1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (C) 2000-2001 Qualcomm Incorporated 4 Copyright (C) 2011 ProFUSION Embedded Systems 5 6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License version 2 as 10 published by the Free Software Foundation; 11 12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 23 SOFTWARE IS DISCLAIMED. 24 */ 25 26 /* Bluetooth HCI core. */ 27 28 #include <linux/export.h> 29 #include <linux/rfkill.h> 30 #include <linux/debugfs.h> 31 #include <linux/crypto.h> 32 #include <linux/kcov.h> 33 #include <linux/property.h> 34 #include <linux/suspend.h> 35 #include <linux/wait.h> 36 #include <asm/unaligned.h> 37 38 #include <net/bluetooth/bluetooth.h> 39 #include <net/bluetooth/hci_core.h> 40 #include <net/bluetooth/l2cap.h> 41 #include <net/bluetooth/mgmt.h> 42 43 #include "hci_request.h" 44 #include "hci_debugfs.h" 45 #include "smp.h" 46 #include "leds.h" 47 #include "msft.h" 48 #include "aosp.h" 49 #include "hci_codec.h" 50 51 static void hci_rx_work(struct work_struct *work); 52 static void hci_cmd_work(struct work_struct *work); 53 static void hci_tx_work(struct work_struct *work); 54 55 /* HCI device list */ 56 LIST_HEAD(hci_dev_list); 57 DEFINE_RWLOCK(hci_dev_list_lock); 58 59 /* HCI callback list */ 60 LIST_HEAD(hci_cb_list); 61 DEFINE_MUTEX(hci_cb_list_lock); 62 63 /* HCI ID Numbering */ 64 static DEFINE_IDA(hci_index_ida); 65 66 static int hci_scan_req(struct hci_request *req, unsigned long opt) 67 { 68 __u8 scan = opt; 69 70 BT_DBG("%s %x", req->hdev->name, scan); 71 72 /* Inquiry and Page scans */ 73 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); 74 return 0; 75 } 76 77 static int hci_auth_req(struct hci_request *req, unsigned long opt) 78 { 79 __u8 auth = opt; 80 81 BT_DBG("%s %x", req->hdev->name, auth); 82 83 /* Authentication */ 84 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth); 85 return 0; 86 } 87 88 static int hci_encrypt_req(struct hci_request *req, unsigned long opt) 89 { 90 __u8 encrypt = opt; 91 92 BT_DBG("%s %x", req->hdev->name, encrypt); 93 94 /* Encryption */ 95 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt); 96 return 0; 97 } 98 99 static int hci_linkpol_req(struct hci_request *req, unsigned long opt) 100 { 101 __le16 policy = cpu_to_le16(opt); 102 103 BT_DBG("%s %x", req->hdev->name, policy); 104 105 /* Default link policy */ 106 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy); 107 return 0; 108 } 109 110 /* Get HCI device by index. 111 * Device is held on return. */ 112 struct hci_dev *hci_dev_get(int index) 113 { 114 struct hci_dev *hdev = NULL, *d; 115 116 BT_DBG("%d", index); 117 118 if (index < 0) 119 return NULL; 120 121 read_lock(&hci_dev_list_lock); 122 list_for_each_entry(d, &hci_dev_list, list) { 123 if (d->id == index) { 124 hdev = hci_dev_hold(d); 125 break; 126 } 127 } 128 read_unlock(&hci_dev_list_lock); 129 return hdev; 130 } 131 132 /* ---- Inquiry support ---- */ 133 134 bool hci_discovery_active(struct hci_dev *hdev) 135 { 136 struct discovery_state *discov = &hdev->discovery; 137 138 switch (discov->state) { 139 case DISCOVERY_FINDING: 140 case DISCOVERY_RESOLVING: 141 return true; 142 143 default: 144 return false; 145 } 146 } 147 148 void hci_discovery_set_state(struct hci_dev *hdev, int state) 149 { 150 int old_state = hdev->discovery.state; 151 152 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state); 153 154 if (old_state == state) 155 return; 156 157 hdev->discovery.state = state; 158 159 switch (state) { 160 case DISCOVERY_STOPPED: 161 hci_update_passive_scan(hdev); 162 163 if (old_state != DISCOVERY_STARTING) 164 mgmt_discovering(hdev, 0); 165 break; 166 case DISCOVERY_STARTING: 167 break; 168 case DISCOVERY_FINDING: 169 mgmt_discovering(hdev, 1); 170 break; 171 case DISCOVERY_RESOLVING: 172 break; 173 case DISCOVERY_STOPPING: 174 break; 175 } 176 } 177 178 void hci_inquiry_cache_flush(struct hci_dev *hdev) 179 { 180 struct discovery_state *cache = &hdev->discovery; 181 struct inquiry_entry *p, *n; 182 183 list_for_each_entry_safe(p, n, &cache->all, all) { 184 list_del(&p->all); 185 kfree(p); 186 } 187 188 INIT_LIST_HEAD(&cache->unknown); 189 INIT_LIST_HEAD(&cache->resolve); 190 } 191 192 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, 193 bdaddr_t *bdaddr) 194 { 195 struct discovery_state *cache = &hdev->discovery; 196 struct inquiry_entry *e; 197 198 BT_DBG("cache %p, %pMR", cache, bdaddr); 199 200 list_for_each_entry(e, &cache->all, all) { 201 if (!bacmp(&e->data.bdaddr, bdaddr)) 202 return e; 203 } 204 205 return NULL; 206 } 207 208 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, 209 bdaddr_t *bdaddr) 210 { 211 struct discovery_state *cache = &hdev->discovery; 212 struct inquiry_entry *e; 213 214 BT_DBG("cache %p, %pMR", cache, bdaddr); 215 216 list_for_each_entry(e, &cache->unknown, list) { 217 if (!bacmp(&e->data.bdaddr, bdaddr)) 218 return e; 219 } 220 221 return NULL; 222 } 223 224 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, 225 bdaddr_t *bdaddr, 226 int state) 227 { 228 struct discovery_state *cache = &hdev->discovery; 229 struct inquiry_entry *e; 230 231 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state); 232 233 list_for_each_entry(e, &cache->resolve, list) { 234 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state) 235 return e; 236 if (!bacmp(&e->data.bdaddr, bdaddr)) 237 return e; 238 } 239 240 return NULL; 241 } 242 243 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, 244 struct inquiry_entry *ie) 245 { 246 struct discovery_state *cache = &hdev->discovery; 247 struct list_head *pos = &cache->resolve; 248 struct inquiry_entry *p; 249 250 list_del(&ie->list); 251 252 list_for_each_entry(p, &cache->resolve, list) { 253 if (p->name_state != NAME_PENDING && 254 abs(p->data.rssi) >= abs(ie->data.rssi)) 255 break; 256 pos = &p->list; 257 } 258 259 list_add(&ie->list, pos); 260 } 261 262 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, 263 bool name_known) 264 { 265 struct discovery_state *cache = &hdev->discovery; 266 struct inquiry_entry *ie; 267 u32 flags = 0; 268 269 BT_DBG("cache %p, %pMR", cache, &data->bdaddr); 270 271 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR); 272 273 if (!data->ssp_mode) 274 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 275 276 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr); 277 if (ie) { 278 if (!ie->data.ssp_mode) 279 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 280 281 if (ie->name_state == NAME_NEEDED && 282 data->rssi != ie->data.rssi) { 283 ie->data.rssi = data->rssi; 284 hci_inquiry_cache_update_resolve(hdev, ie); 285 } 286 287 goto update; 288 } 289 290 /* Entry not in the cache. Add new one. */ 291 ie = kzalloc(sizeof(*ie), GFP_KERNEL); 292 if (!ie) { 293 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 294 goto done; 295 } 296 297 list_add(&ie->all, &cache->all); 298 299 if (name_known) { 300 ie->name_state = NAME_KNOWN; 301 } else { 302 ie->name_state = NAME_NOT_KNOWN; 303 list_add(&ie->list, &cache->unknown); 304 } 305 306 update: 307 if (name_known && ie->name_state != NAME_KNOWN && 308 ie->name_state != NAME_PENDING) { 309 ie->name_state = NAME_KNOWN; 310 list_del(&ie->list); 311 } 312 313 memcpy(&ie->data, data, sizeof(*data)); 314 ie->timestamp = jiffies; 315 cache->timestamp = jiffies; 316 317 if (ie->name_state == NAME_NOT_KNOWN) 318 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 319 320 done: 321 return flags; 322 } 323 324 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf) 325 { 326 struct discovery_state *cache = &hdev->discovery; 327 struct inquiry_info *info = (struct inquiry_info *) buf; 328 struct inquiry_entry *e; 329 int copied = 0; 330 331 list_for_each_entry(e, &cache->all, all) { 332 struct inquiry_data *data = &e->data; 333 334 if (copied >= num) 335 break; 336 337 bacpy(&info->bdaddr, &data->bdaddr); 338 info->pscan_rep_mode = data->pscan_rep_mode; 339 info->pscan_period_mode = data->pscan_period_mode; 340 info->pscan_mode = data->pscan_mode; 341 memcpy(info->dev_class, data->dev_class, 3); 342 info->clock_offset = data->clock_offset; 343 344 info++; 345 copied++; 346 } 347 348 BT_DBG("cache %p, copied %d", cache, copied); 349 return copied; 350 } 351 352 static int hci_inq_req(struct hci_request *req, unsigned long opt) 353 { 354 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt; 355 struct hci_dev *hdev = req->hdev; 356 struct hci_cp_inquiry cp; 357 358 BT_DBG("%s", hdev->name); 359 360 if (test_bit(HCI_INQUIRY, &hdev->flags)) 361 return 0; 362 363 /* Start Inquiry */ 364 memcpy(&cp.lap, &ir->lap, 3); 365 cp.length = ir->length; 366 cp.num_rsp = ir->num_rsp; 367 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp); 368 369 return 0; 370 } 371 372 int hci_inquiry(void __user *arg) 373 { 374 __u8 __user *ptr = arg; 375 struct hci_inquiry_req ir; 376 struct hci_dev *hdev; 377 int err = 0, do_inquiry = 0, max_rsp; 378 long timeo; 379 __u8 *buf; 380 381 if (copy_from_user(&ir, ptr, sizeof(ir))) 382 return -EFAULT; 383 384 hdev = hci_dev_get(ir.dev_id); 385 if (!hdev) 386 return -ENODEV; 387 388 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 389 err = -EBUSY; 390 goto done; 391 } 392 393 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 394 err = -EOPNOTSUPP; 395 goto done; 396 } 397 398 if (hdev->dev_type != HCI_PRIMARY) { 399 err = -EOPNOTSUPP; 400 goto done; 401 } 402 403 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 404 err = -EOPNOTSUPP; 405 goto done; 406 } 407 408 /* Restrict maximum inquiry length to 60 seconds */ 409 if (ir.length > 60) { 410 err = -EINVAL; 411 goto done; 412 } 413 414 hci_dev_lock(hdev); 415 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX || 416 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) { 417 hci_inquiry_cache_flush(hdev); 418 do_inquiry = 1; 419 } 420 hci_dev_unlock(hdev); 421 422 timeo = ir.length * msecs_to_jiffies(2000); 423 424 if (do_inquiry) { 425 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir, 426 timeo, NULL); 427 if (err < 0) 428 goto done; 429 430 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is 431 * cleared). If it is interrupted by a signal, return -EINTR. 432 */ 433 if (wait_on_bit(&hdev->flags, HCI_INQUIRY, 434 TASK_INTERRUPTIBLE)) { 435 err = -EINTR; 436 goto done; 437 } 438 } 439 440 /* for unlimited number of responses we will use buffer with 441 * 255 entries 442 */ 443 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp; 444 445 /* cache_dump can't sleep. Therefore we allocate temp buffer and then 446 * copy it to the user space. 447 */ 448 buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL); 449 if (!buf) { 450 err = -ENOMEM; 451 goto done; 452 } 453 454 hci_dev_lock(hdev); 455 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf); 456 hci_dev_unlock(hdev); 457 458 BT_DBG("num_rsp %d", ir.num_rsp); 459 460 if (!copy_to_user(ptr, &ir, sizeof(ir))) { 461 ptr += sizeof(ir); 462 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) * 463 ir.num_rsp)) 464 err = -EFAULT; 465 } else 466 err = -EFAULT; 467 468 kfree(buf); 469 470 done: 471 hci_dev_put(hdev); 472 return err; 473 } 474 475 static int hci_dev_do_open(struct hci_dev *hdev) 476 { 477 int ret = 0; 478 479 BT_DBG("%s %p", hdev->name, hdev); 480 481 hci_req_sync_lock(hdev); 482 483 ret = hci_dev_open_sync(hdev); 484 485 hci_req_sync_unlock(hdev); 486 return ret; 487 } 488 489 /* ---- HCI ioctl helpers ---- */ 490 491 int hci_dev_open(__u16 dev) 492 { 493 struct hci_dev *hdev; 494 int err; 495 496 hdev = hci_dev_get(dev); 497 if (!hdev) 498 return -ENODEV; 499 500 /* Devices that are marked as unconfigured can only be powered 501 * up as user channel. Trying to bring them up as normal devices 502 * will result into a failure. Only user channel operation is 503 * possible. 504 * 505 * When this function is called for a user channel, the flag 506 * HCI_USER_CHANNEL will be set first before attempting to 507 * open the device. 508 */ 509 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 510 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 511 err = -EOPNOTSUPP; 512 goto done; 513 } 514 515 /* We need to ensure that no other power on/off work is pending 516 * before proceeding to call hci_dev_do_open. This is 517 * particularly important if the setup procedure has not yet 518 * completed. 519 */ 520 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) 521 cancel_delayed_work(&hdev->power_off); 522 523 /* After this call it is guaranteed that the setup procedure 524 * has finished. This means that error conditions like RFKILL 525 * or no valid public or static random address apply. 526 */ 527 flush_workqueue(hdev->req_workqueue); 528 529 /* For controllers not using the management interface and that 530 * are brought up using legacy ioctl, set the HCI_BONDABLE bit 531 * so that pairing works for them. Once the management interface 532 * is in use this bit will be cleared again and userspace has 533 * to explicitly enable it. 534 */ 535 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 536 !hci_dev_test_flag(hdev, HCI_MGMT)) 537 hci_dev_set_flag(hdev, HCI_BONDABLE); 538 539 err = hci_dev_do_open(hdev); 540 541 done: 542 hci_dev_put(hdev); 543 return err; 544 } 545 546 int hci_dev_do_close(struct hci_dev *hdev) 547 { 548 int err; 549 550 BT_DBG("%s %p", hdev->name, hdev); 551 552 hci_req_sync_lock(hdev); 553 554 err = hci_dev_close_sync(hdev); 555 556 hci_req_sync_unlock(hdev); 557 558 return err; 559 } 560 561 int hci_dev_close(__u16 dev) 562 { 563 struct hci_dev *hdev; 564 int err; 565 566 hdev = hci_dev_get(dev); 567 if (!hdev) 568 return -ENODEV; 569 570 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 571 err = -EBUSY; 572 goto done; 573 } 574 575 cancel_work_sync(&hdev->power_on); 576 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) 577 cancel_delayed_work(&hdev->power_off); 578 579 err = hci_dev_do_close(hdev); 580 581 done: 582 hci_dev_put(hdev); 583 return err; 584 } 585 586 static int hci_dev_do_reset(struct hci_dev *hdev) 587 { 588 int ret; 589 590 BT_DBG("%s %p", hdev->name, hdev); 591 592 hci_req_sync_lock(hdev); 593 594 /* Drop queues */ 595 skb_queue_purge(&hdev->rx_q); 596 skb_queue_purge(&hdev->cmd_q); 597 598 /* Cancel these to avoid queueing non-chained pending work */ 599 hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE); 600 /* Wait for 601 * 602 * if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE)) 603 * queue_delayed_work(&hdev->{cmd,ncmd}_timer) 604 * 605 * inside RCU section to see the flag or complete scheduling. 606 */ 607 synchronize_rcu(); 608 /* Explicitly cancel works in case scheduled after setting the flag. */ 609 cancel_delayed_work(&hdev->cmd_timer); 610 cancel_delayed_work(&hdev->ncmd_timer); 611 612 /* Avoid potential lockdep warnings from the *_flush() calls by 613 * ensuring the workqueue is empty up front. 614 */ 615 drain_workqueue(hdev->workqueue); 616 617 hci_dev_lock(hdev); 618 hci_inquiry_cache_flush(hdev); 619 hci_conn_hash_flush(hdev); 620 hci_dev_unlock(hdev); 621 622 if (hdev->flush) 623 hdev->flush(hdev); 624 625 hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE); 626 627 atomic_set(&hdev->cmd_cnt, 1); 628 hdev->acl_cnt = 0; 629 hdev->sco_cnt = 0; 630 hdev->le_cnt = 0; 631 hdev->iso_cnt = 0; 632 633 ret = hci_reset_sync(hdev); 634 635 hci_req_sync_unlock(hdev); 636 return ret; 637 } 638 639 int hci_dev_reset(__u16 dev) 640 { 641 struct hci_dev *hdev; 642 int err; 643 644 hdev = hci_dev_get(dev); 645 if (!hdev) 646 return -ENODEV; 647 648 if (!test_bit(HCI_UP, &hdev->flags)) { 649 err = -ENETDOWN; 650 goto done; 651 } 652 653 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 654 err = -EBUSY; 655 goto done; 656 } 657 658 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 659 err = -EOPNOTSUPP; 660 goto done; 661 } 662 663 err = hci_dev_do_reset(hdev); 664 665 done: 666 hci_dev_put(hdev); 667 return err; 668 } 669 670 int hci_dev_reset_stat(__u16 dev) 671 { 672 struct hci_dev *hdev; 673 int ret = 0; 674 675 hdev = hci_dev_get(dev); 676 if (!hdev) 677 return -ENODEV; 678 679 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 680 ret = -EBUSY; 681 goto done; 682 } 683 684 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 685 ret = -EOPNOTSUPP; 686 goto done; 687 } 688 689 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats)); 690 691 done: 692 hci_dev_put(hdev); 693 return ret; 694 } 695 696 static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan) 697 { 698 bool conn_changed, discov_changed; 699 700 BT_DBG("%s scan 0x%02x", hdev->name, scan); 701 702 if ((scan & SCAN_PAGE)) 703 conn_changed = !hci_dev_test_and_set_flag(hdev, 704 HCI_CONNECTABLE); 705 else 706 conn_changed = hci_dev_test_and_clear_flag(hdev, 707 HCI_CONNECTABLE); 708 709 if ((scan & SCAN_INQUIRY)) { 710 discov_changed = !hci_dev_test_and_set_flag(hdev, 711 HCI_DISCOVERABLE); 712 } else { 713 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 714 discov_changed = hci_dev_test_and_clear_flag(hdev, 715 HCI_DISCOVERABLE); 716 } 717 718 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 719 return; 720 721 if (conn_changed || discov_changed) { 722 /* In case this was disabled through mgmt */ 723 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); 724 725 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 726 hci_update_adv_data(hdev, hdev->cur_adv_instance); 727 728 mgmt_new_settings(hdev); 729 } 730 } 731 732 int hci_dev_cmd(unsigned int cmd, void __user *arg) 733 { 734 struct hci_dev *hdev; 735 struct hci_dev_req dr; 736 int err = 0; 737 738 if (copy_from_user(&dr, arg, sizeof(dr))) 739 return -EFAULT; 740 741 hdev = hci_dev_get(dr.dev_id); 742 if (!hdev) 743 return -ENODEV; 744 745 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 746 err = -EBUSY; 747 goto done; 748 } 749 750 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 751 err = -EOPNOTSUPP; 752 goto done; 753 } 754 755 if (hdev->dev_type != HCI_PRIMARY) { 756 err = -EOPNOTSUPP; 757 goto done; 758 } 759 760 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 761 err = -EOPNOTSUPP; 762 goto done; 763 } 764 765 switch (cmd) { 766 case HCISETAUTH: 767 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt, 768 HCI_INIT_TIMEOUT, NULL); 769 break; 770 771 case HCISETENCRYPT: 772 if (!lmp_encrypt_capable(hdev)) { 773 err = -EOPNOTSUPP; 774 break; 775 } 776 777 if (!test_bit(HCI_AUTH, &hdev->flags)) { 778 /* Auth must be enabled first */ 779 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt, 780 HCI_INIT_TIMEOUT, NULL); 781 if (err) 782 break; 783 } 784 785 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt, 786 HCI_INIT_TIMEOUT, NULL); 787 break; 788 789 case HCISETSCAN: 790 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt, 791 HCI_INIT_TIMEOUT, NULL); 792 793 /* Ensure that the connectable and discoverable states 794 * get correctly modified as this was a non-mgmt change. 795 */ 796 if (!err) 797 hci_update_passive_scan_state(hdev, dr.dev_opt); 798 break; 799 800 case HCISETLINKPOL: 801 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt, 802 HCI_INIT_TIMEOUT, NULL); 803 break; 804 805 case HCISETLINKMODE: 806 hdev->link_mode = ((__u16) dr.dev_opt) & 807 (HCI_LM_MASTER | HCI_LM_ACCEPT); 808 break; 809 810 case HCISETPTYPE: 811 if (hdev->pkt_type == (__u16) dr.dev_opt) 812 break; 813 814 hdev->pkt_type = (__u16) dr.dev_opt; 815 mgmt_phy_configuration_changed(hdev, NULL); 816 break; 817 818 case HCISETACLMTU: 819 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1); 820 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0); 821 break; 822 823 case HCISETSCOMTU: 824 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1); 825 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0); 826 break; 827 828 default: 829 err = -EINVAL; 830 break; 831 } 832 833 done: 834 hci_dev_put(hdev); 835 return err; 836 } 837 838 int hci_get_dev_list(void __user *arg) 839 { 840 struct hci_dev *hdev; 841 struct hci_dev_list_req *dl; 842 struct hci_dev_req *dr; 843 int n = 0, size, err; 844 __u16 dev_num; 845 846 if (get_user(dev_num, (__u16 __user *) arg)) 847 return -EFAULT; 848 849 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr)) 850 return -EINVAL; 851 852 size = sizeof(*dl) + dev_num * sizeof(*dr); 853 854 dl = kzalloc(size, GFP_KERNEL); 855 if (!dl) 856 return -ENOMEM; 857 858 dr = dl->dev_req; 859 860 read_lock(&hci_dev_list_lock); 861 list_for_each_entry(hdev, &hci_dev_list, list) { 862 unsigned long flags = hdev->flags; 863 864 /* When the auto-off is configured it means the transport 865 * is running, but in that case still indicate that the 866 * device is actually down. 867 */ 868 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) 869 flags &= ~BIT(HCI_UP); 870 871 (dr + n)->dev_id = hdev->id; 872 (dr + n)->dev_opt = flags; 873 874 if (++n >= dev_num) 875 break; 876 } 877 read_unlock(&hci_dev_list_lock); 878 879 dl->dev_num = n; 880 size = sizeof(*dl) + n * sizeof(*dr); 881 882 err = copy_to_user(arg, dl, size); 883 kfree(dl); 884 885 return err ? -EFAULT : 0; 886 } 887 888 int hci_get_dev_info(void __user *arg) 889 { 890 struct hci_dev *hdev; 891 struct hci_dev_info di; 892 unsigned long flags; 893 int err = 0; 894 895 if (copy_from_user(&di, arg, sizeof(di))) 896 return -EFAULT; 897 898 hdev = hci_dev_get(di.dev_id); 899 if (!hdev) 900 return -ENODEV; 901 902 /* When the auto-off is configured it means the transport 903 * is running, but in that case still indicate that the 904 * device is actually down. 905 */ 906 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) 907 flags = hdev->flags & ~BIT(HCI_UP); 908 else 909 flags = hdev->flags; 910 911 strcpy(di.name, hdev->name); 912 di.bdaddr = hdev->bdaddr; 913 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4); 914 di.flags = flags; 915 di.pkt_type = hdev->pkt_type; 916 if (lmp_bredr_capable(hdev)) { 917 di.acl_mtu = hdev->acl_mtu; 918 di.acl_pkts = hdev->acl_pkts; 919 di.sco_mtu = hdev->sco_mtu; 920 di.sco_pkts = hdev->sco_pkts; 921 } else { 922 di.acl_mtu = hdev->le_mtu; 923 di.acl_pkts = hdev->le_pkts; 924 di.sco_mtu = 0; 925 di.sco_pkts = 0; 926 } 927 di.link_policy = hdev->link_policy; 928 di.link_mode = hdev->link_mode; 929 930 memcpy(&di.stat, &hdev->stat, sizeof(di.stat)); 931 memcpy(&di.features, &hdev->features, sizeof(di.features)); 932 933 if (copy_to_user(arg, &di, sizeof(di))) 934 err = -EFAULT; 935 936 hci_dev_put(hdev); 937 938 return err; 939 } 940 941 /* ---- Interface to HCI drivers ---- */ 942 943 static int hci_rfkill_set_block(void *data, bool blocked) 944 { 945 struct hci_dev *hdev = data; 946 947 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked); 948 949 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) 950 return -EBUSY; 951 952 if (blocked) { 953 hci_dev_set_flag(hdev, HCI_RFKILLED); 954 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 955 !hci_dev_test_flag(hdev, HCI_CONFIG)) 956 hci_dev_do_close(hdev); 957 } else { 958 hci_dev_clear_flag(hdev, HCI_RFKILLED); 959 } 960 961 return 0; 962 } 963 964 static const struct rfkill_ops hci_rfkill_ops = { 965 .set_block = hci_rfkill_set_block, 966 }; 967 968 static void hci_power_on(struct work_struct *work) 969 { 970 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on); 971 int err; 972 973 BT_DBG("%s", hdev->name); 974 975 if (test_bit(HCI_UP, &hdev->flags) && 976 hci_dev_test_flag(hdev, HCI_MGMT) && 977 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 978 cancel_delayed_work(&hdev->power_off); 979 err = hci_powered_update_sync(hdev); 980 mgmt_power_on(hdev, err); 981 return; 982 } 983 984 err = hci_dev_do_open(hdev); 985 if (err < 0) { 986 hci_dev_lock(hdev); 987 mgmt_set_powered_failed(hdev, err); 988 hci_dev_unlock(hdev); 989 return; 990 } 991 992 /* During the HCI setup phase, a few error conditions are 993 * ignored and they need to be checked now. If they are still 994 * valid, it is important to turn the device back off. 995 */ 996 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 997 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 998 (hdev->dev_type == HCI_PRIMARY && 999 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 1000 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 1001 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 1002 hci_dev_do_close(hdev); 1003 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 1004 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 1005 HCI_AUTO_OFF_TIMEOUT); 1006 } 1007 1008 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 1009 /* For unconfigured devices, set the HCI_RAW flag 1010 * so that userspace can easily identify them. 1011 */ 1012 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 1013 set_bit(HCI_RAW, &hdev->flags); 1014 1015 /* For fully configured devices, this will send 1016 * the Index Added event. For unconfigured devices, 1017 * it will send Unconfigued Index Added event. 1018 * 1019 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 1020 * and no event will be send. 1021 */ 1022 mgmt_index_added(hdev); 1023 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 1024 /* When the controller is now configured, then it 1025 * is important to clear the HCI_RAW flag. 1026 */ 1027 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 1028 clear_bit(HCI_RAW, &hdev->flags); 1029 1030 /* Powering on the controller with HCI_CONFIG set only 1031 * happens with the transition from unconfigured to 1032 * configured. This will send the Index Added event. 1033 */ 1034 mgmt_index_added(hdev); 1035 } 1036 } 1037 1038 static void hci_power_off(struct work_struct *work) 1039 { 1040 struct hci_dev *hdev = container_of(work, struct hci_dev, 1041 power_off.work); 1042 1043 BT_DBG("%s", hdev->name); 1044 1045 hci_dev_do_close(hdev); 1046 } 1047 1048 static void hci_error_reset(struct work_struct *work) 1049 { 1050 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset); 1051 1052 BT_DBG("%s", hdev->name); 1053 1054 if (hdev->hw_error) 1055 hdev->hw_error(hdev, hdev->hw_error_code); 1056 else 1057 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code); 1058 1059 if (hci_dev_do_close(hdev)) 1060 return; 1061 1062 hci_dev_do_open(hdev); 1063 } 1064 1065 void hci_uuids_clear(struct hci_dev *hdev) 1066 { 1067 struct bt_uuid *uuid, *tmp; 1068 1069 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) { 1070 list_del(&uuid->list); 1071 kfree(uuid); 1072 } 1073 } 1074 1075 void hci_link_keys_clear(struct hci_dev *hdev) 1076 { 1077 struct link_key *key; 1078 1079 list_for_each_entry(key, &hdev->link_keys, list) { 1080 list_del_rcu(&key->list); 1081 kfree_rcu(key, rcu); 1082 } 1083 } 1084 1085 void hci_smp_ltks_clear(struct hci_dev *hdev) 1086 { 1087 struct smp_ltk *k; 1088 1089 list_for_each_entry(k, &hdev->long_term_keys, list) { 1090 list_del_rcu(&k->list); 1091 kfree_rcu(k, rcu); 1092 } 1093 } 1094 1095 void hci_smp_irks_clear(struct hci_dev *hdev) 1096 { 1097 struct smp_irk *k; 1098 1099 list_for_each_entry(k, &hdev->identity_resolving_keys, list) { 1100 list_del_rcu(&k->list); 1101 kfree_rcu(k, rcu); 1102 } 1103 } 1104 1105 void hci_blocked_keys_clear(struct hci_dev *hdev) 1106 { 1107 struct blocked_key *b; 1108 1109 list_for_each_entry(b, &hdev->blocked_keys, list) { 1110 list_del_rcu(&b->list); 1111 kfree_rcu(b, rcu); 1112 } 1113 } 1114 1115 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16]) 1116 { 1117 bool blocked = false; 1118 struct blocked_key *b; 1119 1120 rcu_read_lock(); 1121 list_for_each_entry_rcu(b, &hdev->blocked_keys, list) { 1122 if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) { 1123 blocked = true; 1124 break; 1125 } 1126 } 1127 1128 rcu_read_unlock(); 1129 return blocked; 1130 } 1131 1132 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 1133 { 1134 struct link_key *k; 1135 1136 rcu_read_lock(); 1137 list_for_each_entry_rcu(k, &hdev->link_keys, list) { 1138 if (bacmp(bdaddr, &k->bdaddr) == 0) { 1139 rcu_read_unlock(); 1140 1141 if (hci_is_blocked_key(hdev, 1142 HCI_BLOCKED_KEY_TYPE_LINKKEY, 1143 k->val)) { 1144 bt_dev_warn_ratelimited(hdev, 1145 "Link key blocked for %pMR", 1146 &k->bdaddr); 1147 return NULL; 1148 } 1149 1150 return k; 1151 } 1152 } 1153 rcu_read_unlock(); 1154 1155 return NULL; 1156 } 1157 1158 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn, 1159 u8 key_type, u8 old_key_type) 1160 { 1161 /* Legacy key */ 1162 if (key_type < 0x03) 1163 return true; 1164 1165 /* Debug keys are insecure so don't store them persistently */ 1166 if (key_type == HCI_LK_DEBUG_COMBINATION) 1167 return false; 1168 1169 /* Changed combination key and there's no previous one */ 1170 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff) 1171 return false; 1172 1173 /* Security mode 3 case */ 1174 if (!conn) 1175 return true; 1176 1177 /* BR/EDR key derived using SC from an LE link */ 1178 if (conn->type == LE_LINK) 1179 return true; 1180 1181 /* Neither local nor remote side had no-bonding as requirement */ 1182 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01) 1183 return true; 1184 1185 /* Local side had dedicated bonding as requirement */ 1186 if (conn->auth_type == 0x02 || conn->auth_type == 0x03) 1187 return true; 1188 1189 /* Remote side had dedicated bonding as requirement */ 1190 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03) 1191 return true; 1192 1193 /* If none of the above criteria match, then don't store the key 1194 * persistently */ 1195 return false; 1196 } 1197 1198 static u8 ltk_role(u8 type) 1199 { 1200 if (type == SMP_LTK) 1201 return HCI_ROLE_MASTER; 1202 1203 return HCI_ROLE_SLAVE; 1204 } 1205 1206 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1207 u8 addr_type, u8 role) 1208 { 1209 struct smp_ltk *k; 1210 1211 rcu_read_lock(); 1212 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 1213 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr)) 1214 continue; 1215 1216 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) { 1217 rcu_read_unlock(); 1218 1219 if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK, 1220 k->val)) { 1221 bt_dev_warn_ratelimited(hdev, 1222 "LTK blocked for %pMR", 1223 &k->bdaddr); 1224 return NULL; 1225 } 1226 1227 return k; 1228 } 1229 } 1230 rcu_read_unlock(); 1231 1232 return NULL; 1233 } 1234 1235 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa) 1236 { 1237 struct smp_irk *irk_to_return = NULL; 1238 struct smp_irk *irk; 1239 1240 rcu_read_lock(); 1241 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 1242 if (!bacmp(&irk->rpa, rpa)) { 1243 irk_to_return = irk; 1244 goto done; 1245 } 1246 } 1247 1248 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 1249 if (smp_irk_matches(hdev, irk->val, rpa)) { 1250 bacpy(&irk->rpa, rpa); 1251 irk_to_return = irk; 1252 goto done; 1253 } 1254 } 1255 1256 done: 1257 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK, 1258 irk_to_return->val)) { 1259 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR", 1260 &irk_to_return->bdaddr); 1261 irk_to_return = NULL; 1262 } 1263 1264 rcu_read_unlock(); 1265 1266 return irk_to_return; 1267 } 1268 1269 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, 1270 u8 addr_type) 1271 { 1272 struct smp_irk *irk_to_return = NULL; 1273 struct smp_irk *irk; 1274 1275 /* Identity Address must be public or static random */ 1276 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0) 1277 return NULL; 1278 1279 rcu_read_lock(); 1280 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 1281 if (addr_type == irk->addr_type && 1282 bacmp(bdaddr, &irk->bdaddr) == 0) { 1283 irk_to_return = irk; 1284 goto done; 1285 } 1286 } 1287 1288 done: 1289 1290 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK, 1291 irk_to_return->val)) { 1292 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR", 1293 &irk_to_return->bdaddr); 1294 irk_to_return = NULL; 1295 } 1296 1297 rcu_read_unlock(); 1298 1299 return irk_to_return; 1300 } 1301 1302 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, 1303 bdaddr_t *bdaddr, u8 *val, u8 type, 1304 u8 pin_len, bool *persistent) 1305 { 1306 struct link_key *key, *old_key; 1307 u8 old_key_type; 1308 1309 old_key = hci_find_link_key(hdev, bdaddr); 1310 if (old_key) { 1311 old_key_type = old_key->type; 1312 key = old_key; 1313 } else { 1314 old_key_type = conn ? conn->key_type : 0xff; 1315 key = kzalloc(sizeof(*key), GFP_KERNEL); 1316 if (!key) 1317 return NULL; 1318 list_add_rcu(&key->list, &hdev->link_keys); 1319 } 1320 1321 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type); 1322 1323 /* Some buggy controller combinations generate a changed 1324 * combination key for legacy pairing even when there's no 1325 * previous key */ 1326 if (type == HCI_LK_CHANGED_COMBINATION && 1327 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) { 1328 type = HCI_LK_COMBINATION; 1329 if (conn) 1330 conn->key_type = type; 1331 } 1332 1333 bacpy(&key->bdaddr, bdaddr); 1334 memcpy(key->val, val, HCI_LINK_KEY_SIZE); 1335 key->pin_len = pin_len; 1336 1337 if (type == HCI_LK_CHANGED_COMBINATION) 1338 key->type = old_key_type; 1339 else 1340 key->type = type; 1341 1342 if (persistent) 1343 *persistent = hci_persistent_key(hdev, conn, type, 1344 old_key_type); 1345 1346 return key; 1347 } 1348 1349 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1350 u8 addr_type, u8 type, u8 authenticated, 1351 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand) 1352 { 1353 struct smp_ltk *key, *old_key; 1354 u8 role = ltk_role(type); 1355 1356 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role); 1357 if (old_key) 1358 key = old_key; 1359 else { 1360 key = kzalloc(sizeof(*key), GFP_KERNEL); 1361 if (!key) 1362 return NULL; 1363 list_add_rcu(&key->list, &hdev->long_term_keys); 1364 } 1365 1366 bacpy(&key->bdaddr, bdaddr); 1367 key->bdaddr_type = addr_type; 1368 memcpy(key->val, tk, sizeof(key->val)); 1369 key->authenticated = authenticated; 1370 key->ediv = ediv; 1371 key->rand = rand; 1372 key->enc_size = enc_size; 1373 key->type = type; 1374 1375 return key; 1376 } 1377 1378 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1379 u8 addr_type, u8 val[16], bdaddr_t *rpa) 1380 { 1381 struct smp_irk *irk; 1382 1383 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type); 1384 if (!irk) { 1385 irk = kzalloc(sizeof(*irk), GFP_KERNEL); 1386 if (!irk) 1387 return NULL; 1388 1389 bacpy(&irk->bdaddr, bdaddr); 1390 irk->addr_type = addr_type; 1391 1392 list_add_rcu(&irk->list, &hdev->identity_resolving_keys); 1393 } 1394 1395 memcpy(irk->val, val, 16); 1396 bacpy(&irk->rpa, rpa); 1397 1398 return irk; 1399 } 1400 1401 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 1402 { 1403 struct link_key *key; 1404 1405 key = hci_find_link_key(hdev, bdaddr); 1406 if (!key) 1407 return -ENOENT; 1408 1409 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 1410 1411 list_del_rcu(&key->list); 1412 kfree_rcu(key, rcu); 1413 1414 return 0; 1415 } 1416 1417 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type) 1418 { 1419 struct smp_ltk *k, *tmp; 1420 int removed = 0; 1421 1422 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) { 1423 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type) 1424 continue; 1425 1426 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 1427 1428 list_del_rcu(&k->list); 1429 kfree_rcu(k, rcu); 1430 removed++; 1431 } 1432 1433 return removed ? 0 : -ENOENT; 1434 } 1435 1436 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type) 1437 { 1438 struct smp_irk *k, *tmp; 1439 1440 list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) { 1441 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type) 1442 continue; 1443 1444 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 1445 1446 list_del_rcu(&k->list); 1447 kfree_rcu(k, rcu); 1448 } 1449 } 1450 1451 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type) 1452 { 1453 struct smp_ltk *k; 1454 struct smp_irk *irk; 1455 u8 addr_type; 1456 1457 if (type == BDADDR_BREDR) { 1458 if (hci_find_link_key(hdev, bdaddr)) 1459 return true; 1460 return false; 1461 } 1462 1463 /* Convert to HCI addr type which struct smp_ltk uses */ 1464 if (type == BDADDR_LE_PUBLIC) 1465 addr_type = ADDR_LE_DEV_PUBLIC; 1466 else 1467 addr_type = ADDR_LE_DEV_RANDOM; 1468 1469 irk = hci_get_irk(hdev, bdaddr, addr_type); 1470 if (irk) { 1471 bdaddr = &irk->bdaddr; 1472 addr_type = irk->addr_type; 1473 } 1474 1475 rcu_read_lock(); 1476 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 1477 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) { 1478 rcu_read_unlock(); 1479 return true; 1480 } 1481 } 1482 rcu_read_unlock(); 1483 1484 return false; 1485 } 1486 1487 /* HCI command timer function */ 1488 static void hci_cmd_timeout(struct work_struct *work) 1489 { 1490 struct hci_dev *hdev = container_of(work, struct hci_dev, 1491 cmd_timer.work); 1492 1493 if (hdev->sent_cmd) { 1494 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data; 1495 u16 opcode = __le16_to_cpu(sent->opcode); 1496 1497 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode); 1498 } else { 1499 bt_dev_err(hdev, "command tx timeout"); 1500 } 1501 1502 if (hdev->cmd_timeout) 1503 hdev->cmd_timeout(hdev); 1504 1505 atomic_set(&hdev->cmd_cnt, 1); 1506 queue_work(hdev->workqueue, &hdev->cmd_work); 1507 } 1508 1509 /* HCI ncmd timer function */ 1510 static void hci_ncmd_timeout(struct work_struct *work) 1511 { 1512 struct hci_dev *hdev = container_of(work, struct hci_dev, 1513 ncmd_timer.work); 1514 1515 bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0"); 1516 1517 /* During HCI_INIT phase no events can be injected if the ncmd timer 1518 * triggers since the procedure has its own timeout handling. 1519 */ 1520 if (test_bit(HCI_INIT, &hdev->flags)) 1521 return; 1522 1523 /* This is an irrecoverable state, inject hardware error event */ 1524 hci_reset_dev(hdev); 1525 } 1526 1527 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, 1528 bdaddr_t *bdaddr, u8 bdaddr_type) 1529 { 1530 struct oob_data *data; 1531 1532 list_for_each_entry(data, &hdev->remote_oob_data, list) { 1533 if (bacmp(bdaddr, &data->bdaddr) != 0) 1534 continue; 1535 if (data->bdaddr_type != bdaddr_type) 1536 continue; 1537 return data; 1538 } 1539 1540 return NULL; 1541 } 1542 1543 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1544 u8 bdaddr_type) 1545 { 1546 struct oob_data *data; 1547 1548 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); 1549 if (!data) 1550 return -ENOENT; 1551 1552 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type); 1553 1554 list_del(&data->list); 1555 kfree(data); 1556 1557 return 0; 1558 } 1559 1560 void hci_remote_oob_data_clear(struct hci_dev *hdev) 1561 { 1562 struct oob_data *data, *n; 1563 1564 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) { 1565 list_del(&data->list); 1566 kfree(data); 1567 } 1568 } 1569 1570 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1571 u8 bdaddr_type, u8 *hash192, u8 *rand192, 1572 u8 *hash256, u8 *rand256) 1573 { 1574 struct oob_data *data; 1575 1576 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); 1577 if (!data) { 1578 data = kmalloc(sizeof(*data), GFP_KERNEL); 1579 if (!data) 1580 return -ENOMEM; 1581 1582 bacpy(&data->bdaddr, bdaddr); 1583 data->bdaddr_type = bdaddr_type; 1584 list_add(&data->list, &hdev->remote_oob_data); 1585 } 1586 1587 if (hash192 && rand192) { 1588 memcpy(data->hash192, hash192, sizeof(data->hash192)); 1589 memcpy(data->rand192, rand192, sizeof(data->rand192)); 1590 if (hash256 && rand256) 1591 data->present = 0x03; 1592 } else { 1593 memset(data->hash192, 0, sizeof(data->hash192)); 1594 memset(data->rand192, 0, sizeof(data->rand192)); 1595 if (hash256 && rand256) 1596 data->present = 0x02; 1597 else 1598 data->present = 0x00; 1599 } 1600 1601 if (hash256 && rand256) { 1602 memcpy(data->hash256, hash256, sizeof(data->hash256)); 1603 memcpy(data->rand256, rand256, sizeof(data->rand256)); 1604 } else { 1605 memset(data->hash256, 0, sizeof(data->hash256)); 1606 memset(data->rand256, 0, sizeof(data->rand256)); 1607 if (hash192 && rand192) 1608 data->present = 0x01; 1609 } 1610 1611 BT_DBG("%s for %pMR", hdev->name, bdaddr); 1612 1613 return 0; 1614 } 1615 1616 /* This function requires the caller holds hdev->lock */ 1617 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance) 1618 { 1619 struct adv_info *adv_instance; 1620 1621 list_for_each_entry(adv_instance, &hdev->adv_instances, list) { 1622 if (adv_instance->instance == instance) 1623 return adv_instance; 1624 } 1625 1626 return NULL; 1627 } 1628 1629 /* This function requires the caller holds hdev->lock */ 1630 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance) 1631 { 1632 struct adv_info *cur_instance; 1633 1634 cur_instance = hci_find_adv_instance(hdev, instance); 1635 if (!cur_instance) 1636 return NULL; 1637 1638 if (cur_instance == list_last_entry(&hdev->adv_instances, 1639 struct adv_info, list)) 1640 return list_first_entry(&hdev->adv_instances, 1641 struct adv_info, list); 1642 else 1643 return list_next_entry(cur_instance, list); 1644 } 1645 1646 /* This function requires the caller holds hdev->lock */ 1647 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance) 1648 { 1649 struct adv_info *adv_instance; 1650 1651 adv_instance = hci_find_adv_instance(hdev, instance); 1652 if (!adv_instance) 1653 return -ENOENT; 1654 1655 BT_DBG("%s removing %dMR", hdev->name, instance); 1656 1657 if (hdev->cur_adv_instance == instance) { 1658 if (hdev->adv_instance_timeout) { 1659 cancel_delayed_work(&hdev->adv_instance_expire); 1660 hdev->adv_instance_timeout = 0; 1661 } 1662 hdev->cur_adv_instance = 0x00; 1663 } 1664 1665 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 1666 1667 list_del(&adv_instance->list); 1668 kfree(adv_instance); 1669 1670 hdev->adv_instance_cnt--; 1671 1672 return 0; 1673 } 1674 1675 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired) 1676 { 1677 struct adv_info *adv_instance, *n; 1678 1679 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) 1680 adv_instance->rpa_expired = rpa_expired; 1681 } 1682 1683 /* This function requires the caller holds hdev->lock */ 1684 void hci_adv_instances_clear(struct hci_dev *hdev) 1685 { 1686 struct adv_info *adv_instance, *n; 1687 1688 if (hdev->adv_instance_timeout) { 1689 cancel_delayed_work(&hdev->adv_instance_expire); 1690 hdev->adv_instance_timeout = 0; 1691 } 1692 1693 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) { 1694 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 1695 list_del(&adv_instance->list); 1696 kfree(adv_instance); 1697 } 1698 1699 hdev->adv_instance_cnt = 0; 1700 hdev->cur_adv_instance = 0x00; 1701 } 1702 1703 static void adv_instance_rpa_expired(struct work_struct *work) 1704 { 1705 struct adv_info *adv_instance = container_of(work, struct adv_info, 1706 rpa_expired_cb.work); 1707 1708 BT_DBG(""); 1709 1710 adv_instance->rpa_expired = true; 1711 } 1712 1713 /* This function requires the caller holds hdev->lock */ 1714 struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance, 1715 u32 flags, u16 adv_data_len, u8 *adv_data, 1716 u16 scan_rsp_len, u8 *scan_rsp_data, 1717 u16 timeout, u16 duration, s8 tx_power, 1718 u32 min_interval, u32 max_interval, 1719 u8 mesh_handle) 1720 { 1721 struct adv_info *adv; 1722 1723 adv = hci_find_adv_instance(hdev, instance); 1724 if (adv) { 1725 memset(adv->adv_data, 0, sizeof(adv->adv_data)); 1726 memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data)); 1727 memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data)); 1728 } else { 1729 if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets || 1730 instance < 1 || instance > hdev->le_num_of_adv_sets + 1) 1731 return ERR_PTR(-EOVERFLOW); 1732 1733 adv = kzalloc(sizeof(*adv), GFP_KERNEL); 1734 if (!adv) 1735 return ERR_PTR(-ENOMEM); 1736 1737 adv->pending = true; 1738 adv->instance = instance; 1739 list_add(&adv->list, &hdev->adv_instances); 1740 hdev->adv_instance_cnt++; 1741 } 1742 1743 adv->flags = flags; 1744 adv->min_interval = min_interval; 1745 adv->max_interval = max_interval; 1746 adv->tx_power = tx_power; 1747 /* Defining a mesh_handle changes the timing units to ms, 1748 * rather than seconds, and ties the instance to the requested 1749 * mesh_tx queue. 1750 */ 1751 adv->mesh = mesh_handle; 1752 1753 hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data, 1754 scan_rsp_len, scan_rsp_data); 1755 1756 adv->timeout = timeout; 1757 adv->remaining_time = timeout; 1758 1759 if (duration == 0) 1760 adv->duration = hdev->def_multi_adv_rotation_duration; 1761 else 1762 adv->duration = duration; 1763 1764 INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired); 1765 1766 BT_DBG("%s for %dMR", hdev->name, instance); 1767 1768 return adv; 1769 } 1770 1771 /* This function requires the caller holds hdev->lock */ 1772 struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance, 1773 u32 flags, u8 data_len, u8 *data, 1774 u32 min_interval, u32 max_interval) 1775 { 1776 struct adv_info *adv; 1777 1778 adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL, 1779 0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE, 1780 min_interval, max_interval, 0); 1781 if (IS_ERR(adv)) 1782 return adv; 1783 1784 adv->periodic = true; 1785 adv->per_adv_data_len = data_len; 1786 1787 if (data) 1788 memcpy(adv->per_adv_data, data, data_len); 1789 1790 return adv; 1791 } 1792 1793 /* This function requires the caller holds hdev->lock */ 1794 int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance, 1795 u16 adv_data_len, u8 *adv_data, 1796 u16 scan_rsp_len, u8 *scan_rsp_data) 1797 { 1798 struct adv_info *adv; 1799 1800 adv = hci_find_adv_instance(hdev, instance); 1801 1802 /* If advertisement doesn't exist, we can't modify its data */ 1803 if (!adv) 1804 return -ENOENT; 1805 1806 if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) { 1807 memset(adv->adv_data, 0, sizeof(adv->adv_data)); 1808 memcpy(adv->adv_data, adv_data, adv_data_len); 1809 adv->adv_data_len = adv_data_len; 1810 adv->adv_data_changed = true; 1811 } 1812 1813 if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) { 1814 memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data)); 1815 memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len); 1816 adv->scan_rsp_len = scan_rsp_len; 1817 adv->scan_rsp_changed = true; 1818 } 1819 1820 /* Mark as changed if there are flags which would affect it */ 1821 if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) || 1822 adv->flags & MGMT_ADV_FLAG_LOCAL_NAME) 1823 adv->scan_rsp_changed = true; 1824 1825 return 0; 1826 } 1827 1828 /* This function requires the caller holds hdev->lock */ 1829 u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance) 1830 { 1831 u32 flags; 1832 struct adv_info *adv; 1833 1834 if (instance == 0x00) { 1835 /* Instance 0 always manages the "Tx Power" and "Flags" 1836 * fields 1837 */ 1838 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS; 1839 1840 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting 1841 * corresponds to the "connectable" instance flag. 1842 */ 1843 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE)) 1844 flags |= MGMT_ADV_FLAG_CONNECTABLE; 1845 1846 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 1847 flags |= MGMT_ADV_FLAG_LIMITED_DISCOV; 1848 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 1849 flags |= MGMT_ADV_FLAG_DISCOV; 1850 1851 return flags; 1852 } 1853 1854 adv = hci_find_adv_instance(hdev, instance); 1855 1856 /* Return 0 when we got an invalid instance identifier. */ 1857 if (!adv) 1858 return 0; 1859 1860 return adv->flags; 1861 } 1862 1863 bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance) 1864 { 1865 struct adv_info *adv; 1866 1867 /* Instance 0x00 always set local name */ 1868 if (instance == 0x00) 1869 return true; 1870 1871 adv = hci_find_adv_instance(hdev, instance); 1872 if (!adv) 1873 return false; 1874 1875 if (adv->flags & MGMT_ADV_FLAG_APPEARANCE || 1876 adv->flags & MGMT_ADV_FLAG_LOCAL_NAME) 1877 return true; 1878 1879 return adv->scan_rsp_len ? true : false; 1880 } 1881 1882 /* This function requires the caller holds hdev->lock */ 1883 void hci_adv_monitors_clear(struct hci_dev *hdev) 1884 { 1885 struct adv_monitor *monitor; 1886 int handle; 1887 1888 idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle) 1889 hci_free_adv_monitor(hdev, monitor); 1890 1891 idr_destroy(&hdev->adv_monitors_idr); 1892 } 1893 1894 /* Frees the monitor structure and do some bookkeepings. 1895 * This function requires the caller holds hdev->lock. 1896 */ 1897 void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor) 1898 { 1899 struct adv_pattern *pattern; 1900 struct adv_pattern *tmp; 1901 1902 if (!monitor) 1903 return; 1904 1905 list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) { 1906 list_del(&pattern->list); 1907 kfree(pattern); 1908 } 1909 1910 if (monitor->handle) 1911 idr_remove(&hdev->adv_monitors_idr, monitor->handle); 1912 1913 if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) { 1914 hdev->adv_monitors_cnt--; 1915 mgmt_adv_monitor_removed(hdev, monitor->handle); 1916 } 1917 1918 kfree(monitor); 1919 } 1920 1921 /* Assigns handle to a monitor, and if offloading is supported and power is on, 1922 * also attempts to forward the request to the controller. 1923 * This function requires the caller holds hci_req_sync_lock. 1924 */ 1925 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor) 1926 { 1927 int min, max, handle; 1928 int status = 0; 1929 1930 if (!monitor) 1931 return -EINVAL; 1932 1933 hci_dev_lock(hdev); 1934 1935 min = HCI_MIN_ADV_MONITOR_HANDLE; 1936 max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES; 1937 handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max, 1938 GFP_KERNEL); 1939 1940 hci_dev_unlock(hdev); 1941 1942 if (handle < 0) 1943 return handle; 1944 1945 monitor->handle = handle; 1946 1947 if (!hdev_is_powered(hdev)) 1948 return status; 1949 1950 switch (hci_get_adv_monitor_offload_ext(hdev)) { 1951 case HCI_ADV_MONITOR_EXT_NONE: 1952 bt_dev_dbg(hdev, "%s add monitor %d status %d", hdev->name, 1953 monitor->handle, status); 1954 /* Message was not forwarded to controller - not an error */ 1955 break; 1956 1957 case HCI_ADV_MONITOR_EXT_MSFT: 1958 status = msft_add_monitor_pattern(hdev, monitor); 1959 bt_dev_dbg(hdev, "%s add monitor %d msft status %d", hdev->name, 1960 monitor->handle, status); 1961 break; 1962 } 1963 1964 return status; 1965 } 1966 1967 /* Attempts to tell the controller and free the monitor. If somehow the 1968 * controller doesn't have a corresponding handle, remove anyway. 1969 * This function requires the caller holds hci_req_sync_lock. 1970 */ 1971 static int hci_remove_adv_monitor(struct hci_dev *hdev, 1972 struct adv_monitor *monitor) 1973 { 1974 int status = 0; 1975 int handle; 1976 1977 switch (hci_get_adv_monitor_offload_ext(hdev)) { 1978 case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */ 1979 bt_dev_dbg(hdev, "%s remove monitor %d status %d", hdev->name, 1980 monitor->handle, status); 1981 goto free_monitor; 1982 1983 case HCI_ADV_MONITOR_EXT_MSFT: 1984 handle = monitor->handle; 1985 status = msft_remove_monitor(hdev, monitor); 1986 bt_dev_dbg(hdev, "%s remove monitor %d msft status %d", 1987 hdev->name, handle, status); 1988 break; 1989 } 1990 1991 /* In case no matching handle registered, just free the monitor */ 1992 if (status == -ENOENT) 1993 goto free_monitor; 1994 1995 return status; 1996 1997 free_monitor: 1998 if (status == -ENOENT) 1999 bt_dev_warn(hdev, "Removing monitor with no matching handle %d", 2000 monitor->handle); 2001 hci_free_adv_monitor(hdev, monitor); 2002 2003 return status; 2004 } 2005 2006 /* This function requires the caller holds hci_req_sync_lock */ 2007 int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle) 2008 { 2009 struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle); 2010 2011 if (!monitor) 2012 return -EINVAL; 2013 2014 return hci_remove_adv_monitor(hdev, monitor); 2015 } 2016 2017 /* This function requires the caller holds hci_req_sync_lock */ 2018 int hci_remove_all_adv_monitor(struct hci_dev *hdev) 2019 { 2020 struct adv_monitor *monitor; 2021 int idr_next_id = 0; 2022 int status = 0; 2023 2024 while (1) { 2025 monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id); 2026 if (!monitor) 2027 break; 2028 2029 status = hci_remove_adv_monitor(hdev, monitor); 2030 if (status) 2031 return status; 2032 2033 idr_next_id++; 2034 } 2035 2036 return status; 2037 } 2038 2039 /* This function requires the caller holds hdev->lock */ 2040 bool hci_is_adv_monitoring(struct hci_dev *hdev) 2041 { 2042 return !idr_is_empty(&hdev->adv_monitors_idr); 2043 } 2044 2045 int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev) 2046 { 2047 if (msft_monitor_supported(hdev)) 2048 return HCI_ADV_MONITOR_EXT_MSFT; 2049 2050 return HCI_ADV_MONITOR_EXT_NONE; 2051 } 2052 2053 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list, 2054 bdaddr_t *bdaddr, u8 type) 2055 { 2056 struct bdaddr_list *b; 2057 2058 list_for_each_entry(b, bdaddr_list, list) { 2059 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 2060 return b; 2061 } 2062 2063 return NULL; 2064 } 2065 2066 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk( 2067 struct list_head *bdaddr_list, bdaddr_t *bdaddr, 2068 u8 type) 2069 { 2070 struct bdaddr_list_with_irk *b; 2071 2072 list_for_each_entry(b, bdaddr_list, list) { 2073 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 2074 return b; 2075 } 2076 2077 return NULL; 2078 } 2079 2080 struct bdaddr_list_with_flags * 2081 hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list, 2082 bdaddr_t *bdaddr, u8 type) 2083 { 2084 struct bdaddr_list_with_flags *b; 2085 2086 list_for_each_entry(b, bdaddr_list, list) { 2087 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 2088 return b; 2089 } 2090 2091 return NULL; 2092 } 2093 2094 void hci_bdaddr_list_clear(struct list_head *bdaddr_list) 2095 { 2096 struct bdaddr_list *b, *n; 2097 2098 list_for_each_entry_safe(b, n, bdaddr_list, list) { 2099 list_del(&b->list); 2100 kfree(b); 2101 } 2102 } 2103 2104 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type) 2105 { 2106 struct bdaddr_list *entry; 2107 2108 if (!bacmp(bdaddr, BDADDR_ANY)) 2109 return -EBADF; 2110 2111 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 2112 return -EEXIST; 2113 2114 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 2115 if (!entry) 2116 return -ENOMEM; 2117 2118 bacpy(&entry->bdaddr, bdaddr); 2119 entry->bdaddr_type = type; 2120 2121 list_add(&entry->list, list); 2122 2123 return 0; 2124 } 2125 2126 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr, 2127 u8 type, u8 *peer_irk, u8 *local_irk) 2128 { 2129 struct bdaddr_list_with_irk *entry; 2130 2131 if (!bacmp(bdaddr, BDADDR_ANY)) 2132 return -EBADF; 2133 2134 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 2135 return -EEXIST; 2136 2137 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 2138 if (!entry) 2139 return -ENOMEM; 2140 2141 bacpy(&entry->bdaddr, bdaddr); 2142 entry->bdaddr_type = type; 2143 2144 if (peer_irk) 2145 memcpy(entry->peer_irk, peer_irk, 16); 2146 2147 if (local_irk) 2148 memcpy(entry->local_irk, local_irk, 16); 2149 2150 list_add(&entry->list, list); 2151 2152 return 0; 2153 } 2154 2155 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr, 2156 u8 type, u32 flags) 2157 { 2158 struct bdaddr_list_with_flags *entry; 2159 2160 if (!bacmp(bdaddr, BDADDR_ANY)) 2161 return -EBADF; 2162 2163 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 2164 return -EEXIST; 2165 2166 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 2167 if (!entry) 2168 return -ENOMEM; 2169 2170 bacpy(&entry->bdaddr, bdaddr); 2171 entry->bdaddr_type = type; 2172 entry->flags = flags; 2173 2174 list_add(&entry->list, list); 2175 2176 return 0; 2177 } 2178 2179 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type) 2180 { 2181 struct bdaddr_list *entry; 2182 2183 if (!bacmp(bdaddr, BDADDR_ANY)) { 2184 hci_bdaddr_list_clear(list); 2185 return 0; 2186 } 2187 2188 entry = hci_bdaddr_list_lookup(list, bdaddr, type); 2189 if (!entry) 2190 return -ENOENT; 2191 2192 list_del(&entry->list); 2193 kfree(entry); 2194 2195 return 0; 2196 } 2197 2198 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr, 2199 u8 type) 2200 { 2201 struct bdaddr_list_with_irk *entry; 2202 2203 if (!bacmp(bdaddr, BDADDR_ANY)) { 2204 hci_bdaddr_list_clear(list); 2205 return 0; 2206 } 2207 2208 entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type); 2209 if (!entry) 2210 return -ENOENT; 2211 2212 list_del(&entry->list); 2213 kfree(entry); 2214 2215 return 0; 2216 } 2217 2218 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr, 2219 u8 type) 2220 { 2221 struct bdaddr_list_with_flags *entry; 2222 2223 if (!bacmp(bdaddr, BDADDR_ANY)) { 2224 hci_bdaddr_list_clear(list); 2225 return 0; 2226 } 2227 2228 entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type); 2229 if (!entry) 2230 return -ENOENT; 2231 2232 list_del(&entry->list); 2233 kfree(entry); 2234 2235 return 0; 2236 } 2237 2238 /* This function requires the caller holds hdev->lock */ 2239 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev, 2240 bdaddr_t *addr, u8 addr_type) 2241 { 2242 struct hci_conn_params *params; 2243 2244 list_for_each_entry(params, &hdev->le_conn_params, list) { 2245 if (bacmp(¶ms->addr, addr) == 0 && 2246 params->addr_type == addr_type) { 2247 return params; 2248 } 2249 } 2250 2251 return NULL; 2252 } 2253 2254 /* This function requires the caller holds hdev->lock or rcu_read_lock */ 2255 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list, 2256 bdaddr_t *addr, u8 addr_type) 2257 { 2258 struct hci_conn_params *param; 2259 2260 rcu_read_lock(); 2261 2262 list_for_each_entry_rcu(param, list, action) { 2263 if (bacmp(¶m->addr, addr) == 0 && 2264 param->addr_type == addr_type) { 2265 rcu_read_unlock(); 2266 return param; 2267 } 2268 } 2269 2270 rcu_read_unlock(); 2271 2272 return NULL; 2273 } 2274 2275 /* This function requires the caller holds hdev->lock */ 2276 void hci_pend_le_list_del_init(struct hci_conn_params *param) 2277 { 2278 if (list_empty(¶m->action)) 2279 return; 2280 2281 list_del_rcu(¶m->action); 2282 synchronize_rcu(); 2283 INIT_LIST_HEAD(¶m->action); 2284 } 2285 2286 /* This function requires the caller holds hdev->lock */ 2287 void hci_pend_le_list_add(struct hci_conn_params *param, 2288 struct list_head *list) 2289 { 2290 list_add_rcu(¶m->action, list); 2291 } 2292 2293 /* This function requires the caller holds hdev->lock */ 2294 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev, 2295 bdaddr_t *addr, u8 addr_type) 2296 { 2297 struct hci_conn_params *params; 2298 2299 params = hci_conn_params_lookup(hdev, addr, addr_type); 2300 if (params) 2301 return params; 2302 2303 params = kzalloc(sizeof(*params), GFP_KERNEL); 2304 if (!params) { 2305 bt_dev_err(hdev, "out of memory"); 2306 return NULL; 2307 } 2308 2309 bacpy(¶ms->addr, addr); 2310 params->addr_type = addr_type; 2311 2312 list_add(¶ms->list, &hdev->le_conn_params); 2313 INIT_LIST_HEAD(¶ms->action); 2314 2315 params->conn_min_interval = hdev->le_conn_min_interval; 2316 params->conn_max_interval = hdev->le_conn_max_interval; 2317 params->conn_latency = hdev->le_conn_latency; 2318 params->supervision_timeout = hdev->le_supv_timeout; 2319 params->auto_connect = HCI_AUTO_CONN_DISABLED; 2320 2321 BT_DBG("addr %pMR (type %u)", addr, addr_type); 2322 2323 return params; 2324 } 2325 2326 void hci_conn_params_free(struct hci_conn_params *params) 2327 { 2328 hci_pend_le_list_del_init(params); 2329 2330 if (params->conn) { 2331 hci_conn_drop(params->conn); 2332 hci_conn_put(params->conn); 2333 } 2334 2335 list_del(¶ms->list); 2336 kfree(params); 2337 } 2338 2339 /* This function requires the caller holds hdev->lock */ 2340 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type) 2341 { 2342 struct hci_conn_params *params; 2343 2344 params = hci_conn_params_lookup(hdev, addr, addr_type); 2345 if (!params) 2346 return; 2347 2348 hci_conn_params_free(params); 2349 2350 hci_update_passive_scan(hdev); 2351 2352 BT_DBG("addr %pMR (type %u)", addr, addr_type); 2353 } 2354 2355 /* This function requires the caller holds hdev->lock */ 2356 void hci_conn_params_clear_disabled(struct hci_dev *hdev) 2357 { 2358 struct hci_conn_params *params, *tmp; 2359 2360 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) { 2361 if (params->auto_connect != HCI_AUTO_CONN_DISABLED) 2362 continue; 2363 2364 /* If trying to establish one time connection to disabled 2365 * device, leave the params, but mark them as just once. 2366 */ 2367 if (params->explicit_connect) { 2368 params->auto_connect = HCI_AUTO_CONN_EXPLICIT; 2369 continue; 2370 } 2371 2372 hci_conn_params_free(params); 2373 } 2374 2375 BT_DBG("All LE disabled connection parameters were removed"); 2376 } 2377 2378 /* This function requires the caller holds hdev->lock */ 2379 static void hci_conn_params_clear_all(struct hci_dev *hdev) 2380 { 2381 struct hci_conn_params *params, *tmp; 2382 2383 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) 2384 hci_conn_params_free(params); 2385 2386 BT_DBG("All LE connection parameters were removed"); 2387 } 2388 2389 /* Copy the Identity Address of the controller. 2390 * 2391 * If the controller has a public BD_ADDR, then by default use that one. 2392 * If this is a LE only controller without a public address, default to 2393 * the static random address. 2394 * 2395 * For debugging purposes it is possible to force controllers with a 2396 * public address to use the static random address instead. 2397 * 2398 * In case BR/EDR has been disabled on a dual-mode controller and 2399 * userspace has configured a static address, then that address 2400 * becomes the identity address instead of the public BR/EDR address. 2401 */ 2402 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr, 2403 u8 *bdaddr_type) 2404 { 2405 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 2406 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 2407 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 2408 bacmp(&hdev->static_addr, BDADDR_ANY))) { 2409 bacpy(bdaddr, &hdev->static_addr); 2410 *bdaddr_type = ADDR_LE_DEV_RANDOM; 2411 } else { 2412 bacpy(bdaddr, &hdev->bdaddr); 2413 *bdaddr_type = ADDR_LE_DEV_PUBLIC; 2414 } 2415 } 2416 2417 static void hci_clear_wake_reason(struct hci_dev *hdev) 2418 { 2419 hci_dev_lock(hdev); 2420 2421 hdev->wake_reason = 0; 2422 bacpy(&hdev->wake_addr, BDADDR_ANY); 2423 hdev->wake_addr_type = 0; 2424 2425 hci_dev_unlock(hdev); 2426 } 2427 2428 static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action, 2429 void *data) 2430 { 2431 struct hci_dev *hdev = 2432 container_of(nb, struct hci_dev, suspend_notifier); 2433 int ret = 0; 2434 2435 /* Userspace has full control of this device. Do nothing. */ 2436 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) 2437 return NOTIFY_DONE; 2438 2439 if (action == PM_SUSPEND_PREPARE) 2440 ret = hci_suspend_dev(hdev); 2441 else if (action == PM_POST_SUSPEND) 2442 ret = hci_resume_dev(hdev); 2443 2444 if (ret) 2445 bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d", 2446 action, ret); 2447 2448 return NOTIFY_DONE; 2449 } 2450 2451 /* Alloc HCI device */ 2452 struct hci_dev *hci_alloc_dev_priv(int sizeof_priv) 2453 { 2454 struct hci_dev *hdev; 2455 unsigned int alloc_size; 2456 2457 alloc_size = sizeof(*hdev); 2458 if (sizeof_priv) { 2459 /* Fixme: May need ALIGN-ment? */ 2460 alloc_size += sizeof_priv; 2461 } 2462 2463 hdev = kzalloc(alloc_size, GFP_KERNEL); 2464 if (!hdev) 2465 return NULL; 2466 2467 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1); 2468 hdev->esco_type = (ESCO_HV1); 2469 hdev->link_mode = (HCI_LM_ACCEPT); 2470 hdev->num_iac = 0x01; /* One IAC support is mandatory */ 2471 hdev->io_capability = 0x03; /* No Input No Output */ 2472 hdev->manufacturer = 0xffff; /* Default to internal use */ 2473 hdev->inq_tx_power = HCI_TX_POWER_INVALID; 2474 hdev->adv_tx_power = HCI_TX_POWER_INVALID; 2475 hdev->adv_instance_cnt = 0; 2476 hdev->cur_adv_instance = 0x00; 2477 hdev->adv_instance_timeout = 0; 2478 2479 hdev->advmon_allowlist_duration = 300; 2480 hdev->advmon_no_filter_duration = 500; 2481 hdev->enable_advmon_interleave_scan = 0x00; /* Default to disable */ 2482 2483 hdev->sniff_max_interval = 800; 2484 hdev->sniff_min_interval = 80; 2485 2486 hdev->le_adv_channel_map = 0x07; 2487 hdev->le_adv_min_interval = 0x0800; 2488 hdev->le_adv_max_interval = 0x0800; 2489 hdev->le_scan_interval = 0x0060; 2490 hdev->le_scan_window = 0x0030; 2491 hdev->le_scan_int_suspend = 0x0400; 2492 hdev->le_scan_window_suspend = 0x0012; 2493 hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT; 2494 hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN; 2495 hdev->le_scan_int_adv_monitor = 0x0060; 2496 hdev->le_scan_window_adv_monitor = 0x0030; 2497 hdev->le_scan_int_connect = 0x0060; 2498 hdev->le_scan_window_connect = 0x0060; 2499 hdev->le_conn_min_interval = 0x0018; 2500 hdev->le_conn_max_interval = 0x0028; 2501 hdev->le_conn_latency = 0x0000; 2502 hdev->le_supv_timeout = 0x002a; 2503 hdev->le_def_tx_len = 0x001b; 2504 hdev->le_def_tx_time = 0x0148; 2505 hdev->le_max_tx_len = 0x001b; 2506 hdev->le_max_tx_time = 0x0148; 2507 hdev->le_max_rx_len = 0x001b; 2508 hdev->le_max_rx_time = 0x0148; 2509 hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE; 2510 hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE; 2511 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M; 2512 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M; 2513 hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES; 2514 hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION; 2515 hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT; 2516 hdev->min_le_tx_power = HCI_TX_POWER_INVALID; 2517 hdev->max_le_tx_power = HCI_TX_POWER_INVALID; 2518 2519 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT; 2520 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT; 2521 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE; 2522 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE; 2523 hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT; 2524 hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE; 2525 2526 /* default 1.28 sec page scan */ 2527 hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD; 2528 hdev->def_page_scan_int = 0x0800; 2529 hdev->def_page_scan_window = 0x0012; 2530 2531 mutex_init(&hdev->lock); 2532 mutex_init(&hdev->req_lock); 2533 2534 INIT_LIST_HEAD(&hdev->mesh_pending); 2535 INIT_LIST_HEAD(&hdev->mgmt_pending); 2536 INIT_LIST_HEAD(&hdev->reject_list); 2537 INIT_LIST_HEAD(&hdev->accept_list); 2538 INIT_LIST_HEAD(&hdev->uuids); 2539 INIT_LIST_HEAD(&hdev->link_keys); 2540 INIT_LIST_HEAD(&hdev->long_term_keys); 2541 INIT_LIST_HEAD(&hdev->identity_resolving_keys); 2542 INIT_LIST_HEAD(&hdev->remote_oob_data); 2543 INIT_LIST_HEAD(&hdev->le_accept_list); 2544 INIT_LIST_HEAD(&hdev->le_resolv_list); 2545 INIT_LIST_HEAD(&hdev->le_conn_params); 2546 INIT_LIST_HEAD(&hdev->pend_le_conns); 2547 INIT_LIST_HEAD(&hdev->pend_le_reports); 2548 INIT_LIST_HEAD(&hdev->conn_hash.list); 2549 INIT_LIST_HEAD(&hdev->adv_instances); 2550 INIT_LIST_HEAD(&hdev->blocked_keys); 2551 INIT_LIST_HEAD(&hdev->monitored_devices); 2552 2553 INIT_LIST_HEAD(&hdev->local_codecs); 2554 INIT_WORK(&hdev->rx_work, hci_rx_work); 2555 INIT_WORK(&hdev->cmd_work, hci_cmd_work); 2556 INIT_WORK(&hdev->tx_work, hci_tx_work); 2557 INIT_WORK(&hdev->power_on, hci_power_on); 2558 INIT_WORK(&hdev->error_reset, hci_error_reset); 2559 2560 hci_cmd_sync_init(hdev); 2561 2562 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off); 2563 2564 skb_queue_head_init(&hdev->rx_q); 2565 skb_queue_head_init(&hdev->cmd_q); 2566 skb_queue_head_init(&hdev->raw_q); 2567 2568 init_waitqueue_head(&hdev->req_wait_q); 2569 2570 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout); 2571 INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout); 2572 2573 hci_devcd_setup(hdev); 2574 hci_request_setup(hdev); 2575 2576 hci_init_sysfs(hdev); 2577 discovery_init(hdev); 2578 2579 return hdev; 2580 } 2581 EXPORT_SYMBOL(hci_alloc_dev_priv); 2582 2583 /* Free HCI device */ 2584 void hci_free_dev(struct hci_dev *hdev) 2585 { 2586 /* will free via device release */ 2587 put_device(&hdev->dev); 2588 } 2589 EXPORT_SYMBOL(hci_free_dev); 2590 2591 /* Register HCI device */ 2592 int hci_register_dev(struct hci_dev *hdev) 2593 { 2594 int id, error; 2595 2596 if (!hdev->open || !hdev->close || !hdev->send) 2597 return -EINVAL; 2598 2599 /* Do not allow HCI_AMP devices to register at index 0, 2600 * so the index can be used as the AMP controller ID. 2601 */ 2602 switch (hdev->dev_type) { 2603 case HCI_PRIMARY: 2604 id = ida_simple_get(&hci_index_ida, 0, HCI_MAX_ID, GFP_KERNEL); 2605 break; 2606 case HCI_AMP: 2607 id = ida_simple_get(&hci_index_ida, 1, HCI_MAX_ID, GFP_KERNEL); 2608 break; 2609 default: 2610 return -EINVAL; 2611 } 2612 2613 if (id < 0) 2614 return id; 2615 2616 snprintf(hdev->name, sizeof(hdev->name), "hci%d", id); 2617 hdev->id = id; 2618 2619 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 2620 2621 hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name); 2622 if (!hdev->workqueue) { 2623 error = -ENOMEM; 2624 goto err; 2625 } 2626 2627 hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, 2628 hdev->name); 2629 if (!hdev->req_workqueue) { 2630 destroy_workqueue(hdev->workqueue); 2631 error = -ENOMEM; 2632 goto err; 2633 } 2634 2635 if (!IS_ERR_OR_NULL(bt_debugfs)) 2636 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs); 2637 2638 dev_set_name(&hdev->dev, "%s", hdev->name); 2639 2640 error = device_add(&hdev->dev); 2641 if (error < 0) 2642 goto err_wqueue; 2643 2644 hci_leds_init(hdev); 2645 2646 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev, 2647 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, 2648 hdev); 2649 if (hdev->rfkill) { 2650 if (rfkill_register(hdev->rfkill) < 0) { 2651 rfkill_destroy(hdev->rfkill); 2652 hdev->rfkill = NULL; 2653 } 2654 } 2655 2656 if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) 2657 hci_dev_set_flag(hdev, HCI_RFKILLED); 2658 2659 hci_dev_set_flag(hdev, HCI_SETUP); 2660 hci_dev_set_flag(hdev, HCI_AUTO_OFF); 2661 2662 if (hdev->dev_type == HCI_PRIMARY) { 2663 /* Assume BR/EDR support until proven otherwise (such as 2664 * through reading supported features during init. 2665 */ 2666 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); 2667 } 2668 2669 write_lock(&hci_dev_list_lock); 2670 list_add(&hdev->list, &hci_dev_list); 2671 write_unlock(&hci_dev_list_lock); 2672 2673 /* Devices that are marked for raw-only usage are unconfigured 2674 * and should not be included in normal operation. 2675 */ 2676 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 2677 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 2678 2679 /* Mark Remote Wakeup connection flag as supported if driver has wakeup 2680 * callback. 2681 */ 2682 if (hdev->wakeup) 2683 hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP; 2684 2685 hci_sock_dev_event(hdev, HCI_DEV_REG); 2686 hci_dev_hold(hdev); 2687 2688 error = hci_register_suspend_notifier(hdev); 2689 if (error) 2690 BT_WARN("register suspend notifier failed error:%d\n", error); 2691 2692 queue_work(hdev->req_workqueue, &hdev->power_on); 2693 2694 idr_init(&hdev->adv_monitors_idr); 2695 msft_register(hdev); 2696 2697 return id; 2698 2699 err_wqueue: 2700 debugfs_remove_recursive(hdev->debugfs); 2701 destroy_workqueue(hdev->workqueue); 2702 destroy_workqueue(hdev->req_workqueue); 2703 err: 2704 ida_simple_remove(&hci_index_ida, hdev->id); 2705 2706 return error; 2707 } 2708 EXPORT_SYMBOL(hci_register_dev); 2709 2710 /* Unregister HCI device */ 2711 void hci_unregister_dev(struct hci_dev *hdev) 2712 { 2713 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 2714 2715 mutex_lock(&hdev->unregister_lock); 2716 hci_dev_set_flag(hdev, HCI_UNREGISTER); 2717 mutex_unlock(&hdev->unregister_lock); 2718 2719 write_lock(&hci_dev_list_lock); 2720 list_del(&hdev->list); 2721 write_unlock(&hci_dev_list_lock); 2722 2723 cancel_work_sync(&hdev->power_on); 2724 2725 hci_cmd_sync_clear(hdev); 2726 2727 hci_unregister_suspend_notifier(hdev); 2728 2729 msft_unregister(hdev); 2730 2731 hci_dev_do_close(hdev); 2732 2733 if (!test_bit(HCI_INIT, &hdev->flags) && 2734 !hci_dev_test_flag(hdev, HCI_SETUP) && 2735 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 2736 hci_dev_lock(hdev); 2737 mgmt_index_removed(hdev); 2738 hci_dev_unlock(hdev); 2739 } 2740 2741 /* mgmt_index_removed should take care of emptying the 2742 * pending list */ 2743 BUG_ON(!list_empty(&hdev->mgmt_pending)); 2744 2745 hci_sock_dev_event(hdev, HCI_DEV_UNREG); 2746 2747 if (hdev->rfkill) { 2748 rfkill_unregister(hdev->rfkill); 2749 rfkill_destroy(hdev->rfkill); 2750 } 2751 2752 device_del(&hdev->dev); 2753 /* Actual cleanup is deferred until hci_release_dev(). */ 2754 hci_dev_put(hdev); 2755 } 2756 EXPORT_SYMBOL(hci_unregister_dev); 2757 2758 /* Release HCI device */ 2759 void hci_release_dev(struct hci_dev *hdev) 2760 { 2761 debugfs_remove_recursive(hdev->debugfs); 2762 kfree_const(hdev->hw_info); 2763 kfree_const(hdev->fw_info); 2764 2765 destroy_workqueue(hdev->workqueue); 2766 destroy_workqueue(hdev->req_workqueue); 2767 2768 hci_dev_lock(hdev); 2769 hci_bdaddr_list_clear(&hdev->reject_list); 2770 hci_bdaddr_list_clear(&hdev->accept_list); 2771 hci_uuids_clear(hdev); 2772 hci_link_keys_clear(hdev); 2773 hci_smp_ltks_clear(hdev); 2774 hci_smp_irks_clear(hdev); 2775 hci_remote_oob_data_clear(hdev); 2776 hci_adv_instances_clear(hdev); 2777 hci_adv_monitors_clear(hdev); 2778 hci_bdaddr_list_clear(&hdev->le_accept_list); 2779 hci_bdaddr_list_clear(&hdev->le_resolv_list); 2780 hci_conn_params_clear_all(hdev); 2781 hci_discovery_filter_clear(hdev); 2782 hci_blocked_keys_clear(hdev); 2783 hci_dev_unlock(hdev); 2784 2785 ida_simple_remove(&hci_index_ida, hdev->id); 2786 kfree_skb(hdev->sent_cmd); 2787 kfree_skb(hdev->recv_event); 2788 kfree(hdev); 2789 } 2790 EXPORT_SYMBOL(hci_release_dev); 2791 2792 int hci_register_suspend_notifier(struct hci_dev *hdev) 2793 { 2794 int ret = 0; 2795 2796 if (!hdev->suspend_notifier.notifier_call && 2797 !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) { 2798 hdev->suspend_notifier.notifier_call = hci_suspend_notifier; 2799 ret = register_pm_notifier(&hdev->suspend_notifier); 2800 } 2801 2802 return ret; 2803 } 2804 2805 int hci_unregister_suspend_notifier(struct hci_dev *hdev) 2806 { 2807 int ret = 0; 2808 2809 if (hdev->suspend_notifier.notifier_call) { 2810 ret = unregister_pm_notifier(&hdev->suspend_notifier); 2811 if (!ret) 2812 hdev->suspend_notifier.notifier_call = NULL; 2813 } 2814 2815 return ret; 2816 } 2817 2818 /* Suspend HCI device */ 2819 int hci_suspend_dev(struct hci_dev *hdev) 2820 { 2821 int ret; 2822 2823 bt_dev_dbg(hdev, ""); 2824 2825 /* Suspend should only act on when powered. */ 2826 if (!hdev_is_powered(hdev) || 2827 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2828 return 0; 2829 2830 /* If powering down don't attempt to suspend */ 2831 if (mgmt_powering_down(hdev)) 2832 return 0; 2833 2834 /* Cancel potentially blocking sync operation before suspend */ 2835 __hci_cmd_sync_cancel(hdev, -EHOSTDOWN); 2836 2837 hci_req_sync_lock(hdev); 2838 ret = hci_suspend_sync(hdev); 2839 hci_req_sync_unlock(hdev); 2840 2841 hci_clear_wake_reason(hdev); 2842 mgmt_suspending(hdev, hdev->suspend_state); 2843 2844 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND); 2845 return ret; 2846 } 2847 EXPORT_SYMBOL(hci_suspend_dev); 2848 2849 /* Resume HCI device */ 2850 int hci_resume_dev(struct hci_dev *hdev) 2851 { 2852 int ret; 2853 2854 bt_dev_dbg(hdev, ""); 2855 2856 /* Resume should only act on when powered. */ 2857 if (!hdev_is_powered(hdev) || 2858 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2859 return 0; 2860 2861 /* If powering down don't attempt to resume */ 2862 if (mgmt_powering_down(hdev)) 2863 return 0; 2864 2865 hci_req_sync_lock(hdev); 2866 ret = hci_resume_sync(hdev); 2867 hci_req_sync_unlock(hdev); 2868 2869 mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr, 2870 hdev->wake_addr_type); 2871 2872 hci_sock_dev_event(hdev, HCI_DEV_RESUME); 2873 return ret; 2874 } 2875 EXPORT_SYMBOL(hci_resume_dev); 2876 2877 /* Reset HCI device */ 2878 int hci_reset_dev(struct hci_dev *hdev) 2879 { 2880 static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 }; 2881 struct sk_buff *skb; 2882 2883 skb = bt_skb_alloc(3, GFP_ATOMIC); 2884 if (!skb) 2885 return -ENOMEM; 2886 2887 hci_skb_pkt_type(skb) = HCI_EVENT_PKT; 2888 skb_put_data(skb, hw_err, 3); 2889 2890 bt_dev_err(hdev, "Injecting HCI hardware error event"); 2891 2892 /* Send Hardware Error to upper stack */ 2893 return hci_recv_frame(hdev, skb); 2894 } 2895 EXPORT_SYMBOL(hci_reset_dev); 2896 2897 /* Receive frame from HCI drivers */ 2898 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb) 2899 { 2900 if (!hdev || (!test_bit(HCI_UP, &hdev->flags) 2901 && !test_bit(HCI_INIT, &hdev->flags))) { 2902 kfree_skb(skb); 2903 return -ENXIO; 2904 } 2905 2906 switch (hci_skb_pkt_type(skb)) { 2907 case HCI_EVENT_PKT: 2908 break; 2909 case HCI_ACLDATA_PKT: 2910 /* Detect if ISO packet has been sent as ACL */ 2911 if (hci_conn_num(hdev, ISO_LINK)) { 2912 __u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle); 2913 __u8 type; 2914 2915 type = hci_conn_lookup_type(hdev, hci_handle(handle)); 2916 if (type == ISO_LINK) 2917 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT; 2918 } 2919 break; 2920 case HCI_SCODATA_PKT: 2921 break; 2922 case HCI_ISODATA_PKT: 2923 break; 2924 default: 2925 kfree_skb(skb); 2926 return -EINVAL; 2927 } 2928 2929 /* Incoming skb */ 2930 bt_cb(skb)->incoming = 1; 2931 2932 /* Time stamp */ 2933 __net_timestamp(skb); 2934 2935 skb_queue_tail(&hdev->rx_q, skb); 2936 queue_work(hdev->workqueue, &hdev->rx_work); 2937 2938 return 0; 2939 } 2940 EXPORT_SYMBOL(hci_recv_frame); 2941 2942 /* Receive diagnostic message from HCI drivers */ 2943 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb) 2944 { 2945 /* Mark as diagnostic packet */ 2946 hci_skb_pkt_type(skb) = HCI_DIAG_PKT; 2947 2948 /* Time stamp */ 2949 __net_timestamp(skb); 2950 2951 skb_queue_tail(&hdev->rx_q, skb); 2952 queue_work(hdev->workqueue, &hdev->rx_work); 2953 2954 return 0; 2955 } 2956 EXPORT_SYMBOL(hci_recv_diag); 2957 2958 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...) 2959 { 2960 va_list vargs; 2961 2962 va_start(vargs, fmt); 2963 kfree_const(hdev->hw_info); 2964 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs); 2965 va_end(vargs); 2966 } 2967 EXPORT_SYMBOL(hci_set_hw_info); 2968 2969 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...) 2970 { 2971 va_list vargs; 2972 2973 va_start(vargs, fmt); 2974 kfree_const(hdev->fw_info); 2975 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs); 2976 va_end(vargs); 2977 } 2978 EXPORT_SYMBOL(hci_set_fw_info); 2979 2980 /* ---- Interface to upper protocols ---- */ 2981 2982 int hci_register_cb(struct hci_cb *cb) 2983 { 2984 BT_DBG("%p name %s", cb, cb->name); 2985 2986 mutex_lock(&hci_cb_list_lock); 2987 list_add_tail(&cb->list, &hci_cb_list); 2988 mutex_unlock(&hci_cb_list_lock); 2989 2990 return 0; 2991 } 2992 EXPORT_SYMBOL(hci_register_cb); 2993 2994 int hci_unregister_cb(struct hci_cb *cb) 2995 { 2996 BT_DBG("%p name %s", cb, cb->name); 2997 2998 mutex_lock(&hci_cb_list_lock); 2999 list_del(&cb->list); 3000 mutex_unlock(&hci_cb_list_lock); 3001 3002 return 0; 3003 } 3004 EXPORT_SYMBOL(hci_unregister_cb); 3005 3006 static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb) 3007 { 3008 int err; 3009 3010 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb), 3011 skb->len); 3012 3013 /* Time stamp */ 3014 __net_timestamp(skb); 3015 3016 /* Send copy to monitor */ 3017 hci_send_to_monitor(hdev, skb); 3018 3019 if (atomic_read(&hdev->promisc)) { 3020 /* Send copy to the sockets */ 3021 hci_send_to_sock(hdev, skb); 3022 } 3023 3024 /* Get rid of skb owner, prior to sending to the driver. */ 3025 skb_orphan(skb); 3026 3027 if (!test_bit(HCI_RUNNING, &hdev->flags)) { 3028 kfree_skb(skb); 3029 return -EINVAL; 3030 } 3031 3032 err = hdev->send(hdev, skb); 3033 if (err < 0) { 3034 bt_dev_err(hdev, "sending frame failed (%d)", err); 3035 kfree_skb(skb); 3036 return err; 3037 } 3038 3039 return 0; 3040 } 3041 3042 /* Send HCI command */ 3043 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, 3044 const void *param) 3045 { 3046 struct sk_buff *skb; 3047 3048 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen); 3049 3050 skb = hci_prepare_cmd(hdev, opcode, plen, param); 3051 if (!skb) { 3052 bt_dev_err(hdev, "no memory for command"); 3053 return -ENOMEM; 3054 } 3055 3056 /* Stand-alone HCI commands must be flagged as 3057 * single-command requests. 3058 */ 3059 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 3060 3061 skb_queue_tail(&hdev->cmd_q, skb); 3062 queue_work(hdev->workqueue, &hdev->cmd_work); 3063 3064 return 0; 3065 } 3066 3067 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen, 3068 const void *param) 3069 { 3070 struct sk_buff *skb; 3071 3072 if (hci_opcode_ogf(opcode) != 0x3f) { 3073 /* A controller receiving a command shall respond with either 3074 * a Command Status Event or a Command Complete Event. 3075 * Therefore, all standard HCI commands must be sent via the 3076 * standard API, using hci_send_cmd or hci_cmd_sync helpers. 3077 * Some vendors do not comply with this rule for vendor-specific 3078 * commands and do not return any event. We want to support 3079 * unresponded commands for such cases only. 3080 */ 3081 bt_dev_err(hdev, "unresponded command not supported"); 3082 return -EINVAL; 3083 } 3084 3085 skb = hci_prepare_cmd(hdev, opcode, plen, param); 3086 if (!skb) { 3087 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 3088 opcode); 3089 return -ENOMEM; 3090 } 3091 3092 hci_send_frame(hdev, skb); 3093 3094 return 0; 3095 } 3096 EXPORT_SYMBOL(__hci_cmd_send); 3097 3098 /* Get data from the previously sent command */ 3099 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode) 3100 { 3101 struct hci_command_hdr *hdr; 3102 3103 if (!hdev->sent_cmd) 3104 return NULL; 3105 3106 hdr = (void *) hdev->sent_cmd->data; 3107 3108 if (hdr->opcode != cpu_to_le16(opcode)) 3109 return NULL; 3110 3111 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode); 3112 3113 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE; 3114 } 3115 3116 /* Get data from last received event */ 3117 void *hci_recv_event_data(struct hci_dev *hdev, __u8 event) 3118 { 3119 struct hci_event_hdr *hdr; 3120 int offset; 3121 3122 if (!hdev->recv_event) 3123 return NULL; 3124 3125 hdr = (void *)hdev->recv_event->data; 3126 offset = sizeof(*hdr); 3127 3128 if (hdr->evt != event) { 3129 /* In case of LE metaevent check the subevent match */ 3130 if (hdr->evt == HCI_EV_LE_META) { 3131 struct hci_ev_le_meta *ev; 3132 3133 ev = (void *)hdev->recv_event->data + offset; 3134 offset += sizeof(*ev); 3135 if (ev->subevent == event) 3136 goto found; 3137 } 3138 return NULL; 3139 } 3140 3141 found: 3142 bt_dev_dbg(hdev, "event 0x%2.2x", event); 3143 3144 return hdev->recv_event->data + offset; 3145 } 3146 3147 /* Send ACL data */ 3148 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags) 3149 { 3150 struct hci_acl_hdr *hdr; 3151 int len = skb->len; 3152 3153 skb_push(skb, HCI_ACL_HDR_SIZE); 3154 skb_reset_transport_header(skb); 3155 hdr = (struct hci_acl_hdr *)skb_transport_header(skb); 3156 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags)); 3157 hdr->dlen = cpu_to_le16(len); 3158 } 3159 3160 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue, 3161 struct sk_buff *skb, __u16 flags) 3162 { 3163 struct hci_conn *conn = chan->conn; 3164 struct hci_dev *hdev = conn->hdev; 3165 struct sk_buff *list; 3166 3167 skb->len = skb_headlen(skb); 3168 skb->data_len = 0; 3169 3170 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT; 3171 3172 switch (hdev->dev_type) { 3173 case HCI_PRIMARY: 3174 hci_add_acl_hdr(skb, conn->handle, flags); 3175 break; 3176 case HCI_AMP: 3177 hci_add_acl_hdr(skb, chan->handle, flags); 3178 break; 3179 default: 3180 bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type); 3181 return; 3182 } 3183 3184 list = skb_shinfo(skb)->frag_list; 3185 if (!list) { 3186 /* Non fragmented */ 3187 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len); 3188 3189 skb_queue_tail(queue, skb); 3190 } else { 3191 /* Fragmented */ 3192 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3193 3194 skb_shinfo(skb)->frag_list = NULL; 3195 3196 /* Queue all fragments atomically. We need to use spin_lock_bh 3197 * here because of 6LoWPAN links, as there this function is 3198 * called from softirq and using normal spin lock could cause 3199 * deadlocks. 3200 */ 3201 spin_lock_bh(&queue->lock); 3202 3203 __skb_queue_tail(queue, skb); 3204 3205 flags &= ~ACL_START; 3206 flags |= ACL_CONT; 3207 do { 3208 skb = list; list = list->next; 3209 3210 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT; 3211 hci_add_acl_hdr(skb, conn->handle, flags); 3212 3213 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3214 3215 __skb_queue_tail(queue, skb); 3216 } while (list); 3217 3218 spin_unlock_bh(&queue->lock); 3219 } 3220 } 3221 3222 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags) 3223 { 3224 struct hci_dev *hdev = chan->conn->hdev; 3225 3226 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags); 3227 3228 hci_queue_acl(chan, &chan->data_q, skb, flags); 3229 3230 queue_work(hdev->workqueue, &hdev->tx_work); 3231 } 3232 3233 /* Send SCO data */ 3234 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb) 3235 { 3236 struct hci_dev *hdev = conn->hdev; 3237 struct hci_sco_hdr hdr; 3238 3239 BT_DBG("%s len %d", hdev->name, skb->len); 3240 3241 hdr.handle = cpu_to_le16(conn->handle); 3242 hdr.dlen = skb->len; 3243 3244 skb_push(skb, HCI_SCO_HDR_SIZE); 3245 skb_reset_transport_header(skb); 3246 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE); 3247 3248 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT; 3249 3250 skb_queue_tail(&conn->data_q, skb); 3251 queue_work(hdev->workqueue, &hdev->tx_work); 3252 } 3253 3254 /* Send ISO data */ 3255 static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags) 3256 { 3257 struct hci_iso_hdr *hdr; 3258 int len = skb->len; 3259 3260 skb_push(skb, HCI_ISO_HDR_SIZE); 3261 skb_reset_transport_header(skb); 3262 hdr = (struct hci_iso_hdr *)skb_transport_header(skb); 3263 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags)); 3264 hdr->dlen = cpu_to_le16(len); 3265 } 3266 3267 static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue, 3268 struct sk_buff *skb) 3269 { 3270 struct hci_dev *hdev = conn->hdev; 3271 struct sk_buff *list; 3272 __u16 flags; 3273 3274 skb->len = skb_headlen(skb); 3275 skb->data_len = 0; 3276 3277 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT; 3278 3279 list = skb_shinfo(skb)->frag_list; 3280 3281 flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00); 3282 hci_add_iso_hdr(skb, conn->handle, flags); 3283 3284 if (!list) { 3285 /* Non fragmented */ 3286 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len); 3287 3288 skb_queue_tail(queue, skb); 3289 } else { 3290 /* Fragmented */ 3291 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3292 3293 skb_shinfo(skb)->frag_list = NULL; 3294 3295 __skb_queue_tail(queue, skb); 3296 3297 do { 3298 skb = list; list = list->next; 3299 3300 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT; 3301 flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END, 3302 0x00); 3303 hci_add_iso_hdr(skb, conn->handle, flags); 3304 3305 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3306 3307 __skb_queue_tail(queue, skb); 3308 } while (list); 3309 } 3310 } 3311 3312 void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb) 3313 { 3314 struct hci_dev *hdev = conn->hdev; 3315 3316 BT_DBG("%s len %d", hdev->name, skb->len); 3317 3318 hci_queue_iso(conn, &conn->data_q, skb); 3319 3320 queue_work(hdev->workqueue, &hdev->tx_work); 3321 } 3322 3323 /* ---- HCI TX task (outgoing data) ---- */ 3324 3325 /* HCI Connection scheduler */ 3326 static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote) 3327 { 3328 struct hci_dev *hdev; 3329 int cnt, q; 3330 3331 if (!conn) { 3332 *quote = 0; 3333 return; 3334 } 3335 3336 hdev = conn->hdev; 3337 3338 switch (conn->type) { 3339 case ACL_LINK: 3340 cnt = hdev->acl_cnt; 3341 break; 3342 case AMP_LINK: 3343 cnt = hdev->block_cnt; 3344 break; 3345 case SCO_LINK: 3346 case ESCO_LINK: 3347 cnt = hdev->sco_cnt; 3348 break; 3349 case LE_LINK: 3350 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 3351 break; 3352 case ISO_LINK: 3353 cnt = hdev->iso_mtu ? hdev->iso_cnt : 3354 hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 3355 break; 3356 default: 3357 cnt = 0; 3358 bt_dev_err(hdev, "unknown link type %d", conn->type); 3359 } 3360 3361 q = cnt / num; 3362 *quote = q ? q : 1; 3363 } 3364 3365 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, 3366 int *quote) 3367 { 3368 struct hci_conn_hash *h = &hdev->conn_hash; 3369 struct hci_conn *conn = NULL, *c; 3370 unsigned int num = 0, min = ~0; 3371 3372 /* We don't have to lock device here. Connections are always 3373 * added and removed with TX task disabled. */ 3374 3375 rcu_read_lock(); 3376 3377 list_for_each_entry_rcu(c, &h->list, list) { 3378 if (c->type != type || skb_queue_empty(&c->data_q)) 3379 continue; 3380 3381 if (c->state != BT_CONNECTED && c->state != BT_CONFIG) 3382 continue; 3383 3384 num++; 3385 3386 if (c->sent < min) { 3387 min = c->sent; 3388 conn = c; 3389 } 3390 3391 if (hci_conn_num(hdev, type) == num) 3392 break; 3393 } 3394 3395 rcu_read_unlock(); 3396 3397 hci_quote_sent(conn, num, quote); 3398 3399 BT_DBG("conn %p quote %d", conn, *quote); 3400 return conn; 3401 } 3402 3403 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type) 3404 { 3405 struct hci_conn_hash *h = &hdev->conn_hash; 3406 struct hci_conn *c; 3407 3408 bt_dev_err(hdev, "link tx timeout"); 3409 3410 rcu_read_lock(); 3411 3412 /* Kill stalled connections */ 3413 list_for_each_entry_rcu(c, &h->list, list) { 3414 if (c->type == type && c->sent) { 3415 bt_dev_err(hdev, "killing stalled connection %pMR", 3416 &c->dst); 3417 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM); 3418 } 3419 } 3420 3421 rcu_read_unlock(); 3422 } 3423 3424 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type, 3425 int *quote) 3426 { 3427 struct hci_conn_hash *h = &hdev->conn_hash; 3428 struct hci_chan *chan = NULL; 3429 unsigned int num = 0, min = ~0, cur_prio = 0; 3430 struct hci_conn *conn; 3431 int conn_num = 0; 3432 3433 BT_DBG("%s", hdev->name); 3434 3435 rcu_read_lock(); 3436 3437 list_for_each_entry_rcu(conn, &h->list, list) { 3438 struct hci_chan *tmp; 3439 3440 if (conn->type != type) 3441 continue; 3442 3443 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3444 continue; 3445 3446 conn_num++; 3447 3448 list_for_each_entry_rcu(tmp, &conn->chan_list, list) { 3449 struct sk_buff *skb; 3450 3451 if (skb_queue_empty(&tmp->data_q)) 3452 continue; 3453 3454 skb = skb_peek(&tmp->data_q); 3455 if (skb->priority < cur_prio) 3456 continue; 3457 3458 if (skb->priority > cur_prio) { 3459 num = 0; 3460 min = ~0; 3461 cur_prio = skb->priority; 3462 } 3463 3464 num++; 3465 3466 if (conn->sent < min) { 3467 min = conn->sent; 3468 chan = tmp; 3469 } 3470 } 3471 3472 if (hci_conn_num(hdev, type) == conn_num) 3473 break; 3474 } 3475 3476 rcu_read_unlock(); 3477 3478 if (!chan) 3479 return NULL; 3480 3481 hci_quote_sent(chan->conn, num, quote); 3482 3483 BT_DBG("chan %p quote %d", chan, *quote); 3484 return chan; 3485 } 3486 3487 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type) 3488 { 3489 struct hci_conn_hash *h = &hdev->conn_hash; 3490 struct hci_conn *conn; 3491 int num = 0; 3492 3493 BT_DBG("%s", hdev->name); 3494 3495 rcu_read_lock(); 3496 3497 list_for_each_entry_rcu(conn, &h->list, list) { 3498 struct hci_chan *chan; 3499 3500 if (conn->type != type) 3501 continue; 3502 3503 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3504 continue; 3505 3506 num++; 3507 3508 list_for_each_entry_rcu(chan, &conn->chan_list, list) { 3509 struct sk_buff *skb; 3510 3511 if (chan->sent) { 3512 chan->sent = 0; 3513 continue; 3514 } 3515 3516 if (skb_queue_empty(&chan->data_q)) 3517 continue; 3518 3519 skb = skb_peek(&chan->data_q); 3520 if (skb->priority >= HCI_PRIO_MAX - 1) 3521 continue; 3522 3523 skb->priority = HCI_PRIO_MAX - 1; 3524 3525 BT_DBG("chan %p skb %p promoted to %d", chan, skb, 3526 skb->priority); 3527 } 3528 3529 if (hci_conn_num(hdev, type) == num) 3530 break; 3531 } 3532 3533 rcu_read_unlock(); 3534 3535 } 3536 3537 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb) 3538 { 3539 /* Calculate count of blocks used by this packet */ 3540 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len); 3541 } 3542 3543 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type) 3544 { 3545 unsigned long last_tx; 3546 3547 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 3548 return; 3549 3550 switch (type) { 3551 case LE_LINK: 3552 last_tx = hdev->le_last_tx; 3553 break; 3554 default: 3555 last_tx = hdev->acl_last_tx; 3556 break; 3557 } 3558 3559 /* tx timeout must be longer than maximum link supervision timeout 3560 * (40.9 seconds) 3561 */ 3562 if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT)) 3563 hci_link_tx_to(hdev, type); 3564 } 3565 3566 /* Schedule SCO */ 3567 static void hci_sched_sco(struct hci_dev *hdev) 3568 { 3569 struct hci_conn *conn; 3570 struct sk_buff *skb; 3571 int quote; 3572 3573 BT_DBG("%s", hdev->name); 3574 3575 if (!hci_conn_num(hdev, SCO_LINK)) 3576 return; 3577 3578 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) { 3579 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 3580 BT_DBG("skb %p len %d", skb, skb->len); 3581 hci_send_frame(hdev, skb); 3582 3583 conn->sent++; 3584 if (conn->sent == ~0) 3585 conn->sent = 0; 3586 } 3587 } 3588 } 3589 3590 static void hci_sched_esco(struct hci_dev *hdev) 3591 { 3592 struct hci_conn *conn; 3593 struct sk_buff *skb; 3594 int quote; 3595 3596 BT_DBG("%s", hdev->name); 3597 3598 if (!hci_conn_num(hdev, ESCO_LINK)) 3599 return; 3600 3601 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, 3602 "e))) { 3603 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 3604 BT_DBG("skb %p len %d", skb, skb->len); 3605 hci_send_frame(hdev, skb); 3606 3607 conn->sent++; 3608 if (conn->sent == ~0) 3609 conn->sent = 0; 3610 } 3611 } 3612 } 3613 3614 static void hci_sched_acl_pkt(struct hci_dev *hdev) 3615 { 3616 unsigned int cnt = hdev->acl_cnt; 3617 struct hci_chan *chan; 3618 struct sk_buff *skb; 3619 int quote; 3620 3621 __check_timeout(hdev, cnt, ACL_LINK); 3622 3623 while (hdev->acl_cnt && 3624 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) { 3625 u32 priority = (skb_peek(&chan->data_q))->priority; 3626 while (quote-- && (skb = skb_peek(&chan->data_q))) { 3627 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 3628 skb->len, skb->priority); 3629 3630 /* Stop if priority has changed */ 3631 if (skb->priority < priority) 3632 break; 3633 3634 skb = skb_dequeue(&chan->data_q); 3635 3636 hci_conn_enter_active_mode(chan->conn, 3637 bt_cb(skb)->force_active); 3638 3639 hci_send_frame(hdev, skb); 3640 hdev->acl_last_tx = jiffies; 3641 3642 hdev->acl_cnt--; 3643 chan->sent++; 3644 chan->conn->sent++; 3645 3646 /* Send pending SCO packets right away */ 3647 hci_sched_sco(hdev); 3648 hci_sched_esco(hdev); 3649 } 3650 } 3651 3652 if (cnt != hdev->acl_cnt) 3653 hci_prio_recalculate(hdev, ACL_LINK); 3654 } 3655 3656 static void hci_sched_acl_blk(struct hci_dev *hdev) 3657 { 3658 unsigned int cnt = hdev->block_cnt; 3659 struct hci_chan *chan; 3660 struct sk_buff *skb; 3661 int quote; 3662 u8 type; 3663 3664 BT_DBG("%s", hdev->name); 3665 3666 if (hdev->dev_type == HCI_AMP) 3667 type = AMP_LINK; 3668 else 3669 type = ACL_LINK; 3670 3671 __check_timeout(hdev, cnt, type); 3672 3673 while (hdev->block_cnt > 0 && 3674 (chan = hci_chan_sent(hdev, type, "e))) { 3675 u32 priority = (skb_peek(&chan->data_q))->priority; 3676 while (quote > 0 && (skb = skb_peek(&chan->data_q))) { 3677 int blocks; 3678 3679 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 3680 skb->len, skb->priority); 3681 3682 /* Stop if priority has changed */ 3683 if (skb->priority < priority) 3684 break; 3685 3686 skb = skb_dequeue(&chan->data_q); 3687 3688 blocks = __get_blocks(hdev, skb); 3689 if (blocks > hdev->block_cnt) 3690 return; 3691 3692 hci_conn_enter_active_mode(chan->conn, 3693 bt_cb(skb)->force_active); 3694 3695 hci_send_frame(hdev, skb); 3696 hdev->acl_last_tx = jiffies; 3697 3698 hdev->block_cnt -= blocks; 3699 quote -= blocks; 3700 3701 chan->sent += blocks; 3702 chan->conn->sent += blocks; 3703 } 3704 } 3705 3706 if (cnt != hdev->block_cnt) 3707 hci_prio_recalculate(hdev, type); 3708 } 3709 3710 static void hci_sched_acl(struct hci_dev *hdev) 3711 { 3712 BT_DBG("%s", hdev->name); 3713 3714 /* No ACL link over BR/EDR controller */ 3715 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY) 3716 return; 3717 3718 /* No AMP link over AMP controller */ 3719 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP) 3720 return; 3721 3722 switch (hdev->flow_ctl_mode) { 3723 case HCI_FLOW_CTL_MODE_PACKET_BASED: 3724 hci_sched_acl_pkt(hdev); 3725 break; 3726 3727 case HCI_FLOW_CTL_MODE_BLOCK_BASED: 3728 hci_sched_acl_blk(hdev); 3729 break; 3730 } 3731 } 3732 3733 static void hci_sched_le(struct hci_dev *hdev) 3734 { 3735 struct hci_chan *chan; 3736 struct sk_buff *skb; 3737 int quote, cnt, tmp; 3738 3739 BT_DBG("%s", hdev->name); 3740 3741 if (!hci_conn_num(hdev, LE_LINK)) 3742 return; 3743 3744 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt; 3745 3746 __check_timeout(hdev, cnt, LE_LINK); 3747 3748 tmp = cnt; 3749 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) { 3750 u32 priority = (skb_peek(&chan->data_q))->priority; 3751 while (quote-- && (skb = skb_peek(&chan->data_q))) { 3752 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 3753 skb->len, skb->priority); 3754 3755 /* Stop if priority has changed */ 3756 if (skb->priority < priority) 3757 break; 3758 3759 skb = skb_dequeue(&chan->data_q); 3760 3761 hci_send_frame(hdev, skb); 3762 hdev->le_last_tx = jiffies; 3763 3764 cnt--; 3765 chan->sent++; 3766 chan->conn->sent++; 3767 3768 /* Send pending SCO packets right away */ 3769 hci_sched_sco(hdev); 3770 hci_sched_esco(hdev); 3771 } 3772 } 3773 3774 if (hdev->le_pkts) 3775 hdev->le_cnt = cnt; 3776 else 3777 hdev->acl_cnt = cnt; 3778 3779 if (cnt != tmp) 3780 hci_prio_recalculate(hdev, LE_LINK); 3781 } 3782 3783 /* Schedule CIS */ 3784 static void hci_sched_iso(struct hci_dev *hdev) 3785 { 3786 struct hci_conn *conn; 3787 struct sk_buff *skb; 3788 int quote, *cnt; 3789 3790 BT_DBG("%s", hdev->name); 3791 3792 if (!hci_conn_num(hdev, ISO_LINK)) 3793 return; 3794 3795 cnt = hdev->iso_pkts ? &hdev->iso_cnt : 3796 hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt; 3797 while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, "e))) { 3798 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 3799 BT_DBG("skb %p len %d", skb, skb->len); 3800 hci_send_frame(hdev, skb); 3801 3802 conn->sent++; 3803 if (conn->sent == ~0) 3804 conn->sent = 0; 3805 (*cnt)--; 3806 } 3807 } 3808 } 3809 3810 static void hci_tx_work(struct work_struct *work) 3811 { 3812 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work); 3813 struct sk_buff *skb; 3814 3815 BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt, 3816 hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt); 3817 3818 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 3819 /* Schedule queues and send stuff to HCI driver */ 3820 hci_sched_sco(hdev); 3821 hci_sched_esco(hdev); 3822 hci_sched_iso(hdev); 3823 hci_sched_acl(hdev); 3824 hci_sched_le(hdev); 3825 } 3826 3827 /* Send next queued raw (unknown type) packet */ 3828 while ((skb = skb_dequeue(&hdev->raw_q))) 3829 hci_send_frame(hdev, skb); 3830 } 3831 3832 /* ----- HCI RX task (incoming data processing) ----- */ 3833 3834 /* ACL data packet */ 3835 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb) 3836 { 3837 struct hci_acl_hdr *hdr = (void *) skb->data; 3838 struct hci_conn *conn; 3839 __u16 handle, flags; 3840 3841 skb_pull(skb, HCI_ACL_HDR_SIZE); 3842 3843 handle = __le16_to_cpu(hdr->handle); 3844 flags = hci_flags(handle); 3845 handle = hci_handle(handle); 3846 3847 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len, 3848 handle, flags); 3849 3850 hdev->stat.acl_rx++; 3851 3852 hci_dev_lock(hdev); 3853 conn = hci_conn_hash_lookup_handle(hdev, handle); 3854 hci_dev_unlock(hdev); 3855 3856 if (conn) { 3857 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF); 3858 3859 /* Send to upper protocol */ 3860 l2cap_recv_acldata(conn, skb, flags); 3861 return; 3862 } else { 3863 bt_dev_err(hdev, "ACL packet for unknown connection handle %d", 3864 handle); 3865 } 3866 3867 kfree_skb(skb); 3868 } 3869 3870 /* SCO data packet */ 3871 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb) 3872 { 3873 struct hci_sco_hdr *hdr = (void *) skb->data; 3874 struct hci_conn *conn; 3875 __u16 handle, flags; 3876 3877 skb_pull(skb, HCI_SCO_HDR_SIZE); 3878 3879 handle = __le16_to_cpu(hdr->handle); 3880 flags = hci_flags(handle); 3881 handle = hci_handle(handle); 3882 3883 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len, 3884 handle, flags); 3885 3886 hdev->stat.sco_rx++; 3887 3888 hci_dev_lock(hdev); 3889 conn = hci_conn_hash_lookup_handle(hdev, handle); 3890 hci_dev_unlock(hdev); 3891 3892 if (conn) { 3893 /* Send to upper protocol */ 3894 bt_cb(skb)->sco.pkt_status = flags & 0x03; 3895 sco_recv_scodata(conn, skb); 3896 return; 3897 } else { 3898 bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d", 3899 handle); 3900 } 3901 3902 kfree_skb(skb); 3903 } 3904 3905 static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb) 3906 { 3907 struct hci_iso_hdr *hdr; 3908 struct hci_conn *conn; 3909 __u16 handle, flags; 3910 3911 hdr = skb_pull_data(skb, sizeof(*hdr)); 3912 if (!hdr) { 3913 bt_dev_err(hdev, "ISO packet too small"); 3914 goto drop; 3915 } 3916 3917 handle = __le16_to_cpu(hdr->handle); 3918 flags = hci_flags(handle); 3919 handle = hci_handle(handle); 3920 3921 bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len, 3922 handle, flags); 3923 3924 hci_dev_lock(hdev); 3925 conn = hci_conn_hash_lookup_handle(hdev, handle); 3926 hci_dev_unlock(hdev); 3927 3928 if (!conn) { 3929 bt_dev_err(hdev, "ISO packet for unknown connection handle %d", 3930 handle); 3931 goto drop; 3932 } 3933 3934 /* Send to upper protocol */ 3935 iso_recv(conn, skb, flags); 3936 return; 3937 3938 drop: 3939 kfree_skb(skb); 3940 } 3941 3942 static bool hci_req_is_complete(struct hci_dev *hdev) 3943 { 3944 struct sk_buff *skb; 3945 3946 skb = skb_peek(&hdev->cmd_q); 3947 if (!skb) 3948 return true; 3949 3950 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START); 3951 } 3952 3953 static void hci_resend_last(struct hci_dev *hdev) 3954 { 3955 struct hci_command_hdr *sent; 3956 struct sk_buff *skb; 3957 u16 opcode; 3958 3959 if (!hdev->sent_cmd) 3960 return; 3961 3962 sent = (void *) hdev->sent_cmd->data; 3963 opcode = __le16_to_cpu(sent->opcode); 3964 if (opcode == HCI_OP_RESET) 3965 return; 3966 3967 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL); 3968 if (!skb) 3969 return; 3970 3971 skb_queue_head(&hdev->cmd_q, skb); 3972 queue_work(hdev->workqueue, &hdev->cmd_work); 3973 } 3974 3975 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status, 3976 hci_req_complete_t *req_complete, 3977 hci_req_complete_skb_t *req_complete_skb) 3978 { 3979 struct sk_buff *skb; 3980 unsigned long flags; 3981 3982 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status); 3983 3984 /* If the completed command doesn't match the last one that was 3985 * sent we need to do special handling of it. 3986 */ 3987 if (!hci_sent_cmd_data(hdev, opcode)) { 3988 /* Some CSR based controllers generate a spontaneous 3989 * reset complete event during init and any pending 3990 * command will never be completed. In such a case we 3991 * need to resend whatever was the last sent 3992 * command. 3993 */ 3994 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET) 3995 hci_resend_last(hdev); 3996 3997 return; 3998 } 3999 4000 /* If we reach this point this event matches the last command sent */ 4001 hci_dev_clear_flag(hdev, HCI_CMD_PENDING); 4002 4003 /* If the command succeeded and there's still more commands in 4004 * this request the request is not yet complete. 4005 */ 4006 if (!status && !hci_req_is_complete(hdev)) 4007 return; 4008 4009 /* If this was the last command in a request the complete 4010 * callback would be found in hdev->sent_cmd instead of the 4011 * command queue (hdev->cmd_q). 4012 */ 4013 if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) { 4014 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb; 4015 return; 4016 } 4017 4018 if (bt_cb(hdev->sent_cmd)->hci.req_complete) { 4019 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete; 4020 return; 4021 } 4022 4023 /* Remove all pending commands belonging to this request */ 4024 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 4025 while ((skb = __skb_dequeue(&hdev->cmd_q))) { 4026 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) { 4027 __skb_queue_head(&hdev->cmd_q, skb); 4028 break; 4029 } 4030 4031 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) 4032 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb; 4033 else 4034 *req_complete = bt_cb(skb)->hci.req_complete; 4035 dev_kfree_skb_irq(skb); 4036 } 4037 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 4038 } 4039 4040 static void hci_rx_work(struct work_struct *work) 4041 { 4042 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work); 4043 struct sk_buff *skb; 4044 4045 BT_DBG("%s", hdev->name); 4046 4047 /* The kcov_remote functions used for collecting packet parsing 4048 * coverage information from this background thread and associate 4049 * the coverage with the syscall's thread which originally injected 4050 * the packet. This helps fuzzing the kernel. 4051 */ 4052 for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) { 4053 kcov_remote_start_common(skb_get_kcov_handle(skb)); 4054 4055 /* Send copy to monitor */ 4056 hci_send_to_monitor(hdev, skb); 4057 4058 if (atomic_read(&hdev->promisc)) { 4059 /* Send copy to the sockets */ 4060 hci_send_to_sock(hdev, skb); 4061 } 4062 4063 /* If the device has been opened in HCI_USER_CHANNEL, 4064 * the userspace has exclusive access to device. 4065 * When device is HCI_INIT, we still need to process 4066 * the data packets to the driver in order 4067 * to complete its setup(). 4068 */ 4069 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4070 !test_bit(HCI_INIT, &hdev->flags)) { 4071 kfree_skb(skb); 4072 continue; 4073 } 4074 4075 if (test_bit(HCI_INIT, &hdev->flags)) { 4076 /* Don't process data packets in this states. */ 4077 switch (hci_skb_pkt_type(skb)) { 4078 case HCI_ACLDATA_PKT: 4079 case HCI_SCODATA_PKT: 4080 case HCI_ISODATA_PKT: 4081 kfree_skb(skb); 4082 continue; 4083 } 4084 } 4085 4086 /* Process frame */ 4087 switch (hci_skb_pkt_type(skb)) { 4088 case HCI_EVENT_PKT: 4089 BT_DBG("%s Event packet", hdev->name); 4090 hci_event_packet(hdev, skb); 4091 break; 4092 4093 case HCI_ACLDATA_PKT: 4094 BT_DBG("%s ACL data packet", hdev->name); 4095 hci_acldata_packet(hdev, skb); 4096 break; 4097 4098 case HCI_SCODATA_PKT: 4099 BT_DBG("%s SCO data packet", hdev->name); 4100 hci_scodata_packet(hdev, skb); 4101 break; 4102 4103 case HCI_ISODATA_PKT: 4104 BT_DBG("%s ISO data packet", hdev->name); 4105 hci_isodata_packet(hdev, skb); 4106 break; 4107 4108 default: 4109 kfree_skb(skb); 4110 break; 4111 } 4112 } 4113 } 4114 4115 static void hci_cmd_work(struct work_struct *work) 4116 { 4117 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work); 4118 struct sk_buff *skb; 4119 4120 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name, 4121 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q)); 4122 4123 /* Send queued commands */ 4124 if (atomic_read(&hdev->cmd_cnt)) { 4125 skb = skb_dequeue(&hdev->cmd_q); 4126 if (!skb) 4127 return; 4128 4129 kfree_skb(hdev->sent_cmd); 4130 4131 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL); 4132 if (hdev->sent_cmd) { 4133 int res; 4134 if (hci_req_status_pend(hdev)) 4135 hci_dev_set_flag(hdev, HCI_CMD_PENDING); 4136 atomic_dec(&hdev->cmd_cnt); 4137 4138 res = hci_send_frame(hdev, skb); 4139 if (res < 0) 4140 __hci_cmd_sync_cancel(hdev, -res); 4141 4142 rcu_read_lock(); 4143 if (test_bit(HCI_RESET, &hdev->flags) || 4144 hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE)) 4145 cancel_delayed_work(&hdev->cmd_timer); 4146 else 4147 queue_delayed_work(hdev->workqueue, &hdev->cmd_timer, 4148 HCI_CMD_TIMEOUT); 4149 rcu_read_unlock(); 4150 } else { 4151 skb_queue_head(&hdev->cmd_q, skb); 4152 queue_work(hdev->workqueue, &hdev->cmd_work); 4153 } 4154 } 4155 } 4156