xref: /openbmc/linux/net/bluetooth/hci_core.c (revision d6b6dfff)
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4    Copyright (C) 2011 ProFUSION Embedded Systems
5 
6    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License version 2 as
10    published by the Free Software Foundation;
11 
12    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 
21    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23    SOFTWARE IS DISCLAIMED.
24 */
25 
26 /* Bluetooth HCI core. */
27 
28 #include <linux/export.h>
29 #include <linux/rfkill.h>
30 #include <linux/debugfs.h>
31 #include <linux/crypto.h>
32 #include <linux/kcov.h>
33 #include <linux/property.h>
34 #include <linux/suspend.h>
35 #include <linux/wait.h>
36 #include <asm/unaligned.h>
37 
38 #include <net/bluetooth/bluetooth.h>
39 #include <net/bluetooth/hci_core.h>
40 #include <net/bluetooth/l2cap.h>
41 #include <net/bluetooth/mgmt.h>
42 
43 #include "hci_request.h"
44 #include "hci_debugfs.h"
45 #include "smp.h"
46 #include "leds.h"
47 #include "msft.h"
48 #include "aosp.h"
49 #include "hci_codec.h"
50 
51 static void hci_rx_work(struct work_struct *work);
52 static void hci_cmd_work(struct work_struct *work);
53 static void hci_tx_work(struct work_struct *work);
54 
55 /* HCI device list */
56 LIST_HEAD(hci_dev_list);
57 DEFINE_RWLOCK(hci_dev_list_lock);
58 
59 /* HCI callback list */
60 LIST_HEAD(hci_cb_list);
61 DEFINE_MUTEX(hci_cb_list_lock);
62 
63 /* HCI ID Numbering */
64 static DEFINE_IDA(hci_index_ida);
65 
66 static int hci_scan_req(struct hci_request *req, unsigned long opt)
67 {
68 	__u8 scan = opt;
69 
70 	BT_DBG("%s %x", req->hdev->name, scan);
71 
72 	/* Inquiry and Page scans */
73 	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
74 	return 0;
75 }
76 
77 static int hci_auth_req(struct hci_request *req, unsigned long opt)
78 {
79 	__u8 auth = opt;
80 
81 	BT_DBG("%s %x", req->hdev->name, auth);
82 
83 	/* Authentication */
84 	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
85 	return 0;
86 }
87 
88 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
89 {
90 	__u8 encrypt = opt;
91 
92 	BT_DBG("%s %x", req->hdev->name, encrypt);
93 
94 	/* Encryption */
95 	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
96 	return 0;
97 }
98 
99 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
100 {
101 	__le16 policy = cpu_to_le16(opt);
102 
103 	BT_DBG("%s %x", req->hdev->name, policy);
104 
105 	/* Default link policy */
106 	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
107 	return 0;
108 }
109 
110 /* Get HCI device by index.
111  * Device is held on return. */
112 struct hci_dev *hci_dev_get(int index)
113 {
114 	struct hci_dev *hdev = NULL, *d;
115 
116 	BT_DBG("%d", index);
117 
118 	if (index < 0)
119 		return NULL;
120 
121 	read_lock(&hci_dev_list_lock);
122 	list_for_each_entry(d, &hci_dev_list, list) {
123 		if (d->id == index) {
124 			hdev = hci_dev_hold(d);
125 			break;
126 		}
127 	}
128 	read_unlock(&hci_dev_list_lock);
129 	return hdev;
130 }
131 
132 /* ---- Inquiry support ---- */
133 
134 bool hci_discovery_active(struct hci_dev *hdev)
135 {
136 	struct discovery_state *discov = &hdev->discovery;
137 
138 	switch (discov->state) {
139 	case DISCOVERY_FINDING:
140 	case DISCOVERY_RESOLVING:
141 		return true;
142 
143 	default:
144 		return false;
145 	}
146 }
147 
148 void hci_discovery_set_state(struct hci_dev *hdev, int state)
149 {
150 	int old_state = hdev->discovery.state;
151 
152 	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
153 
154 	if (old_state == state)
155 		return;
156 
157 	hdev->discovery.state = state;
158 
159 	switch (state) {
160 	case DISCOVERY_STOPPED:
161 		hci_update_passive_scan(hdev);
162 
163 		if (old_state != DISCOVERY_STARTING)
164 			mgmt_discovering(hdev, 0);
165 		break;
166 	case DISCOVERY_STARTING:
167 		break;
168 	case DISCOVERY_FINDING:
169 		mgmt_discovering(hdev, 1);
170 		break;
171 	case DISCOVERY_RESOLVING:
172 		break;
173 	case DISCOVERY_STOPPING:
174 		break;
175 	}
176 }
177 
178 void hci_inquiry_cache_flush(struct hci_dev *hdev)
179 {
180 	struct discovery_state *cache = &hdev->discovery;
181 	struct inquiry_entry *p, *n;
182 
183 	list_for_each_entry_safe(p, n, &cache->all, all) {
184 		list_del(&p->all);
185 		kfree(p);
186 	}
187 
188 	INIT_LIST_HEAD(&cache->unknown);
189 	INIT_LIST_HEAD(&cache->resolve);
190 }
191 
192 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
193 					       bdaddr_t *bdaddr)
194 {
195 	struct discovery_state *cache = &hdev->discovery;
196 	struct inquiry_entry *e;
197 
198 	BT_DBG("cache %p, %pMR", cache, bdaddr);
199 
200 	list_for_each_entry(e, &cache->all, all) {
201 		if (!bacmp(&e->data.bdaddr, bdaddr))
202 			return e;
203 	}
204 
205 	return NULL;
206 }
207 
208 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
209 						       bdaddr_t *bdaddr)
210 {
211 	struct discovery_state *cache = &hdev->discovery;
212 	struct inquiry_entry *e;
213 
214 	BT_DBG("cache %p, %pMR", cache, bdaddr);
215 
216 	list_for_each_entry(e, &cache->unknown, list) {
217 		if (!bacmp(&e->data.bdaddr, bdaddr))
218 			return e;
219 	}
220 
221 	return NULL;
222 }
223 
224 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
225 						       bdaddr_t *bdaddr,
226 						       int state)
227 {
228 	struct discovery_state *cache = &hdev->discovery;
229 	struct inquiry_entry *e;
230 
231 	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
232 
233 	list_for_each_entry(e, &cache->resolve, list) {
234 		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
235 			return e;
236 		if (!bacmp(&e->data.bdaddr, bdaddr))
237 			return e;
238 	}
239 
240 	return NULL;
241 }
242 
243 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
244 				      struct inquiry_entry *ie)
245 {
246 	struct discovery_state *cache = &hdev->discovery;
247 	struct list_head *pos = &cache->resolve;
248 	struct inquiry_entry *p;
249 
250 	list_del(&ie->list);
251 
252 	list_for_each_entry(p, &cache->resolve, list) {
253 		if (p->name_state != NAME_PENDING &&
254 		    abs(p->data.rssi) >= abs(ie->data.rssi))
255 			break;
256 		pos = &p->list;
257 	}
258 
259 	list_add(&ie->list, pos);
260 }
261 
262 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
263 			     bool name_known)
264 {
265 	struct discovery_state *cache = &hdev->discovery;
266 	struct inquiry_entry *ie;
267 	u32 flags = 0;
268 
269 	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
270 
271 	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
272 
273 	if (!data->ssp_mode)
274 		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
275 
276 	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
277 	if (ie) {
278 		if (!ie->data.ssp_mode)
279 			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
280 
281 		if (ie->name_state == NAME_NEEDED &&
282 		    data->rssi != ie->data.rssi) {
283 			ie->data.rssi = data->rssi;
284 			hci_inquiry_cache_update_resolve(hdev, ie);
285 		}
286 
287 		goto update;
288 	}
289 
290 	/* Entry not in the cache. Add new one. */
291 	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
292 	if (!ie) {
293 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
294 		goto done;
295 	}
296 
297 	list_add(&ie->all, &cache->all);
298 
299 	if (name_known) {
300 		ie->name_state = NAME_KNOWN;
301 	} else {
302 		ie->name_state = NAME_NOT_KNOWN;
303 		list_add(&ie->list, &cache->unknown);
304 	}
305 
306 update:
307 	if (name_known && ie->name_state != NAME_KNOWN &&
308 	    ie->name_state != NAME_PENDING) {
309 		ie->name_state = NAME_KNOWN;
310 		list_del(&ie->list);
311 	}
312 
313 	memcpy(&ie->data, data, sizeof(*data));
314 	ie->timestamp = jiffies;
315 	cache->timestamp = jiffies;
316 
317 	if (ie->name_state == NAME_NOT_KNOWN)
318 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
319 
320 done:
321 	return flags;
322 }
323 
324 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
325 {
326 	struct discovery_state *cache = &hdev->discovery;
327 	struct inquiry_info *info = (struct inquiry_info *) buf;
328 	struct inquiry_entry *e;
329 	int copied = 0;
330 
331 	list_for_each_entry(e, &cache->all, all) {
332 		struct inquiry_data *data = &e->data;
333 
334 		if (copied >= num)
335 			break;
336 
337 		bacpy(&info->bdaddr, &data->bdaddr);
338 		info->pscan_rep_mode	= data->pscan_rep_mode;
339 		info->pscan_period_mode	= data->pscan_period_mode;
340 		info->pscan_mode	= data->pscan_mode;
341 		memcpy(info->dev_class, data->dev_class, 3);
342 		info->clock_offset	= data->clock_offset;
343 
344 		info++;
345 		copied++;
346 	}
347 
348 	BT_DBG("cache %p, copied %d", cache, copied);
349 	return copied;
350 }
351 
352 static int hci_inq_req(struct hci_request *req, unsigned long opt)
353 {
354 	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
355 	struct hci_dev *hdev = req->hdev;
356 	struct hci_cp_inquiry cp;
357 
358 	BT_DBG("%s", hdev->name);
359 
360 	if (test_bit(HCI_INQUIRY, &hdev->flags))
361 		return 0;
362 
363 	/* Start Inquiry */
364 	memcpy(&cp.lap, &ir->lap, 3);
365 	cp.length  = ir->length;
366 	cp.num_rsp = ir->num_rsp;
367 	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
368 
369 	return 0;
370 }
371 
372 int hci_inquiry(void __user *arg)
373 {
374 	__u8 __user *ptr = arg;
375 	struct hci_inquiry_req ir;
376 	struct hci_dev *hdev;
377 	int err = 0, do_inquiry = 0, max_rsp;
378 	long timeo;
379 	__u8 *buf;
380 
381 	if (copy_from_user(&ir, ptr, sizeof(ir)))
382 		return -EFAULT;
383 
384 	hdev = hci_dev_get(ir.dev_id);
385 	if (!hdev)
386 		return -ENODEV;
387 
388 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
389 		err = -EBUSY;
390 		goto done;
391 	}
392 
393 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
394 		err = -EOPNOTSUPP;
395 		goto done;
396 	}
397 
398 	if (hdev->dev_type != HCI_PRIMARY) {
399 		err = -EOPNOTSUPP;
400 		goto done;
401 	}
402 
403 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
404 		err = -EOPNOTSUPP;
405 		goto done;
406 	}
407 
408 	/* Restrict maximum inquiry length to 60 seconds */
409 	if (ir.length > 60) {
410 		err = -EINVAL;
411 		goto done;
412 	}
413 
414 	hci_dev_lock(hdev);
415 	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
416 	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
417 		hci_inquiry_cache_flush(hdev);
418 		do_inquiry = 1;
419 	}
420 	hci_dev_unlock(hdev);
421 
422 	timeo = ir.length * msecs_to_jiffies(2000);
423 
424 	if (do_inquiry) {
425 		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
426 				   timeo, NULL);
427 		if (err < 0)
428 			goto done;
429 
430 		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
431 		 * cleared). If it is interrupted by a signal, return -EINTR.
432 		 */
433 		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
434 				TASK_INTERRUPTIBLE)) {
435 			err = -EINTR;
436 			goto done;
437 		}
438 	}
439 
440 	/* for unlimited number of responses we will use buffer with
441 	 * 255 entries
442 	 */
443 	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
444 
445 	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
446 	 * copy it to the user space.
447 	 */
448 	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
449 	if (!buf) {
450 		err = -ENOMEM;
451 		goto done;
452 	}
453 
454 	hci_dev_lock(hdev);
455 	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
456 	hci_dev_unlock(hdev);
457 
458 	BT_DBG("num_rsp %d", ir.num_rsp);
459 
460 	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
461 		ptr += sizeof(ir);
462 		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
463 				 ir.num_rsp))
464 			err = -EFAULT;
465 	} else
466 		err = -EFAULT;
467 
468 	kfree(buf);
469 
470 done:
471 	hci_dev_put(hdev);
472 	return err;
473 }
474 
475 static int hci_dev_do_open(struct hci_dev *hdev)
476 {
477 	int ret = 0;
478 
479 	BT_DBG("%s %p", hdev->name, hdev);
480 
481 	hci_req_sync_lock(hdev);
482 
483 	ret = hci_dev_open_sync(hdev);
484 
485 	hci_req_sync_unlock(hdev);
486 	return ret;
487 }
488 
489 /* ---- HCI ioctl helpers ---- */
490 
491 int hci_dev_open(__u16 dev)
492 {
493 	struct hci_dev *hdev;
494 	int err;
495 
496 	hdev = hci_dev_get(dev);
497 	if (!hdev)
498 		return -ENODEV;
499 
500 	/* Devices that are marked as unconfigured can only be powered
501 	 * up as user channel. Trying to bring them up as normal devices
502 	 * will result into a failure. Only user channel operation is
503 	 * possible.
504 	 *
505 	 * When this function is called for a user channel, the flag
506 	 * HCI_USER_CHANNEL will be set first before attempting to
507 	 * open the device.
508 	 */
509 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
510 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
511 		err = -EOPNOTSUPP;
512 		goto done;
513 	}
514 
515 	/* We need to ensure that no other power on/off work is pending
516 	 * before proceeding to call hci_dev_do_open. This is
517 	 * particularly important if the setup procedure has not yet
518 	 * completed.
519 	 */
520 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
521 		cancel_delayed_work(&hdev->power_off);
522 
523 	/* After this call it is guaranteed that the setup procedure
524 	 * has finished. This means that error conditions like RFKILL
525 	 * or no valid public or static random address apply.
526 	 */
527 	flush_workqueue(hdev->req_workqueue);
528 
529 	/* For controllers not using the management interface and that
530 	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
531 	 * so that pairing works for them. Once the management interface
532 	 * is in use this bit will be cleared again and userspace has
533 	 * to explicitly enable it.
534 	 */
535 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
536 	    !hci_dev_test_flag(hdev, HCI_MGMT))
537 		hci_dev_set_flag(hdev, HCI_BONDABLE);
538 
539 	err = hci_dev_do_open(hdev);
540 
541 done:
542 	hci_dev_put(hdev);
543 	return err;
544 }
545 
546 int hci_dev_do_close(struct hci_dev *hdev)
547 {
548 	int err;
549 
550 	BT_DBG("%s %p", hdev->name, hdev);
551 
552 	hci_req_sync_lock(hdev);
553 
554 	err = hci_dev_close_sync(hdev);
555 
556 	hci_req_sync_unlock(hdev);
557 
558 	return err;
559 }
560 
561 int hci_dev_close(__u16 dev)
562 {
563 	struct hci_dev *hdev;
564 	int err;
565 
566 	hdev = hci_dev_get(dev);
567 	if (!hdev)
568 		return -ENODEV;
569 
570 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
571 		err = -EBUSY;
572 		goto done;
573 	}
574 
575 	cancel_work_sync(&hdev->power_on);
576 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
577 		cancel_delayed_work(&hdev->power_off);
578 
579 	err = hci_dev_do_close(hdev);
580 
581 done:
582 	hci_dev_put(hdev);
583 	return err;
584 }
585 
586 static int hci_dev_do_reset(struct hci_dev *hdev)
587 {
588 	int ret;
589 
590 	BT_DBG("%s %p", hdev->name, hdev);
591 
592 	hci_req_sync_lock(hdev);
593 
594 	/* Drop queues */
595 	skb_queue_purge(&hdev->rx_q);
596 	skb_queue_purge(&hdev->cmd_q);
597 
598 	/* Cancel these to avoid queueing non-chained pending work */
599 	hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
600 	/* Wait for
601 	 *
602 	 *    if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
603 	 *        queue_delayed_work(&hdev->{cmd,ncmd}_timer)
604 	 *
605 	 * inside RCU section to see the flag or complete scheduling.
606 	 */
607 	synchronize_rcu();
608 	/* Explicitly cancel works in case scheduled after setting the flag. */
609 	cancel_delayed_work(&hdev->cmd_timer);
610 	cancel_delayed_work(&hdev->ncmd_timer);
611 
612 	/* Avoid potential lockdep warnings from the *_flush() calls by
613 	 * ensuring the workqueue is empty up front.
614 	 */
615 	drain_workqueue(hdev->workqueue);
616 
617 	hci_dev_lock(hdev);
618 	hci_inquiry_cache_flush(hdev);
619 	hci_conn_hash_flush(hdev);
620 	hci_dev_unlock(hdev);
621 
622 	if (hdev->flush)
623 		hdev->flush(hdev);
624 
625 	hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
626 
627 	atomic_set(&hdev->cmd_cnt, 1);
628 	hdev->acl_cnt = 0;
629 	hdev->sco_cnt = 0;
630 	hdev->le_cnt = 0;
631 	hdev->iso_cnt = 0;
632 
633 	ret = hci_reset_sync(hdev);
634 
635 	hci_req_sync_unlock(hdev);
636 	return ret;
637 }
638 
639 int hci_dev_reset(__u16 dev)
640 {
641 	struct hci_dev *hdev;
642 	int err;
643 
644 	hdev = hci_dev_get(dev);
645 	if (!hdev)
646 		return -ENODEV;
647 
648 	if (!test_bit(HCI_UP, &hdev->flags)) {
649 		err = -ENETDOWN;
650 		goto done;
651 	}
652 
653 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
654 		err = -EBUSY;
655 		goto done;
656 	}
657 
658 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
659 		err = -EOPNOTSUPP;
660 		goto done;
661 	}
662 
663 	err = hci_dev_do_reset(hdev);
664 
665 done:
666 	hci_dev_put(hdev);
667 	return err;
668 }
669 
670 int hci_dev_reset_stat(__u16 dev)
671 {
672 	struct hci_dev *hdev;
673 	int ret = 0;
674 
675 	hdev = hci_dev_get(dev);
676 	if (!hdev)
677 		return -ENODEV;
678 
679 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
680 		ret = -EBUSY;
681 		goto done;
682 	}
683 
684 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
685 		ret = -EOPNOTSUPP;
686 		goto done;
687 	}
688 
689 	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
690 
691 done:
692 	hci_dev_put(hdev);
693 	return ret;
694 }
695 
696 static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan)
697 {
698 	bool conn_changed, discov_changed;
699 
700 	BT_DBG("%s scan 0x%02x", hdev->name, scan);
701 
702 	if ((scan & SCAN_PAGE))
703 		conn_changed = !hci_dev_test_and_set_flag(hdev,
704 							  HCI_CONNECTABLE);
705 	else
706 		conn_changed = hci_dev_test_and_clear_flag(hdev,
707 							   HCI_CONNECTABLE);
708 
709 	if ((scan & SCAN_INQUIRY)) {
710 		discov_changed = !hci_dev_test_and_set_flag(hdev,
711 							    HCI_DISCOVERABLE);
712 	} else {
713 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
714 		discov_changed = hci_dev_test_and_clear_flag(hdev,
715 							     HCI_DISCOVERABLE);
716 	}
717 
718 	if (!hci_dev_test_flag(hdev, HCI_MGMT))
719 		return;
720 
721 	if (conn_changed || discov_changed) {
722 		/* In case this was disabled through mgmt */
723 		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
724 
725 		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
726 			hci_update_adv_data(hdev, hdev->cur_adv_instance);
727 
728 		mgmt_new_settings(hdev);
729 	}
730 }
731 
732 int hci_dev_cmd(unsigned int cmd, void __user *arg)
733 {
734 	struct hci_dev *hdev;
735 	struct hci_dev_req dr;
736 	int err = 0;
737 
738 	if (copy_from_user(&dr, arg, sizeof(dr)))
739 		return -EFAULT;
740 
741 	hdev = hci_dev_get(dr.dev_id);
742 	if (!hdev)
743 		return -ENODEV;
744 
745 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
746 		err = -EBUSY;
747 		goto done;
748 	}
749 
750 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
751 		err = -EOPNOTSUPP;
752 		goto done;
753 	}
754 
755 	if (hdev->dev_type != HCI_PRIMARY) {
756 		err = -EOPNOTSUPP;
757 		goto done;
758 	}
759 
760 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
761 		err = -EOPNOTSUPP;
762 		goto done;
763 	}
764 
765 	switch (cmd) {
766 	case HCISETAUTH:
767 		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
768 				   HCI_INIT_TIMEOUT, NULL);
769 		break;
770 
771 	case HCISETENCRYPT:
772 		if (!lmp_encrypt_capable(hdev)) {
773 			err = -EOPNOTSUPP;
774 			break;
775 		}
776 
777 		if (!test_bit(HCI_AUTH, &hdev->flags)) {
778 			/* Auth must be enabled first */
779 			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
780 					   HCI_INIT_TIMEOUT, NULL);
781 			if (err)
782 				break;
783 		}
784 
785 		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
786 				   HCI_INIT_TIMEOUT, NULL);
787 		break;
788 
789 	case HCISETSCAN:
790 		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
791 				   HCI_INIT_TIMEOUT, NULL);
792 
793 		/* Ensure that the connectable and discoverable states
794 		 * get correctly modified as this was a non-mgmt change.
795 		 */
796 		if (!err)
797 			hci_update_passive_scan_state(hdev, dr.dev_opt);
798 		break;
799 
800 	case HCISETLINKPOL:
801 		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
802 				   HCI_INIT_TIMEOUT, NULL);
803 		break;
804 
805 	case HCISETLINKMODE:
806 		hdev->link_mode = ((__u16) dr.dev_opt) &
807 					(HCI_LM_MASTER | HCI_LM_ACCEPT);
808 		break;
809 
810 	case HCISETPTYPE:
811 		if (hdev->pkt_type == (__u16) dr.dev_opt)
812 			break;
813 
814 		hdev->pkt_type = (__u16) dr.dev_opt;
815 		mgmt_phy_configuration_changed(hdev, NULL);
816 		break;
817 
818 	case HCISETACLMTU:
819 		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
820 		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
821 		break;
822 
823 	case HCISETSCOMTU:
824 		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
825 		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
826 		break;
827 
828 	default:
829 		err = -EINVAL;
830 		break;
831 	}
832 
833 done:
834 	hci_dev_put(hdev);
835 	return err;
836 }
837 
838 int hci_get_dev_list(void __user *arg)
839 {
840 	struct hci_dev *hdev;
841 	struct hci_dev_list_req *dl;
842 	struct hci_dev_req *dr;
843 	int n = 0, size, err;
844 	__u16 dev_num;
845 
846 	if (get_user(dev_num, (__u16 __user *) arg))
847 		return -EFAULT;
848 
849 	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
850 		return -EINVAL;
851 
852 	size = sizeof(*dl) + dev_num * sizeof(*dr);
853 
854 	dl = kzalloc(size, GFP_KERNEL);
855 	if (!dl)
856 		return -ENOMEM;
857 
858 	dr = dl->dev_req;
859 
860 	read_lock(&hci_dev_list_lock);
861 	list_for_each_entry(hdev, &hci_dev_list, list) {
862 		unsigned long flags = hdev->flags;
863 
864 		/* When the auto-off is configured it means the transport
865 		 * is running, but in that case still indicate that the
866 		 * device is actually down.
867 		 */
868 		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
869 			flags &= ~BIT(HCI_UP);
870 
871 		(dr + n)->dev_id  = hdev->id;
872 		(dr + n)->dev_opt = flags;
873 
874 		if (++n >= dev_num)
875 			break;
876 	}
877 	read_unlock(&hci_dev_list_lock);
878 
879 	dl->dev_num = n;
880 	size = sizeof(*dl) + n * sizeof(*dr);
881 
882 	err = copy_to_user(arg, dl, size);
883 	kfree(dl);
884 
885 	return err ? -EFAULT : 0;
886 }
887 
888 int hci_get_dev_info(void __user *arg)
889 {
890 	struct hci_dev *hdev;
891 	struct hci_dev_info di;
892 	unsigned long flags;
893 	int err = 0;
894 
895 	if (copy_from_user(&di, arg, sizeof(di)))
896 		return -EFAULT;
897 
898 	hdev = hci_dev_get(di.dev_id);
899 	if (!hdev)
900 		return -ENODEV;
901 
902 	/* When the auto-off is configured it means the transport
903 	 * is running, but in that case still indicate that the
904 	 * device is actually down.
905 	 */
906 	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
907 		flags = hdev->flags & ~BIT(HCI_UP);
908 	else
909 		flags = hdev->flags;
910 
911 	strscpy(di.name, hdev->name, sizeof(di.name));
912 	di.bdaddr   = hdev->bdaddr;
913 	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
914 	di.flags    = flags;
915 	di.pkt_type = hdev->pkt_type;
916 	if (lmp_bredr_capable(hdev)) {
917 		di.acl_mtu  = hdev->acl_mtu;
918 		di.acl_pkts = hdev->acl_pkts;
919 		di.sco_mtu  = hdev->sco_mtu;
920 		di.sco_pkts = hdev->sco_pkts;
921 	} else {
922 		di.acl_mtu  = hdev->le_mtu;
923 		di.acl_pkts = hdev->le_pkts;
924 		di.sco_mtu  = 0;
925 		di.sco_pkts = 0;
926 	}
927 	di.link_policy = hdev->link_policy;
928 	di.link_mode   = hdev->link_mode;
929 
930 	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
931 	memcpy(&di.features, &hdev->features, sizeof(di.features));
932 
933 	if (copy_to_user(arg, &di, sizeof(di)))
934 		err = -EFAULT;
935 
936 	hci_dev_put(hdev);
937 
938 	return err;
939 }
940 
941 /* ---- Interface to HCI drivers ---- */
942 
943 static int hci_rfkill_set_block(void *data, bool blocked)
944 {
945 	struct hci_dev *hdev = data;
946 
947 	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
948 
949 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
950 		return -EBUSY;
951 
952 	if (blocked) {
953 		hci_dev_set_flag(hdev, HCI_RFKILLED);
954 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
955 		    !hci_dev_test_flag(hdev, HCI_CONFIG))
956 			hci_dev_do_close(hdev);
957 	} else {
958 		hci_dev_clear_flag(hdev, HCI_RFKILLED);
959 	}
960 
961 	return 0;
962 }
963 
964 static const struct rfkill_ops hci_rfkill_ops = {
965 	.set_block = hci_rfkill_set_block,
966 };
967 
968 static void hci_power_on(struct work_struct *work)
969 {
970 	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
971 	int err;
972 
973 	BT_DBG("%s", hdev->name);
974 
975 	if (test_bit(HCI_UP, &hdev->flags) &&
976 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
977 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
978 		cancel_delayed_work(&hdev->power_off);
979 		err = hci_powered_update_sync(hdev);
980 		mgmt_power_on(hdev, err);
981 		return;
982 	}
983 
984 	err = hci_dev_do_open(hdev);
985 	if (err < 0) {
986 		hci_dev_lock(hdev);
987 		mgmt_set_powered_failed(hdev, err);
988 		hci_dev_unlock(hdev);
989 		return;
990 	}
991 
992 	/* During the HCI setup phase, a few error conditions are
993 	 * ignored and they need to be checked now. If they are still
994 	 * valid, it is important to turn the device back off.
995 	 */
996 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
997 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
998 	    (hdev->dev_type == HCI_PRIMARY &&
999 	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1000 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
1001 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
1002 		hci_dev_do_close(hdev);
1003 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
1004 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
1005 				   HCI_AUTO_OFF_TIMEOUT);
1006 	}
1007 
1008 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
1009 		/* For unconfigured devices, set the HCI_RAW flag
1010 		 * so that userspace can easily identify them.
1011 		 */
1012 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1013 			set_bit(HCI_RAW, &hdev->flags);
1014 
1015 		/* For fully configured devices, this will send
1016 		 * the Index Added event. For unconfigured devices,
1017 		 * it will send Unconfigued Index Added event.
1018 		 *
1019 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
1020 		 * and no event will be send.
1021 		 */
1022 		mgmt_index_added(hdev);
1023 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
1024 		/* When the controller is now configured, then it
1025 		 * is important to clear the HCI_RAW flag.
1026 		 */
1027 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1028 			clear_bit(HCI_RAW, &hdev->flags);
1029 
1030 		/* Powering on the controller with HCI_CONFIG set only
1031 		 * happens with the transition from unconfigured to
1032 		 * configured. This will send the Index Added event.
1033 		 */
1034 		mgmt_index_added(hdev);
1035 	}
1036 }
1037 
1038 static void hci_power_off(struct work_struct *work)
1039 {
1040 	struct hci_dev *hdev = container_of(work, struct hci_dev,
1041 					    power_off.work);
1042 
1043 	BT_DBG("%s", hdev->name);
1044 
1045 	hci_dev_do_close(hdev);
1046 }
1047 
1048 static void hci_error_reset(struct work_struct *work)
1049 {
1050 	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
1051 
1052 	hci_dev_hold(hdev);
1053 	BT_DBG("%s", hdev->name);
1054 
1055 	if (hdev->hw_error)
1056 		hdev->hw_error(hdev, hdev->hw_error_code);
1057 	else
1058 		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
1059 
1060 	if (!hci_dev_do_close(hdev))
1061 		hci_dev_do_open(hdev);
1062 
1063 	hci_dev_put(hdev);
1064 }
1065 
1066 void hci_uuids_clear(struct hci_dev *hdev)
1067 {
1068 	struct bt_uuid *uuid, *tmp;
1069 
1070 	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1071 		list_del(&uuid->list);
1072 		kfree(uuid);
1073 	}
1074 }
1075 
1076 void hci_link_keys_clear(struct hci_dev *hdev)
1077 {
1078 	struct link_key *key, *tmp;
1079 
1080 	list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) {
1081 		list_del_rcu(&key->list);
1082 		kfree_rcu(key, rcu);
1083 	}
1084 }
1085 
1086 void hci_smp_ltks_clear(struct hci_dev *hdev)
1087 {
1088 	struct smp_ltk *k, *tmp;
1089 
1090 	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1091 		list_del_rcu(&k->list);
1092 		kfree_rcu(k, rcu);
1093 	}
1094 }
1095 
1096 void hci_smp_irks_clear(struct hci_dev *hdev)
1097 {
1098 	struct smp_irk *k, *tmp;
1099 
1100 	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1101 		list_del_rcu(&k->list);
1102 		kfree_rcu(k, rcu);
1103 	}
1104 }
1105 
1106 void hci_blocked_keys_clear(struct hci_dev *hdev)
1107 {
1108 	struct blocked_key *b, *tmp;
1109 
1110 	list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) {
1111 		list_del_rcu(&b->list);
1112 		kfree_rcu(b, rcu);
1113 	}
1114 }
1115 
1116 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
1117 {
1118 	bool blocked = false;
1119 	struct blocked_key *b;
1120 
1121 	rcu_read_lock();
1122 	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
1123 		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
1124 			blocked = true;
1125 			break;
1126 		}
1127 	}
1128 
1129 	rcu_read_unlock();
1130 	return blocked;
1131 }
1132 
1133 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1134 {
1135 	struct link_key *k;
1136 
1137 	rcu_read_lock();
1138 	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
1139 		if (bacmp(bdaddr, &k->bdaddr) == 0) {
1140 			rcu_read_unlock();
1141 
1142 			if (hci_is_blocked_key(hdev,
1143 					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
1144 					       k->val)) {
1145 				bt_dev_warn_ratelimited(hdev,
1146 							"Link key blocked for %pMR",
1147 							&k->bdaddr);
1148 				return NULL;
1149 			}
1150 
1151 			return k;
1152 		}
1153 	}
1154 	rcu_read_unlock();
1155 
1156 	return NULL;
1157 }
1158 
1159 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1160 			       u8 key_type, u8 old_key_type)
1161 {
1162 	/* Legacy key */
1163 	if (key_type < 0x03)
1164 		return true;
1165 
1166 	/* Debug keys are insecure so don't store them persistently */
1167 	if (key_type == HCI_LK_DEBUG_COMBINATION)
1168 		return false;
1169 
1170 	/* Changed combination key and there's no previous one */
1171 	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1172 		return false;
1173 
1174 	/* Security mode 3 case */
1175 	if (!conn)
1176 		return true;
1177 
1178 	/* BR/EDR key derived using SC from an LE link */
1179 	if (conn->type == LE_LINK)
1180 		return true;
1181 
1182 	/* Neither local nor remote side had no-bonding as requirement */
1183 	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1184 		return true;
1185 
1186 	/* Local side had dedicated bonding as requirement */
1187 	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1188 		return true;
1189 
1190 	/* Remote side had dedicated bonding as requirement */
1191 	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1192 		return true;
1193 
1194 	/* If none of the above criteria match, then don't store the key
1195 	 * persistently */
1196 	return false;
1197 }
1198 
1199 static u8 ltk_role(u8 type)
1200 {
1201 	if (type == SMP_LTK)
1202 		return HCI_ROLE_MASTER;
1203 
1204 	return HCI_ROLE_SLAVE;
1205 }
1206 
1207 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1208 			     u8 addr_type, u8 role)
1209 {
1210 	struct smp_ltk *k;
1211 
1212 	rcu_read_lock();
1213 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1214 		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
1215 			continue;
1216 
1217 		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
1218 			rcu_read_unlock();
1219 
1220 			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
1221 					       k->val)) {
1222 				bt_dev_warn_ratelimited(hdev,
1223 							"LTK blocked for %pMR",
1224 							&k->bdaddr);
1225 				return NULL;
1226 			}
1227 
1228 			return k;
1229 		}
1230 	}
1231 	rcu_read_unlock();
1232 
1233 	return NULL;
1234 }
1235 
1236 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
1237 {
1238 	struct smp_irk *irk_to_return = NULL;
1239 	struct smp_irk *irk;
1240 
1241 	rcu_read_lock();
1242 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1243 		if (!bacmp(&irk->rpa, rpa)) {
1244 			irk_to_return = irk;
1245 			goto done;
1246 		}
1247 	}
1248 
1249 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1250 		if (smp_irk_matches(hdev, irk->val, rpa)) {
1251 			bacpy(&irk->rpa, rpa);
1252 			irk_to_return = irk;
1253 			goto done;
1254 		}
1255 	}
1256 
1257 done:
1258 	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1259 						irk_to_return->val)) {
1260 		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1261 					&irk_to_return->bdaddr);
1262 		irk_to_return = NULL;
1263 	}
1264 
1265 	rcu_read_unlock();
1266 
1267 	return irk_to_return;
1268 }
1269 
1270 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1271 				     u8 addr_type)
1272 {
1273 	struct smp_irk *irk_to_return = NULL;
1274 	struct smp_irk *irk;
1275 
1276 	/* Identity Address must be public or static random */
1277 	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
1278 		return NULL;
1279 
1280 	rcu_read_lock();
1281 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1282 		if (addr_type == irk->addr_type &&
1283 		    bacmp(bdaddr, &irk->bdaddr) == 0) {
1284 			irk_to_return = irk;
1285 			goto done;
1286 		}
1287 	}
1288 
1289 done:
1290 
1291 	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1292 						irk_to_return->val)) {
1293 		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1294 					&irk_to_return->bdaddr);
1295 		irk_to_return = NULL;
1296 	}
1297 
1298 	rcu_read_unlock();
1299 
1300 	return irk_to_return;
1301 }
1302 
1303 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1304 				  bdaddr_t *bdaddr, u8 *val, u8 type,
1305 				  u8 pin_len, bool *persistent)
1306 {
1307 	struct link_key *key, *old_key;
1308 	u8 old_key_type;
1309 
1310 	old_key = hci_find_link_key(hdev, bdaddr);
1311 	if (old_key) {
1312 		old_key_type = old_key->type;
1313 		key = old_key;
1314 	} else {
1315 		old_key_type = conn ? conn->key_type : 0xff;
1316 		key = kzalloc(sizeof(*key), GFP_KERNEL);
1317 		if (!key)
1318 			return NULL;
1319 		list_add_rcu(&key->list, &hdev->link_keys);
1320 	}
1321 
1322 	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1323 
1324 	/* Some buggy controller combinations generate a changed
1325 	 * combination key for legacy pairing even when there's no
1326 	 * previous key */
1327 	if (type == HCI_LK_CHANGED_COMBINATION &&
1328 	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1329 		type = HCI_LK_COMBINATION;
1330 		if (conn)
1331 			conn->key_type = type;
1332 	}
1333 
1334 	bacpy(&key->bdaddr, bdaddr);
1335 	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1336 	key->pin_len = pin_len;
1337 
1338 	if (type == HCI_LK_CHANGED_COMBINATION)
1339 		key->type = old_key_type;
1340 	else
1341 		key->type = type;
1342 
1343 	if (persistent)
1344 		*persistent = hci_persistent_key(hdev, conn, type,
1345 						 old_key_type);
1346 
1347 	return key;
1348 }
1349 
1350 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1351 			    u8 addr_type, u8 type, u8 authenticated,
1352 			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
1353 {
1354 	struct smp_ltk *key, *old_key;
1355 	u8 role = ltk_role(type);
1356 
1357 	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
1358 	if (old_key)
1359 		key = old_key;
1360 	else {
1361 		key = kzalloc(sizeof(*key), GFP_KERNEL);
1362 		if (!key)
1363 			return NULL;
1364 		list_add_rcu(&key->list, &hdev->long_term_keys);
1365 	}
1366 
1367 	bacpy(&key->bdaddr, bdaddr);
1368 	key->bdaddr_type = addr_type;
1369 	memcpy(key->val, tk, sizeof(key->val));
1370 	key->authenticated = authenticated;
1371 	key->ediv = ediv;
1372 	key->rand = rand;
1373 	key->enc_size = enc_size;
1374 	key->type = type;
1375 
1376 	return key;
1377 }
1378 
1379 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1380 			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
1381 {
1382 	struct smp_irk *irk;
1383 
1384 	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
1385 	if (!irk) {
1386 		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
1387 		if (!irk)
1388 			return NULL;
1389 
1390 		bacpy(&irk->bdaddr, bdaddr);
1391 		irk->addr_type = addr_type;
1392 
1393 		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
1394 	}
1395 
1396 	memcpy(irk->val, val, 16);
1397 	bacpy(&irk->rpa, rpa);
1398 
1399 	return irk;
1400 }
1401 
1402 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1403 {
1404 	struct link_key *key;
1405 
1406 	key = hci_find_link_key(hdev, bdaddr);
1407 	if (!key)
1408 		return -ENOENT;
1409 
1410 	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1411 
1412 	list_del_rcu(&key->list);
1413 	kfree_rcu(key, rcu);
1414 
1415 	return 0;
1416 }
1417 
1418 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
1419 {
1420 	struct smp_ltk *k, *tmp;
1421 	int removed = 0;
1422 
1423 	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1424 		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
1425 			continue;
1426 
1427 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1428 
1429 		list_del_rcu(&k->list);
1430 		kfree_rcu(k, rcu);
1431 		removed++;
1432 	}
1433 
1434 	return removed ? 0 : -ENOENT;
1435 }
1436 
1437 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
1438 {
1439 	struct smp_irk *k, *tmp;
1440 
1441 	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1442 		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
1443 			continue;
1444 
1445 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1446 
1447 		list_del_rcu(&k->list);
1448 		kfree_rcu(k, rcu);
1449 	}
1450 }
1451 
1452 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1453 {
1454 	struct smp_ltk *k;
1455 	struct smp_irk *irk;
1456 	u8 addr_type;
1457 
1458 	if (type == BDADDR_BREDR) {
1459 		if (hci_find_link_key(hdev, bdaddr))
1460 			return true;
1461 		return false;
1462 	}
1463 
1464 	/* Convert to HCI addr type which struct smp_ltk uses */
1465 	if (type == BDADDR_LE_PUBLIC)
1466 		addr_type = ADDR_LE_DEV_PUBLIC;
1467 	else
1468 		addr_type = ADDR_LE_DEV_RANDOM;
1469 
1470 	irk = hci_get_irk(hdev, bdaddr, addr_type);
1471 	if (irk) {
1472 		bdaddr = &irk->bdaddr;
1473 		addr_type = irk->addr_type;
1474 	}
1475 
1476 	rcu_read_lock();
1477 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1478 		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
1479 			rcu_read_unlock();
1480 			return true;
1481 		}
1482 	}
1483 	rcu_read_unlock();
1484 
1485 	return false;
1486 }
1487 
1488 /* HCI command timer function */
1489 static void hci_cmd_timeout(struct work_struct *work)
1490 {
1491 	struct hci_dev *hdev = container_of(work, struct hci_dev,
1492 					    cmd_timer.work);
1493 
1494 	if (hdev->req_skb) {
1495 		u16 opcode = hci_skb_opcode(hdev->req_skb);
1496 
1497 		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
1498 
1499 		hci_cmd_sync_cancel_sync(hdev, ETIMEDOUT);
1500 	} else {
1501 		bt_dev_err(hdev, "command tx timeout");
1502 	}
1503 
1504 	if (hdev->cmd_timeout)
1505 		hdev->cmd_timeout(hdev);
1506 
1507 	atomic_set(&hdev->cmd_cnt, 1);
1508 	queue_work(hdev->workqueue, &hdev->cmd_work);
1509 }
1510 
1511 /* HCI ncmd timer function */
1512 static void hci_ncmd_timeout(struct work_struct *work)
1513 {
1514 	struct hci_dev *hdev = container_of(work, struct hci_dev,
1515 					    ncmd_timer.work);
1516 
1517 	bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
1518 
1519 	/* During HCI_INIT phase no events can be injected if the ncmd timer
1520 	 * triggers since the procedure has its own timeout handling.
1521 	 */
1522 	if (test_bit(HCI_INIT, &hdev->flags))
1523 		return;
1524 
1525 	/* This is an irrecoverable state, inject hardware error event */
1526 	hci_reset_dev(hdev);
1527 }
1528 
1529 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1530 					  bdaddr_t *bdaddr, u8 bdaddr_type)
1531 {
1532 	struct oob_data *data;
1533 
1534 	list_for_each_entry(data, &hdev->remote_oob_data, list) {
1535 		if (bacmp(bdaddr, &data->bdaddr) != 0)
1536 			continue;
1537 		if (data->bdaddr_type != bdaddr_type)
1538 			continue;
1539 		return data;
1540 	}
1541 
1542 	return NULL;
1543 }
1544 
1545 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1546 			       u8 bdaddr_type)
1547 {
1548 	struct oob_data *data;
1549 
1550 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1551 	if (!data)
1552 		return -ENOENT;
1553 
1554 	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
1555 
1556 	list_del(&data->list);
1557 	kfree(data);
1558 
1559 	return 0;
1560 }
1561 
1562 void hci_remote_oob_data_clear(struct hci_dev *hdev)
1563 {
1564 	struct oob_data *data, *n;
1565 
1566 	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1567 		list_del(&data->list);
1568 		kfree(data);
1569 	}
1570 }
1571 
1572 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1573 			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
1574 			    u8 *hash256, u8 *rand256)
1575 {
1576 	struct oob_data *data;
1577 
1578 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1579 	if (!data) {
1580 		data = kmalloc(sizeof(*data), GFP_KERNEL);
1581 		if (!data)
1582 			return -ENOMEM;
1583 
1584 		bacpy(&data->bdaddr, bdaddr);
1585 		data->bdaddr_type = bdaddr_type;
1586 		list_add(&data->list, &hdev->remote_oob_data);
1587 	}
1588 
1589 	if (hash192 && rand192) {
1590 		memcpy(data->hash192, hash192, sizeof(data->hash192));
1591 		memcpy(data->rand192, rand192, sizeof(data->rand192));
1592 		if (hash256 && rand256)
1593 			data->present = 0x03;
1594 	} else {
1595 		memset(data->hash192, 0, sizeof(data->hash192));
1596 		memset(data->rand192, 0, sizeof(data->rand192));
1597 		if (hash256 && rand256)
1598 			data->present = 0x02;
1599 		else
1600 			data->present = 0x00;
1601 	}
1602 
1603 	if (hash256 && rand256) {
1604 		memcpy(data->hash256, hash256, sizeof(data->hash256));
1605 		memcpy(data->rand256, rand256, sizeof(data->rand256));
1606 	} else {
1607 		memset(data->hash256, 0, sizeof(data->hash256));
1608 		memset(data->rand256, 0, sizeof(data->rand256));
1609 		if (hash192 && rand192)
1610 			data->present = 0x01;
1611 	}
1612 
1613 	BT_DBG("%s for %pMR", hdev->name, bdaddr);
1614 
1615 	return 0;
1616 }
1617 
1618 /* This function requires the caller holds hdev->lock */
1619 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
1620 {
1621 	struct adv_info *adv_instance;
1622 
1623 	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
1624 		if (adv_instance->instance == instance)
1625 			return adv_instance;
1626 	}
1627 
1628 	return NULL;
1629 }
1630 
1631 /* This function requires the caller holds hdev->lock */
1632 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
1633 {
1634 	struct adv_info *cur_instance;
1635 
1636 	cur_instance = hci_find_adv_instance(hdev, instance);
1637 	if (!cur_instance)
1638 		return NULL;
1639 
1640 	if (cur_instance == list_last_entry(&hdev->adv_instances,
1641 					    struct adv_info, list))
1642 		return list_first_entry(&hdev->adv_instances,
1643 						 struct adv_info, list);
1644 	else
1645 		return list_next_entry(cur_instance, list);
1646 }
1647 
1648 /* This function requires the caller holds hdev->lock */
1649 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
1650 {
1651 	struct adv_info *adv_instance;
1652 
1653 	adv_instance = hci_find_adv_instance(hdev, instance);
1654 	if (!adv_instance)
1655 		return -ENOENT;
1656 
1657 	BT_DBG("%s removing %dMR", hdev->name, instance);
1658 
1659 	if (hdev->cur_adv_instance == instance) {
1660 		if (hdev->adv_instance_timeout) {
1661 			cancel_delayed_work(&hdev->adv_instance_expire);
1662 			hdev->adv_instance_timeout = 0;
1663 		}
1664 		hdev->cur_adv_instance = 0x00;
1665 	}
1666 
1667 	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1668 
1669 	list_del(&adv_instance->list);
1670 	kfree(adv_instance);
1671 
1672 	hdev->adv_instance_cnt--;
1673 
1674 	return 0;
1675 }
1676 
1677 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
1678 {
1679 	struct adv_info *adv_instance, *n;
1680 
1681 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
1682 		adv_instance->rpa_expired = rpa_expired;
1683 }
1684 
1685 /* This function requires the caller holds hdev->lock */
1686 void hci_adv_instances_clear(struct hci_dev *hdev)
1687 {
1688 	struct adv_info *adv_instance, *n;
1689 
1690 	if (hdev->adv_instance_timeout) {
1691 		cancel_delayed_work(&hdev->adv_instance_expire);
1692 		hdev->adv_instance_timeout = 0;
1693 	}
1694 
1695 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
1696 		cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1697 		list_del(&adv_instance->list);
1698 		kfree(adv_instance);
1699 	}
1700 
1701 	hdev->adv_instance_cnt = 0;
1702 	hdev->cur_adv_instance = 0x00;
1703 }
1704 
1705 static void adv_instance_rpa_expired(struct work_struct *work)
1706 {
1707 	struct adv_info *adv_instance = container_of(work, struct adv_info,
1708 						     rpa_expired_cb.work);
1709 
1710 	BT_DBG("");
1711 
1712 	adv_instance->rpa_expired = true;
1713 }
1714 
1715 /* This function requires the caller holds hdev->lock */
1716 struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance,
1717 				      u32 flags, u16 adv_data_len, u8 *adv_data,
1718 				      u16 scan_rsp_len, u8 *scan_rsp_data,
1719 				      u16 timeout, u16 duration, s8 tx_power,
1720 				      u32 min_interval, u32 max_interval,
1721 				      u8 mesh_handle)
1722 {
1723 	struct adv_info *adv;
1724 
1725 	adv = hci_find_adv_instance(hdev, instance);
1726 	if (adv) {
1727 		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1728 		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1729 		memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data));
1730 	} else {
1731 		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
1732 		    instance < 1 || instance > hdev->le_num_of_adv_sets + 1)
1733 			return ERR_PTR(-EOVERFLOW);
1734 
1735 		adv = kzalloc(sizeof(*adv), GFP_KERNEL);
1736 		if (!adv)
1737 			return ERR_PTR(-ENOMEM);
1738 
1739 		adv->pending = true;
1740 		adv->instance = instance;
1741 		list_add(&adv->list, &hdev->adv_instances);
1742 		hdev->adv_instance_cnt++;
1743 	}
1744 
1745 	adv->flags = flags;
1746 	adv->min_interval = min_interval;
1747 	adv->max_interval = max_interval;
1748 	adv->tx_power = tx_power;
1749 	/* Defining a mesh_handle changes the timing units to ms,
1750 	 * rather than seconds, and ties the instance to the requested
1751 	 * mesh_tx queue.
1752 	 */
1753 	adv->mesh = mesh_handle;
1754 
1755 	hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data,
1756 				  scan_rsp_len, scan_rsp_data);
1757 
1758 	adv->timeout = timeout;
1759 	adv->remaining_time = timeout;
1760 
1761 	if (duration == 0)
1762 		adv->duration = hdev->def_multi_adv_rotation_duration;
1763 	else
1764 		adv->duration = duration;
1765 
1766 	INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired);
1767 
1768 	BT_DBG("%s for %dMR", hdev->name, instance);
1769 
1770 	return adv;
1771 }
1772 
1773 /* This function requires the caller holds hdev->lock */
1774 struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance,
1775 				      u32 flags, u8 data_len, u8 *data,
1776 				      u32 min_interval, u32 max_interval)
1777 {
1778 	struct adv_info *adv;
1779 
1780 	adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL,
1781 				   0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE,
1782 				   min_interval, max_interval, 0);
1783 	if (IS_ERR(adv))
1784 		return adv;
1785 
1786 	adv->periodic = true;
1787 	adv->per_adv_data_len = data_len;
1788 
1789 	if (data)
1790 		memcpy(adv->per_adv_data, data, data_len);
1791 
1792 	return adv;
1793 }
1794 
1795 /* This function requires the caller holds hdev->lock */
1796 int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
1797 			      u16 adv_data_len, u8 *adv_data,
1798 			      u16 scan_rsp_len, u8 *scan_rsp_data)
1799 {
1800 	struct adv_info *adv;
1801 
1802 	adv = hci_find_adv_instance(hdev, instance);
1803 
1804 	/* If advertisement doesn't exist, we can't modify its data */
1805 	if (!adv)
1806 		return -ENOENT;
1807 
1808 	if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) {
1809 		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1810 		memcpy(adv->adv_data, adv_data, adv_data_len);
1811 		adv->adv_data_len = adv_data_len;
1812 		adv->adv_data_changed = true;
1813 	}
1814 
1815 	if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) {
1816 		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1817 		memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len);
1818 		adv->scan_rsp_len = scan_rsp_len;
1819 		adv->scan_rsp_changed = true;
1820 	}
1821 
1822 	/* Mark as changed if there are flags which would affect it */
1823 	if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) ||
1824 	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1825 		adv->scan_rsp_changed = true;
1826 
1827 	return 0;
1828 }
1829 
1830 /* This function requires the caller holds hdev->lock */
1831 u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1832 {
1833 	u32 flags;
1834 	struct adv_info *adv;
1835 
1836 	if (instance == 0x00) {
1837 		/* Instance 0 always manages the "Tx Power" and "Flags"
1838 		 * fields
1839 		 */
1840 		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1841 
1842 		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1843 		 * corresponds to the "connectable" instance flag.
1844 		 */
1845 		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1846 			flags |= MGMT_ADV_FLAG_CONNECTABLE;
1847 
1848 		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1849 			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1850 		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1851 			flags |= MGMT_ADV_FLAG_DISCOV;
1852 
1853 		return flags;
1854 	}
1855 
1856 	adv = hci_find_adv_instance(hdev, instance);
1857 
1858 	/* Return 0 when we got an invalid instance identifier. */
1859 	if (!adv)
1860 		return 0;
1861 
1862 	return adv->flags;
1863 }
1864 
1865 bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1866 {
1867 	struct adv_info *adv;
1868 
1869 	/* Instance 0x00 always set local name */
1870 	if (instance == 0x00)
1871 		return true;
1872 
1873 	adv = hci_find_adv_instance(hdev, instance);
1874 	if (!adv)
1875 		return false;
1876 
1877 	if (adv->flags & MGMT_ADV_FLAG_APPEARANCE ||
1878 	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1879 		return true;
1880 
1881 	return adv->scan_rsp_len ? true : false;
1882 }
1883 
1884 /* This function requires the caller holds hdev->lock */
1885 void hci_adv_monitors_clear(struct hci_dev *hdev)
1886 {
1887 	struct adv_monitor *monitor;
1888 	int handle;
1889 
1890 	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
1891 		hci_free_adv_monitor(hdev, monitor);
1892 
1893 	idr_destroy(&hdev->adv_monitors_idr);
1894 }
1895 
1896 /* Frees the monitor structure and do some bookkeepings.
1897  * This function requires the caller holds hdev->lock.
1898  */
1899 void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1900 {
1901 	struct adv_pattern *pattern;
1902 	struct adv_pattern *tmp;
1903 
1904 	if (!monitor)
1905 		return;
1906 
1907 	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
1908 		list_del(&pattern->list);
1909 		kfree(pattern);
1910 	}
1911 
1912 	if (monitor->handle)
1913 		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
1914 
1915 	if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
1916 		hdev->adv_monitors_cnt--;
1917 		mgmt_adv_monitor_removed(hdev, monitor->handle);
1918 	}
1919 
1920 	kfree(monitor);
1921 }
1922 
1923 /* Assigns handle to a monitor, and if offloading is supported and power is on,
1924  * also attempts to forward the request to the controller.
1925  * This function requires the caller holds hci_req_sync_lock.
1926  */
1927 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1928 {
1929 	int min, max, handle;
1930 	int status = 0;
1931 
1932 	if (!monitor)
1933 		return -EINVAL;
1934 
1935 	hci_dev_lock(hdev);
1936 
1937 	min = HCI_MIN_ADV_MONITOR_HANDLE;
1938 	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
1939 	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
1940 			   GFP_KERNEL);
1941 
1942 	hci_dev_unlock(hdev);
1943 
1944 	if (handle < 0)
1945 		return handle;
1946 
1947 	monitor->handle = handle;
1948 
1949 	if (!hdev_is_powered(hdev))
1950 		return status;
1951 
1952 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1953 	case HCI_ADV_MONITOR_EXT_NONE:
1954 		bt_dev_dbg(hdev, "add monitor %d status %d",
1955 			   monitor->handle, status);
1956 		/* Message was not forwarded to controller - not an error */
1957 		break;
1958 
1959 	case HCI_ADV_MONITOR_EXT_MSFT:
1960 		status = msft_add_monitor_pattern(hdev, monitor);
1961 		bt_dev_dbg(hdev, "add monitor %d msft status %d",
1962 			   handle, status);
1963 		break;
1964 	}
1965 
1966 	return status;
1967 }
1968 
1969 /* Attempts to tell the controller and free the monitor. If somehow the
1970  * controller doesn't have a corresponding handle, remove anyway.
1971  * This function requires the caller holds hci_req_sync_lock.
1972  */
1973 static int hci_remove_adv_monitor(struct hci_dev *hdev,
1974 				  struct adv_monitor *monitor)
1975 {
1976 	int status = 0;
1977 	int handle;
1978 
1979 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1980 	case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
1981 		bt_dev_dbg(hdev, "remove monitor %d status %d",
1982 			   monitor->handle, status);
1983 		goto free_monitor;
1984 
1985 	case HCI_ADV_MONITOR_EXT_MSFT:
1986 		handle = monitor->handle;
1987 		status = msft_remove_monitor(hdev, monitor);
1988 		bt_dev_dbg(hdev, "remove monitor %d msft status %d",
1989 			   handle, status);
1990 		break;
1991 	}
1992 
1993 	/* In case no matching handle registered, just free the monitor */
1994 	if (status == -ENOENT)
1995 		goto free_monitor;
1996 
1997 	return status;
1998 
1999 free_monitor:
2000 	if (status == -ENOENT)
2001 		bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
2002 			    monitor->handle);
2003 	hci_free_adv_monitor(hdev, monitor);
2004 
2005 	return status;
2006 }
2007 
2008 /* This function requires the caller holds hci_req_sync_lock */
2009 int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle)
2010 {
2011 	struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
2012 
2013 	if (!monitor)
2014 		return -EINVAL;
2015 
2016 	return hci_remove_adv_monitor(hdev, monitor);
2017 }
2018 
2019 /* This function requires the caller holds hci_req_sync_lock */
2020 int hci_remove_all_adv_monitor(struct hci_dev *hdev)
2021 {
2022 	struct adv_monitor *monitor;
2023 	int idr_next_id = 0;
2024 	int status = 0;
2025 
2026 	while (1) {
2027 		monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
2028 		if (!monitor)
2029 			break;
2030 
2031 		status = hci_remove_adv_monitor(hdev, monitor);
2032 		if (status)
2033 			return status;
2034 
2035 		idr_next_id++;
2036 	}
2037 
2038 	return status;
2039 }
2040 
2041 /* This function requires the caller holds hdev->lock */
2042 bool hci_is_adv_monitoring(struct hci_dev *hdev)
2043 {
2044 	return !idr_is_empty(&hdev->adv_monitors_idr);
2045 }
2046 
2047 int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
2048 {
2049 	if (msft_monitor_supported(hdev))
2050 		return HCI_ADV_MONITOR_EXT_MSFT;
2051 
2052 	return HCI_ADV_MONITOR_EXT_NONE;
2053 }
2054 
2055 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2056 					 bdaddr_t *bdaddr, u8 type)
2057 {
2058 	struct bdaddr_list *b;
2059 
2060 	list_for_each_entry(b, bdaddr_list, list) {
2061 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2062 			return b;
2063 	}
2064 
2065 	return NULL;
2066 }
2067 
2068 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2069 				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2070 				u8 type)
2071 {
2072 	struct bdaddr_list_with_irk *b;
2073 
2074 	list_for_each_entry(b, bdaddr_list, list) {
2075 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2076 			return b;
2077 	}
2078 
2079 	return NULL;
2080 }
2081 
2082 struct bdaddr_list_with_flags *
2083 hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
2084 				  bdaddr_t *bdaddr, u8 type)
2085 {
2086 	struct bdaddr_list_with_flags *b;
2087 
2088 	list_for_each_entry(b, bdaddr_list, list) {
2089 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2090 			return b;
2091 	}
2092 
2093 	return NULL;
2094 }
2095 
2096 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2097 {
2098 	struct bdaddr_list *b, *n;
2099 
2100 	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2101 		list_del(&b->list);
2102 		kfree(b);
2103 	}
2104 }
2105 
2106 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2107 {
2108 	struct bdaddr_list *entry;
2109 
2110 	if (!bacmp(bdaddr, BDADDR_ANY))
2111 		return -EBADF;
2112 
2113 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2114 		return -EEXIST;
2115 
2116 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2117 	if (!entry)
2118 		return -ENOMEM;
2119 
2120 	bacpy(&entry->bdaddr, bdaddr);
2121 	entry->bdaddr_type = type;
2122 
2123 	list_add(&entry->list, list);
2124 
2125 	return 0;
2126 }
2127 
2128 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2129 					u8 type, u8 *peer_irk, u8 *local_irk)
2130 {
2131 	struct bdaddr_list_with_irk *entry;
2132 
2133 	if (!bacmp(bdaddr, BDADDR_ANY))
2134 		return -EBADF;
2135 
2136 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2137 		return -EEXIST;
2138 
2139 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2140 	if (!entry)
2141 		return -ENOMEM;
2142 
2143 	bacpy(&entry->bdaddr, bdaddr);
2144 	entry->bdaddr_type = type;
2145 
2146 	if (peer_irk)
2147 		memcpy(entry->peer_irk, peer_irk, 16);
2148 
2149 	if (local_irk)
2150 		memcpy(entry->local_irk, local_irk, 16);
2151 
2152 	list_add(&entry->list, list);
2153 
2154 	return 0;
2155 }
2156 
2157 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2158 				   u8 type, u32 flags)
2159 {
2160 	struct bdaddr_list_with_flags *entry;
2161 
2162 	if (!bacmp(bdaddr, BDADDR_ANY))
2163 		return -EBADF;
2164 
2165 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2166 		return -EEXIST;
2167 
2168 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2169 	if (!entry)
2170 		return -ENOMEM;
2171 
2172 	bacpy(&entry->bdaddr, bdaddr);
2173 	entry->bdaddr_type = type;
2174 	entry->flags = flags;
2175 
2176 	list_add(&entry->list, list);
2177 
2178 	return 0;
2179 }
2180 
2181 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2182 {
2183 	struct bdaddr_list *entry;
2184 
2185 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2186 		hci_bdaddr_list_clear(list);
2187 		return 0;
2188 	}
2189 
2190 	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2191 	if (!entry)
2192 		return -ENOENT;
2193 
2194 	list_del(&entry->list);
2195 	kfree(entry);
2196 
2197 	return 0;
2198 }
2199 
2200 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2201 							u8 type)
2202 {
2203 	struct bdaddr_list_with_irk *entry;
2204 
2205 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2206 		hci_bdaddr_list_clear(list);
2207 		return 0;
2208 	}
2209 
2210 	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2211 	if (!entry)
2212 		return -ENOENT;
2213 
2214 	list_del(&entry->list);
2215 	kfree(entry);
2216 
2217 	return 0;
2218 }
2219 
2220 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2221 				   u8 type)
2222 {
2223 	struct bdaddr_list_with_flags *entry;
2224 
2225 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2226 		hci_bdaddr_list_clear(list);
2227 		return 0;
2228 	}
2229 
2230 	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
2231 	if (!entry)
2232 		return -ENOENT;
2233 
2234 	list_del(&entry->list);
2235 	kfree(entry);
2236 
2237 	return 0;
2238 }
2239 
2240 /* This function requires the caller holds hdev->lock */
2241 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2242 					       bdaddr_t *addr, u8 addr_type)
2243 {
2244 	struct hci_conn_params *params;
2245 
2246 	list_for_each_entry(params, &hdev->le_conn_params, list) {
2247 		if (bacmp(&params->addr, addr) == 0 &&
2248 		    params->addr_type == addr_type) {
2249 			return params;
2250 		}
2251 	}
2252 
2253 	return NULL;
2254 }
2255 
2256 /* This function requires the caller holds hdev->lock or rcu_read_lock */
2257 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2258 						  bdaddr_t *addr, u8 addr_type)
2259 {
2260 	struct hci_conn_params *param;
2261 
2262 	rcu_read_lock();
2263 
2264 	list_for_each_entry_rcu(param, list, action) {
2265 		if (bacmp(&param->addr, addr) == 0 &&
2266 		    param->addr_type == addr_type) {
2267 			rcu_read_unlock();
2268 			return param;
2269 		}
2270 	}
2271 
2272 	rcu_read_unlock();
2273 
2274 	return NULL;
2275 }
2276 
2277 /* This function requires the caller holds hdev->lock */
2278 void hci_pend_le_list_del_init(struct hci_conn_params *param)
2279 {
2280 	if (list_empty(&param->action))
2281 		return;
2282 
2283 	list_del_rcu(&param->action);
2284 	synchronize_rcu();
2285 	INIT_LIST_HEAD(&param->action);
2286 }
2287 
2288 /* This function requires the caller holds hdev->lock */
2289 void hci_pend_le_list_add(struct hci_conn_params *param,
2290 			  struct list_head *list)
2291 {
2292 	list_add_rcu(&param->action, list);
2293 }
2294 
2295 /* This function requires the caller holds hdev->lock */
2296 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2297 					    bdaddr_t *addr, u8 addr_type)
2298 {
2299 	struct hci_conn_params *params;
2300 
2301 	params = hci_conn_params_lookup(hdev, addr, addr_type);
2302 	if (params)
2303 		return params;
2304 
2305 	params = kzalloc(sizeof(*params), GFP_KERNEL);
2306 	if (!params) {
2307 		bt_dev_err(hdev, "out of memory");
2308 		return NULL;
2309 	}
2310 
2311 	bacpy(&params->addr, addr);
2312 	params->addr_type = addr_type;
2313 
2314 	list_add(&params->list, &hdev->le_conn_params);
2315 	INIT_LIST_HEAD(&params->action);
2316 
2317 	params->conn_min_interval = hdev->le_conn_min_interval;
2318 	params->conn_max_interval = hdev->le_conn_max_interval;
2319 	params->conn_latency = hdev->le_conn_latency;
2320 	params->supervision_timeout = hdev->le_supv_timeout;
2321 	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2322 
2323 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2324 
2325 	return params;
2326 }
2327 
2328 void hci_conn_params_free(struct hci_conn_params *params)
2329 {
2330 	hci_pend_le_list_del_init(params);
2331 
2332 	if (params->conn) {
2333 		hci_conn_drop(params->conn);
2334 		hci_conn_put(params->conn);
2335 	}
2336 
2337 	list_del(&params->list);
2338 	kfree(params);
2339 }
2340 
2341 /* This function requires the caller holds hdev->lock */
2342 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2343 {
2344 	struct hci_conn_params *params;
2345 
2346 	params = hci_conn_params_lookup(hdev, addr, addr_type);
2347 	if (!params)
2348 		return;
2349 
2350 	hci_conn_params_free(params);
2351 
2352 	hci_update_passive_scan(hdev);
2353 
2354 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2355 }
2356 
2357 /* This function requires the caller holds hdev->lock */
2358 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2359 {
2360 	struct hci_conn_params *params, *tmp;
2361 
2362 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2363 		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2364 			continue;
2365 
2366 		/* If trying to establish one time connection to disabled
2367 		 * device, leave the params, but mark them as just once.
2368 		 */
2369 		if (params->explicit_connect) {
2370 			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2371 			continue;
2372 		}
2373 
2374 		hci_conn_params_free(params);
2375 	}
2376 
2377 	BT_DBG("All LE disabled connection parameters were removed");
2378 }
2379 
2380 /* This function requires the caller holds hdev->lock */
2381 static void hci_conn_params_clear_all(struct hci_dev *hdev)
2382 {
2383 	struct hci_conn_params *params, *tmp;
2384 
2385 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2386 		hci_conn_params_free(params);
2387 
2388 	BT_DBG("All LE connection parameters were removed");
2389 }
2390 
2391 /* Copy the Identity Address of the controller.
2392  *
2393  * If the controller has a public BD_ADDR, then by default use that one.
2394  * If this is a LE only controller without a public address, default to
2395  * the static random address.
2396  *
2397  * For debugging purposes it is possible to force controllers with a
2398  * public address to use the static random address instead.
2399  *
2400  * In case BR/EDR has been disabled on a dual-mode controller and
2401  * userspace has configured a static address, then that address
2402  * becomes the identity address instead of the public BR/EDR address.
2403  */
2404 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2405 			       u8 *bdaddr_type)
2406 {
2407 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2408 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2409 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2410 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2411 		bacpy(bdaddr, &hdev->static_addr);
2412 		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2413 	} else {
2414 		bacpy(bdaddr, &hdev->bdaddr);
2415 		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2416 	}
2417 }
2418 
2419 static void hci_clear_wake_reason(struct hci_dev *hdev)
2420 {
2421 	hci_dev_lock(hdev);
2422 
2423 	hdev->wake_reason = 0;
2424 	bacpy(&hdev->wake_addr, BDADDR_ANY);
2425 	hdev->wake_addr_type = 0;
2426 
2427 	hci_dev_unlock(hdev);
2428 }
2429 
2430 static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
2431 				void *data)
2432 {
2433 	struct hci_dev *hdev =
2434 		container_of(nb, struct hci_dev, suspend_notifier);
2435 	int ret = 0;
2436 
2437 	/* Userspace has full control of this device. Do nothing. */
2438 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2439 		return NOTIFY_DONE;
2440 
2441 	/* To avoid a potential race with hci_unregister_dev. */
2442 	hci_dev_hold(hdev);
2443 
2444 	if (action == PM_SUSPEND_PREPARE)
2445 		ret = hci_suspend_dev(hdev);
2446 	else if (action == PM_POST_SUSPEND)
2447 		ret = hci_resume_dev(hdev);
2448 
2449 	if (ret)
2450 		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
2451 			   action, ret);
2452 
2453 	hci_dev_put(hdev);
2454 	return NOTIFY_DONE;
2455 }
2456 
2457 /* Alloc HCI device */
2458 struct hci_dev *hci_alloc_dev_priv(int sizeof_priv)
2459 {
2460 	struct hci_dev *hdev;
2461 	unsigned int alloc_size;
2462 
2463 	alloc_size = sizeof(*hdev);
2464 	if (sizeof_priv) {
2465 		/* Fixme: May need ALIGN-ment? */
2466 		alloc_size += sizeof_priv;
2467 	}
2468 
2469 	hdev = kzalloc(alloc_size, GFP_KERNEL);
2470 	if (!hdev)
2471 		return NULL;
2472 
2473 	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2474 	hdev->esco_type = (ESCO_HV1);
2475 	hdev->link_mode = (HCI_LM_ACCEPT);
2476 	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2477 	hdev->io_capability = 0x03;	/* No Input No Output */
2478 	hdev->manufacturer = 0xffff;	/* Default to internal use */
2479 	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2480 	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2481 	hdev->adv_instance_cnt = 0;
2482 	hdev->cur_adv_instance = 0x00;
2483 	hdev->adv_instance_timeout = 0;
2484 
2485 	hdev->advmon_allowlist_duration = 300;
2486 	hdev->advmon_no_filter_duration = 500;
2487 	hdev->enable_advmon_interleave_scan = 0x00;	/* Default to disable */
2488 
2489 	hdev->sniff_max_interval = 800;
2490 	hdev->sniff_min_interval = 80;
2491 
2492 	hdev->le_adv_channel_map = 0x07;
2493 	hdev->le_adv_min_interval = 0x0800;
2494 	hdev->le_adv_max_interval = 0x0800;
2495 	hdev->le_scan_interval = 0x0060;
2496 	hdev->le_scan_window = 0x0030;
2497 	hdev->le_scan_int_suspend = 0x0400;
2498 	hdev->le_scan_window_suspend = 0x0012;
2499 	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
2500 	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
2501 	hdev->le_scan_int_adv_monitor = 0x0060;
2502 	hdev->le_scan_window_adv_monitor = 0x0030;
2503 	hdev->le_scan_int_connect = 0x0060;
2504 	hdev->le_scan_window_connect = 0x0060;
2505 	hdev->le_conn_min_interval = 0x0018;
2506 	hdev->le_conn_max_interval = 0x0028;
2507 	hdev->le_conn_latency = 0x0000;
2508 	hdev->le_supv_timeout = 0x002a;
2509 	hdev->le_def_tx_len = 0x001b;
2510 	hdev->le_def_tx_time = 0x0148;
2511 	hdev->le_max_tx_len = 0x001b;
2512 	hdev->le_max_tx_time = 0x0148;
2513 	hdev->le_max_rx_len = 0x001b;
2514 	hdev->le_max_rx_time = 0x0148;
2515 	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
2516 	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
2517 	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
2518 	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
2519 	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
2520 	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
2521 	hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
2522 	hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
2523 	hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
2524 
2525 	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2526 	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2527 	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2528 	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2529 	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
2530 	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
2531 
2532 	/* default 1.28 sec page scan */
2533 	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
2534 	hdev->def_page_scan_int = 0x0800;
2535 	hdev->def_page_scan_window = 0x0012;
2536 
2537 	mutex_init(&hdev->lock);
2538 	mutex_init(&hdev->req_lock);
2539 
2540 	ida_init(&hdev->unset_handle_ida);
2541 
2542 	INIT_LIST_HEAD(&hdev->mesh_pending);
2543 	INIT_LIST_HEAD(&hdev->mgmt_pending);
2544 	INIT_LIST_HEAD(&hdev->reject_list);
2545 	INIT_LIST_HEAD(&hdev->accept_list);
2546 	INIT_LIST_HEAD(&hdev->uuids);
2547 	INIT_LIST_HEAD(&hdev->link_keys);
2548 	INIT_LIST_HEAD(&hdev->long_term_keys);
2549 	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2550 	INIT_LIST_HEAD(&hdev->remote_oob_data);
2551 	INIT_LIST_HEAD(&hdev->le_accept_list);
2552 	INIT_LIST_HEAD(&hdev->le_resolv_list);
2553 	INIT_LIST_HEAD(&hdev->le_conn_params);
2554 	INIT_LIST_HEAD(&hdev->pend_le_conns);
2555 	INIT_LIST_HEAD(&hdev->pend_le_reports);
2556 	INIT_LIST_HEAD(&hdev->conn_hash.list);
2557 	INIT_LIST_HEAD(&hdev->adv_instances);
2558 	INIT_LIST_HEAD(&hdev->blocked_keys);
2559 	INIT_LIST_HEAD(&hdev->monitored_devices);
2560 
2561 	INIT_LIST_HEAD(&hdev->local_codecs);
2562 	INIT_WORK(&hdev->rx_work, hci_rx_work);
2563 	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2564 	INIT_WORK(&hdev->tx_work, hci_tx_work);
2565 	INIT_WORK(&hdev->power_on, hci_power_on);
2566 	INIT_WORK(&hdev->error_reset, hci_error_reset);
2567 
2568 	hci_cmd_sync_init(hdev);
2569 
2570 	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2571 
2572 	skb_queue_head_init(&hdev->rx_q);
2573 	skb_queue_head_init(&hdev->cmd_q);
2574 	skb_queue_head_init(&hdev->raw_q);
2575 
2576 	init_waitqueue_head(&hdev->req_wait_q);
2577 
2578 	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
2579 	INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
2580 
2581 	hci_devcd_setup(hdev);
2582 	hci_request_setup(hdev);
2583 
2584 	hci_init_sysfs(hdev);
2585 	discovery_init(hdev);
2586 
2587 	return hdev;
2588 }
2589 EXPORT_SYMBOL(hci_alloc_dev_priv);
2590 
2591 /* Free HCI device */
2592 void hci_free_dev(struct hci_dev *hdev)
2593 {
2594 	/* will free via device release */
2595 	put_device(&hdev->dev);
2596 }
2597 EXPORT_SYMBOL(hci_free_dev);
2598 
2599 /* Register HCI device */
2600 int hci_register_dev(struct hci_dev *hdev)
2601 {
2602 	int id, error;
2603 
2604 	if (!hdev->open || !hdev->close || !hdev->send)
2605 		return -EINVAL;
2606 
2607 	/* Do not allow HCI_AMP devices to register at index 0,
2608 	 * so the index can be used as the AMP controller ID.
2609 	 */
2610 	switch (hdev->dev_type) {
2611 	case HCI_PRIMARY:
2612 		id = ida_simple_get(&hci_index_ida, 0, HCI_MAX_ID, GFP_KERNEL);
2613 		break;
2614 	case HCI_AMP:
2615 		id = ida_simple_get(&hci_index_ida, 1, HCI_MAX_ID, GFP_KERNEL);
2616 		break;
2617 	default:
2618 		return -EINVAL;
2619 	}
2620 
2621 	if (id < 0)
2622 		return id;
2623 
2624 	error = dev_set_name(&hdev->dev, "hci%u", id);
2625 	if (error)
2626 		return error;
2627 
2628 	hdev->name = dev_name(&hdev->dev);
2629 	hdev->id = id;
2630 
2631 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2632 
2633 	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
2634 	if (!hdev->workqueue) {
2635 		error = -ENOMEM;
2636 		goto err;
2637 	}
2638 
2639 	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
2640 						      hdev->name);
2641 	if (!hdev->req_workqueue) {
2642 		destroy_workqueue(hdev->workqueue);
2643 		error = -ENOMEM;
2644 		goto err;
2645 	}
2646 
2647 	if (!IS_ERR_OR_NULL(bt_debugfs))
2648 		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
2649 
2650 	error = device_add(&hdev->dev);
2651 	if (error < 0)
2652 		goto err_wqueue;
2653 
2654 	hci_leds_init(hdev);
2655 
2656 	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2657 				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2658 				    hdev);
2659 	if (hdev->rfkill) {
2660 		if (rfkill_register(hdev->rfkill) < 0) {
2661 			rfkill_destroy(hdev->rfkill);
2662 			hdev->rfkill = NULL;
2663 		}
2664 	}
2665 
2666 	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
2667 		hci_dev_set_flag(hdev, HCI_RFKILLED);
2668 
2669 	hci_dev_set_flag(hdev, HCI_SETUP);
2670 	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
2671 
2672 	if (hdev->dev_type == HCI_PRIMARY) {
2673 		/* Assume BR/EDR support until proven otherwise (such as
2674 		 * through reading supported features during init.
2675 		 */
2676 		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
2677 	}
2678 
2679 	write_lock(&hci_dev_list_lock);
2680 	list_add(&hdev->list, &hci_dev_list);
2681 	write_unlock(&hci_dev_list_lock);
2682 
2683 	/* Devices that are marked for raw-only usage are unconfigured
2684 	 * and should not be included in normal operation.
2685 	 */
2686 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2687 		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
2688 
2689 	/* Mark Remote Wakeup connection flag as supported if driver has wakeup
2690 	 * callback.
2691 	 */
2692 	if (hdev->wakeup)
2693 		hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP;
2694 
2695 	hci_sock_dev_event(hdev, HCI_DEV_REG);
2696 	hci_dev_hold(hdev);
2697 
2698 	error = hci_register_suspend_notifier(hdev);
2699 	if (error)
2700 		BT_WARN("register suspend notifier failed error:%d\n", error);
2701 
2702 	queue_work(hdev->req_workqueue, &hdev->power_on);
2703 
2704 	idr_init(&hdev->adv_monitors_idr);
2705 	msft_register(hdev);
2706 
2707 	return id;
2708 
2709 err_wqueue:
2710 	debugfs_remove_recursive(hdev->debugfs);
2711 	destroy_workqueue(hdev->workqueue);
2712 	destroy_workqueue(hdev->req_workqueue);
2713 err:
2714 	ida_simple_remove(&hci_index_ida, hdev->id);
2715 
2716 	return error;
2717 }
2718 EXPORT_SYMBOL(hci_register_dev);
2719 
2720 /* Unregister HCI device */
2721 void hci_unregister_dev(struct hci_dev *hdev)
2722 {
2723 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2724 
2725 	mutex_lock(&hdev->unregister_lock);
2726 	hci_dev_set_flag(hdev, HCI_UNREGISTER);
2727 	mutex_unlock(&hdev->unregister_lock);
2728 
2729 	write_lock(&hci_dev_list_lock);
2730 	list_del(&hdev->list);
2731 	write_unlock(&hci_dev_list_lock);
2732 
2733 	cancel_work_sync(&hdev->power_on);
2734 
2735 	hci_cmd_sync_clear(hdev);
2736 
2737 	hci_unregister_suspend_notifier(hdev);
2738 
2739 	hci_dev_do_close(hdev);
2740 
2741 	if (!test_bit(HCI_INIT, &hdev->flags) &&
2742 	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
2743 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
2744 		hci_dev_lock(hdev);
2745 		mgmt_index_removed(hdev);
2746 		hci_dev_unlock(hdev);
2747 	}
2748 
2749 	/* mgmt_index_removed should take care of emptying the
2750 	 * pending list */
2751 	BUG_ON(!list_empty(&hdev->mgmt_pending));
2752 
2753 	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
2754 
2755 	if (hdev->rfkill) {
2756 		rfkill_unregister(hdev->rfkill);
2757 		rfkill_destroy(hdev->rfkill);
2758 	}
2759 
2760 	device_del(&hdev->dev);
2761 	/* Actual cleanup is deferred until hci_release_dev(). */
2762 	hci_dev_put(hdev);
2763 }
2764 EXPORT_SYMBOL(hci_unregister_dev);
2765 
2766 /* Release HCI device */
2767 void hci_release_dev(struct hci_dev *hdev)
2768 {
2769 	debugfs_remove_recursive(hdev->debugfs);
2770 	kfree_const(hdev->hw_info);
2771 	kfree_const(hdev->fw_info);
2772 
2773 	destroy_workqueue(hdev->workqueue);
2774 	destroy_workqueue(hdev->req_workqueue);
2775 
2776 	hci_dev_lock(hdev);
2777 	hci_bdaddr_list_clear(&hdev->reject_list);
2778 	hci_bdaddr_list_clear(&hdev->accept_list);
2779 	hci_uuids_clear(hdev);
2780 	hci_link_keys_clear(hdev);
2781 	hci_smp_ltks_clear(hdev);
2782 	hci_smp_irks_clear(hdev);
2783 	hci_remote_oob_data_clear(hdev);
2784 	hci_adv_instances_clear(hdev);
2785 	hci_adv_monitors_clear(hdev);
2786 	hci_bdaddr_list_clear(&hdev->le_accept_list);
2787 	hci_bdaddr_list_clear(&hdev->le_resolv_list);
2788 	hci_conn_params_clear_all(hdev);
2789 	hci_discovery_filter_clear(hdev);
2790 	hci_blocked_keys_clear(hdev);
2791 	hci_codec_list_clear(&hdev->local_codecs);
2792 	msft_release(hdev);
2793 	hci_dev_unlock(hdev);
2794 
2795 	ida_destroy(&hdev->unset_handle_ida);
2796 	ida_simple_remove(&hci_index_ida, hdev->id);
2797 	kfree_skb(hdev->sent_cmd);
2798 	kfree_skb(hdev->req_skb);
2799 	kfree_skb(hdev->recv_event);
2800 	kfree(hdev);
2801 }
2802 EXPORT_SYMBOL(hci_release_dev);
2803 
2804 int hci_register_suspend_notifier(struct hci_dev *hdev)
2805 {
2806 	int ret = 0;
2807 
2808 	if (!hdev->suspend_notifier.notifier_call &&
2809 	    !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
2810 		hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
2811 		ret = register_pm_notifier(&hdev->suspend_notifier);
2812 	}
2813 
2814 	return ret;
2815 }
2816 
2817 int hci_unregister_suspend_notifier(struct hci_dev *hdev)
2818 {
2819 	int ret = 0;
2820 
2821 	if (hdev->suspend_notifier.notifier_call) {
2822 		ret = unregister_pm_notifier(&hdev->suspend_notifier);
2823 		if (!ret)
2824 			hdev->suspend_notifier.notifier_call = NULL;
2825 	}
2826 
2827 	return ret;
2828 }
2829 
2830 /* Cancel ongoing command synchronously:
2831  *
2832  * - Cancel command timer
2833  * - Reset command counter
2834  * - Cancel command request
2835  */
2836 static void hci_cancel_cmd_sync(struct hci_dev *hdev, int err)
2837 {
2838 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
2839 
2840 	cancel_delayed_work_sync(&hdev->cmd_timer);
2841 	cancel_delayed_work_sync(&hdev->ncmd_timer);
2842 	atomic_set(&hdev->cmd_cnt, 1);
2843 
2844 	hci_cmd_sync_cancel_sync(hdev, err);
2845 }
2846 
2847 /* Suspend HCI device */
2848 int hci_suspend_dev(struct hci_dev *hdev)
2849 {
2850 	int ret;
2851 
2852 	bt_dev_dbg(hdev, "");
2853 
2854 	/* Suspend should only act on when powered. */
2855 	if (!hdev_is_powered(hdev) ||
2856 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2857 		return 0;
2858 
2859 	/* If powering down don't attempt to suspend */
2860 	if (mgmt_powering_down(hdev))
2861 		return 0;
2862 
2863 	/* Cancel potentially blocking sync operation before suspend */
2864 	hci_cancel_cmd_sync(hdev, EHOSTDOWN);
2865 
2866 	hci_req_sync_lock(hdev);
2867 	ret = hci_suspend_sync(hdev);
2868 	hci_req_sync_unlock(hdev);
2869 
2870 	hci_clear_wake_reason(hdev);
2871 	mgmt_suspending(hdev, hdev->suspend_state);
2872 
2873 	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
2874 	return ret;
2875 }
2876 EXPORT_SYMBOL(hci_suspend_dev);
2877 
2878 /* Resume HCI device */
2879 int hci_resume_dev(struct hci_dev *hdev)
2880 {
2881 	int ret;
2882 
2883 	bt_dev_dbg(hdev, "");
2884 
2885 	/* Resume should only act on when powered. */
2886 	if (!hdev_is_powered(hdev) ||
2887 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2888 		return 0;
2889 
2890 	/* If powering down don't attempt to resume */
2891 	if (mgmt_powering_down(hdev))
2892 		return 0;
2893 
2894 	hci_req_sync_lock(hdev);
2895 	ret = hci_resume_sync(hdev);
2896 	hci_req_sync_unlock(hdev);
2897 
2898 	mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
2899 		      hdev->wake_addr_type);
2900 
2901 	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
2902 	return ret;
2903 }
2904 EXPORT_SYMBOL(hci_resume_dev);
2905 
2906 /* Reset HCI device */
2907 int hci_reset_dev(struct hci_dev *hdev)
2908 {
2909 	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
2910 	struct sk_buff *skb;
2911 
2912 	skb = bt_skb_alloc(3, GFP_ATOMIC);
2913 	if (!skb)
2914 		return -ENOMEM;
2915 
2916 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
2917 	skb_put_data(skb, hw_err, 3);
2918 
2919 	bt_dev_err(hdev, "Injecting HCI hardware error event");
2920 
2921 	/* Send Hardware Error to upper stack */
2922 	return hci_recv_frame(hdev, skb);
2923 }
2924 EXPORT_SYMBOL(hci_reset_dev);
2925 
2926 /* Receive frame from HCI drivers */
2927 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
2928 {
2929 	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2930 		      && !test_bit(HCI_INIT, &hdev->flags))) {
2931 		kfree_skb(skb);
2932 		return -ENXIO;
2933 	}
2934 
2935 	switch (hci_skb_pkt_type(skb)) {
2936 	case HCI_EVENT_PKT:
2937 		break;
2938 	case HCI_ACLDATA_PKT:
2939 		/* Detect if ISO packet has been sent as ACL */
2940 		if (hci_conn_num(hdev, ISO_LINK)) {
2941 			__u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2942 			__u8 type;
2943 
2944 			type = hci_conn_lookup_type(hdev, hci_handle(handle));
2945 			if (type == ISO_LINK)
2946 				hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
2947 		}
2948 		break;
2949 	case HCI_SCODATA_PKT:
2950 		break;
2951 	case HCI_ISODATA_PKT:
2952 		break;
2953 	default:
2954 		kfree_skb(skb);
2955 		return -EINVAL;
2956 	}
2957 
2958 	/* Incoming skb */
2959 	bt_cb(skb)->incoming = 1;
2960 
2961 	/* Time stamp */
2962 	__net_timestamp(skb);
2963 
2964 	skb_queue_tail(&hdev->rx_q, skb);
2965 	queue_work(hdev->workqueue, &hdev->rx_work);
2966 
2967 	return 0;
2968 }
2969 EXPORT_SYMBOL(hci_recv_frame);
2970 
2971 /* Receive diagnostic message from HCI drivers */
2972 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
2973 {
2974 	/* Mark as diagnostic packet */
2975 	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
2976 
2977 	/* Time stamp */
2978 	__net_timestamp(skb);
2979 
2980 	skb_queue_tail(&hdev->rx_q, skb);
2981 	queue_work(hdev->workqueue, &hdev->rx_work);
2982 
2983 	return 0;
2984 }
2985 EXPORT_SYMBOL(hci_recv_diag);
2986 
2987 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
2988 {
2989 	va_list vargs;
2990 
2991 	va_start(vargs, fmt);
2992 	kfree_const(hdev->hw_info);
2993 	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2994 	va_end(vargs);
2995 }
2996 EXPORT_SYMBOL(hci_set_hw_info);
2997 
2998 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
2999 {
3000 	va_list vargs;
3001 
3002 	va_start(vargs, fmt);
3003 	kfree_const(hdev->fw_info);
3004 	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3005 	va_end(vargs);
3006 }
3007 EXPORT_SYMBOL(hci_set_fw_info);
3008 
3009 /* ---- Interface to upper protocols ---- */
3010 
3011 int hci_register_cb(struct hci_cb *cb)
3012 {
3013 	BT_DBG("%p name %s", cb, cb->name);
3014 
3015 	mutex_lock(&hci_cb_list_lock);
3016 	list_add_tail(&cb->list, &hci_cb_list);
3017 	mutex_unlock(&hci_cb_list_lock);
3018 
3019 	return 0;
3020 }
3021 EXPORT_SYMBOL(hci_register_cb);
3022 
3023 int hci_unregister_cb(struct hci_cb *cb)
3024 {
3025 	BT_DBG("%p name %s", cb, cb->name);
3026 
3027 	mutex_lock(&hci_cb_list_lock);
3028 	list_del(&cb->list);
3029 	mutex_unlock(&hci_cb_list_lock);
3030 
3031 	return 0;
3032 }
3033 EXPORT_SYMBOL(hci_unregister_cb);
3034 
3035 static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3036 {
3037 	int err;
3038 
3039 	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3040 	       skb->len);
3041 
3042 	/* Time stamp */
3043 	__net_timestamp(skb);
3044 
3045 	/* Send copy to monitor */
3046 	hci_send_to_monitor(hdev, skb);
3047 
3048 	if (atomic_read(&hdev->promisc)) {
3049 		/* Send copy to the sockets */
3050 		hci_send_to_sock(hdev, skb);
3051 	}
3052 
3053 	/* Get rid of skb owner, prior to sending to the driver. */
3054 	skb_orphan(skb);
3055 
3056 	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3057 		kfree_skb(skb);
3058 		return -EINVAL;
3059 	}
3060 
3061 	err = hdev->send(hdev, skb);
3062 	if (err < 0) {
3063 		bt_dev_err(hdev, "sending frame failed (%d)", err);
3064 		kfree_skb(skb);
3065 		return err;
3066 	}
3067 
3068 	return 0;
3069 }
3070 
3071 /* Send HCI command */
3072 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3073 		 const void *param)
3074 {
3075 	struct sk_buff *skb;
3076 
3077 	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3078 
3079 	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3080 	if (!skb) {
3081 		bt_dev_err(hdev, "no memory for command");
3082 		return -ENOMEM;
3083 	}
3084 
3085 	/* Stand-alone HCI commands must be flagged as
3086 	 * single-command requests.
3087 	 */
3088 	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3089 
3090 	skb_queue_tail(&hdev->cmd_q, skb);
3091 	queue_work(hdev->workqueue, &hdev->cmd_work);
3092 
3093 	return 0;
3094 }
3095 
3096 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3097 		   const void *param)
3098 {
3099 	struct sk_buff *skb;
3100 
3101 	if (hci_opcode_ogf(opcode) != 0x3f) {
3102 		/* A controller receiving a command shall respond with either
3103 		 * a Command Status Event or a Command Complete Event.
3104 		 * Therefore, all standard HCI commands must be sent via the
3105 		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3106 		 * Some vendors do not comply with this rule for vendor-specific
3107 		 * commands and do not return any event. We want to support
3108 		 * unresponded commands for such cases only.
3109 		 */
3110 		bt_dev_err(hdev, "unresponded command not supported");
3111 		return -EINVAL;
3112 	}
3113 
3114 	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3115 	if (!skb) {
3116 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3117 			   opcode);
3118 		return -ENOMEM;
3119 	}
3120 
3121 	hci_send_frame(hdev, skb);
3122 
3123 	return 0;
3124 }
3125 EXPORT_SYMBOL(__hci_cmd_send);
3126 
3127 /* Get data from the previously sent command */
3128 static void *hci_cmd_data(struct sk_buff *skb, __u16 opcode)
3129 {
3130 	struct hci_command_hdr *hdr;
3131 
3132 	if (!skb || skb->len < HCI_COMMAND_HDR_SIZE)
3133 		return NULL;
3134 
3135 	hdr = (void *)skb->data;
3136 
3137 	if (hdr->opcode != cpu_to_le16(opcode))
3138 		return NULL;
3139 
3140 	return skb->data + HCI_COMMAND_HDR_SIZE;
3141 }
3142 
3143 /* Get data from the previously sent command */
3144 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3145 {
3146 	void *data;
3147 
3148 	/* Check if opcode matches last sent command */
3149 	data = hci_cmd_data(hdev->sent_cmd, opcode);
3150 	if (!data)
3151 		/* Check if opcode matches last request */
3152 		data = hci_cmd_data(hdev->req_skb, opcode);
3153 
3154 	return data;
3155 }
3156 
3157 /* Get data from last received event */
3158 void *hci_recv_event_data(struct hci_dev *hdev, __u8 event)
3159 {
3160 	struct hci_event_hdr *hdr;
3161 	int offset;
3162 
3163 	if (!hdev->recv_event)
3164 		return NULL;
3165 
3166 	hdr = (void *)hdev->recv_event->data;
3167 	offset = sizeof(*hdr);
3168 
3169 	if (hdr->evt != event) {
3170 		/* In case of LE metaevent check the subevent match */
3171 		if (hdr->evt == HCI_EV_LE_META) {
3172 			struct hci_ev_le_meta *ev;
3173 
3174 			ev = (void *)hdev->recv_event->data + offset;
3175 			offset += sizeof(*ev);
3176 			if (ev->subevent == event)
3177 				goto found;
3178 		}
3179 		return NULL;
3180 	}
3181 
3182 found:
3183 	bt_dev_dbg(hdev, "event 0x%2.2x", event);
3184 
3185 	return hdev->recv_event->data + offset;
3186 }
3187 
3188 /* Send ACL data */
3189 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3190 {
3191 	struct hci_acl_hdr *hdr;
3192 	int len = skb->len;
3193 
3194 	skb_push(skb, HCI_ACL_HDR_SIZE);
3195 	skb_reset_transport_header(skb);
3196 	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3197 	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3198 	hdr->dlen   = cpu_to_le16(len);
3199 }
3200 
3201 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3202 			  struct sk_buff *skb, __u16 flags)
3203 {
3204 	struct hci_conn *conn = chan->conn;
3205 	struct hci_dev *hdev = conn->hdev;
3206 	struct sk_buff *list;
3207 
3208 	skb->len = skb_headlen(skb);
3209 	skb->data_len = 0;
3210 
3211 	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3212 
3213 	switch (hdev->dev_type) {
3214 	case HCI_PRIMARY:
3215 		hci_add_acl_hdr(skb, conn->handle, flags);
3216 		break;
3217 	case HCI_AMP:
3218 		hci_add_acl_hdr(skb, chan->handle, flags);
3219 		break;
3220 	default:
3221 		bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
3222 		return;
3223 	}
3224 
3225 	list = skb_shinfo(skb)->frag_list;
3226 	if (!list) {
3227 		/* Non fragmented */
3228 		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3229 
3230 		skb_queue_tail(queue, skb);
3231 	} else {
3232 		/* Fragmented */
3233 		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3234 
3235 		skb_shinfo(skb)->frag_list = NULL;
3236 
3237 		/* Queue all fragments atomically. We need to use spin_lock_bh
3238 		 * here because of 6LoWPAN links, as there this function is
3239 		 * called from softirq and using normal spin lock could cause
3240 		 * deadlocks.
3241 		 */
3242 		spin_lock_bh(&queue->lock);
3243 
3244 		__skb_queue_tail(queue, skb);
3245 
3246 		flags &= ~ACL_START;
3247 		flags |= ACL_CONT;
3248 		do {
3249 			skb = list; list = list->next;
3250 
3251 			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3252 			hci_add_acl_hdr(skb, conn->handle, flags);
3253 
3254 			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3255 
3256 			__skb_queue_tail(queue, skb);
3257 		} while (list);
3258 
3259 		spin_unlock_bh(&queue->lock);
3260 	}
3261 }
3262 
3263 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3264 {
3265 	struct hci_dev *hdev = chan->conn->hdev;
3266 
3267 	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3268 
3269 	hci_queue_acl(chan, &chan->data_q, skb, flags);
3270 
3271 	queue_work(hdev->workqueue, &hdev->tx_work);
3272 }
3273 
3274 /* Send SCO data */
3275 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3276 {
3277 	struct hci_dev *hdev = conn->hdev;
3278 	struct hci_sco_hdr hdr;
3279 
3280 	BT_DBG("%s len %d", hdev->name, skb->len);
3281 
3282 	hdr.handle = cpu_to_le16(conn->handle);
3283 	hdr.dlen   = skb->len;
3284 
3285 	skb_push(skb, HCI_SCO_HDR_SIZE);
3286 	skb_reset_transport_header(skb);
3287 	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3288 
3289 	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3290 
3291 	skb_queue_tail(&conn->data_q, skb);
3292 	queue_work(hdev->workqueue, &hdev->tx_work);
3293 }
3294 
3295 /* Send ISO data */
3296 static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags)
3297 {
3298 	struct hci_iso_hdr *hdr;
3299 	int len = skb->len;
3300 
3301 	skb_push(skb, HCI_ISO_HDR_SIZE);
3302 	skb_reset_transport_header(skb);
3303 	hdr = (struct hci_iso_hdr *)skb_transport_header(skb);
3304 	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3305 	hdr->dlen   = cpu_to_le16(len);
3306 }
3307 
3308 static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue,
3309 			  struct sk_buff *skb)
3310 {
3311 	struct hci_dev *hdev = conn->hdev;
3312 	struct sk_buff *list;
3313 	__u16 flags;
3314 
3315 	skb->len = skb_headlen(skb);
3316 	skb->data_len = 0;
3317 
3318 	hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3319 
3320 	list = skb_shinfo(skb)->frag_list;
3321 
3322 	flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00);
3323 	hci_add_iso_hdr(skb, conn->handle, flags);
3324 
3325 	if (!list) {
3326 		/* Non fragmented */
3327 		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3328 
3329 		skb_queue_tail(queue, skb);
3330 	} else {
3331 		/* Fragmented */
3332 		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3333 
3334 		skb_shinfo(skb)->frag_list = NULL;
3335 
3336 		__skb_queue_tail(queue, skb);
3337 
3338 		do {
3339 			skb = list; list = list->next;
3340 
3341 			hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3342 			flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END,
3343 						   0x00);
3344 			hci_add_iso_hdr(skb, conn->handle, flags);
3345 
3346 			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3347 
3348 			__skb_queue_tail(queue, skb);
3349 		} while (list);
3350 	}
3351 }
3352 
3353 void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb)
3354 {
3355 	struct hci_dev *hdev = conn->hdev;
3356 
3357 	BT_DBG("%s len %d", hdev->name, skb->len);
3358 
3359 	hci_queue_iso(conn, &conn->data_q, skb);
3360 
3361 	queue_work(hdev->workqueue, &hdev->tx_work);
3362 }
3363 
3364 /* ---- HCI TX task (outgoing data) ---- */
3365 
3366 /* HCI Connection scheduler */
3367 static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote)
3368 {
3369 	struct hci_dev *hdev;
3370 	int cnt, q;
3371 
3372 	if (!conn) {
3373 		*quote = 0;
3374 		return;
3375 	}
3376 
3377 	hdev = conn->hdev;
3378 
3379 	switch (conn->type) {
3380 	case ACL_LINK:
3381 		cnt = hdev->acl_cnt;
3382 		break;
3383 	case AMP_LINK:
3384 		cnt = hdev->block_cnt;
3385 		break;
3386 	case SCO_LINK:
3387 	case ESCO_LINK:
3388 		cnt = hdev->sco_cnt;
3389 		break;
3390 	case LE_LINK:
3391 		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3392 		break;
3393 	case ISO_LINK:
3394 		cnt = hdev->iso_mtu ? hdev->iso_cnt :
3395 			hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3396 		break;
3397 	default:
3398 		cnt = 0;
3399 		bt_dev_err(hdev, "unknown link type %d", conn->type);
3400 	}
3401 
3402 	q = cnt / num;
3403 	*quote = q ? q : 1;
3404 }
3405 
3406 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3407 				     int *quote)
3408 {
3409 	struct hci_conn_hash *h = &hdev->conn_hash;
3410 	struct hci_conn *conn = NULL, *c;
3411 	unsigned int num = 0, min = ~0;
3412 
3413 	/* We don't have to lock device here. Connections are always
3414 	 * added and removed with TX task disabled. */
3415 
3416 	rcu_read_lock();
3417 
3418 	list_for_each_entry_rcu(c, &h->list, list) {
3419 		if (c->type != type || skb_queue_empty(&c->data_q))
3420 			continue;
3421 
3422 		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3423 			continue;
3424 
3425 		num++;
3426 
3427 		if (c->sent < min) {
3428 			min  = c->sent;
3429 			conn = c;
3430 		}
3431 
3432 		if (hci_conn_num(hdev, type) == num)
3433 			break;
3434 	}
3435 
3436 	rcu_read_unlock();
3437 
3438 	hci_quote_sent(conn, num, quote);
3439 
3440 	BT_DBG("conn %p quote %d", conn, *quote);
3441 	return conn;
3442 }
3443 
3444 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3445 {
3446 	struct hci_conn_hash *h = &hdev->conn_hash;
3447 	struct hci_conn *c;
3448 
3449 	bt_dev_err(hdev, "link tx timeout");
3450 
3451 	rcu_read_lock();
3452 
3453 	/* Kill stalled connections */
3454 	list_for_each_entry_rcu(c, &h->list, list) {
3455 		if (c->type == type && c->sent) {
3456 			bt_dev_err(hdev, "killing stalled connection %pMR",
3457 				   &c->dst);
3458 			/* hci_disconnect might sleep, so, we have to release
3459 			 * the RCU read lock before calling it.
3460 			 */
3461 			rcu_read_unlock();
3462 			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3463 			rcu_read_lock();
3464 		}
3465 	}
3466 
3467 	rcu_read_unlock();
3468 }
3469 
3470 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3471 				      int *quote)
3472 {
3473 	struct hci_conn_hash *h = &hdev->conn_hash;
3474 	struct hci_chan *chan = NULL;
3475 	unsigned int num = 0, min = ~0, cur_prio = 0;
3476 	struct hci_conn *conn;
3477 	int conn_num = 0;
3478 
3479 	BT_DBG("%s", hdev->name);
3480 
3481 	rcu_read_lock();
3482 
3483 	list_for_each_entry_rcu(conn, &h->list, list) {
3484 		struct hci_chan *tmp;
3485 
3486 		if (conn->type != type)
3487 			continue;
3488 
3489 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3490 			continue;
3491 
3492 		conn_num++;
3493 
3494 		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3495 			struct sk_buff *skb;
3496 
3497 			if (skb_queue_empty(&tmp->data_q))
3498 				continue;
3499 
3500 			skb = skb_peek(&tmp->data_q);
3501 			if (skb->priority < cur_prio)
3502 				continue;
3503 
3504 			if (skb->priority > cur_prio) {
3505 				num = 0;
3506 				min = ~0;
3507 				cur_prio = skb->priority;
3508 			}
3509 
3510 			num++;
3511 
3512 			if (conn->sent < min) {
3513 				min  = conn->sent;
3514 				chan = tmp;
3515 			}
3516 		}
3517 
3518 		if (hci_conn_num(hdev, type) == conn_num)
3519 			break;
3520 	}
3521 
3522 	rcu_read_unlock();
3523 
3524 	if (!chan)
3525 		return NULL;
3526 
3527 	hci_quote_sent(chan->conn, num, quote);
3528 
3529 	BT_DBG("chan %p quote %d", chan, *quote);
3530 	return chan;
3531 }
3532 
3533 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3534 {
3535 	struct hci_conn_hash *h = &hdev->conn_hash;
3536 	struct hci_conn *conn;
3537 	int num = 0;
3538 
3539 	BT_DBG("%s", hdev->name);
3540 
3541 	rcu_read_lock();
3542 
3543 	list_for_each_entry_rcu(conn, &h->list, list) {
3544 		struct hci_chan *chan;
3545 
3546 		if (conn->type != type)
3547 			continue;
3548 
3549 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3550 			continue;
3551 
3552 		num++;
3553 
3554 		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3555 			struct sk_buff *skb;
3556 
3557 			if (chan->sent) {
3558 				chan->sent = 0;
3559 				continue;
3560 			}
3561 
3562 			if (skb_queue_empty(&chan->data_q))
3563 				continue;
3564 
3565 			skb = skb_peek(&chan->data_q);
3566 			if (skb->priority >= HCI_PRIO_MAX - 1)
3567 				continue;
3568 
3569 			skb->priority = HCI_PRIO_MAX - 1;
3570 
3571 			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3572 			       skb->priority);
3573 		}
3574 
3575 		if (hci_conn_num(hdev, type) == num)
3576 			break;
3577 	}
3578 
3579 	rcu_read_unlock();
3580 
3581 }
3582 
3583 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3584 {
3585 	/* Calculate count of blocks used by this packet */
3586 	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3587 }
3588 
3589 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
3590 {
3591 	unsigned long last_tx;
3592 
3593 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3594 		return;
3595 
3596 	switch (type) {
3597 	case LE_LINK:
3598 		last_tx = hdev->le_last_tx;
3599 		break;
3600 	default:
3601 		last_tx = hdev->acl_last_tx;
3602 		break;
3603 	}
3604 
3605 	/* tx timeout must be longer than maximum link supervision timeout
3606 	 * (40.9 seconds)
3607 	 */
3608 	if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
3609 		hci_link_tx_to(hdev, type);
3610 }
3611 
3612 /* Schedule SCO */
3613 static void hci_sched_sco(struct hci_dev *hdev)
3614 {
3615 	struct hci_conn *conn;
3616 	struct sk_buff *skb;
3617 	int quote;
3618 
3619 	BT_DBG("%s", hdev->name);
3620 
3621 	if (!hci_conn_num(hdev, SCO_LINK))
3622 		return;
3623 
3624 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3625 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3626 			BT_DBG("skb %p len %d", skb, skb->len);
3627 			hci_send_frame(hdev, skb);
3628 
3629 			conn->sent++;
3630 			if (conn->sent == ~0)
3631 				conn->sent = 0;
3632 		}
3633 	}
3634 }
3635 
3636 static void hci_sched_esco(struct hci_dev *hdev)
3637 {
3638 	struct hci_conn *conn;
3639 	struct sk_buff *skb;
3640 	int quote;
3641 
3642 	BT_DBG("%s", hdev->name);
3643 
3644 	if (!hci_conn_num(hdev, ESCO_LINK))
3645 		return;
3646 
3647 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3648 						     &quote))) {
3649 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3650 			BT_DBG("skb %p len %d", skb, skb->len);
3651 			hci_send_frame(hdev, skb);
3652 
3653 			conn->sent++;
3654 			if (conn->sent == ~0)
3655 				conn->sent = 0;
3656 		}
3657 	}
3658 }
3659 
3660 static void hci_sched_acl_pkt(struct hci_dev *hdev)
3661 {
3662 	unsigned int cnt = hdev->acl_cnt;
3663 	struct hci_chan *chan;
3664 	struct sk_buff *skb;
3665 	int quote;
3666 
3667 	__check_timeout(hdev, cnt, ACL_LINK);
3668 
3669 	while (hdev->acl_cnt &&
3670 	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3671 		u32 priority = (skb_peek(&chan->data_q))->priority;
3672 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3673 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3674 			       skb->len, skb->priority);
3675 
3676 			/* Stop if priority has changed */
3677 			if (skb->priority < priority)
3678 				break;
3679 
3680 			skb = skb_dequeue(&chan->data_q);
3681 
3682 			hci_conn_enter_active_mode(chan->conn,
3683 						   bt_cb(skb)->force_active);
3684 
3685 			hci_send_frame(hdev, skb);
3686 			hdev->acl_last_tx = jiffies;
3687 
3688 			hdev->acl_cnt--;
3689 			chan->sent++;
3690 			chan->conn->sent++;
3691 
3692 			/* Send pending SCO packets right away */
3693 			hci_sched_sco(hdev);
3694 			hci_sched_esco(hdev);
3695 		}
3696 	}
3697 
3698 	if (cnt != hdev->acl_cnt)
3699 		hci_prio_recalculate(hdev, ACL_LINK);
3700 }
3701 
3702 static void hci_sched_acl_blk(struct hci_dev *hdev)
3703 {
3704 	unsigned int cnt = hdev->block_cnt;
3705 	struct hci_chan *chan;
3706 	struct sk_buff *skb;
3707 	int quote;
3708 	u8 type;
3709 
3710 	BT_DBG("%s", hdev->name);
3711 
3712 	if (hdev->dev_type == HCI_AMP)
3713 		type = AMP_LINK;
3714 	else
3715 		type = ACL_LINK;
3716 
3717 	__check_timeout(hdev, cnt, type);
3718 
3719 	while (hdev->block_cnt > 0 &&
3720 	       (chan = hci_chan_sent(hdev, type, &quote))) {
3721 		u32 priority = (skb_peek(&chan->data_q))->priority;
3722 		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3723 			int blocks;
3724 
3725 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3726 			       skb->len, skb->priority);
3727 
3728 			/* Stop if priority has changed */
3729 			if (skb->priority < priority)
3730 				break;
3731 
3732 			skb = skb_dequeue(&chan->data_q);
3733 
3734 			blocks = __get_blocks(hdev, skb);
3735 			if (blocks > hdev->block_cnt)
3736 				return;
3737 
3738 			hci_conn_enter_active_mode(chan->conn,
3739 						   bt_cb(skb)->force_active);
3740 
3741 			hci_send_frame(hdev, skb);
3742 			hdev->acl_last_tx = jiffies;
3743 
3744 			hdev->block_cnt -= blocks;
3745 			quote -= blocks;
3746 
3747 			chan->sent += blocks;
3748 			chan->conn->sent += blocks;
3749 		}
3750 	}
3751 
3752 	if (cnt != hdev->block_cnt)
3753 		hci_prio_recalculate(hdev, type);
3754 }
3755 
3756 static void hci_sched_acl(struct hci_dev *hdev)
3757 {
3758 	BT_DBG("%s", hdev->name);
3759 
3760 	/* No ACL link over BR/EDR controller */
3761 	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3762 		return;
3763 
3764 	/* No AMP link over AMP controller */
3765 	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3766 		return;
3767 
3768 	switch (hdev->flow_ctl_mode) {
3769 	case HCI_FLOW_CTL_MODE_PACKET_BASED:
3770 		hci_sched_acl_pkt(hdev);
3771 		break;
3772 
3773 	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3774 		hci_sched_acl_blk(hdev);
3775 		break;
3776 	}
3777 }
3778 
3779 static void hci_sched_le(struct hci_dev *hdev)
3780 {
3781 	struct hci_chan *chan;
3782 	struct sk_buff *skb;
3783 	int quote, cnt, tmp;
3784 
3785 	BT_DBG("%s", hdev->name);
3786 
3787 	if (!hci_conn_num(hdev, LE_LINK))
3788 		return;
3789 
3790 	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3791 
3792 	__check_timeout(hdev, cnt, LE_LINK);
3793 
3794 	tmp = cnt;
3795 	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3796 		u32 priority = (skb_peek(&chan->data_q))->priority;
3797 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3798 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3799 			       skb->len, skb->priority);
3800 
3801 			/* Stop if priority has changed */
3802 			if (skb->priority < priority)
3803 				break;
3804 
3805 			skb = skb_dequeue(&chan->data_q);
3806 
3807 			hci_send_frame(hdev, skb);
3808 			hdev->le_last_tx = jiffies;
3809 
3810 			cnt--;
3811 			chan->sent++;
3812 			chan->conn->sent++;
3813 
3814 			/* Send pending SCO packets right away */
3815 			hci_sched_sco(hdev);
3816 			hci_sched_esco(hdev);
3817 		}
3818 	}
3819 
3820 	if (hdev->le_pkts)
3821 		hdev->le_cnt = cnt;
3822 	else
3823 		hdev->acl_cnt = cnt;
3824 
3825 	if (cnt != tmp)
3826 		hci_prio_recalculate(hdev, LE_LINK);
3827 }
3828 
3829 /* Schedule CIS */
3830 static void hci_sched_iso(struct hci_dev *hdev)
3831 {
3832 	struct hci_conn *conn;
3833 	struct sk_buff *skb;
3834 	int quote, *cnt;
3835 
3836 	BT_DBG("%s", hdev->name);
3837 
3838 	if (!hci_conn_num(hdev, ISO_LINK))
3839 		return;
3840 
3841 	cnt = hdev->iso_pkts ? &hdev->iso_cnt :
3842 		hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3843 	while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, &quote))) {
3844 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3845 			BT_DBG("skb %p len %d", skb, skb->len);
3846 			hci_send_frame(hdev, skb);
3847 
3848 			conn->sent++;
3849 			if (conn->sent == ~0)
3850 				conn->sent = 0;
3851 			(*cnt)--;
3852 		}
3853 	}
3854 }
3855 
3856 static void hci_tx_work(struct work_struct *work)
3857 {
3858 	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3859 	struct sk_buff *skb;
3860 
3861 	BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt,
3862 	       hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt);
3863 
3864 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3865 		/* Schedule queues and send stuff to HCI driver */
3866 		hci_sched_sco(hdev);
3867 		hci_sched_esco(hdev);
3868 		hci_sched_iso(hdev);
3869 		hci_sched_acl(hdev);
3870 		hci_sched_le(hdev);
3871 	}
3872 
3873 	/* Send next queued raw (unknown type) packet */
3874 	while ((skb = skb_dequeue(&hdev->raw_q)))
3875 		hci_send_frame(hdev, skb);
3876 }
3877 
3878 /* ----- HCI RX task (incoming data processing) ----- */
3879 
3880 /* ACL data packet */
3881 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3882 {
3883 	struct hci_acl_hdr *hdr = (void *) skb->data;
3884 	struct hci_conn *conn;
3885 	__u16 handle, flags;
3886 
3887 	skb_pull(skb, HCI_ACL_HDR_SIZE);
3888 
3889 	handle = __le16_to_cpu(hdr->handle);
3890 	flags  = hci_flags(handle);
3891 	handle = hci_handle(handle);
3892 
3893 	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3894 	       handle, flags);
3895 
3896 	hdev->stat.acl_rx++;
3897 
3898 	hci_dev_lock(hdev);
3899 	conn = hci_conn_hash_lookup_handle(hdev, handle);
3900 	hci_dev_unlock(hdev);
3901 
3902 	if (conn) {
3903 		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3904 
3905 		/* Send to upper protocol */
3906 		l2cap_recv_acldata(conn, skb, flags);
3907 		return;
3908 	} else {
3909 		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
3910 			   handle);
3911 	}
3912 
3913 	kfree_skb(skb);
3914 }
3915 
3916 /* SCO data packet */
3917 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3918 {
3919 	struct hci_sco_hdr *hdr = (void *) skb->data;
3920 	struct hci_conn *conn;
3921 	__u16 handle, flags;
3922 
3923 	skb_pull(skb, HCI_SCO_HDR_SIZE);
3924 
3925 	handle = __le16_to_cpu(hdr->handle);
3926 	flags  = hci_flags(handle);
3927 	handle = hci_handle(handle);
3928 
3929 	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3930 	       handle, flags);
3931 
3932 	hdev->stat.sco_rx++;
3933 
3934 	hci_dev_lock(hdev);
3935 	conn = hci_conn_hash_lookup_handle(hdev, handle);
3936 	hci_dev_unlock(hdev);
3937 
3938 	if (conn) {
3939 		/* Send to upper protocol */
3940 		hci_skb_pkt_status(skb) = flags & 0x03;
3941 		sco_recv_scodata(conn, skb);
3942 		return;
3943 	} else {
3944 		bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d",
3945 				       handle);
3946 	}
3947 
3948 	kfree_skb(skb);
3949 }
3950 
3951 static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3952 {
3953 	struct hci_iso_hdr *hdr;
3954 	struct hci_conn *conn;
3955 	__u16 handle, flags;
3956 
3957 	hdr = skb_pull_data(skb, sizeof(*hdr));
3958 	if (!hdr) {
3959 		bt_dev_err(hdev, "ISO packet too small");
3960 		goto drop;
3961 	}
3962 
3963 	handle = __le16_to_cpu(hdr->handle);
3964 	flags  = hci_flags(handle);
3965 	handle = hci_handle(handle);
3966 
3967 	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3968 		   handle, flags);
3969 
3970 	hci_dev_lock(hdev);
3971 	conn = hci_conn_hash_lookup_handle(hdev, handle);
3972 	hci_dev_unlock(hdev);
3973 
3974 	if (!conn) {
3975 		bt_dev_err(hdev, "ISO packet for unknown connection handle %d",
3976 			   handle);
3977 		goto drop;
3978 	}
3979 
3980 	/* Send to upper protocol */
3981 	iso_recv(conn, skb, flags);
3982 	return;
3983 
3984 drop:
3985 	kfree_skb(skb);
3986 }
3987 
3988 static bool hci_req_is_complete(struct hci_dev *hdev)
3989 {
3990 	struct sk_buff *skb;
3991 
3992 	skb = skb_peek(&hdev->cmd_q);
3993 	if (!skb)
3994 		return true;
3995 
3996 	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
3997 }
3998 
3999 static void hci_resend_last(struct hci_dev *hdev)
4000 {
4001 	struct hci_command_hdr *sent;
4002 	struct sk_buff *skb;
4003 	u16 opcode;
4004 
4005 	if (!hdev->sent_cmd)
4006 		return;
4007 
4008 	sent = (void *) hdev->sent_cmd->data;
4009 	opcode = __le16_to_cpu(sent->opcode);
4010 	if (opcode == HCI_OP_RESET)
4011 		return;
4012 
4013 	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4014 	if (!skb)
4015 		return;
4016 
4017 	skb_queue_head(&hdev->cmd_q, skb);
4018 	queue_work(hdev->workqueue, &hdev->cmd_work);
4019 }
4020 
4021 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4022 			  hci_req_complete_t *req_complete,
4023 			  hci_req_complete_skb_t *req_complete_skb)
4024 {
4025 	struct sk_buff *skb;
4026 	unsigned long flags;
4027 
4028 	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4029 
4030 	/* If the completed command doesn't match the last one that was
4031 	 * sent we need to do special handling of it.
4032 	 */
4033 	if (!hci_sent_cmd_data(hdev, opcode)) {
4034 		/* Some CSR based controllers generate a spontaneous
4035 		 * reset complete event during init and any pending
4036 		 * command will never be completed. In such a case we
4037 		 * need to resend whatever was the last sent
4038 		 * command.
4039 		 */
4040 		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4041 			hci_resend_last(hdev);
4042 
4043 		return;
4044 	}
4045 
4046 	/* If we reach this point this event matches the last command sent */
4047 	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4048 
4049 	/* If the command succeeded and there's still more commands in
4050 	 * this request the request is not yet complete.
4051 	 */
4052 	if (!status && !hci_req_is_complete(hdev))
4053 		return;
4054 
4055 	skb = hdev->req_skb;
4056 
4057 	/* If this was the last command in a request the complete
4058 	 * callback would be found in hdev->req_skb instead of the
4059 	 * command queue (hdev->cmd_q).
4060 	 */
4061 	if (skb && bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) {
4062 		*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4063 		return;
4064 	}
4065 
4066 	if (skb && bt_cb(skb)->hci.req_complete) {
4067 		*req_complete = bt_cb(skb)->hci.req_complete;
4068 		return;
4069 	}
4070 
4071 	/* Remove all pending commands belonging to this request */
4072 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4073 	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4074 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4075 			__skb_queue_head(&hdev->cmd_q, skb);
4076 			break;
4077 		}
4078 
4079 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4080 			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4081 		else
4082 			*req_complete = bt_cb(skb)->hci.req_complete;
4083 		dev_kfree_skb_irq(skb);
4084 	}
4085 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4086 }
4087 
4088 static void hci_rx_work(struct work_struct *work)
4089 {
4090 	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4091 	struct sk_buff *skb;
4092 
4093 	BT_DBG("%s", hdev->name);
4094 
4095 	/* The kcov_remote functions used for collecting packet parsing
4096 	 * coverage information from this background thread and associate
4097 	 * the coverage with the syscall's thread which originally injected
4098 	 * the packet. This helps fuzzing the kernel.
4099 	 */
4100 	for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) {
4101 		kcov_remote_start_common(skb_get_kcov_handle(skb));
4102 
4103 		/* Send copy to monitor */
4104 		hci_send_to_monitor(hdev, skb);
4105 
4106 		if (atomic_read(&hdev->promisc)) {
4107 			/* Send copy to the sockets */
4108 			hci_send_to_sock(hdev, skb);
4109 		}
4110 
4111 		/* If the device has been opened in HCI_USER_CHANNEL,
4112 		 * the userspace has exclusive access to device.
4113 		 * When device is HCI_INIT, we still need to process
4114 		 * the data packets to the driver in order
4115 		 * to complete its setup().
4116 		 */
4117 		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4118 		    !test_bit(HCI_INIT, &hdev->flags)) {
4119 			kfree_skb(skb);
4120 			continue;
4121 		}
4122 
4123 		if (test_bit(HCI_INIT, &hdev->flags)) {
4124 			/* Don't process data packets in this states. */
4125 			switch (hci_skb_pkt_type(skb)) {
4126 			case HCI_ACLDATA_PKT:
4127 			case HCI_SCODATA_PKT:
4128 			case HCI_ISODATA_PKT:
4129 				kfree_skb(skb);
4130 				continue;
4131 			}
4132 		}
4133 
4134 		/* Process frame */
4135 		switch (hci_skb_pkt_type(skb)) {
4136 		case HCI_EVENT_PKT:
4137 			BT_DBG("%s Event packet", hdev->name);
4138 			hci_event_packet(hdev, skb);
4139 			break;
4140 
4141 		case HCI_ACLDATA_PKT:
4142 			BT_DBG("%s ACL data packet", hdev->name);
4143 			hci_acldata_packet(hdev, skb);
4144 			break;
4145 
4146 		case HCI_SCODATA_PKT:
4147 			BT_DBG("%s SCO data packet", hdev->name);
4148 			hci_scodata_packet(hdev, skb);
4149 			break;
4150 
4151 		case HCI_ISODATA_PKT:
4152 			BT_DBG("%s ISO data packet", hdev->name);
4153 			hci_isodata_packet(hdev, skb);
4154 			break;
4155 
4156 		default:
4157 			kfree_skb(skb);
4158 			break;
4159 		}
4160 	}
4161 }
4162 
4163 static void hci_send_cmd_sync(struct hci_dev *hdev, struct sk_buff *skb)
4164 {
4165 	int err;
4166 
4167 	bt_dev_dbg(hdev, "skb %p", skb);
4168 
4169 	kfree_skb(hdev->sent_cmd);
4170 
4171 	hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4172 	if (!hdev->sent_cmd) {
4173 		skb_queue_head(&hdev->cmd_q, skb);
4174 		queue_work(hdev->workqueue, &hdev->cmd_work);
4175 		return;
4176 	}
4177 
4178 	err = hci_send_frame(hdev, skb);
4179 	if (err < 0) {
4180 		hci_cmd_sync_cancel_sync(hdev, -err);
4181 		return;
4182 	}
4183 
4184 	if (hci_req_status_pend(hdev) &&
4185 	    !hci_dev_test_and_set_flag(hdev, HCI_CMD_PENDING)) {
4186 		kfree_skb(hdev->req_skb);
4187 		hdev->req_skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4188 	}
4189 
4190 	atomic_dec(&hdev->cmd_cnt);
4191 }
4192 
4193 static void hci_cmd_work(struct work_struct *work)
4194 {
4195 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4196 	struct sk_buff *skb;
4197 
4198 	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4199 	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4200 
4201 	/* Send queued commands */
4202 	if (atomic_read(&hdev->cmd_cnt)) {
4203 		skb = skb_dequeue(&hdev->cmd_q);
4204 		if (!skb)
4205 			return;
4206 
4207 		hci_send_cmd_sync(hdev, skb);
4208 
4209 		rcu_read_lock();
4210 		if (test_bit(HCI_RESET, &hdev->flags) ||
4211 		    hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
4212 			cancel_delayed_work(&hdev->cmd_timer);
4213 		else
4214 			queue_delayed_work(hdev->workqueue, &hdev->cmd_timer,
4215 					   HCI_CMD_TIMEOUT);
4216 		rcu_read_unlock();
4217 	}
4218 }
4219