1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (C) 2000-2001 Qualcomm Incorporated 4 Copyright (C) 2011 ProFUSION Embedded Systems 5 6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License version 2 as 10 published by the Free Software Foundation; 11 12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 23 SOFTWARE IS DISCLAIMED. 24 */ 25 26 /* Bluetooth HCI core. */ 27 28 #include <linux/export.h> 29 #include <linux/idr.h> 30 #include <linux/rfkill.h> 31 #include <linux/debugfs.h> 32 #include <linux/crypto.h> 33 #include <asm/unaligned.h> 34 35 #include <net/bluetooth/bluetooth.h> 36 #include <net/bluetooth/hci_core.h> 37 #include <net/bluetooth/l2cap.h> 38 #include <net/bluetooth/mgmt.h> 39 40 #include "hci_request.h" 41 #include "hci_debugfs.h" 42 #include "smp.h" 43 44 static void hci_rx_work(struct work_struct *work); 45 static void hci_cmd_work(struct work_struct *work); 46 static void hci_tx_work(struct work_struct *work); 47 48 /* HCI device list */ 49 LIST_HEAD(hci_dev_list); 50 DEFINE_RWLOCK(hci_dev_list_lock); 51 52 /* HCI callback list */ 53 LIST_HEAD(hci_cb_list); 54 DEFINE_MUTEX(hci_cb_list_lock); 55 56 /* HCI ID Numbering */ 57 static DEFINE_IDA(hci_index_ida); 58 59 /* ----- HCI requests ----- */ 60 61 #define HCI_REQ_DONE 0 62 #define HCI_REQ_PEND 1 63 #define HCI_REQ_CANCELED 2 64 65 #define hci_req_lock(d) mutex_lock(&d->req_lock) 66 #define hci_req_unlock(d) mutex_unlock(&d->req_lock) 67 68 /* ---- HCI notifications ---- */ 69 70 static void hci_notify(struct hci_dev *hdev, int event) 71 { 72 hci_sock_dev_event(hdev, event); 73 } 74 75 /* ---- HCI debugfs entries ---- */ 76 77 static ssize_t dut_mode_read(struct file *file, char __user *user_buf, 78 size_t count, loff_t *ppos) 79 { 80 struct hci_dev *hdev = file->private_data; 81 char buf[3]; 82 83 buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y': 'N'; 84 buf[1] = '\n'; 85 buf[2] = '\0'; 86 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 87 } 88 89 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf, 90 size_t count, loff_t *ppos) 91 { 92 struct hci_dev *hdev = file->private_data; 93 struct sk_buff *skb; 94 char buf[32]; 95 size_t buf_size = min(count, (sizeof(buf)-1)); 96 bool enable; 97 int err; 98 99 if (!test_bit(HCI_UP, &hdev->flags)) 100 return -ENETDOWN; 101 102 if (copy_from_user(buf, user_buf, buf_size)) 103 return -EFAULT; 104 105 buf[buf_size] = '\0'; 106 if (strtobool(buf, &enable)) 107 return -EINVAL; 108 109 if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE)) 110 return -EALREADY; 111 112 hci_req_lock(hdev); 113 if (enable) 114 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL, 115 HCI_CMD_TIMEOUT); 116 else 117 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, 118 HCI_CMD_TIMEOUT); 119 hci_req_unlock(hdev); 120 121 if (IS_ERR(skb)) 122 return PTR_ERR(skb); 123 124 err = -bt_to_errno(skb->data[0]); 125 kfree_skb(skb); 126 127 if (err < 0) 128 return err; 129 130 hci_dev_change_flag(hdev, HCI_DUT_MODE); 131 132 return count; 133 } 134 135 static const struct file_operations dut_mode_fops = { 136 .open = simple_open, 137 .read = dut_mode_read, 138 .write = dut_mode_write, 139 .llseek = default_llseek, 140 }; 141 142 /* ---- HCI requests ---- */ 143 144 static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, 145 struct sk_buff *skb) 146 { 147 BT_DBG("%s result 0x%2.2x", hdev->name, result); 148 149 if (hdev->req_status == HCI_REQ_PEND) { 150 hdev->req_result = result; 151 hdev->req_status = HCI_REQ_DONE; 152 if (skb) 153 hdev->req_skb = skb_get(skb); 154 wake_up_interruptible(&hdev->req_wait_q); 155 } 156 } 157 158 static void hci_req_cancel(struct hci_dev *hdev, int err) 159 { 160 BT_DBG("%s err 0x%2.2x", hdev->name, err); 161 162 if (hdev->req_status == HCI_REQ_PEND) { 163 hdev->req_result = err; 164 hdev->req_status = HCI_REQ_CANCELED; 165 wake_up_interruptible(&hdev->req_wait_q); 166 } 167 } 168 169 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 170 const void *param, u8 event, u32 timeout) 171 { 172 DECLARE_WAITQUEUE(wait, current); 173 struct hci_request req; 174 struct sk_buff *skb; 175 int err = 0; 176 177 BT_DBG("%s", hdev->name); 178 179 hci_req_init(&req, hdev); 180 181 hci_req_add_ev(&req, opcode, plen, param, event); 182 183 hdev->req_status = HCI_REQ_PEND; 184 185 add_wait_queue(&hdev->req_wait_q, &wait); 186 set_current_state(TASK_INTERRUPTIBLE); 187 188 err = hci_req_run_skb(&req, hci_req_sync_complete); 189 if (err < 0) { 190 remove_wait_queue(&hdev->req_wait_q, &wait); 191 set_current_state(TASK_RUNNING); 192 return ERR_PTR(err); 193 } 194 195 schedule_timeout(timeout); 196 197 remove_wait_queue(&hdev->req_wait_q, &wait); 198 199 if (signal_pending(current)) 200 return ERR_PTR(-EINTR); 201 202 switch (hdev->req_status) { 203 case HCI_REQ_DONE: 204 err = -bt_to_errno(hdev->req_result); 205 break; 206 207 case HCI_REQ_CANCELED: 208 err = -hdev->req_result; 209 break; 210 211 default: 212 err = -ETIMEDOUT; 213 break; 214 } 215 216 hdev->req_status = hdev->req_result = 0; 217 skb = hdev->req_skb; 218 hdev->req_skb = NULL; 219 220 BT_DBG("%s end: err %d", hdev->name, err); 221 222 if (err < 0) { 223 kfree_skb(skb); 224 return ERR_PTR(err); 225 } 226 227 if (!skb) 228 return ERR_PTR(-ENODATA); 229 230 return skb; 231 } 232 EXPORT_SYMBOL(__hci_cmd_sync_ev); 233 234 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 235 const void *param, u32 timeout) 236 { 237 return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout); 238 } 239 EXPORT_SYMBOL(__hci_cmd_sync); 240 241 /* Execute request and wait for completion. */ 242 static int __hci_req_sync(struct hci_dev *hdev, 243 void (*func)(struct hci_request *req, 244 unsigned long opt), 245 unsigned long opt, __u32 timeout) 246 { 247 struct hci_request req; 248 DECLARE_WAITQUEUE(wait, current); 249 int err = 0; 250 251 BT_DBG("%s start", hdev->name); 252 253 hci_req_init(&req, hdev); 254 255 hdev->req_status = HCI_REQ_PEND; 256 257 func(&req, opt); 258 259 add_wait_queue(&hdev->req_wait_q, &wait); 260 set_current_state(TASK_INTERRUPTIBLE); 261 262 err = hci_req_run_skb(&req, hci_req_sync_complete); 263 if (err < 0) { 264 hdev->req_status = 0; 265 266 remove_wait_queue(&hdev->req_wait_q, &wait); 267 set_current_state(TASK_RUNNING); 268 269 /* ENODATA means the HCI request command queue is empty. 270 * This can happen when a request with conditionals doesn't 271 * trigger any commands to be sent. This is normal behavior 272 * and should not trigger an error return. 273 */ 274 if (err == -ENODATA) 275 return 0; 276 277 return err; 278 } 279 280 schedule_timeout(timeout); 281 282 remove_wait_queue(&hdev->req_wait_q, &wait); 283 284 if (signal_pending(current)) 285 return -EINTR; 286 287 switch (hdev->req_status) { 288 case HCI_REQ_DONE: 289 err = -bt_to_errno(hdev->req_result); 290 break; 291 292 case HCI_REQ_CANCELED: 293 err = -hdev->req_result; 294 break; 295 296 default: 297 err = -ETIMEDOUT; 298 break; 299 } 300 301 hdev->req_status = hdev->req_result = 0; 302 303 BT_DBG("%s end: err %d", hdev->name, err); 304 305 return err; 306 } 307 308 static int hci_req_sync(struct hci_dev *hdev, 309 void (*req)(struct hci_request *req, 310 unsigned long opt), 311 unsigned long opt, __u32 timeout) 312 { 313 int ret; 314 315 if (!test_bit(HCI_UP, &hdev->flags)) 316 return -ENETDOWN; 317 318 /* Serialize all requests */ 319 hci_req_lock(hdev); 320 ret = __hci_req_sync(hdev, req, opt, timeout); 321 hci_req_unlock(hdev); 322 323 return ret; 324 } 325 326 static void hci_reset_req(struct hci_request *req, unsigned long opt) 327 { 328 BT_DBG("%s %ld", req->hdev->name, opt); 329 330 /* Reset device */ 331 set_bit(HCI_RESET, &req->hdev->flags); 332 hci_req_add(req, HCI_OP_RESET, 0, NULL); 333 } 334 335 static void bredr_init(struct hci_request *req) 336 { 337 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED; 338 339 /* Read Local Supported Features */ 340 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL); 341 342 /* Read Local Version */ 343 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL); 344 345 /* Read BD Address */ 346 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL); 347 } 348 349 static void amp_init1(struct hci_request *req) 350 { 351 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED; 352 353 /* Read Local Version */ 354 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL); 355 356 /* Read Local Supported Commands */ 357 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL); 358 359 /* Read Local AMP Info */ 360 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL); 361 362 /* Read Data Blk size */ 363 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL); 364 365 /* Read Flow Control Mode */ 366 hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL); 367 368 /* Read Location Data */ 369 hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL); 370 } 371 372 static void amp_init2(struct hci_request *req) 373 { 374 /* Read Local Supported Features. Not all AMP controllers 375 * support this so it's placed conditionally in the second 376 * stage init. 377 */ 378 if (req->hdev->commands[14] & 0x20) 379 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL); 380 } 381 382 static void hci_init1_req(struct hci_request *req, unsigned long opt) 383 { 384 struct hci_dev *hdev = req->hdev; 385 386 BT_DBG("%s %ld", hdev->name, opt); 387 388 /* Reset */ 389 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) 390 hci_reset_req(req, 0); 391 392 switch (hdev->dev_type) { 393 case HCI_BREDR: 394 bredr_init(req); 395 break; 396 397 case HCI_AMP: 398 amp_init1(req); 399 break; 400 401 default: 402 BT_ERR("Unknown device type %d", hdev->dev_type); 403 break; 404 } 405 } 406 407 static void bredr_setup(struct hci_request *req) 408 { 409 __le16 param; 410 __u8 flt_type; 411 412 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 413 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL); 414 415 /* Read Class of Device */ 416 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL); 417 418 /* Read Local Name */ 419 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL); 420 421 /* Read Voice Setting */ 422 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL); 423 424 /* Read Number of Supported IAC */ 425 hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL); 426 427 /* Read Current IAC LAP */ 428 hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL); 429 430 /* Clear Event Filters */ 431 flt_type = HCI_FLT_CLEAR_ALL; 432 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type); 433 434 /* Connection accept timeout ~20 secs */ 435 param = cpu_to_le16(0x7d00); 436 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, ¶m); 437 } 438 439 static void le_setup(struct hci_request *req) 440 { 441 struct hci_dev *hdev = req->hdev; 442 443 /* Read LE Buffer Size */ 444 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL); 445 446 /* Read LE Local Supported Features */ 447 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL); 448 449 /* Read LE Supported States */ 450 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL); 451 452 /* Read LE White List Size */ 453 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE, 0, NULL); 454 455 /* Clear LE White List */ 456 hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL); 457 458 /* LE-only controllers have LE implicitly enabled */ 459 if (!lmp_bredr_capable(hdev)) 460 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 461 } 462 463 static void hci_setup_event_mask(struct hci_request *req) 464 { 465 struct hci_dev *hdev = req->hdev; 466 467 /* The second byte is 0xff instead of 0x9f (two reserved bits 468 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 469 * command otherwise. 470 */ 471 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 472 473 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 474 * any event mask for pre 1.2 devices. 475 */ 476 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 477 return; 478 479 if (lmp_bredr_capable(hdev)) { 480 events[4] |= 0x01; /* Flow Specification Complete */ 481 events[4] |= 0x02; /* Inquiry Result with RSSI */ 482 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 483 events[5] |= 0x08; /* Synchronous Connection Complete */ 484 events[5] |= 0x10; /* Synchronous Connection Changed */ 485 } else { 486 /* Use a different default for LE-only devices */ 487 memset(events, 0, sizeof(events)); 488 events[0] |= 0x10; /* Disconnection Complete */ 489 events[1] |= 0x08; /* Read Remote Version Information Complete */ 490 events[1] |= 0x20; /* Command Complete */ 491 events[1] |= 0x40; /* Command Status */ 492 events[1] |= 0x80; /* Hardware Error */ 493 events[2] |= 0x04; /* Number of Completed Packets */ 494 events[3] |= 0x02; /* Data Buffer Overflow */ 495 496 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 497 events[0] |= 0x80; /* Encryption Change */ 498 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 499 } 500 } 501 502 if (lmp_inq_rssi_capable(hdev)) 503 events[4] |= 0x02; /* Inquiry Result with RSSI */ 504 505 if (lmp_sniffsubr_capable(hdev)) 506 events[5] |= 0x20; /* Sniff Subrating */ 507 508 if (lmp_pause_enc_capable(hdev)) 509 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 510 511 if (lmp_ext_inq_capable(hdev)) 512 events[5] |= 0x40; /* Extended Inquiry Result */ 513 514 if (lmp_no_flush_capable(hdev)) 515 events[7] |= 0x01; /* Enhanced Flush Complete */ 516 517 if (lmp_lsto_capable(hdev)) 518 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 519 520 if (lmp_ssp_capable(hdev)) { 521 events[6] |= 0x01; /* IO Capability Request */ 522 events[6] |= 0x02; /* IO Capability Response */ 523 events[6] |= 0x04; /* User Confirmation Request */ 524 events[6] |= 0x08; /* User Passkey Request */ 525 events[6] |= 0x10; /* Remote OOB Data Request */ 526 events[6] |= 0x20; /* Simple Pairing Complete */ 527 events[7] |= 0x04; /* User Passkey Notification */ 528 events[7] |= 0x08; /* Keypress Notification */ 529 events[7] |= 0x10; /* Remote Host Supported 530 * Features Notification 531 */ 532 } 533 534 if (lmp_le_capable(hdev)) 535 events[7] |= 0x20; /* LE Meta-Event */ 536 537 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events); 538 } 539 540 static void hci_init2_req(struct hci_request *req, unsigned long opt) 541 { 542 struct hci_dev *hdev = req->hdev; 543 544 if (hdev->dev_type == HCI_AMP) 545 return amp_init2(req); 546 547 if (lmp_bredr_capable(hdev)) 548 bredr_setup(req); 549 else 550 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); 551 552 if (lmp_le_capable(hdev)) 553 le_setup(req); 554 555 /* All Bluetooth 1.2 and later controllers should support the 556 * HCI command for reading the local supported commands. 557 * 558 * Unfortunately some controllers indicate Bluetooth 1.2 support, 559 * but do not have support for this command. If that is the case, 560 * the driver can quirk the behavior and skip reading the local 561 * supported commands. 562 */ 563 if (hdev->hci_ver > BLUETOOTH_VER_1_1 && 564 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) 565 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL); 566 567 if (lmp_ssp_capable(hdev)) { 568 /* When SSP is available, then the host features page 569 * should also be available as well. However some 570 * controllers list the max_page as 0 as long as SSP 571 * has not been enabled. To achieve proper debugging 572 * output, force the minimum max_page to 1 at least. 573 */ 574 hdev->max_page = 0x01; 575 576 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) { 577 u8 mode = 0x01; 578 579 hci_req_add(req, HCI_OP_WRITE_SSP_MODE, 580 sizeof(mode), &mode); 581 } else { 582 struct hci_cp_write_eir cp; 583 584 memset(hdev->eir, 0, sizeof(hdev->eir)); 585 memset(&cp, 0, sizeof(cp)); 586 587 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp); 588 } 589 } 590 591 if (lmp_inq_rssi_capable(hdev) || 592 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) { 593 u8 mode; 594 595 /* If Extended Inquiry Result events are supported, then 596 * they are clearly preferred over Inquiry Result with RSSI 597 * events. 598 */ 599 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; 600 601 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode); 602 } 603 604 if (lmp_inq_tx_pwr_capable(hdev)) 605 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL); 606 607 if (lmp_ext_feat_capable(hdev)) { 608 struct hci_cp_read_local_ext_features cp; 609 610 cp.page = 0x01; 611 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES, 612 sizeof(cp), &cp); 613 } 614 615 if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) { 616 u8 enable = 1; 617 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable), 618 &enable); 619 } 620 } 621 622 static void hci_setup_link_policy(struct hci_request *req) 623 { 624 struct hci_dev *hdev = req->hdev; 625 struct hci_cp_write_def_link_policy cp; 626 u16 link_policy = 0; 627 628 if (lmp_rswitch_capable(hdev)) 629 link_policy |= HCI_LP_RSWITCH; 630 if (lmp_hold_capable(hdev)) 631 link_policy |= HCI_LP_HOLD; 632 if (lmp_sniff_capable(hdev)) 633 link_policy |= HCI_LP_SNIFF; 634 if (lmp_park_capable(hdev)) 635 link_policy |= HCI_LP_PARK; 636 637 cp.policy = cpu_to_le16(link_policy); 638 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp); 639 } 640 641 static void hci_set_le_support(struct hci_request *req) 642 { 643 struct hci_dev *hdev = req->hdev; 644 struct hci_cp_write_le_host_supported cp; 645 646 /* LE-only devices do not support explicit enablement */ 647 if (!lmp_bredr_capable(hdev)) 648 return; 649 650 memset(&cp, 0, sizeof(cp)); 651 652 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 653 cp.le = 0x01; 654 cp.simul = 0x00; 655 } 656 657 if (cp.le != lmp_host_le_capable(hdev)) 658 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp), 659 &cp); 660 } 661 662 static void hci_set_event_mask_page_2(struct hci_request *req) 663 { 664 struct hci_dev *hdev = req->hdev; 665 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 666 667 /* If Connectionless Slave Broadcast master role is supported 668 * enable all necessary events for it. 669 */ 670 if (lmp_csb_master_capable(hdev)) { 671 events[1] |= 0x40; /* Triggered Clock Capture */ 672 events[1] |= 0x80; /* Synchronization Train Complete */ 673 events[2] |= 0x10; /* Slave Page Response Timeout */ 674 events[2] |= 0x20; /* CSB Channel Map Change */ 675 } 676 677 /* If Connectionless Slave Broadcast slave role is supported 678 * enable all necessary events for it. 679 */ 680 if (lmp_csb_slave_capable(hdev)) { 681 events[2] |= 0x01; /* Synchronization Train Received */ 682 events[2] |= 0x02; /* CSB Receive */ 683 events[2] |= 0x04; /* CSB Timeout */ 684 events[2] |= 0x08; /* Truncated Page Complete */ 685 } 686 687 /* Enable Authenticated Payload Timeout Expired event if supported */ 688 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) 689 events[2] |= 0x80; 690 691 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events); 692 } 693 694 static void hci_init3_req(struct hci_request *req, unsigned long opt) 695 { 696 struct hci_dev *hdev = req->hdev; 697 u8 p; 698 699 hci_setup_event_mask(req); 700 701 if (hdev->commands[6] & 0x20) { 702 struct hci_cp_read_stored_link_key cp; 703 704 bacpy(&cp.bdaddr, BDADDR_ANY); 705 cp.read_all = 0x01; 706 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp); 707 } 708 709 if (hdev->commands[5] & 0x10) 710 hci_setup_link_policy(req); 711 712 if (hdev->commands[8] & 0x01) 713 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL); 714 715 /* Some older Broadcom based Bluetooth 1.2 controllers do not 716 * support the Read Page Scan Type command. Check support for 717 * this command in the bit mask of supported commands. 718 */ 719 if (hdev->commands[13] & 0x01) 720 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL); 721 722 if (lmp_le_capable(hdev)) { 723 u8 events[8]; 724 725 memset(events, 0, sizeof(events)); 726 events[0] = 0x0f; 727 728 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 729 events[0] |= 0x10; /* LE Long Term Key Request */ 730 731 /* If controller supports the Connection Parameters Request 732 * Link Layer Procedure, enable the corresponding event. 733 */ 734 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 735 events[0] |= 0x20; /* LE Remote Connection 736 * Parameter Request 737 */ 738 739 /* If the controller supports the Data Length Extension 740 * feature, enable the corresponding event. 741 */ 742 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) 743 events[0] |= 0x40; /* LE Data Length Change */ 744 745 /* If the controller supports Extended Scanner Filter 746 * Policies, enable the correspondig event. 747 */ 748 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) 749 events[1] |= 0x04; /* LE Direct Advertising 750 * Report 751 */ 752 753 /* If the controller supports the LE Read Local P-256 754 * Public Key command, enable the corresponding event. 755 */ 756 if (hdev->commands[34] & 0x02) 757 events[0] |= 0x80; /* LE Read Local P-256 758 * Public Key Complete 759 */ 760 761 /* If the controller supports the LE Generate DHKey 762 * command, enable the corresponding event. 763 */ 764 if (hdev->commands[34] & 0x04) 765 events[1] |= 0x01; /* LE Generate DHKey Complete */ 766 767 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events), 768 events); 769 770 if (hdev->commands[25] & 0x40) { 771 /* Read LE Advertising Channel TX Power */ 772 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL); 773 } 774 775 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) { 776 /* Read LE Maximum Data Length */ 777 hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL); 778 779 /* Read LE Suggested Default Data Length */ 780 hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL); 781 } 782 783 hci_set_le_support(req); 784 } 785 786 /* Read features beyond page 1 if available */ 787 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) { 788 struct hci_cp_read_local_ext_features cp; 789 790 cp.page = p; 791 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES, 792 sizeof(cp), &cp); 793 } 794 } 795 796 static void hci_init4_req(struct hci_request *req, unsigned long opt) 797 { 798 struct hci_dev *hdev = req->hdev; 799 800 /* Some Broadcom based Bluetooth controllers do not support the 801 * Delete Stored Link Key command. They are clearly indicating its 802 * absence in the bit mask of supported commands. 803 * 804 * Check the supported commands and only if the the command is marked 805 * as supported send it. If not supported assume that the controller 806 * does not have actual support for stored link keys which makes this 807 * command redundant anyway. 808 * 809 * Some controllers indicate that they support handling deleting 810 * stored link keys, but they don't. The quirk lets a driver 811 * just disable this command. 812 */ 813 if (hdev->commands[6] & 0x80 && 814 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) { 815 struct hci_cp_delete_stored_link_key cp; 816 817 bacpy(&cp.bdaddr, BDADDR_ANY); 818 cp.delete_all = 0x01; 819 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY, 820 sizeof(cp), &cp); 821 } 822 823 /* Set event mask page 2 if the HCI command for it is supported */ 824 if (hdev->commands[22] & 0x04) 825 hci_set_event_mask_page_2(req); 826 827 /* Read local codec list if the HCI command is supported */ 828 if (hdev->commands[29] & 0x20) 829 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL); 830 831 /* Get MWS transport configuration if the HCI command is supported */ 832 if (hdev->commands[30] & 0x08) 833 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL); 834 835 /* Check for Synchronization Train support */ 836 if (lmp_sync_train_capable(hdev)) 837 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL); 838 839 /* Enable Secure Connections if supported and configured */ 840 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) && 841 bredr_sc_enabled(hdev)) { 842 u8 support = 0x01; 843 844 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT, 845 sizeof(support), &support); 846 } 847 } 848 849 static int __hci_init(struct hci_dev *hdev) 850 { 851 int err; 852 853 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT); 854 if (err < 0) 855 return err; 856 857 /* The Device Under Test (DUT) mode is special and available for 858 * all controller types. So just create it early on. 859 */ 860 if (hci_dev_test_flag(hdev, HCI_SETUP)) { 861 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev, 862 &dut_mode_fops); 863 } 864 865 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT); 866 if (err < 0) 867 return err; 868 869 /* HCI_BREDR covers both single-mode LE, BR/EDR and dual-mode 870 * BR/EDR/LE type controllers. AMP controllers only need the 871 * first two stages of init. 872 */ 873 if (hdev->dev_type != HCI_BREDR) 874 return 0; 875 876 err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT); 877 if (err < 0) 878 return err; 879 880 err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT); 881 if (err < 0) 882 return err; 883 884 /* This function is only called when the controller is actually in 885 * configured state. When the controller is marked as unconfigured, 886 * this initialization procedure is not run. 887 * 888 * It means that it is possible that a controller runs through its 889 * setup phase and then discovers missing settings. If that is the 890 * case, then this function will not be called. It then will only 891 * be called during the config phase. 892 * 893 * So only when in setup phase or config phase, create the debugfs 894 * entries and register the SMP channels. 895 */ 896 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 897 !hci_dev_test_flag(hdev, HCI_CONFIG)) 898 return 0; 899 900 hci_debugfs_create_common(hdev); 901 902 if (lmp_bredr_capable(hdev)) 903 hci_debugfs_create_bredr(hdev); 904 905 if (lmp_le_capable(hdev)) 906 hci_debugfs_create_le(hdev); 907 908 return 0; 909 } 910 911 static void hci_init0_req(struct hci_request *req, unsigned long opt) 912 { 913 struct hci_dev *hdev = req->hdev; 914 915 BT_DBG("%s %ld", hdev->name, opt); 916 917 /* Reset */ 918 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) 919 hci_reset_req(req, 0); 920 921 /* Read Local Version */ 922 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL); 923 924 /* Read BD Address */ 925 if (hdev->set_bdaddr) 926 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL); 927 } 928 929 static int __hci_unconf_init(struct hci_dev *hdev) 930 { 931 int err; 932 933 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 934 return 0; 935 936 err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT); 937 if (err < 0) 938 return err; 939 940 return 0; 941 } 942 943 static void hci_scan_req(struct hci_request *req, unsigned long opt) 944 { 945 __u8 scan = opt; 946 947 BT_DBG("%s %x", req->hdev->name, scan); 948 949 /* Inquiry and Page scans */ 950 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); 951 } 952 953 static void hci_auth_req(struct hci_request *req, unsigned long opt) 954 { 955 __u8 auth = opt; 956 957 BT_DBG("%s %x", req->hdev->name, auth); 958 959 /* Authentication */ 960 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth); 961 } 962 963 static void hci_encrypt_req(struct hci_request *req, unsigned long opt) 964 { 965 __u8 encrypt = opt; 966 967 BT_DBG("%s %x", req->hdev->name, encrypt); 968 969 /* Encryption */ 970 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt); 971 } 972 973 static void hci_linkpol_req(struct hci_request *req, unsigned long opt) 974 { 975 __le16 policy = cpu_to_le16(opt); 976 977 BT_DBG("%s %x", req->hdev->name, policy); 978 979 /* Default link policy */ 980 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy); 981 } 982 983 /* Get HCI device by index. 984 * Device is held on return. */ 985 struct hci_dev *hci_dev_get(int index) 986 { 987 struct hci_dev *hdev = NULL, *d; 988 989 BT_DBG("%d", index); 990 991 if (index < 0) 992 return NULL; 993 994 read_lock(&hci_dev_list_lock); 995 list_for_each_entry(d, &hci_dev_list, list) { 996 if (d->id == index) { 997 hdev = hci_dev_hold(d); 998 break; 999 } 1000 } 1001 read_unlock(&hci_dev_list_lock); 1002 return hdev; 1003 } 1004 1005 /* ---- Inquiry support ---- */ 1006 1007 bool hci_discovery_active(struct hci_dev *hdev) 1008 { 1009 struct discovery_state *discov = &hdev->discovery; 1010 1011 switch (discov->state) { 1012 case DISCOVERY_FINDING: 1013 case DISCOVERY_RESOLVING: 1014 return true; 1015 1016 default: 1017 return false; 1018 } 1019 } 1020 1021 void hci_discovery_set_state(struct hci_dev *hdev, int state) 1022 { 1023 int old_state = hdev->discovery.state; 1024 1025 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state); 1026 1027 if (old_state == state) 1028 return; 1029 1030 hdev->discovery.state = state; 1031 1032 switch (state) { 1033 case DISCOVERY_STOPPED: 1034 hci_update_background_scan(hdev); 1035 1036 if (old_state != DISCOVERY_STARTING) 1037 mgmt_discovering(hdev, 0); 1038 break; 1039 case DISCOVERY_STARTING: 1040 break; 1041 case DISCOVERY_FINDING: 1042 mgmt_discovering(hdev, 1); 1043 break; 1044 case DISCOVERY_RESOLVING: 1045 break; 1046 case DISCOVERY_STOPPING: 1047 break; 1048 } 1049 } 1050 1051 void hci_inquiry_cache_flush(struct hci_dev *hdev) 1052 { 1053 struct discovery_state *cache = &hdev->discovery; 1054 struct inquiry_entry *p, *n; 1055 1056 list_for_each_entry_safe(p, n, &cache->all, all) { 1057 list_del(&p->all); 1058 kfree(p); 1059 } 1060 1061 INIT_LIST_HEAD(&cache->unknown); 1062 INIT_LIST_HEAD(&cache->resolve); 1063 } 1064 1065 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, 1066 bdaddr_t *bdaddr) 1067 { 1068 struct discovery_state *cache = &hdev->discovery; 1069 struct inquiry_entry *e; 1070 1071 BT_DBG("cache %p, %pMR", cache, bdaddr); 1072 1073 list_for_each_entry(e, &cache->all, all) { 1074 if (!bacmp(&e->data.bdaddr, bdaddr)) 1075 return e; 1076 } 1077 1078 return NULL; 1079 } 1080 1081 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, 1082 bdaddr_t *bdaddr) 1083 { 1084 struct discovery_state *cache = &hdev->discovery; 1085 struct inquiry_entry *e; 1086 1087 BT_DBG("cache %p, %pMR", cache, bdaddr); 1088 1089 list_for_each_entry(e, &cache->unknown, list) { 1090 if (!bacmp(&e->data.bdaddr, bdaddr)) 1091 return e; 1092 } 1093 1094 return NULL; 1095 } 1096 1097 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, 1098 bdaddr_t *bdaddr, 1099 int state) 1100 { 1101 struct discovery_state *cache = &hdev->discovery; 1102 struct inquiry_entry *e; 1103 1104 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state); 1105 1106 list_for_each_entry(e, &cache->resolve, list) { 1107 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state) 1108 return e; 1109 if (!bacmp(&e->data.bdaddr, bdaddr)) 1110 return e; 1111 } 1112 1113 return NULL; 1114 } 1115 1116 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, 1117 struct inquiry_entry *ie) 1118 { 1119 struct discovery_state *cache = &hdev->discovery; 1120 struct list_head *pos = &cache->resolve; 1121 struct inquiry_entry *p; 1122 1123 list_del(&ie->list); 1124 1125 list_for_each_entry(p, &cache->resolve, list) { 1126 if (p->name_state != NAME_PENDING && 1127 abs(p->data.rssi) >= abs(ie->data.rssi)) 1128 break; 1129 pos = &p->list; 1130 } 1131 1132 list_add(&ie->list, pos); 1133 } 1134 1135 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, 1136 bool name_known) 1137 { 1138 struct discovery_state *cache = &hdev->discovery; 1139 struct inquiry_entry *ie; 1140 u32 flags = 0; 1141 1142 BT_DBG("cache %p, %pMR", cache, &data->bdaddr); 1143 1144 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR); 1145 1146 if (!data->ssp_mode) 1147 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 1148 1149 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr); 1150 if (ie) { 1151 if (!ie->data.ssp_mode) 1152 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 1153 1154 if (ie->name_state == NAME_NEEDED && 1155 data->rssi != ie->data.rssi) { 1156 ie->data.rssi = data->rssi; 1157 hci_inquiry_cache_update_resolve(hdev, ie); 1158 } 1159 1160 goto update; 1161 } 1162 1163 /* Entry not in the cache. Add new one. */ 1164 ie = kzalloc(sizeof(*ie), GFP_KERNEL); 1165 if (!ie) { 1166 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 1167 goto done; 1168 } 1169 1170 list_add(&ie->all, &cache->all); 1171 1172 if (name_known) { 1173 ie->name_state = NAME_KNOWN; 1174 } else { 1175 ie->name_state = NAME_NOT_KNOWN; 1176 list_add(&ie->list, &cache->unknown); 1177 } 1178 1179 update: 1180 if (name_known && ie->name_state != NAME_KNOWN && 1181 ie->name_state != NAME_PENDING) { 1182 ie->name_state = NAME_KNOWN; 1183 list_del(&ie->list); 1184 } 1185 1186 memcpy(&ie->data, data, sizeof(*data)); 1187 ie->timestamp = jiffies; 1188 cache->timestamp = jiffies; 1189 1190 if (ie->name_state == NAME_NOT_KNOWN) 1191 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 1192 1193 done: 1194 return flags; 1195 } 1196 1197 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf) 1198 { 1199 struct discovery_state *cache = &hdev->discovery; 1200 struct inquiry_info *info = (struct inquiry_info *) buf; 1201 struct inquiry_entry *e; 1202 int copied = 0; 1203 1204 list_for_each_entry(e, &cache->all, all) { 1205 struct inquiry_data *data = &e->data; 1206 1207 if (copied >= num) 1208 break; 1209 1210 bacpy(&info->bdaddr, &data->bdaddr); 1211 info->pscan_rep_mode = data->pscan_rep_mode; 1212 info->pscan_period_mode = data->pscan_period_mode; 1213 info->pscan_mode = data->pscan_mode; 1214 memcpy(info->dev_class, data->dev_class, 3); 1215 info->clock_offset = data->clock_offset; 1216 1217 info++; 1218 copied++; 1219 } 1220 1221 BT_DBG("cache %p, copied %d", cache, copied); 1222 return copied; 1223 } 1224 1225 static void hci_inq_req(struct hci_request *req, unsigned long opt) 1226 { 1227 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt; 1228 struct hci_dev *hdev = req->hdev; 1229 struct hci_cp_inquiry cp; 1230 1231 BT_DBG("%s", hdev->name); 1232 1233 if (test_bit(HCI_INQUIRY, &hdev->flags)) 1234 return; 1235 1236 /* Start Inquiry */ 1237 memcpy(&cp.lap, &ir->lap, 3); 1238 cp.length = ir->length; 1239 cp.num_rsp = ir->num_rsp; 1240 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp); 1241 } 1242 1243 int hci_inquiry(void __user *arg) 1244 { 1245 __u8 __user *ptr = arg; 1246 struct hci_inquiry_req ir; 1247 struct hci_dev *hdev; 1248 int err = 0, do_inquiry = 0, max_rsp; 1249 long timeo; 1250 __u8 *buf; 1251 1252 if (copy_from_user(&ir, ptr, sizeof(ir))) 1253 return -EFAULT; 1254 1255 hdev = hci_dev_get(ir.dev_id); 1256 if (!hdev) 1257 return -ENODEV; 1258 1259 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1260 err = -EBUSY; 1261 goto done; 1262 } 1263 1264 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1265 err = -EOPNOTSUPP; 1266 goto done; 1267 } 1268 1269 if (hdev->dev_type != HCI_BREDR) { 1270 err = -EOPNOTSUPP; 1271 goto done; 1272 } 1273 1274 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 1275 err = -EOPNOTSUPP; 1276 goto done; 1277 } 1278 1279 hci_dev_lock(hdev); 1280 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX || 1281 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) { 1282 hci_inquiry_cache_flush(hdev); 1283 do_inquiry = 1; 1284 } 1285 hci_dev_unlock(hdev); 1286 1287 timeo = ir.length * msecs_to_jiffies(2000); 1288 1289 if (do_inquiry) { 1290 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir, 1291 timeo); 1292 if (err < 0) 1293 goto done; 1294 1295 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is 1296 * cleared). If it is interrupted by a signal, return -EINTR. 1297 */ 1298 if (wait_on_bit(&hdev->flags, HCI_INQUIRY, 1299 TASK_INTERRUPTIBLE)) 1300 return -EINTR; 1301 } 1302 1303 /* for unlimited number of responses we will use buffer with 1304 * 255 entries 1305 */ 1306 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp; 1307 1308 /* cache_dump can't sleep. Therefore we allocate temp buffer and then 1309 * copy it to the user space. 1310 */ 1311 buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL); 1312 if (!buf) { 1313 err = -ENOMEM; 1314 goto done; 1315 } 1316 1317 hci_dev_lock(hdev); 1318 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf); 1319 hci_dev_unlock(hdev); 1320 1321 BT_DBG("num_rsp %d", ir.num_rsp); 1322 1323 if (!copy_to_user(ptr, &ir, sizeof(ir))) { 1324 ptr += sizeof(ir); 1325 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) * 1326 ir.num_rsp)) 1327 err = -EFAULT; 1328 } else 1329 err = -EFAULT; 1330 1331 kfree(buf); 1332 1333 done: 1334 hci_dev_put(hdev); 1335 return err; 1336 } 1337 1338 static int hci_dev_do_open(struct hci_dev *hdev) 1339 { 1340 int ret = 0; 1341 1342 BT_DBG("%s %p", hdev->name, hdev); 1343 1344 hci_req_lock(hdev); 1345 1346 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 1347 ret = -ENODEV; 1348 goto done; 1349 } 1350 1351 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 1352 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 1353 /* Check for rfkill but allow the HCI setup stage to 1354 * proceed (which in itself doesn't cause any RF activity). 1355 */ 1356 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { 1357 ret = -ERFKILL; 1358 goto done; 1359 } 1360 1361 /* Check for valid public address or a configured static 1362 * random adddress, but let the HCI setup proceed to 1363 * be able to determine if there is a public address 1364 * or not. 1365 * 1366 * In case of user channel usage, it is not important 1367 * if a public address or static random address is 1368 * available. 1369 * 1370 * This check is only valid for BR/EDR controllers 1371 * since AMP controllers do not have an address. 1372 */ 1373 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1374 hdev->dev_type == HCI_BREDR && 1375 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 1376 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 1377 ret = -EADDRNOTAVAIL; 1378 goto done; 1379 } 1380 } 1381 1382 if (test_bit(HCI_UP, &hdev->flags)) { 1383 ret = -EALREADY; 1384 goto done; 1385 } 1386 1387 if (hdev->open(hdev)) { 1388 ret = -EIO; 1389 goto done; 1390 } 1391 1392 atomic_set(&hdev->cmd_cnt, 1); 1393 set_bit(HCI_INIT, &hdev->flags); 1394 1395 if (hci_dev_test_flag(hdev, HCI_SETUP)) { 1396 if (hdev->setup) 1397 ret = hdev->setup(hdev); 1398 1399 /* The transport driver can set these quirks before 1400 * creating the HCI device or in its setup callback. 1401 * 1402 * In case any of them is set, the controller has to 1403 * start up as unconfigured. 1404 */ 1405 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || 1406 test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks)) 1407 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 1408 1409 /* For an unconfigured controller it is required to 1410 * read at least the version information provided by 1411 * the Read Local Version Information command. 1412 * 1413 * If the set_bdaddr driver callback is provided, then 1414 * also the original Bluetooth public device address 1415 * will be read using the Read BD Address command. 1416 */ 1417 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 1418 ret = __hci_unconf_init(hdev); 1419 } 1420 1421 if (hci_dev_test_flag(hdev, HCI_CONFIG)) { 1422 /* If public address change is configured, ensure that 1423 * the address gets programmed. If the driver does not 1424 * support changing the public address, fail the power 1425 * on procedure. 1426 */ 1427 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 1428 hdev->set_bdaddr) 1429 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 1430 else 1431 ret = -EADDRNOTAVAIL; 1432 } 1433 1434 if (!ret) { 1435 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 1436 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) 1437 ret = __hci_init(hdev); 1438 } 1439 1440 clear_bit(HCI_INIT, &hdev->flags); 1441 1442 if (!ret) { 1443 hci_dev_hold(hdev); 1444 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 1445 set_bit(HCI_UP, &hdev->flags); 1446 hci_notify(hdev, HCI_DEV_UP); 1447 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 1448 !hci_dev_test_flag(hdev, HCI_CONFIG) && 1449 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 1450 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1451 hdev->dev_type == HCI_BREDR) { 1452 hci_dev_lock(hdev); 1453 mgmt_powered(hdev, 1); 1454 hci_dev_unlock(hdev); 1455 } 1456 } else { 1457 /* Init failed, cleanup */ 1458 flush_work(&hdev->tx_work); 1459 flush_work(&hdev->cmd_work); 1460 flush_work(&hdev->rx_work); 1461 1462 skb_queue_purge(&hdev->cmd_q); 1463 skb_queue_purge(&hdev->rx_q); 1464 1465 if (hdev->flush) 1466 hdev->flush(hdev); 1467 1468 if (hdev->sent_cmd) { 1469 kfree_skb(hdev->sent_cmd); 1470 hdev->sent_cmd = NULL; 1471 } 1472 1473 hdev->close(hdev); 1474 hdev->flags &= BIT(HCI_RAW); 1475 } 1476 1477 done: 1478 hci_req_unlock(hdev); 1479 return ret; 1480 } 1481 1482 /* ---- HCI ioctl helpers ---- */ 1483 1484 int hci_dev_open(__u16 dev) 1485 { 1486 struct hci_dev *hdev; 1487 int err; 1488 1489 hdev = hci_dev_get(dev); 1490 if (!hdev) 1491 return -ENODEV; 1492 1493 /* Devices that are marked as unconfigured can only be powered 1494 * up as user channel. Trying to bring them up as normal devices 1495 * will result into a failure. Only user channel operation is 1496 * possible. 1497 * 1498 * When this function is called for a user channel, the flag 1499 * HCI_USER_CHANNEL will be set first before attempting to 1500 * open the device. 1501 */ 1502 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 1503 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1504 err = -EOPNOTSUPP; 1505 goto done; 1506 } 1507 1508 /* We need to ensure that no other power on/off work is pending 1509 * before proceeding to call hci_dev_do_open. This is 1510 * particularly important if the setup procedure has not yet 1511 * completed. 1512 */ 1513 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) 1514 cancel_delayed_work(&hdev->power_off); 1515 1516 /* After this call it is guaranteed that the setup procedure 1517 * has finished. This means that error conditions like RFKILL 1518 * or no valid public or static random address apply. 1519 */ 1520 flush_workqueue(hdev->req_workqueue); 1521 1522 /* For controllers not using the management interface and that 1523 * are brought up using legacy ioctl, set the HCI_BONDABLE bit 1524 * so that pairing works for them. Once the management interface 1525 * is in use this bit will be cleared again and userspace has 1526 * to explicitly enable it. 1527 */ 1528 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1529 !hci_dev_test_flag(hdev, HCI_MGMT)) 1530 hci_dev_set_flag(hdev, HCI_BONDABLE); 1531 1532 err = hci_dev_do_open(hdev); 1533 1534 done: 1535 hci_dev_put(hdev); 1536 return err; 1537 } 1538 1539 /* This function requires the caller holds hdev->lock */ 1540 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 1541 { 1542 struct hci_conn_params *p; 1543 1544 list_for_each_entry(p, &hdev->le_conn_params, list) { 1545 if (p->conn) { 1546 hci_conn_drop(p->conn); 1547 hci_conn_put(p->conn); 1548 p->conn = NULL; 1549 } 1550 list_del_init(&p->action); 1551 } 1552 1553 BT_DBG("All LE pending actions cleared"); 1554 } 1555 1556 static int hci_dev_do_close(struct hci_dev *hdev) 1557 { 1558 BT_DBG("%s %p", hdev->name, hdev); 1559 1560 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && 1561 test_bit(HCI_UP, &hdev->flags)) { 1562 /* Execute vendor specific shutdown routine */ 1563 if (hdev->shutdown) 1564 hdev->shutdown(hdev); 1565 } 1566 1567 cancel_delayed_work(&hdev->power_off); 1568 1569 hci_req_cancel(hdev, ENODEV); 1570 hci_req_lock(hdev); 1571 1572 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 1573 cancel_delayed_work_sync(&hdev->cmd_timer); 1574 hci_req_unlock(hdev); 1575 return 0; 1576 } 1577 1578 /* Flush RX and TX works */ 1579 flush_work(&hdev->tx_work); 1580 flush_work(&hdev->rx_work); 1581 1582 if (hdev->discov_timeout > 0) { 1583 cancel_delayed_work(&hdev->discov_off); 1584 hdev->discov_timeout = 0; 1585 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 1586 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 1587 } 1588 1589 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) 1590 cancel_delayed_work(&hdev->service_cache); 1591 1592 cancel_delayed_work_sync(&hdev->le_scan_disable); 1593 cancel_delayed_work_sync(&hdev->le_scan_restart); 1594 1595 if (hci_dev_test_flag(hdev, HCI_MGMT)) 1596 cancel_delayed_work_sync(&hdev->rpa_expired); 1597 1598 /* Avoid potential lockdep warnings from the *_flush() calls by 1599 * ensuring the workqueue is empty up front. 1600 */ 1601 drain_workqueue(hdev->workqueue); 1602 1603 hci_dev_lock(hdev); 1604 1605 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 1606 1607 if (!hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 1608 if (hdev->dev_type == HCI_BREDR) 1609 mgmt_powered(hdev, 0); 1610 } 1611 1612 hci_inquiry_cache_flush(hdev); 1613 hci_pend_le_actions_clear(hdev); 1614 hci_conn_hash_flush(hdev); 1615 hci_dev_unlock(hdev); 1616 1617 smp_unregister(hdev); 1618 1619 hci_notify(hdev, HCI_DEV_DOWN); 1620 1621 if (hdev->flush) 1622 hdev->flush(hdev); 1623 1624 /* Reset device */ 1625 skb_queue_purge(&hdev->cmd_q); 1626 atomic_set(&hdev->cmd_cnt, 1); 1627 if (!hci_dev_test_flag(hdev, HCI_AUTO_OFF) && 1628 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 1629 test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 1630 set_bit(HCI_INIT, &hdev->flags); 1631 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT); 1632 clear_bit(HCI_INIT, &hdev->flags); 1633 } 1634 1635 /* flush cmd work */ 1636 flush_work(&hdev->cmd_work); 1637 1638 /* Drop queues */ 1639 skb_queue_purge(&hdev->rx_q); 1640 skb_queue_purge(&hdev->cmd_q); 1641 skb_queue_purge(&hdev->raw_q); 1642 1643 /* Drop last sent command */ 1644 if (hdev->sent_cmd) { 1645 cancel_delayed_work_sync(&hdev->cmd_timer); 1646 kfree_skb(hdev->sent_cmd); 1647 hdev->sent_cmd = NULL; 1648 } 1649 1650 /* After this point our queues are empty 1651 * and no tasks are scheduled. */ 1652 hdev->close(hdev); 1653 1654 /* Clear flags */ 1655 hdev->flags &= BIT(HCI_RAW); 1656 hci_dev_clear_volatile_flags(hdev); 1657 1658 /* Controller radio is available but is currently powered down */ 1659 hdev->amp_status = AMP_STATUS_POWERED_DOWN; 1660 1661 memset(hdev->eir, 0, sizeof(hdev->eir)); 1662 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 1663 bacpy(&hdev->random_addr, BDADDR_ANY); 1664 1665 hci_req_unlock(hdev); 1666 1667 hci_dev_put(hdev); 1668 return 0; 1669 } 1670 1671 int hci_dev_close(__u16 dev) 1672 { 1673 struct hci_dev *hdev; 1674 int err; 1675 1676 hdev = hci_dev_get(dev); 1677 if (!hdev) 1678 return -ENODEV; 1679 1680 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1681 err = -EBUSY; 1682 goto done; 1683 } 1684 1685 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) 1686 cancel_delayed_work(&hdev->power_off); 1687 1688 err = hci_dev_do_close(hdev); 1689 1690 done: 1691 hci_dev_put(hdev); 1692 return err; 1693 } 1694 1695 static int hci_dev_do_reset(struct hci_dev *hdev) 1696 { 1697 int ret; 1698 1699 BT_DBG("%s %p", hdev->name, hdev); 1700 1701 hci_req_lock(hdev); 1702 1703 /* Drop queues */ 1704 skb_queue_purge(&hdev->rx_q); 1705 skb_queue_purge(&hdev->cmd_q); 1706 1707 /* Avoid potential lockdep warnings from the *_flush() calls by 1708 * ensuring the workqueue is empty up front. 1709 */ 1710 drain_workqueue(hdev->workqueue); 1711 1712 hci_dev_lock(hdev); 1713 hci_inquiry_cache_flush(hdev); 1714 hci_conn_hash_flush(hdev); 1715 hci_dev_unlock(hdev); 1716 1717 if (hdev->flush) 1718 hdev->flush(hdev); 1719 1720 atomic_set(&hdev->cmd_cnt, 1); 1721 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0; 1722 1723 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT); 1724 1725 hci_req_unlock(hdev); 1726 return ret; 1727 } 1728 1729 int hci_dev_reset(__u16 dev) 1730 { 1731 struct hci_dev *hdev; 1732 int err; 1733 1734 hdev = hci_dev_get(dev); 1735 if (!hdev) 1736 return -ENODEV; 1737 1738 if (!test_bit(HCI_UP, &hdev->flags)) { 1739 err = -ENETDOWN; 1740 goto done; 1741 } 1742 1743 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1744 err = -EBUSY; 1745 goto done; 1746 } 1747 1748 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1749 err = -EOPNOTSUPP; 1750 goto done; 1751 } 1752 1753 err = hci_dev_do_reset(hdev); 1754 1755 done: 1756 hci_dev_put(hdev); 1757 return err; 1758 } 1759 1760 int hci_dev_reset_stat(__u16 dev) 1761 { 1762 struct hci_dev *hdev; 1763 int ret = 0; 1764 1765 hdev = hci_dev_get(dev); 1766 if (!hdev) 1767 return -ENODEV; 1768 1769 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1770 ret = -EBUSY; 1771 goto done; 1772 } 1773 1774 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1775 ret = -EOPNOTSUPP; 1776 goto done; 1777 } 1778 1779 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats)); 1780 1781 done: 1782 hci_dev_put(hdev); 1783 return ret; 1784 } 1785 1786 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan) 1787 { 1788 bool conn_changed, discov_changed; 1789 1790 BT_DBG("%s scan 0x%02x", hdev->name, scan); 1791 1792 if ((scan & SCAN_PAGE)) 1793 conn_changed = !hci_dev_test_and_set_flag(hdev, 1794 HCI_CONNECTABLE); 1795 else 1796 conn_changed = hci_dev_test_and_clear_flag(hdev, 1797 HCI_CONNECTABLE); 1798 1799 if ((scan & SCAN_INQUIRY)) { 1800 discov_changed = !hci_dev_test_and_set_flag(hdev, 1801 HCI_DISCOVERABLE); 1802 } else { 1803 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 1804 discov_changed = hci_dev_test_and_clear_flag(hdev, 1805 HCI_DISCOVERABLE); 1806 } 1807 1808 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 1809 return; 1810 1811 if (conn_changed || discov_changed) { 1812 /* In case this was disabled through mgmt */ 1813 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); 1814 1815 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1816 mgmt_update_adv_data(hdev); 1817 1818 mgmt_new_settings(hdev); 1819 } 1820 } 1821 1822 int hci_dev_cmd(unsigned int cmd, void __user *arg) 1823 { 1824 struct hci_dev *hdev; 1825 struct hci_dev_req dr; 1826 int err = 0; 1827 1828 if (copy_from_user(&dr, arg, sizeof(dr))) 1829 return -EFAULT; 1830 1831 hdev = hci_dev_get(dr.dev_id); 1832 if (!hdev) 1833 return -ENODEV; 1834 1835 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1836 err = -EBUSY; 1837 goto done; 1838 } 1839 1840 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1841 err = -EOPNOTSUPP; 1842 goto done; 1843 } 1844 1845 if (hdev->dev_type != HCI_BREDR) { 1846 err = -EOPNOTSUPP; 1847 goto done; 1848 } 1849 1850 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 1851 err = -EOPNOTSUPP; 1852 goto done; 1853 } 1854 1855 switch (cmd) { 1856 case HCISETAUTH: 1857 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt, 1858 HCI_INIT_TIMEOUT); 1859 break; 1860 1861 case HCISETENCRYPT: 1862 if (!lmp_encrypt_capable(hdev)) { 1863 err = -EOPNOTSUPP; 1864 break; 1865 } 1866 1867 if (!test_bit(HCI_AUTH, &hdev->flags)) { 1868 /* Auth must be enabled first */ 1869 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt, 1870 HCI_INIT_TIMEOUT); 1871 if (err) 1872 break; 1873 } 1874 1875 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt, 1876 HCI_INIT_TIMEOUT); 1877 break; 1878 1879 case HCISETSCAN: 1880 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt, 1881 HCI_INIT_TIMEOUT); 1882 1883 /* Ensure that the connectable and discoverable states 1884 * get correctly modified as this was a non-mgmt change. 1885 */ 1886 if (!err) 1887 hci_update_scan_state(hdev, dr.dev_opt); 1888 break; 1889 1890 case HCISETLINKPOL: 1891 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt, 1892 HCI_INIT_TIMEOUT); 1893 break; 1894 1895 case HCISETLINKMODE: 1896 hdev->link_mode = ((__u16) dr.dev_opt) & 1897 (HCI_LM_MASTER | HCI_LM_ACCEPT); 1898 break; 1899 1900 case HCISETPTYPE: 1901 hdev->pkt_type = (__u16) dr.dev_opt; 1902 break; 1903 1904 case HCISETACLMTU: 1905 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1); 1906 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0); 1907 break; 1908 1909 case HCISETSCOMTU: 1910 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1); 1911 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0); 1912 break; 1913 1914 default: 1915 err = -EINVAL; 1916 break; 1917 } 1918 1919 done: 1920 hci_dev_put(hdev); 1921 return err; 1922 } 1923 1924 int hci_get_dev_list(void __user *arg) 1925 { 1926 struct hci_dev *hdev; 1927 struct hci_dev_list_req *dl; 1928 struct hci_dev_req *dr; 1929 int n = 0, size, err; 1930 __u16 dev_num; 1931 1932 if (get_user(dev_num, (__u16 __user *) arg)) 1933 return -EFAULT; 1934 1935 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr)) 1936 return -EINVAL; 1937 1938 size = sizeof(*dl) + dev_num * sizeof(*dr); 1939 1940 dl = kzalloc(size, GFP_KERNEL); 1941 if (!dl) 1942 return -ENOMEM; 1943 1944 dr = dl->dev_req; 1945 1946 read_lock(&hci_dev_list_lock); 1947 list_for_each_entry(hdev, &hci_dev_list, list) { 1948 unsigned long flags = hdev->flags; 1949 1950 /* When the auto-off is configured it means the transport 1951 * is running, but in that case still indicate that the 1952 * device is actually down. 1953 */ 1954 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) 1955 flags &= ~BIT(HCI_UP); 1956 1957 (dr + n)->dev_id = hdev->id; 1958 (dr + n)->dev_opt = flags; 1959 1960 if (++n >= dev_num) 1961 break; 1962 } 1963 read_unlock(&hci_dev_list_lock); 1964 1965 dl->dev_num = n; 1966 size = sizeof(*dl) + n * sizeof(*dr); 1967 1968 err = copy_to_user(arg, dl, size); 1969 kfree(dl); 1970 1971 return err ? -EFAULT : 0; 1972 } 1973 1974 int hci_get_dev_info(void __user *arg) 1975 { 1976 struct hci_dev *hdev; 1977 struct hci_dev_info di; 1978 unsigned long flags; 1979 int err = 0; 1980 1981 if (copy_from_user(&di, arg, sizeof(di))) 1982 return -EFAULT; 1983 1984 hdev = hci_dev_get(di.dev_id); 1985 if (!hdev) 1986 return -ENODEV; 1987 1988 /* When the auto-off is configured it means the transport 1989 * is running, but in that case still indicate that the 1990 * device is actually down. 1991 */ 1992 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) 1993 flags = hdev->flags & ~BIT(HCI_UP); 1994 else 1995 flags = hdev->flags; 1996 1997 strcpy(di.name, hdev->name); 1998 di.bdaddr = hdev->bdaddr; 1999 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4); 2000 di.flags = flags; 2001 di.pkt_type = hdev->pkt_type; 2002 if (lmp_bredr_capable(hdev)) { 2003 di.acl_mtu = hdev->acl_mtu; 2004 di.acl_pkts = hdev->acl_pkts; 2005 di.sco_mtu = hdev->sco_mtu; 2006 di.sco_pkts = hdev->sco_pkts; 2007 } else { 2008 di.acl_mtu = hdev->le_mtu; 2009 di.acl_pkts = hdev->le_pkts; 2010 di.sco_mtu = 0; 2011 di.sco_pkts = 0; 2012 } 2013 di.link_policy = hdev->link_policy; 2014 di.link_mode = hdev->link_mode; 2015 2016 memcpy(&di.stat, &hdev->stat, sizeof(di.stat)); 2017 memcpy(&di.features, &hdev->features, sizeof(di.features)); 2018 2019 if (copy_to_user(arg, &di, sizeof(di))) 2020 err = -EFAULT; 2021 2022 hci_dev_put(hdev); 2023 2024 return err; 2025 } 2026 2027 /* ---- Interface to HCI drivers ---- */ 2028 2029 static int hci_rfkill_set_block(void *data, bool blocked) 2030 { 2031 struct hci_dev *hdev = data; 2032 2033 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked); 2034 2035 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) 2036 return -EBUSY; 2037 2038 if (blocked) { 2039 hci_dev_set_flag(hdev, HCI_RFKILLED); 2040 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 2041 !hci_dev_test_flag(hdev, HCI_CONFIG)) 2042 hci_dev_do_close(hdev); 2043 } else { 2044 hci_dev_clear_flag(hdev, HCI_RFKILLED); 2045 } 2046 2047 return 0; 2048 } 2049 2050 static const struct rfkill_ops hci_rfkill_ops = { 2051 .set_block = hci_rfkill_set_block, 2052 }; 2053 2054 static void hci_power_on(struct work_struct *work) 2055 { 2056 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on); 2057 int err; 2058 2059 BT_DBG("%s", hdev->name); 2060 2061 err = hci_dev_do_open(hdev); 2062 if (err < 0) { 2063 hci_dev_lock(hdev); 2064 mgmt_set_powered_failed(hdev, err); 2065 hci_dev_unlock(hdev); 2066 return; 2067 } 2068 2069 /* During the HCI setup phase, a few error conditions are 2070 * ignored and they need to be checked now. If they are still 2071 * valid, it is important to turn the device back off. 2072 */ 2073 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 2074 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 2075 (hdev->dev_type == HCI_BREDR && 2076 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 2077 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 2078 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 2079 hci_dev_do_close(hdev); 2080 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 2081 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 2082 HCI_AUTO_OFF_TIMEOUT); 2083 } 2084 2085 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 2086 /* For unconfigured devices, set the HCI_RAW flag 2087 * so that userspace can easily identify them. 2088 */ 2089 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 2090 set_bit(HCI_RAW, &hdev->flags); 2091 2092 /* For fully configured devices, this will send 2093 * the Index Added event. For unconfigured devices, 2094 * it will send Unconfigued Index Added event. 2095 * 2096 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 2097 * and no event will be send. 2098 */ 2099 mgmt_index_added(hdev); 2100 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 2101 /* When the controller is now configured, then it 2102 * is important to clear the HCI_RAW flag. 2103 */ 2104 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 2105 clear_bit(HCI_RAW, &hdev->flags); 2106 2107 /* Powering on the controller with HCI_CONFIG set only 2108 * happens with the transition from unconfigured to 2109 * configured. This will send the Index Added event. 2110 */ 2111 mgmt_index_added(hdev); 2112 } 2113 } 2114 2115 static void hci_power_off(struct work_struct *work) 2116 { 2117 struct hci_dev *hdev = container_of(work, struct hci_dev, 2118 power_off.work); 2119 2120 BT_DBG("%s", hdev->name); 2121 2122 hci_dev_do_close(hdev); 2123 } 2124 2125 static void hci_error_reset(struct work_struct *work) 2126 { 2127 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset); 2128 2129 BT_DBG("%s", hdev->name); 2130 2131 if (hdev->hw_error) 2132 hdev->hw_error(hdev, hdev->hw_error_code); 2133 else 2134 BT_ERR("%s hardware error 0x%2.2x", hdev->name, 2135 hdev->hw_error_code); 2136 2137 if (hci_dev_do_close(hdev)) 2138 return; 2139 2140 hci_dev_do_open(hdev); 2141 } 2142 2143 static void hci_discov_off(struct work_struct *work) 2144 { 2145 struct hci_dev *hdev; 2146 2147 hdev = container_of(work, struct hci_dev, discov_off.work); 2148 2149 BT_DBG("%s", hdev->name); 2150 2151 mgmt_discoverable_timeout(hdev); 2152 } 2153 2154 void hci_uuids_clear(struct hci_dev *hdev) 2155 { 2156 struct bt_uuid *uuid, *tmp; 2157 2158 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) { 2159 list_del(&uuid->list); 2160 kfree(uuid); 2161 } 2162 } 2163 2164 void hci_link_keys_clear(struct hci_dev *hdev) 2165 { 2166 struct link_key *key; 2167 2168 list_for_each_entry_rcu(key, &hdev->link_keys, list) { 2169 list_del_rcu(&key->list); 2170 kfree_rcu(key, rcu); 2171 } 2172 } 2173 2174 void hci_smp_ltks_clear(struct hci_dev *hdev) 2175 { 2176 struct smp_ltk *k; 2177 2178 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 2179 list_del_rcu(&k->list); 2180 kfree_rcu(k, rcu); 2181 } 2182 } 2183 2184 void hci_smp_irks_clear(struct hci_dev *hdev) 2185 { 2186 struct smp_irk *k; 2187 2188 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) { 2189 list_del_rcu(&k->list); 2190 kfree_rcu(k, rcu); 2191 } 2192 } 2193 2194 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 2195 { 2196 struct link_key *k; 2197 2198 rcu_read_lock(); 2199 list_for_each_entry_rcu(k, &hdev->link_keys, list) { 2200 if (bacmp(bdaddr, &k->bdaddr) == 0) { 2201 rcu_read_unlock(); 2202 return k; 2203 } 2204 } 2205 rcu_read_unlock(); 2206 2207 return NULL; 2208 } 2209 2210 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn, 2211 u8 key_type, u8 old_key_type) 2212 { 2213 /* Legacy key */ 2214 if (key_type < 0x03) 2215 return true; 2216 2217 /* Debug keys are insecure so don't store them persistently */ 2218 if (key_type == HCI_LK_DEBUG_COMBINATION) 2219 return false; 2220 2221 /* Changed combination key and there's no previous one */ 2222 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff) 2223 return false; 2224 2225 /* Security mode 3 case */ 2226 if (!conn) 2227 return true; 2228 2229 /* BR/EDR key derived using SC from an LE link */ 2230 if (conn->type == LE_LINK) 2231 return true; 2232 2233 /* Neither local nor remote side had no-bonding as requirement */ 2234 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01) 2235 return true; 2236 2237 /* Local side had dedicated bonding as requirement */ 2238 if (conn->auth_type == 0x02 || conn->auth_type == 0x03) 2239 return true; 2240 2241 /* Remote side had dedicated bonding as requirement */ 2242 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03) 2243 return true; 2244 2245 /* If none of the above criteria match, then don't store the key 2246 * persistently */ 2247 return false; 2248 } 2249 2250 static u8 ltk_role(u8 type) 2251 { 2252 if (type == SMP_LTK) 2253 return HCI_ROLE_MASTER; 2254 2255 return HCI_ROLE_SLAVE; 2256 } 2257 2258 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 2259 u8 addr_type, u8 role) 2260 { 2261 struct smp_ltk *k; 2262 2263 rcu_read_lock(); 2264 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 2265 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr)) 2266 continue; 2267 2268 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) { 2269 rcu_read_unlock(); 2270 return k; 2271 } 2272 } 2273 rcu_read_unlock(); 2274 2275 return NULL; 2276 } 2277 2278 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa) 2279 { 2280 struct smp_irk *irk; 2281 2282 rcu_read_lock(); 2283 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 2284 if (!bacmp(&irk->rpa, rpa)) { 2285 rcu_read_unlock(); 2286 return irk; 2287 } 2288 } 2289 2290 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 2291 if (smp_irk_matches(hdev, irk->val, rpa)) { 2292 bacpy(&irk->rpa, rpa); 2293 rcu_read_unlock(); 2294 return irk; 2295 } 2296 } 2297 rcu_read_unlock(); 2298 2299 return NULL; 2300 } 2301 2302 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, 2303 u8 addr_type) 2304 { 2305 struct smp_irk *irk; 2306 2307 /* Identity Address must be public or static random */ 2308 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0) 2309 return NULL; 2310 2311 rcu_read_lock(); 2312 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 2313 if (addr_type == irk->addr_type && 2314 bacmp(bdaddr, &irk->bdaddr) == 0) { 2315 rcu_read_unlock(); 2316 return irk; 2317 } 2318 } 2319 rcu_read_unlock(); 2320 2321 return NULL; 2322 } 2323 2324 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, 2325 bdaddr_t *bdaddr, u8 *val, u8 type, 2326 u8 pin_len, bool *persistent) 2327 { 2328 struct link_key *key, *old_key; 2329 u8 old_key_type; 2330 2331 old_key = hci_find_link_key(hdev, bdaddr); 2332 if (old_key) { 2333 old_key_type = old_key->type; 2334 key = old_key; 2335 } else { 2336 old_key_type = conn ? conn->key_type : 0xff; 2337 key = kzalloc(sizeof(*key), GFP_KERNEL); 2338 if (!key) 2339 return NULL; 2340 list_add_rcu(&key->list, &hdev->link_keys); 2341 } 2342 2343 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type); 2344 2345 /* Some buggy controller combinations generate a changed 2346 * combination key for legacy pairing even when there's no 2347 * previous key */ 2348 if (type == HCI_LK_CHANGED_COMBINATION && 2349 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) { 2350 type = HCI_LK_COMBINATION; 2351 if (conn) 2352 conn->key_type = type; 2353 } 2354 2355 bacpy(&key->bdaddr, bdaddr); 2356 memcpy(key->val, val, HCI_LINK_KEY_SIZE); 2357 key->pin_len = pin_len; 2358 2359 if (type == HCI_LK_CHANGED_COMBINATION) 2360 key->type = old_key_type; 2361 else 2362 key->type = type; 2363 2364 if (persistent) 2365 *persistent = hci_persistent_key(hdev, conn, type, 2366 old_key_type); 2367 2368 return key; 2369 } 2370 2371 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 2372 u8 addr_type, u8 type, u8 authenticated, 2373 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand) 2374 { 2375 struct smp_ltk *key, *old_key; 2376 u8 role = ltk_role(type); 2377 2378 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role); 2379 if (old_key) 2380 key = old_key; 2381 else { 2382 key = kzalloc(sizeof(*key), GFP_KERNEL); 2383 if (!key) 2384 return NULL; 2385 list_add_rcu(&key->list, &hdev->long_term_keys); 2386 } 2387 2388 bacpy(&key->bdaddr, bdaddr); 2389 key->bdaddr_type = addr_type; 2390 memcpy(key->val, tk, sizeof(key->val)); 2391 key->authenticated = authenticated; 2392 key->ediv = ediv; 2393 key->rand = rand; 2394 key->enc_size = enc_size; 2395 key->type = type; 2396 2397 return key; 2398 } 2399 2400 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, 2401 u8 addr_type, u8 val[16], bdaddr_t *rpa) 2402 { 2403 struct smp_irk *irk; 2404 2405 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type); 2406 if (!irk) { 2407 irk = kzalloc(sizeof(*irk), GFP_KERNEL); 2408 if (!irk) 2409 return NULL; 2410 2411 bacpy(&irk->bdaddr, bdaddr); 2412 irk->addr_type = addr_type; 2413 2414 list_add_rcu(&irk->list, &hdev->identity_resolving_keys); 2415 } 2416 2417 memcpy(irk->val, val, 16); 2418 bacpy(&irk->rpa, rpa); 2419 2420 return irk; 2421 } 2422 2423 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 2424 { 2425 struct link_key *key; 2426 2427 key = hci_find_link_key(hdev, bdaddr); 2428 if (!key) 2429 return -ENOENT; 2430 2431 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 2432 2433 list_del_rcu(&key->list); 2434 kfree_rcu(key, rcu); 2435 2436 return 0; 2437 } 2438 2439 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type) 2440 { 2441 struct smp_ltk *k; 2442 int removed = 0; 2443 2444 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 2445 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type) 2446 continue; 2447 2448 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 2449 2450 list_del_rcu(&k->list); 2451 kfree_rcu(k, rcu); 2452 removed++; 2453 } 2454 2455 return removed ? 0 : -ENOENT; 2456 } 2457 2458 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type) 2459 { 2460 struct smp_irk *k; 2461 2462 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) { 2463 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type) 2464 continue; 2465 2466 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 2467 2468 list_del_rcu(&k->list); 2469 kfree_rcu(k, rcu); 2470 } 2471 } 2472 2473 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type) 2474 { 2475 struct smp_ltk *k; 2476 struct smp_irk *irk; 2477 u8 addr_type; 2478 2479 if (type == BDADDR_BREDR) { 2480 if (hci_find_link_key(hdev, bdaddr)) 2481 return true; 2482 return false; 2483 } 2484 2485 /* Convert to HCI addr type which struct smp_ltk uses */ 2486 if (type == BDADDR_LE_PUBLIC) 2487 addr_type = ADDR_LE_DEV_PUBLIC; 2488 else 2489 addr_type = ADDR_LE_DEV_RANDOM; 2490 2491 irk = hci_get_irk(hdev, bdaddr, addr_type); 2492 if (irk) { 2493 bdaddr = &irk->bdaddr; 2494 addr_type = irk->addr_type; 2495 } 2496 2497 rcu_read_lock(); 2498 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 2499 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) { 2500 rcu_read_unlock(); 2501 return true; 2502 } 2503 } 2504 rcu_read_unlock(); 2505 2506 return false; 2507 } 2508 2509 /* HCI command timer function */ 2510 static void hci_cmd_timeout(struct work_struct *work) 2511 { 2512 struct hci_dev *hdev = container_of(work, struct hci_dev, 2513 cmd_timer.work); 2514 2515 if (hdev->sent_cmd) { 2516 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data; 2517 u16 opcode = __le16_to_cpu(sent->opcode); 2518 2519 BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode); 2520 } else { 2521 BT_ERR("%s command tx timeout", hdev->name); 2522 } 2523 2524 atomic_set(&hdev->cmd_cnt, 1); 2525 queue_work(hdev->workqueue, &hdev->cmd_work); 2526 } 2527 2528 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, 2529 bdaddr_t *bdaddr, u8 bdaddr_type) 2530 { 2531 struct oob_data *data; 2532 2533 list_for_each_entry(data, &hdev->remote_oob_data, list) { 2534 if (bacmp(bdaddr, &data->bdaddr) != 0) 2535 continue; 2536 if (data->bdaddr_type != bdaddr_type) 2537 continue; 2538 return data; 2539 } 2540 2541 return NULL; 2542 } 2543 2544 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 2545 u8 bdaddr_type) 2546 { 2547 struct oob_data *data; 2548 2549 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); 2550 if (!data) 2551 return -ENOENT; 2552 2553 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type); 2554 2555 list_del(&data->list); 2556 kfree(data); 2557 2558 return 0; 2559 } 2560 2561 void hci_remote_oob_data_clear(struct hci_dev *hdev) 2562 { 2563 struct oob_data *data, *n; 2564 2565 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) { 2566 list_del(&data->list); 2567 kfree(data); 2568 } 2569 } 2570 2571 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 2572 u8 bdaddr_type, u8 *hash192, u8 *rand192, 2573 u8 *hash256, u8 *rand256) 2574 { 2575 struct oob_data *data; 2576 2577 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); 2578 if (!data) { 2579 data = kmalloc(sizeof(*data), GFP_KERNEL); 2580 if (!data) 2581 return -ENOMEM; 2582 2583 bacpy(&data->bdaddr, bdaddr); 2584 data->bdaddr_type = bdaddr_type; 2585 list_add(&data->list, &hdev->remote_oob_data); 2586 } 2587 2588 if (hash192 && rand192) { 2589 memcpy(data->hash192, hash192, sizeof(data->hash192)); 2590 memcpy(data->rand192, rand192, sizeof(data->rand192)); 2591 if (hash256 && rand256) 2592 data->present = 0x03; 2593 } else { 2594 memset(data->hash192, 0, sizeof(data->hash192)); 2595 memset(data->rand192, 0, sizeof(data->rand192)); 2596 if (hash256 && rand256) 2597 data->present = 0x02; 2598 else 2599 data->present = 0x00; 2600 } 2601 2602 if (hash256 && rand256) { 2603 memcpy(data->hash256, hash256, sizeof(data->hash256)); 2604 memcpy(data->rand256, rand256, sizeof(data->rand256)); 2605 } else { 2606 memset(data->hash256, 0, sizeof(data->hash256)); 2607 memset(data->rand256, 0, sizeof(data->rand256)); 2608 if (hash192 && rand192) 2609 data->present = 0x01; 2610 } 2611 2612 BT_DBG("%s for %pMR", hdev->name, bdaddr); 2613 2614 return 0; 2615 } 2616 2617 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list, 2618 bdaddr_t *bdaddr, u8 type) 2619 { 2620 struct bdaddr_list *b; 2621 2622 list_for_each_entry(b, bdaddr_list, list) { 2623 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 2624 return b; 2625 } 2626 2627 return NULL; 2628 } 2629 2630 void hci_bdaddr_list_clear(struct list_head *bdaddr_list) 2631 { 2632 struct list_head *p, *n; 2633 2634 list_for_each_safe(p, n, bdaddr_list) { 2635 struct bdaddr_list *b = list_entry(p, struct bdaddr_list, list); 2636 2637 list_del(p); 2638 kfree(b); 2639 } 2640 } 2641 2642 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type) 2643 { 2644 struct bdaddr_list *entry; 2645 2646 if (!bacmp(bdaddr, BDADDR_ANY)) 2647 return -EBADF; 2648 2649 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 2650 return -EEXIST; 2651 2652 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 2653 if (!entry) 2654 return -ENOMEM; 2655 2656 bacpy(&entry->bdaddr, bdaddr); 2657 entry->bdaddr_type = type; 2658 2659 list_add(&entry->list, list); 2660 2661 return 0; 2662 } 2663 2664 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type) 2665 { 2666 struct bdaddr_list *entry; 2667 2668 if (!bacmp(bdaddr, BDADDR_ANY)) { 2669 hci_bdaddr_list_clear(list); 2670 return 0; 2671 } 2672 2673 entry = hci_bdaddr_list_lookup(list, bdaddr, type); 2674 if (!entry) 2675 return -ENOENT; 2676 2677 list_del(&entry->list); 2678 kfree(entry); 2679 2680 return 0; 2681 } 2682 2683 /* This function requires the caller holds hdev->lock */ 2684 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev, 2685 bdaddr_t *addr, u8 addr_type) 2686 { 2687 struct hci_conn_params *params; 2688 2689 /* The conn params list only contains identity addresses */ 2690 if (!hci_is_identity_address(addr, addr_type)) 2691 return NULL; 2692 2693 list_for_each_entry(params, &hdev->le_conn_params, list) { 2694 if (bacmp(¶ms->addr, addr) == 0 && 2695 params->addr_type == addr_type) { 2696 return params; 2697 } 2698 } 2699 2700 return NULL; 2701 } 2702 2703 /* This function requires the caller holds hdev->lock */ 2704 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list, 2705 bdaddr_t *addr, u8 addr_type) 2706 { 2707 struct hci_conn_params *param; 2708 2709 /* The list only contains identity addresses */ 2710 if (!hci_is_identity_address(addr, addr_type)) 2711 return NULL; 2712 2713 list_for_each_entry(param, list, action) { 2714 if (bacmp(¶m->addr, addr) == 0 && 2715 param->addr_type == addr_type) 2716 return param; 2717 } 2718 2719 return NULL; 2720 } 2721 2722 /* This function requires the caller holds hdev->lock */ 2723 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev, 2724 bdaddr_t *addr, u8 addr_type) 2725 { 2726 struct hci_conn_params *params; 2727 2728 if (!hci_is_identity_address(addr, addr_type)) 2729 return NULL; 2730 2731 params = hci_conn_params_lookup(hdev, addr, addr_type); 2732 if (params) 2733 return params; 2734 2735 params = kzalloc(sizeof(*params), GFP_KERNEL); 2736 if (!params) { 2737 BT_ERR("Out of memory"); 2738 return NULL; 2739 } 2740 2741 bacpy(¶ms->addr, addr); 2742 params->addr_type = addr_type; 2743 2744 list_add(¶ms->list, &hdev->le_conn_params); 2745 INIT_LIST_HEAD(¶ms->action); 2746 2747 params->conn_min_interval = hdev->le_conn_min_interval; 2748 params->conn_max_interval = hdev->le_conn_max_interval; 2749 params->conn_latency = hdev->le_conn_latency; 2750 params->supervision_timeout = hdev->le_supv_timeout; 2751 params->auto_connect = HCI_AUTO_CONN_DISABLED; 2752 2753 BT_DBG("addr %pMR (type %u)", addr, addr_type); 2754 2755 return params; 2756 } 2757 2758 static void hci_conn_params_free(struct hci_conn_params *params) 2759 { 2760 if (params->conn) { 2761 hci_conn_drop(params->conn); 2762 hci_conn_put(params->conn); 2763 } 2764 2765 list_del(¶ms->action); 2766 list_del(¶ms->list); 2767 kfree(params); 2768 } 2769 2770 /* This function requires the caller holds hdev->lock */ 2771 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type) 2772 { 2773 struct hci_conn_params *params; 2774 2775 params = hci_conn_params_lookup(hdev, addr, addr_type); 2776 if (!params) 2777 return; 2778 2779 hci_conn_params_free(params); 2780 2781 hci_update_background_scan(hdev); 2782 2783 BT_DBG("addr %pMR (type %u)", addr, addr_type); 2784 } 2785 2786 /* This function requires the caller holds hdev->lock */ 2787 void hci_conn_params_clear_disabled(struct hci_dev *hdev) 2788 { 2789 struct hci_conn_params *params, *tmp; 2790 2791 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) { 2792 if (params->auto_connect != HCI_AUTO_CONN_DISABLED) 2793 continue; 2794 list_del(¶ms->list); 2795 kfree(params); 2796 } 2797 2798 BT_DBG("All LE disabled connection parameters were removed"); 2799 } 2800 2801 /* This function requires the caller holds hdev->lock */ 2802 void hci_conn_params_clear_all(struct hci_dev *hdev) 2803 { 2804 struct hci_conn_params *params, *tmp; 2805 2806 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) 2807 hci_conn_params_free(params); 2808 2809 hci_update_background_scan(hdev); 2810 2811 BT_DBG("All LE connection parameters were removed"); 2812 } 2813 2814 static void inquiry_complete(struct hci_dev *hdev, u8 status, u16 opcode) 2815 { 2816 if (status) { 2817 BT_ERR("Failed to start inquiry: status %d", status); 2818 2819 hci_dev_lock(hdev); 2820 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 2821 hci_dev_unlock(hdev); 2822 return; 2823 } 2824 } 2825 2826 static void le_scan_disable_work_complete(struct hci_dev *hdev, u8 status, 2827 u16 opcode) 2828 { 2829 /* General inquiry access code (GIAC) */ 2830 u8 lap[3] = { 0x33, 0x8b, 0x9e }; 2831 struct hci_cp_inquiry cp; 2832 int err; 2833 2834 if (status) { 2835 BT_ERR("Failed to disable LE scanning: status %d", status); 2836 return; 2837 } 2838 2839 hdev->discovery.scan_start = 0; 2840 2841 switch (hdev->discovery.type) { 2842 case DISCOV_TYPE_LE: 2843 hci_dev_lock(hdev); 2844 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 2845 hci_dev_unlock(hdev); 2846 break; 2847 2848 case DISCOV_TYPE_INTERLEAVED: 2849 hci_dev_lock(hdev); 2850 2851 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, 2852 &hdev->quirks)) { 2853 /* If we were running LE only scan, change discovery 2854 * state. If we were running both LE and BR/EDR inquiry 2855 * simultaneously, and BR/EDR inquiry is already 2856 * finished, stop discovery, otherwise BR/EDR inquiry 2857 * will stop discovery when finished. If we will resolve 2858 * remote device name, do not change discovery state. 2859 */ 2860 if (!test_bit(HCI_INQUIRY, &hdev->flags) && 2861 hdev->discovery.state != DISCOVERY_RESOLVING) 2862 hci_discovery_set_state(hdev, 2863 DISCOVERY_STOPPED); 2864 } else { 2865 struct hci_request req; 2866 2867 hci_inquiry_cache_flush(hdev); 2868 2869 hci_req_init(&req, hdev); 2870 2871 memset(&cp, 0, sizeof(cp)); 2872 memcpy(&cp.lap, lap, sizeof(cp.lap)); 2873 cp.length = DISCOV_INTERLEAVED_INQUIRY_LEN; 2874 hci_req_add(&req, HCI_OP_INQUIRY, sizeof(cp), &cp); 2875 2876 err = hci_req_run(&req, inquiry_complete); 2877 if (err) { 2878 BT_ERR("Inquiry request failed: err %d", err); 2879 hci_discovery_set_state(hdev, 2880 DISCOVERY_STOPPED); 2881 } 2882 } 2883 2884 hci_dev_unlock(hdev); 2885 break; 2886 } 2887 } 2888 2889 static void le_scan_disable_work(struct work_struct *work) 2890 { 2891 struct hci_dev *hdev = container_of(work, struct hci_dev, 2892 le_scan_disable.work); 2893 struct hci_request req; 2894 int err; 2895 2896 BT_DBG("%s", hdev->name); 2897 2898 cancel_delayed_work_sync(&hdev->le_scan_restart); 2899 2900 hci_req_init(&req, hdev); 2901 2902 hci_req_add_le_scan_disable(&req); 2903 2904 err = hci_req_run(&req, le_scan_disable_work_complete); 2905 if (err) 2906 BT_ERR("Disable LE scanning request failed: err %d", err); 2907 } 2908 2909 static void le_scan_restart_work_complete(struct hci_dev *hdev, u8 status, 2910 u16 opcode) 2911 { 2912 unsigned long timeout, duration, scan_start, now; 2913 2914 BT_DBG("%s", hdev->name); 2915 2916 if (status) { 2917 BT_ERR("Failed to restart LE scan: status %d", status); 2918 return; 2919 } 2920 2921 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) || 2922 !hdev->discovery.scan_start) 2923 return; 2924 2925 /* When the scan was started, hdev->le_scan_disable has been queued 2926 * after duration from scan_start. During scan restart this job 2927 * has been canceled, and we need to queue it again after proper 2928 * timeout, to make sure that scan does not run indefinitely. 2929 */ 2930 duration = hdev->discovery.scan_duration; 2931 scan_start = hdev->discovery.scan_start; 2932 now = jiffies; 2933 if (now - scan_start <= duration) { 2934 int elapsed; 2935 2936 if (now >= scan_start) 2937 elapsed = now - scan_start; 2938 else 2939 elapsed = ULONG_MAX - scan_start + now; 2940 2941 timeout = duration - elapsed; 2942 } else { 2943 timeout = 0; 2944 } 2945 queue_delayed_work(hdev->workqueue, 2946 &hdev->le_scan_disable, timeout); 2947 } 2948 2949 static void le_scan_restart_work(struct work_struct *work) 2950 { 2951 struct hci_dev *hdev = container_of(work, struct hci_dev, 2952 le_scan_restart.work); 2953 struct hci_request req; 2954 struct hci_cp_le_set_scan_enable cp; 2955 int err; 2956 2957 BT_DBG("%s", hdev->name); 2958 2959 /* If controller is not scanning we are done. */ 2960 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) 2961 return; 2962 2963 hci_req_init(&req, hdev); 2964 2965 hci_req_add_le_scan_disable(&req); 2966 2967 memset(&cp, 0, sizeof(cp)); 2968 cp.enable = LE_SCAN_ENABLE; 2969 cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 2970 hci_req_add(&req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp); 2971 2972 err = hci_req_run(&req, le_scan_restart_work_complete); 2973 if (err) 2974 BT_ERR("Restart LE scan request failed: err %d", err); 2975 } 2976 2977 /* Copy the Identity Address of the controller. 2978 * 2979 * If the controller has a public BD_ADDR, then by default use that one. 2980 * If this is a LE only controller without a public address, default to 2981 * the static random address. 2982 * 2983 * For debugging purposes it is possible to force controllers with a 2984 * public address to use the static random address instead. 2985 * 2986 * In case BR/EDR has been disabled on a dual-mode controller and 2987 * userspace has configured a static address, then that address 2988 * becomes the identity address instead of the public BR/EDR address. 2989 */ 2990 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr, 2991 u8 *bdaddr_type) 2992 { 2993 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 2994 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 2995 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 2996 bacmp(&hdev->static_addr, BDADDR_ANY))) { 2997 bacpy(bdaddr, &hdev->static_addr); 2998 *bdaddr_type = ADDR_LE_DEV_RANDOM; 2999 } else { 3000 bacpy(bdaddr, &hdev->bdaddr); 3001 *bdaddr_type = ADDR_LE_DEV_PUBLIC; 3002 } 3003 } 3004 3005 /* Alloc HCI device */ 3006 struct hci_dev *hci_alloc_dev(void) 3007 { 3008 struct hci_dev *hdev; 3009 3010 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL); 3011 if (!hdev) 3012 return NULL; 3013 3014 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1); 3015 hdev->esco_type = (ESCO_HV1); 3016 hdev->link_mode = (HCI_LM_ACCEPT); 3017 hdev->num_iac = 0x01; /* One IAC support is mandatory */ 3018 hdev->io_capability = 0x03; /* No Input No Output */ 3019 hdev->manufacturer = 0xffff; /* Default to internal use */ 3020 hdev->inq_tx_power = HCI_TX_POWER_INVALID; 3021 hdev->adv_tx_power = HCI_TX_POWER_INVALID; 3022 3023 hdev->sniff_max_interval = 800; 3024 hdev->sniff_min_interval = 80; 3025 3026 hdev->le_adv_channel_map = 0x07; 3027 hdev->le_adv_min_interval = 0x0800; 3028 hdev->le_adv_max_interval = 0x0800; 3029 hdev->le_scan_interval = 0x0060; 3030 hdev->le_scan_window = 0x0030; 3031 hdev->le_conn_min_interval = 0x0028; 3032 hdev->le_conn_max_interval = 0x0038; 3033 hdev->le_conn_latency = 0x0000; 3034 hdev->le_supv_timeout = 0x002a; 3035 hdev->le_def_tx_len = 0x001b; 3036 hdev->le_def_tx_time = 0x0148; 3037 hdev->le_max_tx_len = 0x001b; 3038 hdev->le_max_tx_time = 0x0148; 3039 hdev->le_max_rx_len = 0x001b; 3040 hdev->le_max_rx_time = 0x0148; 3041 3042 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT; 3043 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT; 3044 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE; 3045 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE; 3046 3047 mutex_init(&hdev->lock); 3048 mutex_init(&hdev->req_lock); 3049 3050 INIT_LIST_HEAD(&hdev->mgmt_pending); 3051 INIT_LIST_HEAD(&hdev->blacklist); 3052 INIT_LIST_HEAD(&hdev->whitelist); 3053 INIT_LIST_HEAD(&hdev->uuids); 3054 INIT_LIST_HEAD(&hdev->link_keys); 3055 INIT_LIST_HEAD(&hdev->long_term_keys); 3056 INIT_LIST_HEAD(&hdev->identity_resolving_keys); 3057 INIT_LIST_HEAD(&hdev->remote_oob_data); 3058 INIT_LIST_HEAD(&hdev->le_white_list); 3059 INIT_LIST_HEAD(&hdev->le_conn_params); 3060 INIT_LIST_HEAD(&hdev->pend_le_conns); 3061 INIT_LIST_HEAD(&hdev->pend_le_reports); 3062 INIT_LIST_HEAD(&hdev->conn_hash.list); 3063 3064 INIT_WORK(&hdev->rx_work, hci_rx_work); 3065 INIT_WORK(&hdev->cmd_work, hci_cmd_work); 3066 INIT_WORK(&hdev->tx_work, hci_tx_work); 3067 INIT_WORK(&hdev->power_on, hci_power_on); 3068 INIT_WORK(&hdev->error_reset, hci_error_reset); 3069 3070 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off); 3071 INIT_DELAYED_WORK(&hdev->discov_off, hci_discov_off); 3072 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work); 3073 INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work); 3074 3075 skb_queue_head_init(&hdev->rx_q); 3076 skb_queue_head_init(&hdev->cmd_q); 3077 skb_queue_head_init(&hdev->raw_q); 3078 3079 init_waitqueue_head(&hdev->req_wait_q); 3080 3081 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout); 3082 3083 hci_init_sysfs(hdev); 3084 discovery_init(hdev); 3085 adv_info_init(hdev); 3086 3087 return hdev; 3088 } 3089 EXPORT_SYMBOL(hci_alloc_dev); 3090 3091 /* Free HCI device */ 3092 void hci_free_dev(struct hci_dev *hdev) 3093 { 3094 /* will free via device release */ 3095 put_device(&hdev->dev); 3096 } 3097 EXPORT_SYMBOL(hci_free_dev); 3098 3099 /* Register HCI device */ 3100 int hci_register_dev(struct hci_dev *hdev) 3101 { 3102 int id, error; 3103 3104 if (!hdev->open || !hdev->close || !hdev->send) 3105 return -EINVAL; 3106 3107 /* Do not allow HCI_AMP devices to register at index 0, 3108 * so the index can be used as the AMP controller ID. 3109 */ 3110 switch (hdev->dev_type) { 3111 case HCI_BREDR: 3112 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL); 3113 break; 3114 case HCI_AMP: 3115 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL); 3116 break; 3117 default: 3118 return -EINVAL; 3119 } 3120 3121 if (id < 0) 3122 return id; 3123 3124 sprintf(hdev->name, "hci%d", id); 3125 hdev->id = id; 3126 3127 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 3128 3129 hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND | 3130 WQ_MEM_RECLAIM, 1, hdev->name); 3131 if (!hdev->workqueue) { 3132 error = -ENOMEM; 3133 goto err; 3134 } 3135 3136 hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND | 3137 WQ_MEM_RECLAIM, 1, hdev->name); 3138 if (!hdev->req_workqueue) { 3139 destroy_workqueue(hdev->workqueue); 3140 error = -ENOMEM; 3141 goto err; 3142 } 3143 3144 if (!IS_ERR_OR_NULL(bt_debugfs)) 3145 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs); 3146 3147 dev_set_name(&hdev->dev, "%s", hdev->name); 3148 3149 error = device_add(&hdev->dev); 3150 if (error < 0) 3151 goto err_wqueue; 3152 3153 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev, 3154 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, 3155 hdev); 3156 if (hdev->rfkill) { 3157 if (rfkill_register(hdev->rfkill) < 0) { 3158 rfkill_destroy(hdev->rfkill); 3159 hdev->rfkill = NULL; 3160 } 3161 } 3162 3163 if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) 3164 hci_dev_set_flag(hdev, HCI_RFKILLED); 3165 3166 hci_dev_set_flag(hdev, HCI_SETUP); 3167 hci_dev_set_flag(hdev, HCI_AUTO_OFF); 3168 3169 if (hdev->dev_type == HCI_BREDR) { 3170 /* Assume BR/EDR support until proven otherwise (such as 3171 * through reading supported features during init. 3172 */ 3173 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); 3174 } 3175 3176 write_lock(&hci_dev_list_lock); 3177 list_add(&hdev->list, &hci_dev_list); 3178 write_unlock(&hci_dev_list_lock); 3179 3180 /* Devices that are marked for raw-only usage are unconfigured 3181 * and should not be included in normal operation. 3182 */ 3183 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 3184 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 3185 3186 hci_notify(hdev, HCI_DEV_REG); 3187 hci_dev_hold(hdev); 3188 3189 queue_work(hdev->req_workqueue, &hdev->power_on); 3190 3191 return id; 3192 3193 err_wqueue: 3194 destroy_workqueue(hdev->workqueue); 3195 destroy_workqueue(hdev->req_workqueue); 3196 err: 3197 ida_simple_remove(&hci_index_ida, hdev->id); 3198 3199 return error; 3200 } 3201 EXPORT_SYMBOL(hci_register_dev); 3202 3203 /* Unregister HCI device */ 3204 void hci_unregister_dev(struct hci_dev *hdev) 3205 { 3206 int id; 3207 3208 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 3209 3210 hci_dev_set_flag(hdev, HCI_UNREGISTER); 3211 3212 id = hdev->id; 3213 3214 write_lock(&hci_dev_list_lock); 3215 list_del(&hdev->list); 3216 write_unlock(&hci_dev_list_lock); 3217 3218 hci_dev_do_close(hdev); 3219 3220 cancel_work_sync(&hdev->power_on); 3221 3222 if (!test_bit(HCI_INIT, &hdev->flags) && 3223 !hci_dev_test_flag(hdev, HCI_SETUP) && 3224 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 3225 hci_dev_lock(hdev); 3226 mgmt_index_removed(hdev); 3227 hci_dev_unlock(hdev); 3228 } 3229 3230 /* mgmt_index_removed should take care of emptying the 3231 * pending list */ 3232 BUG_ON(!list_empty(&hdev->mgmt_pending)); 3233 3234 hci_notify(hdev, HCI_DEV_UNREG); 3235 3236 if (hdev->rfkill) { 3237 rfkill_unregister(hdev->rfkill); 3238 rfkill_destroy(hdev->rfkill); 3239 } 3240 3241 device_del(&hdev->dev); 3242 3243 debugfs_remove_recursive(hdev->debugfs); 3244 3245 destroy_workqueue(hdev->workqueue); 3246 destroy_workqueue(hdev->req_workqueue); 3247 3248 hci_dev_lock(hdev); 3249 hci_bdaddr_list_clear(&hdev->blacklist); 3250 hci_bdaddr_list_clear(&hdev->whitelist); 3251 hci_uuids_clear(hdev); 3252 hci_link_keys_clear(hdev); 3253 hci_smp_ltks_clear(hdev); 3254 hci_smp_irks_clear(hdev); 3255 hci_remote_oob_data_clear(hdev); 3256 hci_bdaddr_list_clear(&hdev->le_white_list); 3257 hci_conn_params_clear_all(hdev); 3258 hci_discovery_filter_clear(hdev); 3259 hci_dev_unlock(hdev); 3260 3261 hci_dev_put(hdev); 3262 3263 ida_simple_remove(&hci_index_ida, id); 3264 } 3265 EXPORT_SYMBOL(hci_unregister_dev); 3266 3267 /* Suspend HCI device */ 3268 int hci_suspend_dev(struct hci_dev *hdev) 3269 { 3270 hci_notify(hdev, HCI_DEV_SUSPEND); 3271 return 0; 3272 } 3273 EXPORT_SYMBOL(hci_suspend_dev); 3274 3275 /* Resume HCI device */ 3276 int hci_resume_dev(struct hci_dev *hdev) 3277 { 3278 hci_notify(hdev, HCI_DEV_RESUME); 3279 return 0; 3280 } 3281 EXPORT_SYMBOL(hci_resume_dev); 3282 3283 /* Reset HCI device */ 3284 int hci_reset_dev(struct hci_dev *hdev) 3285 { 3286 const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 }; 3287 struct sk_buff *skb; 3288 3289 skb = bt_skb_alloc(3, GFP_ATOMIC); 3290 if (!skb) 3291 return -ENOMEM; 3292 3293 bt_cb(skb)->pkt_type = HCI_EVENT_PKT; 3294 memcpy(skb_put(skb, 3), hw_err, 3); 3295 3296 /* Send Hardware Error to upper stack */ 3297 return hci_recv_frame(hdev, skb); 3298 } 3299 EXPORT_SYMBOL(hci_reset_dev); 3300 3301 /* Receive frame from HCI drivers */ 3302 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb) 3303 { 3304 if (!hdev || (!test_bit(HCI_UP, &hdev->flags) 3305 && !test_bit(HCI_INIT, &hdev->flags))) { 3306 kfree_skb(skb); 3307 return -ENXIO; 3308 } 3309 3310 /* Incoming skb */ 3311 bt_cb(skb)->incoming = 1; 3312 3313 /* Time stamp */ 3314 __net_timestamp(skb); 3315 3316 skb_queue_tail(&hdev->rx_q, skb); 3317 queue_work(hdev->workqueue, &hdev->rx_work); 3318 3319 return 0; 3320 } 3321 EXPORT_SYMBOL(hci_recv_frame); 3322 3323 /* ---- Interface to upper protocols ---- */ 3324 3325 int hci_register_cb(struct hci_cb *cb) 3326 { 3327 BT_DBG("%p name %s", cb, cb->name); 3328 3329 mutex_lock(&hci_cb_list_lock); 3330 list_add_tail(&cb->list, &hci_cb_list); 3331 mutex_unlock(&hci_cb_list_lock); 3332 3333 return 0; 3334 } 3335 EXPORT_SYMBOL(hci_register_cb); 3336 3337 int hci_unregister_cb(struct hci_cb *cb) 3338 { 3339 BT_DBG("%p name %s", cb, cb->name); 3340 3341 mutex_lock(&hci_cb_list_lock); 3342 list_del(&cb->list); 3343 mutex_unlock(&hci_cb_list_lock); 3344 3345 return 0; 3346 } 3347 EXPORT_SYMBOL(hci_unregister_cb); 3348 3349 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb) 3350 { 3351 int err; 3352 3353 BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len); 3354 3355 /* Time stamp */ 3356 __net_timestamp(skb); 3357 3358 /* Send copy to monitor */ 3359 hci_send_to_monitor(hdev, skb); 3360 3361 if (atomic_read(&hdev->promisc)) { 3362 /* Send copy to the sockets */ 3363 hci_send_to_sock(hdev, skb); 3364 } 3365 3366 /* Get rid of skb owner, prior to sending to the driver. */ 3367 skb_orphan(skb); 3368 3369 err = hdev->send(hdev, skb); 3370 if (err < 0) { 3371 BT_ERR("%s sending frame failed (%d)", hdev->name, err); 3372 kfree_skb(skb); 3373 } 3374 } 3375 3376 /* Send HCI command */ 3377 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, 3378 const void *param) 3379 { 3380 struct sk_buff *skb; 3381 3382 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen); 3383 3384 skb = hci_prepare_cmd(hdev, opcode, plen, param); 3385 if (!skb) { 3386 BT_ERR("%s no memory for command", hdev->name); 3387 return -ENOMEM; 3388 } 3389 3390 /* Stand-alone HCI commands must be flagged as 3391 * single-command requests. 3392 */ 3393 bt_cb(skb)->req.start = true; 3394 3395 skb_queue_tail(&hdev->cmd_q, skb); 3396 queue_work(hdev->workqueue, &hdev->cmd_work); 3397 3398 return 0; 3399 } 3400 3401 /* Get data from the previously sent command */ 3402 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode) 3403 { 3404 struct hci_command_hdr *hdr; 3405 3406 if (!hdev->sent_cmd) 3407 return NULL; 3408 3409 hdr = (void *) hdev->sent_cmd->data; 3410 3411 if (hdr->opcode != cpu_to_le16(opcode)) 3412 return NULL; 3413 3414 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode); 3415 3416 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE; 3417 } 3418 3419 /* Send ACL data */ 3420 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags) 3421 { 3422 struct hci_acl_hdr *hdr; 3423 int len = skb->len; 3424 3425 skb_push(skb, HCI_ACL_HDR_SIZE); 3426 skb_reset_transport_header(skb); 3427 hdr = (struct hci_acl_hdr *)skb_transport_header(skb); 3428 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags)); 3429 hdr->dlen = cpu_to_le16(len); 3430 } 3431 3432 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue, 3433 struct sk_buff *skb, __u16 flags) 3434 { 3435 struct hci_conn *conn = chan->conn; 3436 struct hci_dev *hdev = conn->hdev; 3437 struct sk_buff *list; 3438 3439 skb->len = skb_headlen(skb); 3440 skb->data_len = 0; 3441 3442 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT; 3443 3444 switch (hdev->dev_type) { 3445 case HCI_BREDR: 3446 hci_add_acl_hdr(skb, conn->handle, flags); 3447 break; 3448 case HCI_AMP: 3449 hci_add_acl_hdr(skb, chan->handle, flags); 3450 break; 3451 default: 3452 BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type); 3453 return; 3454 } 3455 3456 list = skb_shinfo(skb)->frag_list; 3457 if (!list) { 3458 /* Non fragmented */ 3459 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len); 3460 3461 skb_queue_tail(queue, skb); 3462 } else { 3463 /* Fragmented */ 3464 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3465 3466 skb_shinfo(skb)->frag_list = NULL; 3467 3468 /* Queue all fragments atomically. We need to use spin_lock_bh 3469 * here because of 6LoWPAN links, as there this function is 3470 * called from softirq and using normal spin lock could cause 3471 * deadlocks. 3472 */ 3473 spin_lock_bh(&queue->lock); 3474 3475 __skb_queue_tail(queue, skb); 3476 3477 flags &= ~ACL_START; 3478 flags |= ACL_CONT; 3479 do { 3480 skb = list; list = list->next; 3481 3482 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT; 3483 hci_add_acl_hdr(skb, conn->handle, flags); 3484 3485 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3486 3487 __skb_queue_tail(queue, skb); 3488 } while (list); 3489 3490 spin_unlock_bh(&queue->lock); 3491 } 3492 } 3493 3494 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags) 3495 { 3496 struct hci_dev *hdev = chan->conn->hdev; 3497 3498 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags); 3499 3500 hci_queue_acl(chan, &chan->data_q, skb, flags); 3501 3502 queue_work(hdev->workqueue, &hdev->tx_work); 3503 } 3504 3505 /* Send SCO data */ 3506 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb) 3507 { 3508 struct hci_dev *hdev = conn->hdev; 3509 struct hci_sco_hdr hdr; 3510 3511 BT_DBG("%s len %d", hdev->name, skb->len); 3512 3513 hdr.handle = cpu_to_le16(conn->handle); 3514 hdr.dlen = skb->len; 3515 3516 skb_push(skb, HCI_SCO_HDR_SIZE); 3517 skb_reset_transport_header(skb); 3518 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE); 3519 3520 bt_cb(skb)->pkt_type = HCI_SCODATA_PKT; 3521 3522 skb_queue_tail(&conn->data_q, skb); 3523 queue_work(hdev->workqueue, &hdev->tx_work); 3524 } 3525 3526 /* ---- HCI TX task (outgoing data) ---- */ 3527 3528 /* HCI Connection scheduler */ 3529 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, 3530 int *quote) 3531 { 3532 struct hci_conn_hash *h = &hdev->conn_hash; 3533 struct hci_conn *conn = NULL, *c; 3534 unsigned int num = 0, min = ~0; 3535 3536 /* We don't have to lock device here. Connections are always 3537 * added and removed with TX task disabled. */ 3538 3539 rcu_read_lock(); 3540 3541 list_for_each_entry_rcu(c, &h->list, list) { 3542 if (c->type != type || skb_queue_empty(&c->data_q)) 3543 continue; 3544 3545 if (c->state != BT_CONNECTED && c->state != BT_CONFIG) 3546 continue; 3547 3548 num++; 3549 3550 if (c->sent < min) { 3551 min = c->sent; 3552 conn = c; 3553 } 3554 3555 if (hci_conn_num(hdev, type) == num) 3556 break; 3557 } 3558 3559 rcu_read_unlock(); 3560 3561 if (conn) { 3562 int cnt, q; 3563 3564 switch (conn->type) { 3565 case ACL_LINK: 3566 cnt = hdev->acl_cnt; 3567 break; 3568 case SCO_LINK: 3569 case ESCO_LINK: 3570 cnt = hdev->sco_cnt; 3571 break; 3572 case LE_LINK: 3573 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 3574 break; 3575 default: 3576 cnt = 0; 3577 BT_ERR("Unknown link type"); 3578 } 3579 3580 q = cnt / num; 3581 *quote = q ? q : 1; 3582 } else 3583 *quote = 0; 3584 3585 BT_DBG("conn %p quote %d", conn, *quote); 3586 return conn; 3587 } 3588 3589 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type) 3590 { 3591 struct hci_conn_hash *h = &hdev->conn_hash; 3592 struct hci_conn *c; 3593 3594 BT_ERR("%s link tx timeout", hdev->name); 3595 3596 rcu_read_lock(); 3597 3598 /* Kill stalled connections */ 3599 list_for_each_entry_rcu(c, &h->list, list) { 3600 if (c->type == type && c->sent) { 3601 BT_ERR("%s killing stalled connection %pMR", 3602 hdev->name, &c->dst); 3603 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM); 3604 } 3605 } 3606 3607 rcu_read_unlock(); 3608 } 3609 3610 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type, 3611 int *quote) 3612 { 3613 struct hci_conn_hash *h = &hdev->conn_hash; 3614 struct hci_chan *chan = NULL; 3615 unsigned int num = 0, min = ~0, cur_prio = 0; 3616 struct hci_conn *conn; 3617 int cnt, q, conn_num = 0; 3618 3619 BT_DBG("%s", hdev->name); 3620 3621 rcu_read_lock(); 3622 3623 list_for_each_entry_rcu(conn, &h->list, list) { 3624 struct hci_chan *tmp; 3625 3626 if (conn->type != type) 3627 continue; 3628 3629 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3630 continue; 3631 3632 conn_num++; 3633 3634 list_for_each_entry_rcu(tmp, &conn->chan_list, list) { 3635 struct sk_buff *skb; 3636 3637 if (skb_queue_empty(&tmp->data_q)) 3638 continue; 3639 3640 skb = skb_peek(&tmp->data_q); 3641 if (skb->priority < cur_prio) 3642 continue; 3643 3644 if (skb->priority > cur_prio) { 3645 num = 0; 3646 min = ~0; 3647 cur_prio = skb->priority; 3648 } 3649 3650 num++; 3651 3652 if (conn->sent < min) { 3653 min = conn->sent; 3654 chan = tmp; 3655 } 3656 } 3657 3658 if (hci_conn_num(hdev, type) == conn_num) 3659 break; 3660 } 3661 3662 rcu_read_unlock(); 3663 3664 if (!chan) 3665 return NULL; 3666 3667 switch (chan->conn->type) { 3668 case ACL_LINK: 3669 cnt = hdev->acl_cnt; 3670 break; 3671 case AMP_LINK: 3672 cnt = hdev->block_cnt; 3673 break; 3674 case SCO_LINK: 3675 case ESCO_LINK: 3676 cnt = hdev->sco_cnt; 3677 break; 3678 case LE_LINK: 3679 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 3680 break; 3681 default: 3682 cnt = 0; 3683 BT_ERR("Unknown link type"); 3684 } 3685 3686 q = cnt / num; 3687 *quote = q ? q : 1; 3688 BT_DBG("chan %p quote %d", chan, *quote); 3689 return chan; 3690 } 3691 3692 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type) 3693 { 3694 struct hci_conn_hash *h = &hdev->conn_hash; 3695 struct hci_conn *conn; 3696 int num = 0; 3697 3698 BT_DBG("%s", hdev->name); 3699 3700 rcu_read_lock(); 3701 3702 list_for_each_entry_rcu(conn, &h->list, list) { 3703 struct hci_chan *chan; 3704 3705 if (conn->type != type) 3706 continue; 3707 3708 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3709 continue; 3710 3711 num++; 3712 3713 list_for_each_entry_rcu(chan, &conn->chan_list, list) { 3714 struct sk_buff *skb; 3715 3716 if (chan->sent) { 3717 chan->sent = 0; 3718 continue; 3719 } 3720 3721 if (skb_queue_empty(&chan->data_q)) 3722 continue; 3723 3724 skb = skb_peek(&chan->data_q); 3725 if (skb->priority >= HCI_PRIO_MAX - 1) 3726 continue; 3727 3728 skb->priority = HCI_PRIO_MAX - 1; 3729 3730 BT_DBG("chan %p skb %p promoted to %d", chan, skb, 3731 skb->priority); 3732 } 3733 3734 if (hci_conn_num(hdev, type) == num) 3735 break; 3736 } 3737 3738 rcu_read_unlock(); 3739 3740 } 3741 3742 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb) 3743 { 3744 /* Calculate count of blocks used by this packet */ 3745 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len); 3746 } 3747 3748 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt) 3749 { 3750 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 3751 /* ACL tx timeout must be longer than maximum 3752 * link supervision timeout (40.9 seconds) */ 3753 if (!cnt && time_after(jiffies, hdev->acl_last_tx + 3754 HCI_ACL_TX_TIMEOUT)) 3755 hci_link_tx_to(hdev, ACL_LINK); 3756 } 3757 } 3758 3759 static void hci_sched_acl_pkt(struct hci_dev *hdev) 3760 { 3761 unsigned int cnt = hdev->acl_cnt; 3762 struct hci_chan *chan; 3763 struct sk_buff *skb; 3764 int quote; 3765 3766 __check_timeout(hdev, cnt); 3767 3768 while (hdev->acl_cnt && 3769 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) { 3770 u32 priority = (skb_peek(&chan->data_q))->priority; 3771 while (quote-- && (skb = skb_peek(&chan->data_q))) { 3772 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 3773 skb->len, skb->priority); 3774 3775 /* Stop if priority has changed */ 3776 if (skb->priority < priority) 3777 break; 3778 3779 skb = skb_dequeue(&chan->data_q); 3780 3781 hci_conn_enter_active_mode(chan->conn, 3782 bt_cb(skb)->force_active); 3783 3784 hci_send_frame(hdev, skb); 3785 hdev->acl_last_tx = jiffies; 3786 3787 hdev->acl_cnt--; 3788 chan->sent++; 3789 chan->conn->sent++; 3790 } 3791 } 3792 3793 if (cnt != hdev->acl_cnt) 3794 hci_prio_recalculate(hdev, ACL_LINK); 3795 } 3796 3797 static void hci_sched_acl_blk(struct hci_dev *hdev) 3798 { 3799 unsigned int cnt = hdev->block_cnt; 3800 struct hci_chan *chan; 3801 struct sk_buff *skb; 3802 int quote; 3803 u8 type; 3804 3805 __check_timeout(hdev, cnt); 3806 3807 BT_DBG("%s", hdev->name); 3808 3809 if (hdev->dev_type == HCI_AMP) 3810 type = AMP_LINK; 3811 else 3812 type = ACL_LINK; 3813 3814 while (hdev->block_cnt > 0 && 3815 (chan = hci_chan_sent(hdev, type, "e))) { 3816 u32 priority = (skb_peek(&chan->data_q))->priority; 3817 while (quote > 0 && (skb = skb_peek(&chan->data_q))) { 3818 int blocks; 3819 3820 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 3821 skb->len, skb->priority); 3822 3823 /* Stop if priority has changed */ 3824 if (skb->priority < priority) 3825 break; 3826 3827 skb = skb_dequeue(&chan->data_q); 3828 3829 blocks = __get_blocks(hdev, skb); 3830 if (blocks > hdev->block_cnt) 3831 return; 3832 3833 hci_conn_enter_active_mode(chan->conn, 3834 bt_cb(skb)->force_active); 3835 3836 hci_send_frame(hdev, skb); 3837 hdev->acl_last_tx = jiffies; 3838 3839 hdev->block_cnt -= blocks; 3840 quote -= blocks; 3841 3842 chan->sent += blocks; 3843 chan->conn->sent += blocks; 3844 } 3845 } 3846 3847 if (cnt != hdev->block_cnt) 3848 hci_prio_recalculate(hdev, type); 3849 } 3850 3851 static void hci_sched_acl(struct hci_dev *hdev) 3852 { 3853 BT_DBG("%s", hdev->name); 3854 3855 /* No ACL link over BR/EDR controller */ 3856 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_BREDR) 3857 return; 3858 3859 /* No AMP link over AMP controller */ 3860 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP) 3861 return; 3862 3863 switch (hdev->flow_ctl_mode) { 3864 case HCI_FLOW_CTL_MODE_PACKET_BASED: 3865 hci_sched_acl_pkt(hdev); 3866 break; 3867 3868 case HCI_FLOW_CTL_MODE_BLOCK_BASED: 3869 hci_sched_acl_blk(hdev); 3870 break; 3871 } 3872 } 3873 3874 /* Schedule SCO */ 3875 static void hci_sched_sco(struct hci_dev *hdev) 3876 { 3877 struct hci_conn *conn; 3878 struct sk_buff *skb; 3879 int quote; 3880 3881 BT_DBG("%s", hdev->name); 3882 3883 if (!hci_conn_num(hdev, SCO_LINK)) 3884 return; 3885 3886 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) { 3887 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 3888 BT_DBG("skb %p len %d", skb, skb->len); 3889 hci_send_frame(hdev, skb); 3890 3891 conn->sent++; 3892 if (conn->sent == ~0) 3893 conn->sent = 0; 3894 } 3895 } 3896 } 3897 3898 static void hci_sched_esco(struct hci_dev *hdev) 3899 { 3900 struct hci_conn *conn; 3901 struct sk_buff *skb; 3902 int quote; 3903 3904 BT_DBG("%s", hdev->name); 3905 3906 if (!hci_conn_num(hdev, ESCO_LINK)) 3907 return; 3908 3909 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, 3910 "e))) { 3911 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 3912 BT_DBG("skb %p len %d", skb, skb->len); 3913 hci_send_frame(hdev, skb); 3914 3915 conn->sent++; 3916 if (conn->sent == ~0) 3917 conn->sent = 0; 3918 } 3919 } 3920 } 3921 3922 static void hci_sched_le(struct hci_dev *hdev) 3923 { 3924 struct hci_chan *chan; 3925 struct sk_buff *skb; 3926 int quote, cnt, tmp; 3927 3928 BT_DBG("%s", hdev->name); 3929 3930 if (!hci_conn_num(hdev, LE_LINK)) 3931 return; 3932 3933 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 3934 /* LE tx timeout must be longer than maximum 3935 * link supervision timeout (40.9 seconds) */ 3936 if (!hdev->le_cnt && hdev->le_pkts && 3937 time_after(jiffies, hdev->le_last_tx + HZ * 45)) 3938 hci_link_tx_to(hdev, LE_LINK); 3939 } 3940 3941 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt; 3942 tmp = cnt; 3943 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) { 3944 u32 priority = (skb_peek(&chan->data_q))->priority; 3945 while (quote-- && (skb = skb_peek(&chan->data_q))) { 3946 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 3947 skb->len, skb->priority); 3948 3949 /* Stop if priority has changed */ 3950 if (skb->priority < priority) 3951 break; 3952 3953 skb = skb_dequeue(&chan->data_q); 3954 3955 hci_send_frame(hdev, skb); 3956 hdev->le_last_tx = jiffies; 3957 3958 cnt--; 3959 chan->sent++; 3960 chan->conn->sent++; 3961 } 3962 } 3963 3964 if (hdev->le_pkts) 3965 hdev->le_cnt = cnt; 3966 else 3967 hdev->acl_cnt = cnt; 3968 3969 if (cnt != tmp) 3970 hci_prio_recalculate(hdev, LE_LINK); 3971 } 3972 3973 static void hci_tx_work(struct work_struct *work) 3974 { 3975 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work); 3976 struct sk_buff *skb; 3977 3978 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt, 3979 hdev->sco_cnt, hdev->le_cnt); 3980 3981 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 3982 /* Schedule queues and send stuff to HCI driver */ 3983 hci_sched_acl(hdev); 3984 hci_sched_sco(hdev); 3985 hci_sched_esco(hdev); 3986 hci_sched_le(hdev); 3987 } 3988 3989 /* Send next queued raw (unknown type) packet */ 3990 while ((skb = skb_dequeue(&hdev->raw_q))) 3991 hci_send_frame(hdev, skb); 3992 } 3993 3994 /* ----- HCI RX task (incoming data processing) ----- */ 3995 3996 /* ACL data packet */ 3997 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb) 3998 { 3999 struct hci_acl_hdr *hdr = (void *) skb->data; 4000 struct hci_conn *conn; 4001 __u16 handle, flags; 4002 4003 skb_pull(skb, HCI_ACL_HDR_SIZE); 4004 4005 handle = __le16_to_cpu(hdr->handle); 4006 flags = hci_flags(handle); 4007 handle = hci_handle(handle); 4008 4009 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len, 4010 handle, flags); 4011 4012 hdev->stat.acl_rx++; 4013 4014 hci_dev_lock(hdev); 4015 conn = hci_conn_hash_lookup_handle(hdev, handle); 4016 hci_dev_unlock(hdev); 4017 4018 if (conn) { 4019 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF); 4020 4021 /* Send to upper protocol */ 4022 l2cap_recv_acldata(conn, skb, flags); 4023 return; 4024 } else { 4025 BT_ERR("%s ACL packet for unknown connection handle %d", 4026 hdev->name, handle); 4027 } 4028 4029 kfree_skb(skb); 4030 } 4031 4032 /* SCO data packet */ 4033 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb) 4034 { 4035 struct hci_sco_hdr *hdr = (void *) skb->data; 4036 struct hci_conn *conn; 4037 __u16 handle; 4038 4039 skb_pull(skb, HCI_SCO_HDR_SIZE); 4040 4041 handle = __le16_to_cpu(hdr->handle); 4042 4043 BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle); 4044 4045 hdev->stat.sco_rx++; 4046 4047 hci_dev_lock(hdev); 4048 conn = hci_conn_hash_lookup_handle(hdev, handle); 4049 hci_dev_unlock(hdev); 4050 4051 if (conn) { 4052 /* Send to upper protocol */ 4053 sco_recv_scodata(conn, skb); 4054 return; 4055 } else { 4056 BT_ERR("%s SCO packet for unknown connection handle %d", 4057 hdev->name, handle); 4058 } 4059 4060 kfree_skb(skb); 4061 } 4062 4063 static bool hci_req_is_complete(struct hci_dev *hdev) 4064 { 4065 struct sk_buff *skb; 4066 4067 skb = skb_peek(&hdev->cmd_q); 4068 if (!skb) 4069 return true; 4070 4071 return bt_cb(skb)->req.start; 4072 } 4073 4074 static void hci_resend_last(struct hci_dev *hdev) 4075 { 4076 struct hci_command_hdr *sent; 4077 struct sk_buff *skb; 4078 u16 opcode; 4079 4080 if (!hdev->sent_cmd) 4081 return; 4082 4083 sent = (void *) hdev->sent_cmd->data; 4084 opcode = __le16_to_cpu(sent->opcode); 4085 if (opcode == HCI_OP_RESET) 4086 return; 4087 4088 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL); 4089 if (!skb) 4090 return; 4091 4092 skb_queue_head(&hdev->cmd_q, skb); 4093 queue_work(hdev->workqueue, &hdev->cmd_work); 4094 } 4095 4096 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status, 4097 hci_req_complete_t *req_complete, 4098 hci_req_complete_skb_t *req_complete_skb) 4099 { 4100 struct sk_buff *skb; 4101 unsigned long flags; 4102 4103 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status); 4104 4105 /* If the completed command doesn't match the last one that was 4106 * sent we need to do special handling of it. 4107 */ 4108 if (!hci_sent_cmd_data(hdev, opcode)) { 4109 /* Some CSR based controllers generate a spontaneous 4110 * reset complete event during init and any pending 4111 * command will never be completed. In such a case we 4112 * need to resend whatever was the last sent 4113 * command. 4114 */ 4115 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET) 4116 hci_resend_last(hdev); 4117 4118 return; 4119 } 4120 4121 /* If the command succeeded and there's still more commands in 4122 * this request the request is not yet complete. 4123 */ 4124 if (!status && !hci_req_is_complete(hdev)) 4125 return; 4126 4127 /* If this was the last command in a request the complete 4128 * callback would be found in hdev->sent_cmd instead of the 4129 * command queue (hdev->cmd_q). 4130 */ 4131 if (bt_cb(hdev->sent_cmd)->req.complete) { 4132 *req_complete = bt_cb(hdev->sent_cmd)->req.complete; 4133 return; 4134 } 4135 4136 if (bt_cb(hdev->sent_cmd)->req.complete_skb) { 4137 *req_complete_skb = bt_cb(hdev->sent_cmd)->req.complete_skb; 4138 return; 4139 } 4140 4141 /* Remove all pending commands belonging to this request */ 4142 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 4143 while ((skb = __skb_dequeue(&hdev->cmd_q))) { 4144 if (bt_cb(skb)->req.start) { 4145 __skb_queue_head(&hdev->cmd_q, skb); 4146 break; 4147 } 4148 4149 *req_complete = bt_cb(skb)->req.complete; 4150 *req_complete_skb = bt_cb(skb)->req.complete_skb; 4151 kfree_skb(skb); 4152 } 4153 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 4154 } 4155 4156 static void hci_rx_work(struct work_struct *work) 4157 { 4158 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work); 4159 struct sk_buff *skb; 4160 4161 BT_DBG("%s", hdev->name); 4162 4163 while ((skb = skb_dequeue(&hdev->rx_q))) { 4164 /* Send copy to monitor */ 4165 hci_send_to_monitor(hdev, skb); 4166 4167 if (atomic_read(&hdev->promisc)) { 4168 /* Send copy to the sockets */ 4169 hci_send_to_sock(hdev, skb); 4170 } 4171 4172 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4173 kfree_skb(skb); 4174 continue; 4175 } 4176 4177 if (test_bit(HCI_INIT, &hdev->flags)) { 4178 /* Don't process data packets in this states. */ 4179 switch (bt_cb(skb)->pkt_type) { 4180 case HCI_ACLDATA_PKT: 4181 case HCI_SCODATA_PKT: 4182 kfree_skb(skb); 4183 continue; 4184 } 4185 } 4186 4187 /* Process frame */ 4188 switch (bt_cb(skb)->pkt_type) { 4189 case HCI_EVENT_PKT: 4190 BT_DBG("%s Event packet", hdev->name); 4191 hci_event_packet(hdev, skb); 4192 break; 4193 4194 case HCI_ACLDATA_PKT: 4195 BT_DBG("%s ACL data packet", hdev->name); 4196 hci_acldata_packet(hdev, skb); 4197 break; 4198 4199 case HCI_SCODATA_PKT: 4200 BT_DBG("%s SCO data packet", hdev->name); 4201 hci_scodata_packet(hdev, skb); 4202 break; 4203 4204 default: 4205 kfree_skb(skb); 4206 break; 4207 } 4208 } 4209 } 4210 4211 static void hci_cmd_work(struct work_struct *work) 4212 { 4213 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work); 4214 struct sk_buff *skb; 4215 4216 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name, 4217 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q)); 4218 4219 /* Send queued commands */ 4220 if (atomic_read(&hdev->cmd_cnt)) { 4221 skb = skb_dequeue(&hdev->cmd_q); 4222 if (!skb) 4223 return; 4224 4225 kfree_skb(hdev->sent_cmd); 4226 4227 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL); 4228 if (hdev->sent_cmd) { 4229 atomic_dec(&hdev->cmd_cnt); 4230 hci_send_frame(hdev, skb); 4231 if (test_bit(HCI_RESET, &hdev->flags)) 4232 cancel_delayed_work(&hdev->cmd_timer); 4233 else 4234 schedule_delayed_work(&hdev->cmd_timer, 4235 HCI_CMD_TIMEOUT); 4236 } else { 4237 skb_queue_head(&hdev->cmd_q, skb); 4238 queue_work(hdev->workqueue, &hdev->cmd_work); 4239 } 4240 } 4241 } 4242