xref: /openbmc/linux/net/bluetooth/hci_core.c (revision d2ba09c1)
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4    Copyright (C) 2011 ProFUSION Embedded Systems
5 
6    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License version 2 as
10    published by the Free Software Foundation;
11 
12    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 
21    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23    SOFTWARE IS DISCLAIMED.
24 */
25 
26 /* Bluetooth HCI core. */
27 
28 #include <linux/export.h>
29 #include <linux/idr.h>
30 #include <linux/rfkill.h>
31 #include <linux/debugfs.h>
32 #include <linux/crypto.h>
33 #include <asm/unaligned.h>
34 
35 #include <net/bluetooth/bluetooth.h>
36 #include <net/bluetooth/hci_core.h>
37 #include <net/bluetooth/l2cap.h>
38 #include <net/bluetooth/mgmt.h>
39 
40 #include "hci_request.h"
41 #include "hci_debugfs.h"
42 #include "smp.h"
43 #include "leds.h"
44 
45 static void hci_rx_work(struct work_struct *work);
46 static void hci_cmd_work(struct work_struct *work);
47 static void hci_tx_work(struct work_struct *work);
48 
49 /* HCI device list */
50 LIST_HEAD(hci_dev_list);
51 DEFINE_RWLOCK(hci_dev_list_lock);
52 
53 /* HCI callback list */
54 LIST_HEAD(hci_cb_list);
55 DEFINE_MUTEX(hci_cb_list_lock);
56 
57 /* HCI ID Numbering */
58 static DEFINE_IDA(hci_index_ida);
59 
60 /* ---- HCI debugfs entries ---- */
61 
62 static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
63 			     size_t count, loff_t *ppos)
64 {
65 	struct hci_dev *hdev = file->private_data;
66 	char buf[3];
67 
68 	buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
69 	buf[1] = '\n';
70 	buf[2] = '\0';
71 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
72 }
73 
74 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
75 			      size_t count, loff_t *ppos)
76 {
77 	struct hci_dev *hdev = file->private_data;
78 	struct sk_buff *skb;
79 	char buf[32];
80 	size_t buf_size = min(count, (sizeof(buf)-1));
81 	bool enable;
82 
83 	if (!test_bit(HCI_UP, &hdev->flags))
84 		return -ENETDOWN;
85 
86 	if (copy_from_user(buf, user_buf, buf_size))
87 		return -EFAULT;
88 
89 	buf[buf_size] = '\0';
90 	if (strtobool(buf, &enable))
91 		return -EINVAL;
92 
93 	if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
94 		return -EALREADY;
95 
96 	hci_req_sync_lock(hdev);
97 	if (enable)
98 		skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
99 				     HCI_CMD_TIMEOUT);
100 	else
101 		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
102 				     HCI_CMD_TIMEOUT);
103 	hci_req_sync_unlock(hdev);
104 
105 	if (IS_ERR(skb))
106 		return PTR_ERR(skb);
107 
108 	kfree_skb(skb);
109 
110 	hci_dev_change_flag(hdev, HCI_DUT_MODE);
111 
112 	return count;
113 }
114 
115 static const struct file_operations dut_mode_fops = {
116 	.open		= simple_open,
117 	.read		= dut_mode_read,
118 	.write		= dut_mode_write,
119 	.llseek		= default_llseek,
120 };
121 
122 static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
123 				size_t count, loff_t *ppos)
124 {
125 	struct hci_dev *hdev = file->private_data;
126 	char buf[3];
127 
128 	buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
129 	buf[1] = '\n';
130 	buf[2] = '\0';
131 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
132 }
133 
134 static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
135 				 size_t count, loff_t *ppos)
136 {
137 	struct hci_dev *hdev = file->private_data;
138 	char buf[32];
139 	size_t buf_size = min(count, (sizeof(buf)-1));
140 	bool enable;
141 	int err;
142 
143 	if (copy_from_user(buf, user_buf, buf_size))
144 		return -EFAULT;
145 
146 	buf[buf_size] = '\0';
147 	if (strtobool(buf, &enable))
148 		return -EINVAL;
149 
150 	/* When the diagnostic flags are not persistent and the transport
151 	 * is not active or in user channel operation, then there is no need
152 	 * for the vendor callback. Instead just store the desired value and
153 	 * the setting will be programmed when the controller gets powered on.
154 	 */
155 	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
156 	    (!test_bit(HCI_RUNNING, &hdev->flags) ||
157 	     hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
158 		goto done;
159 
160 	hci_req_sync_lock(hdev);
161 	err = hdev->set_diag(hdev, enable);
162 	hci_req_sync_unlock(hdev);
163 
164 	if (err < 0)
165 		return err;
166 
167 done:
168 	if (enable)
169 		hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
170 	else
171 		hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
172 
173 	return count;
174 }
175 
176 static const struct file_operations vendor_diag_fops = {
177 	.open		= simple_open,
178 	.read		= vendor_diag_read,
179 	.write		= vendor_diag_write,
180 	.llseek		= default_llseek,
181 };
182 
183 static void hci_debugfs_create_basic(struct hci_dev *hdev)
184 {
185 	debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
186 			    &dut_mode_fops);
187 
188 	if (hdev->set_diag)
189 		debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
190 				    &vendor_diag_fops);
191 }
192 
193 static int hci_reset_req(struct hci_request *req, unsigned long opt)
194 {
195 	BT_DBG("%s %ld", req->hdev->name, opt);
196 
197 	/* Reset device */
198 	set_bit(HCI_RESET, &req->hdev->flags);
199 	hci_req_add(req, HCI_OP_RESET, 0, NULL);
200 	return 0;
201 }
202 
203 static void bredr_init(struct hci_request *req)
204 {
205 	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
206 
207 	/* Read Local Supported Features */
208 	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
209 
210 	/* Read Local Version */
211 	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
212 
213 	/* Read BD Address */
214 	hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
215 }
216 
217 static void amp_init1(struct hci_request *req)
218 {
219 	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
220 
221 	/* Read Local Version */
222 	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
223 
224 	/* Read Local Supported Commands */
225 	hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
226 
227 	/* Read Local AMP Info */
228 	hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
229 
230 	/* Read Data Blk size */
231 	hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
232 
233 	/* Read Flow Control Mode */
234 	hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
235 
236 	/* Read Location Data */
237 	hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
238 }
239 
240 static int amp_init2(struct hci_request *req)
241 {
242 	/* Read Local Supported Features. Not all AMP controllers
243 	 * support this so it's placed conditionally in the second
244 	 * stage init.
245 	 */
246 	if (req->hdev->commands[14] & 0x20)
247 		hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
248 
249 	return 0;
250 }
251 
252 static int hci_init1_req(struct hci_request *req, unsigned long opt)
253 {
254 	struct hci_dev *hdev = req->hdev;
255 
256 	BT_DBG("%s %ld", hdev->name, opt);
257 
258 	/* Reset */
259 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
260 		hci_reset_req(req, 0);
261 
262 	switch (hdev->dev_type) {
263 	case HCI_PRIMARY:
264 		bredr_init(req);
265 		break;
266 	case HCI_AMP:
267 		amp_init1(req);
268 		break;
269 	default:
270 		bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
271 		break;
272 	}
273 
274 	return 0;
275 }
276 
277 static void bredr_setup(struct hci_request *req)
278 {
279 	__le16 param;
280 	__u8 flt_type;
281 
282 	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
283 	hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
284 
285 	/* Read Class of Device */
286 	hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
287 
288 	/* Read Local Name */
289 	hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
290 
291 	/* Read Voice Setting */
292 	hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
293 
294 	/* Read Number of Supported IAC */
295 	hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
296 
297 	/* Read Current IAC LAP */
298 	hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
299 
300 	/* Clear Event Filters */
301 	flt_type = HCI_FLT_CLEAR_ALL;
302 	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
303 
304 	/* Connection accept timeout ~20 secs */
305 	param = cpu_to_le16(0x7d00);
306 	hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
307 }
308 
309 static void le_setup(struct hci_request *req)
310 {
311 	struct hci_dev *hdev = req->hdev;
312 
313 	/* Read LE Buffer Size */
314 	hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
315 
316 	/* Read LE Local Supported Features */
317 	hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
318 
319 	/* Read LE Supported States */
320 	hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
321 
322 	/* LE-only controllers have LE implicitly enabled */
323 	if (!lmp_bredr_capable(hdev))
324 		hci_dev_set_flag(hdev, HCI_LE_ENABLED);
325 }
326 
327 static void hci_setup_event_mask(struct hci_request *req)
328 {
329 	struct hci_dev *hdev = req->hdev;
330 
331 	/* The second byte is 0xff instead of 0x9f (two reserved bits
332 	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
333 	 * command otherwise.
334 	 */
335 	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
336 
337 	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
338 	 * any event mask for pre 1.2 devices.
339 	 */
340 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
341 		return;
342 
343 	if (lmp_bredr_capable(hdev)) {
344 		events[4] |= 0x01; /* Flow Specification Complete */
345 	} else {
346 		/* Use a different default for LE-only devices */
347 		memset(events, 0, sizeof(events));
348 		events[1] |= 0x20; /* Command Complete */
349 		events[1] |= 0x40; /* Command Status */
350 		events[1] |= 0x80; /* Hardware Error */
351 
352 		/* If the controller supports the Disconnect command, enable
353 		 * the corresponding event. In addition enable packet flow
354 		 * control related events.
355 		 */
356 		if (hdev->commands[0] & 0x20) {
357 			events[0] |= 0x10; /* Disconnection Complete */
358 			events[2] |= 0x04; /* Number of Completed Packets */
359 			events[3] |= 0x02; /* Data Buffer Overflow */
360 		}
361 
362 		/* If the controller supports the Read Remote Version
363 		 * Information command, enable the corresponding event.
364 		 */
365 		if (hdev->commands[2] & 0x80)
366 			events[1] |= 0x08; /* Read Remote Version Information
367 					    * Complete
368 					    */
369 
370 		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
371 			events[0] |= 0x80; /* Encryption Change */
372 			events[5] |= 0x80; /* Encryption Key Refresh Complete */
373 		}
374 	}
375 
376 	if (lmp_inq_rssi_capable(hdev) ||
377 	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
378 		events[4] |= 0x02; /* Inquiry Result with RSSI */
379 
380 	if (lmp_ext_feat_capable(hdev))
381 		events[4] |= 0x04; /* Read Remote Extended Features Complete */
382 
383 	if (lmp_esco_capable(hdev)) {
384 		events[5] |= 0x08; /* Synchronous Connection Complete */
385 		events[5] |= 0x10; /* Synchronous Connection Changed */
386 	}
387 
388 	if (lmp_sniffsubr_capable(hdev))
389 		events[5] |= 0x20; /* Sniff Subrating */
390 
391 	if (lmp_pause_enc_capable(hdev))
392 		events[5] |= 0x80; /* Encryption Key Refresh Complete */
393 
394 	if (lmp_ext_inq_capable(hdev))
395 		events[5] |= 0x40; /* Extended Inquiry Result */
396 
397 	if (lmp_no_flush_capable(hdev))
398 		events[7] |= 0x01; /* Enhanced Flush Complete */
399 
400 	if (lmp_lsto_capable(hdev))
401 		events[6] |= 0x80; /* Link Supervision Timeout Changed */
402 
403 	if (lmp_ssp_capable(hdev)) {
404 		events[6] |= 0x01;	/* IO Capability Request */
405 		events[6] |= 0x02;	/* IO Capability Response */
406 		events[6] |= 0x04;	/* User Confirmation Request */
407 		events[6] |= 0x08;	/* User Passkey Request */
408 		events[6] |= 0x10;	/* Remote OOB Data Request */
409 		events[6] |= 0x20;	/* Simple Pairing Complete */
410 		events[7] |= 0x04;	/* User Passkey Notification */
411 		events[7] |= 0x08;	/* Keypress Notification */
412 		events[7] |= 0x10;	/* Remote Host Supported
413 					 * Features Notification
414 					 */
415 	}
416 
417 	if (lmp_le_capable(hdev))
418 		events[7] |= 0x20;	/* LE Meta-Event */
419 
420 	hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
421 }
422 
423 static int hci_init2_req(struct hci_request *req, unsigned long opt)
424 {
425 	struct hci_dev *hdev = req->hdev;
426 
427 	if (hdev->dev_type == HCI_AMP)
428 		return amp_init2(req);
429 
430 	if (lmp_bredr_capable(hdev))
431 		bredr_setup(req);
432 	else
433 		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
434 
435 	if (lmp_le_capable(hdev))
436 		le_setup(req);
437 
438 	/* All Bluetooth 1.2 and later controllers should support the
439 	 * HCI command for reading the local supported commands.
440 	 *
441 	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
442 	 * but do not have support for this command. If that is the case,
443 	 * the driver can quirk the behavior and skip reading the local
444 	 * supported commands.
445 	 */
446 	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
447 	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
448 		hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
449 
450 	if (lmp_ssp_capable(hdev)) {
451 		/* When SSP is available, then the host features page
452 		 * should also be available as well. However some
453 		 * controllers list the max_page as 0 as long as SSP
454 		 * has not been enabled. To achieve proper debugging
455 		 * output, force the minimum max_page to 1 at least.
456 		 */
457 		hdev->max_page = 0x01;
458 
459 		if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
460 			u8 mode = 0x01;
461 
462 			hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
463 				    sizeof(mode), &mode);
464 		} else {
465 			struct hci_cp_write_eir cp;
466 
467 			memset(hdev->eir, 0, sizeof(hdev->eir));
468 			memset(&cp, 0, sizeof(cp));
469 
470 			hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
471 		}
472 	}
473 
474 	if (lmp_inq_rssi_capable(hdev) ||
475 	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
476 		u8 mode;
477 
478 		/* If Extended Inquiry Result events are supported, then
479 		 * they are clearly preferred over Inquiry Result with RSSI
480 		 * events.
481 		 */
482 		mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
483 
484 		hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
485 	}
486 
487 	if (lmp_inq_tx_pwr_capable(hdev))
488 		hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
489 
490 	if (lmp_ext_feat_capable(hdev)) {
491 		struct hci_cp_read_local_ext_features cp;
492 
493 		cp.page = 0x01;
494 		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
495 			    sizeof(cp), &cp);
496 	}
497 
498 	if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
499 		u8 enable = 1;
500 		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
501 			    &enable);
502 	}
503 
504 	return 0;
505 }
506 
507 static void hci_setup_link_policy(struct hci_request *req)
508 {
509 	struct hci_dev *hdev = req->hdev;
510 	struct hci_cp_write_def_link_policy cp;
511 	u16 link_policy = 0;
512 
513 	if (lmp_rswitch_capable(hdev))
514 		link_policy |= HCI_LP_RSWITCH;
515 	if (lmp_hold_capable(hdev))
516 		link_policy |= HCI_LP_HOLD;
517 	if (lmp_sniff_capable(hdev))
518 		link_policy |= HCI_LP_SNIFF;
519 	if (lmp_park_capable(hdev))
520 		link_policy |= HCI_LP_PARK;
521 
522 	cp.policy = cpu_to_le16(link_policy);
523 	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
524 }
525 
526 static void hci_set_le_support(struct hci_request *req)
527 {
528 	struct hci_dev *hdev = req->hdev;
529 	struct hci_cp_write_le_host_supported cp;
530 
531 	/* LE-only devices do not support explicit enablement */
532 	if (!lmp_bredr_capable(hdev))
533 		return;
534 
535 	memset(&cp, 0, sizeof(cp));
536 
537 	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
538 		cp.le = 0x01;
539 		cp.simul = 0x00;
540 	}
541 
542 	if (cp.le != lmp_host_le_capable(hdev))
543 		hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
544 			    &cp);
545 }
546 
547 static void hci_set_event_mask_page_2(struct hci_request *req)
548 {
549 	struct hci_dev *hdev = req->hdev;
550 	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
551 	bool changed = false;
552 
553 	/* If Connectionless Slave Broadcast master role is supported
554 	 * enable all necessary events for it.
555 	 */
556 	if (lmp_csb_master_capable(hdev)) {
557 		events[1] |= 0x40;	/* Triggered Clock Capture */
558 		events[1] |= 0x80;	/* Synchronization Train Complete */
559 		events[2] |= 0x10;	/* Slave Page Response Timeout */
560 		events[2] |= 0x20;	/* CSB Channel Map Change */
561 		changed = true;
562 	}
563 
564 	/* If Connectionless Slave Broadcast slave role is supported
565 	 * enable all necessary events for it.
566 	 */
567 	if (lmp_csb_slave_capable(hdev)) {
568 		events[2] |= 0x01;	/* Synchronization Train Received */
569 		events[2] |= 0x02;	/* CSB Receive */
570 		events[2] |= 0x04;	/* CSB Timeout */
571 		events[2] |= 0x08;	/* Truncated Page Complete */
572 		changed = true;
573 	}
574 
575 	/* Enable Authenticated Payload Timeout Expired event if supported */
576 	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
577 		events[2] |= 0x80;
578 		changed = true;
579 	}
580 
581 	/* Some Broadcom based controllers indicate support for Set Event
582 	 * Mask Page 2 command, but then actually do not support it. Since
583 	 * the default value is all bits set to zero, the command is only
584 	 * required if the event mask has to be changed. In case no change
585 	 * to the event mask is needed, skip this command.
586 	 */
587 	if (changed)
588 		hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
589 			    sizeof(events), events);
590 }
591 
592 static int hci_init3_req(struct hci_request *req, unsigned long opt)
593 {
594 	struct hci_dev *hdev = req->hdev;
595 	u8 p;
596 
597 	hci_setup_event_mask(req);
598 
599 	if (hdev->commands[6] & 0x20 &&
600 	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
601 		struct hci_cp_read_stored_link_key cp;
602 
603 		bacpy(&cp.bdaddr, BDADDR_ANY);
604 		cp.read_all = 0x01;
605 		hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
606 	}
607 
608 	if (hdev->commands[5] & 0x10)
609 		hci_setup_link_policy(req);
610 
611 	if (hdev->commands[8] & 0x01)
612 		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
613 
614 	/* Some older Broadcom based Bluetooth 1.2 controllers do not
615 	 * support the Read Page Scan Type command. Check support for
616 	 * this command in the bit mask of supported commands.
617 	 */
618 	if (hdev->commands[13] & 0x01)
619 		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
620 
621 	if (lmp_le_capable(hdev)) {
622 		u8 events[8];
623 
624 		memset(events, 0, sizeof(events));
625 
626 		if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
627 			events[0] |= 0x10;	/* LE Long Term Key Request */
628 
629 		/* If controller supports the Connection Parameters Request
630 		 * Link Layer Procedure, enable the corresponding event.
631 		 */
632 		if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
633 			events[0] |= 0x20;	/* LE Remote Connection
634 						 * Parameter Request
635 						 */
636 
637 		/* If the controller supports the Data Length Extension
638 		 * feature, enable the corresponding event.
639 		 */
640 		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
641 			events[0] |= 0x40;	/* LE Data Length Change */
642 
643 		/* If the controller supports Extended Scanner Filter
644 		 * Policies, enable the correspondig event.
645 		 */
646 		if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
647 			events[1] |= 0x04;	/* LE Direct Advertising
648 						 * Report
649 						 */
650 
651 		/* If the controller supports Channel Selection Algorithm #2
652 		 * feature, enable the corresponding event.
653 		 */
654 		if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
655 			events[2] |= 0x08;	/* LE Channel Selection
656 						 * Algorithm
657 						 */
658 
659 		/* If the controller supports the LE Set Scan Enable command,
660 		 * enable the corresponding advertising report event.
661 		 */
662 		if (hdev->commands[26] & 0x08)
663 			events[0] |= 0x02;	/* LE Advertising Report */
664 
665 		/* If the controller supports the LE Create Connection
666 		 * command, enable the corresponding event.
667 		 */
668 		if (hdev->commands[26] & 0x10)
669 			events[0] |= 0x01;	/* LE Connection Complete */
670 
671 		/* If the controller supports the LE Connection Update
672 		 * command, enable the corresponding event.
673 		 */
674 		if (hdev->commands[27] & 0x04)
675 			events[0] |= 0x04;	/* LE Connection Update
676 						 * Complete
677 						 */
678 
679 		/* If the controller supports the LE Read Remote Used Features
680 		 * command, enable the corresponding event.
681 		 */
682 		if (hdev->commands[27] & 0x20)
683 			events[0] |= 0x08;	/* LE Read Remote Used
684 						 * Features Complete
685 						 */
686 
687 		/* If the controller supports the LE Read Local P-256
688 		 * Public Key command, enable the corresponding event.
689 		 */
690 		if (hdev->commands[34] & 0x02)
691 			events[0] |= 0x80;	/* LE Read Local P-256
692 						 * Public Key Complete
693 						 */
694 
695 		/* If the controller supports the LE Generate DHKey
696 		 * command, enable the corresponding event.
697 		 */
698 		if (hdev->commands[34] & 0x04)
699 			events[1] |= 0x01;	/* LE Generate DHKey Complete */
700 
701 		/* If the controller supports the LE Set Default PHY or
702 		 * LE Set PHY commands, enable the corresponding event.
703 		 */
704 		if (hdev->commands[35] & (0x20 | 0x40))
705 			events[1] |= 0x08;        /* LE PHY Update Complete */
706 
707 		hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
708 			    events);
709 
710 		if (hdev->commands[25] & 0x40) {
711 			/* Read LE Advertising Channel TX Power */
712 			hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
713 		}
714 
715 		if (hdev->commands[26] & 0x40) {
716 			/* Read LE White List Size */
717 			hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
718 				    0, NULL);
719 		}
720 
721 		if (hdev->commands[26] & 0x80) {
722 			/* Clear LE White List */
723 			hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
724 		}
725 
726 		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
727 			/* Read LE Maximum Data Length */
728 			hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
729 
730 			/* Read LE Suggested Default Data Length */
731 			hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
732 		}
733 
734 		hci_set_le_support(req);
735 	}
736 
737 	/* Read features beyond page 1 if available */
738 	for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
739 		struct hci_cp_read_local_ext_features cp;
740 
741 		cp.page = p;
742 		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
743 			    sizeof(cp), &cp);
744 	}
745 
746 	return 0;
747 }
748 
749 static int hci_init4_req(struct hci_request *req, unsigned long opt)
750 {
751 	struct hci_dev *hdev = req->hdev;
752 
753 	/* Some Broadcom based Bluetooth controllers do not support the
754 	 * Delete Stored Link Key command. They are clearly indicating its
755 	 * absence in the bit mask of supported commands.
756 	 *
757 	 * Check the supported commands and only if the the command is marked
758 	 * as supported send it. If not supported assume that the controller
759 	 * does not have actual support for stored link keys which makes this
760 	 * command redundant anyway.
761 	 *
762 	 * Some controllers indicate that they support handling deleting
763 	 * stored link keys, but they don't. The quirk lets a driver
764 	 * just disable this command.
765 	 */
766 	if (hdev->commands[6] & 0x80 &&
767 	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
768 		struct hci_cp_delete_stored_link_key cp;
769 
770 		bacpy(&cp.bdaddr, BDADDR_ANY);
771 		cp.delete_all = 0x01;
772 		hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
773 			    sizeof(cp), &cp);
774 	}
775 
776 	/* Set event mask page 2 if the HCI command for it is supported */
777 	if (hdev->commands[22] & 0x04)
778 		hci_set_event_mask_page_2(req);
779 
780 	/* Read local codec list if the HCI command is supported */
781 	if (hdev->commands[29] & 0x20)
782 		hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
783 
784 	/* Get MWS transport configuration if the HCI command is supported */
785 	if (hdev->commands[30] & 0x08)
786 		hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
787 
788 	/* Check for Synchronization Train support */
789 	if (lmp_sync_train_capable(hdev))
790 		hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
791 
792 	/* Enable Secure Connections if supported and configured */
793 	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
794 	    bredr_sc_enabled(hdev)) {
795 		u8 support = 0x01;
796 
797 		hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
798 			    sizeof(support), &support);
799 	}
800 
801 	/* Set Suggested Default Data Length to maximum if supported */
802 	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
803 		struct hci_cp_le_write_def_data_len cp;
804 
805 		cp.tx_len = hdev->le_max_tx_len;
806 		cp.tx_time = hdev->le_max_tx_time;
807 		hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
808 	}
809 
810 	/* Set Default PHY parameters if command is supported */
811 	if (hdev->commands[35] & 0x20) {
812 		struct hci_cp_le_set_default_phy cp;
813 
814 		/* No transmitter PHY or receiver PHY preferences */
815 		cp.all_phys = 0x03;
816 		cp.tx_phys = 0;
817 		cp.rx_phys = 0;
818 
819 		hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
820 	}
821 
822 	return 0;
823 }
824 
825 static int __hci_init(struct hci_dev *hdev)
826 {
827 	int err;
828 
829 	err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
830 	if (err < 0)
831 		return err;
832 
833 	if (hci_dev_test_flag(hdev, HCI_SETUP))
834 		hci_debugfs_create_basic(hdev);
835 
836 	err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
837 	if (err < 0)
838 		return err;
839 
840 	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
841 	 * BR/EDR/LE type controllers. AMP controllers only need the
842 	 * first two stages of init.
843 	 */
844 	if (hdev->dev_type != HCI_PRIMARY)
845 		return 0;
846 
847 	err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
848 	if (err < 0)
849 		return err;
850 
851 	err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
852 	if (err < 0)
853 		return err;
854 
855 	/* This function is only called when the controller is actually in
856 	 * configured state. When the controller is marked as unconfigured,
857 	 * this initialization procedure is not run.
858 	 *
859 	 * It means that it is possible that a controller runs through its
860 	 * setup phase and then discovers missing settings. If that is the
861 	 * case, then this function will not be called. It then will only
862 	 * be called during the config phase.
863 	 *
864 	 * So only when in setup phase or config phase, create the debugfs
865 	 * entries and register the SMP channels.
866 	 */
867 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
868 	    !hci_dev_test_flag(hdev, HCI_CONFIG))
869 		return 0;
870 
871 	hci_debugfs_create_common(hdev);
872 
873 	if (lmp_bredr_capable(hdev))
874 		hci_debugfs_create_bredr(hdev);
875 
876 	if (lmp_le_capable(hdev))
877 		hci_debugfs_create_le(hdev);
878 
879 	return 0;
880 }
881 
882 static int hci_init0_req(struct hci_request *req, unsigned long opt)
883 {
884 	struct hci_dev *hdev = req->hdev;
885 
886 	BT_DBG("%s %ld", hdev->name, opt);
887 
888 	/* Reset */
889 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
890 		hci_reset_req(req, 0);
891 
892 	/* Read Local Version */
893 	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
894 
895 	/* Read BD Address */
896 	if (hdev->set_bdaddr)
897 		hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
898 
899 	return 0;
900 }
901 
902 static int __hci_unconf_init(struct hci_dev *hdev)
903 {
904 	int err;
905 
906 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
907 		return 0;
908 
909 	err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
910 	if (err < 0)
911 		return err;
912 
913 	if (hci_dev_test_flag(hdev, HCI_SETUP))
914 		hci_debugfs_create_basic(hdev);
915 
916 	return 0;
917 }
918 
919 static int hci_scan_req(struct hci_request *req, unsigned long opt)
920 {
921 	__u8 scan = opt;
922 
923 	BT_DBG("%s %x", req->hdev->name, scan);
924 
925 	/* Inquiry and Page scans */
926 	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
927 	return 0;
928 }
929 
930 static int hci_auth_req(struct hci_request *req, unsigned long opt)
931 {
932 	__u8 auth = opt;
933 
934 	BT_DBG("%s %x", req->hdev->name, auth);
935 
936 	/* Authentication */
937 	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
938 	return 0;
939 }
940 
941 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
942 {
943 	__u8 encrypt = opt;
944 
945 	BT_DBG("%s %x", req->hdev->name, encrypt);
946 
947 	/* Encryption */
948 	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
949 	return 0;
950 }
951 
952 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
953 {
954 	__le16 policy = cpu_to_le16(opt);
955 
956 	BT_DBG("%s %x", req->hdev->name, policy);
957 
958 	/* Default link policy */
959 	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
960 	return 0;
961 }
962 
963 /* Get HCI device by index.
964  * Device is held on return. */
965 struct hci_dev *hci_dev_get(int index)
966 {
967 	struct hci_dev *hdev = NULL, *d;
968 
969 	BT_DBG("%d", index);
970 
971 	if (index < 0)
972 		return NULL;
973 
974 	read_lock(&hci_dev_list_lock);
975 	list_for_each_entry(d, &hci_dev_list, list) {
976 		if (d->id == index) {
977 			hdev = hci_dev_hold(d);
978 			break;
979 		}
980 	}
981 	read_unlock(&hci_dev_list_lock);
982 	return hdev;
983 }
984 
985 /* ---- Inquiry support ---- */
986 
987 bool hci_discovery_active(struct hci_dev *hdev)
988 {
989 	struct discovery_state *discov = &hdev->discovery;
990 
991 	switch (discov->state) {
992 	case DISCOVERY_FINDING:
993 	case DISCOVERY_RESOLVING:
994 		return true;
995 
996 	default:
997 		return false;
998 	}
999 }
1000 
1001 void hci_discovery_set_state(struct hci_dev *hdev, int state)
1002 {
1003 	int old_state = hdev->discovery.state;
1004 
1005 	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1006 
1007 	if (old_state == state)
1008 		return;
1009 
1010 	hdev->discovery.state = state;
1011 
1012 	switch (state) {
1013 	case DISCOVERY_STOPPED:
1014 		hci_update_background_scan(hdev);
1015 
1016 		if (old_state != DISCOVERY_STARTING)
1017 			mgmt_discovering(hdev, 0);
1018 		break;
1019 	case DISCOVERY_STARTING:
1020 		break;
1021 	case DISCOVERY_FINDING:
1022 		mgmt_discovering(hdev, 1);
1023 		break;
1024 	case DISCOVERY_RESOLVING:
1025 		break;
1026 	case DISCOVERY_STOPPING:
1027 		break;
1028 	}
1029 }
1030 
1031 void hci_inquiry_cache_flush(struct hci_dev *hdev)
1032 {
1033 	struct discovery_state *cache = &hdev->discovery;
1034 	struct inquiry_entry *p, *n;
1035 
1036 	list_for_each_entry_safe(p, n, &cache->all, all) {
1037 		list_del(&p->all);
1038 		kfree(p);
1039 	}
1040 
1041 	INIT_LIST_HEAD(&cache->unknown);
1042 	INIT_LIST_HEAD(&cache->resolve);
1043 }
1044 
1045 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1046 					       bdaddr_t *bdaddr)
1047 {
1048 	struct discovery_state *cache = &hdev->discovery;
1049 	struct inquiry_entry *e;
1050 
1051 	BT_DBG("cache %p, %pMR", cache, bdaddr);
1052 
1053 	list_for_each_entry(e, &cache->all, all) {
1054 		if (!bacmp(&e->data.bdaddr, bdaddr))
1055 			return e;
1056 	}
1057 
1058 	return NULL;
1059 }
1060 
1061 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1062 						       bdaddr_t *bdaddr)
1063 {
1064 	struct discovery_state *cache = &hdev->discovery;
1065 	struct inquiry_entry *e;
1066 
1067 	BT_DBG("cache %p, %pMR", cache, bdaddr);
1068 
1069 	list_for_each_entry(e, &cache->unknown, list) {
1070 		if (!bacmp(&e->data.bdaddr, bdaddr))
1071 			return e;
1072 	}
1073 
1074 	return NULL;
1075 }
1076 
1077 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1078 						       bdaddr_t *bdaddr,
1079 						       int state)
1080 {
1081 	struct discovery_state *cache = &hdev->discovery;
1082 	struct inquiry_entry *e;
1083 
1084 	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1085 
1086 	list_for_each_entry(e, &cache->resolve, list) {
1087 		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1088 			return e;
1089 		if (!bacmp(&e->data.bdaddr, bdaddr))
1090 			return e;
1091 	}
1092 
1093 	return NULL;
1094 }
1095 
1096 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1097 				      struct inquiry_entry *ie)
1098 {
1099 	struct discovery_state *cache = &hdev->discovery;
1100 	struct list_head *pos = &cache->resolve;
1101 	struct inquiry_entry *p;
1102 
1103 	list_del(&ie->list);
1104 
1105 	list_for_each_entry(p, &cache->resolve, list) {
1106 		if (p->name_state != NAME_PENDING &&
1107 		    abs(p->data.rssi) >= abs(ie->data.rssi))
1108 			break;
1109 		pos = &p->list;
1110 	}
1111 
1112 	list_add(&ie->list, pos);
1113 }
1114 
1115 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1116 			     bool name_known)
1117 {
1118 	struct discovery_state *cache = &hdev->discovery;
1119 	struct inquiry_entry *ie;
1120 	u32 flags = 0;
1121 
1122 	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1123 
1124 	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1125 
1126 	if (!data->ssp_mode)
1127 		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1128 
1129 	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1130 	if (ie) {
1131 		if (!ie->data.ssp_mode)
1132 			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1133 
1134 		if (ie->name_state == NAME_NEEDED &&
1135 		    data->rssi != ie->data.rssi) {
1136 			ie->data.rssi = data->rssi;
1137 			hci_inquiry_cache_update_resolve(hdev, ie);
1138 		}
1139 
1140 		goto update;
1141 	}
1142 
1143 	/* Entry not in the cache. Add new one. */
1144 	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1145 	if (!ie) {
1146 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1147 		goto done;
1148 	}
1149 
1150 	list_add(&ie->all, &cache->all);
1151 
1152 	if (name_known) {
1153 		ie->name_state = NAME_KNOWN;
1154 	} else {
1155 		ie->name_state = NAME_NOT_KNOWN;
1156 		list_add(&ie->list, &cache->unknown);
1157 	}
1158 
1159 update:
1160 	if (name_known && ie->name_state != NAME_KNOWN &&
1161 	    ie->name_state != NAME_PENDING) {
1162 		ie->name_state = NAME_KNOWN;
1163 		list_del(&ie->list);
1164 	}
1165 
1166 	memcpy(&ie->data, data, sizeof(*data));
1167 	ie->timestamp = jiffies;
1168 	cache->timestamp = jiffies;
1169 
1170 	if (ie->name_state == NAME_NOT_KNOWN)
1171 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1172 
1173 done:
1174 	return flags;
1175 }
1176 
1177 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1178 {
1179 	struct discovery_state *cache = &hdev->discovery;
1180 	struct inquiry_info *info = (struct inquiry_info *) buf;
1181 	struct inquiry_entry *e;
1182 	int copied = 0;
1183 
1184 	list_for_each_entry(e, &cache->all, all) {
1185 		struct inquiry_data *data = &e->data;
1186 
1187 		if (copied >= num)
1188 			break;
1189 
1190 		bacpy(&info->bdaddr, &data->bdaddr);
1191 		info->pscan_rep_mode	= data->pscan_rep_mode;
1192 		info->pscan_period_mode	= data->pscan_period_mode;
1193 		info->pscan_mode	= data->pscan_mode;
1194 		memcpy(info->dev_class, data->dev_class, 3);
1195 		info->clock_offset	= data->clock_offset;
1196 
1197 		info++;
1198 		copied++;
1199 	}
1200 
1201 	BT_DBG("cache %p, copied %d", cache, copied);
1202 	return copied;
1203 }
1204 
1205 static int hci_inq_req(struct hci_request *req, unsigned long opt)
1206 {
1207 	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1208 	struct hci_dev *hdev = req->hdev;
1209 	struct hci_cp_inquiry cp;
1210 
1211 	BT_DBG("%s", hdev->name);
1212 
1213 	if (test_bit(HCI_INQUIRY, &hdev->flags))
1214 		return 0;
1215 
1216 	/* Start Inquiry */
1217 	memcpy(&cp.lap, &ir->lap, 3);
1218 	cp.length  = ir->length;
1219 	cp.num_rsp = ir->num_rsp;
1220 	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1221 
1222 	return 0;
1223 }
1224 
1225 int hci_inquiry(void __user *arg)
1226 {
1227 	__u8 __user *ptr = arg;
1228 	struct hci_inquiry_req ir;
1229 	struct hci_dev *hdev;
1230 	int err = 0, do_inquiry = 0, max_rsp;
1231 	long timeo;
1232 	__u8 *buf;
1233 
1234 	if (copy_from_user(&ir, ptr, sizeof(ir)))
1235 		return -EFAULT;
1236 
1237 	hdev = hci_dev_get(ir.dev_id);
1238 	if (!hdev)
1239 		return -ENODEV;
1240 
1241 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1242 		err = -EBUSY;
1243 		goto done;
1244 	}
1245 
1246 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1247 		err = -EOPNOTSUPP;
1248 		goto done;
1249 	}
1250 
1251 	if (hdev->dev_type != HCI_PRIMARY) {
1252 		err = -EOPNOTSUPP;
1253 		goto done;
1254 	}
1255 
1256 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1257 		err = -EOPNOTSUPP;
1258 		goto done;
1259 	}
1260 
1261 	hci_dev_lock(hdev);
1262 	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1263 	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1264 		hci_inquiry_cache_flush(hdev);
1265 		do_inquiry = 1;
1266 	}
1267 	hci_dev_unlock(hdev);
1268 
1269 	timeo = ir.length * msecs_to_jiffies(2000);
1270 
1271 	if (do_inquiry) {
1272 		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1273 				   timeo, NULL);
1274 		if (err < 0)
1275 			goto done;
1276 
1277 		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1278 		 * cleared). If it is interrupted by a signal, return -EINTR.
1279 		 */
1280 		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1281 				TASK_INTERRUPTIBLE))
1282 			return -EINTR;
1283 	}
1284 
1285 	/* for unlimited number of responses we will use buffer with
1286 	 * 255 entries
1287 	 */
1288 	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1289 
1290 	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
1291 	 * copy it to the user space.
1292 	 */
1293 	buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1294 	if (!buf) {
1295 		err = -ENOMEM;
1296 		goto done;
1297 	}
1298 
1299 	hci_dev_lock(hdev);
1300 	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1301 	hci_dev_unlock(hdev);
1302 
1303 	BT_DBG("num_rsp %d", ir.num_rsp);
1304 
1305 	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1306 		ptr += sizeof(ir);
1307 		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1308 				 ir.num_rsp))
1309 			err = -EFAULT;
1310 	} else
1311 		err = -EFAULT;
1312 
1313 	kfree(buf);
1314 
1315 done:
1316 	hci_dev_put(hdev);
1317 	return err;
1318 }
1319 
1320 static int hci_dev_do_open(struct hci_dev *hdev)
1321 {
1322 	int ret = 0;
1323 
1324 	BT_DBG("%s %p", hdev->name, hdev);
1325 
1326 	hci_req_sync_lock(hdev);
1327 
1328 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1329 		ret = -ENODEV;
1330 		goto done;
1331 	}
1332 
1333 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1334 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1335 		/* Check for rfkill but allow the HCI setup stage to
1336 		 * proceed (which in itself doesn't cause any RF activity).
1337 		 */
1338 		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1339 			ret = -ERFKILL;
1340 			goto done;
1341 		}
1342 
1343 		/* Check for valid public address or a configured static
1344 		 * random adddress, but let the HCI setup proceed to
1345 		 * be able to determine if there is a public address
1346 		 * or not.
1347 		 *
1348 		 * In case of user channel usage, it is not important
1349 		 * if a public address or static random address is
1350 		 * available.
1351 		 *
1352 		 * This check is only valid for BR/EDR controllers
1353 		 * since AMP controllers do not have an address.
1354 		 */
1355 		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1356 		    hdev->dev_type == HCI_PRIMARY &&
1357 		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1358 		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1359 			ret = -EADDRNOTAVAIL;
1360 			goto done;
1361 		}
1362 	}
1363 
1364 	if (test_bit(HCI_UP, &hdev->flags)) {
1365 		ret = -EALREADY;
1366 		goto done;
1367 	}
1368 
1369 	if (hdev->open(hdev)) {
1370 		ret = -EIO;
1371 		goto done;
1372 	}
1373 
1374 	set_bit(HCI_RUNNING, &hdev->flags);
1375 	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1376 
1377 	atomic_set(&hdev->cmd_cnt, 1);
1378 	set_bit(HCI_INIT, &hdev->flags);
1379 
1380 	if (hci_dev_test_flag(hdev, HCI_SETUP)) {
1381 		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1382 
1383 		if (hdev->setup)
1384 			ret = hdev->setup(hdev);
1385 
1386 		/* The transport driver can set these quirks before
1387 		 * creating the HCI device or in its setup callback.
1388 		 *
1389 		 * In case any of them is set, the controller has to
1390 		 * start up as unconfigured.
1391 		 */
1392 		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1393 		    test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1394 			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1395 
1396 		/* For an unconfigured controller it is required to
1397 		 * read at least the version information provided by
1398 		 * the Read Local Version Information command.
1399 		 *
1400 		 * If the set_bdaddr driver callback is provided, then
1401 		 * also the original Bluetooth public device address
1402 		 * will be read using the Read BD Address command.
1403 		 */
1404 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1405 			ret = __hci_unconf_init(hdev);
1406 	}
1407 
1408 	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1409 		/* If public address change is configured, ensure that
1410 		 * the address gets programmed. If the driver does not
1411 		 * support changing the public address, fail the power
1412 		 * on procedure.
1413 		 */
1414 		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1415 		    hdev->set_bdaddr)
1416 			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1417 		else
1418 			ret = -EADDRNOTAVAIL;
1419 	}
1420 
1421 	if (!ret) {
1422 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1423 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1424 			ret = __hci_init(hdev);
1425 			if (!ret && hdev->post_init)
1426 				ret = hdev->post_init(hdev);
1427 		}
1428 	}
1429 
1430 	/* If the HCI Reset command is clearing all diagnostic settings,
1431 	 * then they need to be reprogrammed after the init procedure
1432 	 * completed.
1433 	 */
1434 	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1435 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1436 	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1437 		ret = hdev->set_diag(hdev, true);
1438 
1439 	clear_bit(HCI_INIT, &hdev->flags);
1440 
1441 	if (!ret) {
1442 		hci_dev_hold(hdev);
1443 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1444 		set_bit(HCI_UP, &hdev->flags);
1445 		hci_sock_dev_event(hdev, HCI_DEV_UP);
1446 		hci_leds_update_powered(hdev, true);
1447 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1448 		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1449 		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1450 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1451 		    hci_dev_test_flag(hdev, HCI_MGMT) &&
1452 		    hdev->dev_type == HCI_PRIMARY) {
1453 			ret = __hci_req_hci_power_on(hdev);
1454 			mgmt_power_on(hdev, ret);
1455 		}
1456 	} else {
1457 		/* Init failed, cleanup */
1458 		flush_work(&hdev->tx_work);
1459 		flush_work(&hdev->cmd_work);
1460 		flush_work(&hdev->rx_work);
1461 
1462 		skb_queue_purge(&hdev->cmd_q);
1463 		skb_queue_purge(&hdev->rx_q);
1464 
1465 		if (hdev->flush)
1466 			hdev->flush(hdev);
1467 
1468 		if (hdev->sent_cmd) {
1469 			kfree_skb(hdev->sent_cmd);
1470 			hdev->sent_cmd = NULL;
1471 		}
1472 
1473 		clear_bit(HCI_RUNNING, &hdev->flags);
1474 		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1475 
1476 		hdev->close(hdev);
1477 		hdev->flags &= BIT(HCI_RAW);
1478 	}
1479 
1480 done:
1481 	hci_req_sync_unlock(hdev);
1482 	return ret;
1483 }
1484 
1485 /* ---- HCI ioctl helpers ---- */
1486 
1487 int hci_dev_open(__u16 dev)
1488 {
1489 	struct hci_dev *hdev;
1490 	int err;
1491 
1492 	hdev = hci_dev_get(dev);
1493 	if (!hdev)
1494 		return -ENODEV;
1495 
1496 	/* Devices that are marked as unconfigured can only be powered
1497 	 * up as user channel. Trying to bring them up as normal devices
1498 	 * will result into a failure. Only user channel operation is
1499 	 * possible.
1500 	 *
1501 	 * When this function is called for a user channel, the flag
1502 	 * HCI_USER_CHANNEL will be set first before attempting to
1503 	 * open the device.
1504 	 */
1505 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1506 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1507 		err = -EOPNOTSUPP;
1508 		goto done;
1509 	}
1510 
1511 	/* We need to ensure that no other power on/off work is pending
1512 	 * before proceeding to call hci_dev_do_open. This is
1513 	 * particularly important if the setup procedure has not yet
1514 	 * completed.
1515 	 */
1516 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1517 		cancel_delayed_work(&hdev->power_off);
1518 
1519 	/* After this call it is guaranteed that the setup procedure
1520 	 * has finished. This means that error conditions like RFKILL
1521 	 * or no valid public or static random address apply.
1522 	 */
1523 	flush_workqueue(hdev->req_workqueue);
1524 
1525 	/* For controllers not using the management interface and that
1526 	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1527 	 * so that pairing works for them. Once the management interface
1528 	 * is in use this bit will be cleared again and userspace has
1529 	 * to explicitly enable it.
1530 	 */
1531 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1532 	    !hci_dev_test_flag(hdev, HCI_MGMT))
1533 		hci_dev_set_flag(hdev, HCI_BONDABLE);
1534 
1535 	err = hci_dev_do_open(hdev);
1536 
1537 done:
1538 	hci_dev_put(hdev);
1539 	return err;
1540 }
1541 
1542 /* This function requires the caller holds hdev->lock */
1543 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1544 {
1545 	struct hci_conn_params *p;
1546 
1547 	list_for_each_entry(p, &hdev->le_conn_params, list) {
1548 		if (p->conn) {
1549 			hci_conn_drop(p->conn);
1550 			hci_conn_put(p->conn);
1551 			p->conn = NULL;
1552 		}
1553 		list_del_init(&p->action);
1554 	}
1555 
1556 	BT_DBG("All LE pending actions cleared");
1557 }
1558 
1559 int hci_dev_do_close(struct hci_dev *hdev)
1560 {
1561 	bool auto_off;
1562 
1563 	BT_DBG("%s %p", hdev->name, hdev);
1564 
1565 	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1566 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1567 	    test_bit(HCI_UP, &hdev->flags)) {
1568 		/* Execute vendor specific shutdown routine */
1569 		if (hdev->shutdown)
1570 			hdev->shutdown(hdev);
1571 	}
1572 
1573 	cancel_delayed_work(&hdev->power_off);
1574 
1575 	hci_request_cancel_all(hdev);
1576 	hci_req_sync_lock(hdev);
1577 
1578 	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1579 		cancel_delayed_work_sync(&hdev->cmd_timer);
1580 		hci_req_sync_unlock(hdev);
1581 		return 0;
1582 	}
1583 
1584 	hci_leds_update_powered(hdev, false);
1585 
1586 	/* Flush RX and TX works */
1587 	flush_work(&hdev->tx_work);
1588 	flush_work(&hdev->rx_work);
1589 
1590 	if (hdev->discov_timeout > 0) {
1591 		hdev->discov_timeout = 0;
1592 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1593 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1594 	}
1595 
1596 	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1597 		cancel_delayed_work(&hdev->service_cache);
1598 
1599 	if (hci_dev_test_flag(hdev, HCI_MGMT))
1600 		cancel_delayed_work_sync(&hdev->rpa_expired);
1601 
1602 	/* Avoid potential lockdep warnings from the *_flush() calls by
1603 	 * ensuring the workqueue is empty up front.
1604 	 */
1605 	drain_workqueue(hdev->workqueue);
1606 
1607 	hci_dev_lock(hdev);
1608 
1609 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1610 
1611 	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1612 
1613 	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1614 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1615 	    hci_dev_test_flag(hdev, HCI_MGMT))
1616 		__mgmt_power_off(hdev);
1617 
1618 	hci_inquiry_cache_flush(hdev);
1619 	hci_pend_le_actions_clear(hdev);
1620 	hci_conn_hash_flush(hdev);
1621 	hci_dev_unlock(hdev);
1622 
1623 	smp_unregister(hdev);
1624 
1625 	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1626 
1627 	if (hdev->flush)
1628 		hdev->flush(hdev);
1629 
1630 	/* Reset device */
1631 	skb_queue_purge(&hdev->cmd_q);
1632 	atomic_set(&hdev->cmd_cnt, 1);
1633 	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1634 	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1635 		set_bit(HCI_INIT, &hdev->flags);
1636 		__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1637 		clear_bit(HCI_INIT, &hdev->flags);
1638 	}
1639 
1640 	/* flush cmd  work */
1641 	flush_work(&hdev->cmd_work);
1642 
1643 	/* Drop queues */
1644 	skb_queue_purge(&hdev->rx_q);
1645 	skb_queue_purge(&hdev->cmd_q);
1646 	skb_queue_purge(&hdev->raw_q);
1647 
1648 	/* Drop last sent command */
1649 	if (hdev->sent_cmd) {
1650 		cancel_delayed_work_sync(&hdev->cmd_timer);
1651 		kfree_skb(hdev->sent_cmd);
1652 		hdev->sent_cmd = NULL;
1653 	}
1654 
1655 	clear_bit(HCI_RUNNING, &hdev->flags);
1656 	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1657 
1658 	/* After this point our queues are empty
1659 	 * and no tasks are scheduled. */
1660 	hdev->close(hdev);
1661 
1662 	/* Clear flags */
1663 	hdev->flags &= BIT(HCI_RAW);
1664 	hci_dev_clear_volatile_flags(hdev);
1665 
1666 	/* Controller radio is available but is currently powered down */
1667 	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1668 
1669 	memset(hdev->eir, 0, sizeof(hdev->eir));
1670 	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1671 	bacpy(&hdev->random_addr, BDADDR_ANY);
1672 
1673 	hci_req_sync_unlock(hdev);
1674 
1675 	hci_dev_put(hdev);
1676 	return 0;
1677 }
1678 
1679 int hci_dev_close(__u16 dev)
1680 {
1681 	struct hci_dev *hdev;
1682 	int err;
1683 
1684 	hdev = hci_dev_get(dev);
1685 	if (!hdev)
1686 		return -ENODEV;
1687 
1688 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1689 		err = -EBUSY;
1690 		goto done;
1691 	}
1692 
1693 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1694 		cancel_delayed_work(&hdev->power_off);
1695 
1696 	err = hci_dev_do_close(hdev);
1697 
1698 done:
1699 	hci_dev_put(hdev);
1700 	return err;
1701 }
1702 
1703 static int hci_dev_do_reset(struct hci_dev *hdev)
1704 {
1705 	int ret;
1706 
1707 	BT_DBG("%s %p", hdev->name, hdev);
1708 
1709 	hci_req_sync_lock(hdev);
1710 
1711 	/* Drop queues */
1712 	skb_queue_purge(&hdev->rx_q);
1713 	skb_queue_purge(&hdev->cmd_q);
1714 
1715 	/* Avoid potential lockdep warnings from the *_flush() calls by
1716 	 * ensuring the workqueue is empty up front.
1717 	 */
1718 	drain_workqueue(hdev->workqueue);
1719 
1720 	hci_dev_lock(hdev);
1721 	hci_inquiry_cache_flush(hdev);
1722 	hci_conn_hash_flush(hdev);
1723 	hci_dev_unlock(hdev);
1724 
1725 	if (hdev->flush)
1726 		hdev->flush(hdev);
1727 
1728 	atomic_set(&hdev->cmd_cnt, 1);
1729 	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1730 
1731 	ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1732 
1733 	hci_req_sync_unlock(hdev);
1734 	return ret;
1735 }
1736 
1737 int hci_dev_reset(__u16 dev)
1738 {
1739 	struct hci_dev *hdev;
1740 	int err;
1741 
1742 	hdev = hci_dev_get(dev);
1743 	if (!hdev)
1744 		return -ENODEV;
1745 
1746 	if (!test_bit(HCI_UP, &hdev->flags)) {
1747 		err = -ENETDOWN;
1748 		goto done;
1749 	}
1750 
1751 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1752 		err = -EBUSY;
1753 		goto done;
1754 	}
1755 
1756 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1757 		err = -EOPNOTSUPP;
1758 		goto done;
1759 	}
1760 
1761 	err = hci_dev_do_reset(hdev);
1762 
1763 done:
1764 	hci_dev_put(hdev);
1765 	return err;
1766 }
1767 
1768 int hci_dev_reset_stat(__u16 dev)
1769 {
1770 	struct hci_dev *hdev;
1771 	int ret = 0;
1772 
1773 	hdev = hci_dev_get(dev);
1774 	if (!hdev)
1775 		return -ENODEV;
1776 
1777 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1778 		ret = -EBUSY;
1779 		goto done;
1780 	}
1781 
1782 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1783 		ret = -EOPNOTSUPP;
1784 		goto done;
1785 	}
1786 
1787 	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1788 
1789 done:
1790 	hci_dev_put(hdev);
1791 	return ret;
1792 }
1793 
1794 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1795 {
1796 	bool conn_changed, discov_changed;
1797 
1798 	BT_DBG("%s scan 0x%02x", hdev->name, scan);
1799 
1800 	if ((scan & SCAN_PAGE))
1801 		conn_changed = !hci_dev_test_and_set_flag(hdev,
1802 							  HCI_CONNECTABLE);
1803 	else
1804 		conn_changed = hci_dev_test_and_clear_flag(hdev,
1805 							   HCI_CONNECTABLE);
1806 
1807 	if ((scan & SCAN_INQUIRY)) {
1808 		discov_changed = !hci_dev_test_and_set_flag(hdev,
1809 							    HCI_DISCOVERABLE);
1810 	} else {
1811 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1812 		discov_changed = hci_dev_test_and_clear_flag(hdev,
1813 							     HCI_DISCOVERABLE);
1814 	}
1815 
1816 	if (!hci_dev_test_flag(hdev, HCI_MGMT))
1817 		return;
1818 
1819 	if (conn_changed || discov_changed) {
1820 		/* In case this was disabled through mgmt */
1821 		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1822 
1823 		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1824 			hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1825 
1826 		mgmt_new_settings(hdev);
1827 	}
1828 }
1829 
1830 int hci_dev_cmd(unsigned int cmd, void __user *arg)
1831 {
1832 	struct hci_dev *hdev;
1833 	struct hci_dev_req dr;
1834 	int err = 0;
1835 
1836 	if (copy_from_user(&dr, arg, sizeof(dr)))
1837 		return -EFAULT;
1838 
1839 	hdev = hci_dev_get(dr.dev_id);
1840 	if (!hdev)
1841 		return -ENODEV;
1842 
1843 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1844 		err = -EBUSY;
1845 		goto done;
1846 	}
1847 
1848 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1849 		err = -EOPNOTSUPP;
1850 		goto done;
1851 	}
1852 
1853 	if (hdev->dev_type != HCI_PRIMARY) {
1854 		err = -EOPNOTSUPP;
1855 		goto done;
1856 	}
1857 
1858 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1859 		err = -EOPNOTSUPP;
1860 		goto done;
1861 	}
1862 
1863 	switch (cmd) {
1864 	case HCISETAUTH:
1865 		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1866 				   HCI_INIT_TIMEOUT, NULL);
1867 		break;
1868 
1869 	case HCISETENCRYPT:
1870 		if (!lmp_encrypt_capable(hdev)) {
1871 			err = -EOPNOTSUPP;
1872 			break;
1873 		}
1874 
1875 		if (!test_bit(HCI_AUTH, &hdev->flags)) {
1876 			/* Auth must be enabled first */
1877 			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1878 					   HCI_INIT_TIMEOUT, NULL);
1879 			if (err)
1880 				break;
1881 		}
1882 
1883 		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1884 				   HCI_INIT_TIMEOUT, NULL);
1885 		break;
1886 
1887 	case HCISETSCAN:
1888 		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1889 				   HCI_INIT_TIMEOUT, NULL);
1890 
1891 		/* Ensure that the connectable and discoverable states
1892 		 * get correctly modified as this was a non-mgmt change.
1893 		 */
1894 		if (!err)
1895 			hci_update_scan_state(hdev, dr.dev_opt);
1896 		break;
1897 
1898 	case HCISETLINKPOL:
1899 		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1900 				   HCI_INIT_TIMEOUT, NULL);
1901 		break;
1902 
1903 	case HCISETLINKMODE:
1904 		hdev->link_mode = ((__u16) dr.dev_opt) &
1905 					(HCI_LM_MASTER | HCI_LM_ACCEPT);
1906 		break;
1907 
1908 	case HCISETPTYPE:
1909 		hdev->pkt_type = (__u16) dr.dev_opt;
1910 		break;
1911 
1912 	case HCISETACLMTU:
1913 		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
1914 		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1915 		break;
1916 
1917 	case HCISETSCOMTU:
1918 		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
1919 		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1920 		break;
1921 
1922 	default:
1923 		err = -EINVAL;
1924 		break;
1925 	}
1926 
1927 done:
1928 	hci_dev_put(hdev);
1929 	return err;
1930 }
1931 
1932 int hci_get_dev_list(void __user *arg)
1933 {
1934 	struct hci_dev *hdev;
1935 	struct hci_dev_list_req *dl;
1936 	struct hci_dev_req *dr;
1937 	int n = 0, size, err;
1938 	__u16 dev_num;
1939 
1940 	if (get_user(dev_num, (__u16 __user *) arg))
1941 		return -EFAULT;
1942 
1943 	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1944 		return -EINVAL;
1945 
1946 	size = sizeof(*dl) + dev_num * sizeof(*dr);
1947 
1948 	dl = kzalloc(size, GFP_KERNEL);
1949 	if (!dl)
1950 		return -ENOMEM;
1951 
1952 	dr = dl->dev_req;
1953 
1954 	read_lock(&hci_dev_list_lock);
1955 	list_for_each_entry(hdev, &hci_dev_list, list) {
1956 		unsigned long flags = hdev->flags;
1957 
1958 		/* When the auto-off is configured it means the transport
1959 		 * is running, but in that case still indicate that the
1960 		 * device is actually down.
1961 		 */
1962 		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1963 			flags &= ~BIT(HCI_UP);
1964 
1965 		(dr + n)->dev_id  = hdev->id;
1966 		(dr + n)->dev_opt = flags;
1967 
1968 		if (++n >= dev_num)
1969 			break;
1970 	}
1971 	read_unlock(&hci_dev_list_lock);
1972 
1973 	dl->dev_num = n;
1974 	size = sizeof(*dl) + n * sizeof(*dr);
1975 
1976 	err = copy_to_user(arg, dl, size);
1977 	kfree(dl);
1978 
1979 	return err ? -EFAULT : 0;
1980 }
1981 
1982 int hci_get_dev_info(void __user *arg)
1983 {
1984 	struct hci_dev *hdev;
1985 	struct hci_dev_info di;
1986 	unsigned long flags;
1987 	int err = 0;
1988 
1989 	if (copy_from_user(&di, arg, sizeof(di)))
1990 		return -EFAULT;
1991 
1992 	hdev = hci_dev_get(di.dev_id);
1993 	if (!hdev)
1994 		return -ENODEV;
1995 
1996 	/* When the auto-off is configured it means the transport
1997 	 * is running, but in that case still indicate that the
1998 	 * device is actually down.
1999 	 */
2000 	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2001 		flags = hdev->flags & ~BIT(HCI_UP);
2002 	else
2003 		flags = hdev->flags;
2004 
2005 	strcpy(di.name, hdev->name);
2006 	di.bdaddr   = hdev->bdaddr;
2007 	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2008 	di.flags    = flags;
2009 	di.pkt_type = hdev->pkt_type;
2010 	if (lmp_bredr_capable(hdev)) {
2011 		di.acl_mtu  = hdev->acl_mtu;
2012 		di.acl_pkts = hdev->acl_pkts;
2013 		di.sco_mtu  = hdev->sco_mtu;
2014 		di.sco_pkts = hdev->sco_pkts;
2015 	} else {
2016 		di.acl_mtu  = hdev->le_mtu;
2017 		di.acl_pkts = hdev->le_pkts;
2018 		di.sco_mtu  = 0;
2019 		di.sco_pkts = 0;
2020 	}
2021 	di.link_policy = hdev->link_policy;
2022 	di.link_mode   = hdev->link_mode;
2023 
2024 	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2025 	memcpy(&di.features, &hdev->features, sizeof(di.features));
2026 
2027 	if (copy_to_user(arg, &di, sizeof(di)))
2028 		err = -EFAULT;
2029 
2030 	hci_dev_put(hdev);
2031 
2032 	return err;
2033 }
2034 
2035 /* ---- Interface to HCI drivers ---- */
2036 
2037 static int hci_rfkill_set_block(void *data, bool blocked)
2038 {
2039 	struct hci_dev *hdev = data;
2040 
2041 	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2042 
2043 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2044 		return -EBUSY;
2045 
2046 	if (blocked) {
2047 		hci_dev_set_flag(hdev, HCI_RFKILLED);
2048 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2049 		    !hci_dev_test_flag(hdev, HCI_CONFIG))
2050 			hci_dev_do_close(hdev);
2051 	} else {
2052 		hci_dev_clear_flag(hdev, HCI_RFKILLED);
2053 	}
2054 
2055 	return 0;
2056 }
2057 
2058 static const struct rfkill_ops hci_rfkill_ops = {
2059 	.set_block = hci_rfkill_set_block,
2060 };
2061 
2062 static void hci_power_on(struct work_struct *work)
2063 {
2064 	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2065 	int err;
2066 
2067 	BT_DBG("%s", hdev->name);
2068 
2069 	if (test_bit(HCI_UP, &hdev->flags) &&
2070 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
2071 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2072 		cancel_delayed_work(&hdev->power_off);
2073 		hci_req_sync_lock(hdev);
2074 		err = __hci_req_hci_power_on(hdev);
2075 		hci_req_sync_unlock(hdev);
2076 		mgmt_power_on(hdev, err);
2077 		return;
2078 	}
2079 
2080 	err = hci_dev_do_open(hdev);
2081 	if (err < 0) {
2082 		hci_dev_lock(hdev);
2083 		mgmt_set_powered_failed(hdev, err);
2084 		hci_dev_unlock(hdev);
2085 		return;
2086 	}
2087 
2088 	/* During the HCI setup phase, a few error conditions are
2089 	 * ignored and they need to be checked now. If they are still
2090 	 * valid, it is important to turn the device back off.
2091 	 */
2092 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2093 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2094 	    (hdev->dev_type == HCI_PRIMARY &&
2095 	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2096 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2097 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2098 		hci_dev_do_close(hdev);
2099 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2100 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2101 				   HCI_AUTO_OFF_TIMEOUT);
2102 	}
2103 
2104 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2105 		/* For unconfigured devices, set the HCI_RAW flag
2106 		 * so that userspace can easily identify them.
2107 		 */
2108 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2109 			set_bit(HCI_RAW, &hdev->flags);
2110 
2111 		/* For fully configured devices, this will send
2112 		 * the Index Added event. For unconfigured devices,
2113 		 * it will send Unconfigued Index Added event.
2114 		 *
2115 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2116 		 * and no event will be send.
2117 		 */
2118 		mgmt_index_added(hdev);
2119 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2120 		/* When the controller is now configured, then it
2121 		 * is important to clear the HCI_RAW flag.
2122 		 */
2123 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2124 			clear_bit(HCI_RAW, &hdev->flags);
2125 
2126 		/* Powering on the controller with HCI_CONFIG set only
2127 		 * happens with the transition from unconfigured to
2128 		 * configured. This will send the Index Added event.
2129 		 */
2130 		mgmt_index_added(hdev);
2131 	}
2132 }
2133 
2134 static void hci_power_off(struct work_struct *work)
2135 {
2136 	struct hci_dev *hdev = container_of(work, struct hci_dev,
2137 					    power_off.work);
2138 
2139 	BT_DBG("%s", hdev->name);
2140 
2141 	hci_dev_do_close(hdev);
2142 }
2143 
2144 static void hci_error_reset(struct work_struct *work)
2145 {
2146 	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2147 
2148 	BT_DBG("%s", hdev->name);
2149 
2150 	if (hdev->hw_error)
2151 		hdev->hw_error(hdev, hdev->hw_error_code);
2152 	else
2153 		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
2154 
2155 	if (hci_dev_do_close(hdev))
2156 		return;
2157 
2158 	hci_dev_do_open(hdev);
2159 }
2160 
2161 void hci_uuids_clear(struct hci_dev *hdev)
2162 {
2163 	struct bt_uuid *uuid, *tmp;
2164 
2165 	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2166 		list_del(&uuid->list);
2167 		kfree(uuid);
2168 	}
2169 }
2170 
2171 void hci_link_keys_clear(struct hci_dev *hdev)
2172 {
2173 	struct link_key *key;
2174 
2175 	list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2176 		list_del_rcu(&key->list);
2177 		kfree_rcu(key, rcu);
2178 	}
2179 }
2180 
2181 void hci_smp_ltks_clear(struct hci_dev *hdev)
2182 {
2183 	struct smp_ltk *k;
2184 
2185 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2186 		list_del_rcu(&k->list);
2187 		kfree_rcu(k, rcu);
2188 	}
2189 }
2190 
2191 void hci_smp_irks_clear(struct hci_dev *hdev)
2192 {
2193 	struct smp_irk *k;
2194 
2195 	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2196 		list_del_rcu(&k->list);
2197 		kfree_rcu(k, rcu);
2198 	}
2199 }
2200 
2201 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2202 {
2203 	struct link_key *k;
2204 
2205 	rcu_read_lock();
2206 	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2207 		if (bacmp(bdaddr, &k->bdaddr) == 0) {
2208 			rcu_read_unlock();
2209 			return k;
2210 		}
2211 	}
2212 	rcu_read_unlock();
2213 
2214 	return NULL;
2215 }
2216 
2217 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2218 			       u8 key_type, u8 old_key_type)
2219 {
2220 	/* Legacy key */
2221 	if (key_type < 0x03)
2222 		return true;
2223 
2224 	/* Debug keys are insecure so don't store them persistently */
2225 	if (key_type == HCI_LK_DEBUG_COMBINATION)
2226 		return false;
2227 
2228 	/* Changed combination key and there's no previous one */
2229 	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2230 		return false;
2231 
2232 	/* Security mode 3 case */
2233 	if (!conn)
2234 		return true;
2235 
2236 	/* BR/EDR key derived using SC from an LE link */
2237 	if (conn->type == LE_LINK)
2238 		return true;
2239 
2240 	/* Neither local nor remote side had no-bonding as requirement */
2241 	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2242 		return true;
2243 
2244 	/* Local side had dedicated bonding as requirement */
2245 	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2246 		return true;
2247 
2248 	/* Remote side had dedicated bonding as requirement */
2249 	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2250 		return true;
2251 
2252 	/* If none of the above criteria match, then don't store the key
2253 	 * persistently */
2254 	return false;
2255 }
2256 
2257 static u8 ltk_role(u8 type)
2258 {
2259 	if (type == SMP_LTK)
2260 		return HCI_ROLE_MASTER;
2261 
2262 	return HCI_ROLE_SLAVE;
2263 }
2264 
2265 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2266 			     u8 addr_type, u8 role)
2267 {
2268 	struct smp_ltk *k;
2269 
2270 	rcu_read_lock();
2271 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2272 		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2273 			continue;
2274 
2275 		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2276 			rcu_read_unlock();
2277 			return k;
2278 		}
2279 	}
2280 	rcu_read_unlock();
2281 
2282 	return NULL;
2283 }
2284 
2285 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2286 {
2287 	struct smp_irk *irk;
2288 
2289 	rcu_read_lock();
2290 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2291 		if (!bacmp(&irk->rpa, rpa)) {
2292 			rcu_read_unlock();
2293 			return irk;
2294 		}
2295 	}
2296 
2297 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2298 		if (smp_irk_matches(hdev, irk->val, rpa)) {
2299 			bacpy(&irk->rpa, rpa);
2300 			rcu_read_unlock();
2301 			return irk;
2302 		}
2303 	}
2304 	rcu_read_unlock();
2305 
2306 	return NULL;
2307 }
2308 
2309 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2310 				     u8 addr_type)
2311 {
2312 	struct smp_irk *irk;
2313 
2314 	/* Identity Address must be public or static random */
2315 	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2316 		return NULL;
2317 
2318 	rcu_read_lock();
2319 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2320 		if (addr_type == irk->addr_type &&
2321 		    bacmp(bdaddr, &irk->bdaddr) == 0) {
2322 			rcu_read_unlock();
2323 			return irk;
2324 		}
2325 	}
2326 	rcu_read_unlock();
2327 
2328 	return NULL;
2329 }
2330 
2331 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2332 				  bdaddr_t *bdaddr, u8 *val, u8 type,
2333 				  u8 pin_len, bool *persistent)
2334 {
2335 	struct link_key *key, *old_key;
2336 	u8 old_key_type;
2337 
2338 	old_key = hci_find_link_key(hdev, bdaddr);
2339 	if (old_key) {
2340 		old_key_type = old_key->type;
2341 		key = old_key;
2342 	} else {
2343 		old_key_type = conn ? conn->key_type : 0xff;
2344 		key = kzalloc(sizeof(*key), GFP_KERNEL);
2345 		if (!key)
2346 			return NULL;
2347 		list_add_rcu(&key->list, &hdev->link_keys);
2348 	}
2349 
2350 	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2351 
2352 	/* Some buggy controller combinations generate a changed
2353 	 * combination key for legacy pairing even when there's no
2354 	 * previous key */
2355 	if (type == HCI_LK_CHANGED_COMBINATION &&
2356 	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2357 		type = HCI_LK_COMBINATION;
2358 		if (conn)
2359 			conn->key_type = type;
2360 	}
2361 
2362 	bacpy(&key->bdaddr, bdaddr);
2363 	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2364 	key->pin_len = pin_len;
2365 
2366 	if (type == HCI_LK_CHANGED_COMBINATION)
2367 		key->type = old_key_type;
2368 	else
2369 		key->type = type;
2370 
2371 	if (persistent)
2372 		*persistent = hci_persistent_key(hdev, conn, type,
2373 						 old_key_type);
2374 
2375 	return key;
2376 }
2377 
2378 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2379 			    u8 addr_type, u8 type, u8 authenticated,
2380 			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2381 {
2382 	struct smp_ltk *key, *old_key;
2383 	u8 role = ltk_role(type);
2384 
2385 	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2386 	if (old_key)
2387 		key = old_key;
2388 	else {
2389 		key = kzalloc(sizeof(*key), GFP_KERNEL);
2390 		if (!key)
2391 			return NULL;
2392 		list_add_rcu(&key->list, &hdev->long_term_keys);
2393 	}
2394 
2395 	bacpy(&key->bdaddr, bdaddr);
2396 	key->bdaddr_type = addr_type;
2397 	memcpy(key->val, tk, sizeof(key->val));
2398 	key->authenticated = authenticated;
2399 	key->ediv = ediv;
2400 	key->rand = rand;
2401 	key->enc_size = enc_size;
2402 	key->type = type;
2403 
2404 	return key;
2405 }
2406 
2407 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2408 			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
2409 {
2410 	struct smp_irk *irk;
2411 
2412 	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2413 	if (!irk) {
2414 		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2415 		if (!irk)
2416 			return NULL;
2417 
2418 		bacpy(&irk->bdaddr, bdaddr);
2419 		irk->addr_type = addr_type;
2420 
2421 		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2422 	}
2423 
2424 	memcpy(irk->val, val, 16);
2425 	bacpy(&irk->rpa, rpa);
2426 
2427 	return irk;
2428 }
2429 
2430 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2431 {
2432 	struct link_key *key;
2433 
2434 	key = hci_find_link_key(hdev, bdaddr);
2435 	if (!key)
2436 		return -ENOENT;
2437 
2438 	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2439 
2440 	list_del_rcu(&key->list);
2441 	kfree_rcu(key, rcu);
2442 
2443 	return 0;
2444 }
2445 
2446 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2447 {
2448 	struct smp_ltk *k;
2449 	int removed = 0;
2450 
2451 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2452 		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2453 			continue;
2454 
2455 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2456 
2457 		list_del_rcu(&k->list);
2458 		kfree_rcu(k, rcu);
2459 		removed++;
2460 	}
2461 
2462 	return removed ? 0 : -ENOENT;
2463 }
2464 
2465 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2466 {
2467 	struct smp_irk *k;
2468 
2469 	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2470 		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2471 			continue;
2472 
2473 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2474 
2475 		list_del_rcu(&k->list);
2476 		kfree_rcu(k, rcu);
2477 	}
2478 }
2479 
2480 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2481 {
2482 	struct smp_ltk *k;
2483 	struct smp_irk *irk;
2484 	u8 addr_type;
2485 
2486 	if (type == BDADDR_BREDR) {
2487 		if (hci_find_link_key(hdev, bdaddr))
2488 			return true;
2489 		return false;
2490 	}
2491 
2492 	/* Convert to HCI addr type which struct smp_ltk uses */
2493 	if (type == BDADDR_LE_PUBLIC)
2494 		addr_type = ADDR_LE_DEV_PUBLIC;
2495 	else
2496 		addr_type = ADDR_LE_DEV_RANDOM;
2497 
2498 	irk = hci_get_irk(hdev, bdaddr, addr_type);
2499 	if (irk) {
2500 		bdaddr = &irk->bdaddr;
2501 		addr_type = irk->addr_type;
2502 	}
2503 
2504 	rcu_read_lock();
2505 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2506 		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2507 			rcu_read_unlock();
2508 			return true;
2509 		}
2510 	}
2511 	rcu_read_unlock();
2512 
2513 	return false;
2514 }
2515 
2516 /* HCI command timer function */
2517 static void hci_cmd_timeout(struct work_struct *work)
2518 {
2519 	struct hci_dev *hdev = container_of(work, struct hci_dev,
2520 					    cmd_timer.work);
2521 
2522 	if (hdev->sent_cmd) {
2523 		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2524 		u16 opcode = __le16_to_cpu(sent->opcode);
2525 
2526 		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
2527 	} else {
2528 		bt_dev_err(hdev, "command tx timeout");
2529 	}
2530 
2531 	atomic_set(&hdev->cmd_cnt, 1);
2532 	queue_work(hdev->workqueue, &hdev->cmd_work);
2533 }
2534 
2535 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2536 					  bdaddr_t *bdaddr, u8 bdaddr_type)
2537 {
2538 	struct oob_data *data;
2539 
2540 	list_for_each_entry(data, &hdev->remote_oob_data, list) {
2541 		if (bacmp(bdaddr, &data->bdaddr) != 0)
2542 			continue;
2543 		if (data->bdaddr_type != bdaddr_type)
2544 			continue;
2545 		return data;
2546 	}
2547 
2548 	return NULL;
2549 }
2550 
2551 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2552 			       u8 bdaddr_type)
2553 {
2554 	struct oob_data *data;
2555 
2556 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2557 	if (!data)
2558 		return -ENOENT;
2559 
2560 	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2561 
2562 	list_del(&data->list);
2563 	kfree(data);
2564 
2565 	return 0;
2566 }
2567 
2568 void hci_remote_oob_data_clear(struct hci_dev *hdev)
2569 {
2570 	struct oob_data *data, *n;
2571 
2572 	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2573 		list_del(&data->list);
2574 		kfree(data);
2575 	}
2576 }
2577 
2578 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2579 			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
2580 			    u8 *hash256, u8 *rand256)
2581 {
2582 	struct oob_data *data;
2583 
2584 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2585 	if (!data) {
2586 		data = kmalloc(sizeof(*data), GFP_KERNEL);
2587 		if (!data)
2588 			return -ENOMEM;
2589 
2590 		bacpy(&data->bdaddr, bdaddr);
2591 		data->bdaddr_type = bdaddr_type;
2592 		list_add(&data->list, &hdev->remote_oob_data);
2593 	}
2594 
2595 	if (hash192 && rand192) {
2596 		memcpy(data->hash192, hash192, sizeof(data->hash192));
2597 		memcpy(data->rand192, rand192, sizeof(data->rand192));
2598 		if (hash256 && rand256)
2599 			data->present = 0x03;
2600 	} else {
2601 		memset(data->hash192, 0, sizeof(data->hash192));
2602 		memset(data->rand192, 0, sizeof(data->rand192));
2603 		if (hash256 && rand256)
2604 			data->present = 0x02;
2605 		else
2606 			data->present = 0x00;
2607 	}
2608 
2609 	if (hash256 && rand256) {
2610 		memcpy(data->hash256, hash256, sizeof(data->hash256));
2611 		memcpy(data->rand256, rand256, sizeof(data->rand256));
2612 	} else {
2613 		memset(data->hash256, 0, sizeof(data->hash256));
2614 		memset(data->rand256, 0, sizeof(data->rand256));
2615 		if (hash192 && rand192)
2616 			data->present = 0x01;
2617 	}
2618 
2619 	BT_DBG("%s for %pMR", hdev->name, bdaddr);
2620 
2621 	return 0;
2622 }
2623 
2624 /* This function requires the caller holds hdev->lock */
2625 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2626 {
2627 	struct adv_info *adv_instance;
2628 
2629 	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2630 		if (adv_instance->instance == instance)
2631 			return adv_instance;
2632 	}
2633 
2634 	return NULL;
2635 }
2636 
2637 /* This function requires the caller holds hdev->lock */
2638 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2639 {
2640 	struct adv_info *cur_instance;
2641 
2642 	cur_instance = hci_find_adv_instance(hdev, instance);
2643 	if (!cur_instance)
2644 		return NULL;
2645 
2646 	if (cur_instance == list_last_entry(&hdev->adv_instances,
2647 					    struct adv_info, list))
2648 		return list_first_entry(&hdev->adv_instances,
2649 						 struct adv_info, list);
2650 	else
2651 		return list_next_entry(cur_instance, list);
2652 }
2653 
2654 /* This function requires the caller holds hdev->lock */
2655 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2656 {
2657 	struct adv_info *adv_instance;
2658 
2659 	adv_instance = hci_find_adv_instance(hdev, instance);
2660 	if (!adv_instance)
2661 		return -ENOENT;
2662 
2663 	BT_DBG("%s removing %dMR", hdev->name, instance);
2664 
2665 	if (hdev->cur_adv_instance == instance) {
2666 		if (hdev->adv_instance_timeout) {
2667 			cancel_delayed_work(&hdev->adv_instance_expire);
2668 			hdev->adv_instance_timeout = 0;
2669 		}
2670 		hdev->cur_adv_instance = 0x00;
2671 	}
2672 
2673 	list_del(&adv_instance->list);
2674 	kfree(adv_instance);
2675 
2676 	hdev->adv_instance_cnt--;
2677 
2678 	return 0;
2679 }
2680 
2681 /* This function requires the caller holds hdev->lock */
2682 void hci_adv_instances_clear(struct hci_dev *hdev)
2683 {
2684 	struct adv_info *adv_instance, *n;
2685 
2686 	if (hdev->adv_instance_timeout) {
2687 		cancel_delayed_work(&hdev->adv_instance_expire);
2688 		hdev->adv_instance_timeout = 0;
2689 	}
2690 
2691 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2692 		list_del(&adv_instance->list);
2693 		kfree(adv_instance);
2694 	}
2695 
2696 	hdev->adv_instance_cnt = 0;
2697 	hdev->cur_adv_instance = 0x00;
2698 }
2699 
2700 /* This function requires the caller holds hdev->lock */
2701 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2702 			 u16 adv_data_len, u8 *adv_data,
2703 			 u16 scan_rsp_len, u8 *scan_rsp_data,
2704 			 u16 timeout, u16 duration)
2705 {
2706 	struct adv_info *adv_instance;
2707 
2708 	adv_instance = hci_find_adv_instance(hdev, instance);
2709 	if (adv_instance) {
2710 		memset(adv_instance->adv_data, 0,
2711 		       sizeof(adv_instance->adv_data));
2712 		memset(adv_instance->scan_rsp_data, 0,
2713 		       sizeof(adv_instance->scan_rsp_data));
2714 	} else {
2715 		if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
2716 		    instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2717 			return -EOVERFLOW;
2718 
2719 		adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2720 		if (!adv_instance)
2721 			return -ENOMEM;
2722 
2723 		adv_instance->pending = true;
2724 		adv_instance->instance = instance;
2725 		list_add(&adv_instance->list, &hdev->adv_instances);
2726 		hdev->adv_instance_cnt++;
2727 	}
2728 
2729 	adv_instance->flags = flags;
2730 	adv_instance->adv_data_len = adv_data_len;
2731 	adv_instance->scan_rsp_len = scan_rsp_len;
2732 
2733 	if (adv_data_len)
2734 		memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2735 
2736 	if (scan_rsp_len)
2737 		memcpy(adv_instance->scan_rsp_data,
2738 		       scan_rsp_data, scan_rsp_len);
2739 
2740 	adv_instance->timeout = timeout;
2741 	adv_instance->remaining_time = timeout;
2742 
2743 	if (duration == 0)
2744 		adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2745 	else
2746 		adv_instance->duration = duration;
2747 
2748 	BT_DBG("%s for %dMR", hdev->name, instance);
2749 
2750 	return 0;
2751 }
2752 
2753 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2754 					 bdaddr_t *bdaddr, u8 type)
2755 {
2756 	struct bdaddr_list *b;
2757 
2758 	list_for_each_entry(b, bdaddr_list, list) {
2759 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2760 			return b;
2761 	}
2762 
2763 	return NULL;
2764 }
2765 
2766 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2767 {
2768 	struct bdaddr_list *b, *n;
2769 
2770 	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2771 		list_del(&b->list);
2772 		kfree(b);
2773 	}
2774 }
2775 
2776 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2777 {
2778 	struct bdaddr_list *entry;
2779 
2780 	if (!bacmp(bdaddr, BDADDR_ANY))
2781 		return -EBADF;
2782 
2783 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2784 		return -EEXIST;
2785 
2786 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2787 	if (!entry)
2788 		return -ENOMEM;
2789 
2790 	bacpy(&entry->bdaddr, bdaddr);
2791 	entry->bdaddr_type = type;
2792 
2793 	list_add(&entry->list, list);
2794 
2795 	return 0;
2796 }
2797 
2798 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2799 {
2800 	struct bdaddr_list *entry;
2801 
2802 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2803 		hci_bdaddr_list_clear(list);
2804 		return 0;
2805 	}
2806 
2807 	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2808 	if (!entry)
2809 		return -ENOENT;
2810 
2811 	list_del(&entry->list);
2812 	kfree(entry);
2813 
2814 	return 0;
2815 }
2816 
2817 /* This function requires the caller holds hdev->lock */
2818 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2819 					       bdaddr_t *addr, u8 addr_type)
2820 {
2821 	struct hci_conn_params *params;
2822 
2823 	list_for_each_entry(params, &hdev->le_conn_params, list) {
2824 		if (bacmp(&params->addr, addr) == 0 &&
2825 		    params->addr_type == addr_type) {
2826 			return params;
2827 		}
2828 	}
2829 
2830 	return NULL;
2831 }
2832 
2833 /* This function requires the caller holds hdev->lock */
2834 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2835 						  bdaddr_t *addr, u8 addr_type)
2836 {
2837 	struct hci_conn_params *param;
2838 
2839 	list_for_each_entry(param, list, action) {
2840 		if (bacmp(&param->addr, addr) == 0 &&
2841 		    param->addr_type == addr_type)
2842 			return param;
2843 	}
2844 
2845 	return NULL;
2846 }
2847 
2848 /* This function requires the caller holds hdev->lock */
2849 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2850 					    bdaddr_t *addr, u8 addr_type)
2851 {
2852 	struct hci_conn_params *params;
2853 
2854 	params = hci_conn_params_lookup(hdev, addr, addr_type);
2855 	if (params)
2856 		return params;
2857 
2858 	params = kzalloc(sizeof(*params), GFP_KERNEL);
2859 	if (!params) {
2860 		bt_dev_err(hdev, "out of memory");
2861 		return NULL;
2862 	}
2863 
2864 	bacpy(&params->addr, addr);
2865 	params->addr_type = addr_type;
2866 
2867 	list_add(&params->list, &hdev->le_conn_params);
2868 	INIT_LIST_HEAD(&params->action);
2869 
2870 	params->conn_min_interval = hdev->le_conn_min_interval;
2871 	params->conn_max_interval = hdev->le_conn_max_interval;
2872 	params->conn_latency = hdev->le_conn_latency;
2873 	params->supervision_timeout = hdev->le_supv_timeout;
2874 	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2875 
2876 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2877 
2878 	return params;
2879 }
2880 
2881 static void hci_conn_params_free(struct hci_conn_params *params)
2882 {
2883 	if (params->conn) {
2884 		hci_conn_drop(params->conn);
2885 		hci_conn_put(params->conn);
2886 	}
2887 
2888 	list_del(&params->action);
2889 	list_del(&params->list);
2890 	kfree(params);
2891 }
2892 
2893 /* This function requires the caller holds hdev->lock */
2894 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2895 {
2896 	struct hci_conn_params *params;
2897 
2898 	params = hci_conn_params_lookup(hdev, addr, addr_type);
2899 	if (!params)
2900 		return;
2901 
2902 	hci_conn_params_free(params);
2903 
2904 	hci_update_background_scan(hdev);
2905 
2906 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2907 }
2908 
2909 /* This function requires the caller holds hdev->lock */
2910 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2911 {
2912 	struct hci_conn_params *params, *tmp;
2913 
2914 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2915 		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2916 			continue;
2917 
2918 		/* If trying to estabilish one time connection to disabled
2919 		 * device, leave the params, but mark them as just once.
2920 		 */
2921 		if (params->explicit_connect) {
2922 			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2923 			continue;
2924 		}
2925 
2926 		list_del(&params->list);
2927 		kfree(params);
2928 	}
2929 
2930 	BT_DBG("All LE disabled connection parameters were removed");
2931 }
2932 
2933 /* This function requires the caller holds hdev->lock */
2934 static void hci_conn_params_clear_all(struct hci_dev *hdev)
2935 {
2936 	struct hci_conn_params *params, *tmp;
2937 
2938 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2939 		hci_conn_params_free(params);
2940 
2941 	BT_DBG("All LE connection parameters were removed");
2942 }
2943 
2944 /* Copy the Identity Address of the controller.
2945  *
2946  * If the controller has a public BD_ADDR, then by default use that one.
2947  * If this is a LE only controller without a public address, default to
2948  * the static random address.
2949  *
2950  * For debugging purposes it is possible to force controllers with a
2951  * public address to use the static random address instead.
2952  *
2953  * In case BR/EDR has been disabled on a dual-mode controller and
2954  * userspace has configured a static address, then that address
2955  * becomes the identity address instead of the public BR/EDR address.
2956  */
2957 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2958 			       u8 *bdaddr_type)
2959 {
2960 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2961 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2962 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2963 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2964 		bacpy(bdaddr, &hdev->static_addr);
2965 		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2966 	} else {
2967 		bacpy(bdaddr, &hdev->bdaddr);
2968 		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2969 	}
2970 }
2971 
2972 /* Alloc HCI device */
2973 struct hci_dev *hci_alloc_dev(void)
2974 {
2975 	struct hci_dev *hdev;
2976 
2977 	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2978 	if (!hdev)
2979 		return NULL;
2980 
2981 	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2982 	hdev->esco_type = (ESCO_HV1);
2983 	hdev->link_mode = (HCI_LM_ACCEPT);
2984 	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2985 	hdev->io_capability = 0x03;	/* No Input No Output */
2986 	hdev->manufacturer = 0xffff;	/* Default to internal use */
2987 	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2988 	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2989 	hdev->adv_instance_cnt = 0;
2990 	hdev->cur_adv_instance = 0x00;
2991 	hdev->adv_instance_timeout = 0;
2992 
2993 	hdev->sniff_max_interval = 800;
2994 	hdev->sniff_min_interval = 80;
2995 
2996 	hdev->le_adv_channel_map = 0x07;
2997 	hdev->le_adv_min_interval = 0x0800;
2998 	hdev->le_adv_max_interval = 0x0800;
2999 	hdev->le_scan_interval = 0x0060;
3000 	hdev->le_scan_window = 0x0030;
3001 	hdev->le_conn_min_interval = 0x0018;
3002 	hdev->le_conn_max_interval = 0x0028;
3003 	hdev->le_conn_latency = 0x0000;
3004 	hdev->le_supv_timeout = 0x002a;
3005 	hdev->le_def_tx_len = 0x001b;
3006 	hdev->le_def_tx_time = 0x0148;
3007 	hdev->le_max_tx_len = 0x001b;
3008 	hdev->le_max_tx_time = 0x0148;
3009 	hdev->le_max_rx_len = 0x001b;
3010 	hdev->le_max_rx_time = 0x0148;
3011 
3012 	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3013 	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3014 	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3015 	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3016 
3017 	mutex_init(&hdev->lock);
3018 	mutex_init(&hdev->req_lock);
3019 
3020 	INIT_LIST_HEAD(&hdev->mgmt_pending);
3021 	INIT_LIST_HEAD(&hdev->blacklist);
3022 	INIT_LIST_HEAD(&hdev->whitelist);
3023 	INIT_LIST_HEAD(&hdev->uuids);
3024 	INIT_LIST_HEAD(&hdev->link_keys);
3025 	INIT_LIST_HEAD(&hdev->long_term_keys);
3026 	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3027 	INIT_LIST_HEAD(&hdev->remote_oob_data);
3028 	INIT_LIST_HEAD(&hdev->le_white_list);
3029 	INIT_LIST_HEAD(&hdev->le_conn_params);
3030 	INIT_LIST_HEAD(&hdev->pend_le_conns);
3031 	INIT_LIST_HEAD(&hdev->pend_le_reports);
3032 	INIT_LIST_HEAD(&hdev->conn_hash.list);
3033 	INIT_LIST_HEAD(&hdev->adv_instances);
3034 
3035 	INIT_WORK(&hdev->rx_work, hci_rx_work);
3036 	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3037 	INIT_WORK(&hdev->tx_work, hci_tx_work);
3038 	INIT_WORK(&hdev->power_on, hci_power_on);
3039 	INIT_WORK(&hdev->error_reset, hci_error_reset);
3040 
3041 	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3042 
3043 	skb_queue_head_init(&hdev->rx_q);
3044 	skb_queue_head_init(&hdev->cmd_q);
3045 	skb_queue_head_init(&hdev->raw_q);
3046 
3047 	init_waitqueue_head(&hdev->req_wait_q);
3048 
3049 	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3050 
3051 	hci_request_setup(hdev);
3052 
3053 	hci_init_sysfs(hdev);
3054 	discovery_init(hdev);
3055 
3056 	return hdev;
3057 }
3058 EXPORT_SYMBOL(hci_alloc_dev);
3059 
3060 /* Free HCI device */
3061 void hci_free_dev(struct hci_dev *hdev)
3062 {
3063 	/* will free via device release */
3064 	put_device(&hdev->dev);
3065 }
3066 EXPORT_SYMBOL(hci_free_dev);
3067 
3068 /* Register HCI device */
3069 int hci_register_dev(struct hci_dev *hdev)
3070 {
3071 	int id, error;
3072 
3073 	if (!hdev->open || !hdev->close || !hdev->send)
3074 		return -EINVAL;
3075 
3076 	/* Do not allow HCI_AMP devices to register at index 0,
3077 	 * so the index can be used as the AMP controller ID.
3078 	 */
3079 	switch (hdev->dev_type) {
3080 	case HCI_PRIMARY:
3081 		id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3082 		break;
3083 	case HCI_AMP:
3084 		id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3085 		break;
3086 	default:
3087 		return -EINVAL;
3088 	}
3089 
3090 	if (id < 0)
3091 		return id;
3092 
3093 	sprintf(hdev->name, "hci%d", id);
3094 	hdev->id = id;
3095 
3096 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3097 
3098 	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
3099 	if (!hdev->workqueue) {
3100 		error = -ENOMEM;
3101 		goto err;
3102 	}
3103 
3104 	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3105 						      hdev->name);
3106 	if (!hdev->req_workqueue) {
3107 		destroy_workqueue(hdev->workqueue);
3108 		error = -ENOMEM;
3109 		goto err;
3110 	}
3111 
3112 	if (!IS_ERR_OR_NULL(bt_debugfs))
3113 		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3114 
3115 	dev_set_name(&hdev->dev, "%s", hdev->name);
3116 
3117 	error = device_add(&hdev->dev);
3118 	if (error < 0)
3119 		goto err_wqueue;
3120 
3121 	hci_leds_init(hdev);
3122 
3123 	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3124 				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3125 				    hdev);
3126 	if (hdev->rfkill) {
3127 		if (rfkill_register(hdev->rfkill) < 0) {
3128 			rfkill_destroy(hdev->rfkill);
3129 			hdev->rfkill = NULL;
3130 		}
3131 	}
3132 
3133 	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3134 		hci_dev_set_flag(hdev, HCI_RFKILLED);
3135 
3136 	hci_dev_set_flag(hdev, HCI_SETUP);
3137 	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3138 
3139 	if (hdev->dev_type == HCI_PRIMARY) {
3140 		/* Assume BR/EDR support until proven otherwise (such as
3141 		 * through reading supported features during init.
3142 		 */
3143 		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3144 	}
3145 
3146 	write_lock(&hci_dev_list_lock);
3147 	list_add(&hdev->list, &hci_dev_list);
3148 	write_unlock(&hci_dev_list_lock);
3149 
3150 	/* Devices that are marked for raw-only usage are unconfigured
3151 	 * and should not be included in normal operation.
3152 	 */
3153 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3154 		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3155 
3156 	hci_sock_dev_event(hdev, HCI_DEV_REG);
3157 	hci_dev_hold(hdev);
3158 
3159 	queue_work(hdev->req_workqueue, &hdev->power_on);
3160 
3161 	return id;
3162 
3163 err_wqueue:
3164 	destroy_workqueue(hdev->workqueue);
3165 	destroy_workqueue(hdev->req_workqueue);
3166 err:
3167 	ida_simple_remove(&hci_index_ida, hdev->id);
3168 
3169 	return error;
3170 }
3171 EXPORT_SYMBOL(hci_register_dev);
3172 
3173 /* Unregister HCI device */
3174 void hci_unregister_dev(struct hci_dev *hdev)
3175 {
3176 	int id;
3177 
3178 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3179 
3180 	hci_dev_set_flag(hdev, HCI_UNREGISTER);
3181 
3182 	id = hdev->id;
3183 
3184 	write_lock(&hci_dev_list_lock);
3185 	list_del(&hdev->list);
3186 	write_unlock(&hci_dev_list_lock);
3187 
3188 	cancel_work_sync(&hdev->power_on);
3189 
3190 	hci_dev_do_close(hdev);
3191 
3192 	if (!test_bit(HCI_INIT, &hdev->flags) &&
3193 	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
3194 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3195 		hci_dev_lock(hdev);
3196 		mgmt_index_removed(hdev);
3197 		hci_dev_unlock(hdev);
3198 	}
3199 
3200 	/* mgmt_index_removed should take care of emptying the
3201 	 * pending list */
3202 	BUG_ON(!list_empty(&hdev->mgmt_pending));
3203 
3204 	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3205 
3206 	if (hdev->rfkill) {
3207 		rfkill_unregister(hdev->rfkill);
3208 		rfkill_destroy(hdev->rfkill);
3209 	}
3210 
3211 	device_del(&hdev->dev);
3212 
3213 	debugfs_remove_recursive(hdev->debugfs);
3214 	kfree_const(hdev->hw_info);
3215 	kfree_const(hdev->fw_info);
3216 
3217 	destroy_workqueue(hdev->workqueue);
3218 	destroy_workqueue(hdev->req_workqueue);
3219 
3220 	hci_dev_lock(hdev);
3221 	hci_bdaddr_list_clear(&hdev->blacklist);
3222 	hci_bdaddr_list_clear(&hdev->whitelist);
3223 	hci_uuids_clear(hdev);
3224 	hci_link_keys_clear(hdev);
3225 	hci_smp_ltks_clear(hdev);
3226 	hci_smp_irks_clear(hdev);
3227 	hci_remote_oob_data_clear(hdev);
3228 	hci_adv_instances_clear(hdev);
3229 	hci_bdaddr_list_clear(&hdev->le_white_list);
3230 	hci_conn_params_clear_all(hdev);
3231 	hci_discovery_filter_clear(hdev);
3232 	hci_dev_unlock(hdev);
3233 
3234 	hci_dev_put(hdev);
3235 
3236 	ida_simple_remove(&hci_index_ida, id);
3237 }
3238 EXPORT_SYMBOL(hci_unregister_dev);
3239 
3240 /* Suspend HCI device */
3241 int hci_suspend_dev(struct hci_dev *hdev)
3242 {
3243 	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3244 	return 0;
3245 }
3246 EXPORT_SYMBOL(hci_suspend_dev);
3247 
3248 /* Resume HCI device */
3249 int hci_resume_dev(struct hci_dev *hdev)
3250 {
3251 	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3252 	return 0;
3253 }
3254 EXPORT_SYMBOL(hci_resume_dev);
3255 
3256 /* Reset HCI device */
3257 int hci_reset_dev(struct hci_dev *hdev)
3258 {
3259 	const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3260 	struct sk_buff *skb;
3261 
3262 	skb = bt_skb_alloc(3, GFP_ATOMIC);
3263 	if (!skb)
3264 		return -ENOMEM;
3265 
3266 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3267 	skb_put_data(skb, hw_err, 3);
3268 
3269 	/* Send Hardware Error to upper stack */
3270 	return hci_recv_frame(hdev, skb);
3271 }
3272 EXPORT_SYMBOL(hci_reset_dev);
3273 
3274 /* Receive frame from HCI drivers */
3275 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3276 {
3277 	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3278 		      && !test_bit(HCI_INIT, &hdev->flags))) {
3279 		kfree_skb(skb);
3280 		return -ENXIO;
3281 	}
3282 
3283 	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3284 	    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3285 	    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
3286 		kfree_skb(skb);
3287 		return -EINVAL;
3288 	}
3289 
3290 	/* Incoming skb */
3291 	bt_cb(skb)->incoming = 1;
3292 
3293 	/* Time stamp */
3294 	__net_timestamp(skb);
3295 
3296 	skb_queue_tail(&hdev->rx_q, skb);
3297 	queue_work(hdev->workqueue, &hdev->rx_work);
3298 
3299 	return 0;
3300 }
3301 EXPORT_SYMBOL(hci_recv_frame);
3302 
3303 /* Receive diagnostic message from HCI drivers */
3304 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3305 {
3306 	/* Mark as diagnostic packet */
3307 	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3308 
3309 	/* Time stamp */
3310 	__net_timestamp(skb);
3311 
3312 	skb_queue_tail(&hdev->rx_q, skb);
3313 	queue_work(hdev->workqueue, &hdev->rx_work);
3314 
3315 	return 0;
3316 }
3317 EXPORT_SYMBOL(hci_recv_diag);
3318 
3319 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3320 {
3321 	va_list vargs;
3322 
3323 	va_start(vargs, fmt);
3324 	kfree_const(hdev->hw_info);
3325 	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3326 	va_end(vargs);
3327 }
3328 EXPORT_SYMBOL(hci_set_hw_info);
3329 
3330 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3331 {
3332 	va_list vargs;
3333 
3334 	va_start(vargs, fmt);
3335 	kfree_const(hdev->fw_info);
3336 	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3337 	va_end(vargs);
3338 }
3339 EXPORT_SYMBOL(hci_set_fw_info);
3340 
3341 /* ---- Interface to upper protocols ---- */
3342 
3343 int hci_register_cb(struct hci_cb *cb)
3344 {
3345 	BT_DBG("%p name %s", cb, cb->name);
3346 
3347 	mutex_lock(&hci_cb_list_lock);
3348 	list_add_tail(&cb->list, &hci_cb_list);
3349 	mutex_unlock(&hci_cb_list_lock);
3350 
3351 	return 0;
3352 }
3353 EXPORT_SYMBOL(hci_register_cb);
3354 
3355 int hci_unregister_cb(struct hci_cb *cb)
3356 {
3357 	BT_DBG("%p name %s", cb, cb->name);
3358 
3359 	mutex_lock(&hci_cb_list_lock);
3360 	list_del(&cb->list);
3361 	mutex_unlock(&hci_cb_list_lock);
3362 
3363 	return 0;
3364 }
3365 EXPORT_SYMBOL(hci_unregister_cb);
3366 
3367 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3368 {
3369 	int err;
3370 
3371 	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3372 	       skb->len);
3373 
3374 	/* Time stamp */
3375 	__net_timestamp(skb);
3376 
3377 	/* Send copy to monitor */
3378 	hci_send_to_monitor(hdev, skb);
3379 
3380 	if (atomic_read(&hdev->promisc)) {
3381 		/* Send copy to the sockets */
3382 		hci_send_to_sock(hdev, skb);
3383 	}
3384 
3385 	/* Get rid of skb owner, prior to sending to the driver. */
3386 	skb_orphan(skb);
3387 
3388 	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3389 		kfree_skb(skb);
3390 		return;
3391 	}
3392 
3393 	err = hdev->send(hdev, skb);
3394 	if (err < 0) {
3395 		bt_dev_err(hdev, "sending frame failed (%d)", err);
3396 		kfree_skb(skb);
3397 	}
3398 }
3399 
3400 /* Send HCI command */
3401 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3402 		 const void *param)
3403 {
3404 	struct sk_buff *skb;
3405 
3406 	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3407 
3408 	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3409 	if (!skb) {
3410 		bt_dev_err(hdev, "no memory for command");
3411 		return -ENOMEM;
3412 	}
3413 
3414 	/* Stand-alone HCI commands must be flagged as
3415 	 * single-command requests.
3416 	 */
3417 	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3418 
3419 	skb_queue_tail(&hdev->cmd_q, skb);
3420 	queue_work(hdev->workqueue, &hdev->cmd_work);
3421 
3422 	return 0;
3423 }
3424 
3425 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3426 		   const void *param)
3427 {
3428 	struct sk_buff *skb;
3429 
3430 	if (hci_opcode_ogf(opcode) != 0x3f) {
3431 		/* A controller receiving a command shall respond with either
3432 		 * a Command Status Event or a Command Complete Event.
3433 		 * Therefore, all standard HCI commands must be sent via the
3434 		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3435 		 * Some vendors do not comply with this rule for vendor-specific
3436 		 * commands and do not return any event. We want to support
3437 		 * unresponded commands for such cases only.
3438 		 */
3439 		bt_dev_err(hdev, "unresponded command not supported");
3440 		return -EINVAL;
3441 	}
3442 
3443 	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3444 	if (!skb) {
3445 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3446 			   opcode);
3447 		return -ENOMEM;
3448 	}
3449 
3450 	hci_send_frame(hdev, skb);
3451 
3452 	return 0;
3453 }
3454 EXPORT_SYMBOL(__hci_cmd_send);
3455 
3456 /* Get data from the previously sent command */
3457 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3458 {
3459 	struct hci_command_hdr *hdr;
3460 
3461 	if (!hdev->sent_cmd)
3462 		return NULL;
3463 
3464 	hdr = (void *) hdev->sent_cmd->data;
3465 
3466 	if (hdr->opcode != cpu_to_le16(opcode))
3467 		return NULL;
3468 
3469 	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3470 
3471 	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3472 }
3473 
3474 /* Send HCI command and wait for command commplete event */
3475 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3476 			     const void *param, u32 timeout)
3477 {
3478 	struct sk_buff *skb;
3479 
3480 	if (!test_bit(HCI_UP, &hdev->flags))
3481 		return ERR_PTR(-ENETDOWN);
3482 
3483 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3484 
3485 	hci_req_sync_lock(hdev);
3486 	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3487 	hci_req_sync_unlock(hdev);
3488 
3489 	return skb;
3490 }
3491 EXPORT_SYMBOL(hci_cmd_sync);
3492 
3493 /* Send ACL data */
3494 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3495 {
3496 	struct hci_acl_hdr *hdr;
3497 	int len = skb->len;
3498 
3499 	skb_push(skb, HCI_ACL_HDR_SIZE);
3500 	skb_reset_transport_header(skb);
3501 	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3502 	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3503 	hdr->dlen   = cpu_to_le16(len);
3504 }
3505 
3506 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3507 			  struct sk_buff *skb, __u16 flags)
3508 {
3509 	struct hci_conn *conn = chan->conn;
3510 	struct hci_dev *hdev = conn->hdev;
3511 	struct sk_buff *list;
3512 
3513 	skb->len = skb_headlen(skb);
3514 	skb->data_len = 0;
3515 
3516 	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3517 
3518 	switch (hdev->dev_type) {
3519 	case HCI_PRIMARY:
3520 		hci_add_acl_hdr(skb, conn->handle, flags);
3521 		break;
3522 	case HCI_AMP:
3523 		hci_add_acl_hdr(skb, chan->handle, flags);
3524 		break;
3525 	default:
3526 		bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
3527 		return;
3528 	}
3529 
3530 	list = skb_shinfo(skb)->frag_list;
3531 	if (!list) {
3532 		/* Non fragmented */
3533 		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3534 
3535 		skb_queue_tail(queue, skb);
3536 	} else {
3537 		/* Fragmented */
3538 		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3539 
3540 		skb_shinfo(skb)->frag_list = NULL;
3541 
3542 		/* Queue all fragments atomically. We need to use spin_lock_bh
3543 		 * here because of 6LoWPAN links, as there this function is
3544 		 * called from softirq and using normal spin lock could cause
3545 		 * deadlocks.
3546 		 */
3547 		spin_lock_bh(&queue->lock);
3548 
3549 		__skb_queue_tail(queue, skb);
3550 
3551 		flags &= ~ACL_START;
3552 		flags |= ACL_CONT;
3553 		do {
3554 			skb = list; list = list->next;
3555 
3556 			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3557 			hci_add_acl_hdr(skb, conn->handle, flags);
3558 
3559 			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3560 
3561 			__skb_queue_tail(queue, skb);
3562 		} while (list);
3563 
3564 		spin_unlock_bh(&queue->lock);
3565 	}
3566 }
3567 
3568 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3569 {
3570 	struct hci_dev *hdev = chan->conn->hdev;
3571 
3572 	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3573 
3574 	hci_queue_acl(chan, &chan->data_q, skb, flags);
3575 
3576 	queue_work(hdev->workqueue, &hdev->tx_work);
3577 }
3578 
3579 /* Send SCO data */
3580 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3581 {
3582 	struct hci_dev *hdev = conn->hdev;
3583 	struct hci_sco_hdr hdr;
3584 
3585 	BT_DBG("%s len %d", hdev->name, skb->len);
3586 
3587 	hdr.handle = cpu_to_le16(conn->handle);
3588 	hdr.dlen   = skb->len;
3589 
3590 	skb_push(skb, HCI_SCO_HDR_SIZE);
3591 	skb_reset_transport_header(skb);
3592 	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3593 
3594 	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3595 
3596 	skb_queue_tail(&conn->data_q, skb);
3597 	queue_work(hdev->workqueue, &hdev->tx_work);
3598 }
3599 
3600 /* ---- HCI TX task (outgoing data) ---- */
3601 
3602 /* HCI Connection scheduler */
3603 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3604 				     int *quote)
3605 {
3606 	struct hci_conn_hash *h = &hdev->conn_hash;
3607 	struct hci_conn *conn = NULL, *c;
3608 	unsigned int num = 0, min = ~0;
3609 
3610 	/* We don't have to lock device here. Connections are always
3611 	 * added and removed with TX task disabled. */
3612 
3613 	rcu_read_lock();
3614 
3615 	list_for_each_entry_rcu(c, &h->list, list) {
3616 		if (c->type != type || skb_queue_empty(&c->data_q))
3617 			continue;
3618 
3619 		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3620 			continue;
3621 
3622 		num++;
3623 
3624 		if (c->sent < min) {
3625 			min  = c->sent;
3626 			conn = c;
3627 		}
3628 
3629 		if (hci_conn_num(hdev, type) == num)
3630 			break;
3631 	}
3632 
3633 	rcu_read_unlock();
3634 
3635 	if (conn) {
3636 		int cnt, q;
3637 
3638 		switch (conn->type) {
3639 		case ACL_LINK:
3640 			cnt = hdev->acl_cnt;
3641 			break;
3642 		case SCO_LINK:
3643 		case ESCO_LINK:
3644 			cnt = hdev->sco_cnt;
3645 			break;
3646 		case LE_LINK:
3647 			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3648 			break;
3649 		default:
3650 			cnt = 0;
3651 			bt_dev_err(hdev, "unknown link type %d", conn->type);
3652 		}
3653 
3654 		q = cnt / num;
3655 		*quote = q ? q : 1;
3656 	} else
3657 		*quote = 0;
3658 
3659 	BT_DBG("conn %p quote %d", conn, *quote);
3660 	return conn;
3661 }
3662 
3663 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3664 {
3665 	struct hci_conn_hash *h = &hdev->conn_hash;
3666 	struct hci_conn *c;
3667 
3668 	bt_dev_err(hdev, "link tx timeout");
3669 
3670 	rcu_read_lock();
3671 
3672 	/* Kill stalled connections */
3673 	list_for_each_entry_rcu(c, &h->list, list) {
3674 		if (c->type == type && c->sent) {
3675 			bt_dev_err(hdev, "killing stalled connection %pMR",
3676 				   &c->dst);
3677 			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3678 		}
3679 	}
3680 
3681 	rcu_read_unlock();
3682 }
3683 
3684 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3685 				      int *quote)
3686 {
3687 	struct hci_conn_hash *h = &hdev->conn_hash;
3688 	struct hci_chan *chan = NULL;
3689 	unsigned int num = 0, min = ~0, cur_prio = 0;
3690 	struct hci_conn *conn;
3691 	int cnt, q, conn_num = 0;
3692 
3693 	BT_DBG("%s", hdev->name);
3694 
3695 	rcu_read_lock();
3696 
3697 	list_for_each_entry_rcu(conn, &h->list, list) {
3698 		struct hci_chan *tmp;
3699 
3700 		if (conn->type != type)
3701 			continue;
3702 
3703 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3704 			continue;
3705 
3706 		conn_num++;
3707 
3708 		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3709 			struct sk_buff *skb;
3710 
3711 			if (skb_queue_empty(&tmp->data_q))
3712 				continue;
3713 
3714 			skb = skb_peek(&tmp->data_q);
3715 			if (skb->priority < cur_prio)
3716 				continue;
3717 
3718 			if (skb->priority > cur_prio) {
3719 				num = 0;
3720 				min = ~0;
3721 				cur_prio = skb->priority;
3722 			}
3723 
3724 			num++;
3725 
3726 			if (conn->sent < min) {
3727 				min  = conn->sent;
3728 				chan = tmp;
3729 			}
3730 		}
3731 
3732 		if (hci_conn_num(hdev, type) == conn_num)
3733 			break;
3734 	}
3735 
3736 	rcu_read_unlock();
3737 
3738 	if (!chan)
3739 		return NULL;
3740 
3741 	switch (chan->conn->type) {
3742 	case ACL_LINK:
3743 		cnt = hdev->acl_cnt;
3744 		break;
3745 	case AMP_LINK:
3746 		cnt = hdev->block_cnt;
3747 		break;
3748 	case SCO_LINK:
3749 	case ESCO_LINK:
3750 		cnt = hdev->sco_cnt;
3751 		break;
3752 	case LE_LINK:
3753 		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3754 		break;
3755 	default:
3756 		cnt = 0;
3757 		bt_dev_err(hdev, "unknown link type %d", chan->conn->type);
3758 	}
3759 
3760 	q = cnt / num;
3761 	*quote = q ? q : 1;
3762 	BT_DBG("chan %p quote %d", chan, *quote);
3763 	return chan;
3764 }
3765 
3766 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3767 {
3768 	struct hci_conn_hash *h = &hdev->conn_hash;
3769 	struct hci_conn *conn;
3770 	int num = 0;
3771 
3772 	BT_DBG("%s", hdev->name);
3773 
3774 	rcu_read_lock();
3775 
3776 	list_for_each_entry_rcu(conn, &h->list, list) {
3777 		struct hci_chan *chan;
3778 
3779 		if (conn->type != type)
3780 			continue;
3781 
3782 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3783 			continue;
3784 
3785 		num++;
3786 
3787 		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3788 			struct sk_buff *skb;
3789 
3790 			if (chan->sent) {
3791 				chan->sent = 0;
3792 				continue;
3793 			}
3794 
3795 			if (skb_queue_empty(&chan->data_q))
3796 				continue;
3797 
3798 			skb = skb_peek(&chan->data_q);
3799 			if (skb->priority >= HCI_PRIO_MAX - 1)
3800 				continue;
3801 
3802 			skb->priority = HCI_PRIO_MAX - 1;
3803 
3804 			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3805 			       skb->priority);
3806 		}
3807 
3808 		if (hci_conn_num(hdev, type) == num)
3809 			break;
3810 	}
3811 
3812 	rcu_read_unlock();
3813 
3814 }
3815 
3816 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3817 {
3818 	/* Calculate count of blocks used by this packet */
3819 	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3820 }
3821 
3822 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3823 {
3824 	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3825 		/* ACL tx timeout must be longer than maximum
3826 		 * link supervision timeout (40.9 seconds) */
3827 		if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3828 				       HCI_ACL_TX_TIMEOUT))
3829 			hci_link_tx_to(hdev, ACL_LINK);
3830 	}
3831 }
3832 
3833 static void hci_sched_acl_pkt(struct hci_dev *hdev)
3834 {
3835 	unsigned int cnt = hdev->acl_cnt;
3836 	struct hci_chan *chan;
3837 	struct sk_buff *skb;
3838 	int quote;
3839 
3840 	__check_timeout(hdev, cnt);
3841 
3842 	while (hdev->acl_cnt &&
3843 	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3844 		u32 priority = (skb_peek(&chan->data_q))->priority;
3845 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3846 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3847 			       skb->len, skb->priority);
3848 
3849 			/* Stop if priority has changed */
3850 			if (skb->priority < priority)
3851 				break;
3852 
3853 			skb = skb_dequeue(&chan->data_q);
3854 
3855 			hci_conn_enter_active_mode(chan->conn,
3856 						   bt_cb(skb)->force_active);
3857 
3858 			hci_send_frame(hdev, skb);
3859 			hdev->acl_last_tx = jiffies;
3860 
3861 			hdev->acl_cnt--;
3862 			chan->sent++;
3863 			chan->conn->sent++;
3864 		}
3865 	}
3866 
3867 	if (cnt != hdev->acl_cnt)
3868 		hci_prio_recalculate(hdev, ACL_LINK);
3869 }
3870 
3871 static void hci_sched_acl_blk(struct hci_dev *hdev)
3872 {
3873 	unsigned int cnt = hdev->block_cnt;
3874 	struct hci_chan *chan;
3875 	struct sk_buff *skb;
3876 	int quote;
3877 	u8 type;
3878 
3879 	__check_timeout(hdev, cnt);
3880 
3881 	BT_DBG("%s", hdev->name);
3882 
3883 	if (hdev->dev_type == HCI_AMP)
3884 		type = AMP_LINK;
3885 	else
3886 		type = ACL_LINK;
3887 
3888 	while (hdev->block_cnt > 0 &&
3889 	       (chan = hci_chan_sent(hdev, type, &quote))) {
3890 		u32 priority = (skb_peek(&chan->data_q))->priority;
3891 		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3892 			int blocks;
3893 
3894 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3895 			       skb->len, skb->priority);
3896 
3897 			/* Stop if priority has changed */
3898 			if (skb->priority < priority)
3899 				break;
3900 
3901 			skb = skb_dequeue(&chan->data_q);
3902 
3903 			blocks = __get_blocks(hdev, skb);
3904 			if (blocks > hdev->block_cnt)
3905 				return;
3906 
3907 			hci_conn_enter_active_mode(chan->conn,
3908 						   bt_cb(skb)->force_active);
3909 
3910 			hci_send_frame(hdev, skb);
3911 			hdev->acl_last_tx = jiffies;
3912 
3913 			hdev->block_cnt -= blocks;
3914 			quote -= blocks;
3915 
3916 			chan->sent += blocks;
3917 			chan->conn->sent += blocks;
3918 		}
3919 	}
3920 
3921 	if (cnt != hdev->block_cnt)
3922 		hci_prio_recalculate(hdev, type);
3923 }
3924 
3925 static void hci_sched_acl(struct hci_dev *hdev)
3926 {
3927 	BT_DBG("%s", hdev->name);
3928 
3929 	/* No ACL link over BR/EDR controller */
3930 	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3931 		return;
3932 
3933 	/* No AMP link over AMP controller */
3934 	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3935 		return;
3936 
3937 	switch (hdev->flow_ctl_mode) {
3938 	case HCI_FLOW_CTL_MODE_PACKET_BASED:
3939 		hci_sched_acl_pkt(hdev);
3940 		break;
3941 
3942 	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3943 		hci_sched_acl_blk(hdev);
3944 		break;
3945 	}
3946 }
3947 
3948 /* Schedule SCO */
3949 static void hci_sched_sco(struct hci_dev *hdev)
3950 {
3951 	struct hci_conn *conn;
3952 	struct sk_buff *skb;
3953 	int quote;
3954 
3955 	BT_DBG("%s", hdev->name);
3956 
3957 	if (!hci_conn_num(hdev, SCO_LINK))
3958 		return;
3959 
3960 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3961 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3962 			BT_DBG("skb %p len %d", skb, skb->len);
3963 			hci_send_frame(hdev, skb);
3964 
3965 			conn->sent++;
3966 			if (conn->sent == ~0)
3967 				conn->sent = 0;
3968 		}
3969 	}
3970 }
3971 
3972 static void hci_sched_esco(struct hci_dev *hdev)
3973 {
3974 	struct hci_conn *conn;
3975 	struct sk_buff *skb;
3976 	int quote;
3977 
3978 	BT_DBG("%s", hdev->name);
3979 
3980 	if (!hci_conn_num(hdev, ESCO_LINK))
3981 		return;
3982 
3983 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3984 						     &quote))) {
3985 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3986 			BT_DBG("skb %p len %d", skb, skb->len);
3987 			hci_send_frame(hdev, skb);
3988 
3989 			conn->sent++;
3990 			if (conn->sent == ~0)
3991 				conn->sent = 0;
3992 		}
3993 	}
3994 }
3995 
3996 static void hci_sched_le(struct hci_dev *hdev)
3997 {
3998 	struct hci_chan *chan;
3999 	struct sk_buff *skb;
4000 	int quote, cnt, tmp;
4001 
4002 	BT_DBG("%s", hdev->name);
4003 
4004 	if (!hci_conn_num(hdev, LE_LINK))
4005 		return;
4006 
4007 	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4008 		/* LE tx timeout must be longer than maximum
4009 		 * link supervision timeout (40.9 seconds) */
4010 		if (!hdev->le_cnt && hdev->le_pkts &&
4011 		    time_after(jiffies, hdev->le_last_tx + HZ * 45))
4012 			hci_link_tx_to(hdev, LE_LINK);
4013 	}
4014 
4015 	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4016 	tmp = cnt;
4017 	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
4018 		u32 priority = (skb_peek(&chan->data_q))->priority;
4019 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4020 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4021 			       skb->len, skb->priority);
4022 
4023 			/* Stop if priority has changed */
4024 			if (skb->priority < priority)
4025 				break;
4026 
4027 			skb = skb_dequeue(&chan->data_q);
4028 
4029 			hci_send_frame(hdev, skb);
4030 			hdev->le_last_tx = jiffies;
4031 
4032 			cnt--;
4033 			chan->sent++;
4034 			chan->conn->sent++;
4035 		}
4036 	}
4037 
4038 	if (hdev->le_pkts)
4039 		hdev->le_cnt = cnt;
4040 	else
4041 		hdev->acl_cnt = cnt;
4042 
4043 	if (cnt != tmp)
4044 		hci_prio_recalculate(hdev, LE_LINK);
4045 }
4046 
4047 static void hci_tx_work(struct work_struct *work)
4048 {
4049 	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4050 	struct sk_buff *skb;
4051 
4052 	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4053 	       hdev->sco_cnt, hdev->le_cnt);
4054 
4055 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4056 		/* Schedule queues and send stuff to HCI driver */
4057 		hci_sched_acl(hdev);
4058 		hci_sched_sco(hdev);
4059 		hci_sched_esco(hdev);
4060 		hci_sched_le(hdev);
4061 	}
4062 
4063 	/* Send next queued raw (unknown type) packet */
4064 	while ((skb = skb_dequeue(&hdev->raw_q)))
4065 		hci_send_frame(hdev, skb);
4066 }
4067 
4068 /* ----- HCI RX task (incoming data processing) ----- */
4069 
4070 /* ACL data packet */
4071 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4072 {
4073 	struct hci_acl_hdr *hdr = (void *) skb->data;
4074 	struct hci_conn *conn;
4075 	__u16 handle, flags;
4076 
4077 	skb_pull(skb, HCI_ACL_HDR_SIZE);
4078 
4079 	handle = __le16_to_cpu(hdr->handle);
4080 	flags  = hci_flags(handle);
4081 	handle = hci_handle(handle);
4082 
4083 	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4084 	       handle, flags);
4085 
4086 	hdev->stat.acl_rx++;
4087 
4088 	hci_dev_lock(hdev);
4089 	conn = hci_conn_hash_lookup_handle(hdev, handle);
4090 	hci_dev_unlock(hdev);
4091 
4092 	if (conn) {
4093 		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4094 
4095 		/* Send to upper protocol */
4096 		l2cap_recv_acldata(conn, skb, flags);
4097 		return;
4098 	} else {
4099 		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
4100 			   handle);
4101 	}
4102 
4103 	kfree_skb(skb);
4104 }
4105 
4106 /* SCO data packet */
4107 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4108 {
4109 	struct hci_sco_hdr *hdr = (void *) skb->data;
4110 	struct hci_conn *conn;
4111 	__u16 handle;
4112 
4113 	skb_pull(skb, HCI_SCO_HDR_SIZE);
4114 
4115 	handle = __le16_to_cpu(hdr->handle);
4116 
4117 	BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4118 
4119 	hdev->stat.sco_rx++;
4120 
4121 	hci_dev_lock(hdev);
4122 	conn = hci_conn_hash_lookup_handle(hdev, handle);
4123 	hci_dev_unlock(hdev);
4124 
4125 	if (conn) {
4126 		/* Send to upper protocol */
4127 		sco_recv_scodata(conn, skb);
4128 		return;
4129 	} else {
4130 		bt_dev_err(hdev, "SCO packet for unknown connection handle %d",
4131 			   handle);
4132 	}
4133 
4134 	kfree_skb(skb);
4135 }
4136 
4137 static bool hci_req_is_complete(struct hci_dev *hdev)
4138 {
4139 	struct sk_buff *skb;
4140 
4141 	skb = skb_peek(&hdev->cmd_q);
4142 	if (!skb)
4143 		return true;
4144 
4145 	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4146 }
4147 
4148 static void hci_resend_last(struct hci_dev *hdev)
4149 {
4150 	struct hci_command_hdr *sent;
4151 	struct sk_buff *skb;
4152 	u16 opcode;
4153 
4154 	if (!hdev->sent_cmd)
4155 		return;
4156 
4157 	sent = (void *) hdev->sent_cmd->data;
4158 	opcode = __le16_to_cpu(sent->opcode);
4159 	if (opcode == HCI_OP_RESET)
4160 		return;
4161 
4162 	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4163 	if (!skb)
4164 		return;
4165 
4166 	skb_queue_head(&hdev->cmd_q, skb);
4167 	queue_work(hdev->workqueue, &hdev->cmd_work);
4168 }
4169 
4170 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4171 			  hci_req_complete_t *req_complete,
4172 			  hci_req_complete_skb_t *req_complete_skb)
4173 {
4174 	struct sk_buff *skb;
4175 	unsigned long flags;
4176 
4177 	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4178 
4179 	/* If the completed command doesn't match the last one that was
4180 	 * sent we need to do special handling of it.
4181 	 */
4182 	if (!hci_sent_cmd_data(hdev, opcode)) {
4183 		/* Some CSR based controllers generate a spontaneous
4184 		 * reset complete event during init and any pending
4185 		 * command will never be completed. In such a case we
4186 		 * need to resend whatever was the last sent
4187 		 * command.
4188 		 */
4189 		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4190 			hci_resend_last(hdev);
4191 
4192 		return;
4193 	}
4194 
4195 	/* If the command succeeded and there's still more commands in
4196 	 * this request the request is not yet complete.
4197 	 */
4198 	if (!status && !hci_req_is_complete(hdev))
4199 		return;
4200 
4201 	/* If this was the last command in a request the complete
4202 	 * callback would be found in hdev->sent_cmd instead of the
4203 	 * command queue (hdev->cmd_q).
4204 	 */
4205 	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4206 		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4207 		return;
4208 	}
4209 
4210 	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4211 		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4212 		return;
4213 	}
4214 
4215 	/* Remove all pending commands belonging to this request */
4216 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4217 	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4218 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4219 			__skb_queue_head(&hdev->cmd_q, skb);
4220 			break;
4221 		}
4222 
4223 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4224 			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4225 		else
4226 			*req_complete = bt_cb(skb)->hci.req_complete;
4227 		kfree_skb(skb);
4228 	}
4229 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4230 }
4231 
4232 static void hci_rx_work(struct work_struct *work)
4233 {
4234 	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4235 	struct sk_buff *skb;
4236 
4237 	BT_DBG("%s", hdev->name);
4238 
4239 	while ((skb = skb_dequeue(&hdev->rx_q))) {
4240 		/* Send copy to monitor */
4241 		hci_send_to_monitor(hdev, skb);
4242 
4243 		if (atomic_read(&hdev->promisc)) {
4244 			/* Send copy to the sockets */
4245 			hci_send_to_sock(hdev, skb);
4246 		}
4247 
4248 		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4249 			kfree_skb(skb);
4250 			continue;
4251 		}
4252 
4253 		if (test_bit(HCI_INIT, &hdev->flags)) {
4254 			/* Don't process data packets in this states. */
4255 			switch (hci_skb_pkt_type(skb)) {
4256 			case HCI_ACLDATA_PKT:
4257 			case HCI_SCODATA_PKT:
4258 				kfree_skb(skb);
4259 				continue;
4260 			}
4261 		}
4262 
4263 		/* Process frame */
4264 		switch (hci_skb_pkt_type(skb)) {
4265 		case HCI_EVENT_PKT:
4266 			BT_DBG("%s Event packet", hdev->name);
4267 			hci_event_packet(hdev, skb);
4268 			break;
4269 
4270 		case HCI_ACLDATA_PKT:
4271 			BT_DBG("%s ACL data packet", hdev->name);
4272 			hci_acldata_packet(hdev, skb);
4273 			break;
4274 
4275 		case HCI_SCODATA_PKT:
4276 			BT_DBG("%s SCO data packet", hdev->name);
4277 			hci_scodata_packet(hdev, skb);
4278 			break;
4279 
4280 		default:
4281 			kfree_skb(skb);
4282 			break;
4283 		}
4284 	}
4285 }
4286 
4287 static void hci_cmd_work(struct work_struct *work)
4288 {
4289 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4290 	struct sk_buff *skb;
4291 
4292 	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4293 	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4294 
4295 	/* Send queued commands */
4296 	if (atomic_read(&hdev->cmd_cnt)) {
4297 		skb = skb_dequeue(&hdev->cmd_q);
4298 		if (!skb)
4299 			return;
4300 
4301 		kfree_skb(hdev->sent_cmd);
4302 
4303 		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4304 		if (hdev->sent_cmd) {
4305 			atomic_dec(&hdev->cmd_cnt);
4306 			hci_send_frame(hdev, skb);
4307 			if (test_bit(HCI_RESET, &hdev->flags))
4308 				cancel_delayed_work(&hdev->cmd_timer);
4309 			else
4310 				schedule_delayed_work(&hdev->cmd_timer,
4311 						      HCI_CMD_TIMEOUT);
4312 		} else {
4313 			skb_queue_head(&hdev->cmd_q, skb);
4314 			queue_work(hdev->workqueue, &hdev->cmd_work);
4315 		}
4316 	}
4317 }
4318