1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (C) 2000-2001 Qualcomm Incorporated 4 Copyright (C) 2011 ProFUSION Embedded Systems 5 6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License version 2 as 10 published by the Free Software Foundation; 11 12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 23 SOFTWARE IS DISCLAIMED. 24 */ 25 26 /* Bluetooth HCI core. */ 27 28 #include <linux/export.h> 29 #include <linux/idr.h> 30 #include <linux/rfkill.h> 31 #include <linux/debugfs.h> 32 #include <linux/crypto.h> 33 #include <asm/unaligned.h> 34 35 #include <net/bluetooth/bluetooth.h> 36 #include <net/bluetooth/hci_core.h> 37 #include <net/bluetooth/l2cap.h> 38 #include <net/bluetooth/mgmt.h> 39 40 #include "hci_request.h" 41 #include "hci_debugfs.h" 42 #include "smp.h" 43 #include "leds.h" 44 45 static void hci_rx_work(struct work_struct *work); 46 static void hci_cmd_work(struct work_struct *work); 47 static void hci_tx_work(struct work_struct *work); 48 49 /* HCI device list */ 50 LIST_HEAD(hci_dev_list); 51 DEFINE_RWLOCK(hci_dev_list_lock); 52 53 /* HCI callback list */ 54 LIST_HEAD(hci_cb_list); 55 DEFINE_MUTEX(hci_cb_list_lock); 56 57 /* HCI ID Numbering */ 58 static DEFINE_IDA(hci_index_ida); 59 60 /* ---- HCI debugfs entries ---- */ 61 62 static ssize_t dut_mode_read(struct file *file, char __user *user_buf, 63 size_t count, loff_t *ppos) 64 { 65 struct hci_dev *hdev = file->private_data; 66 char buf[3]; 67 68 buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N'; 69 buf[1] = '\n'; 70 buf[2] = '\0'; 71 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 72 } 73 74 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf, 75 size_t count, loff_t *ppos) 76 { 77 struct hci_dev *hdev = file->private_data; 78 struct sk_buff *skb; 79 char buf[32]; 80 size_t buf_size = min(count, (sizeof(buf)-1)); 81 bool enable; 82 83 if (!test_bit(HCI_UP, &hdev->flags)) 84 return -ENETDOWN; 85 86 if (copy_from_user(buf, user_buf, buf_size)) 87 return -EFAULT; 88 89 buf[buf_size] = '\0'; 90 if (strtobool(buf, &enable)) 91 return -EINVAL; 92 93 if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE)) 94 return -EALREADY; 95 96 hci_req_sync_lock(hdev); 97 if (enable) 98 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL, 99 HCI_CMD_TIMEOUT); 100 else 101 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, 102 HCI_CMD_TIMEOUT); 103 hci_req_sync_unlock(hdev); 104 105 if (IS_ERR(skb)) 106 return PTR_ERR(skb); 107 108 kfree_skb(skb); 109 110 hci_dev_change_flag(hdev, HCI_DUT_MODE); 111 112 return count; 113 } 114 115 static const struct file_operations dut_mode_fops = { 116 .open = simple_open, 117 .read = dut_mode_read, 118 .write = dut_mode_write, 119 .llseek = default_llseek, 120 }; 121 122 static ssize_t vendor_diag_read(struct file *file, char __user *user_buf, 123 size_t count, loff_t *ppos) 124 { 125 struct hci_dev *hdev = file->private_data; 126 char buf[3]; 127 128 buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N'; 129 buf[1] = '\n'; 130 buf[2] = '\0'; 131 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 132 } 133 134 static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf, 135 size_t count, loff_t *ppos) 136 { 137 struct hci_dev *hdev = file->private_data; 138 char buf[32]; 139 size_t buf_size = min(count, (sizeof(buf)-1)); 140 bool enable; 141 int err; 142 143 if (copy_from_user(buf, user_buf, buf_size)) 144 return -EFAULT; 145 146 buf[buf_size] = '\0'; 147 if (strtobool(buf, &enable)) 148 return -EINVAL; 149 150 /* When the diagnostic flags are not persistent and the transport 151 * is not active or in user channel operation, then there is no need 152 * for the vendor callback. Instead just store the desired value and 153 * the setting will be programmed when the controller gets powered on. 154 */ 155 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 156 (!test_bit(HCI_RUNNING, &hdev->flags) || 157 hci_dev_test_flag(hdev, HCI_USER_CHANNEL))) 158 goto done; 159 160 hci_req_sync_lock(hdev); 161 err = hdev->set_diag(hdev, enable); 162 hci_req_sync_unlock(hdev); 163 164 if (err < 0) 165 return err; 166 167 done: 168 if (enable) 169 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG); 170 else 171 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG); 172 173 return count; 174 } 175 176 static const struct file_operations vendor_diag_fops = { 177 .open = simple_open, 178 .read = vendor_diag_read, 179 .write = vendor_diag_write, 180 .llseek = default_llseek, 181 }; 182 183 static void hci_debugfs_create_basic(struct hci_dev *hdev) 184 { 185 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev, 186 &dut_mode_fops); 187 188 if (hdev->set_diag) 189 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev, 190 &vendor_diag_fops); 191 } 192 193 static int hci_reset_req(struct hci_request *req, unsigned long opt) 194 { 195 BT_DBG("%s %ld", req->hdev->name, opt); 196 197 /* Reset device */ 198 set_bit(HCI_RESET, &req->hdev->flags); 199 hci_req_add(req, HCI_OP_RESET, 0, NULL); 200 return 0; 201 } 202 203 static void bredr_init(struct hci_request *req) 204 { 205 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED; 206 207 /* Read Local Supported Features */ 208 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL); 209 210 /* Read Local Version */ 211 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL); 212 213 /* Read BD Address */ 214 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL); 215 } 216 217 static void amp_init1(struct hci_request *req) 218 { 219 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED; 220 221 /* Read Local Version */ 222 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL); 223 224 /* Read Local Supported Commands */ 225 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL); 226 227 /* Read Local AMP Info */ 228 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL); 229 230 /* Read Data Blk size */ 231 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL); 232 233 /* Read Flow Control Mode */ 234 hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL); 235 236 /* Read Location Data */ 237 hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL); 238 } 239 240 static int amp_init2(struct hci_request *req) 241 { 242 /* Read Local Supported Features. Not all AMP controllers 243 * support this so it's placed conditionally in the second 244 * stage init. 245 */ 246 if (req->hdev->commands[14] & 0x20) 247 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL); 248 249 return 0; 250 } 251 252 static int hci_init1_req(struct hci_request *req, unsigned long opt) 253 { 254 struct hci_dev *hdev = req->hdev; 255 256 BT_DBG("%s %ld", hdev->name, opt); 257 258 /* Reset */ 259 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) 260 hci_reset_req(req, 0); 261 262 switch (hdev->dev_type) { 263 case HCI_PRIMARY: 264 bredr_init(req); 265 break; 266 case HCI_AMP: 267 amp_init1(req); 268 break; 269 default: 270 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type); 271 break; 272 } 273 274 return 0; 275 } 276 277 static void bredr_setup(struct hci_request *req) 278 { 279 __le16 param; 280 __u8 flt_type; 281 282 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 283 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL); 284 285 /* Read Class of Device */ 286 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL); 287 288 /* Read Local Name */ 289 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL); 290 291 /* Read Voice Setting */ 292 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL); 293 294 /* Read Number of Supported IAC */ 295 hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL); 296 297 /* Read Current IAC LAP */ 298 hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL); 299 300 /* Clear Event Filters */ 301 flt_type = HCI_FLT_CLEAR_ALL; 302 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type); 303 304 /* Connection accept timeout ~20 secs */ 305 param = cpu_to_le16(0x7d00); 306 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, ¶m); 307 } 308 309 static void le_setup(struct hci_request *req) 310 { 311 struct hci_dev *hdev = req->hdev; 312 313 /* Read LE Buffer Size */ 314 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL); 315 316 /* Read LE Local Supported Features */ 317 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL); 318 319 /* Read LE Supported States */ 320 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL); 321 322 /* LE-only controllers have LE implicitly enabled */ 323 if (!lmp_bredr_capable(hdev)) 324 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 325 } 326 327 static void hci_setup_event_mask(struct hci_request *req) 328 { 329 struct hci_dev *hdev = req->hdev; 330 331 /* The second byte is 0xff instead of 0x9f (two reserved bits 332 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 333 * command otherwise. 334 */ 335 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 336 337 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 338 * any event mask for pre 1.2 devices. 339 */ 340 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 341 return; 342 343 if (lmp_bredr_capable(hdev)) { 344 events[4] |= 0x01; /* Flow Specification Complete */ 345 } else { 346 /* Use a different default for LE-only devices */ 347 memset(events, 0, sizeof(events)); 348 events[1] |= 0x20; /* Command Complete */ 349 events[1] |= 0x40; /* Command Status */ 350 events[1] |= 0x80; /* Hardware Error */ 351 352 /* If the controller supports the Disconnect command, enable 353 * the corresponding event. In addition enable packet flow 354 * control related events. 355 */ 356 if (hdev->commands[0] & 0x20) { 357 events[0] |= 0x10; /* Disconnection Complete */ 358 events[2] |= 0x04; /* Number of Completed Packets */ 359 events[3] |= 0x02; /* Data Buffer Overflow */ 360 } 361 362 /* If the controller supports the Read Remote Version 363 * Information command, enable the corresponding event. 364 */ 365 if (hdev->commands[2] & 0x80) 366 events[1] |= 0x08; /* Read Remote Version Information 367 * Complete 368 */ 369 370 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 371 events[0] |= 0x80; /* Encryption Change */ 372 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 373 } 374 } 375 376 if (lmp_inq_rssi_capable(hdev) || 377 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 378 events[4] |= 0x02; /* Inquiry Result with RSSI */ 379 380 if (lmp_ext_feat_capable(hdev)) 381 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 382 383 if (lmp_esco_capable(hdev)) { 384 events[5] |= 0x08; /* Synchronous Connection Complete */ 385 events[5] |= 0x10; /* Synchronous Connection Changed */ 386 } 387 388 if (lmp_sniffsubr_capable(hdev)) 389 events[5] |= 0x20; /* Sniff Subrating */ 390 391 if (lmp_pause_enc_capable(hdev)) 392 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 393 394 if (lmp_ext_inq_capable(hdev)) 395 events[5] |= 0x40; /* Extended Inquiry Result */ 396 397 if (lmp_no_flush_capable(hdev)) 398 events[7] |= 0x01; /* Enhanced Flush Complete */ 399 400 if (lmp_lsto_capable(hdev)) 401 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 402 403 if (lmp_ssp_capable(hdev)) { 404 events[6] |= 0x01; /* IO Capability Request */ 405 events[6] |= 0x02; /* IO Capability Response */ 406 events[6] |= 0x04; /* User Confirmation Request */ 407 events[6] |= 0x08; /* User Passkey Request */ 408 events[6] |= 0x10; /* Remote OOB Data Request */ 409 events[6] |= 0x20; /* Simple Pairing Complete */ 410 events[7] |= 0x04; /* User Passkey Notification */ 411 events[7] |= 0x08; /* Keypress Notification */ 412 events[7] |= 0x10; /* Remote Host Supported 413 * Features Notification 414 */ 415 } 416 417 if (lmp_le_capable(hdev)) 418 events[7] |= 0x20; /* LE Meta-Event */ 419 420 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events); 421 } 422 423 static int hci_init2_req(struct hci_request *req, unsigned long opt) 424 { 425 struct hci_dev *hdev = req->hdev; 426 427 if (hdev->dev_type == HCI_AMP) 428 return amp_init2(req); 429 430 if (lmp_bredr_capable(hdev)) 431 bredr_setup(req); 432 else 433 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); 434 435 if (lmp_le_capable(hdev)) 436 le_setup(req); 437 438 /* All Bluetooth 1.2 and later controllers should support the 439 * HCI command for reading the local supported commands. 440 * 441 * Unfortunately some controllers indicate Bluetooth 1.2 support, 442 * but do not have support for this command. If that is the case, 443 * the driver can quirk the behavior and skip reading the local 444 * supported commands. 445 */ 446 if (hdev->hci_ver > BLUETOOTH_VER_1_1 && 447 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) 448 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL); 449 450 if (lmp_ssp_capable(hdev)) { 451 /* When SSP is available, then the host features page 452 * should also be available as well. However some 453 * controllers list the max_page as 0 as long as SSP 454 * has not been enabled. To achieve proper debugging 455 * output, force the minimum max_page to 1 at least. 456 */ 457 hdev->max_page = 0x01; 458 459 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) { 460 u8 mode = 0x01; 461 462 hci_req_add(req, HCI_OP_WRITE_SSP_MODE, 463 sizeof(mode), &mode); 464 } else { 465 struct hci_cp_write_eir cp; 466 467 memset(hdev->eir, 0, sizeof(hdev->eir)); 468 memset(&cp, 0, sizeof(cp)); 469 470 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp); 471 } 472 } 473 474 if (lmp_inq_rssi_capable(hdev) || 475 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) { 476 u8 mode; 477 478 /* If Extended Inquiry Result events are supported, then 479 * they are clearly preferred over Inquiry Result with RSSI 480 * events. 481 */ 482 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; 483 484 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode); 485 } 486 487 if (lmp_inq_tx_pwr_capable(hdev)) 488 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL); 489 490 if (lmp_ext_feat_capable(hdev)) { 491 struct hci_cp_read_local_ext_features cp; 492 493 cp.page = 0x01; 494 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES, 495 sizeof(cp), &cp); 496 } 497 498 if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) { 499 u8 enable = 1; 500 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable), 501 &enable); 502 } 503 504 return 0; 505 } 506 507 static void hci_setup_link_policy(struct hci_request *req) 508 { 509 struct hci_dev *hdev = req->hdev; 510 struct hci_cp_write_def_link_policy cp; 511 u16 link_policy = 0; 512 513 if (lmp_rswitch_capable(hdev)) 514 link_policy |= HCI_LP_RSWITCH; 515 if (lmp_hold_capable(hdev)) 516 link_policy |= HCI_LP_HOLD; 517 if (lmp_sniff_capable(hdev)) 518 link_policy |= HCI_LP_SNIFF; 519 if (lmp_park_capable(hdev)) 520 link_policy |= HCI_LP_PARK; 521 522 cp.policy = cpu_to_le16(link_policy); 523 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp); 524 } 525 526 static void hci_set_le_support(struct hci_request *req) 527 { 528 struct hci_dev *hdev = req->hdev; 529 struct hci_cp_write_le_host_supported cp; 530 531 /* LE-only devices do not support explicit enablement */ 532 if (!lmp_bredr_capable(hdev)) 533 return; 534 535 memset(&cp, 0, sizeof(cp)); 536 537 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 538 cp.le = 0x01; 539 cp.simul = 0x00; 540 } 541 542 if (cp.le != lmp_host_le_capable(hdev)) 543 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp), 544 &cp); 545 } 546 547 static void hci_set_event_mask_page_2(struct hci_request *req) 548 { 549 struct hci_dev *hdev = req->hdev; 550 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 551 bool changed = false; 552 553 /* If Connectionless Slave Broadcast master role is supported 554 * enable all necessary events for it. 555 */ 556 if (lmp_csb_master_capable(hdev)) { 557 events[1] |= 0x40; /* Triggered Clock Capture */ 558 events[1] |= 0x80; /* Synchronization Train Complete */ 559 events[2] |= 0x10; /* Slave Page Response Timeout */ 560 events[2] |= 0x20; /* CSB Channel Map Change */ 561 changed = true; 562 } 563 564 /* If Connectionless Slave Broadcast slave role is supported 565 * enable all necessary events for it. 566 */ 567 if (lmp_csb_slave_capable(hdev)) { 568 events[2] |= 0x01; /* Synchronization Train Received */ 569 events[2] |= 0x02; /* CSB Receive */ 570 events[2] |= 0x04; /* CSB Timeout */ 571 events[2] |= 0x08; /* Truncated Page Complete */ 572 changed = true; 573 } 574 575 /* Enable Authenticated Payload Timeout Expired event if supported */ 576 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { 577 events[2] |= 0x80; 578 changed = true; 579 } 580 581 /* Some Broadcom based controllers indicate support for Set Event 582 * Mask Page 2 command, but then actually do not support it. Since 583 * the default value is all bits set to zero, the command is only 584 * required if the event mask has to be changed. In case no change 585 * to the event mask is needed, skip this command. 586 */ 587 if (changed) 588 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, 589 sizeof(events), events); 590 } 591 592 static int hci_init3_req(struct hci_request *req, unsigned long opt) 593 { 594 struct hci_dev *hdev = req->hdev; 595 u8 p; 596 597 hci_setup_event_mask(req); 598 599 if (hdev->commands[6] & 0x20 && 600 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) { 601 struct hci_cp_read_stored_link_key cp; 602 603 bacpy(&cp.bdaddr, BDADDR_ANY); 604 cp.read_all = 0x01; 605 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp); 606 } 607 608 if (hdev->commands[5] & 0x10) 609 hci_setup_link_policy(req); 610 611 if (hdev->commands[8] & 0x01) 612 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL); 613 614 /* Some older Broadcom based Bluetooth 1.2 controllers do not 615 * support the Read Page Scan Type command. Check support for 616 * this command in the bit mask of supported commands. 617 */ 618 if (hdev->commands[13] & 0x01) 619 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL); 620 621 if (lmp_le_capable(hdev)) { 622 u8 events[8]; 623 624 memset(events, 0, sizeof(events)); 625 626 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 627 events[0] |= 0x10; /* LE Long Term Key Request */ 628 629 /* If controller supports the Connection Parameters Request 630 * Link Layer Procedure, enable the corresponding event. 631 */ 632 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 633 events[0] |= 0x20; /* LE Remote Connection 634 * Parameter Request 635 */ 636 637 /* If the controller supports the Data Length Extension 638 * feature, enable the corresponding event. 639 */ 640 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) 641 events[0] |= 0x40; /* LE Data Length Change */ 642 643 /* If the controller supports Extended Scanner Filter 644 * Policies, enable the correspondig event. 645 */ 646 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) 647 events[1] |= 0x04; /* LE Direct Advertising 648 * Report 649 */ 650 651 /* If the controller supports Channel Selection Algorithm #2 652 * feature, enable the corresponding event. 653 */ 654 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) 655 events[2] |= 0x08; /* LE Channel Selection 656 * Algorithm 657 */ 658 659 /* If the controller supports the LE Set Scan Enable command, 660 * enable the corresponding advertising report event. 661 */ 662 if (hdev->commands[26] & 0x08) 663 events[0] |= 0x02; /* LE Advertising Report */ 664 665 /* If the controller supports the LE Create Connection 666 * command, enable the corresponding event. 667 */ 668 if (hdev->commands[26] & 0x10) 669 events[0] |= 0x01; /* LE Connection Complete */ 670 671 /* If the controller supports the LE Connection Update 672 * command, enable the corresponding event. 673 */ 674 if (hdev->commands[27] & 0x04) 675 events[0] |= 0x04; /* LE Connection Update 676 * Complete 677 */ 678 679 /* If the controller supports the LE Read Remote Used Features 680 * command, enable the corresponding event. 681 */ 682 if (hdev->commands[27] & 0x20) 683 events[0] |= 0x08; /* LE Read Remote Used 684 * Features Complete 685 */ 686 687 /* If the controller supports the LE Read Local P-256 688 * Public Key command, enable the corresponding event. 689 */ 690 if (hdev->commands[34] & 0x02) 691 events[0] |= 0x80; /* LE Read Local P-256 692 * Public Key Complete 693 */ 694 695 /* If the controller supports the LE Generate DHKey 696 * command, enable the corresponding event. 697 */ 698 if (hdev->commands[34] & 0x04) 699 events[1] |= 0x01; /* LE Generate DHKey Complete */ 700 701 /* If the controller supports the LE Set Default PHY or 702 * LE Set PHY commands, enable the corresponding event. 703 */ 704 if (hdev->commands[35] & (0x20 | 0x40)) 705 events[1] |= 0x08; /* LE PHY Update Complete */ 706 707 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events), 708 events); 709 710 if (hdev->commands[25] & 0x40) { 711 /* Read LE Advertising Channel TX Power */ 712 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL); 713 } 714 715 if (hdev->commands[26] & 0x40) { 716 /* Read LE White List Size */ 717 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE, 718 0, NULL); 719 } 720 721 if (hdev->commands[26] & 0x80) { 722 /* Clear LE White List */ 723 hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL); 724 } 725 726 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) { 727 /* Read LE Maximum Data Length */ 728 hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL); 729 730 /* Read LE Suggested Default Data Length */ 731 hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL); 732 } 733 734 hci_set_le_support(req); 735 } 736 737 /* Read features beyond page 1 if available */ 738 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) { 739 struct hci_cp_read_local_ext_features cp; 740 741 cp.page = p; 742 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES, 743 sizeof(cp), &cp); 744 } 745 746 return 0; 747 } 748 749 static int hci_init4_req(struct hci_request *req, unsigned long opt) 750 { 751 struct hci_dev *hdev = req->hdev; 752 753 /* Some Broadcom based Bluetooth controllers do not support the 754 * Delete Stored Link Key command. They are clearly indicating its 755 * absence in the bit mask of supported commands. 756 * 757 * Check the supported commands and only if the the command is marked 758 * as supported send it. If not supported assume that the controller 759 * does not have actual support for stored link keys which makes this 760 * command redundant anyway. 761 * 762 * Some controllers indicate that they support handling deleting 763 * stored link keys, but they don't. The quirk lets a driver 764 * just disable this command. 765 */ 766 if (hdev->commands[6] & 0x80 && 767 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) { 768 struct hci_cp_delete_stored_link_key cp; 769 770 bacpy(&cp.bdaddr, BDADDR_ANY); 771 cp.delete_all = 0x01; 772 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY, 773 sizeof(cp), &cp); 774 } 775 776 /* Set event mask page 2 if the HCI command for it is supported */ 777 if (hdev->commands[22] & 0x04) 778 hci_set_event_mask_page_2(req); 779 780 /* Read local codec list if the HCI command is supported */ 781 if (hdev->commands[29] & 0x20) 782 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL); 783 784 /* Get MWS transport configuration if the HCI command is supported */ 785 if (hdev->commands[30] & 0x08) 786 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL); 787 788 /* Check for Synchronization Train support */ 789 if (lmp_sync_train_capable(hdev)) 790 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL); 791 792 /* Enable Secure Connections if supported and configured */ 793 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) && 794 bredr_sc_enabled(hdev)) { 795 u8 support = 0x01; 796 797 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT, 798 sizeof(support), &support); 799 } 800 801 /* Set Suggested Default Data Length to maximum if supported */ 802 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) { 803 struct hci_cp_le_write_def_data_len cp; 804 805 cp.tx_len = hdev->le_max_tx_len; 806 cp.tx_time = hdev->le_max_tx_time; 807 hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp); 808 } 809 810 /* Set Default PHY parameters if command is supported */ 811 if (hdev->commands[35] & 0x20) { 812 struct hci_cp_le_set_default_phy cp; 813 814 /* No transmitter PHY or receiver PHY preferences */ 815 cp.all_phys = 0x03; 816 cp.tx_phys = 0; 817 cp.rx_phys = 0; 818 819 hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp); 820 } 821 822 return 0; 823 } 824 825 static int __hci_init(struct hci_dev *hdev) 826 { 827 int err; 828 829 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL); 830 if (err < 0) 831 return err; 832 833 if (hci_dev_test_flag(hdev, HCI_SETUP)) 834 hci_debugfs_create_basic(hdev); 835 836 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL); 837 if (err < 0) 838 return err; 839 840 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode 841 * BR/EDR/LE type controllers. AMP controllers only need the 842 * first two stages of init. 843 */ 844 if (hdev->dev_type != HCI_PRIMARY) 845 return 0; 846 847 err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL); 848 if (err < 0) 849 return err; 850 851 err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL); 852 if (err < 0) 853 return err; 854 855 /* This function is only called when the controller is actually in 856 * configured state. When the controller is marked as unconfigured, 857 * this initialization procedure is not run. 858 * 859 * It means that it is possible that a controller runs through its 860 * setup phase and then discovers missing settings. If that is the 861 * case, then this function will not be called. It then will only 862 * be called during the config phase. 863 * 864 * So only when in setup phase or config phase, create the debugfs 865 * entries and register the SMP channels. 866 */ 867 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 868 !hci_dev_test_flag(hdev, HCI_CONFIG)) 869 return 0; 870 871 hci_debugfs_create_common(hdev); 872 873 if (lmp_bredr_capable(hdev)) 874 hci_debugfs_create_bredr(hdev); 875 876 if (lmp_le_capable(hdev)) 877 hci_debugfs_create_le(hdev); 878 879 return 0; 880 } 881 882 static int hci_init0_req(struct hci_request *req, unsigned long opt) 883 { 884 struct hci_dev *hdev = req->hdev; 885 886 BT_DBG("%s %ld", hdev->name, opt); 887 888 /* Reset */ 889 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) 890 hci_reset_req(req, 0); 891 892 /* Read Local Version */ 893 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL); 894 895 /* Read BD Address */ 896 if (hdev->set_bdaddr) 897 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL); 898 899 return 0; 900 } 901 902 static int __hci_unconf_init(struct hci_dev *hdev) 903 { 904 int err; 905 906 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 907 return 0; 908 909 err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL); 910 if (err < 0) 911 return err; 912 913 if (hci_dev_test_flag(hdev, HCI_SETUP)) 914 hci_debugfs_create_basic(hdev); 915 916 return 0; 917 } 918 919 static int hci_scan_req(struct hci_request *req, unsigned long opt) 920 { 921 __u8 scan = opt; 922 923 BT_DBG("%s %x", req->hdev->name, scan); 924 925 /* Inquiry and Page scans */ 926 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); 927 return 0; 928 } 929 930 static int hci_auth_req(struct hci_request *req, unsigned long opt) 931 { 932 __u8 auth = opt; 933 934 BT_DBG("%s %x", req->hdev->name, auth); 935 936 /* Authentication */ 937 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth); 938 return 0; 939 } 940 941 static int hci_encrypt_req(struct hci_request *req, unsigned long opt) 942 { 943 __u8 encrypt = opt; 944 945 BT_DBG("%s %x", req->hdev->name, encrypt); 946 947 /* Encryption */ 948 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt); 949 return 0; 950 } 951 952 static int hci_linkpol_req(struct hci_request *req, unsigned long opt) 953 { 954 __le16 policy = cpu_to_le16(opt); 955 956 BT_DBG("%s %x", req->hdev->name, policy); 957 958 /* Default link policy */ 959 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy); 960 return 0; 961 } 962 963 /* Get HCI device by index. 964 * Device is held on return. */ 965 struct hci_dev *hci_dev_get(int index) 966 { 967 struct hci_dev *hdev = NULL, *d; 968 969 BT_DBG("%d", index); 970 971 if (index < 0) 972 return NULL; 973 974 read_lock(&hci_dev_list_lock); 975 list_for_each_entry(d, &hci_dev_list, list) { 976 if (d->id == index) { 977 hdev = hci_dev_hold(d); 978 break; 979 } 980 } 981 read_unlock(&hci_dev_list_lock); 982 return hdev; 983 } 984 985 /* ---- Inquiry support ---- */ 986 987 bool hci_discovery_active(struct hci_dev *hdev) 988 { 989 struct discovery_state *discov = &hdev->discovery; 990 991 switch (discov->state) { 992 case DISCOVERY_FINDING: 993 case DISCOVERY_RESOLVING: 994 return true; 995 996 default: 997 return false; 998 } 999 } 1000 1001 void hci_discovery_set_state(struct hci_dev *hdev, int state) 1002 { 1003 int old_state = hdev->discovery.state; 1004 1005 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state); 1006 1007 if (old_state == state) 1008 return; 1009 1010 hdev->discovery.state = state; 1011 1012 switch (state) { 1013 case DISCOVERY_STOPPED: 1014 hci_update_background_scan(hdev); 1015 1016 if (old_state != DISCOVERY_STARTING) 1017 mgmt_discovering(hdev, 0); 1018 break; 1019 case DISCOVERY_STARTING: 1020 break; 1021 case DISCOVERY_FINDING: 1022 mgmt_discovering(hdev, 1); 1023 break; 1024 case DISCOVERY_RESOLVING: 1025 break; 1026 case DISCOVERY_STOPPING: 1027 break; 1028 } 1029 } 1030 1031 void hci_inquiry_cache_flush(struct hci_dev *hdev) 1032 { 1033 struct discovery_state *cache = &hdev->discovery; 1034 struct inquiry_entry *p, *n; 1035 1036 list_for_each_entry_safe(p, n, &cache->all, all) { 1037 list_del(&p->all); 1038 kfree(p); 1039 } 1040 1041 INIT_LIST_HEAD(&cache->unknown); 1042 INIT_LIST_HEAD(&cache->resolve); 1043 } 1044 1045 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, 1046 bdaddr_t *bdaddr) 1047 { 1048 struct discovery_state *cache = &hdev->discovery; 1049 struct inquiry_entry *e; 1050 1051 BT_DBG("cache %p, %pMR", cache, bdaddr); 1052 1053 list_for_each_entry(e, &cache->all, all) { 1054 if (!bacmp(&e->data.bdaddr, bdaddr)) 1055 return e; 1056 } 1057 1058 return NULL; 1059 } 1060 1061 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, 1062 bdaddr_t *bdaddr) 1063 { 1064 struct discovery_state *cache = &hdev->discovery; 1065 struct inquiry_entry *e; 1066 1067 BT_DBG("cache %p, %pMR", cache, bdaddr); 1068 1069 list_for_each_entry(e, &cache->unknown, list) { 1070 if (!bacmp(&e->data.bdaddr, bdaddr)) 1071 return e; 1072 } 1073 1074 return NULL; 1075 } 1076 1077 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, 1078 bdaddr_t *bdaddr, 1079 int state) 1080 { 1081 struct discovery_state *cache = &hdev->discovery; 1082 struct inquiry_entry *e; 1083 1084 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state); 1085 1086 list_for_each_entry(e, &cache->resolve, list) { 1087 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state) 1088 return e; 1089 if (!bacmp(&e->data.bdaddr, bdaddr)) 1090 return e; 1091 } 1092 1093 return NULL; 1094 } 1095 1096 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, 1097 struct inquiry_entry *ie) 1098 { 1099 struct discovery_state *cache = &hdev->discovery; 1100 struct list_head *pos = &cache->resolve; 1101 struct inquiry_entry *p; 1102 1103 list_del(&ie->list); 1104 1105 list_for_each_entry(p, &cache->resolve, list) { 1106 if (p->name_state != NAME_PENDING && 1107 abs(p->data.rssi) >= abs(ie->data.rssi)) 1108 break; 1109 pos = &p->list; 1110 } 1111 1112 list_add(&ie->list, pos); 1113 } 1114 1115 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, 1116 bool name_known) 1117 { 1118 struct discovery_state *cache = &hdev->discovery; 1119 struct inquiry_entry *ie; 1120 u32 flags = 0; 1121 1122 BT_DBG("cache %p, %pMR", cache, &data->bdaddr); 1123 1124 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR); 1125 1126 if (!data->ssp_mode) 1127 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 1128 1129 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr); 1130 if (ie) { 1131 if (!ie->data.ssp_mode) 1132 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 1133 1134 if (ie->name_state == NAME_NEEDED && 1135 data->rssi != ie->data.rssi) { 1136 ie->data.rssi = data->rssi; 1137 hci_inquiry_cache_update_resolve(hdev, ie); 1138 } 1139 1140 goto update; 1141 } 1142 1143 /* Entry not in the cache. Add new one. */ 1144 ie = kzalloc(sizeof(*ie), GFP_KERNEL); 1145 if (!ie) { 1146 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 1147 goto done; 1148 } 1149 1150 list_add(&ie->all, &cache->all); 1151 1152 if (name_known) { 1153 ie->name_state = NAME_KNOWN; 1154 } else { 1155 ie->name_state = NAME_NOT_KNOWN; 1156 list_add(&ie->list, &cache->unknown); 1157 } 1158 1159 update: 1160 if (name_known && ie->name_state != NAME_KNOWN && 1161 ie->name_state != NAME_PENDING) { 1162 ie->name_state = NAME_KNOWN; 1163 list_del(&ie->list); 1164 } 1165 1166 memcpy(&ie->data, data, sizeof(*data)); 1167 ie->timestamp = jiffies; 1168 cache->timestamp = jiffies; 1169 1170 if (ie->name_state == NAME_NOT_KNOWN) 1171 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 1172 1173 done: 1174 return flags; 1175 } 1176 1177 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf) 1178 { 1179 struct discovery_state *cache = &hdev->discovery; 1180 struct inquiry_info *info = (struct inquiry_info *) buf; 1181 struct inquiry_entry *e; 1182 int copied = 0; 1183 1184 list_for_each_entry(e, &cache->all, all) { 1185 struct inquiry_data *data = &e->data; 1186 1187 if (copied >= num) 1188 break; 1189 1190 bacpy(&info->bdaddr, &data->bdaddr); 1191 info->pscan_rep_mode = data->pscan_rep_mode; 1192 info->pscan_period_mode = data->pscan_period_mode; 1193 info->pscan_mode = data->pscan_mode; 1194 memcpy(info->dev_class, data->dev_class, 3); 1195 info->clock_offset = data->clock_offset; 1196 1197 info++; 1198 copied++; 1199 } 1200 1201 BT_DBG("cache %p, copied %d", cache, copied); 1202 return copied; 1203 } 1204 1205 static int hci_inq_req(struct hci_request *req, unsigned long opt) 1206 { 1207 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt; 1208 struct hci_dev *hdev = req->hdev; 1209 struct hci_cp_inquiry cp; 1210 1211 BT_DBG("%s", hdev->name); 1212 1213 if (test_bit(HCI_INQUIRY, &hdev->flags)) 1214 return 0; 1215 1216 /* Start Inquiry */ 1217 memcpy(&cp.lap, &ir->lap, 3); 1218 cp.length = ir->length; 1219 cp.num_rsp = ir->num_rsp; 1220 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp); 1221 1222 return 0; 1223 } 1224 1225 int hci_inquiry(void __user *arg) 1226 { 1227 __u8 __user *ptr = arg; 1228 struct hci_inquiry_req ir; 1229 struct hci_dev *hdev; 1230 int err = 0, do_inquiry = 0, max_rsp; 1231 long timeo; 1232 __u8 *buf; 1233 1234 if (copy_from_user(&ir, ptr, sizeof(ir))) 1235 return -EFAULT; 1236 1237 hdev = hci_dev_get(ir.dev_id); 1238 if (!hdev) 1239 return -ENODEV; 1240 1241 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1242 err = -EBUSY; 1243 goto done; 1244 } 1245 1246 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1247 err = -EOPNOTSUPP; 1248 goto done; 1249 } 1250 1251 if (hdev->dev_type != HCI_PRIMARY) { 1252 err = -EOPNOTSUPP; 1253 goto done; 1254 } 1255 1256 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 1257 err = -EOPNOTSUPP; 1258 goto done; 1259 } 1260 1261 hci_dev_lock(hdev); 1262 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX || 1263 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) { 1264 hci_inquiry_cache_flush(hdev); 1265 do_inquiry = 1; 1266 } 1267 hci_dev_unlock(hdev); 1268 1269 timeo = ir.length * msecs_to_jiffies(2000); 1270 1271 if (do_inquiry) { 1272 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir, 1273 timeo, NULL); 1274 if (err < 0) 1275 goto done; 1276 1277 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is 1278 * cleared). If it is interrupted by a signal, return -EINTR. 1279 */ 1280 if (wait_on_bit(&hdev->flags, HCI_INQUIRY, 1281 TASK_INTERRUPTIBLE)) 1282 return -EINTR; 1283 } 1284 1285 /* for unlimited number of responses we will use buffer with 1286 * 255 entries 1287 */ 1288 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp; 1289 1290 /* cache_dump can't sleep. Therefore we allocate temp buffer and then 1291 * copy it to the user space. 1292 */ 1293 buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL); 1294 if (!buf) { 1295 err = -ENOMEM; 1296 goto done; 1297 } 1298 1299 hci_dev_lock(hdev); 1300 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf); 1301 hci_dev_unlock(hdev); 1302 1303 BT_DBG("num_rsp %d", ir.num_rsp); 1304 1305 if (!copy_to_user(ptr, &ir, sizeof(ir))) { 1306 ptr += sizeof(ir); 1307 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) * 1308 ir.num_rsp)) 1309 err = -EFAULT; 1310 } else 1311 err = -EFAULT; 1312 1313 kfree(buf); 1314 1315 done: 1316 hci_dev_put(hdev); 1317 return err; 1318 } 1319 1320 static int hci_dev_do_open(struct hci_dev *hdev) 1321 { 1322 int ret = 0; 1323 1324 BT_DBG("%s %p", hdev->name, hdev); 1325 1326 hci_req_sync_lock(hdev); 1327 1328 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 1329 ret = -ENODEV; 1330 goto done; 1331 } 1332 1333 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 1334 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 1335 /* Check for rfkill but allow the HCI setup stage to 1336 * proceed (which in itself doesn't cause any RF activity). 1337 */ 1338 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { 1339 ret = -ERFKILL; 1340 goto done; 1341 } 1342 1343 /* Check for valid public address or a configured static 1344 * random adddress, but let the HCI setup proceed to 1345 * be able to determine if there is a public address 1346 * or not. 1347 * 1348 * In case of user channel usage, it is not important 1349 * if a public address or static random address is 1350 * available. 1351 * 1352 * This check is only valid for BR/EDR controllers 1353 * since AMP controllers do not have an address. 1354 */ 1355 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1356 hdev->dev_type == HCI_PRIMARY && 1357 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 1358 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 1359 ret = -EADDRNOTAVAIL; 1360 goto done; 1361 } 1362 } 1363 1364 if (test_bit(HCI_UP, &hdev->flags)) { 1365 ret = -EALREADY; 1366 goto done; 1367 } 1368 1369 if (hdev->open(hdev)) { 1370 ret = -EIO; 1371 goto done; 1372 } 1373 1374 set_bit(HCI_RUNNING, &hdev->flags); 1375 hci_sock_dev_event(hdev, HCI_DEV_OPEN); 1376 1377 atomic_set(&hdev->cmd_cnt, 1); 1378 set_bit(HCI_INIT, &hdev->flags); 1379 1380 if (hci_dev_test_flag(hdev, HCI_SETUP)) { 1381 hci_sock_dev_event(hdev, HCI_DEV_SETUP); 1382 1383 if (hdev->setup) 1384 ret = hdev->setup(hdev); 1385 1386 /* The transport driver can set these quirks before 1387 * creating the HCI device or in its setup callback. 1388 * 1389 * In case any of them is set, the controller has to 1390 * start up as unconfigured. 1391 */ 1392 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || 1393 test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks)) 1394 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 1395 1396 /* For an unconfigured controller it is required to 1397 * read at least the version information provided by 1398 * the Read Local Version Information command. 1399 * 1400 * If the set_bdaddr driver callback is provided, then 1401 * also the original Bluetooth public device address 1402 * will be read using the Read BD Address command. 1403 */ 1404 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 1405 ret = __hci_unconf_init(hdev); 1406 } 1407 1408 if (hci_dev_test_flag(hdev, HCI_CONFIG)) { 1409 /* If public address change is configured, ensure that 1410 * the address gets programmed. If the driver does not 1411 * support changing the public address, fail the power 1412 * on procedure. 1413 */ 1414 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 1415 hdev->set_bdaddr) 1416 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 1417 else 1418 ret = -EADDRNOTAVAIL; 1419 } 1420 1421 if (!ret) { 1422 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 1423 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1424 ret = __hci_init(hdev); 1425 if (!ret && hdev->post_init) 1426 ret = hdev->post_init(hdev); 1427 } 1428 } 1429 1430 /* If the HCI Reset command is clearing all diagnostic settings, 1431 * then they need to be reprogrammed after the init procedure 1432 * completed. 1433 */ 1434 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 1435 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1436 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) 1437 ret = hdev->set_diag(hdev, true); 1438 1439 clear_bit(HCI_INIT, &hdev->flags); 1440 1441 if (!ret) { 1442 hci_dev_hold(hdev); 1443 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 1444 set_bit(HCI_UP, &hdev->flags); 1445 hci_sock_dev_event(hdev, HCI_DEV_UP); 1446 hci_leds_update_powered(hdev, true); 1447 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 1448 !hci_dev_test_flag(hdev, HCI_CONFIG) && 1449 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 1450 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1451 hci_dev_test_flag(hdev, HCI_MGMT) && 1452 hdev->dev_type == HCI_PRIMARY) { 1453 ret = __hci_req_hci_power_on(hdev); 1454 mgmt_power_on(hdev, ret); 1455 } 1456 } else { 1457 /* Init failed, cleanup */ 1458 flush_work(&hdev->tx_work); 1459 flush_work(&hdev->cmd_work); 1460 flush_work(&hdev->rx_work); 1461 1462 skb_queue_purge(&hdev->cmd_q); 1463 skb_queue_purge(&hdev->rx_q); 1464 1465 if (hdev->flush) 1466 hdev->flush(hdev); 1467 1468 if (hdev->sent_cmd) { 1469 kfree_skb(hdev->sent_cmd); 1470 hdev->sent_cmd = NULL; 1471 } 1472 1473 clear_bit(HCI_RUNNING, &hdev->flags); 1474 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 1475 1476 hdev->close(hdev); 1477 hdev->flags &= BIT(HCI_RAW); 1478 } 1479 1480 done: 1481 hci_req_sync_unlock(hdev); 1482 return ret; 1483 } 1484 1485 /* ---- HCI ioctl helpers ---- */ 1486 1487 int hci_dev_open(__u16 dev) 1488 { 1489 struct hci_dev *hdev; 1490 int err; 1491 1492 hdev = hci_dev_get(dev); 1493 if (!hdev) 1494 return -ENODEV; 1495 1496 /* Devices that are marked as unconfigured can only be powered 1497 * up as user channel. Trying to bring them up as normal devices 1498 * will result into a failure. Only user channel operation is 1499 * possible. 1500 * 1501 * When this function is called for a user channel, the flag 1502 * HCI_USER_CHANNEL will be set first before attempting to 1503 * open the device. 1504 */ 1505 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 1506 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1507 err = -EOPNOTSUPP; 1508 goto done; 1509 } 1510 1511 /* We need to ensure that no other power on/off work is pending 1512 * before proceeding to call hci_dev_do_open. This is 1513 * particularly important if the setup procedure has not yet 1514 * completed. 1515 */ 1516 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) 1517 cancel_delayed_work(&hdev->power_off); 1518 1519 /* After this call it is guaranteed that the setup procedure 1520 * has finished. This means that error conditions like RFKILL 1521 * or no valid public or static random address apply. 1522 */ 1523 flush_workqueue(hdev->req_workqueue); 1524 1525 /* For controllers not using the management interface and that 1526 * are brought up using legacy ioctl, set the HCI_BONDABLE bit 1527 * so that pairing works for them. Once the management interface 1528 * is in use this bit will be cleared again and userspace has 1529 * to explicitly enable it. 1530 */ 1531 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1532 !hci_dev_test_flag(hdev, HCI_MGMT)) 1533 hci_dev_set_flag(hdev, HCI_BONDABLE); 1534 1535 err = hci_dev_do_open(hdev); 1536 1537 done: 1538 hci_dev_put(hdev); 1539 return err; 1540 } 1541 1542 /* This function requires the caller holds hdev->lock */ 1543 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 1544 { 1545 struct hci_conn_params *p; 1546 1547 list_for_each_entry(p, &hdev->le_conn_params, list) { 1548 if (p->conn) { 1549 hci_conn_drop(p->conn); 1550 hci_conn_put(p->conn); 1551 p->conn = NULL; 1552 } 1553 list_del_init(&p->action); 1554 } 1555 1556 BT_DBG("All LE pending actions cleared"); 1557 } 1558 1559 int hci_dev_do_close(struct hci_dev *hdev) 1560 { 1561 bool auto_off; 1562 1563 BT_DBG("%s %p", hdev->name, hdev); 1564 1565 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && 1566 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1567 test_bit(HCI_UP, &hdev->flags)) { 1568 /* Execute vendor specific shutdown routine */ 1569 if (hdev->shutdown) 1570 hdev->shutdown(hdev); 1571 } 1572 1573 cancel_delayed_work(&hdev->power_off); 1574 1575 hci_request_cancel_all(hdev); 1576 hci_req_sync_lock(hdev); 1577 1578 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 1579 cancel_delayed_work_sync(&hdev->cmd_timer); 1580 hci_req_sync_unlock(hdev); 1581 return 0; 1582 } 1583 1584 hci_leds_update_powered(hdev, false); 1585 1586 /* Flush RX and TX works */ 1587 flush_work(&hdev->tx_work); 1588 flush_work(&hdev->rx_work); 1589 1590 if (hdev->discov_timeout > 0) { 1591 hdev->discov_timeout = 0; 1592 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 1593 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 1594 } 1595 1596 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) 1597 cancel_delayed_work(&hdev->service_cache); 1598 1599 if (hci_dev_test_flag(hdev, HCI_MGMT)) 1600 cancel_delayed_work_sync(&hdev->rpa_expired); 1601 1602 /* Avoid potential lockdep warnings from the *_flush() calls by 1603 * ensuring the workqueue is empty up front. 1604 */ 1605 drain_workqueue(hdev->workqueue); 1606 1607 hci_dev_lock(hdev); 1608 1609 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 1610 1611 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); 1612 1613 if (!auto_off && hdev->dev_type == HCI_PRIMARY && 1614 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1615 hci_dev_test_flag(hdev, HCI_MGMT)) 1616 __mgmt_power_off(hdev); 1617 1618 hci_inquiry_cache_flush(hdev); 1619 hci_pend_le_actions_clear(hdev); 1620 hci_conn_hash_flush(hdev); 1621 hci_dev_unlock(hdev); 1622 1623 smp_unregister(hdev); 1624 1625 hci_sock_dev_event(hdev, HCI_DEV_DOWN); 1626 1627 if (hdev->flush) 1628 hdev->flush(hdev); 1629 1630 /* Reset device */ 1631 skb_queue_purge(&hdev->cmd_q); 1632 atomic_set(&hdev->cmd_cnt, 1); 1633 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && 1634 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1635 set_bit(HCI_INIT, &hdev->flags); 1636 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL); 1637 clear_bit(HCI_INIT, &hdev->flags); 1638 } 1639 1640 /* flush cmd work */ 1641 flush_work(&hdev->cmd_work); 1642 1643 /* Drop queues */ 1644 skb_queue_purge(&hdev->rx_q); 1645 skb_queue_purge(&hdev->cmd_q); 1646 skb_queue_purge(&hdev->raw_q); 1647 1648 /* Drop last sent command */ 1649 if (hdev->sent_cmd) { 1650 cancel_delayed_work_sync(&hdev->cmd_timer); 1651 kfree_skb(hdev->sent_cmd); 1652 hdev->sent_cmd = NULL; 1653 } 1654 1655 clear_bit(HCI_RUNNING, &hdev->flags); 1656 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 1657 1658 /* After this point our queues are empty 1659 * and no tasks are scheduled. */ 1660 hdev->close(hdev); 1661 1662 /* Clear flags */ 1663 hdev->flags &= BIT(HCI_RAW); 1664 hci_dev_clear_volatile_flags(hdev); 1665 1666 /* Controller radio is available but is currently powered down */ 1667 hdev->amp_status = AMP_STATUS_POWERED_DOWN; 1668 1669 memset(hdev->eir, 0, sizeof(hdev->eir)); 1670 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 1671 bacpy(&hdev->random_addr, BDADDR_ANY); 1672 1673 hci_req_sync_unlock(hdev); 1674 1675 hci_dev_put(hdev); 1676 return 0; 1677 } 1678 1679 int hci_dev_close(__u16 dev) 1680 { 1681 struct hci_dev *hdev; 1682 int err; 1683 1684 hdev = hci_dev_get(dev); 1685 if (!hdev) 1686 return -ENODEV; 1687 1688 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1689 err = -EBUSY; 1690 goto done; 1691 } 1692 1693 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) 1694 cancel_delayed_work(&hdev->power_off); 1695 1696 err = hci_dev_do_close(hdev); 1697 1698 done: 1699 hci_dev_put(hdev); 1700 return err; 1701 } 1702 1703 static int hci_dev_do_reset(struct hci_dev *hdev) 1704 { 1705 int ret; 1706 1707 BT_DBG("%s %p", hdev->name, hdev); 1708 1709 hci_req_sync_lock(hdev); 1710 1711 /* Drop queues */ 1712 skb_queue_purge(&hdev->rx_q); 1713 skb_queue_purge(&hdev->cmd_q); 1714 1715 /* Avoid potential lockdep warnings from the *_flush() calls by 1716 * ensuring the workqueue is empty up front. 1717 */ 1718 drain_workqueue(hdev->workqueue); 1719 1720 hci_dev_lock(hdev); 1721 hci_inquiry_cache_flush(hdev); 1722 hci_conn_hash_flush(hdev); 1723 hci_dev_unlock(hdev); 1724 1725 if (hdev->flush) 1726 hdev->flush(hdev); 1727 1728 atomic_set(&hdev->cmd_cnt, 1); 1729 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0; 1730 1731 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL); 1732 1733 hci_req_sync_unlock(hdev); 1734 return ret; 1735 } 1736 1737 int hci_dev_reset(__u16 dev) 1738 { 1739 struct hci_dev *hdev; 1740 int err; 1741 1742 hdev = hci_dev_get(dev); 1743 if (!hdev) 1744 return -ENODEV; 1745 1746 if (!test_bit(HCI_UP, &hdev->flags)) { 1747 err = -ENETDOWN; 1748 goto done; 1749 } 1750 1751 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1752 err = -EBUSY; 1753 goto done; 1754 } 1755 1756 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1757 err = -EOPNOTSUPP; 1758 goto done; 1759 } 1760 1761 err = hci_dev_do_reset(hdev); 1762 1763 done: 1764 hci_dev_put(hdev); 1765 return err; 1766 } 1767 1768 int hci_dev_reset_stat(__u16 dev) 1769 { 1770 struct hci_dev *hdev; 1771 int ret = 0; 1772 1773 hdev = hci_dev_get(dev); 1774 if (!hdev) 1775 return -ENODEV; 1776 1777 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1778 ret = -EBUSY; 1779 goto done; 1780 } 1781 1782 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1783 ret = -EOPNOTSUPP; 1784 goto done; 1785 } 1786 1787 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats)); 1788 1789 done: 1790 hci_dev_put(hdev); 1791 return ret; 1792 } 1793 1794 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan) 1795 { 1796 bool conn_changed, discov_changed; 1797 1798 BT_DBG("%s scan 0x%02x", hdev->name, scan); 1799 1800 if ((scan & SCAN_PAGE)) 1801 conn_changed = !hci_dev_test_and_set_flag(hdev, 1802 HCI_CONNECTABLE); 1803 else 1804 conn_changed = hci_dev_test_and_clear_flag(hdev, 1805 HCI_CONNECTABLE); 1806 1807 if ((scan & SCAN_INQUIRY)) { 1808 discov_changed = !hci_dev_test_and_set_flag(hdev, 1809 HCI_DISCOVERABLE); 1810 } else { 1811 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 1812 discov_changed = hci_dev_test_and_clear_flag(hdev, 1813 HCI_DISCOVERABLE); 1814 } 1815 1816 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 1817 return; 1818 1819 if (conn_changed || discov_changed) { 1820 /* In case this was disabled through mgmt */ 1821 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); 1822 1823 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1824 hci_req_update_adv_data(hdev, hdev->cur_adv_instance); 1825 1826 mgmt_new_settings(hdev); 1827 } 1828 } 1829 1830 int hci_dev_cmd(unsigned int cmd, void __user *arg) 1831 { 1832 struct hci_dev *hdev; 1833 struct hci_dev_req dr; 1834 int err = 0; 1835 1836 if (copy_from_user(&dr, arg, sizeof(dr))) 1837 return -EFAULT; 1838 1839 hdev = hci_dev_get(dr.dev_id); 1840 if (!hdev) 1841 return -ENODEV; 1842 1843 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1844 err = -EBUSY; 1845 goto done; 1846 } 1847 1848 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1849 err = -EOPNOTSUPP; 1850 goto done; 1851 } 1852 1853 if (hdev->dev_type != HCI_PRIMARY) { 1854 err = -EOPNOTSUPP; 1855 goto done; 1856 } 1857 1858 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 1859 err = -EOPNOTSUPP; 1860 goto done; 1861 } 1862 1863 switch (cmd) { 1864 case HCISETAUTH: 1865 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt, 1866 HCI_INIT_TIMEOUT, NULL); 1867 break; 1868 1869 case HCISETENCRYPT: 1870 if (!lmp_encrypt_capable(hdev)) { 1871 err = -EOPNOTSUPP; 1872 break; 1873 } 1874 1875 if (!test_bit(HCI_AUTH, &hdev->flags)) { 1876 /* Auth must be enabled first */ 1877 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt, 1878 HCI_INIT_TIMEOUT, NULL); 1879 if (err) 1880 break; 1881 } 1882 1883 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt, 1884 HCI_INIT_TIMEOUT, NULL); 1885 break; 1886 1887 case HCISETSCAN: 1888 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt, 1889 HCI_INIT_TIMEOUT, NULL); 1890 1891 /* Ensure that the connectable and discoverable states 1892 * get correctly modified as this was a non-mgmt change. 1893 */ 1894 if (!err) 1895 hci_update_scan_state(hdev, dr.dev_opt); 1896 break; 1897 1898 case HCISETLINKPOL: 1899 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt, 1900 HCI_INIT_TIMEOUT, NULL); 1901 break; 1902 1903 case HCISETLINKMODE: 1904 hdev->link_mode = ((__u16) dr.dev_opt) & 1905 (HCI_LM_MASTER | HCI_LM_ACCEPT); 1906 break; 1907 1908 case HCISETPTYPE: 1909 hdev->pkt_type = (__u16) dr.dev_opt; 1910 break; 1911 1912 case HCISETACLMTU: 1913 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1); 1914 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0); 1915 break; 1916 1917 case HCISETSCOMTU: 1918 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1); 1919 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0); 1920 break; 1921 1922 default: 1923 err = -EINVAL; 1924 break; 1925 } 1926 1927 done: 1928 hci_dev_put(hdev); 1929 return err; 1930 } 1931 1932 int hci_get_dev_list(void __user *arg) 1933 { 1934 struct hci_dev *hdev; 1935 struct hci_dev_list_req *dl; 1936 struct hci_dev_req *dr; 1937 int n = 0, size, err; 1938 __u16 dev_num; 1939 1940 if (get_user(dev_num, (__u16 __user *) arg)) 1941 return -EFAULT; 1942 1943 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr)) 1944 return -EINVAL; 1945 1946 size = sizeof(*dl) + dev_num * sizeof(*dr); 1947 1948 dl = kzalloc(size, GFP_KERNEL); 1949 if (!dl) 1950 return -ENOMEM; 1951 1952 dr = dl->dev_req; 1953 1954 read_lock(&hci_dev_list_lock); 1955 list_for_each_entry(hdev, &hci_dev_list, list) { 1956 unsigned long flags = hdev->flags; 1957 1958 /* When the auto-off is configured it means the transport 1959 * is running, but in that case still indicate that the 1960 * device is actually down. 1961 */ 1962 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) 1963 flags &= ~BIT(HCI_UP); 1964 1965 (dr + n)->dev_id = hdev->id; 1966 (dr + n)->dev_opt = flags; 1967 1968 if (++n >= dev_num) 1969 break; 1970 } 1971 read_unlock(&hci_dev_list_lock); 1972 1973 dl->dev_num = n; 1974 size = sizeof(*dl) + n * sizeof(*dr); 1975 1976 err = copy_to_user(arg, dl, size); 1977 kfree(dl); 1978 1979 return err ? -EFAULT : 0; 1980 } 1981 1982 int hci_get_dev_info(void __user *arg) 1983 { 1984 struct hci_dev *hdev; 1985 struct hci_dev_info di; 1986 unsigned long flags; 1987 int err = 0; 1988 1989 if (copy_from_user(&di, arg, sizeof(di))) 1990 return -EFAULT; 1991 1992 hdev = hci_dev_get(di.dev_id); 1993 if (!hdev) 1994 return -ENODEV; 1995 1996 /* When the auto-off is configured it means the transport 1997 * is running, but in that case still indicate that the 1998 * device is actually down. 1999 */ 2000 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) 2001 flags = hdev->flags & ~BIT(HCI_UP); 2002 else 2003 flags = hdev->flags; 2004 2005 strcpy(di.name, hdev->name); 2006 di.bdaddr = hdev->bdaddr; 2007 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4); 2008 di.flags = flags; 2009 di.pkt_type = hdev->pkt_type; 2010 if (lmp_bredr_capable(hdev)) { 2011 di.acl_mtu = hdev->acl_mtu; 2012 di.acl_pkts = hdev->acl_pkts; 2013 di.sco_mtu = hdev->sco_mtu; 2014 di.sco_pkts = hdev->sco_pkts; 2015 } else { 2016 di.acl_mtu = hdev->le_mtu; 2017 di.acl_pkts = hdev->le_pkts; 2018 di.sco_mtu = 0; 2019 di.sco_pkts = 0; 2020 } 2021 di.link_policy = hdev->link_policy; 2022 di.link_mode = hdev->link_mode; 2023 2024 memcpy(&di.stat, &hdev->stat, sizeof(di.stat)); 2025 memcpy(&di.features, &hdev->features, sizeof(di.features)); 2026 2027 if (copy_to_user(arg, &di, sizeof(di))) 2028 err = -EFAULT; 2029 2030 hci_dev_put(hdev); 2031 2032 return err; 2033 } 2034 2035 /* ---- Interface to HCI drivers ---- */ 2036 2037 static int hci_rfkill_set_block(void *data, bool blocked) 2038 { 2039 struct hci_dev *hdev = data; 2040 2041 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked); 2042 2043 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) 2044 return -EBUSY; 2045 2046 if (blocked) { 2047 hci_dev_set_flag(hdev, HCI_RFKILLED); 2048 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 2049 !hci_dev_test_flag(hdev, HCI_CONFIG)) 2050 hci_dev_do_close(hdev); 2051 } else { 2052 hci_dev_clear_flag(hdev, HCI_RFKILLED); 2053 } 2054 2055 return 0; 2056 } 2057 2058 static const struct rfkill_ops hci_rfkill_ops = { 2059 .set_block = hci_rfkill_set_block, 2060 }; 2061 2062 static void hci_power_on(struct work_struct *work) 2063 { 2064 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on); 2065 int err; 2066 2067 BT_DBG("%s", hdev->name); 2068 2069 if (test_bit(HCI_UP, &hdev->flags) && 2070 hci_dev_test_flag(hdev, HCI_MGMT) && 2071 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 2072 cancel_delayed_work(&hdev->power_off); 2073 hci_req_sync_lock(hdev); 2074 err = __hci_req_hci_power_on(hdev); 2075 hci_req_sync_unlock(hdev); 2076 mgmt_power_on(hdev, err); 2077 return; 2078 } 2079 2080 err = hci_dev_do_open(hdev); 2081 if (err < 0) { 2082 hci_dev_lock(hdev); 2083 mgmt_set_powered_failed(hdev, err); 2084 hci_dev_unlock(hdev); 2085 return; 2086 } 2087 2088 /* During the HCI setup phase, a few error conditions are 2089 * ignored and they need to be checked now. If they are still 2090 * valid, it is important to turn the device back off. 2091 */ 2092 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 2093 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 2094 (hdev->dev_type == HCI_PRIMARY && 2095 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 2096 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 2097 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 2098 hci_dev_do_close(hdev); 2099 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 2100 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 2101 HCI_AUTO_OFF_TIMEOUT); 2102 } 2103 2104 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 2105 /* For unconfigured devices, set the HCI_RAW flag 2106 * so that userspace can easily identify them. 2107 */ 2108 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 2109 set_bit(HCI_RAW, &hdev->flags); 2110 2111 /* For fully configured devices, this will send 2112 * the Index Added event. For unconfigured devices, 2113 * it will send Unconfigued Index Added event. 2114 * 2115 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 2116 * and no event will be send. 2117 */ 2118 mgmt_index_added(hdev); 2119 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 2120 /* When the controller is now configured, then it 2121 * is important to clear the HCI_RAW flag. 2122 */ 2123 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 2124 clear_bit(HCI_RAW, &hdev->flags); 2125 2126 /* Powering on the controller with HCI_CONFIG set only 2127 * happens with the transition from unconfigured to 2128 * configured. This will send the Index Added event. 2129 */ 2130 mgmt_index_added(hdev); 2131 } 2132 } 2133 2134 static void hci_power_off(struct work_struct *work) 2135 { 2136 struct hci_dev *hdev = container_of(work, struct hci_dev, 2137 power_off.work); 2138 2139 BT_DBG("%s", hdev->name); 2140 2141 hci_dev_do_close(hdev); 2142 } 2143 2144 static void hci_error_reset(struct work_struct *work) 2145 { 2146 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset); 2147 2148 BT_DBG("%s", hdev->name); 2149 2150 if (hdev->hw_error) 2151 hdev->hw_error(hdev, hdev->hw_error_code); 2152 else 2153 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code); 2154 2155 if (hci_dev_do_close(hdev)) 2156 return; 2157 2158 hci_dev_do_open(hdev); 2159 } 2160 2161 void hci_uuids_clear(struct hci_dev *hdev) 2162 { 2163 struct bt_uuid *uuid, *tmp; 2164 2165 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) { 2166 list_del(&uuid->list); 2167 kfree(uuid); 2168 } 2169 } 2170 2171 void hci_link_keys_clear(struct hci_dev *hdev) 2172 { 2173 struct link_key *key; 2174 2175 list_for_each_entry_rcu(key, &hdev->link_keys, list) { 2176 list_del_rcu(&key->list); 2177 kfree_rcu(key, rcu); 2178 } 2179 } 2180 2181 void hci_smp_ltks_clear(struct hci_dev *hdev) 2182 { 2183 struct smp_ltk *k; 2184 2185 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 2186 list_del_rcu(&k->list); 2187 kfree_rcu(k, rcu); 2188 } 2189 } 2190 2191 void hci_smp_irks_clear(struct hci_dev *hdev) 2192 { 2193 struct smp_irk *k; 2194 2195 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) { 2196 list_del_rcu(&k->list); 2197 kfree_rcu(k, rcu); 2198 } 2199 } 2200 2201 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 2202 { 2203 struct link_key *k; 2204 2205 rcu_read_lock(); 2206 list_for_each_entry_rcu(k, &hdev->link_keys, list) { 2207 if (bacmp(bdaddr, &k->bdaddr) == 0) { 2208 rcu_read_unlock(); 2209 return k; 2210 } 2211 } 2212 rcu_read_unlock(); 2213 2214 return NULL; 2215 } 2216 2217 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn, 2218 u8 key_type, u8 old_key_type) 2219 { 2220 /* Legacy key */ 2221 if (key_type < 0x03) 2222 return true; 2223 2224 /* Debug keys are insecure so don't store them persistently */ 2225 if (key_type == HCI_LK_DEBUG_COMBINATION) 2226 return false; 2227 2228 /* Changed combination key and there's no previous one */ 2229 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff) 2230 return false; 2231 2232 /* Security mode 3 case */ 2233 if (!conn) 2234 return true; 2235 2236 /* BR/EDR key derived using SC from an LE link */ 2237 if (conn->type == LE_LINK) 2238 return true; 2239 2240 /* Neither local nor remote side had no-bonding as requirement */ 2241 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01) 2242 return true; 2243 2244 /* Local side had dedicated bonding as requirement */ 2245 if (conn->auth_type == 0x02 || conn->auth_type == 0x03) 2246 return true; 2247 2248 /* Remote side had dedicated bonding as requirement */ 2249 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03) 2250 return true; 2251 2252 /* If none of the above criteria match, then don't store the key 2253 * persistently */ 2254 return false; 2255 } 2256 2257 static u8 ltk_role(u8 type) 2258 { 2259 if (type == SMP_LTK) 2260 return HCI_ROLE_MASTER; 2261 2262 return HCI_ROLE_SLAVE; 2263 } 2264 2265 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 2266 u8 addr_type, u8 role) 2267 { 2268 struct smp_ltk *k; 2269 2270 rcu_read_lock(); 2271 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 2272 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr)) 2273 continue; 2274 2275 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) { 2276 rcu_read_unlock(); 2277 return k; 2278 } 2279 } 2280 rcu_read_unlock(); 2281 2282 return NULL; 2283 } 2284 2285 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa) 2286 { 2287 struct smp_irk *irk; 2288 2289 rcu_read_lock(); 2290 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 2291 if (!bacmp(&irk->rpa, rpa)) { 2292 rcu_read_unlock(); 2293 return irk; 2294 } 2295 } 2296 2297 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 2298 if (smp_irk_matches(hdev, irk->val, rpa)) { 2299 bacpy(&irk->rpa, rpa); 2300 rcu_read_unlock(); 2301 return irk; 2302 } 2303 } 2304 rcu_read_unlock(); 2305 2306 return NULL; 2307 } 2308 2309 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, 2310 u8 addr_type) 2311 { 2312 struct smp_irk *irk; 2313 2314 /* Identity Address must be public or static random */ 2315 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0) 2316 return NULL; 2317 2318 rcu_read_lock(); 2319 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 2320 if (addr_type == irk->addr_type && 2321 bacmp(bdaddr, &irk->bdaddr) == 0) { 2322 rcu_read_unlock(); 2323 return irk; 2324 } 2325 } 2326 rcu_read_unlock(); 2327 2328 return NULL; 2329 } 2330 2331 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, 2332 bdaddr_t *bdaddr, u8 *val, u8 type, 2333 u8 pin_len, bool *persistent) 2334 { 2335 struct link_key *key, *old_key; 2336 u8 old_key_type; 2337 2338 old_key = hci_find_link_key(hdev, bdaddr); 2339 if (old_key) { 2340 old_key_type = old_key->type; 2341 key = old_key; 2342 } else { 2343 old_key_type = conn ? conn->key_type : 0xff; 2344 key = kzalloc(sizeof(*key), GFP_KERNEL); 2345 if (!key) 2346 return NULL; 2347 list_add_rcu(&key->list, &hdev->link_keys); 2348 } 2349 2350 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type); 2351 2352 /* Some buggy controller combinations generate a changed 2353 * combination key for legacy pairing even when there's no 2354 * previous key */ 2355 if (type == HCI_LK_CHANGED_COMBINATION && 2356 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) { 2357 type = HCI_LK_COMBINATION; 2358 if (conn) 2359 conn->key_type = type; 2360 } 2361 2362 bacpy(&key->bdaddr, bdaddr); 2363 memcpy(key->val, val, HCI_LINK_KEY_SIZE); 2364 key->pin_len = pin_len; 2365 2366 if (type == HCI_LK_CHANGED_COMBINATION) 2367 key->type = old_key_type; 2368 else 2369 key->type = type; 2370 2371 if (persistent) 2372 *persistent = hci_persistent_key(hdev, conn, type, 2373 old_key_type); 2374 2375 return key; 2376 } 2377 2378 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 2379 u8 addr_type, u8 type, u8 authenticated, 2380 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand) 2381 { 2382 struct smp_ltk *key, *old_key; 2383 u8 role = ltk_role(type); 2384 2385 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role); 2386 if (old_key) 2387 key = old_key; 2388 else { 2389 key = kzalloc(sizeof(*key), GFP_KERNEL); 2390 if (!key) 2391 return NULL; 2392 list_add_rcu(&key->list, &hdev->long_term_keys); 2393 } 2394 2395 bacpy(&key->bdaddr, bdaddr); 2396 key->bdaddr_type = addr_type; 2397 memcpy(key->val, tk, sizeof(key->val)); 2398 key->authenticated = authenticated; 2399 key->ediv = ediv; 2400 key->rand = rand; 2401 key->enc_size = enc_size; 2402 key->type = type; 2403 2404 return key; 2405 } 2406 2407 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, 2408 u8 addr_type, u8 val[16], bdaddr_t *rpa) 2409 { 2410 struct smp_irk *irk; 2411 2412 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type); 2413 if (!irk) { 2414 irk = kzalloc(sizeof(*irk), GFP_KERNEL); 2415 if (!irk) 2416 return NULL; 2417 2418 bacpy(&irk->bdaddr, bdaddr); 2419 irk->addr_type = addr_type; 2420 2421 list_add_rcu(&irk->list, &hdev->identity_resolving_keys); 2422 } 2423 2424 memcpy(irk->val, val, 16); 2425 bacpy(&irk->rpa, rpa); 2426 2427 return irk; 2428 } 2429 2430 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 2431 { 2432 struct link_key *key; 2433 2434 key = hci_find_link_key(hdev, bdaddr); 2435 if (!key) 2436 return -ENOENT; 2437 2438 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 2439 2440 list_del_rcu(&key->list); 2441 kfree_rcu(key, rcu); 2442 2443 return 0; 2444 } 2445 2446 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type) 2447 { 2448 struct smp_ltk *k; 2449 int removed = 0; 2450 2451 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 2452 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type) 2453 continue; 2454 2455 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 2456 2457 list_del_rcu(&k->list); 2458 kfree_rcu(k, rcu); 2459 removed++; 2460 } 2461 2462 return removed ? 0 : -ENOENT; 2463 } 2464 2465 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type) 2466 { 2467 struct smp_irk *k; 2468 2469 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) { 2470 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type) 2471 continue; 2472 2473 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 2474 2475 list_del_rcu(&k->list); 2476 kfree_rcu(k, rcu); 2477 } 2478 } 2479 2480 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type) 2481 { 2482 struct smp_ltk *k; 2483 struct smp_irk *irk; 2484 u8 addr_type; 2485 2486 if (type == BDADDR_BREDR) { 2487 if (hci_find_link_key(hdev, bdaddr)) 2488 return true; 2489 return false; 2490 } 2491 2492 /* Convert to HCI addr type which struct smp_ltk uses */ 2493 if (type == BDADDR_LE_PUBLIC) 2494 addr_type = ADDR_LE_DEV_PUBLIC; 2495 else 2496 addr_type = ADDR_LE_DEV_RANDOM; 2497 2498 irk = hci_get_irk(hdev, bdaddr, addr_type); 2499 if (irk) { 2500 bdaddr = &irk->bdaddr; 2501 addr_type = irk->addr_type; 2502 } 2503 2504 rcu_read_lock(); 2505 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 2506 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) { 2507 rcu_read_unlock(); 2508 return true; 2509 } 2510 } 2511 rcu_read_unlock(); 2512 2513 return false; 2514 } 2515 2516 /* HCI command timer function */ 2517 static void hci_cmd_timeout(struct work_struct *work) 2518 { 2519 struct hci_dev *hdev = container_of(work, struct hci_dev, 2520 cmd_timer.work); 2521 2522 if (hdev->sent_cmd) { 2523 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data; 2524 u16 opcode = __le16_to_cpu(sent->opcode); 2525 2526 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode); 2527 } else { 2528 bt_dev_err(hdev, "command tx timeout"); 2529 } 2530 2531 atomic_set(&hdev->cmd_cnt, 1); 2532 queue_work(hdev->workqueue, &hdev->cmd_work); 2533 } 2534 2535 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, 2536 bdaddr_t *bdaddr, u8 bdaddr_type) 2537 { 2538 struct oob_data *data; 2539 2540 list_for_each_entry(data, &hdev->remote_oob_data, list) { 2541 if (bacmp(bdaddr, &data->bdaddr) != 0) 2542 continue; 2543 if (data->bdaddr_type != bdaddr_type) 2544 continue; 2545 return data; 2546 } 2547 2548 return NULL; 2549 } 2550 2551 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 2552 u8 bdaddr_type) 2553 { 2554 struct oob_data *data; 2555 2556 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); 2557 if (!data) 2558 return -ENOENT; 2559 2560 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type); 2561 2562 list_del(&data->list); 2563 kfree(data); 2564 2565 return 0; 2566 } 2567 2568 void hci_remote_oob_data_clear(struct hci_dev *hdev) 2569 { 2570 struct oob_data *data, *n; 2571 2572 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) { 2573 list_del(&data->list); 2574 kfree(data); 2575 } 2576 } 2577 2578 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 2579 u8 bdaddr_type, u8 *hash192, u8 *rand192, 2580 u8 *hash256, u8 *rand256) 2581 { 2582 struct oob_data *data; 2583 2584 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); 2585 if (!data) { 2586 data = kmalloc(sizeof(*data), GFP_KERNEL); 2587 if (!data) 2588 return -ENOMEM; 2589 2590 bacpy(&data->bdaddr, bdaddr); 2591 data->bdaddr_type = bdaddr_type; 2592 list_add(&data->list, &hdev->remote_oob_data); 2593 } 2594 2595 if (hash192 && rand192) { 2596 memcpy(data->hash192, hash192, sizeof(data->hash192)); 2597 memcpy(data->rand192, rand192, sizeof(data->rand192)); 2598 if (hash256 && rand256) 2599 data->present = 0x03; 2600 } else { 2601 memset(data->hash192, 0, sizeof(data->hash192)); 2602 memset(data->rand192, 0, sizeof(data->rand192)); 2603 if (hash256 && rand256) 2604 data->present = 0x02; 2605 else 2606 data->present = 0x00; 2607 } 2608 2609 if (hash256 && rand256) { 2610 memcpy(data->hash256, hash256, sizeof(data->hash256)); 2611 memcpy(data->rand256, rand256, sizeof(data->rand256)); 2612 } else { 2613 memset(data->hash256, 0, sizeof(data->hash256)); 2614 memset(data->rand256, 0, sizeof(data->rand256)); 2615 if (hash192 && rand192) 2616 data->present = 0x01; 2617 } 2618 2619 BT_DBG("%s for %pMR", hdev->name, bdaddr); 2620 2621 return 0; 2622 } 2623 2624 /* This function requires the caller holds hdev->lock */ 2625 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance) 2626 { 2627 struct adv_info *adv_instance; 2628 2629 list_for_each_entry(adv_instance, &hdev->adv_instances, list) { 2630 if (adv_instance->instance == instance) 2631 return adv_instance; 2632 } 2633 2634 return NULL; 2635 } 2636 2637 /* This function requires the caller holds hdev->lock */ 2638 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance) 2639 { 2640 struct adv_info *cur_instance; 2641 2642 cur_instance = hci_find_adv_instance(hdev, instance); 2643 if (!cur_instance) 2644 return NULL; 2645 2646 if (cur_instance == list_last_entry(&hdev->adv_instances, 2647 struct adv_info, list)) 2648 return list_first_entry(&hdev->adv_instances, 2649 struct adv_info, list); 2650 else 2651 return list_next_entry(cur_instance, list); 2652 } 2653 2654 /* This function requires the caller holds hdev->lock */ 2655 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance) 2656 { 2657 struct adv_info *adv_instance; 2658 2659 adv_instance = hci_find_adv_instance(hdev, instance); 2660 if (!adv_instance) 2661 return -ENOENT; 2662 2663 BT_DBG("%s removing %dMR", hdev->name, instance); 2664 2665 if (hdev->cur_adv_instance == instance) { 2666 if (hdev->adv_instance_timeout) { 2667 cancel_delayed_work(&hdev->adv_instance_expire); 2668 hdev->adv_instance_timeout = 0; 2669 } 2670 hdev->cur_adv_instance = 0x00; 2671 } 2672 2673 list_del(&adv_instance->list); 2674 kfree(adv_instance); 2675 2676 hdev->adv_instance_cnt--; 2677 2678 return 0; 2679 } 2680 2681 /* This function requires the caller holds hdev->lock */ 2682 void hci_adv_instances_clear(struct hci_dev *hdev) 2683 { 2684 struct adv_info *adv_instance, *n; 2685 2686 if (hdev->adv_instance_timeout) { 2687 cancel_delayed_work(&hdev->adv_instance_expire); 2688 hdev->adv_instance_timeout = 0; 2689 } 2690 2691 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) { 2692 list_del(&adv_instance->list); 2693 kfree(adv_instance); 2694 } 2695 2696 hdev->adv_instance_cnt = 0; 2697 hdev->cur_adv_instance = 0x00; 2698 } 2699 2700 /* This function requires the caller holds hdev->lock */ 2701 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags, 2702 u16 adv_data_len, u8 *adv_data, 2703 u16 scan_rsp_len, u8 *scan_rsp_data, 2704 u16 timeout, u16 duration) 2705 { 2706 struct adv_info *adv_instance; 2707 2708 adv_instance = hci_find_adv_instance(hdev, instance); 2709 if (adv_instance) { 2710 memset(adv_instance->adv_data, 0, 2711 sizeof(adv_instance->adv_data)); 2712 memset(adv_instance->scan_rsp_data, 0, 2713 sizeof(adv_instance->scan_rsp_data)); 2714 } else { 2715 if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES || 2716 instance < 1 || instance > HCI_MAX_ADV_INSTANCES) 2717 return -EOVERFLOW; 2718 2719 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL); 2720 if (!adv_instance) 2721 return -ENOMEM; 2722 2723 adv_instance->pending = true; 2724 adv_instance->instance = instance; 2725 list_add(&adv_instance->list, &hdev->adv_instances); 2726 hdev->adv_instance_cnt++; 2727 } 2728 2729 adv_instance->flags = flags; 2730 adv_instance->adv_data_len = adv_data_len; 2731 adv_instance->scan_rsp_len = scan_rsp_len; 2732 2733 if (adv_data_len) 2734 memcpy(adv_instance->adv_data, adv_data, adv_data_len); 2735 2736 if (scan_rsp_len) 2737 memcpy(adv_instance->scan_rsp_data, 2738 scan_rsp_data, scan_rsp_len); 2739 2740 adv_instance->timeout = timeout; 2741 adv_instance->remaining_time = timeout; 2742 2743 if (duration == 0) 2744 adv_instance->duration = HCI_DEFAULT_ADV_DURATION; 2745 else 2746 adv_instance->duration = duration; 2747 2748 BT_DBG("%s for %dMR", hdev->name, instance); 2749 2750 return 0; 2751 } 2752 2753 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list, 2754 bdaddr_t *bdaddr, u8 type) 2755 { 2756 struct bdaddr_list *b; 2757 2758 list_for_each_entry(b, bdaddr_list, list) { 2759 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 2760 return b; 2761 } 2762 2763 return NULL; 2764 } 2765 2766 void hci_bdaddr_list_clear(struct list_head *bdaddr_list) 2767 { 2768 struct bdaddr_list *b, *n; 2769 2770 list_for_each_entry_safe(b, n, bdaddr_list, list) { 2771 list_del(&b->list); 2772 kfree(b); 2773 } 2774 } 2775 2776 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type) 2777 { 2778 struct bdaddr_list *entry; 2779 2780 if (!bacmp(bdaddr, BDADDR_ANY)) 2781 return -EBADF; 2782 2783 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 2784 return -EEXIST; 2785 2786 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 2787 if (!entry) 2788 return -ENOMEM; 2789 2790 bacpy(&entry->bdaddr, bdaddr); 2791 entry->bdaddr_type = type; 2792 2793 list_add(&entry->list, list); 2794 2795 return 0; 2796 } 2797 2798 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type) 2799 { 2800 struct bdaddr_list *entry; 2801 2802 if (!bacmp(bdaddr, BDADDR_ANY)) { 2803 hci_bdaddr_list_clear(list); 2804 return 0; 2805 } 2806 2807 entry = hci_bdaddr_list_lookup(list, bdaddr, type); 2808 if (!entry) 2809 return -ENOENT; 2810 2811 list_del(&entry->list); 2812 kfree(entry); 2813 2814 return 0; 2815 } 2816 2817 /* This function requires the caller holds hdev->lock */ 2818 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev, 2819 bdaddr_t *addr, u8 addr_type) 2820 { 2821 struct hci_conn_params *params; 2822 2823 list_for_each_entry(params, &hdev->le_conn_params, list) { 2824 if (bacmp(¶ms->addr, addr) == 0 && 2825 params->addr_type == addr_type) { 2826 return params; 2827 } 2828 } 2829 2830 return NULL; 2831 } 2832 2833 /* This function requires the caller holds hdev->lock */ 2834 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list, 2835 bdaddr_t *addr, u8 addr_type) 2836 { 2837 struct hci_conn_params *param; 2838 2839 list_for_each_entry(param, list, action) { 2840 if (bacmp(¶m->addr, addr) == 0 && 2841 param->addr_type == addr_type) 2842 return param; 2843 } 2844 2845 return NULL; 2846 } 2847 2848 /* This function requires the caller holds hdev->lock */ 2849 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev, 2850 bdaddr_t *addr, u8 addr_type) 2851 { 2852 struct hci_conn_params *params; 2853 2854 params = hci_conn_params_lookup(hdev, addr, addr_type); 2855 if (params) 2856 return params; 2857 2858 params = kzalloc(sizeof(*params), GFP_KERNEL); 2859 if (!params) { 2860 bt_dev_err(hdev, "out of memory"); 2861 return NULL; 2862 } 2863 2864 bacpy(¶ms->addr, addr); 2865 params->addr_type = addr_type; 2866 2867 list_add(¶ms->list, &hdev->le_conn_params); 2868 INIT_LIST_HEAD(¶ms->action); 2869 2870 params->conn_min_interval = hdev->le_conn_min_interval; 2871 params->conn_max_interval = hdev->le_conn_max_interval; 2872 params->conn_latency = hdev->le_conn_latency; 2873 params->supervision_timeout = hdev->le_supv_timeout; 2874 params->auto_connect = HCI_AUTO_CONN_DISABLED; 2875 2876 BT_DBG("addr %pMR (type %u)", addr, addr_type); 2877 2878 return params; 2879 } 2880 2881 static void hci_conn_params_free(struct hci_conn_params *params) 2882 { 2883 if (params->conn) { 2884 hci_conn_drop(params->conn); 2885 hci_conn_put(params->conn); 2886 } 2887 2888 list_del(¶ms->action); 2889 list_del(¶ms->list); 2890 kfree(params); 2891 } 2892 2893 /* This function requires the caller holds hdev->lock */ 2894 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type) 2895 { 2896 struct hci_conn_params *params; 2897 2898 params = hci_conn_params_lookup(hdev, addr, addr_type); 2899 if (!params) 2900 return; 2901 2902 hci_conn_params_free(params); 2903 2904 hci_update_background_scan(hdev); 2905 2906 BT_DBG("addr %pMR (type %u)", addr, addr_type); 2907 } 2908 2909 /* This function requires the caller holds hdev->lock */ 2910 void hci_conn_params_clear_disabled(struct hci_dev *hdev) 2911 { 2912 struct hci_conn_params *params, *tmp; 2913 2914 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) { 2915 if (params->auto_connect != HCI_AUTO_CONN_DISABLED) 2916 continue; 2917 2918 /* If trying to estabilish one time connection to disabled 2919 * device, leave the params, but mark them as just once. 2920 */ 2921 if (params->explicit_connect) { 2922 params->auto_connect = HCI_AUTO_CONN_EXPLICIT; 2923 continue; 2924 } 2925 2926 list_del(¶ms->list); 2927 kfree(params); 2928 } 2929 2930 BT_DBG("All LE disabled connection parameters were removed"); 2931 } 2932 2933 /* This function requires the caller holds hdev->lock */ 2934 static void hci_conn_params_clear_all(struct hci_dev *hdev) 2935 { 2936 struct hci_conn_params *params, *tmp; 2937 2938 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) 2939 hci_conn_params_free(params); 2940 2941 BT_DBG("All LE connection parameters were removed"); 2942 } 2943 2944 /* Copy the Identity Address of the controller. 2945 * 2946 * If the controller has a public BD_ADDR, then by default use that one. 2947 * If this is a LE only controller without a public address, default to 2948 * the static random address. 2949 * 2950 * For debugging purposes it is possible to force controllers with a 2951 * public address to use the static random address instead. 2952 * 2953 * In case BR/EDR has been disabled on a dual-mode controller and 2954 * userspace has configured a static address, then that address 2955 * becomes the identity address instead of the public BR/EDR address. 2956 */ 2957 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr, 2958 u8 *bdaddr_type) 2959 { 2960 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 2961 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 2962 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 2963 bacmp(&hdev->static_addr, BDADDR_ANY))) { 2964 bacpy(bdaddr, &hdev->static_addr); 2965 *bdaddr_type = ADDR_LE_DEV_RANDOM; 2966 } else { 2967 bacpy(bdaddr, &hdev->bdaddr); 2968 *bdaddr_type = ADDR_LE_DEV_PUBLIC; 2969 } 2970 } 2971 2972 /* Alloc HCI device */ 2973 struct hci_dev *hci_alloc_dev(void) 2974 { 2975 struct hci_dev *hdev; 2976 2977 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL); 2978 if (!hdev) 2979 return NULL; 2980 2981 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1); 2982 hdev->esco_type = (ESCO_HV1); 2983 hdev->link_mode = (HCI_LM_ACCEPT); 2984 hdev->num_iac = 0x01; /* One IAC support is mandatory */ 2985 hdev->io_capability = 0x03; /* No Input No Output */ 2986 hdev->manufacturer = 0xffff; /* Default to internal use */ 2987 hdev->inq_tx_power = HCI_TX_POWER_INVALID; 2988 hdev->adv_tx_power = HCI_TX_POWER_INVALID; 2989 hdev->adv_instance_cnt = 0; 2990 hdev->cur_adv_instance = 0x00; 2991 hdev->adv_instance_timeout = 0; 2992 2993 hdev->sniff_max_interval = 800; 2994 hdev->sniff_min_interval = 80; 2995 2996 hdev->le_adv_channel_map = 0x07; 2997 hdev->le_adv_min_interval = 0x0800; 2998 hdev->le_adv_max_interval = 0x0800; 2999 hdev->le_scan_interval = 0x0060; 3000 hdev->le_scan_window = 0x0030; 3001 hdev->le_conn_min_interval = 0x0018; 3002 hdev->le_conn_max_interval = 0x0028; 3003 hdev->le_conn_latency = 0x0000; 3004 hdev->le_supv_timeout = 0x002a; 3005 hdev->le_def_tx_len = 0x001b; 3006 hdev->le_def_tx_time = 0x0148; 3007 hdev->le_max_tx_len = 0x001b; 3008 hdev->le_max_tx_time = 0x0148; 3009 hdev->le_max_rx_len = 0x001b; 3010 hdev->le_max_rx_time = 0x0148; 3011 3012 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT; 3013 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT; 3014 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE; 3015 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE; 3016 3017 mutex_init(&hdev->lock); 3018 mutex_init(&hdev->req_lock); 3019 3020 INIT_LIST_HEAD(&hdev->mgmt_pending); 3021 INIT_LIST_HEAD(&hdev->blacklist); 3022 INIT_LIST_HEAD(&hdev->whitelist); 3023 INIT_LIST_HEAD(&hdev->uuids); 3024 INIT_LIST_HEAD(&hdev->link_keys); 3025 INIT_LIST_HEAD(&hdev->long_term_keys); 3026 INIT_LIST_HEAD(&hdev->identity_resolving_keys); 3027 INIT_LIST_HEAD(&hdev->remote_oob_data); 3028 INIT_LIST_HEAD(&hdev->le_white_list); 3029 INIT_LIST_HEAD(&hdev->le_conn_params); 3030 INIT_LIST_HEAD(&hdev->pend_le_conns); 3031 INIT_LIST_HEAD(&hdev->pend_le_reports); 3032 INIT_LIST_HEAD(&hdev->conn_hash.list); 3033 INIT_LIST_HEAD(&hdev->adv_instances); 3034 3035 INIT_WORK(&hdev->rx_work, hci_rx_work); 3036 INIT_WORK(&hdev->cmd_work, hci_cmd_work); 3037 INIT_WORK(&hdev->tx_work, hci_tx_work); 3038 INIT_WORK(&hdev->power_on, hci_power_on); 3039 INIT_WORK(&hdev->error_reset, hci_error_reset); 3040 3041 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off); 3042 3043 skb_queue_head_init(&hdev->rx_q); 3044 skb_queue_head_init(&hdev->cmd_q); 3045 skb_queue_head_init(&hdev->raw_q); 3046 3047 init_waitqueue_head(&hdev->req_wait_q); 3048 3049 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout); 3050 3051 hci_request_setup(hdev); 3052 3053 hci_init_sysfs(hdev); 3054 discovery_init(hdev); 3055 3056 return hdev; 3057 } 3058 EXPORT_SYMBOL(hci_alloc_dev); 3059 3060 /* Free HCI device */ 3061 void hci_free_dev(struct hci_dev *hdev) 3062 { 3063 /* will free via device release */ 3064 put_device(&hdev->dev); 3065 } 3066 EXPORT_SYMBOL(hci_free_dev); 3067 3068 /* Register HCI device */ 3069 int hci_register_dev(struct hci_dev *hdev) 3070 { 3071 int id, error; 3072 3073 if (!hdev->open || !hdev->close || !hdev->send) 3074 return -EINVAL; 3075 3076 /* Do not allow HCI_AMP devices to register at index 0, 3077 * so the index can be used as the AMP controller ID. 3078 */ 3079 switch (hdev->dev_type) { 3080 case HCI_PRIMARY: 3081 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL); 3082 break; 3083 case HCI_AMP: 3084 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL); 3085 break; 3086 default: 3087 return -EINVAL; 3088 } 3089 3090 if (id < 0) 3091 return id; 3092 3093 sprintf(hdev->name, "hci%d", id); 3094 hdev->id = id; 3095 3096 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 3097 3098 hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name); 3099 if (!hdev->workqueue) { 3100 error = -ENOMEM; 3101 goto err; 3102 } 3103 3104 hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, 3105 hdev->name); 3106 if (!hdev->req_workqueue) { 3107 destroy_workqueue(hdev->workqueue); 3108 error = -ENOMEM; 3109 goto err; 3110 } 3111 3112 if (!IS_ERR_OR_NULL(bt_debugfs)) 3113 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs); 3114 3115 dev_set_name(&hdev->dev, "%s", hdev->name); 3116 3117 error = device_add(&hdev->dev); 3118 if (error < 0) 3119 goto err_wqueue; 3120 3121 hci_leds_init(hdev); 3122 3123 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev, 3124 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, 3125 hdev); 3126 if (hdev->rfkill) { 3127 if (rfkill_register(hdev->rfkill) < 0) { 3128 rfkill_destroy(hdev->rfkill); 3129 hdev->rfkill = NULL; 3130 } 3131 } 3132 3133 if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) 3134 hci_dev_set_flag(hdev, HCI_RFKILLED); 3135 3136 hci_dev_set_flag(hdev, HCI_SETUP); 3137 hci_dev_set_flag(hdev, HCI_AUTO_OFF); 3138 3139 if (hdev->dev_type == HCI_PRIMARY) { 3140 /* Assume BR/EDR support until proven otherwise (such as 3141 * through reading supported features during init. 3142 */ 3143 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); 3144 } 3145 3146 write_lock(&hci_dev_list_lock); 3147 list_add(&hdev->list, &hci_dev_list); 3148 write_unlock(&hci_dev_list_lock); 3149 3150 /* Devices that are marked for raw-only usage are unconfigured 3151 * and should not be included in normal operation. 3152 */ 3153 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 3154 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 3155 3156 hci_sock_dev_event(hdev, HCI_DEV_REG); 3157 hci_dev_hold(hdev); 3158 3159 queue_work(hdev->req_workqueue, &hdev->power_on); 3160 3161 return id; 3162 3163 err_wqueue: 3164 destroy_workqueue(hdev->workqueue); 3165 destroy_workqueue(hdev->req_workqueue); 3166 err: 3167 ida_simple_remove(&hci_index_ida, hdev->id); 3168 3169 return error; 3170 } 3171 EXPORT_SYMBOL(hci_register_dev); 3172 3173 /* Unregister HCI device */ 3174 void hci_unregister_dev(struct hci_dev *hdev) 3175 { 3176 int id; 3177 3178 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 3179 3180 hci_dev_set_flag(hdev, HCI_UNREGISTER); 3181 3182 id = hdev->id; 3183 3184 write_lock(&hci_dev_list_lock); 3185 list_del(&hdev->list); 3186 write_unlock(&hci_dev_list_lock); 3187 3188 cancel_work_sync(&hdev->power_on); 3189 3190 hci_dev_do_close(hdev); 3191 3192 if (!test_bit(HCI_INIT, &hdev->flags) && 3193 !hci_dev_test_flag(hdev, HCI_SETUP) && 3194 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 3195 hci_dev_lock(hdev); 3196 mgmt_index_removed(hdev); 3197 hci_dev_unlock(hdev); 3198 } 3199 3200 /* mgmt_index_removed should take care of emptying the 3201 * pending list */ 3202 BUG_ON(!list_empty(&hdev->mgmt_pending)); 3203 3204 hci_sock_dev_event(hdev, HCI_DEV_UNREG); 3205 3206 if (hdev->rfkill) { 3207 rfkill_unregister(hdev->rfkill); 3208 rfkill_destroy(hdev->rfkill); 3209 } 3210 3211 device_del(&hdev->dev); 3212 3213 debugfs_remove_recursive(hdev->debugfs); 3214 kfree_const(hdev->hw_info); 3215 kfree_const(hdev->fw_info); 3216 3217 destroy_workqueue(hdev->workqueue); 3218 destroy_workqueue(hdev->req_workqueue); 3219 3220 hci_dev_lock(hdev); 3221 hci_bdaddr_list_clear(&hdev->blacklist); 3222 hci_bdaddr_list_clear(&hdev->whitelist); 3223 hci_uuids_clear(hdev); 3224 hci_link_keys_clear(hdev); 3225 hci_smp_ltks_clear(hdev); 3226 hci_smp_irks_clear(hdev); 3227 hci_remote_oob_data_clear(hdev); 3228 hci_adv_instances_clear(hdev); 3229 hci_bdaddr_list_clear(&hdev->le_white_list); 3230 hci_conn_params_clear_all(hdev); 3231 hci_discovery_filter_clear(hdev); 3232 hci_dev_unlock(hdev); 3233 3234 hci_dev_put(hdev); 3235 3236 ida_simple_remove(&hci_index_ida, id); 3237 } 3238 EXPORT_SYMBOL(hci_unregister_dev); 3239 3240 /* Suspend HCI device */ 3241 int hci_suspend_dev(struct hci_dev *hdev) 3242 { 3243 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND); 3244 return 0; 3245 } 3246 EXPORT_SYMBOL(hci_suspend_dev); 3247 3248 /* Resume HCI device */ 3249 int hci_resume_dev(struct hci_dev *hdev) 3250 { 3251 hci_sock_dev_event(hdev, HCI_DEV_RESUME); 3252 return 0; 3253 } 3254 EXPORT_SYMBOL(hci_resume_dev); 3255 3256 /* Reset HCI device */ 3257 int hci_reset_dev(struct hci_dev *hdev) 3258 { 3259 const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 }; 3260 struct sk_buff *skb; 3261 3262 skb = bt_skb_alloc(3, GFP_ATOMIC); 3263 if (!skb) 3264 return -ENOMEM; 3265 3266 hci_skb_pkt_type(skb) = HCI_EVENT_PKT; 3267 skb_put_data(skb, hw_err, 3); 3268 3269 /* Send Hardware Error to upper stack */ 3270 return hci_recv_frame(hdev, skb); 3271 } 3272 EXPORT_SYMBOL(hci_reset_dev); 3273 3274 /* Receive frame from HCI drivers */ 3275 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb) 3276 { 3277 if (!hdev || (!test_bit(HCI_UP, &hdev->flags) 3278 && !test_bit(HCI_INIT, &hdev->flags))) { 3279 kfree_skb(skb); 3280 return -ENXIO; 3281 } 3282 3283 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT && 3284 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 3285 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) { 3286 kfree_skb(skb); 3287 return -EINVAL; 3288 } 3289 3290 /* Incoming skb */ 3291 bt_cb(skb)->incoming = 1; 3292 3293 /* Time stamp */ 3294 __net_timestamp(skb); 3295 3296 skb_queue_tail(&hdev->rx_q, skb); 3297 queue_work(hdev->workqueue, &hdev->rx_work); 3298 3299 return 0; 3300 } 3301 EXPORT_SYMBOL(hci_recv_frame); 3302 3303 /* Receive diagnostic message from HCI drivers */ 3304 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb) 3305 { 3306 /* Mark as diagnostic packet */ 3307 hci_skb_pkt_type(skb) = HCI_DIAG_PKT; 3308 3309 /* Time stamp */ 3310 __net_timestamp(skb); 3311 3312 skb_queue_tail(&hdev->rx_q, skb); 3313 queue_work(hdev->workqueue, &hdev->rx_work); 3314 3315 return 0; 3316 } 3317 EXPORT_SYMBOL(hci_recv_diag); 3318 3319 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...) 3320 { 3321 va_list vargs; 3322 3323 va_start(vargs, fmt); 3324 kfree_const(hdev->hw_info); 3325 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs); 3326 va_end(vargs); 3327 } 3328 EXPORT_SYMBOL(hci_set_hw_info); 3329 3330 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...) 3331 { 3332 va_list vargs; 3333 3334 va_start(vargs, fmt); 3335 kfree_const(hdev->fw_info); 3336 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs); 3337 va_end(vargs); 3338 } 3339 EXPORT_SYMBOL(hci_set_fw_info); 3340 3341 /* ---- Interface to upper protocols ---- */ 3342 3343 int hci_register_cb(struct hci_cb *cb) 3344 { 3345 BT_DBG("%p name %s", cb, cb->name); 3346 3347 mutex_lock(&hci_cb_list_lock); 3348 list_add_tail(&cb->list, &hci_cb_list); 3349 mutex_unlock(&hci_cb_list_lock); 3350 3351 return 0; 3352 } 3353 EXPORT_SYMBOL(hci_register_cb); 3354 3355 int hci_unregister_cb(struct hci_cb *cb) 3356 { 3357 BT_DBG("%p name %s", cb, cb->name); 3358 3359 mutex_lock(&hci_cb_list_lock); 3360 list_del(&cb->list); 3361 mutex_unlock(&hci_cb_list_lock); 3362 3363 return 0; 3364 } 3365 EXPORT_SYMBOL(hci_unregister_cb); 3366 3367 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb) 3368 { 3369 int err; 3370 3371 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb), 3372 skb->len); 3373 3374 /* Time stamp */ 3375 __net_timestamp(skb); 3376 3377 /* Send copy to monitor */ 3378 hci_send_to_monitor(hdev, skb); 3379 3380 if (atomic_read(&hdev->promisc)) { 3381 /* Send copy to the sockets */ 3382 hci_send_to_sock(hdev, skb); 3383 } 3384 3385 /* Get rid of skb owner, prior to sending to the driver. */ 3386 skb_orphan(skb); 3387 3388 if (!test_bit(HCI_RUNNING, &hdev->flags)) { 3389 kfree_skb(skb); 3390 return; 3391 } 3392 3393 err = hdev->send(hdev, skb); 3394 if (err < 0) { 3395 bt_dev_err(hdev, "sending frame failed (%d)", err); 3396 kfree_skb(skb); 3397 } 3398 } 3399 3400 /* Send HCI command */ 3401 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, 3402 const void *param) 3403 { 3404 struct sk_buff *skb; 3405 3406 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen); 3407 3408 skb = hci_prepare_cmd(hdev, opcode, plen, param); 3409 if (!skb) { 3410 bt_dev_err(hdev, "no memory for command"); 3411 return -ENOMEM; 3412 } 3413 3414 /* Stand-alone HCI commands must be flagged as 3415 * single-command requests. 3416 */ 3417 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 3418 3419 skb_queue_tail(&hdev->cmd_q, skb); 3420 queue_work(hdev->workqueue, &hdev->cmd_work); 3421 3422 return 0; 3423 } 3424 3425 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen, 3426 const void *param) 3427 { 3428 struct sk_buff *skb; 3429 3430 if (hci_opcode_ogf(opcode) != 0x3f) { 3431 /* A controller receiving a command shall respond with either 3432 * a Command Status Event or a Command Complete Event. 3433 * Therefore, all standard HCI commands must be sent via the 3434 * standard API, using hci_send_cmd or hci_cmd_sync helpers. 3435 * Some vendors do not comply with this rule for vendor-specific 3436 * commands and do not return any event. We want to support 3437 * unresponded commands for such cases only. 3438 */ 3439 bt_dev_err(hdev, "unresponded command not supported"); 3440 return -EINVAL; 3441 } 3442 3443 skb = hci_prepare_cmd(hdev, opcode, plen, param); 3444 if (!skb) { 3445 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 3446 opcode); 3447 return -ENOMEM; 3448 } 3449 3450 hci_send_frame(hdev, skb); 3451 3452 return 0; 3453 } 3454 EXPORT_SYMBOL(__hci_cmd_send); 3455 3456 /* Get data from the previously sent command */ 3457 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode) 3458 { 3459 struct hci_command_hdr *hdr; 3460 3461 if (!hdev->sent_cmd) 3462 return NULL; 3463 3464 hdr = (void *) hdev->sent_cmd->data; 3465 3466 if (hdr->opcode != cpu_to_le16(opcode)) 3467 return NULL; 3468 3469 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode); 3470 3471 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE; 3472 } 3473 3474 /* Send HCI command and wait for command commplete event */ 3475 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 3476 const void *param, u32 timeout) 3477 { 3478 struct sk_buff *skb; 3479 3480 if (!test_bit(HCI_UP, &hdev->flags)) 3481 return ERR_PTR(-ENETDOWN); 3482 3483 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 3484 3485 hci_req_sync_lock(hdev); 3486 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); 3487 hci_req_sync_unlock(hdev); 3488 3489 return skb; 3490 } 3491 EXPORT_SYMBOL(hci_cmd_sync); 3492 3493 /* Send ACL data */ 3494 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags) 3495 { 3496 struct hci_acl_hdr *hdr; 3497 int len = skb->len; 3498 3499 skb_push(skb, HCI_ACL_HDR_SIZE); 3500 skb_reset_transport_header(skb); 3501 hdr = (struct hci_acl_hdr *)skb_transport_header(skb); 3502 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags)); 3503 hdr->dlen = cpu_to_le16(len); 3504 } 3505 3506 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue, 3507 struct sk_buff *skb, __u16 flags) 3508 { 3509 struct hci_conn *conn = chan->conn; 3510 struct hci_dev *hdev = conn->hdev; 3511 struct sk_buff *list; 3512 3513 skb->len = skb_headlen(skb); 3514 skb->data_len = 0; 3515 3516 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT; 3517 3518 switch (hdev->dev_type) { 3519 case HCI_PRIMARY: 3520 hci_add_acl_hdr(skb, conn->handle, flags); 3521 break; 3522 case HCI_AMP: 3523 hci_add_acl_hdr(skb, chan->handle, flags); 3524 break; 3525 default: 3526 bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type); 3527 return; 3528 } 3529 3530 list = skb_shinfo(skb)->frag_list; 3531 if (!list) { 3532 /* Non fragmented */ 3533 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len); 3534 3535 skb_queue_tail(queue, skb); 3536 } else { 3537 /* Fragmented */ 3538 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3539 3540 skb_shinfo(skb)->frag_list = NULL; 3541 3542 /* Queue all fragments atomically. We need to use spin_lock_bh 3543 * here because of 6LoWPAN links, as there this function is 3544 * called from softirq and using normal spin lock could cause 3545 * deadlocks. 3546 */ 3547 spin_lock_bh(&queue->lock); 3548 3549 __skb_queue_tail(queue, skb); 3550 3551 flags &= ~ACL_START; 3552 flags |= ACL_CONT; 3553 do { 3554 skb = list; list = list->next; 3555 3556 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT; 3557 hci_add_acl_hdr(skb, conn->handle, flags); 3558 3559 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3560 3561 __skb_queue_tail(queue, skb); 3562 } while (list); 3563 3564 spin_unlock_bh(&queue->lock); 3565 } 3566 } 3567 3568 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags) 3569 { 3570 struct hci_dev *hdev = chan->conn->hdev; 3571 3572 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags); 3573 3574 hci_queue_acl(chan, &chan->data_q, skb, flags); 3575 3576 queue_work(hdev->workqueue, &hdev->tx_work); 3577 } 3578 3579 /* Send SCO data */ 3580 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb) 3581 { 3582 struct hci_dev *hdev = conn->hdev; 3583 struct hci_sco_hdr hdr; 3584 3585 BT_DBG("%s len %d", hdev->name, skb->len); 3586 3587 hdr.handle = cpu_to_le16(conn->handle); 3588 hdr.dlen = skb->len; 3589 3590 skb_push(skb, HCI_SCO_HDR_SIZE); 3591 skb_reset_transport_header(skb); 3592 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE); 3593 3594 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT; 3595 3596 skb_queue_tail(&conn->data_q, skb); 3597 queue_work(hdev->workqueue, &hdev->tx_work); 3598 } 3599 3600 /* ---- HCI TX task (outgoing data) ---- */ 3601 3602 /* HCI Connection scheduler */ 3603 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, 3604 int *quote) 3605 { 3606 struct hci_conn_hash *h = &hdev->conn_hash; 3607 struct hci_conn *conn = NULL, *c; 3608 unsigned int num = 0, min = ~0; 3609 3610 /* We don't have to lock device here. Connections are always 3611 * added and removed with TX task disabled. */ 3612 3613 rcu_read_lock(); 3614 3615 list_for_each_entry_rcu(c, &h->list, list) { 3616 if (c->type != type || skb_queue_empty(&c->data_q)) 3617 continue; 3618 3619 if (c->state != BT_CONNECTED && c->state != BT_CONFIG) 3620 continue; 3621 3622 num++; 3623 3624 if (c->sent < min) { 3625 min = c->sent; 3626 conn = c; 3627 } 3628 3629 if (hci_conn_num(hdev, type) == num) 3630 break; 3631 } 3632 3633 rcu_read_unlock(); 3634 3635 if (conn) { 3636 int cnt, q; 3637 3638 switch (conn->type) { 3639 case ACL_LINK: 3640 cnt = hdev->acl_cnt; 3641 break; 3642 case SCO_LINK: 3643 case ESCO_LINK: 3644 cnt = hdev->sco_cnt; 3645 break; 3646 case LE_LINK: 3647 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 3648 break; 3649 default: 3650 cnt = 0; 3651 bt_dev_err(hdev, "unknown link type %d", conn->type); 3652 } 3653 3654 q = cnt / num; 3655 *quote = q ? q : 1; 3656 } else 3657 *quote = 0; 3658 3659 BT_DBG("conn %p quote %d", conn, *quote); 3660 return conn; 3661 } 3662 3663 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type) 3664 { 3665 struct hci_conn_hash *h = &hdev->conn_hash; 3666 struct hci_conn *c; 3667 3668 bt_dev_err(hdev, "link tx timeout"); 3669 3670 rcu_read_lock(); 3671 3672 /* Kill stalled connections */ 3673 list_for_each_entry_rcu(c, &h->list, list) { 3674 if (c->type == type && c->sent) { 3675 bt_dev_err(hdev, "killing stalled connection %pMR", 3676 &c->dst); 3677 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM); 3678 } 3679 } 3680 3681 rcu_read_unlock(); 3682 } 3683 3684 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type, 3685 int *quote) 3686 { 3687 struct hci_conn_hash *h = &hdev->conn_hash; 3688 struct hci_chan *chan = NULL; 3689 unsigned int num = 0, min = ~0, cur_prio = 0; 3690 struct hci_conn *conn; 3691 int cnt, q, conn_num = 0; 3692 3693 BT_DBG("%s", hdev->name); 3694 3695 rcu_read_lock(); 3696 3697 list_for_each_entry_rcu(conn, &h->list, list) { 3698 struct hci_chan *tmp; 3699 3700 if (conn->type != type) 3701 continue; 3702 3703 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3704 continue; 3705 3706 conn_num++; 3707 3708 list_for_each_entry_rcu(tmp, &conn->chan_list, list) { 3709 struct sk_buff *skb; 3710 3711 if (skb_queue_empty(&tmp->data_q)) 3712 continue; 3713 3714 skb = skb_peek(&tmp->data_q); 3715 if (skb->priority < cur_prio) 3716 continue; 3717 3718 if (skb->priority > cur_prio) { 3719 num = 0; 3720 min = ~0; 3721 cur_prio = skb->priority; 3722 } 3723 3724 num++; 3725 3726 if (conn->sent < min) { 3727 min = conn->sent; 3728 chan = tmp; 3729 } 3730 } 3731 3732 if (hci_conn_num(hdev, type) == conn_num) 3733 break; 3734 } 3735 3736 rcu_read_unlock(); 3737 3738 if (!chan) 3739 return NULL; 3740 3741 switch (chan->conn->type) { 3742 case ACL_LINK: 3743 cnt = hdev->acl_cnt; 3744 break; 3745 case AMP_LINK: 3746 cnt = hdev->block_cnt; 3747 break; 3748 case SCO_LINK: 3749 case ESCO_LINK: 3750 cnt = hdev->sco_cnt; 3751 break; 3752 case LE_LINK: 3753 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 3754 break; 3755 default: 3756 cnt = 0; 3757 bt_dev_err(hdev, "unknown link type %d", chan->conn->type); 3758 } 3759 3760 q = cnt / num; 3761 *quote = q ? q : 1; 3762 BT_DBG("chan %p quote %d", chan, *quote); 3763 return chan; 3764 } 3765 3766 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type) 3767 { 3768 struct hci_conn_hash *h = &hdev->conn_hash; 3769 struct hci_conn *conn; 3770 int num = 0; 3771 3772 BT_DBG("%s", hdev->name); 3773 3774 rcu_read_lock(); 3775 3776 list_for_each_entry_rcu(conn, &h->list, list) { 3777 struct hci_chan *chan; 3778 3779 if (conn->type != type) 3780 continue; 3781 3782 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3783 continue; 3784 3785 num++; 3786 3787 list_for_each_entry_rcu(chan, &conn->chan_list, list) { 3788 struct sk_buff *skb; 3789 3790 if (chan->sent) { 3791 chan->sent = 0; 3792 continue; 3793 } 3794 3795 if (skb_queue_empty(&chan->data_q)) 3796 continue; 3797 3798 skb = skb_peek(&chan->data_q); 3799 if (skb->priority >= HCI_PRIO_MAX - 1) 3800 continue; 3801 3802 skb->priority = HCI_PRIO_MAX - 1; 3803 3804 BT_DBG("chan %p skb %p promoted to %d", chan, skb, 3805 skb->priority); 3806 } 3807 3808 if (hci_conn_num(hdev, type) == num) 3809 break; 3810 } 3811 3812 rcu_read_unlock(); 3813 3814 } 3815 3816 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb) 3817 { 3818 /* Calculate count of blocks used by this packet */ 3819 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len); 3820 } 3821 3822 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt) 3823 { 3824 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 3825 /* ACL tx timeout must be longer than maximum 3826 * link supervision timeout (40.9 seconds) */ 3827 if (!cnt && time_after(jiffies, hdev->acl_last_tx + 3828 HCI_ACL_TX_TIMEOUT)) 3829 hci_link_tx_to(hdev, ACL_LINK); 3830 } 3831 } 3832 3833 static void hci_sched_acl_pkt(struct hci_dev *hdev) 3834 { 3835 unsigned int cnt = hdev->acl_cnt; 3836 struct hci_chan *chan; 3837 struct sk_buff *skb; 3838 int quote; 3839 3840 __check_timeout(hdev, cnt); 3841 3842 while (hdev->acl_cnt && 3843 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) { 3844 u32 priority = (skb_peek(&chan->data_q))->priority; 3845 while (quote-- && (skb = skb_peek(&chan->data_q))) { 3846 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 3847 skb->len, skb->priority); 3848 3849 /* Stop if priority has changed */ 3850 if (skb->priority < priority) 3851 break; 3852 3853 skb = skb_dequeue(&chan->data_q); 3854 3855 hci_conn_enter_active_mode(chan->conn, 3856 bt_cb(skb)->force_active); 3857 3858 hci_send_frame(hdev, skb); 3859 hdev->acl_last_tx = jiffies; 3860 3861 hdev->acl_cnt--; 3862 chan->sent++; 3863 chan->conn->sent++; 3864 } 3865 } 3866 3867 if (cnt != hdev->acl_cnt) 3868 hci_prio_recalculate(hdev, ACL_LINK); 3869 } 3870 3871 static void hci_sched_acl_blk(struct hci_dev *hdev) 3872 { 3873 unsigned int cnt = hdev->block_cnt; 3874 struct hci_chan *chan; 3875 struct sk_buff *skb; 3876 int quote; 3877 u8 type; 3878 3879 __check_timeout(hdev, cnt); 3880 3881 BT_DBG("%s", hdev->name); 3882 3883 if (hdev->dev_type == HCI_AMP) 3884 type = AMP_LINK; 3885 else 3886 type = ACL_LINK; 3887 3888 while (hdev->block_cnt > 0 && 3889 (chan = hci_chan_sent(hdev, type, "e))) { 3890 u32 priority = (skb_peek(&chan->data_q))->priority; 3891 while (quote > 0 && (skb = skb_peek(&chan->data_q))) { 3892 int blocks; 3893 3894 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 3895 skb->len, skb->priority); 3896 3897 /* Stop if priority has changed */ 3898 if (skb->priority < priority) 3899 break; 3900 3901 skb = skb_dequeue(&chan->data_q); 3902 3903 blocks = __get_blocks(hdev, skb); 3904 if (blocks > hdev->block_cnt) 3905 return; 3906 3907 hci_conn_enter_active_mode(chan->conn, 3908 bt_cb(skb)->force_active); 3909 3910 hci_send_frame(hdev, skb); 3911 hdev->acl_last_tx = jiffies; 3912 3913 hdev->block_cnt -= blocks; 3914 quote -= blocks; 3915 3916 chan->sent += blocks; 3917 chan->conn->sent += blocks; 3918 } 3919 } 3920 3921 if (cnt != hdev->block_cnt) 3922 hci_prio_recalculate(hdev, type); 3923 } 3924 3925 static void hci_sched_acl(struct hci_dev *hdev) 3926 { 3927 BT_DBG("%s", hdev->name); 3928 3929 /* No ACL link over BR/EDR controller */ 3930 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY) 3931 return; 3932 3933 /* No AMP link over AMP controller */ 3934 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP) 3935 return; 3936 3937 switch (hdev->flow_ctl_mode) { 3938 case HCI_FLOW_CTL_MODE_PACKET_BASED: 3939 hci_sched_acl_pkt(hdev); 3940 break; 3941 3942 case HCI_FLOW_CTL_MODE_BLOCK_BASED: 3943 hci_sched_acl_blk(hdev); 3944 break; 3945 } 3946 } 3947 3948 /* Schedule SCO */ 3949 static void hci_sched_sco(struct hci_dev *hdev) 3950 { 3951 struct hci_conn *conn; 3952 struct sk_buff *skb; 3953 int quote; 3954 3955 BT_DBG("%s", hdev->name); 3956 3957 if (!hci_conn_num(hdev, SCO_LINK)) 3958 return; 3959 3960 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) { 3961 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 3962 BT_DBG("skb %p len %d", skb, skb->len); 3963 hci_send_frame(hdev, skb); 3964 3965 conn->sent++; 3966 if (conn->sent == ~0) 3967 conn->sent = 0; 3968 } 3969 } 3970 } 3971 3972 static void hci_sched_esco(struct hci_dev *hdev) 3973 { 3974 struct hci_conn *conn; 3975 struct sk_buff *skb; 3976 int quote; 3977 3978 BT_DBG("%s", hdev->name); 3979 3980 if (!hci_conn_num(hdev, ESCO_LINK)) 3981 return; 3982 3983 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, 3984 "e))) { 3985 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 3986 BT_DBG("skb %p len %d", skb, skb->len); 3987 hci_send_frame(hdev, skb); 3988 3989 conn->sent++; 3990 if (conn->sent == ~0) 3991 conn->sent = 0; 3992 } 3993 } 3994 } 3995 3996 static void hci_sched_le(struct hci_dev *hdev) 3997 { 3998 struct hci_chan *chan; 3999 struct sk_buff *skb; 4000 int quote, cnt, tmp; 4001 4002 BT_DBG("%s", hdev->name); 4003 4004 if (!hci_conn_num(hdev, LE_LINK)) 4005 return; 4006 4007 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 4008 /* LE tx timeout must be longer than maximum 4009 * link supervision timeout (40.9 seconds) */ 4010 if (!hdev->le_cnt && hdev->le_pkts && 4011 time_after(jiffies, hdev->le_last_tx + HZ * 45)) 4012 hci_link_tx_to(hdev, LE_LINK); 4013 } 4014 4015 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt; 4016 tmp = cnt; 4017 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) { 4018 u32 priority = (skb_peek(&chan->data_q))->priority; 4019 while (quote-- && (skb = skb_peek(&chan->data_q))) { 4020 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 4021 skb->len, skb->priority); 4022 4023 /* Stop if priority has changed */ 4024 if (skb->priority < priority) 4025 break; 4026 4027 skb = skb_dequeue(&chan->data_q); 4028 4029 hci_send_frame(hdev, skb); 4030 hdev->le_last_tx = jiffies; 4031 4032 cnt--; 4033 chan->sent++; 4034 chan->conn->sent++; 4035 } 4036 } 4037 4038 if (hdev->le_pkts) 4039 hdev->le_cnt = cnt; 4040 else 4041 hdev->acl_cnt = cnt; 4042 4043 if (cnt != tmp) 4044 hci_prio_recalculate(hdev, LE_LINK); 4045 } 4046 4047 static void hci_tx_work(struct work_struct *work) 4048 { 4049 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work); 4050 struct sk_buff *skb; 4051 4052 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt, 4053 hdev->sco_cnt, hdev->le_cnt); 4054 4055 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4056 /* Schedule queues and send stuff to HCI driver */ 4057 hci_sched_acl(hdev); 4058 hci_sched_sco(hdev); 4059 hci_sched_esco(hdev); 4060 hci_sched_le(hdev); 4061 } 4062 4063 /* Send next queued raw (unknown type) packet */ 4064 while ((skb = skb_dequeue(&hdev->raw_q))) 4065 hci_send_frame(hdev, skb); 4066 } 4067 4068 /* ----- HCI RX task (incoming data processing) ----- */ 4069 4070 /* ACL data packet */ 4071 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb) 4072 { 4073 struct hci_acl_hdr *hdr = (void *) skb->data; 4074 struct hci_conn *conn; 4075 __u16 handle, flags; 4076 4077 skb_pull(skb, HCI_ACL_HDR_SIZE); 4078 4079 handle = __le16_to_cpu(hdr->handle); 4080 flags = hci_flags(handle); 4081 handle = hci_handle(handle); 4082 4083 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len, 4084 handle, flags); 4085 4086 hdev->stat.acl_rx++; 4087 4088 hci_dev_lock(hdev); 4089 conn = hci_conn_hash_lookup_handle(hdev, handle); 4090 hci_dev_unlock(hdev); 4091 4092 if (conn) { 4093 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF); 4094 4095 /* Send to upper protocol */ 4096 l2cap_recv_acldata(conn, skb, flags); 4097 return; 4098 } else { 4099 bt_dev_err(hdev, "ACL packet for unknown connection handle %d", 4100 handle); 4101 } 4102 4103 kfree_skb(skb); 4104 } 4105 4106 /* SCO data packet */ 4107 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb) 4108 { 4109 struct hci_sco_hdr *hdr = (void *) skb->data; 4110 struct hci_conn *conn; 4111 __u16 handle; 4112 4113 skb_pull(skb, HCI_SCO_HDR_SIZE); 4114 4115 handle = __le16_to_cpu(hdr->handle); 4116 4117 BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle); 4118 4119 hdev->stat.sco_rx++; 4120 4121 hci_dev_lock(hdev); 4122 conn = hci_conn_hash_lookup_handle(hdev, handle); 4123 hci_dev_unlock(hdev); 4124 4125 if (conn) { 4126 /* Send to upper protocol */ 4127 sco_recv_scodata(conn, skb); 4128 return; 4129 } else { 4130 bt_dev_err(hdev, "SCO packet for unknown connection handle %d", 4131 handle); 4132 } 4133 4134 kfree_skb(skb); 4135 } 4136 4137 static bool hci_req_is_complete(struct hci_dev *hdev) 4138 { 4139 struct sk_buff *skb; 4140 4141 skb = skb_peek(&hdev->cmd_q); 4142 if (!skb) 4143 return true; 4144 4145 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START); 4146 } 4147 4148 static void hci_resend_last(struct hci_dev *hdev) 4149 { 4150 struct hci_command_hdr *sent; 4151 struct sk_buff *skb; 4152 u16 opcode; 4153 4154 if (!hdev->sent_cmd) 4155 return; 4156 4157 sent = (void *) hdev->sent_cmd->data; 4158 opcode = __le16_to_cpu(sent->opcode); 4159 if (opcode == HCI_OP_RESET) 4160 return; 4161 4162 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL); 4163 if (!skb) 4164 return; 4165 4166 skb_queue_head(&hdev->cmd_q, skb); 4167 queue_work(hdev->workqueue, &hdev->cmd_work); 4168 } 4169 4170 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status, 4171 hci_req_complete_t *req_complete, 4172 hci_req_complete_skb_t *req_complete_skb) 4173 { 4174 struct sk_buff *skb; 4175 unsigned long flags; 4176 4177 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status); 4178 4179 /* If the completed command doesn't match the last one that was 4180 * sent we need to do special handling of it. 4181 */ 4182 if (!hci_sent_cmd_data(hdev, opcode)) { 4183 /* Some CSR based controllers generate a spontaneous 4184 * reset complete event during init and any pending 4185 * command will never be completed. In such a case we 4186 * need to resend whatever was the last sent 4187 * command. 4188 */ 4189 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET) 4190 hci_resend_last(hdev); 4191 4192 return; 4193 } 4194 4195 /* If the command succeeded and there's still more commands in 4196 * this request the request is not yet complete. 4197 */ 4198 if (!status && !hci_req_is_complete(hdev)) 4199 return; 4200 4201 /* If this was the last command in a request the complete 4202 * callback would be found in hdev->sent_cmd instead of the 4203 * command queue (hdev->cmd_q). 4204 */ 4205 if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) { 4206 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb; 4207 return; 4208 } 4209 4210 if (bt_cb(hdev->sent_cmd)->hci.req_complete) { 4211 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete; 4212 return; 4213 } 4214 4215 /* Remove all pending commands belonging to this request */ 4216 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 4217 while ((skb = __skb_dequeue(&hdev->cmd_q))) { 4218 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) { 4219 __skb_queue_head(&hdev->cmd_q, skb); 4220 break; 4221 } 4222 4223 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) 4224 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb; 4225 else 4226 *req_complete = bt_cb(skb)->hci.req_complete; 4227 kfree_skb(skb); 4228 } 4229 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 4230 } 4231 4232 static void hci_rx_work(struct work_struct *work) 4233 { 4234 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work); 4235 struct sk_buff *skb; 4236 4237 BT_DBG("%s", hdev->name); 4238 4239 while ((skb = skb_dequeue(&hdev->rx_q))) { 4240 /* Send copy to monitor */ 4241 hci_send_to_monitor(hdev, skb); 4242 4243 if (atomic_read(&hdev->promisc)) { 4244 /* Send copy to the sockets */ 4245 hci_send_to_sock(hdev, skb); 4246 } 4247 4248 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4249 kfree_skb(skb); 4250 continue; 4251 } 4252 4253 if (test_bit(HCI_INIT, &hdev->flags)) { 4254 /* Don't process data packets in this states. */ 4255 switch (hci_skb_pkt_type(skb)) { 4256 case HCI_ACLDATA_PKT: 4257 case HCI_SCODATA_PKT: 4258 kfree_skb(skb); 4259 continue; 4260 } 4261 } 4262 4263 /* Process frame */ 4264 switch (hci_skb_pkt_type(skb)) { 4265 case HCI_EVENT_PKT: 4266 BT_DBG("%s Event packet", hdev->name); 4267 hci_event_packet(hdev, skb); 4268 break; 4269 4270 case HCI_ACLDATA_PKT: 4271 BT_DBG("%s ACL data packet", hdev->name); 4272 hci_acldata_packet(hdev, skb); 4273 break; 4274 4275 case HCI_SCODATA_PKT: 4276 BT_DBG("%s SCO data packet", hdev->name); 4277 hci_scodata_packet(hdev, skb); 4278 break; 4279 4280 default: 4281 kfree_skb(skb); 4282 break; 4283 } 4284 } 4285 } 4286 4287 static void hci_cmd_work(struct work_struct *work) 4288 { 4289 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work); 4290 struct sk_buff *skb; 4291 4292 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name, 4293 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q)); 4294 4295 /* Send queued commands */ 4296 if (atomic_read(&hdev->cmd_cnt)) { 4297 skb = skb_dequeue(&hdev->cmd_q); 4298 if (!skb) 4299 return; 4300 4301 kfree_skb(hdev->sent_cmd); 4302 4303 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL); 4304 if (hdev->sent_cmd) { 4305 atomic_dec(&hdev->cmd_cnt); 4306 hci_send_frame(hdev, skb); 4307 if (test_bit(HCI_RESET, &hdev->flags)) 4308 cancel_delayed_work(&hdev->cmd_timer); 4309 else 4310 schedule_delayed_work(&hdev->cmd_timer, 4311 HCI_CMD_TIMEOUT); 4312 } else { 4313 skb_queue_head(&hdev->cmd_q, skb); 4314 queue_work(hdev->workqueue, &hdev->cmd_work); 4315 } 4316 } 4317 } 4318