xref: /openbmc/linux/net/bluetooth/hci_core.c (revision dcda1657)
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4    Copyright (C) 2011 ProFUSION Embedded Systems
5 
6    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License version 2 as
10    published by the Free Software Foundation;
11 
12    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 
21    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23    SOFTWARE IS DISCLAIMED.
24 */
25 
26 /* Bluetooth HCI core. */
27 
28 #include <linux/export.h>
29 #include <linux/rfkill.h>
30 #include <linux/debugfs.h>
31 #include <linux/crypto.h>
32 #include <linux/kcov.h>
33 #include <linux/property.h>
34 #include <linux/suspend.h>
35 #include <linux/wait.h>
36 #include <asm/unaligned.h>
37 
38 #include <net/bluetooth/bluetooth.h>
39 #include <net/bluetooth/hci_core.h>
40 #include <net/bluetooth/l2cap.h>
41 #include <net/bluetooth/mgmt.h>
42 
43 #include "hci_request.h"
44 #include "hci_debugfs.h"
45 #include "smp.h"
46 #include "leds.h"
47 #include "msft.h"
48 #include "aosp.h"
49 #include "hci_codec.h"
50 
51 static void hci_rx_work(struct work_struct *work);
52 static void hci_cmd_work(struct work_struct *work);
53 static void hci_tx_work(struct work_struct *work);
54 
55 /* HCI device list */
56 LIST_HEAD(hci_dev_list);
57 DEFINE_RWLOCK(hci_dev_list_lock);
58 
59 /* HCI callback list */
60 LIST_HEAD(hci_cb_list);
61 DEFINE_MUTEX(hci_cb_list_lock);
62 
63 /* HCI ID Numbering */
64 static DEFINE_IDA(hci_index_ida);
65 
66 static int hci_scan_req(struct hci_request *req, unsigned long opt)
67 {
68 	__u8 scan = opt;
69 
70 	BT_DBG("%s %x", req->hdev->name, scan);
71 
72 	/* Inquiry and Page scans */
73 	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
74 	return 0;
75 }
76 
77 static int hci_auth_req(struct hci_request *req, unsigned long opt)
78 {
79 	__u8 auth = opt;
80 
81 	BT_DBG("%s %x", req->hdev->name, auth);
82 
83 	/* Authentication */
84 	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
85 	return 0;
86 }
87 
88 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
89 {
90 	__u8 encrypt = opt;
91 
92 	BT_DBG("%s %x", req->hdev->name, encrypt);
93 
94 	/* Encryption */
95 	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
96 	return 0;
97 }
98 
99 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
100 {
101 	__le16 policy = cpu_to_le16(opt);
102 
103 	BT_DBG("%s %x", req->hdev->name, policy);
104 
105 	/* Default link policy */
106 	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
107 	return 0;
108 }
109 
110 /* Get HCI device by index.
111  * Device is held on return. */
112 struct hci_dev *hci_dev_get(int index)
113 {
114 	struct hci_dev *hdev = NULL, *d;
115 
116 	BT_DBG("%d", index);
117 
118 	if (index < 0)
119 		return NULL;
120 
121 	read_lock(&hci_dev_list_lock);
122 	list_for_each_entry(d, &hci_dev_list, list) {
123 		if (d->id == index) {
124 			hdev = hci_dev_hold(d);
125 			break;
126 		}
127 	}
128 	read_unlock(&hci_dev_list_lock);
129 	return hdev;
130 }
131 
132 /* ---- Inquiry support ---- */
133 
134 bool hci_discovery_active(struct hci_dev *hdev)
135 {
136 	struct discovery_state *discov = &hdev->discovery;
137 
138 	switch (discov->state) {
139 	case DISCOVERY_FINDING:
140 	case DISCOVERY_RESOLVING:
141 		return true;
142 
143 	default:
144 		return false;
145 	}
146 }
147 
148 void hci_discovery_set_state(struct hci_dev *hdev, int state)
149 {
150 	int old_state = hdev->discovery.state;
151 
152 	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
153 
154 	if (old_state == state)
155 		return;
156 
157 	hdev->discovery.state = state;
158 
159 	switch (state) {
160 	case DISCOVERY_STOPPED:
161 		hci_update_passive_scan(hdev);
162 
163 		if (old_state != DISCOVERY_STARTING)
164 			mgmt_discovering(hdev, 0);
165 		break;
166 	case DISCOVERY_STARTING:
167 		break;
168 	case DISCOVERY_FINDING:
169 		mgmt_discovering(hdev, 1);
170 		break;
171 	case DISCOVERY_RESOLVING:
172 		break;
173 	case DISCOVERY_STOPPING:
174 		break;
175 	}
176 }
177 
178 void hci_inquiry_cache_flush(struct hci_dev *hdev)
179 {
180 	struct discovery_state *cache = &hdev->discovery;
181 	struct inquiry_entry *p, *n;
182 
183 	list_for_each_entry_safe(p, n, &cache->all, all) {
184 		list_del(&p->all);
185 		kfree(p);
186 	}
187 
188 	INIT_LIST_HEAD(&cache->unknown);
189 	INIT_LIST_HEAD(&cache->resolve);
190 }
191 
192 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
193 					       bdaddr_t *bdaddr)
194 {
195 	struct discovery_state *cache = &hdev->discovery;
196 	struct inquiry_entry *e;
197 
198 	BT_DBG("cache %p, %pMR", cache, bdaddr);
199 
200 	list_for_each_entry(e, &cache->all, all) {
201 		if (!bacmp(&e->data.bdaddr, bdaddr))
202 			return e;
203 	}
204 
205 	return NULL;
206 }
207 
208 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
209 						       bdaddr_t *bdaddr)
210 {
211 	struct discovery_state *cache = &hdev->discovery;
212 	struct inquiry_entry *e;
213 
214 	BT_DBG("cache %p, %pMR", cache, bdaddr);
215 
216 	list_for_each_entry(e, &cache->unknown, list) {
217 		if (!bacmp(&e->data.bdaddr, bdaddr))
218 			return e;
219 	}
220 
221 	return NULL;
222 }
223 
224 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
225 						       bdaddr_t *bdaddr,
226 						       int state)
227 {
228 	struct discovery_state *cache = &hdev->discovery;
229 	struct inquiry_entry *e;
230 
231 	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
232 
233 	list_for_each_entry(e, &cache->resolve, list) {
234 		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
235 			return e;
236 		if (!bacmp(&e->data.bdaddr, bdaddr))
237 			return e;
238 	}
239 
240 	return NULL;
241 }
242 
243 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
244 				      struct inquiry_entry *ie)
245 {
246 	struct discovery_state *cache = &hdev->discovery;
247 	struct list_head *pos = &cache->resolve;
248 	struct inquiry_entry *p;
249 
250 	list_del(&ie->list);
251 
252 	list_for_each_entry(p, &cache->resolve, list) {
253 		if (p->name_state != NAME_PENDING &&
254 		    abs(p->data.rssi) >= abs(ie->data.rssi))
255 			break;
256 		pos = &p->list;
257 	}
258 
259 	list_add(&ie->list, pos);
260 }
261 
262 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
263 			     bool name_known)
264 {
265 	struct discovery_state *cache = &hdev->discovery;
266 	struct inquiry_entry *ie;
267 	u32 flags = 0;
268 
269 	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
270 
271 	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
272 
273 	if (!data->ssp_mode)
274 		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
275 
276 	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
277 	if (ie) {
278 		if (!ie->data.ssp_mode)
279 			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
280 
281 		if (ie->name_state == NAME_NEEDED &&
282 		    data->rssi != ie->data.rssi) {
283 			ie->data.rssi = data->rssi;
284 			hci_inquiry_cache_update_resolve(hdev, ie);
285 		}
286 
287 		goto update;
288 	}
289 
290 	/* Entry not in the cache. Add new one. */
291 	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
292 	if (!ie) {
293 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
294 		goto done;
295 	}
296 
297 	list_add(&ie->all, &cache->all);
298 
299 	if (name_known) {
300 		ie->name_state = NAME_KNOWN;
301 	} else {
302 		ie->name_state = NAME_NOT_KNOWN;
303 		list_add(&ie->list, &cache->unknown);
304 	}
305 
306 update:
307 	if (name_known && ie->name_state != NAME_KNOWN &&
308 	    ie->name_state != NAME_PENDING) {
309 		ie->name_state = NAME_KNOWN;
310 		list_del(&ie->list);
311 	}
312 
313 	memcpy(&ie->data, data, sizeof(*data));
314 	ie->timestamp = jiffies;
315 	cache->timestamp = jiffies;
316 
317 	if (ie->name_state == NAME_NOT_KNOWN)
318 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
319 
320 done:
321 	return flags;
322 }
323 
324 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
325 {
326 	struct discovery_state *cache = &hdev->discovery;
327 	struct inquiry_info *info = (struct inquiry_info *) buf;
328 	struct inquiry_entry *e;
329 	int copied = 0;
330 
331 	list_for_each_entry(e, &cache->all, all) {
332 		struct inquiry_data *data = &e->data;
333 
334 		if (copied >= num)
335 			break;
336 
337 		bacpy(&info->bdaddr, &data->bdaddr);
338 		info->pscan_rep_mode	= data->pscan_rep_mode;
339 		info->pscan_period_mode	= data->pscan_period_mode;
340 		info->pscan_mode	= data->pscan_mode;
341 		memcpy(info->dev_class, data->dev_class, 3);
342 		info->clock_offset	= data->clock_offset;
343 
344 		info++;
345 		copied++;
346 	}
347 
348 	BT_DBG("cache %p, copied %d", cache, copied);
349 	return copied;
350 }
351 
352 static int hci_inq_req(struct hci_request *req, unsigned long opt)
353 {
354 	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
355 	struct hci_dev *hdev = req->hdev;
356 	struct hci_cp_inquiry cp;
357 
358 	BT_DBG("%s", hdev->name);
359 
360 	if (test_bit(HCI_INQUIRY, &hdev->flags))
361 		return 0;
362 
363 	/* Start Inquiry */
364 	memcpy(&cp.lap, &ir->lap, 3);
365 	cp.length  = ir->length;
366 	cp.num_rsp = ir->num_rsp;
367 	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
368 
369 	return 0;
370 }
371 
372 int hci_inquiry(void __user *arg)
373 {
374 	__u8 __user *ptr = arg;
375 	struct hci_inquiry_req ir;
376 	struct hci_dev *hdev;
377 	int err = 0, do_inquiry = 0, max_rsp;
378 	long timeo;
379 	__u8 *buf;
380 
381 	if (copy_from_user(&ir, ptr, sizeof(ir)))
382 		return -EFAULT;
383 
384 	hdev = hci_dev_get(ir.dev_id);
385 	if (!hdev)
386 		return -ENODEV;
387 
388 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
389 		err = -EBUSY;
390 		goto done;
391 	}
392 
393 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
394 		err = -EOPNOTSUPP;
395 		goto done;
396 	}
397 
398 	if (hdev->dev_type != HCI_PRIMARY) {
399 		err = -EOPNOTSUPP;
400 		goto done;
401 	}
402 
403 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
404 		err = -EOPNOTSUPP;
405 		goto done;
406 	}
407 
408 	/* Restrict maximum inquiry length to 60 seconds */
409 	if (ir.length > 60) {
410 		err = -EINVAL;
411 		goto done;
412 	}
413 
414 	hci_dev_lock(hdev);
415 	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
416 	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
417 		hci_inquiry_cache_flush(hdev);
418 		do_inquiry = 1;
419 	}
420 	hci_dev_unlock(hdev);
421 
422 	timeo = ir.length * msecs_to_jiffies(2000);
423 
424 	if (do_inquiry) {
425 		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
426 				   timeo, NULL);
427 		if (err < 0)
428 			goto done;
429 
430 		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
431 		 * cleared). If it is interrupted by a signal, return -EINTR.
432 		 */
433 		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
434 				TASK_INTERRUPTIBLE)) {
435 			err = -EINTR;
436 			goto done;
437 		}
438 	}
439 
440 	/* for unlimited number of responses we will use buffer with
441 	 * 255 entries
442 	 */
443 	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
444 
445 	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
446 	 * copy it to the user space.
447 	 */
448 	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
449 	if (!buf) {
450 		err = -ENOMEM;
451 		goto done;
452 	}
453 
454 	hci_dev_lock(hdev);
455 	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
456 	hci_dev_unlock(hdev);
457 
458 	BT_DBG("num_rsp %d", ir.num_rsp);
459 
460 	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
461 		ptr += sizeof(ir);
462 		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
463 				 ir.num_rsp))
464 			err = -EFAULT;
465 	} else
466 		err = -EFAULT;
467 
468 	kfree(buf);
469 
470 done:
471 	hci_dev_put(hdev);
472 	return err;
473 }
474 
475 static int hci_dev_do_open(struct hci_dev *hdev)
476 {
477 	int ret = 0;
478 
479 	BT_DBG("%s %p", hdev->name, hdev);
480 
481 	hci_req_sync_lock(hdev);
482 
483 	ret = hci_dev_open_sync(hdev);
484 
485 	hci_req_sync_unlock(hdev);
486 	return ret;
487 }
488 
489 /* ---- HCI ioctl helpers ---- */
490 
491 int hci_dev_open(__u16 dev)
492 {
493 	struct hci_dev *hdev;
494 	int err;
495 
496 	hdev = hci_dev_get(dev);
497 	if (!hdev)
498 		return -ENODEV;
499 
500 	/* Devices that are marked as unconfigured can only be powered
501 	 * up as user channel. Trying to bring them up as normal devices
502 	 * will result into a failure. Only user channel operation is
503 	 * possible.
504 	 *
505 	 * When this function is called for a user channel, the flag
506 	 * HCI_USER_CHANNEL will be set first before attempting to
507 	 * open the device.
508 	 */
509 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
510 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
511 		err = -EOPNOTSUPP;
512 		goto done;
513 	}
514 
515 	/* We need to ensure that no other power on/off work is pending
516 	 * before proceeding to call hci_dev_do_open. This is
517 	 * particularly important if the setup procedure has not yet
518 	 * completed.
519 	 */
520 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
521 		cancel_delayed_work(&hdev->power_off);
522 
523 	/* After this call it is guaranteed that the setup procedure
524 	 * has finished. This means that error conditions like RFKILL
525 	 * or no valid public or static random address apply.
526 	 */
527 	flush_workqueue(hdev->req_workqueue);
528 
529 	/* For controllers not using the management interface and that
530 	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
531 	 * so that pairing works for them. Once the management interface
532 	 * is in use this bit will be cleared again and userspace has
533 	 * to explicitly enable it.
534 	 */
535 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
536 	    !hci_dev_test_flag(hdev, HCI_MGMT))
537 		hci_dev_set_flag(hdev, HCI_BONDABLE);
538 
539 	err = hci_dev_do_open(hdev);
540 
541 done:
542 	hci_dev_put(hdev);
543 	return err;
544 }
545 
546 int hci_dev_do_close(struct hci_dev *hdev)
547 {
548 	int err;
549 
550 	BT_DBG("%s %p", hdev->name, hdev);
551 
552 	hci_req_sync_lock(hdev);
553 
554 	err = hci_dev_close_sync(hdev);
555 
556 	hci_req_sync_unlock(hdev);
557 
558 	return err;
559 }
560 
561 int hci_dev_close(__u16 dev)
562 {
563 	struct hci_dev *hdev;
564 	int err;
565 
566 	hdev = hci_dev_get(dev);
567 	if (!hdev)
568 		return -ENODEV;
569 
570 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
571 		err = -EBUSY;
572 		goto done;
573 	}
574 
575 	cancel_work_sync(&hdev->power_on);
576 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
577 		cancel_delayed_work(&hdev->power_off);
578 
579 	err = hci_dev_do_close(hdev);
580 
581 done:
582 	hci_dev_put(hdev);
583 	return err;
584 }
585 
586 static int hci_dev_do_reset(struct hci_dev *hdev)
587 {
588 	int ret;
589 
590 	BT_DBG("%s %p", hdev->name, hdev);
591 
592 	hci_req_sync_lock(hdev);
593 
594 	/* Drop queues */
595 	skb_queue_purge(&hdev->rx_q);
596 	skb_queue_purge(&hdev->cmd_q);
597 
598 	/* Cancel these to avoid queueing non-chained pending work */
599 	hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
600 	/* Wait for
601 	 *
602 	 *    if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
603 	 *        queue_delayed_work(&hdev->{cmd,ncmd}_timer)
604 	 *
605 	 * inside RCU section to see the flag or complete scheduling.
606 	 */
607 	synchronize_rcu();
608 	/* Explicitly cancel works in case scheduled after setting the flag. */
609 	cancel_delayed_work(&hdev->cmd_timer);
610 	cancel_delayed_work(&hdev->ncmd_timer);
611 
612 	/* Avoid potential lockdep warnings from the *_flush() calls by
613 	 * ensuring the workqueue is empty up front.
614 	 */
615 	drain_workqueue(hdev->workqueue);
616 
617 	hci_dev_lock(hdev);
618 	hci_inquiry_cache_flush(hdev);
619 	hci_conn_hash_flush(hdev);
620 	hci_dev_unlock(hdev);
621 
622 	if (hdev->flush)
623 		hdev->flush(hdev);
624 
625 	hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
626 
627 	atomic_set(&hdev->cmd_cnt, 1);
628 	hdev->acl_cnt = 0;
629 	hdev->sco_cnt = 0;
630 	hdev->le_cnt = 0;
631 	hdev->iso_cnt = 0;
632 
633 	ret = hci_reset_sync(hdev);
634 
635 	hci_req_sync_unlock(hdev);
636 	return ret;
637 }
638 
639 int hci_dev_reset(__u16 dev)
640 {
641 	struct hci_dev *hdev;
642 	int err;
643 
644 	hdev = hci_dev_get(dev);
645 	if (!hdev)
646 		return -ENODEV;
647 
648 	if (!test_bit(HCI_UP, &hdev->flags)) {
649 		err = -ENETDOWN;
650 		goto done;
651 	}
652 
653 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
654 		err = -EBUSY;
655 		goto done;
656 	}
657 
658 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
659 		err = -EOPNOTSUPP;
660 		goto done;
661 	}
662 
663 	err = hci_dev_do_reset(hdev);
664 
665 done:
666 	hci_dev_put(hdev);
667 	return err;
668 }
669 
670 int hci_dev_reset_stat(__u16 dev)
671 {
672 	struct hci_dev *hdev;
673 	int ret = 0;
674 
675 	hdev = hci_dev_get(dev);
676 	if (!hdev)
677 		return -ENODEV;
678 
679 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
680 		ret = -EBUSY;
681 		goto done;
682 	}
683 
684 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
685 		ret = -EOPNOTSUPP;
686 		goto done;
687 	}
688 
689 	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
690 
691 done:
692 	hci_dev_put(hdev);
693 	return ret;
694 }
695 
696 static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan)
697 {
698 	bool conn_changed, discov_changed;
699 
700 	BT_DBG("%s scan 0x%02x", hdev->name, scan);
701 
702 	if ((scan & SCAN_PAGE))
703 		conn_changed = !hci_dev_test_and_set_flag(hdev,
704 							  HCI_CONNECTABLE);
705 	else
706 		conn_changed = hci_dev_test_and_clear_flag(hdev,
707 							   HCI_CONNECTABLE);
708 
709 	if ((scan & SCAN_INQUIRY)) {
710 		discov_changed = !hci_dev_test_and_set_flag(hdev,
711 							    HCI_DISCOVERABLE);
712 	} else {
713 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
714 		discov_changed = hci_dev_test_and_clear_flag(hdev,
715 							     HCI_DISCOVERABLE);
716 	}
717 
718 	if (!hci_dev_test_flag(hdev, HCI_MGMT))
719 		return;
720 
721 	if (conn_changed || discov_changed) {
722 		/* In case this was disabled through mgmt */
723 		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
724 
725 		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
726 			hci_update_adv_data(hdev, hdev->cur_adv_instance);
727 
728 		mgmt_new_settings(hdev);
729 	}
730 }
731 
732 int hci_dev_cmd(unsigned int cmd, void __user *arg)
733 {
734 	struct hci_dev *hdev;
735 	struct hci_dev_req dr;
736 	int err = 0;
737 
738 	if (copy_from_user(&dr, arg, sizeof(dr)))
739 		return -EFAULT;
740 
741 	hdev = hci_dev_get(dr.dev_id);
742 	if (!hdev)
743 		return -ENODEV;
744 
745 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
746 		err = -EBUSY;
747 		goto done;
748 	}
749 
750 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
751 		err = -EOPNOTSUPP;
752 		goto done;
753 	}
754 
755 	if (hdev->dev_type != HCI_PRIMARY) {
756 		err = -EOPNOTSUPP;
757 		goto done;
758 	}
759 
760 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
761 		err = -EOPNOTSUPP;
762 		goto done;
763 	}
764 
765 	switch (cmd) {
766 	case HCISETAUTH:
767 		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
768 				   HCI_INIT_TIMEOUT, NULL);
769 		break;
770 
771 	case HCISETENCRYPT:
772 		if (!lmp_encrypt_capable(hdev)) {
773 			err = -EOPNOTSUPP;
774 			break;
775 		}
776 
777 		if (!test_bit(HCI_AUTH, &hdev->flags)) {
778 			/* Auth must be enabled first */
779 			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
780 					   HCI_INIT_TIMEOUT, NULL);
781 			if (err)
782 				break;
783 		}
784 
785 		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
786 				   HCI_INIT_TIMEOUT, NULL);
787 		break;
788 
789 	case HCISETSCAN:
790 		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
791 				   HCI_INIT_TIMEOUT, NULL);
792 
793 		/* Ensure that the connectable and discoverable states
794 		 * get correctly modified as this was a non-mgmt change.
795 		 */
796 		if (!err)
797 			hci_update_passive_scan_state(hdev, dr.dev_opt);
798 		break;
799 
800 	case HCISETLINKPOL:
801 		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
802 				   HCI_INIT_TIMEOUT, NULL);
803 		break;
804 
805 	case HCISETLINKMODE:
806 		hdev->link_mode = ((__u16) dr.dev_opt) &
807 					(HCI_LM_MASTER | HCI_LM_ACCEPT);
808 		break;
809 
810 	case HCISETPTYPE:
811 		if (hdev->pkt_type == (__u16) dr.dev_opt)
812 			break;
813 
814 		hdev->pkt_type = (__u16) dr.dev_opt;
815 		mgmt_phy_configuration_changed(hdev, NULL);
816 		break;
817 
818 	case HCISETACLMTU:
819 		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
820 		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
821 		break;
822 
823 	case HCISETSCOMTU:
824 		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
825 		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
826 		break;
827 
828 	default:
829 		err = -EINVAL;
830 		break;
831 	}
832 
833 done:
834 	hci_dev_put(hdev);
835 	return err;
836 }
837 
838 int hci_get_dev_list(void __user *arg)
839 {
840 	struct hci_dev *hdev;
841 	struct hci_dev_list_req *dl;
842 	struct hci_dev_req *dr;
843 	int n = 0, size, err;
844 	__u16 dev_num;
845 
846 	if (get_user(dev_num, (__u16 __user *) arg))
847 		return -EFAULT;
848 
849 	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
850 		return -EINVAL;
851 
852 	size = sizeof(*dl) + dev_num * sizeof(*dr);
853 
854 	dl = kzalloc(size, GFP_KERNEL);
855 	if (!dl)
856 		return -ENOMEM;
857 
858 	dr = dl->dev_req;
859 
860 	read_lock(&hci_dev_list_lock);
861 	list_for_each_entry(hdev, &hci_dev_list, list) {
862 		unsigned long flags = hdev->flags;
863 
864 		/* When the auto-off is configured it means the transport
865 		 * is running, but in that case still indicate that the
866 		 * device is actually down.
867 		 */
868 		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
869 			flags &= ~BIT(HCI_UP);
870 
871 		(dr + n)->dev_id  = hdev->id;
872 		(dr + n)->dev_opt = flags;
873 
874 		if (++n >= dev_num)
875 			break;
876 	}
877 	read_unlock(&hci_dev_list_lock);
878 
879 	dl->dev_num = n;
880 	size = sizeof(*dl) + n * sizeof(*dr);
881 
882 	err = copy_to_user(arg, dl, size);
883 	kfree(dl);
884 
885 	return err ? -EFAULT : 0;
886 }
887 
888 int hci_get_dev_info(void __user *arg)
889 {
890 	struct hci_dev *hdev;
891 	struct hci_dev_info di;
892 	unsigned long flags;
893 	int err = 0;
894 
895 	if (copy_from_user(&di, arg, sizeof(di)))
896 		return -EFAULT;
897 
898 	hdev = hci_dev_get(di.dev_id);
899 	if (!hdev)
900 		return -ENODEV;
901 
902 	/* When the auto-off is configured it means the transport
903 	 * is running, but in that case still indicate that the
904 	 * device is actually down.
905 	 */
906 	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
907 		flags = hdev->flags & ~BIT(HCI_UP);
908 	else
909 		flags = hdev->flags;
910 
911 	strcpy(di.name, hdev->name);
912 	di.bdaddr   = hdev->bdaddr;
913 	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
914 	di.flags    = flags;
915 	di.pkt_type = hdev->pkt_type;
916 	if (lmp_bredr_capable(hdev)) {
917 		di.acl_mtu  = hdev->acl_mtu;
918 		di.acl_pkts = hdev->acl_pkts;
919 		di.sco_mtu  = hdev->sco_mtu;
920 		di.sco_pkts = hdev->sco_pkts;
921 	} else {
922 		di.acl_mtu  = hdev->le_mtu;
923 		di.acl_pkts = hdev->le_pkts;
924 		di.sco_mtu  = 0;
925 		di.sco_pkts = 0;
926 	}
927 	di.link_policy = hdev->link_policy;
928 	di.link_mode   = hdev->link_mode;
929 
930 	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
931 	memcpy(&di.features, &hdev->features, sizeof(di.features));
932 
933 	if (copy_to_user(arg, &di, sizeof(di)))
934 		err = -EFAULT;
935 
936 	hci_dev_put(hdev);
937 
938 	return err;
939 }
940 
941 /* ---- Interface to HCI drivers ---- */
942 
943 static int hci_rfkill_set_block(void *data, bool blocked)
944 {
945 	struct hci_dev *hdev = data;
946 
947 	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
948 
949 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
950 		return -EBUSY;
951 
952 	if (blocked) {
953 		hci_dev_set_flag(hdev, HCI_RFKILLED);
954 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
955 		    !hci_dev_test_flag(hdev, HCI_CONFIG))
956 			hci_dev_do_close(hdev);
957 	} else {
958 		hci_dev_clear_flag(hdev, HCI_RFKILLED);
959 	}
960 
961 	return 0;
962 }
963 
964 static const struct rfkill_ops hci_rfkill_ops = {
965 	.set_block = hci_rfkill_set_block,
966 };
967 
968 static void hci_power_on(struct work_struct *work)
969 {
970 	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
971 	int err;
972 
973 	BT_DBG("%s", hdev->name);
974 
975 	if (test_bit(HCI_UP, &hdev->flags) &&
976 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
977 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
978 		cancel_delayed_work(&hdev->power_off);
979 		err = hci_powered_update_sync(hdev);
980 		mgmt_power_on(hdev, err);
981 		return;
982 	}
983 
984 	err = hci_dev_do_open(hdev);
985 	if (err < 0) {
986 		hci_dev_lock(hdev);
987 		mgmt_set_powered_failed(hdev, err);
988 		hci_dev_unlock(hdev);
989 		return;
990 	}
991 
992 	/* During the HCI setup phase, a few error conditions are
993 	 * ignored and they need to be checked now. If they are still
994 	 * valid, it is important to turn the device back off.
995 	 */
996 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
997 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
998 	    (hdev->dev_type == HCI_PRIMARY &&
999 	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1000 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
1001 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
1002 		hci_dev_do_close(hdev);
1003 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
1004 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
1005 				   HCI_AUTO_OFF_TIMEOUT);
1006 	}
1007 
1008 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
1009 		/* For unconfigured devices, set the HCI_RAW flag
1010 		 * so that userspace can easily identify them.
1011 		 */
1012 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1013 			set_bit(HCI_RAW, &hdev->flags);
1014 
1015 		/* For fully configured devices, this will send
1016 		 * the Index Added event. For unconfigured devices,
1017 		 * it will send Unconfigued Index Added event.
1018 		 *
1019 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
1020 		 * and no event will be send.
1021 		 */
1022 		mgmt_index_added(hdev);
1023 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
1024 		/* When the controller is now configured, then it
1025 		 * is important to clear the HCI_RAW flag.
1026 		 */
1027 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1028 			clear_bit(HCI_RAW, &hdev->flags);
1029 
1030 		/* Powering on the controller with HCI_CONFIG set only
1031 		 * happens with the transition from unconfigured to
1032 		 * configured. This will send the Index Added event.
1033 		 */
1034 		mgmt_index_added(hdev);
1035 	}
1036 }
1037 
1038 static void hci_power_off(struct work_struct *work)
1039 {
1040 	struct hci_dev *hdev = container_of(work, struct hci_dev,
1041 					    power_off.work);
1042 
1043 	BT_DBG("%s", hdev->name);
1044 
1045 	hci_dev_do_close(hdev);
1046 }
1047 
1048 static void hci_error_reset(struct work_struct *work)
1049 {
1050 	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
1051 
1052 	BT_DBG("%s", hdev->name);
1053 
1054 	if (hdev->hw_error)
1055 		hdev->hw_error(hdev, hdev->hw_error_code);
1056 	else
1057 		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
1058 
1059 	if (hci_dev_do_close(hdev))
1060 		return;
1061 
1062 	hci_dev_do_open(hdev);
1063 }
1064 
1065 void hci_uuids_clear(struct hci_dev *hdev)
1066 {
1067 	struct bt_uuid *uuid, *tmp;
1068 
1069 	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1070 		list_del(&uuid->list);
1071 		kfree(uuid);
1072 	}
1073 }
1074 
1075 void hci_link_keys_clear(struct hci_dev *hdev)
1076 {
1077 	struct link_key *key, *tmp;
1078 
1079 	list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) {
1080 		list_del_rcu(&key->list);
1081 		kfree_rcu(key, rcu);
1082 	}
1083 }
1084 
1085 void hci_smp_ltks_clear(struct hci_dev *hdev)
1086 {
1087 	struct smp_ltk *k, *tmp;
1088 
1089 	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1090 		list_del_rcu(&k->list);
1091 		kfree_rcu(k, rcu);
1092 	}
1093 }
1094 
1095 void hci_smp_irks_clear(struct hci_dev *hdev)
1096 {
1097 	struct smp_irk *k, *tmp;
1098 
1099 	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1100 		list_del_rcu(&k->list);
1101 		kfree_rcu(k, rcu);
1102 	}
1103 }
1104 
1105 void hci_blocked_keys_clear(struct hci_dev *hdev)
1106 {
1107 	struct blocked_key *b, *tmp;
1108 
1109 	list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) {
1110 		list_del_rcu(&b->list);
1111 		kfree_rcu(b, rcu);
1112 	}
1113 }
1114 
1115 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
1116 {
1117 	bool blocked = false;
1118 	struct blocked_key *b;
1119 
1120 	rcu_read_lock();
1121 	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
1122 		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
1123 			blocked = true;
1124 			break;
1125 		}
1126 	}
1127 
1128 	rcu_read_unlock();
1129 	return blocked;
1130 }
1131 
1132 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1133 {
1134 	struct link_key *k;
1135 
1136 	rcu_read_lock();
1137 	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
1138 		if (bacmp(bdaddr, &k->bdaddr) == 0) {
1139 			rcu_read_unlock();
1140 
1141 			if (hci_is_blocked_key(hdev,
1142 					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
1143 					       k->val)) {
1144 				bt_dev_warn_ratelimited(hdev,
1145 							"Link key blocked for %pMR",
1146 							&k->bdaddr);
1147 				return NULL;
1148 			}
1149 
1150 			return k;
1151 		}
1152 	}
1153 	rcu_read_unlock();
1154 
1155 	return NULL;
1156 }
1157 
1158 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1159 			       u8 key_type, u8 old_key_type)
1160 {
1161 	/* Legacy key */
1162 	if (key_type < 0x03)
1163 		return true;
1164 
1165 	/* Debug keys are insecure so don't store them persistently */
1166 	if (key_type == HCI_LK_DEBUG_COMBINATION)
1167 		return false;
1168 
1169 	/* Changed combination key and there's no previous one */
1170 	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1171 		return false;
1172 
1173 	/* Security mode 3 case */
1174 	if (!conn)
1175 		return true;
1176 
1177 	/* BR/EDR key derived using SC from an LE link */
1178 	if (conn->type == LE_LINK)
1179 		return true;
1180 
1181 	/* Neither local nor remote side had no-bonding as requirement */
1182 	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1183 		return true;
1184 
1185 	/* Local side had dedicated bonding as requirement */
1186 	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1187 		return true;
1188 
1189 	/* Remote side had dedicated bonding as requirement */
1190 	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1191 		return true;
1192 
1193 	/* If none of the above criteria match, then don't store the key
1194 	 * persistently */
1195 	return false;
1196 }
1197 
1198 static u8 ltk_role(u8 type)
1199 {
1200 	if (type == SMP_LTK)
1201 		return HCI_ROLE_MASTER;
1202 
1203 	return HCI_ROLE_SLAVE;
1204 }
1205 
1206 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1207 			     u8 addr_type, u8 role)
1208 {
1209 	struct smp_ltk *k;
1210 
1211 	rcu_read_lock();
1212 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1213 		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
1214 			continue;
1215 
1216 		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
1217 			rcu_read_unlock();
1218 
1219 			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
1220 					       k->val)) {
1221 				bt_dev_warn_ratelimited(hdev,
1222 							"LTK blocked for %pMR",
1223 							&k->bdaddr);
1224 				return NULL;
1225 			}
1226 
1227 			return k;
1228 		}
1229 	}
1230 	rcu_read_unlock();
1231 
1232 	return NULL;
1233 }
1234 
1235 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
1236 {
1237 	struct smp_irk *irk_to_return = NULL;
1238 	struct smp_irk *irk;
1239 
1240 	rcu_read_lock();
1241 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1242 		if (!bacmp(&irk->rpa, rpa)) {
1243 			irk_to_return = irk;
1244 			goto done;
1245 		}
1246 	}
1247 
1248 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1249 		if (smp_irk_matches(hdev, irk->val, rpa)) {
1250 			bacpy(&irk->rpa, rpa);
1251 			irk_to_return = irk;
1252 			goto done;
1253 		}
1254 	}
1255 
1256 done:
1257 	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1258 						irk_to_return->val)) {
1259 		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1260 					&irk_to_return->bdaddr);
1261 		irk_to_return = NULL;
1262 	}
1263 
1264 	rcu_read_unlock();
1265 
1266 	return irk_to_return;
1267 }
1268 
1269 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1270 				     u8 addr_type)
1271 {
1272 	struct smp_irk *irk_to_return = NULL;
1273 	struct smp_irk *irk;
1274 
1275 	/* Identity Address must be public or static random */
1276 	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
1277 		return NULL;
1278 
1279 	rcu_read_lock();
1280 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1281 		if (addr_type == irk->addr_type &&
1282 		    bacmp(bdaddr, &irk->bdaddr) == 0) {
1283 			irk_to_return = irk;
1284 			goto done;
1285 		}
1286 	}
1287 
1288 done:
1289 
1290 	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1291 						irk_to_return->val)) {
1292 		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1293 					&irk_to_return->bdaddr);
1294 		irk_to_return = NULL;
1295 	}
1296 
1297 	rcu_read_unlock();
1298 
1299 	return irk_to_return;
1300 }
1301 
1302 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1303 				  bdaddr_t *bdaddr, u8 *val, u8 type,
1304 				  u8 pin_len, bool *persistent)
1305 {
1306 	struct link_key *key, *old_key;
1307 	u8 old_key_type;
1308 
1309 	old_key = hci_find_link_key(hdev, bdaddr);
1310 	if (old_key) {
1311 		old_key_type = old_key->type;
1312 		key = old_key;
1313 	} else {
1314 		old_key_type = conn ? conn->key_type : 0xff;
1315 		key = kzalloc(sizeof(*key), GFP_KERNEL);
1316 		if (!key)
1317 			return NULL;
1318 		list_add_rcu(&key->list, &hdev->link_keys);
1319 	}
1320 
1321 	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1322 
1323 	/* Some buggy controller combinations generate a changed
1324 	 * combination key for legacy pairing even when there's no
1325 	 * previous key */
1326 	if (type == HCI_LK_CHANGED_COMBINATION &&
1327 	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1328 		type = HCI_LK_COMBINATION;
1329 		if (conn)
1330 			conn->key_type = type;
1331 	}
1332 
1333 	bacpy(&key->bdaddr, bdaddr);
1334 	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1335 	key->pin_len = pin_len;
1336 
1337 	if (type == HCI_LK_CHANGED_COMBINATION)
1338 		key->type = old_key_type;
1339 	else
1340 		key->type = type;
1341 
1342 	if (persistent)
1343 		*persistent = hci_persistent_key(hdev, conn, type,
1344 						 old_key_type);
1345 
1346 	return key;
1347 }
1348 
1349 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1350 			    u8 addr_type, u8 type, u8 authenticated,
1351 			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
1352 {
1353 	struct smp_ltk *key, *old_key;
1354 	u8 role = ltk_role(type);
1355 
1356 	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
1357 	if (old_key)
1358 		key = old_key;
1359 	else {
1360 		key = kzalloc(sizeof(*key), GFP_KERNEL);
1361 		if (!key)
1362 			return NULL;
1363 		list_add_rcu(&key->list, &hdev->long_term_keys);
1364 	}
1365 
1366 	bacpy(&key->bdaddr, bdaddr);
1367 	key->bdaddr_type = addr_type;
1368 	memcpy(key->val, tk, sizeof(key->val));
1369 	key->authenticated = authenticated;
1370 	key->ediv = ediv;
1371 	key->rand = rand;
1372 	key->enc_size = enc_size;
1373 	key->type = type;
1374 
1375 	return key;
1376 }
1377 
1378 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1379 			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
1380 {
1381 	struct smp_irk *irk;
1382 
1383 	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
1384 	if (!irk) {
1385 		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
1386 		if (!irk)
1387 			return NULL;
1388 
1389 		bacpy(&irk->bdaddr, bdaddr);
1390 		irk->addr_type = addr_type;
1391 
1392 		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
1393 	}
1394 
1395 	memcpy(irk->val, val, 16);
1396 	bacpy(&irk->rpa, rpa);
1397 
1398 	return irk;
1399 }
1400 
1401 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1402 {
1403 	struct link_key *key;
1404 
1405 	key = hci_find_link_key(hdev, bdaddr);
1406 	if (!key)
1407 		return -ENOENT;
1408 
1409 	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1410 
1411 	list_del_rcu(&key->list);
1412 	kfree_rcu(key, rcu);
1413 
1414 	return 0;
1415 }
1416 
1417 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
1418 {
1419 	struct smp_ltk *k, *tmp;
1420 	int removed = 0;
1421 
1422 	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1423 		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
1424 			continue;
1425 
1426 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1427 
1428 		list_del_rcu(&k->list);
1429 		kfree_rcu(k, rcu);
1430 		removed++;
1431 	}
1432 
1433 	return removed ? 0 : -ENOENT;
1434 }
1435 
1436 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
1437 {
1438 	struct smp_irk *k, *tmp;
1439 
1440 	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1441 		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
1442 			continue;
1443 
1444 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1445 
1446 		list_del_rcu(&k->list);
1447 		kfree_rcu(k, rcu);
1448 	}
1449 }
1450 
1451 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1452 {
1453 	struct smp_ltk *k;
1454 	struct smp_irk *irk;
1455 	u8 addr_type;
1456 
1457 	if (type == BDADDR_BREDR) {
1458 		if (hci_find_link_key(hdev, bdaddr))
1459 			return true;
1460 		return false;
1461 	}
1462 
1463 	/* Convert to HCI addr type which struct smp_ltk uses */
1464 	if (type == BDADDR_LE_PUBLIC)
1465 		addr_type = ADDR_LE_DEV_PUBLIC;
1466 	else
1467 		addr_type = ADDR_LE_DEV_RANDOM;
1468 
1469 	irk = hci_get_irk(hdev, bdaddr, addr_type);
1470 	if (irk) {
1471 		bdaddr = &irk->bdaddr;
1472 		addr_type = irk->addr_type;
1473 	}
1474 
1475 	rcu_read_lock();
1476 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1477 		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
1478 			rcu_read_unlock();
1479 			return true;
1480 		}
1481 	}
1482 	rcu_read_unlock();
1483 
1484 	return false;
1485 }
1486 
1487 /* HCI command timer function */
1488 static void hci_cmd_timeout(struct work_struct *work)
1489 {
1490 	struct hci_dev *hdev = container_of(work, struct hci_dev,
1491 					    cmd_timer.work);
1492 
1493 	if (hdev->sent_cmd) {
1494 		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
1495 		u16 opcode = __le16_to_cpu(sent->opcode);
1496 
1497 		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
1498 	} else {
1499 		bt_dev_err(hdev, "command tx timeout");
1500 	}
1501 
1502 	if (hdev->cmd_timeout)
1503 		hdev->cmd_timeout(hdev);
1504 
1505 	atomic_set(&hdev->cmd_cnt, 1);
1506 	queue_work(hdev->workqueue, &hdev->cmd_work);
1507 }
1508 
1509 /* HCI ncmd timer function */
1510 static void hci_ncmd_timeout(struct work_struct *work)
1511 {
1512 	struct hci_dev *hdev = container_of(work, struct hci_dev,
1513 					    ncmd_timer.work);
1514 
1515 	bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
1516 
1517 	/* During HCI_INIT phase no events can be injected if the ncmd timer
1518 	 * triggers since the procedure has its own timeout handling.
1519 	 */
1520 	if (test_bit(HCI_INIT, &hdev->flags))
1521 		return;
1522 
1523 	/* This is an irrecoverable state, inject hardware error event */
1524 	hci_reset_dev(hdev);
1525 }
1526 
1527 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1528 					  bdaddr_t *bdaddr, u8 bdaddr_type)
1529 {
1530 	struct oob_data *data;
1531 
1532 	list_for_each_entry(data, &hdev->remote_oob_data, list) {
1533 		if (bacmp(bdaddr, &data->bdaddr) != 0)
1534 			continue;
1535 		if (data->bdaddr_type != bdaddr_type)
1536 			continue;
1537 		return data;
1538 	}
1539 
1540 	return NULL;
1541 }
1542 
1543 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1544 			       u8 bdaddr_type)
1545 {
1546 	struct oob_data *data;
1547 
1548 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1549 	if (!data)
1550 		return -ENOENT;
1551 
1552 	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
1553 
1554 	list_del(&data->list);
1555 	kfree(data);
1556 
1557 	return 0;
1558 }
1559 
1560 void hci_remote_oob_data_clear(struct hci_dev *hdev)
1561 {
1562 	struct oob_data *data, *n;
1563 
1564 	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1565 		list_del(&data->list);
1566 		kfree(data);
1567 	}
1568 }
1569 
1570 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1571 			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
1572 			    u8 *hash256, u8 *rand256)
1573 {
1574 	struct oob_data *data;
1575 
1576 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1577 	if (!data) {
1578 		data = kmalloc(sizeof(*data), GFP_KERNEL);
1579 		if (!data)
1580 			return -ENOMEM;
1581 
1582 		bacpy(&data->bdaddr, bdaddr);
1583 		data->bdaddr_type = bdaddr_type;
1584 		list_add(&data->list, &hdev->remote_oob_data);
1585 	}
1586 
1587 	if (hash192 && rand192) {
1588 		memcpy(data->hash192, hash192, sizeof(data->hash192));
1589 		memcpy(data->rand192, rand192, sizeof(data->rand192));
1590 		if (hash256 && rand256)
1591 			data->present = 0x03;
1592 	} else {
1593 		memset(data->hash192, 0, sizeof(data->hash192));
1594 		memset(data->rand192, 0, sizeof(data->rand192));
1595 		if (hash256 && rand256)
1596 			data->present = 0x02;
1597 		else
1598 			data->present = 0x00;
1599 	}
1600 
1601 	if (hash256 && rand256) {
1602 		memcpy(data->hash256, hash256, sizeof(data->hash256));
1603 		memcpy(data->rand256, rand256, sizeof(data->rand256));
1604 	} else {
1605 		memset(data->hash256, 0, sizeof(data->hash256));
1606 		memset(data->rand256, 0, sizeof(data->rand256));
1607 		if (hash192 && rand192)
1608 			data->present = 0x01;
1609 	}
1610 
1611 	BT_DBG("%s for %pMR", hdev->name, bdaddr);
1612 
1613 	return 0;
1614 }
1615 
1616 /* This function requires the caller holds hdev->lock */
1617 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
1618 {
1619 	struct adv_info *adv_instance;
1620 
1621 	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
1622 		if (adv_instance->instance == instance)
1623 			return adv_instance;
1624 	}
1625 
1626 	return NULL;
1627 }
1628 
1629 /* This function requires the caller holds hdev->lock */
1630 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
1631 {
1632 	struct adv_info *cur_instance;
1633 
1634 	cur_instance = hci_find_adv_instance(hdev, instance);
1635 	if (!cur_instance)
1636 		return NULL;
1637 
1638 	if (cur_instance == list_last_entry(&hdev->adv_instances,
1639 					    struct adv_info, list))
1640 		return list_first_entry(&hdev->adv_instances,
1641 						 struct adv_info, list);
1642 	else
1643 		return list_next_entry(cur_instance, list);
1644 }
1645 
1646 /* This function requires the caller holds hdev->lock */
1647 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
1648 {
1649 	struct adv_info *adv_instance;
1650 
1651 	adv_instance = hci_find_adv_instance(hdev, instance);
1652 	if (!adv_instance)
1653 		return -ENOENT;
1654 
1655 	BT_DBG("%s removing %dMR", hdev->name, instance);
1656 
1657 	if (hdev->cur_adv_instance == instance) {
1658 		if (hdev->adv_instance_timeout) {
1659 			cancel_delayed_work(&hdev->adv_instance_expire);
1660 			hdev->adv_instance_timeout = 0;
1661 		}
1662 		hdev->cur_adv_instance = 0x00;
1663 	}
1664 
1665 	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1666 
1667 	list_del(&adv_instance->list);
1668 	kfree(adv_instance);
1669 
1670 	hdev->adv_instance_cnt--;
1671 
1672 	return 0;
1673 }
1674 
1675 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
1676 {
1677 	struct adv_info *adv_instance, *n;
1678 
1679 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
1680 		adv_instance->rpa_expired = rpa_expired;
1681 }
1682 
1683 /* This function requires the caller holds hdev->lock */
1684 void hci_adv_instances_clear(struct hci_dev *hdev)
1685 {
1686 	struct adv_info *adv_instance, *n;
1687 
1688 	if (hdev->adv_instance_timeout) {
1689 		cancel_delayed_work(&hdev->adv_instance_expire);
1690 		hdev->adv_instance_timeout = 0;
1691 	}
1692 
1693 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
1694 		cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1695 		list_del(&adv_instance->list);
1696 		kfree(adv_instance);
1697 	}
1698 
1699 	hdev->adv_instance_cnt = 0;
1700 	hdev->cur_adv_instance = 0x00;
1701 }
1702 
1703 static void adv_instance_rpa_expired(struct work_struct *work)
1704 {
1705 	struct adv_info *adv_instance = container_of(work, struct adv_info,
1706 						     rpa_expired_cb.work);
1707 
1708 	BT_DBG("");
1709 
1710 	adv_instance->rpa_expired = true;
1711 }
1712 
1713 /* This function requires the caller holds hdev->lock */
1714 struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance,
1715 				      u32 flags, u16 adv_data_len, u8 *adv_data,
1716 				      u16 scan_rsp_len, u8 *scan_rsp_data,
1717 				      u16 timeout, u16 duration, s8 tx_power,
1718 				      u32 min_interval, u32 max_interval,
1719 				      u8 mesh_handle)
1720 {
1721 	struct adv_info *adv;
1722 
1723 	adv = hci_find_adv_instance(hdev, instance);
1724 	if (adv) {
1725 		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1726 		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1727 		memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data));
1728 	} else {
1729 		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
1730 		    instance < 1 || instance > hdev->le_num_of_adv_sets + 1)
1731 			return ERR_PTR(-EOVERFLOW);
1732 
1733 		adv = kzalloc(sizeof(*adv), GFP_KERNEL);
1734 		if (!adv)
1735 			return ERR_PTR(-ENOMEM);
1736 
1737 		adv->pending = true;
1738 		adv->instance = instance;
1739 		list_add(&adv->list, &hdev->adv_instances);
1740 		hdev->adv_instance_cnt++;
1741 	}
1742 
1743 	adv->flags = flags;
1744 	adv->min_interval = min_interval;
1745 	adv->max_interval = max_interval;
1746 	adv->tx_power = tx_power;
1747 	/* Defining a mesh_handle changes the timing units to ms,
1748 	 * rather than seconds, and ties the instance to the requested
1749 	 * mesh_tx queue.
1750 	 */
1751 	adv->mesh = mesh_handle;
1752 
1753 	hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data,
1754 				  scan_rsp_len, scan_rsp_data);
1755 
1756 	adv->timeout = timeout;
1757 	adv->remaining_time = timeout;
1758 
1759 	if (duration == 0)
1760 		adv->duration = hdev->def_multi_adv_rotation_duration;
1761 	else
1762 		adv->duration = duration;
1763 
1764 	INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired);
1765 
1766 	BT_DBG("%s for %dMR", hdev->name, instance);
1767 
1768 	return adv;
1769 }
1770 
1771 /* This function requires the caller holds hdev->lock */
1772 struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance,
1773 				      u32 flags, u8 data_len, u8 *data,
1774 				      u32 min_interval, u32 max_interval)
1775 {
1776 	struct adv_info *adv;
1777 
1778 	adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL,
1779 				   0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE,
1780 				   min_interval, max_interval, 0);
1781 	if (IS_ERR(adv))
1782 		return adv;
1783 
1784 	adv->periodic = true;
1785 	adv->per_adv_data_len = data_len;
1786 
1787 	if (data)
1788 		memcpy(adv->per_adv_data, data, data_len);
1789 
1790 	return adv;
1791 }
1792 
1793 /* This function requires the caller holds hdev->lock */
1794 int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
1795 			      u16 adv_data_len, u8 *adv_data,
1796 			      u16 scan_rsp_len, u8 *scan_rsp_data)
1797 {
1798 	struct adv_info *adv;
1799 
1800 	adv = hci_find_adv_instance(hdev, instance);
1801 
1802 	/* If advertisement doesn't exist, we can't modify its data */
1803 	if (!adv)
1804 		return -ENOENT;
1805 
1806 	if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) {
1807 		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1808 		memcpy(adv->adv_data, adv_data, adv_data_len);
1809 		adv->adv_data_len = adv_data_len;
1810 		adv->adv_data_changed = true;
1811 	}
1812 
1813 	if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) {
1814 		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1815 		memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len);
1816 		adv->scan_rsp_len = scan_rsp_len;
1817 		adv->scan_rsp_changed = true;
1818 	}
1819 
1820 	/* Mark as changed if there are flags which would affect it */
1821 	if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) ||
1822 	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1823 		adv->scan_rsp_changed = true;
1824 
1825 	return 0;
1826 }
1827 
1828 /* This function requires the caller holds hdev->lock */
1829 u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1830 {
1831 	u32 flags;
1832 	struct adv_info *adv;
1833 
1834 	if (instance == 0x00) {
1835 		/* Instance 0 always manages the "Tx Power" and "Flags"
1836 		 * fields
1837 		 */
1838 		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1839 
1840 		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1841 		 * corresponds to the "connectable" instance flag.
1842 		 */
1843 		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1844 			flags |= MGMT_ADV_FLAG_CONNECTABLE;
1845 
1846 		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1847 			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1848 		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1849 			flags |= MGMT_ADV_FLAG_DISCOV;
1850 
1851 		return flags;
1852 	}
1853 
1854 	adv = hci_find_adv_instance(hdev, instance);
1855 
1856 	/* Return 0 when we got an invalid instance identifier. */
1857 	if (!adv)
1858 		return 0;
1859 
1860 	return adv->flags;
1861 }
1862 
1863 bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1864 {
1865 	struct adv_info *adv;
1866 
1867 	/* Instance 0x00 always set local name */
1868 	if (instance == 0x00)
1869 		return true;
1870 
1871 	adv = hci_find_adv_instance(hdev, instance);
1872 	if (!adv)
1873 		return false;
1874 
1875 	if (adv->flags & MGMT_ADV_FLAG_APPEARANCE ||
1876 	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1877 		return true;
1878 
1879 	return adv->scan_rsp_len ? true : false;
1880 }
1881 
1882 /* This function requires the caller holds hdev->lock */
1883 void hci_adv_monitors_clear(struct hci_dev *hdev)
1884 {
1885 	struct adv_monitor *monitor;
1886 	int handle;
1887 
1888 	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
1889 		hci_free_adv_monitor(hdev, monitor);
1890 
1891 	idr_destroy(&hdev->adv_monitors_idr);
1892 }
1893 
1894 /* Frees the monitor structure and do some bookkeepings.
1895  * This function requires the caller holds hdev->lock.
1896  */
1897 void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1898 {
1899 	struct adv_pattern *pattern;
1900 	struct adv_pattern *tmp;
1901 
1902 	if (!monitor)
1903 		return;
1904 
1905 	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
1906 		list_del(&pattern->list);
1907 		kfree(pattern);
1908 	}
1909 
1910 	if (monitor->handle)
1911 		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
1912 
1913 	if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
1914 		hdev->adv_monitors_cnt--;
1915 		mgmt_adv_monitor_removed(hdev, monitor->handle);
1916 	}
1917 
1918 	kfree(monitor);
1919 }
1920 
1921 /* Assigns handle to a monitor, and if offloading is supported and power is on,
1922  * also attempts to forward the request to the controller.
1923  * This function requires the caller holds hci_req_sync_lock.
1924  */
1925 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1926 {
1927 	int min, max, handle;
1928 	int status = 0;
1929 
1930 	if (!monitor)
1931 		return -EINVAL;
1932 
1933 	hci_dev_lock(hdev);
1934 
1935 	min = HCI_MIN_ADV_MONITOR_HANDLE;
1936 	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
1937 	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
1938 			   GFP_KERNEL);
1939 
1940 	hci_dev_unlock(hdev);
1941 
1942 	if (handle < 0)
1943 		return handle;
1944 
1945 	monitor->handle = handle;
1946 
1947 	if (!hdev_is_powered(hdev))
1948 		return status;
1949 
1950 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1951 	case HCI_ADV_MONITOR_EXT_NONE:
1952 		bt_dev_dbg(hdev, "add monitor %d status %d",
1953 			   monitor->handle, status);
1954 		/* Message was not forwarded to controller - not an error */
1955 		break;
1956 
1957 	case HCI_ADV_MONITOR_EXT_MSFT:
1958 		status = msft_add_monitor_pattern(hdev, monitor);
1959 		bt_dev_dbg(hdev, "add monitor %d msft status %d",
1960 			   handle, status);
1961 		break;
1962 	}
1963 
1964 	return status;
1965 }
1966 
1967 /* Attempts to tell the controller and free the monitor. If somehow the
1968  * controller doesn't have a corresponding handle, remove anyway.
1969  * This function requires the caller holds hci_req_sync_lock.
1970  */
1971 static int hci_remove_adv_monitor(struct hci_dev *hdev,
1972 				  struct adv_monitor *monitor)
1973 {
1974 	int status = 0;
1975 	int handle;
1976 
1977 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1978 	case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
1979 		bt_dev_dbg(hdev, "remove monitor %d status %d",
1980 			   monitor->handle, status);
1981 		goto free_monitor;
1982 
1983 	case HCI_ADV_MONITOR_EXT_MSFT:
1984 		handle = monitor->handle;
1985 		status = msft_remove_monitor(hdev, monitor);
1986 		bt_dev_dbg(hdev, "remove monitor %d msft status %d",
1987 			   handle, status);
1988 		break;
1989 	}
1990 
1991 	/* In case no matching handle registered, just free the monitor */
1992 	if (status == -ENOENT)
1993 		goto free_monitor;
1994 
1995 	return status;
1996 
1997 free_monitor:
1998 	if (status == -ENOENT)
1999 		bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
2000 			    monitor->handle);
2001 	hci_free_adv_monitor(hdev, monitor);
2002 
2003 	return status;
2004 }
2005 
2006 /* This function requires the caller holds hci_req_sync_lock */
2007 int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle)
2008 {
2009 	struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
2010 
2011 	if (!monitor)
2012 		return -EINVAL;
2013 
2014 	return hci_remove_adv_monitor(hdev, monitor);
2015 }
2016 
2017 /* This function requires the caller holds hci_req_sync_lock */
2018 int hci_remove_all_adv_monitor(struct hci_dev *hdev)
2019 {
2020 	struct adv_monitor *monitor;
2021 	int idr_next_id = 0;
2022 	int status = 0;
2023 
2024 	while (1) {
2025 		monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
2026 		if (!monitor)
2027 			break;
2028 
2029 		status = hci_remove_adv_monitor(hdev, monitor);
2030 		if (status)
2031 			return status;
2032 
2033 		idr_next_id++;
2034 	}
2035 
2036 	return status;
2037 }
2038 
2039 /* This function requires the caller holds hdev->lock */
2040 bool hci_is_adv_monitoring(struct hci_dev *hdev)
2041 {
2042 	return !idr_is_empty(&hdev->adv_monitors_idr);
2043 }
2044 
2045 int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
2046 {
2047 	if (msft_monitor_supported(hdev))
2048 		return HCI_ADV_MONITOR_EXT_MSFT;
2049 
2050 	return HCI_ADV_MONITOR_EXT_NONE;
2051 }
2052 
2053 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2054 					 bdaddr_t *bdaddr, u8 type)
2055 {
2056 	struct bdaddr_list *b;
2057 
2058 	list_for_each_entry(b, bdaddr_list, list) {
2059 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2060 			return b;
2061 	}
2062 
2063 	return NULL;
2064 }
2065 
2066 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2067 				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2068 				u8 type)
2069 {
2070 	struct bdaddr_list_with_irk *b;
2071 
2072 	list_for_each_entry(b, bdaddr_list, list) {
2073 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2074 			return b;
2075 	}
2076 
2077 	return NULL;
2078 }
2079 
2080 struct bdaddr_list_with_flags *
2081 hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
2082 				  bdaddr_t *bdaddr, u8 type)
2083 {
2084 	struct bdaddr_list_with_flags *b;
2085 
2086 	list_for_each_entry(b, bdaddr_list, list) {
2087 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2088 			return b;
2089 	}
2090 
2091 	return NULL;
2092 }
2093 
2094 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2095 {
2096 	struct bdaddr_list *b, *n;
2097 
2098 	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2099 		list_del(&b->list);
2100 		kfree(b);
2101 	}
2102 }
2103 
2104 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2105 {
2106 	struct bdaddr_list *entry;
2107 
2108 	if (!bacmp(bdaddr, BDADDR_ANY))
2109 		return -EBADF;
2110 
2111 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2112 		return -EEXIST;
2113 
2114 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2115 	if (!entry)
2116 		return -ENOMEM;
2117 
2118 	bacpy(&entry->bdaddr, bdaddr);
2119 	entry->bdaddr_type = type;
2120 
2121 	list_add(&entry->list, list);
2122 
2123 	return 0;
2124 }
2125 
2126 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2127 					u8 type, u8 *peer_irk, u8 *local_irk)
2128 {
2129 	struct bdaddr_list_with_irk *entry;
2130 
2131 	if (!bacmp(bdaddr, BDADDR_ANY))
2132 		return -EBADF;
2133 
2134 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2135 		return -EEXIST;
2136 
2137 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2138 	if (!entry)
2139 		return -ENOMEM;
2140 
2141 	bacpy(&entry->bdaddr, bdaddr);
2142 	entry->bdaddr_type = type;
2143 
2144 	if (peer_irk)
2145 		memcpy(entry->peer_irk, peer_irk, 16);
2146 
2147 	if (local_irk)
2148 		memcpy(entry->local_irk, local_irk, 16);
2149 
2150 	list_add(&entry->list, list);
2151 
2152 	return 0;
2153 }
2154 
2155 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2156 				   u8 type, u32 flags)
2157 {
2158 	struct bdaddr_list_with_flags *entry;
2159 
2160 	if (!bacmp(bdaddr, BDADDR_ANY))
2161 		return -EBADF;
2162 
2163 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2164 		return -EEXIST;
2165 
2166 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2167 	if (!entry)
2168 		return -ENOMEM;
2169 
2170 	bacpy(&entry->bdaddr, bdaddr);
2171 	entry->bdaddr_type = type;
2172 	entry->flags = flags;
2173 
2174 	list_add(&entry->list, list);
2175 
2176 	return 0;
2177 }
2178 
2179 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2180 {
2181 	struct bdaddr_list *entry;
2182 
2183 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2184 		hci_bdaddr_list_clear(list);
2185 		return 0;
2186 	}
2187 
2188 	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2189 	if (!entry)
2190 		return -ENOENT;
2191 
2192 	list_del(&entry->list);
2193 	kfree(entry);
2194 
2195 	return 0;
2196 }
2197 
2198 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2199 							u8 type)
2200 {
2201 	struct bdaddr_list_with_irk *entry;
2202 
2203 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2204 		hci_bdaddr_list_clear(list);
2205 		return 0;
2206 	}
2207 
2208 	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2209 	if (!entry)
2210 		return -ENOENT;
2211 
2212 	list_del(&entry->list);
2213 	kfree(entry);
2214 
2215 	return 0;
2216 }
2217 
2218 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2219 				   u8 type)
2220 {
2221 	struct bdaddr_list_with_flags *entry;
2222 
2223 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2224 		hci_bdaddr_list_clear(list);
2225 		return 0;
2226 	}
2227 
2228 	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
2229 	if (!entry)
2230 		return -ENOENT;
2231 
2232 	list_del(&entry->list);
2233 	kfree(entry);
2234 
2235 	return 0;
2236 }
2237 
2238 /* This function requires the caller holds hdev->lock */
2239 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2240 					       bdaddr_t *addr, u8 addr_type)
2241 {
2242 	struct hci_conn_params *params;
2243 
2244 	list_for_each_entry(params, &hdev->le_conn_params, list) {
2245 		if (bacmp(&params->addr, addr) == 0 &&
2246 		    params->addr_type == addr_type) {
2247 			return params;
2248 		}
2249 	}
2250 
2251 	return NULL;
2252 }
2253 
2254 /* This function requires the caller holds hdev->lock or rcu_read_lock */
2255 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2256 						  bdaddr_t *addr, u8 addr_type)
2257 {
2258 	struct hci_conn_params *param;
2259 
2260 	rcu_read_lock();
2261 
2262 	list_for_each_entry_rcu(param, list, action) {
2263 		if (bacmp(&param->addr, addr) == 0 &&
2264 		    param->addr_type == addr_type) {
2265 			rcu_read_unlock();
2266 			return param;
2267 		}
2268 	}
2269 
2270 	rcu_read_unlock();
2271 
2272 	return NULL;
2273 }
2274 
2275 /* This function requires the caller holds hdev->lock */
2276 void hci_pend_le_list_del_init(struct hci_conn_params *param)
2277 {
2278 	if (list_empty(&param->action))
2279 		return;
2280 
2281 	list_del_rcu(&param->action);
2282 	synchronize_rcu();
2283 	INIT_LIST_HEAD(&param->action);
2284 }
2285 
2286 /* This function requires the caller holds hdev->lock */
2287 void hci_pend_le_list_add(struct hci_conn_params *param,
2288 			  struct list_head *list)
2289 {
2290 	list_add_rcu(&param->action, list);
2291 }
2292 
2293 /* This function requires the caller holds hdev->lock */
2294 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2295 					    bdaddr_t *addr, u8 addr_type)
2296 {
2297 	struct hci_conn_params *params;
2298 
2299 	params = hci_conn_params_lookup(hdev, addr, addr_type);
2300 	if (params)
2301 		return params;
2302 
2303 	params = kzalloc(sizeof(*params), GFP_KERNEL);
2304 	if (!params) {
2305 		bt_dev_err(hdev, "out of memory");
2306 		return NULL;
2307 	}
2308 
2309 	bacpy(&params->addr, addr);
2310 	params->addr_type = addr_type;
2311 
2312 	list_add(&params->list, &hdev->le_conn_params);
2313 	INIT_LIST_HEAD(&params->action);
2314 
2315 	params->conn_min_interval = hdev->le_conn_min_interval;
2316 	params->conn_max_interval = hdev->le_conn_max_interval;
2317 	params->conn_latency = hdev->le_conn_latency;
2318 	params->supervision_timeout = hdev->le_supv_timeout;
2319 	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2320 
2321 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2322 
2323 	return params;
2324 }
2325 
2326 void hci_conn_params_free(struct hci_conn_params *params)
2327 {
2328 	hci_pend_le_list_del_init(params);
2329 
2330 	if (params->conn) {
2331 		hci_conn_drop(params->conn);
2332 		hci_conn_put(params->conn);
2333 	}
2334 
2335 	list_del(&params->list);
2336 	kfree(params);
2337 }
2338 
2339 /* This function requires the caller holds hdev->lock */
2340 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2341 {
2342 	struct hci_conn_params *params;
2343 
2344 	params = hci_conn_params_lookup(hdev, addr, addr_type);
2345 	if (!params)
2346 		return;
2347 
2348 	hci_conn_params_free(params);
2349 
2350 	hci_update_passive_scan(hdev);
2351 
2352 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2353 }
2354 
2355 /* This function requires the caller holds hdev->lock */
2356 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2357 {
2358 	struct hci_conn_params *params, *tmp;
2359 
2360 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2361 		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2362 			continue;
2363 
2364 		/* If trying to establish one time connection to disabled
2365 		 * device, leave the params, but mark them as just once.
2366 		 */
2367 		if (params->explicit_connect) {
2368 			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2369 			continue;
2370 		}
2371 
2372 		hci_conn_params_free(params);
2373 	}
2374 
2375 	BT_DBG("All LE disabled connection parameters were removed");
2376 }
2377 
2378 /* This function requires the caller holds hdev->lock */
2379 static void hci_conn_params_clear_all(struct hci_dev *hdev)
2380 {
2381 	struct hci_conn_params *params, *tmp;
2382 
2383 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2384 		hci_conn_params_free(params);
2385 
2386 	BT_DBG("All LE connection parameters were removed");
2387 }
2388 
2389 /* Copy the Identity Address of the controller.
2390  *
2391  * If the controller has a public BD_ADDR, then by default use that one.
2392  * If this is a LE only controller without a public address, default to
2393  * the static random address.
2394  *
2395  * For debugging purposes it is possible to force controllers with a
2396  * public address to use the static random address instead.
2397  *
2398  * In case BR/EDR has been disabled on a dual-mode controller and
2399  * userspace has configured a static address, then that address
2400  * becomes the identity address instead of the public BR/EDR address.
2401  */
2402 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2403 			       u8 *bdaddr_type)
2404 {
2405 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2406 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2407 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2408 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2409 		bacpy(bdaddr, &hdev->static_addr);
2410 		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2411 	} else {
2412 		bacpy(bdaddr, &hdev->bdaddr);
2413 		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2414 	}
2415 }
2416 
2417 static void hci_clear_wake_reason(struct hci_dev *hdev)
2418 {
2419 	hci_dev_lock(hdev);
2420 
2421 	hdev->wake_reason = 0;
2422 	bacpy(&hdev->wake_addr, BDADDR_ANY);
2423 	hdev->wake_addr_type = 0;
2424 
2425 	hci_dev_unlock(hdev);
2426 }
2427 
2428 static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
2429 				void *data)
2430 {
2431 	struct hci_dev *hdev =
2432 		container_of(nb, struct hci_dev, suspend_notifier);
2433 	int ret = 0;
2434 
2435 	/* Userspace has full control of this device. Do nothing. */
2436 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2437 		return NOTIFY_DONE;
2438 
2439 	/* To avoid a potential race with hci_unregister_dev. */
2440 	hci_dev_hold(hdev);
2441 
2442 	if (action == PM_SUSPEND_PREPARE)
2443 		ret = hci_suspend_dev(hdev);
2444 	else if (action == PM_POST_SUSPEND)
2445 		ret = hci_resume_dev(hdev);
2446 
2447 	if (ret)
2448 		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
2449 			   action, ret);
2450 
2451 	hci_dev_put(hdev);
2452 	return NOTIFY_DONE;
2453 }
2454 
2455 /* Alloc HCI device */
2456 struct hci_dev *hci_alloc_dev_priv(int sizeof_priv)
2457 {
2458 	struct hci_dev *hdev;
2459 	unsigned int alloc_size;
2460 
2461 	alloc_size = sizeof(*hdev);
2462 	if (sizeof_priv) {
2463 		/* Fixme: May need ALIGN-ment? */
2464 		alloc_size += sizeof_priv;
2465 	}
2466 
2467 	hdev = kzalloc(alloc_size, GFP_KERNEL);
2468 	if (!hdev)
2469 		return NULL;
2470 
2471 	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2472 	hdev->esco_type = (ESCO_HV1);
2473 	hdev->link_mode = (HCI_LM_ACCEPT);
2474 	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2475 	hdev->io_capability = 0x03;	/* No Input No Output */
2476 	hdev->manufacturer = 0xffff;	/* Default to internal use */
2477 	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2478 	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2479 	hdev->adv_instance_cnt = 0;
2480 	hdev->cur_adv_instance = 0x00;
2481 	hdev->adv_instance_timeout = 0;
2482 
2483 	hdev->advmon_allowlist_duration = 300;
2484 	hdev->advmon_no_filter_duration = 500;
2485 	hdev->enable_advmon_interleave_scan = 0x00;	/* Default to disable */
2486 
2487 	hdev->sniff_max_interval = 800;
2488 	hdev->sniff_min_interval = 80;
2489 
2490 	hdev->le_adv_channel_map = 0x07;
2491 	hdev->le_adv_min_interval = 0x0800;
2492 	hdev->le_adv_max_interval = 0x0800;
2493 	hdev->le_scan_interval = 0x0060;
2494 	hdev->le_scan_window = 0x0030;
2495 	hdev->le_scan_int_suspend = 0x0400;
2496 	hdev->le_scan_window_suspend = 0x0012;
2497 	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
2498 	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
2499 	hdev->le_scan_int_adv_monitor = 0x0060;
2500 	hdev->le_scan_window_adv_monitor = 0x0030;
2501 	hdev->le_scan_int_connect = 0x0060;
2502 	hdev->le_scan_window_connect = 0x0060;
2503 	hdev->le_conn_min_interval = 0x0018;
2504 	hdev->le_conn_max_interval = 0x0028;
2505 	hdev->le_conn_latency = 0x0000;
2506 	hdev->le_supv_timeout = 0x002a;
2507 	hdev->le_def_tx_len = 0x001b;
2508 	hdev->le_def_tx_time = 0x0148;
2509 	hdev->le_max_tx_len = 0x001b;
2510 	hdev->le_max_tx_time = 0x0148;
2511 	hdev->le_max_rx_len = 0x001b;
2512 	hdev->le_max_rx_time = 0x0148;
2513 	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
2514 	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
2515 	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
2516 	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
2517 	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
2518 	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
2519 	hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
2520 	hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
2521 	hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
2522 
2523 	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2524 	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2525 	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2526 	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2527 	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
2528 	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
2529 
2530 	/* default 1.28 sec page scan */
2531 	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
2532 	hdev->def_page_scan_int = 0x0800;
2533 	hdev->def_page_scan_window = 0x0012;
2534 
2535 	mutex_init(&hdev->lock);
2536 	mutex_init(&hdev->req_lock);
2537 
2538 	INIT_LIST_HEAD(&hdev->mesh_pending);
2539 	INIT_LIST_HEAD(&hdev->mgmt_pending);
2540 	INIT_LIST_HEAD(&hdev->reject_list);
2541 	INIT_LIST_HEAD(&hdev->accept_list);
2542 	INIT_LIST_HEAD(&hdev->uuids);
2543 	INIT_LIST_HEAD(&hdev->link_keys);
2544 	INIT_LIST_HEAD(&hdev->long_term_keys);
2545 	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2546 	INIT_LIST_HEAD(&hdev->remote_oob_data);
2547 	INIT_LIST_HEAD(&hdev->le_accept_list);
2548 	INIT_LIST_HEAD(&hdev->le_resolv_list);
2549 	INIT_LIST_HEAD(&hdev->le_conn_params);
2550 	INIT_LIST_HEAD(&hdev->pend_le_conns);
2551 	INIT_LIST_HEAD(&hdev->pend_le_reports);
2552 	INIT_LIST_HEAD(&hdev->conn_hash.list);
2553 	INIT_LIST_HEAD(&hdev->adv_instances);
2554 	INIT_LIST_HEAD(&hdev->blocked_keys);
2555 	INIT_LIST_HEAD(&hdev->monitored_devices);
2556 
2557 	INIT_LIST_HEAD(&hdev->local_codecs);
2558 	INIT_WORK(&hdev->rx_work, hci_rx_work);
2559 	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2560 	INIT_WORK(&hdev->tx_work, hci_tx_work);
2561 	INIT_WORK(&hdev->power_on, hci_power_on);
2562 	INIT_WORK(&hdev->error_reset, hci_error_reset);
2563 
2564 	hci_cmd_sync_init(hdev);
2565 
2566 	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2567 
2568 	skb_queue_head_init(&hdev->rx_q);
2569 	skb_queue_head_init(&hdev->cmd_q);
2570 	skb_queue_head_init(&hdev->raw_q);
2571 
2572 	init_waitqueue_head(&hdev->req_wait_q);
2573 
2574 	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
2575 	INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
2576 
2577 	hci_devcd_setup(hdev);
2578 	hci_request_setup(hdev);
2579 
2580 	hci_init_sysfs(hdev);
2581 	discovery_init(hdev);
2582 
2583 	return hdev;
2584 }
2585 EXPORT_SYMBOL(hci_alloc_dev_priv);
2586 
2587 /* Free HCI device */
2588 void hci_free_dev(struct hci_dev *hdev)
2589 {
2590 	/* will free via device release */
2591 	put_device(&hdev->dev);
2592 }
2593 EXPORT_SYMBOL(hci_free_dev);
2594 
2595 /* Register HCI device */
2596 int hci_register_dev(struct hci_dev *hdev)
2597 {
2598 	int id, error;
2599 
2600 	if (!hdev->open || !hdev->close || !hdev->send)
2601 		return -EINVAL;
2602 
2603 	/* Do not allow HCI_AMP devices to register at index 0,
2604 	 * so the index can be used as the AMP controller ID.
2605 	 */
2606 	switch (hdev->dev_type) {
2607 	case HCI_PRIMARY:
2608 		id = ida_simple_get(&hci_index_ida, 0, HCI_MAX_ID, GFP_KERNEL);
2609 		break;
2610 	case HCI_AMP:
2611 		id = ida_simple_get(&hci_index_ida, 1, HCI_MAX_ID, GFP_KERNEL);
2612 		break;
2613 	default:
2614 		return -EINVAL;
2615 	}
2616 
2617 	if (id < 0)
2618 		return id;
2619 
2620 	error = dev_set_name(&hdev->dev, "hci%u", id);
2621 	if (error)
2622 		return error;
2623 
2624 	hdev->name = dev_name(&hdev->dev);
2625 	hdev->id = id;
2626 
2627 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2628 
2629 	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
2630 	if (!hdev->workqueue) {
2631 		error = -ENOMEM;
2632 		goto err;
2633 	}
2634 
2635 	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
2636 						      hdev->name);
2637 	if (!hdev->req_workqueue) {
2638 		destroy_workqueue(hdev->workqueue);
2639 		error = -ENOMEM;
2640 		goto err;
2641 	}
2642 
2643 	if (!IS_ERR_OR_NULL(bt_debugfs))
2644 		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
2645 
2646 	error = device_add(&hdev->dev);
2647 	if (error < 0)
2648 		goto err_wqueue;
2649 
2650 	hci_leds_init(hdev);
2651 
2652 	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2653 				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2654 				    hdev);
2655 	if (hdev->rfkill) {
2656 		if (rfkill_register(hdev->rfkill) < 0) {
2657 			rfkill_destroy(hdev->rfkill);
2658 			hdev->rfkill = NULL;
2659 		}
2660 	}
2661 
2662 	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
2663 		hci_dev_set_flag(hdev, HCI_RFKILLED);
2664 
2665 	hci_dev_set_flag(hdev, HCI_SETUP);
2666 	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
2667 
2668 	if (hdev->dev_type == HCI_PRIMARY) {
2669 		/* Assume BR/EDR support until proven otherwise (such as
2670 		 * through reading supported features during init.
2671 		 */
2672 		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
2673 	}
2674 
2675 	write_lock(&hci_dev_list_lock);
2676 	list_add(&hdev->list, &hci_dev_list);
2677 	write_unlock(&hci_dev_list_lock);
2678 
2679 	/* Devices that are marked for raw-only usage are unconfigured
2680 	 * and should not be included in normal operation.
2681 	 */
2682 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2683 		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
2684 
2685 	/* Mark Remote Wakeup connection flag as supported if driver has wakeup
2686 	 * callback.
2687 	 */
2688 	if (hdev->wakeup)
2689 		hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP;
2690 
2691 	hci_sock_dev_event(hdev, HCI_DEV_REG);
2692 	hci_dev_hold(hdev);
2693 
2694 	error = hci_register_suspend_notifier(hdev);
2695 	if (error)
2696 		BT_WARN("register suspend notifier failed error:%d\n", error);
2697 
2698 	queue_work(hdev->req_workqueue, &hdev->power_on);
2699 
2700 	idr_init(&hdev->adv_monitors_idr);
2701 	msft_register(hdev);
2702 
2703 	return id;
2704 
2705 err_wqueue:
2706 	debugfs_remove_recursive(hdev->debugfs);
2707 	destroy_workqueue(hdev->workqueue);
2708 	destroy_workqueue(hdev->req_workqueue);
2709 err:
2710 	ida_simple_remove(&hci_index_ida, hdev->id);
2711 
2712 	return error;
2713 }
2714 EXPORT_SYMBOL(hci_register_dev);
2715 
2716 /* Unregister HCI device */
2717 void hci_unregister_dev(struct hci_dev *hdev)
2718 {
2719 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2720 
2721 	mutex_lock(&hdev->unregister_lock);
2722 	hci_dev_set_flag(hdev, HCI_UNREGISTER);
2723 	mutex_unlock(&hdev->unregister_lock);
2724 
2725 	write_lock(&hci_dev_list_lock);
2726 	list_del(&hdev->list);
2727 	write_unlock(&hci_dev_list_lock);
2728 
2729 	cancel_work_sync(&hdev->power_on);
2730 
2731 	hci_cmd_sync_clear(hdev);
2732 
2733 	hci_unregister_suspend_notifier(hdev);
2734 
2735 	msft_unregister(hdev);
2736 
2737 	hci_dev_do_close(hdev);
2738 
2739 	if (!test_bit(HCI_INIT, &hdev->flags) &&
2740 	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
2741 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
2742 		hci_dev_lock(hdev);
2743 		mgmt_index_removed(hdev);
2744 		hci_dev_unlock(hdev);
2745 	}
2746 
2747 	/* mgmt_index_removed should take care of emptying the
2748 	 * pending list */
2749 	BUG_ON(!list_empty(&hdev->mgmt_pending));
2750 
2751 	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
2752 
2753 	if (hdev->rfkill) {
2754 		rfkill_unregister(hdev->rfkill);
2755 		rfkill_destroy(hdev->rfkill);
2756 	}
2757 
2758 	device_del(&hdev->dev);
2759 	/* Actual cleanup is deferred until hci_release_dev(). */
2760 	hci_dev_put(hdev);
2761 }
2762 EXPORT_SYMBOL(hci_unregister_dev);
2763 
2764 /* Release HCI device */
2765 void hci_release_dev(struct hci_dev *hdev)
2766 {
2767 	debugfs_remove_recursive(hdev->debugfs);
2768 	kfree_const(hdev->hw_info);
2769 	kfree_const(hdev->fw_info);
2770 
2771 	destroy_workqueue(hdev->workqueue);
2772 	destroy_workqueue(hdev->req_workqueue);
2773 
2774 	hci_dev_lock(hdev);
2775 	hci_bdaddr_list_clear(&hdev->reject_list);
2776 	hci_bdaddr_list_clear(&hdev->accept_list);
2777 	hci_uuids_clear(hdev);
2778 	hci_link_keys_clear(hdev);
2779 	hci_smp_ltks_clear(hdev);
2780 	hci_smp_irks_clear(hdev);
2781 	hci_remote_oob_data_clear(hdev);
2782 	hci_adv_instances_clear(hdev);
2783 	hci_adv_monitors_clear(hdev);
2784 	hci_bdaddr_list_clear(&hdev->le_accept_list);
2785 	hci_bdaddr_list_clear(&hdev->le_resolv_list);
2786 	hci_conn_params_clear_all(hdev);
2787 	hci_discovery_filter_clear(hdev);
2788 	hci_blocked_keys_clear(hdev);
2789 	hci_dev_unlock(hdev);
2790 
2791 	ida_simple_remove(&hci_index_ida, hdev->id);
2792 	kfree_skb(hdev->sent_cmd);
2793 	kfree_skb(hdev->recv_event);
2794 	kfree(hdev);
2795 }
2796 EXPORT_SYMBOL(hci_release_dev);
2797 
2798 int hci_register_suspend_notifier(struct hci_dev *hdev)
2799 {
2800 	int ret = 0;
2801 
2802 	if (!hdev->suspend_notifier.notifier_call &&
2803 	    !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
2804 		hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
2805 		ret = register_pm_notifier(&hdev->suspend_notifier);
2806 	}
2807 
2808 	return ret;
2809 }
2810 
2811 int hci_unregister_suspend_notifier(struct hci_dev *hdev)
2812 {
2813 	int ret = 0;
2814 
2815 	if (hdev->suspend_notifier.notifier_call) {
2816 		ret = unregister_pm_notifier(&hdev->suspend_notifier);
2817 		if (!ret)
2818 			hdev->suspend_notifier.notifier_call = NULL;
2819 	}
2820 
2821 	return ret;
2822 }
2823 
2824 /* Suspend HCI device */
2825 int hci_suspend_dev(struct hci_dev *hdev)
2826 {
2827 	int ret;
2828 
2829 	bt_dev_dbg(hdev, "");
2830 
2831 	/* Suspend should only act on when powered. */
2832 	if (!hdev_is_powered(hdev) ||
2833 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2834 		return 0;
2835 
2836 	/* If powering down don't attempt to suspend */
2837 	if (mgmt_powering_down(hdev))
2838 		return 0;
2839 
2840 	/* Cancel potentially blocking sync operation before suspend */
2841 	__hci_cmd_sync_cancel(hdev, -EHOSTDOWN);
2842 
2843 	hci_req_sync_lock(hdev);
2844 	ret = hci_suspend_sync(hdev);
2845 	hci_req_sync_unlock(hdev);
2846 
2847 	hci_clear_wake_reason(hdev);
2848 	mgmt_suspending(hdev, hdev->suspend_state);
2849 
2850 	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
2851 	return ret;
2852 }
2853 EXPORT_SYMBOL(hci_suspend_dev);
2854 
2855 /* Resume HCI device */
2856 int hci_resume_dev(struct hci_dev *hdev)
2857 {
2858 	int ret;
2859 
2860 	bt_dev_dbg(hdev, "");
2861 
2862 	/* Resume should only act on when powered. */
2863 	if (!hdev_is_powered(hdev) ||
2864 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2865 		return 0;
2866 
2867 	/* If powering down don't attempt to resume */
2868 	if (mgmt_powering_down(hdev))
2869 		return 0;
2870 
2871 	hci_req_sync_lock(hdev);
2872 	ret = hci_resume_sync(hdev);
2873 	hci_req_sync_unlock(hdev);
2874 
2875 	mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
2876 		      hdev->wake_addr_type);
2877 
2878 	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
2879 	return ret;
2880 }
2881 EXPORT_SYMBOL(hci_resume_dev);
2882 
2883 /* Reset HCI device */
2884 int hci_reset_dev(struct hci_dev *hdev)
2885 {
2886 	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
2887 	struct sk_buff *skb;
2888 
2889 	skb = bt_skb_alloc(3, GFP_ATOMIC);
2890 	if (!skb)
2891 		return -ENOMEM;
2892 
2893 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
2894 	skb_put_data(skb, hw_err, 3);
2895 
2896 	bt_dev_err(hdev, "Injecting HCI hardware error event");
2897 
2898 	/* Send Hardware Error to upper stack */
2899 	return hci_recv_frame(hdev, skb);
2900 }
2901 EXPORT_SYMBOL(hci_reset_dev);
2902 
2903 /* Receive frame from HCI drivers */
2904 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
2905 {
2906 	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2907 		      && !test_bit(HCI_INIT, &hdev->flags))) {
2908 		kfree_skb(skb);
2909 		return -ENXIO;
2910 	}
2911 
2912 	switch (hci_skb_pkt_type(skb)) {
2913 	case HCI_EVENT_PKT:
2914 		break;
2915 	case HCI_ACLDATA_PKT:
2916 		/* Detect if ISO packet has been sent as ACL */
2917 		if (hci_conn_num(hdev, ISO_LINK)) {
2918 			__u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2919 			__u8 type;
2920 
2921 			type = hci_conn_lookup_type(hdev, hci_handle(handle));
2922 			if (type == ISO_LINK)
2923 				hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
2924 		}
2925 		break;
2926 	case HCI_SCODATA_PKT:
2927 		break;
2928 	case HCI_ISODATA_PKT:
2929 		break;
2930 	default:
2931 		kfree_skb(skb);
2932 		return -EINVAL;
2933 	}
2934 
2935 	/* Incoming skb */
2936 	bt_cb(skb)->incoming = 1;
2937 
2938 	/* Time stamp */
2939 	__net_timestamp(skb);
2940 
2941 	skb_queue_tail(&hdev->rx_q, skb);
2942 	queue_work(hdev->workqueue, &hdev->rx_work);
2943 
2944 	return 0;
2945 }
2946 EXPORT_SYMBOL(hci_recv_frame);
2947 
2948 /* Receive diagnostic message from HCI drivers */
2949 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
2950 {
2951 	/* Mark as diagnostic packet */
2952 	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
2953 
2954 	/* Time stamp */
2955 	__net_timestamp(skb);
2956 
2957 	skb_queue_tail(&hdev->rx_q, skb);
2958 	queue_work(hdev->workqueue, &hdev->rx_work);
2959 
2960 	return 0;
2961 }
2962 EXPORT_SYMBOL(hci_recv_diag);
2963 
2964 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
2965 {
2966 	va_list vargs;
2967 
2968 	va_start(vargs, fmt);
2969 	kfree_const(hdev->hw_info);
2970 	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2971 	va_end(vargs);
2972 }
2973 EXPORT_SYMBOL(hci_set_hw_info);
2974 
2975 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
2976 {
2977 	va_list vargs;
2978 
2979 	va_start(vargs, fmt);
2980 	kfree_const(hdev->fw_info);
2981 	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2982 	va_end(vargs);
2983 }
2984 EXPORT_SYMBOL(hci_set_fw_info);
2985 
2986 /* ---- Interface to upper protocols ---- */
2987 
2988 int hci_register_cb(struct hci_cb *cb)
2989 {
2990 	BT_DBG("%p name %s", cb, cb->name);
2991 
2992 	mutex_lock(&hci_cb_list_lock);
2993 	list_add_tail(&cb->list, &hci_cb_list);
2994 	mutex_unlock(&hci_cb_list_lock);
2995 
2996 	return 0;
2997 }
2998 EXPORT_SYMBOL(hci_register_cb);
2999 
3000 int hci_unregister_cb(struct hci_cb *cb)
3001 {
3002 	BT_DBG("%p name %s", cb, cb->name);
3003 
3004 	mutex_lock(&hci_cb_list_lock);
3005 	list_del(&cb->list);
3006 	mutex_unlock(&hci_cb_list_lock);
3007 
3008 	return 0;
3009 }
3010 EXPORT_SYMBOL(hci_unregister_cb);
3011 
3012 static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3013 {
3014 	int err;
3015 
3016 	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3017 	       skb->len);
3018 
3019 	/* Time stamp */
3020 	__net_timestamp(skb);
3021 
3022 	/* Send copy to monitor */
3023 	hci_send_to_monitor(hdev, skb);
3024 
3025 	if (atomic_read(&hdev->promisc)) {
3026 		/* Send copy to the sockets */
3027 		hci_send_to_sock(hdev, skb);
3028 	}
3029 
3030 	/* Get rid of skb owner, prior to sending to the driver. */
3031 	skb_orphan(skb);
3032 
3033 	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3034 		kfree_skb(skb);
3035 		return -EINVAL;
3036 	}
3037 
3038 	err = hdev->send(hdev, skb);
3039 	if (err < 0) {
3040 		bt_dev_err(hdev, "sending frame failed (%d)", err);
3041 		kfree_skb(skb);
3042 		return err;
3043 	}
3044 
3045 	return 0;
3046 }
3047 
3048 /* Send HCI command */
3049 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3050 		 const void *param)
3051 {
3052 	struct sk_buff *skb;
3053 
3054 	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3055 
3056 	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3057 	if (!skb) {
3058 		bt_dev_err(hdev, "no memory for command");
3059 		return -ENOMEM;
3060 	}
3061 
3062 	/* Stand-alone HCI commands must be flagged as
3063 	 * single-command requests.
3064 	 */
3065 	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3066 
3067 	skb_queue_tail(&hdev->cmd_q, skb);
3068 	queue_work(hdev->workqueue, &hdev->cmd_work);
3069 
3070 	return 0;
3071 }
3072 
3073 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3074 		   const void *param)
3075 {
3076 	struct sk_buff *skb;
3077 
3078 	if (hci_opcode_ogf(opcode) != 0x3f) {
3079 		/* A controller receiving a command shall respond with either
3080 		 * a Command Status Event or a Command Complete Event.
3081 		 * Therefore, all standard HCI commands must be sent via the
3082 		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3083 		 * Some vendors do not comply with this rule for vendor-specific
3084 		 * commands and do not return any event. We want to support
3085 		 * unresponded commands for such cases only.
3086 		 */
3087 		bt_dev_err(hdev, "unresponded command not supported");
3088 		return -EINVAL;
3089 	}
3090 
3091 	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3092 	if (!skb) {
3093 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3094 			   opcode);
3095 		return -ENOMEM;
3096 	}
3097 
3098 	hci_send_frame(hdev, skb);
3099 
3100 	return 0;
3101 }
3102 EXPORT_SYMBOL(__hci_cmd_send);
3103 
3104 /* Get data from the previously sent command */
3105 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3106 {
3107 	struct hci_command_hdr *hdr;
3108 
3109 	if (!hdev->sent_cmd)
3110 		return NULL;
3111 
3112 	hdr = (void *) hdev->sent_cmd->data;
3113 
3114 	if (hdr->opcode != cpu_to_le16(opcode))
3115 		return NULL;
3116 
3117 	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3118 
3119 	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3120 }
3121 
3122 /* Get data from last received event */
3123 void *hci_recv_event_data(struct hci_dev *hdev, __u8 event)
3124 {
3125 	struct hci_event_hdr *hdr;
3126 	int offset;
3127 
3128 	if (!hdev->recv_event)
3129 		return NULL;
3130 
3131 	hdr = (void *)hdev->recv_event->data;
3132 	offset = sizeof(*hdr);
3133 
3134 	if (hdr->evt != event) {
3135 		/* In case of LE metaevent check the subevent match */
3136 		if (hdr->evt == HCI_EV_LE_META) {
3137 			struct hci_ev_le_meta *ev;
3138 
3139 			ev = (void *)hdev->recv_event->data + offset;
3140 			offset += sizeof(*ev);
3141 			if (ev->subevent == event)
3142 				goto found;
3143 		}
3144 		return NULL;
3145 	}
3146 
3147 found:
3148 	bt_dev_dbg(hdev, "event 0x%2.2x", event);
3149 
3150 	return hdev->recv_event->data + offset;
3151 }
3152 
3153 /* Send ACL data */
3154 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3155 {
3156 	struct hci_acl_hdr *hdr;
3157 	int len = skb->len;
3158 
3159 	skb_push(skb, HCI_ACL_HDR_SIZE);
3160 	skb_reset_transport_header(skb);
3161 	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3162 	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3163 	hdr->dlen   = cpu_to_le16(len);
3164 }
3165 
3166 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3167 			  struct sk_buff *skb, __u16 flags)
3168 {
3169 	struct hci_conn *conn = chan->conn;
3170 	struct hci_dev *hdev = conn->hdev;
3171 	struct sk_buff *list;
3172 
3173 	skb->len = skb_headlen(skb);
3174 	skb->data_len = 0;
3175 
3176 	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3177 
3178 	switch (hdev->dev_type) {
3179 	case HCI_PRIMARY:
3180 		hci_add_acl_hdr(skb, conn->handle, flags);
3181 		break;
3182 	case HCI_AMP:
3183 		hci_add_acl_hdr(skb, chan->handle, flags);
3184 		break;
3185 	default:
3186 		bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
3187 		return;
3188 	}
3189 
3190 	list = skb_shinfo(skb)->frag_list;
3191 	if (!list) {
3192 		/* Non fragmented */
3193 		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3194 
3195 		skb_queue_tail(queue, skb);
3196 	} else {
3197 		/* Fragmented */
3198 		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3199 
3200 		skb_shinfo(skb)->frag_list = NULL;
3201 
3202 		/* Queue all fragments atomically. We need to use spin_lock_bh
3203 		 * here because of 6LoWPAN links, as there this function is
3204 		 * called from softirq and using normal spin lock could cause
3205 		 * deadlocks.
3206 		 */
3207 		spin_lock_bh(&queue->lock);
3208 
3209 		__skb_queue_tail(queue, skb);
3210 
3211 		flags &= ~ACL_START;
3212 		flags |= ACL_CONT;
3213 		do {
3214 			skb = list; list = list->next;
3215 
3216 			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3217 			hci_add_acl_hdr(skb, conn->handle, flags);
3218 
3219 			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3220 
3221 			__skb_queue_tail(queue, skb);
3222 		} while (list);
3223 
3224 		spin_unlock_bh(&queue->lock);
3225 	}
3226 }
3227 
3228 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3229 {
3230 	struct hci_dev *hdev = chan->conn->hdev;
3231 
3232 	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3233 
3234 	hci_queue_acl(chan, &chan->data_q, skb, flags);
3235 
3236 	queue_work(hdev->workqueue, &hdev->tx_work);
3237 }
3238 
3239 /* Send SCO data */
3240 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3241 {
3242 	struct hci_dev *hdev = conn->hdev;
3243 	struct hci_sco_hdr hdr;
3244 
3245 	BT_DBG("%s len %d", hdev->name, skb->len);
3246 
3247 	hdr.handle = cpu_to_le16(conn->handle);
3248 	hdr.dlen   = skb->len;
3249 
3250 	skb_push(skb, HCI_SCO_HDR_SIZE);
3251 	skb_reset_transport_header(skb);
3252 	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3253 
3254 	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3255 
3256 	skb_queue_tail(&conn->data_q, skb);
3257 	queue_work(hdev->workqueue, &hdev->tx_work);
3258 }
3259 
3260 /* Send ISO data */
3261 static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags)
3262 {
3263 	struct hci_iso_hdr *hdr;
3264 	int len = skb->len;
3265 
3266 	skb_push(skb, HCI_ISO_HDR_SIZE);
3267 	skb_reset_transport_header(skb);
3268 	hdr = (struct hci_iso_hdr *)skb_transport_header(skb);
3269 	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3270 	hdr->dlen   = cpu_to_le16(len);
3271 }
3272 
3273 static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue,
3274 			  struct sk_buff *skb)
3275 {
3276 	struct hci_dev *hdev = conn->hdev;
3277 	struct sk_buff *list;
3278 	__u16 flags;
3279 
3280 	skb->len = skb_headlen(skb);
3281 	skb->data_len = 0;
3282 
3283 	hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3284 
3285 	list = skb_shinfo(skb)->frag_list;
3286 
3287 	flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00);
3288 	hci_add_iso_hdr(skb, conn->handle, flags);
3289 
3290 	if (!list) {
3291 		/* Non fragmented */
3292 		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3293 
3294 		skb_queue_tail(queue, skb);
3295 	} else {
3296 		/* Fragmented */
3297 		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3298 
3299 		skb_shinfo(skb)->frag_list = NULL;
3300 
3301 		__skb_queue_tail(queue, skb);
3302 
3303 		do {
3304 			skb = list; list = list->next;
3305 
3306 			hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3307 			flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END,
3308 						   0x00);
3309 			hci_add_iso_hdr(skb, conn->handle, flags);
3310 
3311 			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3312 
3313 			__skb_queue_tail(queue, skb);
3314 		} while (list);
3315 	}
3316 }
3317 
3318 void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb)
3319 {
3320 	struct hci_dev *hdev = conn->hdev;
3321 
3322 	BT_DBG("%s len %d", hdev->name, skb->len);
3323 
3324 	hci_queue_iso(conn, &conn->data_q, skb);
3325 
3326 	queue_work(hdev->workqueue, &hdev->tx_work);
3327 }
3328 
3329 /* ---- HCI TX task (outgoing data) ---- */
3330 
3331 /* HCI Connection scheduler */
3332 static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote)
3333 {
3334 	struct hci_dev *hdev;
3335 	int cnt, q;
3336 
3337 	if (!conn) {
3338 		*quote = 0;
3339 		return;
3340 	}
3341 
3342 	hdev = conn->hdev;
3343 
3344 	switch (conn->type) {
3345 	case ACL_LINK:
3346 		cnt = hdev->acl_cnt;
3347 		break;
3348 	case AMP_LINK:
3349 		cnt = hdev->block_cnt;
3350 		break;
3351 	case SCO_LINK:
3352 	case ESCO_LINK:
3353 		cnt = hdev->sco_cnt;
3354 		break;
3355 	case LE_LINK:
3356 		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3357 		break;
3358 	case ISO_LINK:
3359 		cnt = hdev->iso_mtu ? hdev->iso_cnt :
3360 			hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3361 		break;
3362 	default:
3363 		cnt = 0;
3364 		bt_dev_err(hdev, "unknown link type %d", conn->type);
3365 	}
3366 
3367 	q = cnt / num;
3368 	*quote = q ? q : 1;
3369 }
3370 
3371 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3372 				     int *quote)
3373 {
3374 	struct hci_conn_hash *h = &hdev->conn_hash;
3375 	struct hci_conn *conn = NULL, *c;
3376 	unsigned int num = 0, min = ~0;
3377 
3378 	/* We don't have to lock device here. Connections are always
3379 	 * added and removed with TX task disabled. */
3380 
3381 	rcu_read_lock();
3382 
3383 	list_for_each_entry_rcu(c, &h->list, list) {
3384 		if (c->type != type || skb_queue_empty(&c->data_q))
3385 			continue;
3386 
3387 		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3388 			continue;
3389 
3390 		num++;
3391 
3392 		if (c->sent < min) {
3393 			min  = c->sent;
3394 			conn = c;
3395 		}
3396 
3397 		if (hci_conn_num(hdev, type) == num)
3398 			break;
3399 	}
3400 
3401 	rcu_read_unlock();
3402 
3403 	hci_quote_sent(conn, num, quote);
3404 
3405 	BT_DBG("conn %p quote %d", conn, *quote);
3406 	return conn;
3407 }
3408 
3409 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3410 {
3411 	struct hci_conn_hash *h = &hdev->conn_hash;
3412 	struct hci_conn *c;
3413 
3414 	bt_dev_err(hdev, "link tx timeout");
3415 
3416 	rcu_read_lock();
3417 
3418 	/* Kill stalled connections */
3419 	list_for_each_entry_rcu(c, &h->list, list) {
3420 		if (c->type == type && c->sent) {
3421 			bt_dev_err(hdev, "killing stalled connection %pMR",
3422 				   &c->dst);
3423 			/* hci_disconnect might sleep, so, we have to release
3424 			 * the RCU read lock before calling it.
3425 			 */
3426 			rcu_read_unlock();
3427 			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3428 			rcu_read_lock();
3429 		}
3430 	}
3431 
3432 	rcu_read_unlock();
3433 }
3434 
3435 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3436 				      int *quote)
3437 {
3438 	struct hci_conn_hash *h = &hdev->conn_hash;
3439 	struct hci_chan *chan = NULL;
3440 	unsigned int num = 0, min = ~0, cur_prio = 0;
3441 	struct hci_conn *conn;
3442 	int conn_num = 0;
3443 
3444 	BT_DBG("%s", hdev->name);
3445 
3446 	rcu_read_lock();
3447 
3448 	list_for_each_entry_rcu(conn, &h->list, list) {
3449 		struct hci_chan *tmp;
3450 
3451 		if (conn->type != type)
3452 			continue;
3453 
3454 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3455 			continue;
3456 
3457 		conn_num++;
3458 
3459 		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3460 			struct sk_buff *skb;
3461 
3462 			if (skb_queue_empty(&tmp->data_q))
3463 				continue;
3464 
3465 			skb = skb_peek(&tmp->data_q);
3466 			if (skb->priority < cur_prio)
3467 				continue;
3468 
3469 			if (skb->priority > cur_prio) {
3470 				num = 0;
3471 				min = ~0;
3472 				cur_prio = skb->priority;
3473 			}
3474 
3475 			num++;
3476 
3477 			if (conn->sent < min) {
3478 				min  = conn->sent;
3479 				chan = tmp;
3480 			}
3481 		}
3482 
3483 		if (hci_conn_num(hdev, type) == conn_num)
3484 			break;
3485 	}
3486 
3487 	rcu_read_unlock();
3488 
3489 	if (!chan)
3490 		return NULL;
3491 
3492 	hci_quote_sent(chan->conn, num, quote);
3493 
3494 	BT_DBG("chan %p quote %d", chan, *quote);
3495 	return chan;
3496 }
3497 
3498 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3499 {
3500 	struct hci_conn_hash *h = &hdev->conn_hash;
3501 	struct hci_conn *conn;
3502 	int num = 0;
3503 
3504 	BT_DBG("%s", hdev->name);
3505 
3506 	rcu_read_lock();
3507 
3508 	list_for_each_entry_rcu(conn, &h->list, list) {
3509 		struct hci_chan *chan;
3510 
3511 		if (conn->type != type)
3512 			continue;
3513 
3514 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3515 			continue;
3516 
3517 		num++;
3518 
3519 		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3520 			struct sk_buff *skb;
3521 
3522 			if (chan->sent) {
3523 				chan->sent = 0;
3524 				continue;
3525 			}
3526 
3527 			if (skb_queue_empty(&chan->data_q))
3528 				continue;
3529 
3530 			skb = skb_peek(&chan->data_q);
3531 			if (skb->priority >= HCI_PRIO_MAX - 1)
3532 				continue;
3533 
3534 			skb->priority = HCI_PRIO_MAX - 1;
3535 
3536 			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3537 			       skb->priority);
3538 		}
3539 
3540 		if (hci_conn_num(hdev, type) == num)
3541 			break;
3542 	}
3543 
3544 	rcu_read_unlock();
3545 
3546 }
3547 
3548 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3549 {
3550 	/* Calculate count of blocks used by this packet */
3551 	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3552 }
3553 
3554 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
3555 {
3556 	unsigned long last_tx;
3557 
3558 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3559 		return;
3560 
3561 	switch (type) {
3562 	case LE_LINK:
3563 		last_tx = hdev->le_last_tx;
3564 		break;
3565 	default:
3566 		last_tx = hdev->acl_last_tx;
3567 		break;
3568 	}
3569 
3570 	/* tx timeout must be longer than maximum link supervision timeout
3571 	 * (40.9 seconds)
3572 	 */
3573 	if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
3574 		hci_link_tx_to(hdev, type);
3575 }
3576 
3577 /* Schedule SCO */
3578 static void hci_sched_sco(struct hci_dev *hdev)
3579 {
3580 	struct hci_conn *conn;
3581 	struct sk_buff *skb;
3582 	int quote;
3583 
3584 	BT_DBG("%s", hdev->name);
3585 
3586 	if (!hci_conn_num(hdev, SCO_LINK))
3587 		return;
3588 
3589 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3590 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3591 			BT_DBG("skb %p len %d", skb, skb->len);
3592 			hci_send_frame(hdev, skb);
3593 
3594 			conn->sent++;
3595 			if (conn->sent == ~0)
3596 				conn->sent = 0;
3597 		}
3598 	}
3599 }
3600 
3601 static void hci_sched_esco(struct hci_dev *hdev)
3602 {
3603 	struct hci_conn *conn;
3604 	struct sk_buff *skb;
3605 	int quote;
3606 
3607 	BT_DBG("%s", hdev->name);
3608 
3609 	if (!hci_conn_num(hdev, ESCO_LINK))
3610 		return;
3611 
3612 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3613 						     &quote))) {
3614 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3615 			BT_DBG("skb %p len %d", skb, skb->len);
3616 			hci_send_frame(hdev, skb);
3617 
3618 			conn->sent++;
3619 			if (conn->sent == ~0)
3620 				conn->sent = 0;
3621 		}
3622 	}
3623 }
3624 
3625 static void hci_sched_acl_pkt(struct hci_dev *hdev)
3626 {
3627 	unsigned int cnt = hdev->acl_cnt;
3628 	struct hci_chan *chan;
3629 	struct sk_buff *skb;
3630 	int quote;
3631 
3632 	__check_timeout(hdev, cnt, ACL_LINK);
3633 
3634 	while (hdev->acl_cnt &&
3635 	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3636 		u32 priority = (skb_peek(&chan->data_q))->priority;
3637 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3638 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3639 			       skb->len, skb->priority);
3640 
3641 			/* Stop if priority has changed */
3642 			if (skb->priority < priority)
3643 				break;
3644 
3645 			skb = skb_dequeue(&chan->data_q);
3646 
3647 			hci_conn_enter_active_mode(chan->conn,
3648 						   bt_cb(skb)->force_active);
3649 
3650 			hci_send_frame(hdev, skb);
3651 			hdev->acl_last_tx = jiffies;
3652 
3653 			hdev->acl_cnt--;
3654 			chan->sent++;
3655 			chan->conn->sent++;
3656 
3657 			/* Send pending SCO packets right away */
3658 			hci_sched_sco(hdev);
3659 			hci_sched_esco(hdev);
3660 		}
3661 	}
3662 
3663 	if (cnt != hdev->acl_cnt)
3664 		hci_prio_recalculate(hdev, ACL_LINK);
3665 }
3666 
3667 static void hci_sched_acl_blk(struct hci_dev *hdev)
3668 {
3669 	unsigned int cnt = hdev->block_cnt;
3670 	struct hci_chan *chan;
3671 	struct sk_buff *skb;
3672 	int quote;
3673 	u8 type;
3674 
3675 	BT_DBG("%s", hdev->name);
3676 
3677 	if (hdev->dev_type == HCI_AMP)
3678 		type = AMP_LINK;
3679 	else
3680 		type = ACL_LINK;
3681 
3682 	__check_timeout(hdev, cnt, type);
3683 
3684 	while (hdev->block_cnt > 0 &&
3685 	       (chan = hci_chan_sent(hdev, type, &quote))) {
3686 		u32 priority = (skb_peek(&chan->data_q))->priority;
3687 		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3688 			int blocks;
3689 
3690 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3691 			       skb->len, skb->priority);
3692 
3693 			/* Stop if priority has changed */
3694 			if (skb->priority < priority)
3695 				break;
3696 
3697 			skb = skb_dequeue(&chan->data_q);
3698 
3699 			blocks = __get_blocks(hdev, skb);
3700 			if (blocks > hdev->block_cnt)
3701 				return;
3702 
3703 			hci_conn_enter_active_mode(chan->conn,
3704 						   bt_cb(skb)->force_active);
3705 
3706 			hci_send_frame(hdev, skb);
3707 			hdev->acl_last_tx = jiffies;
3708 
3709 			hdev->block_cnt -= blocks;
3710 			quote -= blocks;
3711 
3712 			chan->sent += blocks;
3713 			chan->conn->sent += blocks;
3714 		}
3715 	}
3716 
3717 	if (cnt != hdev->block_cnt)
3718 		hci_prio_recalculate(hdev, type);
3719 }
3720 
3721 static void hci_sched_acl(struct hci_dev *hdev)
3722 {
3723 	BT_DBG("%s", hdev->name);
3724 
3725 	/* No ACL link over BR/EDR controller */
3726 	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3727 		return;
3728 
3729 	/* No AMP link over AMP controller */
3730 	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3731 		return;
3732 
3733 	switch (hdev->flow_ctl_mode) {
3734 	case HCI_FLOW_CTL_MODE_PACKET_BASED:
3735 		hci_sched_acl_pkt(hdev);
3736 		break;
3737 
3738 	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3739 		hci_sched_acl_blk(hdev);
3740 		break;
3741 	}
3742 }
3743 
3744 static void hci_sched_le(struct hci_dev *hdev)
3745 {
3746 	struct hci_chan *chan;
3747 	struct sk_buff *skb;
3748 	int quote, cnt, tmp;
3749 
3750 	BT_DBG("%s", hdev->name);
3751 
3752 	if (!hci_conn_num(hdev, LE_LINK))
3753 		return;
3754 
3755 	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3756 
3757 	__check_timeout(hdev, cnt, LE_LINK);
3758 
3759 	tmp = cnt;
3760 	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3761 		u32 priority = (skb_peek(&chan->data_q))->priority;
3762 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3763 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3764 			       skb->len, skb->priority);
3765 
3766 			/* Stop if priority has changed */
3767 			if (skb->priority < priority)
3768 				break;
3769 
3770 			skb = skb_dequeue(&chan->data_q);
3771 
3772 			hci_send_frame(hdev, skb);
3773 			hdev->le_last_tx = jiffies;
3774 
3775 			cnt--;
3776 			chan->sent++;
3777 			chan->conn->sent++;
3778 
3779 			/* Send pending SCO packets right away */
3780 			hci_sched_sco(hdev);
3781 			hci_sched_esco(hdev);
3782 		}
3783 	}
3784 
3785 	if (hdev->le_pkts)
3786 		hdev->le_cnt = cnt;
3787 	else
3788 		hdev->acl_cnt = cnt;
3789 
3790 	if (cnt != tmp)
3791 		hci_prio_recalculate(hdev, LE_LINK);
3792 }
3793 
3794 /* Schedule CIS */
3795 static void hci_sched_iso(struct hci_dev *hdev)
3796 {
3797 	struct hci_conn *conn;
3798 	struct sk_buff *skb;
3799 	int quote, *cnt;
3800 
3801 	BT_DBG("%s", hdev->name);
3802 
3803 	if (!hci_conn_num(hdev, ISO_LINK))
3804 		return;
3805 
3806 	cnt = hdev->iso_pkts ? &hdev->iso_cnt :
3807 		hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3808 	while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, &quote))) {
3809 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3810 			BT_DBG("skb %p len %d", skb, skb->len);
3811 			hci_send_frame(hdev, skb);
3812 
3813 			conn->sent++;
3814 			if (conn->sent == ~0)
3815 				conn->sent = 0;
3816 			(*cnt)--;
3817 		}
3818 	}
3819 }
3820 
3821 static void hci_tx_work(struct work_struct *work)
3822 {
3823 	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3824 	struct sk_buff *skb;
3825 
3826 	BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt,
3827 	       hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt);
3828 
3829 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3830 		/* Schedule queues and send stuff to HCI driver */
3831 		hci_sched_sco(hdev);
3832 		hci_sched_esco(hdev);
3833 		hci_sched_iso(hdev);
3834 		hci_sched_acl(hdev);
3835 		hci_sched_le(hdev);
3836 	}
3837 
3838 	/* Send next queued raw (unknown type) packet */
3839 	while ((skb = skb_dequeue(&hdev->raw_q)))
3840 		hci_send_frame(hdev, skb);
3841 }
3842 
3843 /* ----- HCI RX task (incoming data processing) ----- */
3844 
3845 /* ACL data packet */
3846 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3847 {
3848 	struct hci_acl_hdr *hdr = (void *) skb->data;
3849 	struct hci_conn *conn;
3850 	__u16 handle, flags;
3851 
3852 	skb_pull(skb, HCI_ACL_HDR_SIZE);
3853 
3854 	handle = __le16_to_cpu(hdr->handle);
3855 	flags  = hci_flags(handle);
3856 	handle = hci_handle(handle);
3857 
3858 	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3859 	       handle, flags);
3860 
3861 	hdev->stat.acl_rx++;
3862 
3863 	hci_dev_lock(hdev);
3864 	conn = hci_conn_hash_lookup_handle(hdev, handle);
3865 	hci_dev_unlock(hdev);
3866 
3867 	if (conn) {
3868 		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3869 
3870 		/* Send to upper protocol */
3871 		l2cap_recv_acldata(conn, skb, flags);
3872 		return;
3873 	} else {
3874 		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
3875 			   handle);
3876 	}
3877 
3878 	kfree_skb(skb);
3879 }
3880 
3881 /* SCO data packet */
3882 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3883 {
3884 	struct hci_sco_hdr *hdr = (void *) skb->data;
3885 	struct hci_conn *conn;
3886 	__u16 handle, flags;
3887 
3888 	skb_pull(skb, HCI_SCO_HDR_SIZE);
3889 
3890 	handle = __le16_to_cpu(hdr->handle);
3891 	flags  = hci_flags(handle);
3892 	handle = hci_handle(handle);
3893 
3894 	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3895 	       handle, flags);
3896 
3897 	hdev->stat.sco_rx++;
3898 
3899 	hci_dev_lock(hdev);
3900 	conn = hci_conn_hash_lookup_handle(hdev, handle);
3901 	hci_dev_unlock(hdev);
3902 
3903 	if (conn) {
3904 		/* Send to upper protocol */
3905 		hci_skb_pkt_status(skb) = flags & 0x03;
3906 		sco_recv_scodata(conn, skb);
3907 		return;
3908 	} else {
3909 		bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d",
3910 				       handle);
3911 	}
3912 
3913 	kfree_skb(skb);
3914 }
3915 
3916 static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3917 {
3918 	struct hci_iso_hdr *hdr;
3919 	struct hci_conn *conn;
3920 	__u16 handle, flags;
3921 
3922 	hdr = skb_pull_data(skb, sizeof(*hdr));
3923 	if (!hdr) {
3924 		bt_dev_err(hdev, "ISO packet too small");
3925 		goto drop;
3926 	}
3927 
3928 	handle = __le16_to_cpu(hdr->handle);
3929 	flags  = hci_flags(handle);
3930 	handle = hci_handle(handle);
3931 
3932 	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3933 		   handle, flags);
3934 
3935 	hci_dev_lock(hdev);
3936 	conn = hci_conn_hash_lookup_handle(hdev, handle);
3937 	hci_dev_unlock(hdev);
3938 
3939 	if (!conn) {
3940 		bt_dev_err(hdev, "ISO packet for unknown connection handle %d",
3941 			   handle);
3942 		goto drop;
3943 	}
3944 
3945 	/* Send to upper protocol */
3946 	iso_recv(conn, skb, flags);
3947 	return;
3948 
3949 drop:
3950 	kfree_skb(skb);
3951 }
3952 
3953 static bool hci_req_is_complete(struct hci_dev *hdev)
3954 {
3955 	struct sk_buff *skb;
3956 
3957 	skb = skb_peek(&hdev->cmd_q);
3958 	if (!skb)
3959 		return true;
3960 
3961 	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
3962 }
3963 
3964 static void hci_resend_last(struct hci_dev *hdev)
3965 {
3966 	struct hci_command_hdr *sent;
3967 	struct sk_buff *skb;
3968 	u16 opcode;
3969 
3970 	if (!hdev->sent_cmd)
3971 		return;
3972 
3973 	sent = (void *) hdev->sent_cmd->data;
3974 	opcode = __le16_to_cpu(sent->opcode);
3975 	if (opcode == HCI_OP_RESET)
3976 		return;
3977 
3978 	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3979 	if (!skb)
3980 		return;
3981 
3982 	skb_queue_head(&hdev->cmd_q, skb);
3983 	queue_work(hdev->workqueue, &hdev->cmd_work);
3984 }
3985 
3986 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
3987 			  hci_req_complete_t *req_complete,
3988 			  hci_req_complete_skb_t *req_complete_skb)
3989 {
3990 	struct sk_buff *skb;
3991 	unsigned long flags;
3992 
3993 	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3994 
3995 	/* If the completed command doesn't match the last one that was
3996 	 * sent we need to do special handling of it.
3997 	 */
3998 	if (!hci_sent_cmd_data(hdev, opcode)) {
3999 		/* Some CSR based controllers generate a spontaneous
4000 		 * reset complete event during init and any pending
4001 		 * command will never be completed. In such a case we
4002 		 * need to resend whatever was the last sent
4003 		 * command.
4004 		 */
4005 		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4006 			hci_resend_last(hdev);
4007 
4008 		return;
4009 	}
4010 
4011 	/* If we reach this point this event matches the last command sent */
4012 	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4013 
4014 	/* If the command succeeded and there's still more commands in
4015 	 * this request the request is not yet complete.
4016 	 */
4017 	if (!status && !hci_req_is_complete(hdev))
4018 		return;
4019 
4020 	/* If this was the last command in a request the complete
4021 	 * callback would be found in hdev->sent_cmd instead of the
4022 	 * command queue (hdev->cmd_q).
4023 	 */
4024 	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4025 		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4026 		return;
4027 	}
4028 
4029 	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4030 		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4031 		return;
4032 	}
4033 
4034 	/* Remove all pending commands belonging to this request */
4035 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4036 	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4037 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4038 			__skb_queue_head(&hdev->cmd_q, skb);
4039 			break;
4040 		}
4041 
4042 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4043 			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4044 		else
4045 			*req_complete = bt_cb(skb)->hci.req_complete;
4046 		dev_kfree_skb_irq(skb);
4047 	}
4048 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4049 }
4050 
4051 static void hci_rx_work(struct work_struct *work)
4052 {
4053 	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4054 	struct sk_buff *skb;
4055 
4056 	BT_DBG("%s", hdev->name);
4057 
4058 	/* The kcov_remote functions used for collecting packet parsing
4059 	 * coverage information from this background thread and associate
4060 	 * the coverage with the syscall's thread which originally injected
4061 	 * the packet. This helps fuzzing the kernel.
4062 	 */
4063 	for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) {
4064 		kcov_remote_start_common(skb_get_kcov_handle(skb));
4065 
4066 		/* Send copy to monitor */
4067 		hci_send_to_monitor(hdev, skb);
4068 
4069 		if (atomic_read(&hdev->promisc)) {
4070 			/* Send copy to the sockets */
4071 			hci_send_to_sock(hdev, skb);
4072 		}
4073 
4074 		/* If the device has been opened in HCI_USER_CHANNEL,
4075 		 * the userspace has exclusive access to device.
4076 		 * When device is HCI_INIT, we still need to process
4077 		 * the data packets to the driver in order
4078 		 * to complete its setup().
4079 		 */
4080 		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4081 		    !test_bit(HCI_INIT, &hdev->flags)) {
4082 			kfree_skb(skb);
4083 			continue;
4084 		}
4085 
4086 		if (test_bit(HCI_INIT, &hdev->flags)) {
4087 			/* Don't process data packets in this states. */
4088 			switch (hci_skb_pkt_type(skb)) {
4089 			case HCI_ACLDATA_PKT:
4090 			case HCI_SCODATA_PKT:
4091 			case HCI_ISODATA_PKT:
4092 				kfree_skb(skb);
4093 				continue;
4094 			}
4095 		}
4096 
4097 		/* Process frame */
4098 		switch (hci_skb_pkt_type(skb)) {
4099 		case HCI_EVENT_PKT:
4100 			BT_DBG("%s Event packet", hdev->name);
4101 			hci_event_packet(hdev, skb);
4102 			break;
4103 
4104 		case HCI_ACLDATA_PKT:
4105 			BT_DBG("%s ACL data packet", hdev->name);
4106 			hci_acldata_packet(hdev, skb);
4107 			break;
4108 
4109 		case HCI_SCODATA_PKT:
4110 			BT_DBG("%s SCO data packet", hdev->name);
4111 			hci_scodata_packet(hdev, skb);
4112 			break;
4113 
4114 		case HCI_ISODATA_PKT:
4115 			BT_DBG("%s ISO data packet", hdev->name);
4116 			hci_isodata_packet(hdev, skb);
4117 			break;
4118 
4119 		default:
4120 			kfree_skb(skb);
4121 			break;
4122 		}
4123 	}
4124 }
4125 
4126 static void hci_cmd_work(struct work_struct *work)
4127 {
4128 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4129 	struct sk_buff *skb;
4130 
4131 	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4132 	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4133 
4134 	/* Send queued commands */
4135 	if (atomic_read(&hdev->cmd_cnt)) {
4136 		skb = skb_dequeue(&hdev->cmd_q);
4137 		if (!skb)
4138 			return;
4139 
4140 		kfree_skb(hdev->sent_cmd);
4141 
4142 		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4143 		if (hdev->sent_cmd) {
4144 			int res;
4145 			if (hci_req_status_pend(hdev))
4146 				hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4147 			atomic_dec(&hdev->cmd_cnt);
4148 
4149 			res = hci_send_frame(hdev, skb);
4150 			if (res < 0)
4151 				__hci_cmd_sync_cancel(hdev, -res);
4152 
4153 			rcu_read_lock();
4154 			if (test_bit(HCI_RESET, &hdev->flags) ||
4155 			    hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
4156 				cancel_delayed_work(&hdev->cmd_timer);
4157 			else
4158 				queue_delayed_work(hdev->workqueue, &hdev->cmd_timer,
4159 						   HCI_CMD_TIMEOUT);
4160 			rcu_read_unlock();
4161 		} else {
4162 			skb_queue_head(&hdev->cmd_q, skb);
4163 			queue_work(hdev->workqueue, &hdev->cmd_work);
4164 		}
4165 	}
4166 }
4167