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role); 2612 if (old_key) 2613 key = old_key; 2614 else { 2615 key = kzalloc(sizeof(*key), GFP_KERNEL); 2616 if (!key) 2617 return NULL; 2618 list_add_rcu(&key->list, &hdev->long_term_keys); 2619 } 2620 2621 bacpy(&key->bdaddr, bdaddr); 2622 key->bdaddr_type = addr_type; 2623 memcpy(key->val, tk, sizeof(key->val)); 2624 key->authenticated = authenticated; 2625 key->ediv = ediv; 2626 key->rand = rand; 2627 key->enc_size = enc_size; 2628 key->type = type; 2629 2630 return key; 2631 } 2632 2633 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, 2634 u8 addr_type, u8 val[16], bdaddr_t *rpa) 2635 { 2636 struct smp_irk *irk; 2637 2638 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type); 2639 if (!irk) { 2640 irk = kzalloc(sizeof(*irk), GFP_KERNEL); 2641 if (!irk) 2642 return NULL; 2643 2644 bacpy(&irk->bdaddr, bdaddr); 2645 irk->addr_type = addr_type; 2646 2647 list_add_rcu(&irk->list, &hdev->identity_resolving_keys); 2648 } 2649 2650 memcpy(irk->val, val, 16); 2651 bacpy(&irk->rpa, rpa); 2652 2653 return irk; 2654 } 2655 2656 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 2657 { 2658 struct link_key *key; 2659 2660 key = hci_find_link_key(hdev, bdaddr); 2661 if (!key) 2662 return -ENOENT; 2663 2664 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 2665 2666 list_del_rcu(&key->list); 2667 kfree_rcu(key, rcu); 2668 2669 return 0; 2670 } 2671 2672 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type) 2673 { 2674 struct smp_ltk *k; 2675 int removed = 0; 2676 2677 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 2678 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type) 2679 continue; 2680 2681 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 2682 2683 list_del_rcu(&k->list); 2684 kfree_rcu(k, rcu); 2685 removed++; 2686 } 2687 2688 return removed ? 0 : -ENOENT; 2689 } 2690 2691 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type) 2692 { 2693 struct smp_irk *k; 2694 2695 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) { 2696 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type) 2697 continue; 2698 2699 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 2700 2701 list_del_rcu(&k->list); 2702 kfree_rcu(k, rcu); 2703 } 2704 } 2705 2706 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type) 2707 { 2708 struct smp_ltk *k; 2709 struct smp_irk *irk; 2710 u8 addr_type; 2711 2712 if (type == BDADDR_BREDR) { 2713 if (hci_find_link_key(hdev, bdaddr)) 2714 return true; 2715 return false; 2716 } 2717 2718 /* Convert to HCI addr type which struct smp_ltk uses */ 2719 if (type == BDADDR_LE_PUBLIC) 2720 addr_type = ADDR_LE_DEV_PUBLIC; 2721 else 2722 addr_type = ADDR_LE_DEV_RANDOM; 2723 2724 irk = hci_get_irk(hdev, bdaddr, addr_type); 2725 if (irk) { 2726 bdaddr = &irk->bdaddr; 2727 addr_type = irk->addr_type; 2728 } 2729 2730 rcu_read_lock(); 2731 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 2732 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) { 2733 rcu_read_unlock(); 2734 return true; 2735 } 2736 } 2737 rcu_read_unlock(); 2738 2739 return false; 2740 } 2741 2742 /* HCI command timer function */ 2743 static void hci_cmd_timeout(struct work_struct *work) 2744 { 2745 struct hci_dev *hdev = container_of(work, struct hci_dev, 2746 cmd_timer.work); 2747 2748 if (hdev->sent_cmd) { 2749 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data; 2750 u16 opcode = __le16_to_cpu(sent->opcode); 2751 2752 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode); 2753 } else { 2754 bt_dev_err(hdev, "command tx timeout"); 2755 } 2756 2757 if (hdev->cmd_timeout) 2758 hdev->cmd_timeout(hdev); 2759 2760 atomic_set(&hdev->cmd_cnt, 1); 2761 queue_work(hdev->workqueue, &hdev->cmd_work); 2762 } 2763 2764 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, 2765 bdaddr_t *bdaddr, u8 bdaddr_type) 2766 { 2767 struct oob_data *data; 2768 2769 list_for_each_entry(data, &hdev->remote_oob_data, list) { 2770 if (bacmp(bdaddr, &data->bdaddr) != 0) 2771 continue; 2772 if (data->bdaddr_type != bdaddr_type) 2773 continue; 2774 return data; 2775 } 2776 2777 return NULL; 2778 } 2779 2780 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 2781 u8 bdaddr_type) 2782 { 2783 struct oob_data *data; 2784 2785 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); 2786 if (!data) 2787 return -ENOENT; 2788 2789 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type); 2790 2791 list_del(&data->list); 2792 kfree(data); 2793 2794 return 0; 2795 } 2796 2797 void hci_remote_oob_data_clear(struct hci_dev *hdev) 2798 { 2799 struct oob_data *data, *n; 2800 2801 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) { 2802 list_del(&data->list); 2803 kfree(data); 2804 } 2805 } 2806 2807 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 2808 u8 bdaddr_type, u8 *hash192, u8 *rand192, 2809 u8 *hash256, u8 *rand256) 2810 { 2811 struct oob_data *data; 2812 2813 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); 2814 if (!data) { 2815 data = kmalloc(sizeof(*data), GFP_KERNEL); 2816 if (!data) 2817 return -ENOMEM; 2818 2819 bacpy(&data->bdaddr, bdaddr); 2820 data->bdaddr_type = bdaddr_type; 2821 list_add(&data->list, &hdev->remote_oob_data); 2822 } 2823 2824 if (hash192 && rand192) { 2825 memcpy(data->hash192, hash192, sizeof(data->hash192)); 2826 memcpy(data->rand192, rand192, sizeof(data->rand192)); 2827 if (hash256 && rand256) 2828 data->present = 0x03; 2829 } else { 2830 memset(data->hash192, 0, sizeof(data->hash192)); 2831 memset(data->rand192, 0, sizeof(data->rand192)); 2832 if (hash256 && rand256) 2833 data->present = 0x02; 2834 else 2835 data->present = 0x00; 2836 } 2837 2838 if (hash256 && rand256) { 2839 memcpy(data->hash256, hash256, sizeof(data->hash256)); 2840 memcpy(data->rand256, rand256, sizeof(data->rand256)); 2841 } else { 2842 memset(data->hash256, 0, sizeof(data->hash256)); 2843 memset(data->rand256, 0, sizeof(data->rand256)); 2844 if (hash192 && rand192) 2845 data->present = 0x01; 2846 } 2847 2848 BT_DBG("%s for %pMR", hdev->name, bdaddr); 2849 2850 return 0; 2851 } 2852 2853 /* This function requires the caller holds hdev->lock */ 2854 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance) 2855 { 2856 struct adv_info *adv_instance; 2857 2858 list_for_each_entry(adv_instance, &hdev->adv_instances, list) { 2859 if (adv_instance->instance == instance) 2860 return adv_instance; 2861 } 2862 2863 return NULL; 2864 } 2865 2866 /* This function requires the caller holds hdev->lock */ 2867 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance) 2868 { 2869 struct adv_info *cur_instance; 2870 2871 cur_instance = hci_find_adv_instance(hdev, instance); 2872 if (!cur_instance) 2873 return NULL; 2874 2875 if (cur_instance == list_last_entry(&hdev->adv_instances, 2876 struct adv_info, list)) 2877 return list_first_entry(&hdev->adv_instances, 2878 struct adv_info, list); 2879 else 2880 return list_next_entry(cur_instance, list); 2881 } 2882 2883 /* This function requires the caller holds hdev->lock */ 2884 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance) 2885 { 2886 struct adv_info *adv_instance; 2887 2888 adv_instance = hci_find_adv_instance(hdev, instance); 2889 if (!adv_instance) 2890 return -ENOENT; 2891 2892 BT_DBG("%s removing %dMR", hdev->name, instance); 2893 2894 if (hdev->cur_adv_instance == instance) { 2895 if (hdev->adv_instance_timeout) { 2896 cancel_delayed_work(&hdev->adv_instance_expire); 2897 hdev->adv_instance_timeout = 0; 2898 } 2899 hdev->cur_adv_instance = 0x00; 2900 } 2901 2902 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 2903 2904 list_del(&adv_instance->list); 2905 kfree(adv_instance); 2906 2907 hdev->adv_instance_cnt--; 2908 2909 return 0; 2910 } 2911 2912 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired) 2913 { 2914 struct adv_info *adv_instance, *n; 2915 2916 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) 2917 adv_instance->rpa_expired = rpa_expired; 2918 } 2919 2920 /* This function requires the caller holds hdev->lock */ 2921 void hci_adv_instances_clear(struct hci_dev *hdev) 2922 { 2923 struct adv_info *adv_instance, *n; 2924 2925 if (hdev->adv_instance_timeout) { 2926 cancel_delayed_work(&hdev->adv_instance_expire); 2927 hdev->adv_instance_timeout = 0; 2928 } 2929 2930 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) { 2931 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 2932 list_del(&adv_instance->list); 2933 kfree(adv_instance); 2934 } 2935 2936 hdev->adv_instance_cnt = 0; 2937 hdev->cur_adv_instance = 0x00; 2938 } 2939 2940 static void adv_instance_rpa_expired(struct work_struct *work) 2941 { 2942 struct adv_info *adv_instance = container_of(work, struct adv_info, 2943 rpa_expired_cb.work); 2944 2945 BT_DBG(""); 2946 2947 adv_instance->rpa_expired = true; 2948 } 2949 2950 /* This function requires the caller holds hdev->lock */ 2951 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags, 2952 u16 adv_data_len, u8 *adv_data, 2953 u16 scan_rsp_len, u8 *scan_rsp_data, 2954 u16 timeout, u16 duration) 2955 { 2956 struct adv_info *adv_instance; 2957 2958 adv_instance = hci_find_adv_instance(hdev, instance); 2959 if (adv_instance) { 2960 memset(adv_instance->adv_data, 0, 2961 sizeof(adv_instance->adv_data)); 2962 memset(adv_instance->scan_rsp_data, 0, 2963 sizeof(adv_instance->scan_rsp_data)); 2964 } else { 2965 if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets || 2966 instance < 1 || instance > hdev->le_num_of_adv_sets) 2967 return -EOVERFLOW; 2968 2969 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL); 2970 if (!adv_instance) 2971 return -ENOMEM; 2972 2973 adv_instance->pending = true; 2974 adv_instance->instance = instance; 2975 list_add(&adv_instance->list, &hdev->adv_instances); 2976 hdev->adv_instance_cnt++; 2977 } 2978 2979 adv_instance->flags = flags; 2980 adv_instance->adv_data_len = adv_data_len; 2981 adv_instance->scan_rsp_len = scan_rsp_len; 2982 2983 if (adv_data_len) 2984 memcpy(adv_instance->adv_data, adv_data, adv_data_len); 2985 2986 if (scan_rsp_len) 2987 memcpy(adv_instance->scan_rsp_data, 2988 scan_rsp_data, scan_rsp_len); 2989 2990 adv_instance->timeout = timeout; 2991 adv_instance->remaining_time = timeout; 2992 2993 if (duration == 0) 2994 adv_instance->duration = hdev->def_multi_adv_rotation_duration; 2995 else 2996 adv_instance->duration = duration; 2997 2998 adv_instance->tx_power = HCI_TX_POWER_INVALID; 2999 3000 INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb, 3001 adv_instance_rpa_expired); 3002 3003 BT_DBG("%s for %dMR", hdev->name, instance); 3004 3005 return 0; 3006 } 3007 3008 /* This function requires the caller holds hdev->lock */ 3009 void hci_adv_monitors_clear(struct hci_dev *hdev) 3010 { 3011 struct adv_monitor *monitor; 3012 int handle; 3013 3014 idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle) 3015 hci_free_adv_monitor(monitor); 3016 3017 idr_destroy(&hdev->adv_monitors_idr); 3018 } 3019 3020 void hci_free_adv_monitor(struct adv_monitor *monitor) 3021 { 3022 struct adv_pattern *pattern; 3023 struct adv_pattern *tmp; 3024 3025 if (!monitor) 3026 return; 3027 3028 list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) 3029 kfree(pattern); 3030 3031 kfree(monitor); 3032 } 3033 3034 /* This function requires the caller holds hdev->lock */ 3035 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor) 3036 { 3037 int min, max, handle; 3038 3039 if (!monitor) 3040 return -EINVAL; 3041 3042 min = HCI_MIN_ADV_MONITOR_HANDLE; 3043 max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES; 3044 handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max, 3045 GFP_KERNEL); 3046 if (handle < 0) 3047 return handle; 3048 3049 hdev->adv_monitors_cnt++; 3050 monitor->handle = handle; 3051 3052 hci_update_background_scan(hdev); 3053 3054 return 0; 3055 } 3056 3057 static int free_adv_monitor(int id, void *ptr, void *data) 3058 { 3059 struct hci_dev *hdev = data; 3060 struct adv_monitor *monitor = ptr; 3061 3062 idr_remove(&hdev->adv_monitors_idr, monitor->handle); 3063 hci_free_adv_monitor(monitor); 3064 hdev->adv_monitors_cnt--; 3065 3066 return 0; 3067 } 3068 3069 /* This function requires the caller holds hdev->lock */ 3070 int hci_remove_adv_monitor(struct hci_dev *hdev, u16 handle) 3071 { 3072 struct adv_monitor *monitor; 3073 3074 if (handle) { 3075 monitor = idr_find(&hdev->adv_monitors_idr, handle); 3076 if (!monitor) 3077 return -ENOENT; 3078 3079 idr_remove(&hdev->adv_monitors_idr, monitor->handle); 3080 hci_free_adv_monitor(monitor); 3081 hdev->adv_monitors_cnt--; 3082 } else { 3083 /* Remove all monitors if handle is 0. */ 3084 idr_for_each(&hdev->adv_monitors_idr, &free_adv_monitor, hdev); 3085 } 3086 3087 hci_update_background_scan(hdev); 3088 3089 return 0; 3090 } 3091 3092 /* This function requires the caller holds hdev->lock */ 3093 bool hci_is_adv_monitoring(struct hci_dev *hdev) 3094 { 3095 return !idr_is_empty(&hdev->adv_monitors_idr); 3096 } 3097 3098 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list, 3099 bdaddr_t *bdaddr, u8 type) 3100 { 3101 struct bdaddr_list *b; 3102 3103 list_for_each_entry(b, bdaddr_list, list) { 3104 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 3105 return b; 3106 } 3107 3108 return NULL; 3109 } 3110 3111 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk( 3112 struct list_head *bdaddr_list, bdaddr_t *bdaddr, 3113 u8 type) 3114 { 3115 struct bdaddr_list_with_irk *b; 3116 3117 list_for_each_entry(b, bdaddr_list, list) { 3118 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 3119 return b; 3120 } 3121 3122 return NULL; 3123 } 3124 3125 struct bdaddr_list_with_flags * 3126 hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list, 3127 bdaddr_t *bdaddr, u8 type) 3128 { 3129 struct bdaddr_list_with_flags *b; 3130 3131 list_for_each_entry(b, bdaddr_list, list) { 3132 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 3133 return b; 3134 } 3135 3136 return NULL; 3137 } 3138 3139 void hci_bdaddr_list_clear(struct list_head *bdaddr_list) 3140 { 3141 struct bdaddr_list *b, *n; 3142 3143 list_for_each_entry_safe(b, n, bdaddr_list, list) { 3144 list_del(&b->list); 3145 kfree(b); 3146 } 3147 } 3148 3149 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type) 3150 { 3151 struct bdaddr_list *entry; 3152 3153 if (!bacmp(bdaddr, BDADDR_ANY)) 3154 return -EBADF; 3155 3156 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 3157 return -EEXIST; 3158 3159 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 3160 if (!entry) 3161 return -ENOMEM; 3162 3163 bacpy(&entry->bdaddr, bdaddr); 3164 entry->bdaddr_type = type; 3165 3166 list_add(&entry->list, list); 3167 3168 return 0; 3169 } 3170 3171 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr, 3172 u8 type, u8 *peer_irk, u8 *local_irk) 3173 { 3174 struct bdaddr_list_with_irk *entry; 3175 3176 if (!bacmp(bdaddr, BDADDR_ANY)) 3177 return -EBADF; 3178 3179 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 3180 return -EEXIST; 3181 3182 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 3183 if (!entry) 3184 return -ENOMEM; 3185 3186 bacpy(&entry->bdaddr, bdaddr); 3187 entry->bdaddr_type = type; 3188 3189 if (peer_irk) 3190 memcpy(entry->peer_irk, peer_irk, 16); 3191 3192 if (local_irk) 3193 memcpy(entry->local_irk, local_irk, 16); 3194 3195 list_add(&entry->list, list); 3196 3197 return 0; 3198 } 3199 3200 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr, 3201 u8 type, u32 flags) 3202 { 3203 struct bdaddr_list_with_flags *entry; 3204 3205 if (!bacmp(bdaddr, BDADDR_ANY)) 3206 return -EBADF; 3207 3208 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 3209 return -EEXIST; 3210 3211 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 3212 if (!entry) 3213 return -ENOMEM; 3214 3215 bacpy(&entry->bdaddr, bdaddr); 3216 entry->bdaddr_type = type; 3217 entry->current_flags = flags; 3218 3219 list_add(&entry->list, list); 3220 3221 return 0; 3222 } 3223 3224 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type) 3225 { 3226 struct bdaddr_list *entry; 3227 3228 if (!bacmp(bdaddr, BDADDR_ANY)) { 3229 hci_bdaddr_list_clear(list); 3230 return 0; 3231 } 3232 3233 entry = hci_bdaddr_list_lookup(list, bdaddr, type); 3234 if (!entry) 3235 return -ENOENT; 3236 3237 list_del(&entry->list); 3238 kfree(entry); 3239 3240 return 0; 3241 } 3242 3243 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr, 3244 u8 type) 3245 { 3246 struct bdaddr_list_with_irk *entry; 3247 3248 if (!bacmp(bdaddr, BDADDR_ANY)) { 3249 hci_bdaddr_list_clear(list); 3250 return 0; 3251 } 3252 3253 entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type); 3254 if (!entry) 3255 return -ENOENT; 3256 3257 list_del(&entry->list); 3258 kfree(entry); 3259 3260 return 0; 3261 } 3262 3263 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr, 3264 u8 type) 3265 { 3266 struct bdaddr_list_with_flags *entry; 3267 3268 if (!bacmp(bdaddr, BDADDR_ANY)) { 3269 hci_bdaddr_list_clear(list); 3270 return 0; 3271 } 3272 3273 entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type); 3274 if (!entry) 3275 return -ENOENT; 3276 3277 list_del(&entry->list); 3278 kfree(entry); 3279 3280 return 0; 3281 } 3282 3283 /* This function requires the caller holds hdev->lock */ 3284 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev, 3285 bdaddr_t *addr, u8 addr_type) 3286 { 3287 struct hci_conn_params *params; 3288 3289 list_for_each_entry(params, &hdev->le_conn_params, list) { 3290 if (bacmp(¶ms->addr, addr) == 0 && 3291 params->addr_type == addr_type) { 3292 return params; 3293 } 3294 } 3295 3296 return NULL; 3297 } 3298 3299 /* This function requires the caller holds hdev->lock */ 3300 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list, 3301 bdaddr_t *addr, u8 addr_type) 3302 { 3303 struct hci_conn_params *param; 3304 3305 switch (addr_type) { 3306 case ADDR_LE_DEV_PUBLIC_RESOLVED: 3307 addr_type = ADDR_LE_DEV_PUBLIC; 3308 break; 3309 case ADDR_LE_DEV_RANDOM_RESOLVED: 3310 addr_type = ADDR_LE_DEV_RANDOM; 3311 break; 3312 } 3313 3314 list_for_each_entry(param, list, action) { 3315 if (bacmp(¶m->addr, addr) == 0 && 3316 param->addr_type == addr_type) 3317 return param; 3318 } 3319 3320 return NULL; 3321 } 3322 3323 /* This function requires the caller holds hdev->lock */ 3324 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev, 3325 bdaddr_t *addr, u8 addr_type) 3326 { 3327 struct hci_conn_params *params; 3328 3329 params = hci_conn_params_lookup(hdev, addr, addr_type); 3330 if (params) 3331 return params; 3332 3333 params = kzalloc(sizeof(*params), GFP_KERNEL); 3334 if (!params) { 3335 bt_dev_err(hdev, "out of memory"); 3336 return NULL; 3337 } 3338 3339 bacpy(¶ms->addr, addr); 3340 params->addr_type = addr_type; 3341 3342 list_add(¶ms->list, &hdev->le_conn_params); 3343 INIT_LIST_HEAD(¶ms->action); 3344 3345 params->conn_min_interval = hdev->le_conn_min_interval; 3346 params->conn_max_interval = hdev->le_conn_max_interval; 3347 params->conn_latency = hdev->le_conn_latency; 3348 params->supervision_timeout = hdev->le_supv_timeout; 3349 params->auto_connect = HCI_AUTO_CONN_DISABLED; 3350 3351 BT_DBG("addr %pMR (type %u)", addr, addr_type); 3352 3353 return params; 3354 } 3355 3356 static void hci_conn_params_free(struct hci_conn_params *params) 3357 { 3358 if (params->conn) { 3359 hci_conn_drop(params->conn); 3360 hci_conn_put(params->conn); 3361 } 3362 3363 list_del(¶ms->action); 3364 list_del(¶ms->list); 3365 kfree(params); 3366 } 3367 3368 /* This function requires the caller holds hdev->lock */ 3369 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type) 3370 { 3371 struct hci_conn_params *params; 3372 3373 params = hci_conn_params_lookup(hdev, addr, addr_type); 3374 if (!params) 3375 return; 3376 3377 hci_conn_params_free(params); 3378 3379 hci_update_background_scan(hdev); 3380 3381 BT_DBG("addr %pMR (type %u)", addr, addr_type); 3382 } 3383 3384 /* This function requires the caller holds hdev->lock */ 3385 void hci_conn_params_clear_disabled(struct hci_dev *hdev) 3386 { 3387 struct hci_conn_params *params, *tmp; 3388 3389 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) { 3390 if (params->auto_connect != HCI_AUTO_CONN_DISABLED) 3391 continue; 3392 3393 /* If trying to estabilish one time connection to disabled 3394 * device, leave the params, but mark them as just once. 3395 */ 3396 if (params->explicit_connect) { 3397 params->auto_connect = HCI_AUTO_CONN_EXPLICIT; 3398 continue; 3399 } 3400 3401 list_del(¶ms->list); 3402 kfree(params); 3403 } 3404 3405 BT_DBG("All LE disabled connection parameters were removed"); 3406 } 3407 3408 /* This function requires the caller holds hdev->lock */ 3409 static void hci_conn_params_clear_all(struct hci_dev *hdev) 3410 { 3411 struct hci_conn_params *params, *tmp; 3412 3413 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) 3414 hci_conn_params_free(params); 3415 3416 BT_DBG("All LE connection parameters were removed"); 3417 } 3418 3419 /* Copy the Identity Address of the controller. 3420 * 3421 * If the controller has a public BD_ADDR, then by default use that one. 3422 * If this is a LE only controller without a public address, default to 3423 * the static random address. 3424 * 3425 * For debugging purposes it is possible to force controllers with a 3426 * public address to use the static random address instead. 3427 * 3428 * In case BR/EDR has been disabled on a dual-mode controller and 3429 * userspace has configured a static address, then that address 3430 * becomes the identity address instead of the public BR/EDR address. 3431 */ 3432 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr, 3433 u8 *bdaddr_type) 3434 { 3435 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 3436 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 3437 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 3438 bacmp(&hdev->static_addr, BDADDR_ANY))) { 3439 bacpy(bdaddr, &hdev->static_addr); 3440 *bdaddr_type = ADDR_LE_DEV_RANDOM; 3441 } else { 3442 bacpy(bdaddr, &hdev->bdaddr); 3443 *bdaddr_type = ADDR_LE_DEV_PUBLIC; 3444 } 3445 } 3446 3447 static void hci_suspend_clear_tasks(struct hci_dev *hdev) 3448 { 3449 int i; 3450 3451 for (i = 0; i < __SUSPEND_NUM_TASKS; i++) 3452 clear_bit(i, hdev->suspend_tasks); 3453 3454 wake_up(&hdev->suspend_wait_q); 3455 } 3456 3457 static int hci_suspend_wait_event(struct hci_dev *hdev) 3458 { 3459 #define WAKE_COND \ 3460 (find_first_bit(hdev->suspend_tasks, __SUSPEND_NUM_TASKS) == \ 3461 __SUSPEND_NUM_TASKS) 3462 3463 int i; 3464 int ret = wait_event_timeout(hdev->suspend_wait_q, 3465 WAKE_COND, SUSPEND_NOTIFIER_TIMEOUT); 3466 3467 if (ret == 0) { 3468 bt_dev_err(hdev, "Timed out waiting for suspend events"); 3469 for (i = 0; i < __SUSPEND_NUM_TASKS; ++i) { 3470 if (test_bit(i, hdev->suspend_tasks)) 3471 bt_dev_err(hdev, "Suspend timeout bit: %d", i); 3472 clear_bit(i, hdev->suspend_tasks); 3473 } 3474 3475 ret = -ETIMEDOUT; 3476 } else { 3477 ret = 0; 3478 } 3479 3480 return ret; 3481 } 3482 3483 static void hci_prepare_suspend(struct work_struct *work) 3484 { 3485 struct hci_dev *hdev = 3486 container_of(work, struct hci_dev, suspend_prepare); 3487 3488 hci_dev_lock(hdev); 3489 hci_req_prepare_suspend(hdev, hdev->suspend_state_next); 3490 hci_dev_unlock(hdev); 3491 } 3492 3493 static int hci_change_suspend_state(struct hci_dev *hdev, 3494 enum suspended_state next) 3495 { 3496 hdev->suspend_state_next = next; 3497 set_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks); 3498 queue_work(hdev->req_workqueue, &hdev->suspend_prepare); 3499 return hci_suspend_wait_event(hdev); 3500 } 3501 3502 static void hci_clear_wake_reason(struct hci_dev *hdev) 3503 { 3504 hci_dev_lock(hdev); 3505 3506 hdev->wake_reason = 0; 3507 bacpy(&hdev->wake_addr, BDADDR_ANY); 3508 hdev->wake_addr_type = 0; 3509 3510 hci_dev_unlock(hdev); 3511 } 3512 3513 static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action, 3514 void *data) 3515 { 3516 struct hci_dev *hdev = 3517 container_of(nb, struct hci_dev, suspend_notifier); 3518 int ret = 0; 3519 u8 state = BT_RUNNING; 3520 3521 /* If powering down, wait for completion. */ 3522 if (mgmt_powering_down(hdev)) { 3523 set_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks); 3524 ret = hci_suspend_wait_event(hdev); 3525 if (ret) 3526 goto done; 3527 } 3528 3529 /* Suspend notifier should only act on events when powered. */ 3530 if (!hdev_is_powered(hdev)) 3531 goto done; 3532 3533 if (action == PM_SUSPEND_PREPARE) { 3534 /* Suspend consists of two actions: 3535 * - First, disconnect everything and make the controller not 3536 * connectable (disabling scanning) 3537 * - Second, program event filter/whitelist and enable scan 3538 */ 3539 ret = hci_change_suspend_state(hdev, BT_SUSPEND_DISCONNECT); 3540 if (!ret) 3541 state = BT_SUSPEND_DISCONNECT; 3542 3543 /* Only configure whitelist if disconnect succeeded and wake 3544 * isn't being prevented. 3545 */ 3546 if (!ret && !(hdev->prevent_wake && hdev->prevent_wake(hdev))) { 3547 ret = hci_change_suspend_state(hdev, 3548 BT_SUSPEND_CONFIGURE_WAKE); 3549 if (!ret) 3550 state = BT_SUSPEND_CONFIGURE_WAKE; 3551 } 3552 3553 hci_clear_wake_reason(hdev); 3554 mgmt_suspending(hdev, state); 3555 3556 } else if (action == PM_POST_SUSPEND) { 3557 ret = hci_change_suspend_state(hdev, BT_RUNNING); 3558 3559 mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr, 3560 hdev->wake_addr_type); 3561 } 3562 3563 done: 3564 /* We always allow suspend even if suspend preparation failed and 3565 * attempt to recover in resume. 3566 */ 3567 if (ret) 3568 bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d", 3569 action, ret); 3570 3571 return NOTIFY_DONE; 3572 } 3573 3574 /* Alloc HCI device */ 3575 struct hci_dev *hci_alloc_dev(void) 3576 { 3577 struct hci_dev *hdev; 3578 3579 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL); 3580 if (!hdev) 3581 return NULL; 3582 3583 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1); 3584 hdev->esco_type = (ESCO_HV1); 3585 hdev->link_mode = (HCI_LM_ACCEPT); 3586 hdev->num_iac = 0x01; /* One IAC support is mandatory */ 3587 hdev->io_capability = 0x03; /* No Input No Output */ 3588 hdev->manufacturer = 0xffff; /* Default to internal use */ 3589 hdev->inq_tx_power = HCI_TX_POWER_INVALID; 3590 hdev->adv_tx_power = HCI_TX_POWER_INVALID; 3591 hdev->adv_instance_cnt = 0; 3592 hdev->cur_adv_instance = 0x00; 3593 hdev->adv_instance_timeout = 0; 3594 3595 hdev->sniff_max_interval = 800; 3596 hdev->sniff_min_interval = 80; 3597 3598 hdev->le_adv_channel_map = 0x07; 3599 hdev->le_adv_min_interval = 0x0800; 3600 hdev->le_adv_max_interval = 0x0800; 3601 hdev->le_scan_interval = 0x0060; 3602 hdev->le_scan_window = 0x0030; 3603 hdev->le_scan_int_suspend = 0x0400; 3604 hdev->le_scan_window_suspend = 0x0012; 3605 hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT; 3606 hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN; 3607 hdev->le_scan_int_connect = 0x0060; 3608 hdev->le_scan_window_connect = 0x0060; 3609 hdev->le_conn_min_interval = 0x0018; 3610 hdev->le_conn_max_interval = 0x0028; 3611 hdev->le_conn_latency = 0x0000; 3612 hdev->le_supv_timeout = 0x002a; 3613 hdev->le_def_tx_len = 0x001b; 3614 hdev->le_def_tx_time = 0x0148; 3615 hdev->le_max_tx_len = 0x001b; 3616 hdev->le_max_tx_time = 0x0148; 3617 hdev->le_max_rx_len = 0x001b; 3618 hdev->le_max_rx_time = 0x0148; 3619 hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE; 3620 hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE; 3621 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M; 3622 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M; 3623 hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES; 3624 hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION; 3625 hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT; 3626 3627 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT; 3628 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT; 3629 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE; 3630 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE; 3631 hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT; 3632 hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE; 3633 3634 /* default 1.28 sec page scan */ 3635 hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD; 3636 hdev->def_page_scan_int = 0x0800; 3637 hdev->def_page_scan_window = 0x0012; 3638 3639 mutex_init(&hdev->lock); 3640 mutex_init(&hdev->req_lock); 3641 3642 INIT_LIST_HEAD(&hdev->mgmt_pending); 3643 INIT_LIST_HEAD(&hdev->blacklist); 3644 INIT_LIST_HEAD(&hdev->whitelist); 3645 INIT_LIST_HEAD(&hdev->uuids); 3646 INIT_LIST_HEAD(&hdev->link_keys); 3647 INIT_LIST_HEAD(&hdev->long_term_keys); 3648 INIT_LIST_HEAD(&hdev->identity_resolving_keys); 3649 INIT_LIST_HEAD(&hdev->remote_oob_data); 3650 INIT_LIST_HEAD(&hdev->le_white_list); 3651 INIT_LIST_HEAD(&hdev->le_resolv_list); 3652 INIT_LIST_HEAD(&hdev->le_conn_params); 3653 INIT_LIST_HEAD(&hdev->pend_le_conns); 3654 INIT_LIST_HEAD(&hdev->pend_le_reports); 3655 INIT_LIST_HEAD(&hdev->conn_hash.list); 3656 INIT_LIST_HEAD(&hdev->adv_instances); 3657 INIT_LIST_HEAD(&hdev->blocked_keys); 3658 3659 INIT_WORK(&hdev->rx_work, hci_rx_work); 3660 INIT_WORK(&hdev->cmd_work, hci_cmd_work); 3661 INIT_WORK(&hdev->tx_work, hci_tx_work); 3662 INIT_WORK(&hdev->power_on, hci_power_on); 3663 INIT_WORK(&hdev->error_reset, hci_error_reset); 3664 INIT_WORK(&hdev->suspend_prepare, hci_prepare_suspend); 3665 3666 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off); 3667 3668 skb_queue_head_init(&hdev->rx_q); 3669 skb_queue_head_init(&hdev->cmd_q); 3670 skb_queue_head_init(&hdev->raw_q); 3671 3672 init_waitqueue_head(&hdev->req_wait_q); 3673 init_waitqueue_head(&hdev->suspend_wait_q); 3674 3675 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout); 3676 3677 hci_request_setup(hdev); 3678 3679 hci_init_sysfs(hdev); 3680 discovery_init(hdev); 3681 3682 return hdev; 3683 } 3684 EXPORT_SYMBOL(hci_alloc_dev); 3685 3686 /* Free HCI device */ 3687 void hci_free_dev(struct hci_dev *hdev) 3688 { 3689 /* will free via device release */ 3690 put_device(&hdev->dev); 3691 } 3692 EXPORT_SYMBOL(hci_free_dev); 3693 3694 /* Register HCI device */ 3695 int hci_register_dev(struct hci_dev *hdev) 3696 { 3697 int id, error; 3698 3699 if (!hdev->open || !hdev->close || !hdev->send) 3700 return -EINVAL; 3701 3702 /* Do not allow HCI_AMP devices to register at index 0, 3703 * so the index can be used as the AMP controller ID. 3704 */ 3705 switch (hdev->dev_type) { 3706 case HCI_PRIMARY: 3707 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL); 3708 break; 3709 case HCI_AMP: 3710 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL); 3711 break; 3712 default: 3713 return -EINVAL; 3714 } 3715 3716 if (id < 0) 3717 return id; 3718 3719 sprintf(hdev->name, "hci%d", id); 3720 hdev->id = id; 3721 3722 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 3723 3724 hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name); 3725 if (!hdev->workqueue) { 3726 error = -ENOMEM; 3727 goto err; 3728 } 3729 3730 hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, 3731 hdev->name); 3732 if (!hdev->req_workqueue) { 3733 destroy_workqueue(hdev->workqueue); 3734 error = -ENOMEM; 3735 goto err; 3736 } 3737 3738 if (!IS_ERR_OR_NULL(bt_debugfs)) 3739 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs); 3740 3741 dev_set_name(&hdev->dev, "%s", hdev->name); 3742 3743 error = device_add(&hdev->dev); 3744 if (error < 0) 3745 goto err_wqueue; 3746 3747 hci_leds_init(hdev); 3748 3749 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev, 3750 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, 3751 hdev); 3752 if (hdev->rfkill) { 3753 if (rfkill_register(hdev->rfkill) < 0) { 3754 rfkill_destroy(hdev->rfkill); 3755 hdev->rfkill = NULL; 3756 } 3757 } 3758 3759 if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) 3760 hci_dev_set_flag(hdev, HCI_RFKILLED); 3761 3762 hci_dev_set_flag(hdev, HCI_SETUP); 3763 hci_dev_set_flag(hdev, HCI_AUTO_OFF); 3764 3765 if (hdev->dev_type == HCI_PRIMARY) { 3766 /* Assume BR/EDR support until proven otherwise (such as 3767 * through reading supported features during init. 3768 */ 3769 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); 3770 } 3771 3772 write_lock(&hci_dev_list_lock); 3773 list_add(&hdev->list, &hci_dev_list); 3774 write_unlock(&hci_dev_list_lock); 3775 3776 /* Devices that are marked for raw-only usage are unconfigured 3777 * and should not be included in normal operation. 3778 */ 3779 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 3780 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 3781 3782 hci_sock_dev_event(hdev, HCI_DEV_REG); 3783 hci_dev_hold(hdev); 3784 3785 hdev->suspend_notifier.notifier_call = hci_suspend_notifier; 3786 error = register_pm_notifier(&hdev->suspend_notifier); 3787 if (error) 3788 goto err_wqueue; 3789 3790 queue_work(hdev->req_workqueue, &hdev->power_on); 3791 3792 idr_init(&hdev->adv_monitors_idr); 3793 3794 return id; 3795 3796 err_wqueue: 3797 destroy_workqueue(hdev->workqueue); 3798 destroy_workqueue(hdev->req_workqueue); 3799 err: 3800 ida_simple_remove(&hci_index_ida, hdev->id); 3801 3802 return error; 3803 } 3804 EXPORT_SYMBOL(hci_register_dev); 3805 3806 /* Unregister HCI device */ 3807 void hci_unregister_dev(struct hci_dev *hdev) 3808 { 3809 int id; 3810 3811 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 3812 3813 hci_dev_set_flag(hdev, HCI_UNREGISTER); 3814 3815 id = hdev->id; 3816 3817 write_lock(&hci_dev_list_lock); 3818 list_del(&hdev->list); 3819 write_unlock(&hci_dev_list_lock); 3820 3821 cancel_work_sync(&hdev->power_on); 3822 3823 hci_suspend_clear_tasks(hdev); 3824 unregister_pm_notifier(&hdev->suspend_notifier); 3825 cancel_work_sync(&hdev->suspend_prepare); 3826 3827 hci_dev_do_close(hdev); 3828 3829 if (!test_bit(HCI_INIT, &hdev->flags) && 3830 !hci_dev_test_flag(hdev, HCI_SETUP) && 3831 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 3832 hci_dev_lock(hdev); 3833 mgmt_index_removed(hdev); 3834 hci_dev_unlock(hdev); 3835 } 3836 3837 /* mgmt_index_removed should take care of emptying the 3838 * pending list */ 3839 BUG_ON(!list_empty(&hdev->mgmt_pending)); 3840 3841 hci_sock_dev_event(hdev, HCI_DEV_UNREG); 3842 3843 if (hdev->rfkill) { 3844 rfkill_unregister(hdev->rfkill); 3845 rfkill_destroy(hdev->rfkill); 3846 } 3847 3848 device_del(&hdev->dev); 3849 3850 debugfs_remove_recursive(hdev->debugfs); 3851 kfree_const(hdev->hw_info); 3852 kfree_const(hdev->fw_info); 3853 3854 destroy_workqueue(hdev->workqueue); 3855 destroy_workqueue(hdev->req_workqueue); 3856 3857 hci_dev_lock(hdev); 3858 hci_bdaddr_list_clear(&hdev->blacklist); 3859 hci_bdaddr_list_clear(&hdev->whitelist); 3860 hci_uuids_clear(hdev); 3861 hci_link_keys_clear(hdev); 3862 hci_smp_ltks_clear(hdev); 3863 hci_smp_irks_clear(hdev); 3864 hci_remote_oob_data_clear(hdev); 3865 hci_adv_instances_clear(hdev); 3866 hci_adv_monitors_clear(hdev); 3867 hci_bdaddr_list_clear(&hdev->le_white_list); 3868 hci_bdaddr_list_clear(&hdev->le_resolv_list); 3869 hci_conn_params_clear_all(hdev); 3870 hci_discovery_filter_clear(hdev); 3871 hci_blocked_keys_clear(hdev); 3872 hci_dev_unlock(hdev); 3873 3874 hci_dev_put(hdev); 3875 3876 ida_simple_remove(&hci_index_ida, id); 3877 } 3878 EXPORT_SYMBOL(hci_unregister_dev); 3879 3880 /* Suspend HCI device */ 3881 int hci_suspend_dev(struct hci_dev *hdev) 3882 { 3883 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND); 3884 return 0; 3885 } 3886 EXPORT_SYMBOL(hci_suspend_dev); 3887 3888 /* Resume HCI device */ 3889 int hci_resume_dev(struct hci_dev *hdev) 3890 { 3891 hci_sock_dev_event(hdev, HCI_DEV_RESUME); 3892 return 0; 3893 } 3894 EXPORT_SYMBOL(hci_resume_dev); 3895 3896 /* Reset HCI device */ 3897 int hci_reset_dev(struct hci_dev *hdev) 3898 { 3899 static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 }; 3900 struct sk_buff *skb; 3901 3902 skb = bt_skb_alloc(3, GFP_ATOMIC); 3903 if (!skb) 3904 return -ENOMEM; 3905 3906 hci_skb_pkt_type(skb) = HCI_EVENT_PKT; 3907 skb_put_data(skb, hw_err, 3); 3908 3909 /* Send Hardware Error to upper stack */ 3910 return hci_recv_frame(hdev, skb); 3911 } 3912 EXPORT_SYMBOL(hci_reset_dev); 3913 3914 /* Receive frame from HCI drivers */ 3915 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb) 3916 { 3917 if (!hdev || (!test_bit(HCI_UP, &hdev->flags) 3918 && !test_bit(HCI_INIT, &hdev->flags))) { 3919 kfree_skb(skb); 3920 return -ENXIO; 3921 } 3922 3923 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT && 3924 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 3925 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT && 3926 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) { 3927 kfree_skb(skb); 3928 return -EINVAL; 3929 } 3930 3931 /* Incoming skb */ 3932 bt_cb(skb)->incoming = 1; 3933 3934 /* Time stamp */ 3935 __net_timestamp(skb); 3936 3937 skb_queue_tail(&hdev->rx_q, skb); 3938 queue_work(hdev->workqueue, &hdev->rx_work); 3939 3940 return 0; 3941 } 3942 EXPORT_SYMBOL(hci_recv_frame); 3943 3944 /* Receive diagnostic message from HCI drivers */ 3945 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb) 3946 { 3947 /* Mark as diagnostic packet */ 3948 hci_skb_pkt_type(skb) = HCI_DIAG_PKT; 3949 3950 /* Time stamp */ 3951 __net_timestamp(skb); 3952 3953 skb_queue_tail(&hdev->rx_q, skb); 3954 queue_work(hdev->workqueue, &hdev->rx_work); 3955 3956 return 0; 3957 } 3958 EXPORT_SYMBOL(hci_recv_diag); 3959 3960 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...) 3961 { 3962 va_list vargs; 3963 3964 va_start(vargs, fmt); 3965 kfree_const(hdev->hw_info); 3966 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs); 3967 va_end(vargs); 3968 } 3969 EXPORT_SYMBOL(hci_set_hw_info); 3970 3971 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...) 3972 { 3973 va_list vargs; 3974 3975 va_start(vargs, fmt); 3976 kfree_const(hdev->fw_info); 3977 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs); 3978 va_end(vargs); 3979 } 3980 EXPORT_SYMBOL(hci_set_fw_info); 3981 3982 /* ---- Interface to upper protocols ---- */ 3983 3984 int hci_register_cb(struct hci_cb *cb) 3985 { 3986 BT_DBG("%p name %s", cb, cb->name); 3987 3988 mutex_lock(&hci_cb_list_lock); 3989 list_add_tail(&cb->list, &hci_cb_list); 3990 mutex_unlock(&hci_cb_list_lock); 3991 3992 return 0; 3993 } 3994 EXPORT_SYMBOL(hci_register_cb); 3995 3996 int hci_unregister_cb(struct hci_cb *cb) 3997 { 3998 BT_DBG("%p name %s", cb, cb->name); 3999 4000 mutex_lock(&hci_cb_list_lock); 4001 list_del(&cb->list); 4002 mutex_unlock(&hci_cb_list_lock); 4003 4004 return 0; 4005 } 4006 EXPORT_SYMBOL(hci_unregister_cb); 4007 4008 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb) 4009 { 4010 int err; 4011 4012 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb), 4013 skb->len); 4014 4015 /* Time stamp */ 4016 __net_timestamp(skb); 4017 4018 /* Send copy to monitor */ 4019 hci_send_to_monitor(hdev, skb); 4020 4021 if (atomic_read(&hdev->promisc)) { 4022 /* Send copy to the sockets */ 4023 hci_send_to_sock(hdev, skb); 4024 } 4025 4026 /* Get rid of skb owner, prior to sending to the driver. */ 4027 skb_orphan(skb); 4028 4029 if (!test_bit(HCI_RUNNING, &hdev->flags)) { 4030 kfree_skb(skb); 4031 return; 4032 } 4033 4034 err = hdev->send(hdev, skb); 4035 if (err < 0) { 4036 bt_dev_err(hdev, "sending frame failed (%d)", err); 4037 kfree_skb(skb); 4038 } 4039 } 4040 4041 /* Send HCI command */ 4042 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, 4043 const void *param) 4044 { 4045 struct sk_buff *skb; 4046 4047 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen); 4048 4049 skb = hci_prepare_cmd(hdev, opcode, plen, param); 4050 if (!skb) { 4051 bt_dev_err(hdev, "no memory for command"); 4052 return -ENOMEM; 4053 } 4054 4055 /* Stand-alone HCI commands must be flagged as 4056 * single-command requests. 4057 */ 4058 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 4059 4060 skb_queue_tail(&hdev->cmd_q, skb); 4061 queue_work(hdev->workqueue, &hdev->cmd_work); 4062 4063 return 0; 4064 } 4065 4066 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen, 4067 const void *param) 4068 { 4069 struct sk_buff *skb; 4070 4071 if (hci_opcode_ogf(opcode) != 0x3f) { 4072 /* A controller receiving a command shall respond with either 4073 * a Command Status Event or a Command Complete Event. 4074 * Therefore, all standard HCI commands must be sent via the 4075 * standard API, using hci_send_cmd or hci_cmd_sync helpers. 4076 * Some vendors do not comply with this rule for vendor-specific 4077 * commands and do not return any event. We want to support 4078 * unresponded commands for such cases only. 4079 */ 4080 bt_dev_err(hdev, "unresponded command not supported"); 4081 return -EINVAL; 4082 } 4083 4084 skb = hci_prepare_cmd(hdev, opcode, plen, param); 4085 if (!skb) { 4086 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 4087 opcode); 4088 return -ENOMEM; 4089 } 4090 4091 hci_send_frame(hdev, skb); 4092 4093 return 0; 4094 } 4095 EXPORT_SYMBOL(__hci_cmd_send); 4096 4097 /* Get data from the previously sent command */ 4098 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode) 4099 { 4100 struct hci_command_hdr *hdr; 4101 4102 if (!hdev->sent_cmd) 4103 return NULL; 4104 4105 hdr = (void *) hdev->sent_cmd->data; 4106 4107 if (hdr->opcode != cpu_to_le16(opcode)) 4108 return NULL; 4109 4110 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode); 4111 4112 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE; 4113 } 4114 4115 /* Send HCI command and wait for command commplete event */ 4116 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 4117 const void *param, u32 timeout) 4118 { 4119 struct sk_buff *skb; 4120 4121 if (!test_bit(HCI_UP, &hdev->flags)) 4122 return ERR_PTR(-ENETDOWN); 4123 4124 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 4125 4126 hci_req_sync_lock(hdev); 4127 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); 4128 hci_req_sync_unlock(hdev); 4129 4130 return skb; 4131 } 4132 EXPORT_SYMBOL(hci_cmd_sync); 4133 4134 /* Send ACL data */ 4135 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags) 4136 { 4137 struct hci_acl_hdr *hdr; 4138 int len = skb->len; 4139 4140 skb_push(skb, HCI_ACL_HDR_SIZE); 4141 skb_reset_transport_header(skb); 4142 hdr = (struct hci_acl_hdr *)skb_transport_header(skb); 4143 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags)); 4144 hdr->dlen = cpu_to_le16(len); 4145 } 4146 4147 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue, 4148 struct sk_buff *skb, __u16 flags) 4149 { 4150 struct hci_conn *conn = chan->conn; 4151 struct hci_dev *hdev = conn->hdev; 4152 struct sk_buff *list; 4153 4154 skb->len = skb_headlen(skb); 4155 skb->data_len = 0; 4156 4157 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT; 4158 4159 switch (hdev->dev_type) { 4160 case HCI_PRIMARY: 4161 hci_add_acl_hdr(skb, conn->handle, flags); 4162 break; 4163 case HCI_AMP: 4164 hci_add_acl_hdr(skb, chan->handle, flags); 4165 break; 4166 default: 4167 bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type); 4168 return; 4169 } 4170 4171 list = skb_shinfo(skb)->frag_list; 4172 if (!list) { 4173 /* Non fragmented */ 4174 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len); 4175 4176 skb_queue_tail(queue, skb); 4177 } else { 4178 /* Fragmented */ 4179 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 4180 4181 skb_shinfo(skb)->frag_list = NULL; 4182 4183 /* Queue all fragments atomically. We need to use spin_lock_bh 4184 * here because of 6LoWPAN links, as there this function is 4185 * called from softirq and using normal spin lock could cause 4186 * deadlocks. 4187 */ 4188 spin_lock_bh(&queue->lock); 4189 4190 __skb_queue_tail(queue, skb); 4191 4192 flags &= ~ACL_START; 4193 flags |= ACL_CONT; 4194 do { 4195 skb = list; list = list->next; 4196 4197 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT; 4198 hci_add_acl_hdr(skb, conn->handle, flags); 4199 4200 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 4201 4202 __skb_queue_tail(queue, skb); 4203 } while (list); 4204 4205 spin_unlock_bh(&queue->lock); 4206 } 4207 } 4208 4209 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags) 4210 { 4211 struct hci_dev *hdev = chan->conn->hdev; 4212 4213 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags); 4214 4215 hci_queue_acl(chan, &chan->data_q, skb, flags); 4216 4217 queue_work(hdev->workqueue, &hdev->tx_work); 4218 } 4219 4220 /* Send SCO data */ 4221 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb) 4222 { 4223 struct hci_dev *hdev = conn->hdev; 4224 struct hci_sco_hdr hdr; 4225 4226 BT_DBG("%s len %d", hdev->name, skb->len); 4227 4228 hdr.handle = cpu_to_le16(conn->handle); 4229 hdr.dlen = skb->len; 4230 4231 skb_push(skb, HCI_SCO_HDR_SIZE); 4232 skb_reset_transport_header(skb); 4233 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE); 4234 4235 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT; 4236 4237 skb_queue_tail(&conn->data_q, skb); 4238 queue_work(hdev->workqueue, &hdev->tx_work); 4239 } 4240 4241 /* ---- HCI TX task (outgoing data) ---- */ 4242 4243 /* HCI Connection scheduler */ 4244 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, 4245 int *quote) 4246 { 4247 struct hci_conn_hash *h = &hdev->conn_hash; 4248 struct hci_conn *conn = NULL, *c; 4249 unsigned int num = 0, min = ~0; 4250 4251 /* We don't have to lock device here. Connections are always 4252 * added and removed with TX task disabled. */ 4253 4254 rcu_read_lock(); 4255 4256 list_for_each_entry_rcu(c, &h->list, list) { 4257 if (c->type != type || skb_queue_empty(&c->data_q)) 4258 continue; 4259 4260 if (c->state != BT_CONNECTED && c->state != BT_CONFIG) 4261 continue; 4262 4263 num++; 4264 4265 if (c->sent < min) { 4266 min = c->sent; 4267 conn = c; 4268 } 4269 4270 if (hci_conn_num(hdev, type) == num) 4271 break; 4272 } 4273 4274 rcu_read_unlock(); 4275 4276 if (conn) { 4277 int cnt, q; 4278 4279 switch (conn->type) { 4280 case ACL_LINK: 4281 cnt = hdev->acl_cnt; 4282 break; 4283 case SCO_LINK: 4284 case ESCO_LINK: 4285 cnt = hdev->sco_cnt; 4286 break; 4287 case LE_LINK: 4288 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 4289 break; 4290 default: 4291 cnt = 0; 4292 bt_dev_err(hdev, "unknown link type %d", conn->type); 4293 } 4294 4295 q = cnt / num; 4296 *quote = q ? q : 1; 4297 } else 4298 *quote = 0; 4299 4300 BT_DBG("conn %p quote %d", conn, *quote); 4301 return conn; 4302 } 4303 4304 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type) 4305 { 4306 struct hci_conn_hash *h = &hdev->conn_hash; 4307 struct hci_conn *c; 4308 4309 bt_dev_err(hdev, "link tx timeout"); 4310 4311 rcu_read_lock(); 4312 4313 /* Kill stalled connections */ 4314 list_for_each_entry_rcu(c, &h->list, list) { 4315 if (c->type == type && c->sent) { 4316 bt_dev_err(hdev, "killing stalled connection %pMR", 4317 &c->dst); 4318 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM); 4319 } 4320 } 4321 4322 rcu_read_unlock(); 4323 } 4324 4325 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type, 4326 int *quote) 4327 { 4328 struct hci_conn_hash *h = &hdev->conn_hash; 4329 struct hci_chan *chan = NULL; 4330 unsigned int num = 0, min = ~0, cur_prio = 0; 4331 struct hci_conn *conn; 4332 int cnt, q, conn_num = 0; 4333 4334 BT_DBG("%s", hdev->name); 4335 4336 rcu_read_lock(); 4337 4338 list_for_each_entry_rcu(conn, &h->list, list) { 4339 struct hci_chan *tmp; 4340 4341 if (conn->type != type) 4342 continue; 4343 4344 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 4345 continue; 4346 4347 conn_num++; 4348 4349 list_for_each_entry_rcu(tmp, &conn->chan_list, list) { 4350 struct sk_buff *skb; 4351 4352 if (skb_queue_empty(&tmp->data_q)) 4353 continue; 4354 4355 skb = skb_peek(&tmp->data_q); 4356 if (skb->priority < cur_prio) 4357 continue; 4358 4359 if (skb->priority > cur_prio) { 4360 num = 0; 4361 min = ~0; 4362 cur_prio = skb->priority; 4363 } 4364 4365 num++; 4366 4367 if (conn->sent < min) { 4368 min = conn->sent; 4369 chan = tmp; 4370 } 4371 } 4372 4373 if (hci_conn_num(hdev, type) == conn_num) 4374 break; 4375 } 4376 4377 rcu_read_unlock(); 4378 4379 if (!chan) 4380 return NULL; 4381 4382 switch (chan->conn->type) { 4383 case ACL_LINK: 4384 cnt = hdev->acl_cnt; 4385 break; 4386 case AMP_LINK: 4387 cnt = hdev->block_cnt; 4388 break; 4389 case SCO_LINK: 4390 case ESCO_LINK: 4391 cnt = hdev->sco_cnt; 4392 break; 4393 case LE_LINK: 4394 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 4395 break; 4396 default: 4397 cnt = 0; 4398 bt_dev_err(hdev, "unknown link type %d", chan->conn->type); 4399 } 4400 4401 q = cnt / num; 4402 *quote = q ? q : 1; 4403 BT_DBG("chan %p quote %d", chan, *quote); 4404 return chan; 4405 } 4406 4407 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type) 4408 { 4409 struct hci_conn_hash *h = &hdev->conn_hash; 4410 struct hci_conn *conn; 4411 int num = 0; 4412 4413 BT_DBG("%s", hdev->name); 4414 4415 rcu_read_lock(); 4416 4417 list_for_each_entry_rcu(conn, &h->list, list) { 4418 struct hci_chan *chan; 4419 4420 if (conn->type != type) 4421 continue; 4422 4423 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 4424 continue; 4425 4426 num++; 4427 4428 list_for_each_entry_rcu(chan, &conn->chan_list, list) { 4429 struct sk_buff *skb; 4430 4431 if (chan->sent) { 4432 chan->sent = 0; 4433 continue; 4434 } 4435 4436 if (skb_queue_empty(&chan->data_q)) 4437 continue; 4438 4439 skb = skb_peek(&chan->data_q); 4440 if (skb->priority >= HCI_PRIO_MAX - 1) 4441 continue; 4442 4443 skb->priority = HCI_PRIO_MAX - 1; 4444 4445 BT_DBG("chan %p skb %p promoted to %d", chan, skb, 4446 skb->priority); 4447 } 4448 4449 if (hci_conn_num(hdev, type) == num) 4450 break; 4451 } 4452 4453 rcu_read_unlock(); 4454 4455 } 4456 4457 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb) 4458 { 4459 /* Calculate count of blocks used by this packet */ 4460 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len); 4461 } 4462 4463 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt) 4464 { 4465 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 4466 /* ACL tx timeout must be longer than maximum 4467 * link supervision timeout (40.9 seconds) */ 4468 if (!cnt && time_after(jiffies, hdev->acl_last_tx + 4469 HCI_ACL_TX_TIMEOUT)) 4470 hci_link_tx_to(hdev, ACL_LINK); 4471 } 4472 } 4473 4474 /* Schedule SCO */ 4475 static void hci_sched_sco(struct hci_dev *hdev) 4476 { 4477 struct hci_conn *conn; 4478 struct sk_buff *skb; 4479 int quote; 4480 4481 BT_DBG("%s", hdev->name); 4482 4483 if (!hci_conn_num(hdev, SCO_LINK)) 4484 return; 4485 4486 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) { 4487 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 4488 BT_DBG("skb %p len %d", skb, skb->len); 4489 hci_send_frame(hdev, skb); 4490 4491 conn->sent++; 4492 if (conn->sent == ~0) 4493 conn->sent = 0; 4494 } 4495 } 4496 } 4497 4498 static void hci_sched_esco(struct hci_dev *hdev) 4499 { 4500 struct hci_conn *conn; 4501 struct sk_buff *skb; 4502 int quote; 4503 4504 BT_DBG("%s", hdev->name); 4505 4506 if (!hci_conn_num(hdev, ESCO_LINK)) 4507 return; 4508 4509 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, 4510 "e))) { 4511 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 4512 BT_DBG("skb %p len %d", skb, skb->len); 4513 hci_send_frame(hdev, skb); 4514 4515 conn->sent++; 4516 if (conn->sent == ~0) 4517 conn->sent = 0; 4518 } 4519 } 4520 } 4521 4522 static void hci_sched_acl_pkt(struct hci_dev *hdev) 4523 { 4524 unsigned int cnt = hdev->acl_cnt; 4525 struct hci_chan *chan; 4526 struct sk_buff *skb; 4527 int quote; 4528 4529 __check_timeout(hdev, cnt); 4530 4531 while (hdev->acl_cnt && 4532 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) { 4533 u32 priority = (skb_peek(&chan->data_q))->priority; 4534 while (quote-- && (skb = skb_peek(&chan->data_q))) { 4535 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 4536 skb->len, skb->priority); 4537 4538 /* Stop if priority has changed */ 4539 if (skb->priority < priority) 4540 break; 4541 4542 skb = skb_dequeue(&chan->data_q); 4543 4544 hci_conn_enter_active_mode(chan->conn, 4545 bt_cb(skb)->force_active); 4546 4547 hci_send_frame(hdev, skb); 4548 hdev->acl_last_tx = jiffies; 4549 4550 hdev->acl_cnt--; 4551 chan->sent++; 4552 chan->conn->sent++; 4553 4554 /* Send pending SCO packets right away */ 4555 hci_sched_sco(hdev); 4556 hci_sched_esco(hdev); 4557 } 4558 } 4559 4560 if (cnt != hdev->acl_cnt) 4561 hci_prio_recalculate(hdev, ACL_LINK); 4562 } 4563 4564 static void hci_sched_acl_blk(struct hci_dev *hdev) 4565 { 4566 unsigned int cnt = hdev->block_cnt; 4567 struct hci_chan *chan; 4568 struct sk_buff *skb; 4569 int quote; 4570 u8 type; 4571 4572 __check_timeout(hdev, cnt); 4573 4574 BT_DBG("%s", hdev->name); 4575 4576 if (hdev->dev_type == HCI_AMP) 4577 type = AMP_LINK; 4578 else 4579 type = ACL_LINK; 4580 4581 while (hdev->block_cnt > 0 && 4582 (chan = hci_chan_sent(hdev, type, "e))) { 4583 u32 priority = (skb_peek(&chan->data_q))->priority; 4584 while (quote > 0 && (skb = skb_peek(&chan->data_q))) { 4585 int blocks; 4586 4587 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 4588 skb->len, skb->priority); 4589 4590 /* Stop if priority has changed */ 4591 if (skb->priority < priority) 4592 break; 4593 4594 skb = skb_dequeue(&chan->data_q); 4595 4596 blocks = __get_blocks(hdev, skb); 4597 if (blocks > hdev->block_cnt) 4598 return; 4599 4600 hci_conn_enter_active_mode(chan->conn, 4601 bt_cb(skb)->force_active); 4602 4603 hci_send_frame(hdev, skb); 4604 hdev->acl_last_tx = jiffies; 4605 4606 hdev->block_cnt -= blocks; 4607 quote -= blocks; 4608 4609 chan->sent += blocks; 4610 chan->conn->sent += blocks; 4611 } 4612 } 4613 4614 if (cnt != hdev->block_cnt) 4615 hci_prio_recalculate(hdev, type); 4616 } 4617 4618 static void hci_sched_acl(struct hci_dev *hdev) 4619 { 4620 BT_DBG("%s", hdev->name); 4621 4622 /* No ACL link over BR/EDR controller */ 4623 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY) 4624 return; 4625 4626 /* No AMP link over AMP controller */ 4627 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP) 4628 return; 4629 4630 switch (hdev->flow_ctl_mode) { 4631 case HCI_FLOW_CTL_MODE_PACKET_BASED: 4632 hci_sched_acl_pkt(hdev); 4633 break; 4634 4635 case HCI_FLOW_CTL_MODE_BLOCK_BASED: 4636 hci_sched_acl_blk(hdev); 4637 break; 4638 } 4639 } 4640 4641 static void hci_sched_le(struct hci_dev *hdev) 4642 { 4643 struct hci_chan *chan; 4644 struct sk_buff *skb; 4645 int quote, cnt, tmp; 4646 4647 BT_DBG("%s", hdev->name); 4648 4649 if (!hci_conn_num(hdev, LE_LINK)) 4650 return; 4651 4652 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt; 4653 4654 __check_timeout(hdev, cnt); 4655 4656 tmp = cnt; 4657 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) { 4658 u32 priority = (skb_peek(&chan->data_q))->priority; 4659 while (quote-- && (skb = skb_peek(&chan->data_q))) { 4660 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 4661 skb->len, skb->priority); 4662 4663 /* Stop if priority has changed */ 4664 if (skb->priority < priority) 4665 break; 4666 4667 skb = skb_dequeue(&chan->data_q); 4668 4669 hci_send_frame(hdev, skb); 4670 hdev->le_last_tx = jiffies; 4671 4672 cnt--; 4673 chan->sent++; 4674 chan->conn->sent++; 4675 4676 /* Send pending SCO packets right away */ 4677 hci_sched_sco(hdev); 4678 hci_sched_esco(hdev); 4679 } 4680 } 4681 4682 if (hdev->le_pkts) 4683 hdev->le_cnt = cnt; 4684 else 4685 hdev->acl_cnt = cnt; 4686 4687 if (cnt != tmp) 4688 hci_prio_recalculate(hdev, LE_LINK); 4689 } 4690 4691 static void hci_tx_work(struct work_struct *work) 4692 { 4693 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work); 4694 struct sk_buff *skb; 4695 4696 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt, 4697 hdev->sco_cnt, hdev->le_cnt); 4698 4699 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4700 /* Schedule queues and send stuff to HCI driver */ 4701 hci_sched_sco(hdev); 4702 hci_sched_esco(hdev); 4703 hci_sched_acl(hdev); 4704 hci_sched_le(hdev); 4705 } 4706 4707 /* Send next queued raw (unknown type) packet */ 4708 while ((skb = skb_dequeue(&hdev->raw_q))) 4709 hci_send_frame(hdev, skb); 4710 } 4711 4712 /* ----- HCI RX task (incoming data processing) ----- */ 4713 4714 /* ACL data packet */ 4715 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb) 4716 { 4717 struct hci_acl_hdr *hdr = (void *) skb->data; 4718 struct hci_conn *conn; 4719 __u16 handle, flags; 4720 4721 skb_pull(skb, HCI_ACL_HDR_SIZE); 4722 4723 handle = __le16_to_cpu(hdr->handle); 4724 flags = hci_flags(handle); 4725 handle = hci_handle(handle); 4726 4727 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len, 4728 handle, flags); 4729 4730 hdev->stat.acl_rx++; 4731 4732 hci_dev_lock(hdev); 4733 conn = hci_conn_hash_lookup_handle(hdev, handle); 4734 hci_dev_unlock(hdev); 4735 4736 if (conn) { 4737 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF); 4738 4739 /* Send to upper protocol */ 4740 l2cap_recv_acldata(conn, skb, flags); 4741 return; 4742 } else { 4743 bt_dev_err(hdev, "ACL packet for unknown connection handle %d", 4744 handle); 4745 } 4746 4747 kfree_skb(skb); 4748 } 4749 4750 /* SCO data packet */ 4751 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb) 4752 { 4753 struct hci_sco_hdr *hdr = (void *) skb->data; 4754 struct hci_conn *conn; 4755 __u16 handle, flags; 4756 4757 skb_pull(skb, HCI_SCO_HDR_SIZE); 4758 4759 handle = __le16_to_cpu(hdr->handle); 4760 flags = hci_flags(handle); 4761 handle = hci_handle(handle); 4762 4763 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len, 4764 handle, flags); 4765 4766 hdev->stat.sco_rx++; 4767 4768 hci_dev_lock(hdev); 4769 conn = hci_conn_hash_lookup_handle(hdev, handle); 4770 hci_dev_unlock(hdev); 4771 4772 if (conn) { 4773 /* Send to upper protocol */ 4774 bt_cb(skb)->sco.pkt_status = flags & 0x03; 4775 sco_recv_scodata(conn, skb); 4776 return; 4777 } else { 4778 bt_dev_err(hdev, "SCO packet for unknown connection handle %d", 4779 handle); 4780 } 4781 4782 kfree_skb(skb); 4783 } 4784 4785 static bool hci_req_is_complete(struct hci_dev *hdev) 4786 { 4787 struct sk_buff *skb; 4788 4789 skb = skb_peek(&hdev->cmd_q); 4790 if (!skb) 4791 return true; 4792 4793 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START); 4794 } 4795 4796 static void hci_resend_last(struct hci_dev *hdev) 4797 { 4798 struct hci_command_hdr *sent; 4799 struct sk_buff *skb; 4800 u16 opcode; 4801 4802 if (!hdev->sent_cmd) 4803 return; 4804 4805 sent = (void *) hdev->sent_cmd->data; 4806 opcode = __le16_to_cpu(sent->opcode); 4807 if (opcode == HCI_OP_RESET) 4808 return; 4809 4810 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL); 4811 if (!skb) 4812 return; 4813 4814 skb_queue_head(&hdev->cmd_q, skb); 4815 queue_work(hdev->workqueue, &hdev->cmd_work); 4816 } 4817 4818 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status, 4819 hci_req_complete_t *req_complete, 4820 hci_req_complete_skb_t *req_complete_skb) 4821 { 4822 struct sk_buff *skb; 4823 unsigned long flags; 4824 4825 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status); 4826 4827 /* If the completed command doesn't match the last one that was 4828 * sent we need to do special handling of it. 4829 */ 4830 if (!hci_sent_cmd_data(hdev, opcode)) { 4831 /* Some CSR based controllers generate a spontaneous 4832 * reset complete event during init and any pending 4833 * command will never be completed. In such a case we 4834 * need to resend whatever was the last sent 4835 * command. 4836 */ 4837 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET) 4838 hci_resend_last(hdev); 4839 4840 return; 4841 } 4842 4843 /* If we reach this point this event matches the last command sent */ 4844 hci_dev_clear_flag(hdev, HCI_CMD_PENDING); 4845 4846 /* If the command succeeded and there's still more commands in 4847 * this request the request is not yet complete. 4848 */ 4849 if (!status && !hci_req_is_complete(hdev)) 4850 return; 4851 4852 /* If this was the last command in a request the complete 4853 * callback would be found in hdev->sent_cmd instead of the 4854 * command queue (hdev->cmd_q). 4855 */ 4856 if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) { 4857 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb; 4858 return; 4859 } 4860 4861 if (bt_cb(hdev->sent_cmd)->hci.req_complete) { 4862 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete; 4863 return; 4864 } 4865 4866 /* Remove all pending commands belonging to this request */ 4867 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 4868 while ((skb = __skb_dequeue(&hdev->cmd_q))) { 4869 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) { 4870 __skb_queue_head(&hdev->cmd_q, skb); 4871 break; 4872 } 4873 4874 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) 4875 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb; 4876 else 4877 *req_complete = bt_cb(skb)->hci.req_complete; 4878 kfree_skb(skb); 4879 } 4880 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 4881 } 4882 4883 static void hci_rx_work(struct work_struct *work) 4884 { 4885 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work); 4886 struct sk_buff *skb; 4887 4888 BT_DBG("%s", hdev->name); 4889 4890 while ((skb = skb_dequeue(&hdev->rx_q))) { 4891 /* Send copy to monitor */ 4892 hci_send_to_monitor(hdev, skb); 4893 4894 if (atomic_read(&hdev->promisc)) { 4895 /* Send copy to the sockets */ 4896 hci_send_to_sock(hdev, skb); 4897 } 4898 4899 /* If the device has been opened in HCI_USER_CHANNEL, 4900 * the userspace has exclusive access to device. 4901 * When device is HCI_INIT, we still need to process 4902 * the data packets to the driver in order 4903 * to complete its setup(). 4904 */ 4905 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4906 !test_bit(HCI_INIT, &hdev->flags)) { 4907 kfree_skb(skb); 4908 continue; 4909 } 4910 4911 if (test_bit(HCI_INIT, &hdev->flags)) { 4912 /* Don't process data packets in this states. */ 4913 switch (hci_skb_pkt_type(skb)) { 4914 case HCI_ACLDATA_PKT: 4915 case HCI_SCODATA_PKT: 4916 case HCI_ISODATA_PKT: 4917 kfree_skb(skb); 4918 continue; 4919 } 4920 } 4921 4922 /* Process frame */ 4923 switch (hci_skb_pkt_type(skb)) { 4924 case HCI_EVENT_PKT: 4925 BT_DBG("%s Event packet", hdev->name); 4926 hci_event_packet(hdev, skb); 4927 break; 4928 4929 case HCI_ACLDATA_PKT: 4930 BT_DBG("%s ACL data packet", hdev->name); 4931 hci_acldata_packet(hdev, skb); 4932 break; 4933 4934 case HCI_SCODATA_PKT: 4935 BT_DBG("%s SCO data packet", hdev->name); 4936 hci_scodata_packet(hdev, skb); 4937 break; 4938 4939 default: 4940 kfree_skb(skb); 4941 break; 4942 } 4943 } 4944 } 4945 4946 static void hci_cmd_work(struct work_struct *work) 4947 { 4948 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work); 4949 struct sk_buff *skb; 4950 4951 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name, 4952 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q)); 4953 4954 /* Send queued commands */ 4955 if (atomic_read(&hdev->cmd_cnt)) { 4956 skb = skb_dequeue(&hdev->cmd_q); 4957 if (!skb) 4958 return; 4959 4960 kfree_skb(hdev->sent_cmd); 4961 4962 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL); 4963 if (hdev->sent_cmd) { 4964 if (hci_req_status_pend(hdev)) 4965 hci_dev_set_flag(hdev, HCI_CMD_PENDING); 4966 atomic_dec(&hdev->cmd_cnt); 4967 hci_send_frame(hdev, skb); 4968 if (test_bit(HCI_RESET, &hdev->flags)) 4969 cancel_delayed_work(&hdev->cmd_timer); 4970 else 4971 schedule_delayed_work(&hdev->cmd_timer, 4972 HCI_CMD_TIMEOUT); 4973 } else { 4974 skb_queue_head(&hdev->cmd_q, skb); 4975 queue_work(hdev->workqueue, &hdev->cmd_work); 4976 } 4977 } 4978 } 4979