1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (C) 2000-2001 Qualcomm Incorporated 4 Copyright (C) 2011 ProFUSION Embedded Systems 5 6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License version 2 as 10 published by the Free Software Foundation; 11 12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 23 SOFTWARE IS DISCLAIMED. 24 */ 25 26 /* Bluetooth HCI core. */ 27 28 #include <linux/export.h> 29 #include <linux/idr.h> 30 #include <linux/rfkill.h> 31 #include <linux/debugfs.h> 32 #include <linux/crypto.h> 33 #include <linux/property.h> 34 #include <asm/unaligned.h> 35 36 #include <net/bluetooth/bluetooth.h> 37 #include <net/bluetooth/hci_core.h> 38 #include <net/bluetooth/l2cap.h> 39 #include <net/bluetooth/mgmt.h> 40 41 #include "hci_request.h" 42 #include "hci_debugfs.h" 43 #include "smp.h" 44 #include "leds.h" 45 46 static void hci_rx_work(struct work_struct *work); 47 static void hci_cmd_work(struct work_struct *work); 48 static void hci_tx_work(struct work_struct *work); 49 50 /* HCI device list */ 51 LIST_HEAD(hci_dev_list); 52 DEFINE_RWLOCK(hci_dev_list_lock); 53 54 /* HCI callback list */ 55 LIST_HEAD(hci_cb_list); 56 DEFINE_MUTEX(hci_cb_list_lock); 57 58 /* HCI ID Numbering */ 59 static DEFINE_IDA(hci_index_ida); 60 61 /* ---- HCI debugfs entries ---- */ 62 63 static ssize_t dut_mode_read(struct file *file, char __user *user_buf, 64 size_t count, loff_t *ppos) 65 { 66 struct hci_dev *hdev = file->private_data; 67 char buf[3]; 68 69 buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N'; 70 buf[1] = '\n'; 71 buf[2] = '\0'; 72 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 73 } 74 75 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf, 76 size_t count, loff_t *ppos) 77 { 78 struct hci_dev *hdev = file->private_data; 79 struct sk_buff *skb; 80 bool enable; 81 int err; 82 83 if (!test_bit(HCI_UP, &hdev->flags)) 84 return -ENETDOWN; 85 86 err = kstrtobool_from_user(user_buf, count, &enable); 87 if (err) 88 return err; 89 90 if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE)) 91 return -EALREADY; 92 93 hci_req_sync_lock(hdev); 94 if (enable) 95 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL, 96 HCI_CMD_TIMEOUT); 97 else 98 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, 99 HCI_CMD_TIMEOUT); 100 hci_req_sync_unlock(hdev); 101 102 if (IS_ERR(skb)) 103 return PTR_ERR(skb); 104 105 kfree_skb(skb); 106 107 hci_dev_change_flag(hdev, HCI_DUT_MODE); 108 109 return count; 110 } 111 112 static const struct file_operations dut_mode_fops = { 113 .open = simple_open, 114 .read = dut_mode_read, 115 .write = dut_mode_write, 116 .llseek = default_llseek, 117 }; 118 119 static ssize_t vendor_diag_read(struct file *file, char __user *user_buf, 120 size_t count, loff_t *ppos) 121 { 122 struct hci_dev *hdev = file->private_data; 123 char buf[3]; 124 125 buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N'; 126 buf[1] = '\n'; 127 buf[2] = '\0'; 128 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 129 } 130 131 static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf, 132 size_t count, loff_t *ppos) 133 { 134 struct hci_dev *hdev = file->private_data; 135 bool enable; 136 int err; 137 138 err = kstrtobool_from_user(user_buf, count, &enable); 139 if (err) 140 return err; 141 142 /* When the diagnostic flags are not persistent and the transport 143 * is not active or in user channel operation, then there is no need 144 * for the vendor callback. Instead just store the desired value and 145 * the setting will be programmed when the controller gets powered on. 146 */ 147 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 148 (!test_bit(HCI_RUNNING, &hdev->flags) || 149 hci_dev_test_flag(hdev, HCI_USER_CHANNEL))) 150 goto done; 151 152 hci_req_sync_lock(hdev); 153 err = hdev->set_diag(hdev, enable); 154 hci_req_sync_unlock(hdev); 155 156 if (err < 0) 157 return err; 158 159 done: 160 if (enable) 161 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG); 162 else 163 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG); 164 165 return count; 166 } 167 168 static const struct file_operations vendor_diag_fops = { 169 .open = simple_open, 170 .read = vendor_diag_read, 171 .write = vendor_diag_write, 172 .llseek = default_llseek, 173 }; 174 175 static void hci_debugfs_create_basic(struct hci_dev *hdev) 176 { 177 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev, 178 &dut_mode_fops); 179 180 if (hdev->set_diag) 181 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev, 182 &vendor_diag_fops); 183 } 184 185 static int hci_reset_req(struct hci_request *req, unsigned long opt) 186 { 187 BT_DBG("%s %ld", req->hdev->name, opt); 188 189 /* Reset device */ 190 set_bit(HCI_RESET, &req->hdev->flags); 191 hci_req_add(req, HCI_OP_RESET, 0, NULL); 192 return 0; 193 } 194 195 static void bredr_init(struct hci_request *req) 196 { 197 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED; 198 199 /* Read Local Supported Features */ 200 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL); 201 202 /* Read Local Version */ 203 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL); 204 205 /* Read BD Address */ 206 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL); 207 } 208 209 static void amp_init1(struct hci_request *req) 210 { 211 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED; 212 213 /* Read Local Version */ 214 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL); 215 216 /* Read Local Supported Commands */ 217 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL); 218 219 /* Read Local AMP Info */ 220 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL); 221 222 /* Read Data Blk size */ 223 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL); 224 225 /* Read Flow Control Mode */ 226 hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL); 227 228 /* Read Location Data */ 229 hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL); 230 } 231 232 static int amp_init2(struct hci_request *req) 233 { 234 /* Read Local Supported Features. Not all AMP controllers 235 * support this so it's placed conditionally in the second 236 * stage init. 237 */ 238 if (req->hdev->commands[14] & 0x20) 239 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL); 240 241 return 0; 242 } 243 244 static int hci_init1_req(struct hci_request *req, unsigned long opt) 245 { 246 struct hci_dev *hdev = req->hdev; 247 248 BT_DBG("%s %ld", hdev->name, opt); 249 250 /* Reset */ 251 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) 252 hci_reset_req(req, 0); 253 254 switch (hdev->dev_type) { 255 case HCI_PRIMARY: 256 bredr_init(req); 257 break; 258 case HCI_AMP: 259 amp_init1(req); 260 break; 261 default: 262 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type); 263 break; 264 } 265 266 return 0; 267 } 268 269 static void bredr_setup(struct hci_request *req) 270 { 271 __le16 param; 272 __u8 flt_type; 273 274 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 275 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL); 276 277 /* Read Class of Device */ 278 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL); 279 280 /* Read Local Name */ 281 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL); 282 283 /* Read Voice Setting */ 284 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL); 285 286 /* Read Number of Supported IAC */ 287 hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL); 288 289 /* Read Current IAC LAP */ 290 hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL); 291 292 /* Clear Event Filters */ 293 flt_type = HCI_FLT_CLEAR_ALL; 294 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type); 295 296 /* Connection accept timeout ~20 secs */ 297 param = cpu_to_le16(0x7d00); 298 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, ¶m); 299 } 300 301 static void le_setup(struct hci_request *req) 302 { 303 struct hci_dev *hdev = req->hdev; 304 305 /* Read LE Buffer Size */ 306 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL); 307 308 /* Read LE Local Supported Features */ 309 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL); 310 311 /* Read LE Supported States */ 312 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL); 313 314 /* LE-only controllers have LE implicitly enabled */ 315 if (!lmp_bredr_capable(hdev)) 316 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 317 } 318 319 static void hci_setup_event_mask(struct hci_request *req) 320 { 321 struct hci_dev *hdev = req->hdev; 322 323 /* The second byte is 0xff instead of 0x9f (two reserved bits 324 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 325 * command otherwise. 326 */ 327 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 328 329 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 330 * any event mask for pre 1.2 devices. 331 */ 332 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 333 return; 334 335 if (lmp_bredr_capable(hdev)) { 336 events[4] |= 0x01; /* Flow Specification Complete */ 337 } else { 338 /* Use a different default for LE-only devices */ 339 memset(events, 0, sizeof(events)); 340 events[1] |= 0x20; /* Command Complete */ 341 events[1] |= 0x40; /* Command Status */ 342 events[1] |= 0x80; /* Hardware Error */ 343 344 /* If the controller supports the Disconnect command, enable 345 * the corresponding event. In addition enable packet flow 346 * control related events. 347 */ 348 if (hdev->commands[0] & 0x20) { 349 events[0] |= 0x10; /* Disconnection Complete */ 350 events[2] |= 0x04; /* Number of Completed Packets */ 351 events[3] |= 0x02; /* Data Buffer Overflow */ 352 } 353 354 /* If the controller supports the Read Remote Version 355 * Information command, enable the corresponding event. 356 */ 357 if (hdev->commands[2] & 0x80) 358 events[1] |= 0x08; /* Read Remote Version Information 359 * Complete 360 */ 361 362 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 363 events[0] |= 0x80; /* Encryption Change */ 364 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 365 } 366 } 367 368 if (lmp_inq_rssi_capable(hdev) || 369 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 370 events[4] |= 0x02; /* Inquiry Result with RSSI */ 371 372 if (lmp_ext_feat_capable(hdev)) 373 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 374 375 if (lmp_esco_capable(hdev)) { 376 events[5] |= 0x08; /* Synchronous Connection Complete */ 377 events[5] |= 0x10; /* Synchronous Connection Changed */ 378 } 379 380 if (lmp_sniffsubr_capable(hdev)) 381 events[5] |= 0x20; /* Sniff Subrating */ 382 383 if (lmp_pause_enc_capable(hdev)) 384 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 385 386 if (lmp_ext_inq_capable(hdev)) 387 events[5] |= 0x40; /* Extended Inquiry Result */ 388 389 if (lmp_no_flush_capable(hdev)) 390 events[7] |= 0x01; /* Enhanced Flush Complete */ 391 392 if (lmp_lsto_capable(hdev)) 393 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 394 395 if (lmp_ssp_capable(hdev)) { 396 events[6] |= 0x01; /* IO Capability Request */ 397 events[6] |= 0x02; /* IO Capability Response */ 398 events[6] |= 0x04; /* User Confirmation Request */ 399 events[6] |= 0x08; /* User Passkey Request */ 400 events[6] |= 0x10; /* Remote OOB Data Request */ 401 events[6] |= 0x20; /* Simple Pairing Complete */ 402 events[7] |= 0x04; /* User Passkey Notification */ 403 events[7] |= 0x08; /* Keypress Notification */ 404 events[7] |= 0x10; /* Remote Host Supported 405 * Features Notification 406 */ 407 } 408 409 if (lmp_le_capable(hdev)) 410 events[7] |= 0x20; /* LE Meta-Event */ 411 412 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events); 413 } 414 415 static int hci_init2_req(struct hci_request *req, unsigned long opt) 416 { 417 struct hci_dev *hdev = req->hdev; 418 419 if (hdev->dev_type == HCI_AMP) 420 return amp_init2(req); 421 422 if (lmp_bredr_capable(hdev)) 423 bredr_setup(req); 424 else 425 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); 426 427 if (lmp_le_capable(hdev)) 428 le_setup(req); 429 430 /* All Bluetooth 1.2 and later controllers should support the 431 * HCI command for reading the local supported commands. 432 * 433 * Unfortunately some controllers indicate Bluetooth 1.2 support, 434 * but do not have support for this command. If that is the case, 435 * the driver can quirk the behavior and skip reading the local 436 * supported commands. 437 */ 438 if (hdev->hci_ver > BLUETOOTH_VER_1_1 && 439 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) 440 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL); 441 442 if (lmp_ssp_capable(hdev)) { 443 /* When SSP is available, then the host features page 444 * should also be available as well. However some 445 * controllers list the max_page as 0 as long as SSP 446 * has not been enabled. To achieve proper debugging 447 * output, force the minimum max_page to 1 at least. 448 */ 449 hdev->max_page = 0x01; 450 451 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) { 452 u8 mode = 0x01; 453 454 hci_req_add(req, HCI_OP_WRITE_SSP_MODE, 455 sizeof(mode), &mode); 456 } else { 457 struct hci_cp_write_eir cp; 458 459 memset(hdev->eir, 0, sizeof(hdev->eir)); 460 memset(&cp, 0, sizeof(cp)); 461 462 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp); 463 } 464 } 465 466 if (lmp_inq_rssi_capable(hdev) || 467 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) { 468 u8 mode; 469 470 /* If Extended Inquiry Result events are supported, then 471 * they are clearly preferred over Inquiry Result with RSSI 472 * events. 473 */ 474 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; 475 476 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode); 477 } 478 479 if (lmp_inq_tx_pwr_capable(hdev)) 480 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL); 481 482 if (lmp_ext_feat_capable(hdev)) { 483 struct hci_cp_read_local_ext_features cp; 484 485 cp.page = 0x01; 486 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES, 487 sizeof(cp), &cp); 488 } 489 490 if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) { 491 u8 enable = 1; 492 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable), 493 &enable); 494 } 495 496 return 0; 497 } 498 499 static void hci_setup_link_policy(struct hci_request *req) 500 { 501 struct hci_dev *hdev = req->hdev; 502 struct hci_cp_write_def_link_policy cp; 503 u16 link_policy = 0; 504 505 if (lmp_rswitch_capable(hdev)) 506 link_policy |= HCI_LP_RSWITCH; 507 if (lmp_hold_capable(hdev)) 508 link_policy |= HCI_LP_HOLD; 509 if (lmp_sniff_capable(hdev)) 510 link_policy |= HCI_LP_SNIFF; 511 if (lmp_park_capable(hdev)) 512 link_policy |= HCI_LP_PARK; 513 514 cp.policy = cpu_to_le16(link_policy); 515 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp); 516 } 517 518 static void hci_set_le_support(struct hci_request *req) 519 { 520 struct hci_dev *hdev = req->hdev; 521 struct hci_cp_write_le_host_supported cp; 522 523 /* LE-only devices do not support explicit enablement */ 524 if (!lmp_bredr_capable(hdev)) 525 return; 526 527 memset(&cp, 0, sizeof(cp)); 528 529 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 530 cp.le = 0x01; 531 cp.simul = 0x00; 532 } 533 534 if (cp.le != lmp_host_le_capable(hdev)) 535 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp), 536 &cp); 537 } 538 539 static void hci_set_event_mask_page_2(struct hci_request *req) 540 { 541 struct hci_dev *hdev = req->hdev; 542 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 543 bool changed = false; 544 545 /* If Connectionless Slave Broadcast master role is supported 546 * enable all necessary events for it. 547 */ 548 if (lmp_csb_master_capable(hdev)) { 549 events[1] |= 0x40; /* Triggered Clock Capture */ 550 events[1] |= 0x80; /* Synchronization Train Complete */ 551 events[2] |= 0x10; /* Slave Page Response Timeout */ 552 events[2] |= 0x20; /* CSB Channel Map Change */ 553 changed = true; 554 } 555 556 /* If Connectionless Slave Broadcast slave role is supported 557 * enable all necessary events for it. 558 */ 559 if (lmp_csb_slave_capable(hdev)) { 560 events[2] |= 0x01; /* Synchronization Train Received */ 561 events[2] |= 0x02; /* CSB Receive */ 562 events[2] |= 0x04; /* CSB Timeout */ 563 events[2] |= 0x08; /* Truncated Page Complete */ 564 changed = true; 565 } 566 567 /* Enable Authenticated Payload Timeout Expired event if supported */ 568 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { 569 events[2] |= 0x80; 570 changed = true; 571 } 572 573 /* Some Broadcom based controllers indicate support for Set Event 574 * Mask Page 2 command, but then actually do not support it. Since 575 * the default value is all bits set to zero, the command is only 576 * required if the event mask has to be changed. In case no change 577 * to the event mask is needed, skip this command. 578 */ 579 if (changed) 580 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, 581 sizeof(events), events); 582 } 583 584 static int hci_init3_req(struct hci_request *req, unsigned long opt) 585 { 586 struct hci_dev *hdev = req->hdev; 587 u8 p; 588 589 hci_setup_event_mask(req); 590 591 if (hdev->commands[6] & 0x20 && 592 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) { 593 struct hci_cp_read_stored_link_key cp; 594 595 bacpy(&cp.bdaddr, BDADDR_ANY); 596 cp.read_all = 0x01; 597 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp); 598 } 599 600 if (hdev->commands[5] & 0x10) 601 hci_setup_link_policy(req); 602 603 if (hdev->commands[8] & 0x01) 604 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL); 605 606 /* Some older Broadcom based Bluetooth 1.2 controllers do not 607 * support the Read Page Scan Type command. Check support for 608 * this command in the bit mask of supported commands. 609 */ 610 if (hdev->commands[13] & 0x01) 611 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL); 612 613 if (lmp_le_capable(hdev)) { 614 u8 events[8]; 615 616 memset(events, 0, sizeof(events)); 617 618 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 619 events[0] |= 0x10; /* LE Long Term Key Request */ 620 621 /* If controller supports the Connection Parameters Request 622 * Link Layer Procedure, enable the corresponding event. 623 */ 624 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 625 events[0] |= 0x20; /* LE Remote Connection 626 * Parameter Request 627 */ 628 629 /* If the controller supports the Data Length Extension 630 * feature, enable the corresponding event. 631 */ 632 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) 633 events[0] |= 0x40; /* LE Data Length Change */ 634 635 /* If the controller supports Extended Scanner Filter 636 * Policies, enable the correspondig event. 637 */ 638 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) 639 events[1] |= 0x04; /* LE Direct Advertising 640 * Report 641 */ 642 643 /* If the controller supports Channel Selection Algorithm #2 644 * feature, enable the corresponding event. 645 */ 646 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) 647 events[2] |= 0x08; /* LE Channel Selection 648 * Algorithm 649 */ 650 651 /* If the controller supports the LE Set Scan Enable command, 652 * enable the corresponding advertising report event. 653 */ 654 if (hdev->commands[26] & 0x08) 655 events[0] |= 0x02; /* LE Advertising Report */ 656 657 /* If the controller supports the LE Create Connection 658 * command, enable the corresponding event. 659 */ 660 if (hdev->commands[26] & 0x10) 661 events[0] |= 0x01; /* LE Connection Complete */ 662 663 /* If the controller supports the LE Connection Update 664 * command, enable the corresponding event. 665 */ 666 if (hdev->commands[27] & 0x04) 667 events[0] |= 0x04; /* LE Connection Update 668 * Complete 669 */ 670 671 /* If the controller supports the LE Read Remote Used Features 672 * command, enable the corresponding event. 673 */ 674 if (hdev->commands[27] & 0x20) 675 events[0] |= 0x08; /* LE Read Remote Used 676 * Features Complete 677 */ 678 679 /* If the controller supports the LE Read Local P-256 680 * Public Key command, enable the corresponding event. 681 */ 682 if (hdev->commands[34] & 0x02) 683 events[0] |= 0x80; /* LE Read Local P-256 684 * Public Key Complete 685 */ 686 687 /* If the controller supports the LE Generate DHKey 688 * command, enable the corresponding event. 689 */ 690 if (hdev->commands[34] & 0x04) 691 events[1] |= 0x01; /* LE Generate DHKey Complete */ 692 693 /* If the controller supports the LE Set Default PHY or 694 * LE Set PHY commands, enable the corresponding event. 695 */ 696 if (hdev->commands[35] & (0x20 | 0x40)) 697 events[1] |= 0x08; /* LE PHY Update Complete */ 698 699 /* If the controller supports LE Set Extended Scan Parameters 700 * and LE Set Extended Scan Enable commands, enable the 701 * corresponding event. 702 */ 703 if (use_ext_scan(hdev)) 704 events[1] |= 0x10; /* LE Extended Advertising 705 * Report 706 */ 707 708 /* If the controller supports the LE Extended Create Connection 709 * command, enable the corresponding event. 710 */ 711 if (use_ext_conn(hdev)) 712 events[1] |= 0x02; /* LE Enhanced Connection 713 * Complete 714 */ 715 716 /* If the controller supports the LE Extended Advertising 717 * command, enable the corresponding event. 718 */ 719 if (ext_adv_capable(hdev)) 720 events[2] |= 0x02; /* LE Advertising Set 721 * Terminated 722 */ 723 724 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events), 725 events); 726 727 /* Read LE Advertising Channel TX Power */ 728 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) { 729 /* HCI TS spec forbids mixing of legacy and extended 730 * advertising commands wherein READ_ADV_TX_POWER is 731 * also included. So do not call it if extended adv 732 * is supported otherwise controller will return 733 * COMMAND_DISALLOWED for extended commands. 734 */ 735 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL); 736 } 737 738 if (hdev->commands[26] & 0x40) { 739 /* Read LE White List Size */ 740 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE, 741 0, NULL); 742 } 743 744 if (hdev->commands[26] & 0x80) { 745 /* Clear LE White List */ 746 hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL); 747 } 748 749 if (hdev->commands[34] & 0x40) { 750 /* Read LE Resolving List Size */ 751 hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE, 752 0, NULL); 753 } 754 755 if (hdev->commands[34] & 0x20) { 756 /* Clear LE Resolving List */ 757 hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL); 758 } 759 760 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) { 761 /* Read LE Maximum Data Length */ 762 hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL); 763 764 /* Read LE Suggested Default Data Length */ 765 hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL); 766 } 767 768 if (ext_adv_capable(hdev)) { 769 /* Read LE Number of Supported Advertising Sets */ 770 hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 771 0, NULL); 772 } 773 774 hci_set_le_support(req); 775 } 776 777 /* Read features beyond page 1 if available */ 778 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) { 779 struct hci_cp_read_local_ext_features cp; 780 781 cp.page = p; 782 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES, 783 sizeof(cp), &cp); 784 } 785 786 return 0; 787 } 788 789 static int hci_init4_req(struct hci_request *req, unsigned long opt) 790 { 791 struct hci_dev *hdev = req->hdev; 792 793 /* Some Broadcom based Bluetooth controllers do not support the 794 * Delete Stored Link Key command. They are clearly indicating its 795 * absence in the bit mask of supported commands. 796 * 797 * Check the supported commands and only if the the command is marked 798 * as supported send it. If not supported assume that the controller 799 * does not have actual support for stored link keys which makes this 800 * command redundant anyway. 801 * 802 * Some controllers indicate that they support handling deleting 803 * stored link keys, but they don't. The quirk lets a driver 804 * just disable this command. 805 */ 806 if (hdev->commands[6] & 0x80 && 807 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) { 808 struct hci_cp_delete_stored_link_key cp; 809 810 bacpy(&cp.bdaddr, BDADDR_ANY); 811 cp.delete_all = 0x01; 812 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY, 813 sizeof(cp), &cp); 814 } 815 816 /* Set event mask page 2 if the HCI command for it is supported */ 817 if (hdev->commands[22] & 0x04) 818 hci_set_event_mask_page_2(req); 819 820 /* Read local codec list if the HCI command is supported */ 821 if (hdev->commands[29] & 0x20) 822 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL); 823 824 /* Get MWS transport configuration if the HCI command is supported */ 825 if (hdev->commands[30] & 0x08) 826 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL); 827 828 /* Check for Synchronization Train support */ 829 if (lmp_sync_train_capable(hdev)) 830 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL); 831 832 /* Enable Secure Connections if supported and configured */ 833 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) && 834 bredr_sc_enabled(hdev)) { 835 u8 support = 0x01; 836 837 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT, 838 sizeof(support), &support); 839 } 840 841 /* Set Suggested Default Data Length to maximum if supported */ 842 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) { 843 struct hci_cp_le_write_def_data_len cp; 844 845 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len); 846 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time); 847 hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp); 848 } 849 850 /* Set Default PHY parameters if command is supported */ 851 if (hdev->commands[35] & 0x20) { 852 struct hci_cp_le_set_default_phy cp; 853 854 cp.all_phys = 0x00; 855 cp.tx_phys = hdev->le_tx_def_phys; 856 cp.rx_phys = hdev->le_rx_def_phys; 857 858 hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp); 859 } 860 861 return 0; 862 } 863 864 static int __hci_init(struct hci_dev *hdev) 865 { 866 int err; 867 868 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL); 869 if (err < 0) 870 return err; 871 872 if (hci_dev_test_flag(hdev, HCI_SETUP)) 873 hci_debugfs_create_basic(hdev); 874 875 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL); 876 if (err < 0) 877 return err; 878 879 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode 880 * BR/EDR/LE type controllers. AMP controllers only need the 881 * first two stages of init. 882 */ 883 if (hdev->dev_type != HCI_PRIMARY) 884 return 0; 885 886 err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL); 887 if (err < 0) 888 return err; 889 890 err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL); 891 if (err < 0) 892 return err; 893 894 /* This function is only called when the controller is actually in 895 * configured state. When the controller is marked as unconfigured, 896 * this initialization procedure is not run. 897 * 898 * It means that it is possible that a controller runs through its 899 * setup phase and then discovers missing settings. If that is the 900 * case, then this function will not be called. It then will only 901 * be called during the config phase. 902 * 903 * So only when in setup phase or config phase, create the debugfs 904 * entries and register the SMP channels. 905 */ 906 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 907 !hci_dev_test_flag(hdev, HCI_CONFIG)) 908 return 0; 909 910 hci_debugfs_create_common(hdev); 911 912 if (lmp_bredr_capable(hdev)) 913 hci_debugfs_create_bredr(hdev); 914 915 if (lmp_le_capable(hdev)) 916 hci_debugfs_create_le(hdev); 917 918 return 0; 919 } 920 921 static int hci_init0_req(struct hci_request *req, unsigned long opt) 922 { 923 struct hci_dev *hdev = req->hdev; 924 925 BT_DBG("%s %ld", hdev->name, opt); 926 927 /* Reset */ 928 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) 929 hci_reset_req(req, 0); 930 931 /* Read Local Version */ 932 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL); 933 934 /* Read BD Address */ 935 if (hdev->set_bdaddr) 936 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL); 937 938 return 0; 939 } 940 941 static int __hci_unconf_init(struct hci_dev *hdev) 942 { 943 int err; 944 945 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 946 return 0; 947 948 err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL); 949 if (err < 0) 950 return err; 951 952 if (hci_dev_test_flag(hdev, HCI_SETUP)) 953 hci_debugfs_create_basic(hdev); 954 955 return 0; 956 } 957 958 static int hci_scan_req(struct hci_request *req, unsigned long opt) 959 { 960 __u8 scan = opt; 961 962 BT_DBG("%s %x", req->hdev->name, scan); 963 964 /* Inquiry and Page scans */ 965 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); 966 return 0; 967 } 968 969 static int hci_auth_req(struct hci_request *req, unsigned long opt) 970 { 971 __u8 auth = opt; 972 973 BT_DBG("%s %x", req->hdev->name, auth); 974 975 /* Authentication */ 976 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth); 977 return 0; 978 } 979 980 static int hci_encrypt_req(struct hci_request *req, unsigned long opt) 981 { 982 __u8 encrypt = opt; 983 984 BT_DBG("%s %x", req->hdev->name, encrypt); 985 986 /* Encryption */ 987 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt); 988 return 0; 989 } 990 991 static int hci_linkpol_req(struct hci_request *req, unsigned long opt) 992 { 993 __le16 policy = cpu_to_le16(opt); 994 995 BT_DBG("%s %x", req->hdev->name, policy); 996 997 /* Default link policy */ 998 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy); 999 return 0; 1000 } 1001 1002 /* Get HCI device by index. 1003 * Device is held on return. */ 1004 struct hci_dev *hci_dev_get(int index) 1005 { 1006 struct hci_dev *hdev = NULL, *d; 1007 1008 BT_DBG("%d", index); 1009 1010 if (index < 0) 1011 return NULL; 1012 1013 read_lock(&hci_dev_list_lock); 1014 list_for_each_entry(d, &hci_dev_list, list) { 1015 if (d->id == index) { 1016 hdev = hci_dev_hold(d); 1017 break; 1018 } 1019 } 1020 read_unlock(&hci_dev_list_lock); 1021 return hdev; 1022 } 1023 1024 /* ---- Inquiry support ---- */ 1025 1026 bool hci_discovery_active(struct hci_dev *hdev) 1027 { 1028 struct discovery_state *discov = &hdev->discovery; 1029 1030 switch (discov->state) { 1031 case DISCOVERY_FINDING: 1032 case DISCOVERY_RESOLVING: 1033 return true; 1034 1035 default: 1036 return false; 1037 } 1038 } 1039 1040 void hci_discovery_set_state(struct hci_dev *hdev, int state) 1041 { 1042 int old_state = hdev->discovery.state; 1043 1044 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state); 1045 1046 if (old_state == state) 1047 return; 1048 1049 hdev->discovery.state = state; 1050 1051 switch (state) { 1052 case DISCOVERY_STOPPED: 1053 hci_update_background_scan(hdev); 1054 1055 if (old_state != DISCOVERY_STARTING) 1056 mgmt_discovering(hdev, 0); 1057 break; 1058 case DISCOVERY_STARTING: 1059 break; 1060 case DISCOVERY_FINDING: 1061 mgmt_discovering(hdev, 1); 1062 break; 1063 case DISCOVERY_RESOLVING: 1064 break; 1065 case DISCOVERY_STOPPING: 1066 break; 1067 } 1068 } 1069 1070 void hci_inquiry_cache_flush(struct hci_dev *hdev) 1071 { 1072 struct discovery_state *cache = &hdev->discovery; 1073 struct inquiry_entry *p, *n; 1074 1075 list_for_each_entry_safe(p, n, &cache->all, all) { 1076 list_del(&p->all); 1077 kfree(p); 1078 } 1079 1080 INIT_LIST_HEAD(&cache->unknown); 1081 INIT_LIST_HEAD(&cache->resolve); 1082 } 1083 1084 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, 1085 bdaddr_t *bdaddr) 1086 { 1087 struct discovery_state *cache = &hdev->discovery; 1088 struct inquiry_entry *e; 1089 1090 BT_DBG("cache %p, %pMR", cache, bdaddr); 1091 1092 list_for_each_entry(e, &cache->all, all) { 1093 if (!bacmp(&e->data.bdaddr, bdaddr)) 1094 return e; 1095 } 1096 1097 return NULL; 1098 } 1099 1100 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, 1101 bdaddr_t *bdaddr) 1102 { 1103 struct discovery_state *cache = &hdev->discovery; 1104 struct inquiry_entry *e; 1105 1106 BT_DBG("cache %p, %pMR", cache, bdaddr); 1107 1108 list_for_each_entry(e, &cache->unknown, list) { 1109 if (!bacmp(&e->data.bdaddr, bdaddr)) 1110 return e; 1111 } 1112 1113 return NULL; 1114 } 1115 1116 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, 1117 bdaddr_t *bdaddr, 1118 int state) 1119 { 1120 struct discovery_state *cache = &hdev->discovery; 1121 struct inquiry_entry *e; 1122 1123 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state); 1124 1125 list_for_each_entry(e, &cache->resolve, list) { 1126 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state) 1127 return e; 1128 if (!bacmp(&e->data.bdaddr, bdaddr)) 1129 return e; 1130 } 1131 1132 return NULL; 1133 } 1134 1135 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, 1136 struct inquiry_entry *ie) 1137 { 1138 struct discovery_state *cache = &hdev->discovery; 1139 struct list_head *pos = &cache->resolve; 1140 struct inquiry_entry *p; 1141 1142 list_del(&ie->list); 1143 1144 list_for_each_entry(p, &cache->resolve, list) { 1145 if (p->name_state != NAME_PENDING && 1146 abs(p->data.rssi) >= abs(ie->data.rssi)) 1147 break; 1148 pos = &p->list; 1149 } 1150 1151 list_add(&ie->list, pos); 1152 } 1153 1154 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, 1155 bool name_known) 1156 { 1157 struct discovery_state *cache = &hdev->discovery; 1158 struct inquiry_entry *ie; 1159 u32 flags = 0; 1160 1161 BT_DBG("cache %p, %pMR", cache, &data->bdaddr); 1162 1163 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR); 1164 1165 if (!data->ssp_mode) 1166 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 1167 1168 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr); 1169 if (ie) { 1170 if (!ie->data.ssp_mode) 1171 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 1172 1173 if (ie->name_state == NAME_NEEDED && 1174 data->rssi != ie->data.rssi) { 1175 ie->data.rssi = data->rssi; 1176 hci_inquiry_cache_update_resolve(hdev, ie); 1177 } 1178 1179 goto update; 1180 } 1181 1182 /* Entry not in the cache. Add new one. */ 1183 ie = kzalloc(sizeof(*ie), GFP_KERNEL); 1184 if (!ie) { 1185 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 1186 goto done; 1187 } 1188 1189 list_add(&ie->all, &cache->all); 1190 1191 if (name_known) { 1192 ie->name_state = NAME_KNOWN; 1193 } else { 1194 ie->name_state = NAME_NOT_KNOWN; 1195 list_add(&ie->list, &cache->unknown); 1196 } 1197 1198 update: 1199 if (name_known && ie->name_state != NAME_KNOWN && 1200 ie->name_state != NAME_PENDING) { 1201 ie->name_state = NAME_KNOWN; 1202 list_del(&ie->list); 1203 } 1204 1205 memcpy(&ie->data, data, sizeof(*data)); 1206 ie->timestamp = jiffies; 1207 cache->timestamp = jiffies; 1208 1209 if (ie->name_state == NAME_NOT_KNOWN) 1210 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 1211 1212 done: 1213 return flags; 1214 } 1215 1216 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf) 1217 { 1218 struct discovery_state *cache = &hdev->discovery; 1219 struct inquiry_info *info = (struct inquiry_info *) buf; 1220 struct inquiry_entry *e; 1221 int copied = 0; 1222 1223 list_for_each_entry(e, &cache->all, all) { 1224 struct inquiry_data *data = &e->data; 1225 1226 if (copied >= num) 1227 break; 1228 1229 bacpy(&info->bdaddr, &data->bdaddr); 1230 info->pscan_rep_mode = data->pscan_rep_mode; 1231 info->pscan_period_mode = data->pscan_period_mode; 1232 info->pscan_mode = data->pscan_mode; 1233 memcpy(info->dev_class, data->dev_class, 3); 1234 info->clock_offset = data->clock_offset; 1235 1236 info++; 1237 copied++; 1238 } 1239 1240 BT_DBG("cache %p, copied %d", cache, copied); 1241 return copied; 1242 } 1243 1244 static int hci_inq_req(struct hci_request *req, unsigned long opt) 1245 { 1246 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt; 1247 struct hci_dev *hdev = req->hdev; 1248 struct hci_cp_inquiry cp; 1249 1250 BT_DBG("%s", hdev->name); 1251 1252 if (test_bit(HCI_INQUIRY, &hdev->flags)) 1253 return 0; 1254 1255 /* Start Inquiry */ 1256 memcpy(&cp.lap, &ir->lap, 3); 1257 cp.length = ir->length; 1258 cp.num_rsp = ir->num_rsp; 1259 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp); 1260 1261 return 0; 1262 } 1263 1264 int hci_inquiry(void __user *arg) 1265 { 1266 __u8 __user *ptr = arg; 1267 struct hci_inquiry_req ir; 1268 struct hci_dev *hdev; 1269 int err = 0, do_inquiry = 0, max_rsp; 1270 long timeo; 1271 __u8 *buf; 1272 1273 if (copy_from_user(&ir, ptr, sizeof(ir))) 1274 return -EFAULT; 1275 1276 hdev = hci_dev_get(ir.dev_id); 1277 if (!hdev) 1278 return -ENODEV; 1279 1280 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1281 err = -EBUSY; 1282 goto done; 1283 } 1284 1285 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1286 err = -EOPNOTSUPP; 1287 goto done; 1288 } 1289 1290 if (hdev->dev_type != HCI_PRIMARY) { 1291 err = -EOPNOTSUPP; 1292 goto done; 1293 } 1294 1295 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 1296 err = -EOPNOTSUPP; 1297 goto done; 1298 } 1299 1300 hci_dev_lock(hdev); 1301 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX || 1302 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) { 1303 hci_inquiry_cache_flush(hdev); 1304 do_inquiry = 1; 1305 } 1306 hci_dev_unlock(hdev); 1307 1308 timeo = ir.length * msecs_to_jiffies(2000); 1309 1310 if (do_inquiry) { 1311 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir, 1312 timeo, NULL); 1313 if (err < 0) 1314 goto done; 1315 1316 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is 1317 * cleared). If it is interrupted by a signal, return -EINTR. 1318 */ 1319 if (wait_on_bit(&hdev->flags, HCI_INQUIRY, 1320 TASK_INTERRUPTIBLE)) 1321 return -EINTR; 1322 } 1323 1324 /* for unlimited number of responses we will use buffer with 1325 * 255 entries 1326 */ 1327 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp; 1328 1329 /* cache_dump can't sleep. Therefore we allocate temp buffer and then 1330 * copy it to the user space. 1331 */ 1332 buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL); 1333 if (!buf) { 1334 err = -ENOMEM; 1335 goto done; 1336 } 1337 1338 hci_dev_lock(hdev); 1339 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf); 1340 hci_dev_unlock(hdev); 1341 1342 BT_DBG("num_rsp %d", ir.num_rsp); 1343 1344 if (!copy_to_user(ptr, &ir, sizeof(ir))) { 1345 ptr += sizeof(ir); 1346 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) * 1347 ir.num_rsp)) 1348 err = -EFAULT; 1349 } else 1350 err = -EFAULT; 1351 1352 kfree(buf); 1353 1354 done: 1355 hci_dev_put(hdev); 1356 return err; 1357 } 1358 1359 /** 1360 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address 1361 * (BD_ADDR) for a HCI device from 1362 * a firmware node property. 1363 * @hdev: The HCI device 1364 * 1365 * Search the firmware node for 'local-bd-address'. 1366 * 1367 * All-zero BD addresses are rejected, because those could be properties 1368 * that exist in the firmware tables, but were not updated by the firmware. For 1369 * example, the DTS could define 'local-bd-address', with zero BD addresses. 1370 */ 1371 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev) 1372 { 1373 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent); 1374 bdaddr_t ba; 1375 int ret; 1376 1377 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address", 1378 (u8 *)&ba, sizeof(ba)); 1379 if (ret < 0 || !bacmp(&ba, BDADDR_ANY)) 1380 return; 1381 1382 bacpy(&hdev->public_addr, &ba); 1383 } 1384 1385 static int hci_dev_do_open(struct hci_dev *hdev) 1386 { 1387 int ret = 0; 1388 1389 BT_DBG("%s %p", hdev->name, hdev); 1390 1391 hci_req_sync_lock(hdev); 1392 1393 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 1394 ret = -ENODEV; 1395 goto done; 1396 } 1397 1398 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 1399 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 1400 /* Check for rfkill but allow the HCI setup stage to 1401 * proceed (which in itself doesn't cause any RF activity). 1402 */ 1403 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { 1404 ret = -ERFKILL; 1405 goto done; 1406 } 1407 1408 /* Check for valid public address or a configured static 1409 * random adddress, but let the HCI setup proceed to 1410 * be able to determine if there is a public address 1411 * or not. 1412 * 1413 * In case of user channel usage, it is not important 1414 * if a public address or static random address is 1415 * available. 1416 * 1417 * This check is only valid for BR/EDR controllers 1418 * since AMP controllers do not have an address. 1419 */ 1420 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1421 hdev->dev_type == HCI_PRIMARY && 1422 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 1423 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 1424 ret = -EADDRNOTAVAIL; 1425 goto done; 1426 } 1427 } 1428 1429 if (test_bit(HCI_UP, &hdev->flags)) { 1430 ret = -EALREADY; 1431 goto done; 1432 } 1433 1434 if (hdev->open(hdev)) { 1435 ret = -EIO; 1436 goto done; 1437 } 1438 1439 set_bit(HCI_RUNNING, &hdev->flags); 1440 hci_sock_dev_event(hdev, HCI_DEV_OPEN); 1441 1442 atomic_set(&hdev->cmd_cnt, 1); 1443 set_bit(HCI_INIT, &hdev->flags); 1444 1445 if (hci_dev_test_flag(hdev, HCI_SETUP) || 1446 test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) { 1447 bool invalid_bdaddr; 1448 1449 hci_sock_dev_event(hdev, HCI_DEV_SETUP); 1450 1451 if (hdev->setup) 1452 ret = hdev->setup(hdev); 1453 1454 /* The transport driver can set the quirk to mark the 1455 * BD_ADDR invalid before creating the HCI device or in 1456 * its setup callback. 1457 */ 1458 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, 1459 &hdev->quirks); 1460 1461 if (ret) 1462 goto setup_failed; 1463 1464 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) { 1465 if (!bacmp(&hdev->public_addr, BDADDR_ANY)) 1466 hci_dev_get_bd_addr_from_property(hdev); 1467 1468 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 1469 hdev->set_bdaddr) { 1470 ret = hdev->set_bdaddr(hdev, 1471 &hdev->public_addr); 1472 1473 /* If setting of the BD_ADDR from the device 1474 * property succeeds, then treat the address 1475 * as valid even if the invalid BD_ADDR 1476 * quirk indicates otherwise. 1477 */ 1478 if (!ret) 1479 invalid_bdaddr = false; 1480 } 1481 } 1482 1483 setup_failed: 1484 /* The transport driver can set these quirks before 1485 * creating the HCI device or in its setup callback. 1486 * 1487 * For the invalid BD_ADDR quirk it is possible that 1488 * it becomes a valid address if the bootloader does 1489 * provide it (see above). 1490 * 1491 * In case any of them is set, the controller has to 1492 * start up as unconfigured. 1493 */ 1494 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || 1495 invalid_bdaddr) 1496 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 1497 1498 /* For an unconfigured controller it is required to 1499 * read at least the version information provided by 1500 * the Read Local Version Information command. 1501 * 1502 * If the set_bdaddr driver callback is provided, then 1503 * also the original Bluetooth public device address 1504 * will be read using the Read BD Address command. 1505 */ 1506 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 1507 ret = __hci_unconf_init(hdev); 1508 } 1509 1510 if (hci_dev_test_flag(hdev, HCI_CONFIG)) { 1511 /* If public address change is configured, ensure that 1512 * the address gets programmed. If the driver does not 1513 * support changing the public address, fail the power 1514 * on procedure. 1515 */ 1516 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 1517 hdev->set_bdaddr) 1518 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 1519 else 1520 ret = -EADDRNOTAVAIL; 1521 } 1522 1523 if (!ret) { 1524 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 1525 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1526 ret = __hci_init(hdev); 1527 if (!ret && hdev->post_init) 1528 ret = hdev->post_init(hdev); 1529 } 1530 } 1531 1532 /* If the HCI Reset command is clearing all diagnostic settings, 1533 * then they need to be reprogrammed after the init procedure 1534 * completed. 1535 */ 1536 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 1537 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1538 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) 1539 ret = hdev->set_diag(hdev, true); 1540 1541 clear_bit(HCI_INIT, &hdev->flags); 1542 1543 if (!ret) { 1544 hci_dev_hold(hdev); 1545 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 1546 hci_adv_instances_set_rpa_expired(hdev, true); 1547 set_bit(HCI_UP, &hdev->flags); 1548 hci_sock_dev_event(hdev, HCI_DEV_UP); 1549 hci_leds_update_powered(hdev, true); 1550 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 1551 !hci_dev_test_flag(hdev, HCI_CONFIG) && 1552 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 1553 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1554 hci_dev_test_flag(hdev, HCI_MGMT) && 1555 hdev->dev_type == HCI_PRIMARY) { 1556 ret = __hci_req_hci_power_on(hdev); 1557 mgmt_power_on(hdev, ret); 1558 } 1559 } else { 1560 /* Init failed, cleanup */ 1561 flush_work(&hdev->tx_work); 1562 flush_work(&hdev->cmd_work); 1563 flush_work(&hdev->rx_work); 1564 1565 skb_queue_purge(&hdev->cmd_q); 1566 skb_queue_purge(&hdev->rx_q); 1567 1568 if (hdev->flush) 1569 hdev->flush(hdev); 1570 1571 if (hdev->sent_cmd) { 1572 kfree_skb(hdev->sent_cmd); 1573 hdev->sent_cmd = NULL; 1574 } 1575 1576 clear_bit(HCI_RUNNING, &hdev->flags); 1577 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 1578 1579 hdev->close(hdev); 1580 hdev->flags &= BIT(HCI_RAW); 1581 } 1582 1583 done: 1584 hci_req_sync_unlock(hdev); 1585 return ret; 1586 } 1587 1588 /* ---- HCI ioctl helpers ---- */ 1589 1590 int hci_dev_open(__u16 dev) 1591 { 1592 struct hci_dev *hdev; 1593 int err; 1594 1595 hdev = hci_dev_get(dev); 1596 if (!hdev) 1597 return -ENODEV; 1598 1599 /* Devices that are marked as unconfigured can only be powered 1600 * up as user channel. Trying to bring them up as normal devices 1601 * will result into a failure. Only user channel operation is 1602 * possible. 1603 * 1604 * When this function is called for a user channel, the flag 1605 * HCI_USER_CHANNEL will be set first before attempting to 1606 * open the device. 1607 */ 1608 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 1609 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1610 err = -EOPNOTSUPP; 1611 goto done; 1612 } 1613 1614 /* We need to ensure that no other power on/off work is pending 1615 * before proceeding to call hci_dev_do_open. This is 1616 * particularly important if the setup procedure has not yet 1617 * completed. 1618 */ 1619 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) 1620 cancel_delayed_work(&hdev->power_off); 1621 1622 /* After this call it is guaranteed that the setup procedure 1623 * has finished. This means that error conditions like RFKILL 1624 * or no valid public or static random address apply. 1625 */ 1626 flush_workqueue(hdev->req_workqueue); 1627 1628 /* For controllers not using the management interface and that 1629 * are brought up using legacy ioctl, set the HCI_BONDABLE bit 1630 * so that pairing works for them. Once the management interface 1631 * is in use this bit will be cleared again and userspace has 1632 * to explicitly enable it. 1633 */ 1634 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1635 !hci_dev_test_flag(hdev, HCI_MGMT)) 1636 hci_dev_set_flag(hdev, HCI_BONDABLE); 1637 1638 err = hci_dev_do_open(hdev); 1639 1640 done: 1641 hci_dev_put(hdev); 1642 return err; 1643 } 1644 1645 /* This function requires the caller holds hdev->lock */ 1646 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 1647 { 1648 struct hci_conn_params *p; 1649 1650 list_for_each_entry(p, &hdev->le_conn_params, list) { 1651 if (p->conn) { 1652 hci_conn_drop(p->conn); 1653 hci_conn_put(p->conn); 1654 p->conn = NULL; 1655 } 1656 list_del_init(&p->action); 1657 } 1658 1659 BT_DBG("All LE pending actions cleared"); 1660 } 1661 1662 int hci_dev_do_close(struct hci_dev *hdev) 1663 { 1664 bool auto_off; 1665 1666 BT_DBG("%s %p", hdev->name, hdev); 1667 1668 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && 1669 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1670 test_bit(HCI_UP, &hdev->flags)) { 1671 /* Execute vendor specific shutdown routine */ 1672 if (hdev->shutdown) 1673 hdev->shutdown(hdev); 1674 } 1675 1676 cancel_delayed_work(&hdev->power_off); 1677 1678 hci_request_cancel_all(hdev); 1679 hci_req_sync_lock(hdev); 1680 1681 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 1682 cancel_delayed_work_sync(&hdev->cmd_timer); 1683 hci_req_sync_unlock(hdev); 1684 return 0; 1685 } 1686 1687 hci_leds_update_powered(hdev, false); 1688 1689 /* Flush RX and TX works */ 1690 flush_work(&hdev->tx_work); 1691 flush_work(&hdev->rx_work); 1692 1693 if (hdev->discov_timeout > 0) { 1694 hdev->discov_timeout = 0; 1695 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 1696 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 1697 } 1698 1699 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) 1700 cancel_delayed_work(&hdev->service_cache); 1701 1702 if (hci_dev_test_flag(hdev, HCI_MGMT)) { 1703 struct adv_info *adv_instance; 1704 1705 cancel_delayed_work_sync(&hdev->rpa_expired); 1706 1707 list_for_each_entry(adv_instance, &hdev->adv_instances, list) 1708 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 1709 } 1710 1711 /* Avoid potential lockdep warnings from the *_flush() calls by 1712 * ensuring the workqueue is empty up front. 1713 */ 1714 drain_workqueue(hdev->workqueue); 1715 1716 hci_dev_lock(hdev); 1717 1718 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 1719 1720 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); 1721 1722 if (!auto_off && hdev->dev_type == HCI_PRIMARY && 1723 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1724 hci_dev_test_flag(hdev, HCI_MGMT)) 1725 __mgmt_power_off(hdev); 1726 1727 hci_inquiry_cache_flush(hdev); 1728 hci_pend_le_actions_clear(hdev); 1729 hci_conn_hash_flush(hdev); 1730 hci_dev_unlock(hdev); 1731 1732 smp_unregister(hdev); 1733 1734 hci_sock_dev_event(hdev, HCI_DEV_DOWN); 1735 1736 if (hdev->flush) 1737 hdev->flush(hdev); 1738 1739 /* Reset device */ 1740 skb_queue_purge(&hdev->cmd_q); 1741 atomic_set(&hdev->cmd_cnt, 1); 1742 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && 1743 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1744 set_bit(HCI_INIT, &hdev->flags); 1745 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL); 1746 clear_bit(HCI_INIT, &hdev->flags); 1747 } 1748 1749 /* flush cmd work */ 1750 flush_work(&hdev->cmd_work); 1751 1752 /* Drop queues */ 1753 skb_queue_purge(&hdev->rx_q); 1754 skb_queue_purge(&hdev->cmd_q); 1755 skb_queue_purge(&hdev->raw_q); 1756 1757 /* Drop last sent command */ 1758 if (hdev->sent_cmd) { 1759 cancel_delayed_work_sync(&hdev->cmd_timer); 1760 kfree_skb(hdev->sent_cmd); 1761 hdev->sent_cmd = NULL; 1762 } 1763 1764 clear_bit(HCI_RUNNING, &hdev->flags); 1765 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 1766 1767 /* After this point our queues are empty 1768 * and no tasks are scheduled. */ 1769 hdev->close(hdev); 1770 1771 /* Clear flags */ 1772 hdev->flags &= BIT(HCI_RAW); 1773 hci_dev_clear_volatile_flags(hdev); 1774 1775 /* Controller radio is available but is currently powered down */ 1776 hdev->amp_status = AMP_STATUS_POWERED_DOWN; 1777 1778 memset(hdev->eir, 0, sizeof(hdev->eir)); 1779 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 1780 bacpy(&hdev->random_addr, BDADDR_ANY); 1781 1782 hci_req_sync_unlock(hdev); 1783 1784 hci_dev_put(hdev); 1785 return 0; 1786 } 1787 1788 int hci_dev_close(__u16 dev) 1789 { 1790 struct hci_dev *hdev; 1791 int err; 1792 1793 hdev = hci_dev_get(dev); 1794 if (!hdev) 1795 return -ENODEV; 1796 1797 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1798 err = -EBUSY; 1799 goto done; 1800 } 1801 1802 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) 1803 cancel_delayed_work(&hdev->power_off); 1804 1805 err = hci_dev_do_close(hdev); 1806 1807 done: 1808 hci_dev_put(hdev); 1809 return err; 1810 } 1811 1812 static int hci_dev_do_reset(struct hci_dev *hdev) 1813 { 1814 int ret; 1815 1816 BT_DBG("%s %p", hdev->name, hdev); 1817 1818 hci_req_sync_lock(hdev); 1819 1820 /* Drop queues */ 1821 skb_queue_purge(&hdev->rx_q); 1822 skb_queue_purge(&hdev->cmd_q); 1823 1824 /* Avoid potential lockdep warnings from the *_flush() calls by 1825 * ensuring the workqueue is empty up front. 1826 */ 1827 drain_workqueue(hdev->workqueue); 1828 1829 hci_dev_lock(hdev); 1830 hci_inquiry_cache_flush(hdev); 1831 hci_conn_hash_flush(hdev); 1832 hci_dev_unlock(hdev); 1833 1834 if (hdev->flush) 1835 hdev->flush(hdev); 1836 1837 atomic_set(&hdev->cmd_cnt, 1); 1838 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0; 1839 1840 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL); 1841 1842 hci_req_sync_unlock(hdev); 1843 return ret; 1844 } 1845 1846 int hci_dev_reset(__u16 dev) 1847 { 1848 struct hci_dev *hdev; 1849 int err; 1850 1851 hdev = hci_dev_get(dev); 1852 if (!hdev) 1853 return -ENODEV; 1854 1855 if (!test_bit(HCI_UP, &hdev->flags)) { 1856 err = -ENETDOWN; 1857 goto done; 1858 } 1859 1860 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1861 err = -EBUSY; 1862 goto done; 1863 } 1864 1865 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1866 err = -EOPNOTSUPP; 1867 goto done; 1868 } 1869 1870 err = hci_dev_do_reset(hdev); 1871 1872 done: 1873 hci_dev_put(hdev); 1874 return err; 1875 } 1876 1877 int hci_dev_reset_stat(__u16 dev) 1878 { 1879 struct hci_dev *hdev; 1880 int ret = 0; 1881 1882 hdev = hci_dev_get(dev); 1883 if (!hdev) 1884 return -ENODEV; 1885 1886 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1887 ret = -EBUSY; 1888 goto done; 1889 } 1890 1891 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1892 ret = -EOPNOTSUPP; 1893 goto done; 1894 } 1895 1896 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats)); 1897 1898 done: 1899 hci_dev_put(hdev); 1900 return ret; 1901 } 1902 1903 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan) 1904 { 1905 bool conn_changed, discov_changed; 1906 1907 BT_DBG("%s scan 0x%02x", hdev->name, scan); 1908 1909 if ((scan & SCAN_PAGE)) 1910 conn_changed = !hci_dev_test_and_set_flag(hdev, 1911 HCI_CONNECTABLE); 1912 else 1913 conn_changed = hci_dev_test_and_clear_flag(hdev, 1914 HCI_CONNECTABLE); 1915 1916 if ((scan & SCAN_INQUIRY)) { 1917 discov_changed = !hci_dev_test_and_set_flag(hdev, 1918 HCI_DISCOVERABLE); 1919 } else { 1920 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 1921 discov_changed = hci_dev_test_and_clear_flag(hdev, 1922 HCI_DISCOVERABLE); 1923 } 1924 1925 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 1926 return; 1927 1928 if (conn_changed || discov_changed) { 1929 /* In case this was disabled through mgmt */ 1930 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); 1931 1932 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1933 hci_req_update_adv_data(hdev, hdev->cur_adv_instance); 1934 1935 mgmt_new_settings(hdev); 1936 } 1937 } 1938 1939 int hci_dev_cmd(unsigned int cmd, void __user *arg) 1940 { 1941 struct hci_dev *hdev; 1942 struct hci_dev_req dr; 1943 int err = 0; 1944 1945 if (copy_from_user(&dr, arg, sizeof(dr))) 1946 return -EFAULT; 1947 1948 hdev = hci_dev_get(dr.dev_id); 1949 if (!hdev) 1950 return -ENODEV; 1951 1952 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1953 err = -EBUSY; 1954 goto done; 1955 } 1956 1957 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1958 err = -EOPNOTSUPP; 1959 goto done; 1960 } 1961 1962 if (hdev->dev_type != HCI_PRIMARY) { 1963 err = -EOPNOTSUPP; 1964 goto done; 1965 } 1966 1967 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 1968 err = -EOPNOTSUPP; 1969 goto done; 1970 } 1971 1972 switch (cmd) { 1973 case HCISETAUTH: 1974 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt, 1975 HCI_INIT_TIMEOUT, NULL); 1976 break; 1977 1978 case HCISETENCRYPT: 1979 if (!lmp_encrypt_capable(hdev)) { 1980 err = -EOPNOTSUPP; 1981 break; 1982 } 1983 1984 if (!test_bit(HCI_AUTH, &hdev->flags)) { 1985 /* Auth must be enabled first */ 1986 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt, 1987 HCI_INIT_TIMEOUT, NULL); 1988 if (err) 1989 break; 1990 } 1991 1992 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt, 1993 HCI_INIT_TIMEOUT, NULL); 1994 break; 1995 1996 case HCISETSCAN: 1997 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt, 1998 HCI_INIT_TIMEOUT, NULL); 1999 2000 /* Ensure that the connectable and discoverable states 2001 * get correctly modified as this was a non-mgmt change. 2002 */ 2003 if (!err) 2004 hci_update_scan_state(hdev, dr.dev_opt); 2005 break; 2006 2007 case HCISETLINKPOL: 2008 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt, 2009 HCI_INIT_TIMEOUT, NULL); 2010 break; 2011 2012 case HCISETLINKMODE: 2013 hdev->link_mode = ((__u16) dr.dev_opt) & 2014 (HCI_LM_MASTER | HCI_LM_ACCEPT); 2015 break; 2016 2017 case HCISETPTYPE: 2018 if (hdev->pkt_type == (__u16) dr.dev_opt) 2019 break; 2020 2021 hdev->pkt_type = (__u16) dr.dev_opt; 2022 mgmt_phy_configuration_changed(hdev, NULL); 2023 break; 2024 2025 case HCISETACLMTU: 2026 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1); 2027 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0); 2028 break; 2029 2030 case HCISETSCOMTU: 2031 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1); 2032 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0); 2033 break; 2034 2035 default: 2036 err = -EINVAL; 2037 break; 2038 } 2039 2040 done: 2041 hci_dev_put(hdev); 2042 return err; 2043 } 2044 2045 int hci_get_dev_list(void __user *arg) 2046 { 2047 struct hci_dev *hdev; 2048 struct hci_dev_list_req *dl; 2049 struct hci_dev_req *dr; 2050 int n = 0, size, err; 2051 __u16 dev_num; 2052 2053 if (get_user(dev_num, (__u16 __user *) arg)) 2054 return -EFAULT; 2055 2056 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr)) 2057 return -EINVAL; 2058 2059 size = sizeof(*dl) + dev_num * sizeof(*dr); 2060 2061 dl = kzalloc(size, GFP_KERNEL); 2062 if (!dl) 2063 return -ENOMEM; 2064 2065 dr = dl->dev_req; 2066 2067 read_lock(&hci_dev_list_lock); 2068 list_for_each_entry(hdev, &hci_dev_list, list) { 2069 unsigned long flags = hdev->flags; 2070 2071 /* When the auto-off is configured it means the transport 2072 * is running, but in that case still indicate that the 2073 * device is actually down. 2074 */ 2075 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) 2076 flags &= ~BIT(HCI_UP); 2077 2078 (dr + n)->dev_id = hdev->id; 2079 (dr + n)->dev_opt = flags; 2080 2081 if (++n >= dev_num) 2082 break; 2083 } 2084 read_unlock(&hci_dev_list_lock); 2085 2086 dl->dev_num = n; 2087 size = sizeof(*dl) + n * sizeof(*dr); 2088 2089 err = copy_to_user(arg, dl, size); 2090 kfree(dl); 2091 2092 return err ? -EFAULT : 0; 2093 } 2094 2095 int hci_get_dev_info(void __user *arg) 2096 { 2097 struct hci_dev *hdev; 2098 struct hci_dev_info di; 2099 unsigned long flags; 2100 int err = 0; 2101 2102 if (copy_from_user(&di, arg, sizeof(di))) 2103 return -EFAULT; 2104 2105 hdev = hci_dev_get(di.dev_id); 2106 if (!hdev) 2107 return -ENODEV; 2108 2109 /* When the auto-off is configured it means the transport 2110 * is running, but in that case still indicate that the 2111 * device is actually down. 2112 */ 2113 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) 2114 flags = hdev->flags & ~BIT(HCI_UP); 2115 else 2116 flags = hdev->flags; 2117 2118 strcpy(di.name, hdev->name); 2119 di.bdaddr = hdev->bdaddr; 2120 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4); 2121 di.flags = flags; 2122 di.pkt_type = hdev->pkt_type; 2123 if (lmp_bredr_capable(hdev)) { 2124 di.acl_mtu = hdev->acl_mtu; 2125 di.acl_pkts = hdev->acl_pkts; 2126 di.sco_mtu = hdev->sco_mtu; 2127 di.sco_pkts = hdev->sco_pkts; 2128 } else { 2129 di.acl_mtu = hdev->le_mtu; 2130 di.acl_pkts = hdev->le_pkts; 2131 di.sco_mtu = 0; 2132 di.sco_pkts = 0; 2133 } 2134 di.link_policy = hdev->link_policy; 2135 di.link_mode = hdev->link_mode; 2136 2137 memcpy(&di.stat, &hdev->stat, sizeof(di.stat)); 2138 memcpy(&di.features, &hdev->features, sizeof(di.features)); 2139 2140 if (copy_to_user(arg, &di, sizeof(di))) 2141 err = -EFAULT; 2142 2143 hci_dev_put(hdev); 2144 2145 return err; 2146 } 2147 2148 /* ---- Interface to HCI drivers ---- */ 2149 2150 static int hci_rfkill_set_block(void *data, bool blocked) 2151 { 2152 struct hci_dev *hdev = data; 2153 2154 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked); 2155 2156 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) 2157 return -EBUSY; 2158 2159 if (blocked) { 2160 hci_dev_set_flag(hdev, HCI_RFKILLED); 2161 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 2162 !hci_dev_test_flag(hdev, HCI_CONFIG)) 2163 hci_dev_do_close(hdev); 2164 } else { 2165 hci_dev_clear_flag(hdev, HCI_RFKILLED); 2166 } 2167 2168 return 0; 2169 } 2170 2171 static const struct rfkill_ops hci_rfkill_ops = { 2172 .set_block = hci_rfkill_set_block, 2173 }; 2174 2175 static void hci_power_on(struct work_struct *work) 2176 { 2177 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on); 2178 int err; 2179 2180 BT_DBG("%s", hdev->name); 2181 2182 if (test_bit(HCI_UP, &hdev->flags) && 2183 hci_dev_test_flag(hdev, HCI_MGMT) && 2184 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 2185 cancel_delayed_work(&hdev->power_off); 2186 hci_req_sync_lock(hdev); 2187 err = __hci_req_hci_power_on(hdev); 2188 hci_req_sync_unlock(hdev); 2189 mgmt_power_on(hdev, err); 2190 return; 2191 } 2192 2193 err = hci_dev_do_open(hdev); 2194 if (err < 0) { 2195 hci_dev_lock(hdev); 2196 mgmt_set_powered_failed(hdev, err); 2197 hci_dev_unlock(hdev); 2198 return; 2199 } 2200 2201 /* During the HCI setup phase, a few error conditions are 2202 * ignored and they need to be checked now. If they are still 2203 * valid, it is important to turn the device back off. 2204 */ 2205 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 2206 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 2207 (hdev->dev_type == HCI_PRIMARY && 2208 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 2209 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 2210 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 2211 hci_dev_do_close(hdev); 2212 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 2213 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 2214 HCI_AUTO_OFF_TIMEOUT); 2215 } 2216 2217 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 2218 /* For unconfigured devices, set the HCI_RAW flag 2219 * so that userspace can easily identify them. 2220 */ 2221 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 2222 set_bit(HCI_RAW, &hdev->flags); 2223 2224 /* For fully configured devices, this will send 2225 * the Index Added event. For unconfigured devices, 2226 * it will send Unconfigued Index Added event. 2227 * 2228 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 2229 * and no event will be send. 2230 */ 2231 mgmt_index_added(hdev); 2232 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 2233 /* When the controller is now configured, then it 2234 * is important to clear the HCI_RAW flag. 2235 */ 2236 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 2237 clear_bit(HCI_RAW, &hdev->flags); 2238 2239 /* Powering on the controller with HCI_CONFIG set only 2240 * happens with the transition from unconfigured to 2241 * configured. This will send the Index Added event. 2242 */ 2243 mgmt_index_added(hdev); 2244 } 2245 } 2246 2247 static void hci_power_off(struct work_struct *work) 2248 { 2249 struct hci_dev *hdev = container_of(work, struct hci_dev, 2250 power_off.work); 2251 2252 BT_DBG("%s", hdev->name); 2253 2254 hci_dev_do_close(hdev); 2255 } 2256 2257 static void hci_error_reset(struct work_struct *work) 2258 { 2259 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset); 2260 2261 BT_DBG("%s", hdev->name); 2262 2263 if (hdev->hw_error) 2264 hdev->hw_error(hdev, hdev->hw_error_code); 2265 else 2266 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code); 2267 2268 if (hci_dev_do_close(hdev)) 2269 return; 2270 2271 hci_dev_do_open(hdev); 2272 } 2273 2274 void hci_uuids_clear(struct hci_dev *hdev) 2275 { 2276 struct bt_uuid *uuid, *tmp; 2277 2278 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) { 2279 list_del(&uuid->list); 2280 kfree(uuid); 2281 } 2282 } 2283 2284 void hci_link_keys_clear(struct hci_dev *hdev) 2285 { 2286 struct link_key *key; 2287 2288 list_for_each_entry_rcu(key, &hdev->link_keys, list) { 2289 list_del_rcu(&key->list); 2290 kfree_rcu(key, rcu); 2291 } 2292 } 2293 2294 void hci_smp_ltks_clear(struct hci_dev *hdev) 2295 { 2296 struct smp_ltk *k; 2297 2298 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 2299 list_del_rcu(&k->list); 2300 kfree_rcu(k, rcu); 2301 } 2302 } 2303 2304 void hci_smp_irks_clear(struct hci_dev *hdev) 2305 { 2306 struct smp_irk *k; 2307 2308 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) { 2309 list_del_rcu(&k->list); 2310 kfree_rcu(k, rcu); 2311 } 2312 } 2313 2314 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 2315 { 2316 struct link_key *k; 2317 2318 rcu_read_lock(); 2319 list_for_each_entry_rcu(k, &hdev->link_keys, list) { 2320 if (bacmp(bdaddr, &k->bdaddr) == 0) { 2321 rcu_read_unlock(); 2322 return k; 2323 } 2324 } 2325 rcu_read_unlock(); 2326 2327 return NULL; 2328 } 2329 2330 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn, 2331 u8 key_type, u8 old_key_type) 2332 { 2333 /* Legacy key */ 2334 if (key_type < 0x03) 2335 return true; 2336 2337 /* Debug keys are insecure so don't store them persistently */ 2338 if (key_type == HCI_LK_DEBUG_COMBINATION) 2339 return false; 2340 2341 /* Changed combination key and there's no previous one */ 2342 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff) 2343 return false; 2344 2345 /* Security mode 3 case */ 2346 if (!conn) 2347 return true; 2348 2349 /* BR/EDR key derived using SC from an LE link */ 2350 if (conn->type == LE_LINK) 2351 return true; 2352 2353 /* Neither local nor remote side had no-bonding as requirement */ 2354 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01) 2355 return true; 2356 2357 /* Local side had dedicated bonding as requirement */ 2358 if (conn->auth_type == 0x02 || conn->auth_type == 0x03) 2359 return true; 2360 2361 /* Remote side had dedicated bonding as requirement */ 2362 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03) 2363 return true; 2364 2365 /* If none of the above criteria match, then don't store the key 2366 * persistently */ 2367 return false; 2368 } 2369 2370 static u8 ltk_role(u8 type) 2371 { 2372 if (type == SMP_LTK) 2373 return HCI_ROLE_MASTER; 2374 2375 return HCI_ROLE_SLAVE; 2376 } 2377 2378 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 2379 u8 addr_type, u8 role) 2380 { 2381 struct smp_ltk *k; 2382 2383 rcu_read_lock(); 2384 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 2385 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr)) 2386 continue; 2387 2388 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) { 2389 rcu_read_unlock(); 2390 return k; 2391 } 2392 } 2393 rcu_read_unlock(); 2394 2395 return NULL; 2396 } 2397 2398 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa) 2399 { 2400 struct smp_irk *irk; 2401 2402 rcu_read_lock(); 2403 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 2404 if (!bacmp(&irk->rpa, rpa)) { 2405 rcu_read_unlock(); 2406 return irk; 2407 } 2408 } 2409 2410 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 2411 if (smp_irk_matches(hdev, irk->val, rpa)) { 2412 bacpy(&irk->rpa, rpa); 2413 rcu_read_unlock(); 2414 return irk; 2415 } 2416 } 2417 rcu_read_unlock(); 2418 2419 return NULL; 2420 } 2421 2422 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, 2423 u8 addr_type) 2424 { 2425 struct smp_irk *irk; 2426 2427 /* Identity Address must be public or static random */ 2428 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0) 2429 return NULL; 2430 2431 rcu_read_lock(); 2432 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 2433 if (addr_type == irk->addr_type && 2434 bacmp(bdaddr, &irk->bdaddr) == 0) { 2435 rcu_read_unlock(); 2436 return irk; 2437 } 2438 } 2439 rcu_read_unlock(); 2440 2441 return NULL; 2442 } 2443 2444 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, 2445 bdaddr_t *bdaddr, u8 *val, u8 type, 2446 u8 pin_len, bool *persistent) 2447 { 2448 struct link_key *key, *old_key; 2449 u8 old_key_type; 2450 2451 old_key = hci_find_link_key(hdev, bdaddr); 2452 if (old_key) { 2453 old_key_type = old_key->type; 2454 key = old_key; 2455 } else { 2456 old_key_type = conn ? conn->key_type : 0xff; 2457 key = kzalloc(sizeof(*key), GFP_KERNEL); 2458 if (!key) 2459 return NULL; 2460 list_add_rcu(&key->list, &hdev->link_keys); 2461 } 2462 2463 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type); 2464 2465 /* Some buggy controller combinations generate a changed 2466 * combination key for legacy pairing even when there's no 2467 * previous key */ 2468 if (type == HCI_LK_CHANGED_COMBINATION && 2469 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) { 2470 type = HCI_LK_COMBINATION; 2471 if (conn) 2472 conn->key_type = type; 2473 } 2474 2475 bacpy(&key->bdaddr, bdaddr); 2476 memcpy(key->val, val, HCI_LINK_KEY_SIZE); 2477 key->pin_len = pin_len; 2478 2479 if (type == HCI_LK_CHANGED_COMBINATION) 2480 key->type = old_key_type; 2481 else 2482 key->type = type; 2483 2484 if (persistent) 2485 *persistent = hci_persistent_key(hdev, conn, type, 2486 old_key_type); 2487 2488 return key; 2489 } 2490 2491 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 2492 u8 addr_type, u8 type, u8 authenticated, 2493 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand) 2494 { 2495 struct smp_ltk *key, *old_key; 2496 u8 role = ltk_role(type); 2497 2498 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role); 2499 if (old_key) 2500 key = old_key; 2501 else { 2502 key = kzalloc(sizeof(*key), GFP_KERNEL); 2503 if (!key) 2504 return NULL; 2505 list_add_rcu(&key->list, &hdev->long_term_keys); 2506 } 2507 2508 bacpy(&key->bdaddr, bdaddr); 2509 key->bdaddr_type = addr_type; 2510 memcpy(key->val, tk, sizeof(key->val)); 2511 key->authenticated = authenticated; 2512 key->ediv = ediv; 2513 key->rand = rand; 2514 key->enc_size = enc_size; 2515 key->type = type; 2516 2517 return key; 2518 } 2519 2520 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, 2521 u8 addr_type, u8 val[16], bdaddr_t *rpa) 2522 { 2523 struct smp_irk *irk; 2524 2525 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type); 2526 if (!irk) { 2527 irk = kzalloc(sizeof(*irk), GFP_KERNEL); 2528 if (!irk) 2529 return NULL; 2530 2531 bacpy(&irk->bdaddr, bdaddr); 2532 irk->addr_type = addr_type; 2533 2534 list_add_rcu(&irk->list, &hdev->identity_resolving_keys); 2535 } 2536 2537 memcpy(irk->val, val, 16); 2538 bacpy(&irk->rpa, rpa); 2539 2540 return irk; 2541 } 2542 2543 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 2544 { 2545 struct link_key *key; 2546 2547 key = hci_find_link_key(hdev, bdaddr); 2548 if (!key) 2549 return -ENOENT; 2550 2551 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 2552 2553 list_del_rcu(&key->list); 2554 kfree_rcu(key, rcu); 2555 2556 return 0; 2557 } 2558 2559 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type) 2560 { 2561 struct smp_ltk *k; 2562 int removed = 0; 2563 2564 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 2565 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type) 2566 continue; 2567 2568 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 2569 2570 list_del_rcu(&k->list); 2571 kfree_rcu(k, rcu); 2572 removed++; 2573 } 2574 2575 return removed ? 0 : -ENOENT; 2576 } 2577 2578 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type) 2579 { 2580 struct smp_irk *k; 2581 2582 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) { 2583 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type) 2584 continue; 2585 2586 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 2587 2588 list_del_rcu(&k->list); 2589 kfree_rcu(k, rcu); 2590 } 2591 } 2592 2593 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type) 2594 { 2595 struct smp_ltk *k; 2596 struct smp_irk *irk; 2597 u8 addr_type; 2598 2599 if (type == BDADDR_BREDR) { 2600 if (hci_find_link_key(hdev, bdaddr)) 2601 return true; 2602 return false; 2603 } 2604 2605 /* Convert to HCI addr type which struct smp_ltk uses */ 2606 if (type == BDADDR_LE_PUBLIC) 2607 addr_type = ADDR_LE_DEV_PUBLIC; 2608 else 2609 addr_type = ADDR_LE_DEV_RANDOM; 2610 2611 irk = hci_get_irk(hdev, bdaddr, addr_type); 2612 if (irk) { 2613 bdaddr = &irk->bdaddr; 2614 addr_type = irk->addr_type; 2615 } 2616 2617 rcu_read_lock(); 2618 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 2619 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) { 2620 rcu_read_unlock(); 2621 return true; 2622 } 2623 } 2624 rcu_read_unlock(); 2625 2626 return false; 2627 } 2628 2629 /* HCI command timer function */ 2630 static void hci_cmd_timeout(struct work_struct *work) 2631 { 2632 struct hci_dev *hdev = container_of(work, struct hci_dev, 2633 cmd_timer.work); 2634 2635 if (hdev->sent_cmd) { 2636 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data; 2637 u16 opcode = __le16_to_cpu(sent->opcode); 2638 2639 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode); 2640 } else { 2641 bt_dev_err(hdev, "command tx timeout"); 2642 } 2643 2644 if (hdev->cmd_timeout) 2645 hdev->cmd_timeout(hdev); 2646 2647 atomic_set(&hdev->cmd_cnt, 1); 2648 queue_work(hdev->workqueue, &hdev->cmd_work); 2649 } 2650 2651 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, 2652 bdaddr_t *bdaddr, u8 bdaddr_type) 2653 { 2654 struct oob_data *data; 2655 2656 list_for_each_entry(data, &hdev->remote_oob_data, list) { 2657 if (bacmp(bdaddr, &data->bdaddr) != 0) 2658 continue; 2659 if (data->bdaddr_type != bdaddr_type) 2660 continue; 2661 return data; 2662 } 2663 2664 return NULL; 2665 } 2666 2667 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 2668 u8 bdaddr_type) 2669 { 2670 struct oob_data *data; 2671 2672 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); 2673 if (!data) 2674 return -ENOENT; 2675 2676 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type); 2677 2678 list_del(&data->list); 2679 kfree(data); 2680 2681 return 0; 2682 } 2683 2684 void hci_remote_oob_data_clear(struct hci_dev *hdev) 2685 { 2686 struct oob_data *data, *n; 2687 2688 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) { 2689 list_del(&data->list); 2690 kfree(data); 2691 } 2692 } 2693 2694 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 2695 u8 bdaddr_type, u8 *hash192, u8 *rand192, 2696 u8 *hash256, u8 *rand256) 2697 { 2698 struct oob_data *data; 2699 2700 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); 2701 if (!data) { 2702 data = kmalloc(sizeof(*data), GFP_KERNEL); 2703 if (!data) 2704 return -ENOMEM; 2705 2706 bacpy(&data->bdaddr, bdaddr); 2707 data->bdaddr_type = bdaddr_type; 2708 list_add(&data->list, &hdev->remote_oob_data); 2709 } 2710 2711 if (hash192 && rand192) { 2712 memcpy(data->hash192, hash192, sizeof(data->hash192)); 2713 memcpy(data->rand192, rand192, sizeof(data->rand192)); 2714 if (hash256 && rand256) 2715 data->present = 0x03; 2716 } else { 2717 memset(data->hash192, 0, sizeof(data->hash192)); 2718 memset(data->rand192, 0, sizeof(data->rand192)); 2719 if (hash256 && rand256) 2720 data->present = 0x02; 2721 else 2722 data->present = 0x00; 2723 } 2724 2725 if (hash256 && rand256) { 2726 memcpy(data->hash256, hash256, sizeof(data->hash256)); 2727 memcpy(data->rand256, rand256, sizeof(data->rand256)); 2728 } else { 2729 memset(data->hash256, 0, sizeof(data->hash256)); 2730 memset(data->rand256, 0, sizeof(data->rand256)); 2731 if (hash192 && rand192) 2732 data->present = 0x01; 2733 } 2734 2735 BT_DBG("%s for %pMR", hdev->name, bdaddr); 2736 2737 return 0; 2738 } 2739 2740 /* This function requires the caller holds hdev->lock */ 2741 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance) 2742 { 2743 struct adv_info *adv_instance; 2744 2745 list_for_each_entry(adv_instance, &hdev->adv_instances, list) { 2746 if (adv_instance->instance == instance) 2747 return adv_instance; 2748 } 2749 2750 return NULL; 2751 } 2752 2753 /* This function requires the caller holds hdev->lock */ 2754 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance) 2755 { 2756 struct adv_info *cur_instance; 2757 2758 cur_instance = hci_find_adv_instance(hdev, instance); 2759 if (!cur_instance) 2760 return NULL; 2761 2762 if (cur_instance == list_last_entry(&hdev->adv_instances, 2763 struct adv_info, list)) 2764 return list_first_entry(&hdev->adv_instances, 2765 struct adv_info, list); 2766 else 2767 return list_next_entry(cur_instance, list); 2768 } 2769 2770 /* This function requires the caller holds hdev->lock */ 2771 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance) 2772 { 2773 struct adv_info *adv_instance; 2774 2775 adv_instance = hci_find_adv_instance(hdev, instance); 2776 if (!adv_instance) 2777 return -ENOENT; 2778 2779 BT_DBG("%s removing %dMR", hdev->name, instance); 2780 2781 if (hdev->cur_adv_instance == instance) { 2782 if (hdev->adv_instance_timeout) { 2783 cancel_delayed_work(&hdev->adv_instance_expire); 2784 hdev->adv_instance_timeout = 0; 2785 } 2786 hdev->cur_adv_instance = 0x00; 2787 } 2788 2789 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 2790 2791 list_del(&adv_instance->list); 2792 kfree(adv_instance); 2793 2794 hdev->adv_instance_cnt--; 2795 2796 return 0; 2797 } 2798 2799 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired) 2800 { 2801 struct adv_info *adv_instance, *n; 2802 2803 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) 2804 adv_instance->rpa_expired = rpa_expired; 2805 } 2806 2807 /* This function requires the caller holds hdev->lock */ 2808 void hci_adv_instances_clear(struct hci_dev *hdev) 2809 { 2810 struct adv_info *adv_instance, *n; 2811 2812 if (hdev->adv_instance_timeout) { 2813 cancel_delayed_work(&hdev->adv_instance_expire); 2814 hdev->adv_instance_timeout = 0; 2815 } 2816 2817 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) { 2818 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 2819 list_del(&adv_instance->list); 2820 kfree(adv_instance); 2821 } 2822 2823 hdev->adv_instance_cnt = 0; 2824 hdev->cur_adv_instance = 0x00; 2825 } 2826 2827 static void adv_instance_rpa_expired(struct work_struct *work) 2828 { 2829 struct adv_info *adv_instance = container_of(work, struct adv_info, 2830 rpa_expired_cb.work); 2831 2832 BT_DBG(""); 2833 2834 adv_instance->rpa_expired = true; 2835 } 2836 2837 /* This function requires the caller holds hdev->lock */ 2838 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags, 2839 u16 adv_data_len, u8 *adv_data, 2840 u16 scan_rsp_len, u8 *scan_rsp_data, 2841 u16 timeout, u16 duration) 2842 { 2843 struct adv_info *adv_instance; 2844 2845 adv_instance = hci_find_adv_instance(hdev, instance); 2846 if (adv_instance) { 2847 memset(adv_instance->adv_data, 0, 2848 sizeof(adv_instance->adv_data)); 2849 memset(adv_instance->scan_rsp_data, 0, 2850 sizeof(adv_instance->scan_rsp_data)); 2851 } else { 2852 if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets || 2853 instance < 1 || instance > HCI_MAX_ADV_INSTANCES) 2854 return -EOVERFLOW; 2855 2856 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL); 2857 if (!adv_instance) 2858 return -ENOMEM; 2859 2860 adv_instance->pending = true; 2861 adv_instance->instance = instance; 2862 list_add(&adv_instance->list, &hdev->adv_instances); 2863 hdev->adv_instance_cnt++; 2864 } 2865 2866 adv_instance->flags = flags; 2867 adv_instance->adv_data_len = adv_data_len; 2868 adv_instance->scan_rsp_len = scan_rsp_len; 2869 2870 if (adv_data_len) 2871 memcpy(adv_instance->adv_data, adv_data, adv_data_len); 2872 2873 if (scan_rsp_len) 2874 memcpy(adv_instance->scan_rsp_data, 2875 scan_rsp_data, scan_rsp_len); 2876 2877 adv_instance->timeout = timeout; 2878 adv_instance->remaining_time = timeout; 2879 2880 if (duration == 0) 2881 adv_instance->duration = HCI_DEFAULT_ADV_DURATION; 2882 else 2883 adv_instance->duration = duration; 2884 2885 adv_instance->tx_power = HCI_TX_POWER_INVALID; 2886 2887 INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb, 2888 adv_instance_rpa_expired); 2889 2890 BT_DBG("%s for %dMR", hdev->name, instance); 2891 2892 return 0; 2893 } 2894 2895 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list, 2896 bdaddr_t *bdaddr, u8 type) 2897 { 2898 struct bdaddr_list *b; 2899 2900 list_for_each_entry(b, bdaddr_list, list) { 2901 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 2902 return b; 2903 } 2904 2905 return NULL; 2906 } 2907 2908 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk( 2909 struct list_head *bdaddr_list, bdaddr_t *bdaddr, 2910 u8 type) 2911 { 2912 struct bdaddr_list_with_irk *b; 2913 2914 list_for_each_entry(b, bdaddr_list, list) { 2915 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 2916 return b; 2917 } 2918 2919 return NULL; 2920 } 2921 2922 void hci_bdaddr_list_clear(struct list_head *bdaddr_list) 2923 { 2924 struct bdaddr_list *b, *n; 2925 2926 list_for_each_entry_safe(b, n, bdaddr_list, list) { 2927 list_del(&b->list); 2928 kfree(b); 2929 } 2930 } 2931 2932 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type) 2933 { 2934 struct bdaddr_list *entry; 2935 2936 if (!bacmp(bdaddr, BDADDR_ANY)) 2937 return -EBADF; 2938 2939 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 2940 return -EEXIST; 2941 2942 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 2943 if (!entry) 2944 return -ENOMEM; 2945 2946 bacpy(&entry->bdaddr, bdaddr); 2947 entry->bdaddr_type = type; 2948 2949 list_add(&entry->list, list); 2950 2951 return 0; 2952 } 2953 2954 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr, 2955 u8 type, u8 *peer_irk, u8 *local_irk) 2956 { 2957 struct bdaddr_list_with_irk *entry; 2958 2959 if (!bacmp(bdaddr, BDADDR_ANY)) 2960 return -EBADF; 2961 2962 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 2963 return -EEXIST; 2964 2965 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 2966 if (!entry) 2967 return -ENOMEM; 2968 2969 bacpy(&entry->bdaddr, bdaddr); 2970 entry->bdaddr_type = type; 2971 2972 if (peer_irk) 2973 memcpy(entry->peer_irk, peer_irk, 16); 2974 2975 if (local_irk) 2976 memcpy(entry->local_irk, local_irk, 16); 2977 2978 list_add(&entry->list, list); 2979 2980 return 0; 2981 } 2982 2983 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type) 2984 { 2985 struct bdaddr_list *entry; 2986 2987 if (!bacmp(bdaddr, BDADDR_ANY)) { 2988 hci_bdaddr_list_clear(list); 2989 return 0; 2990 } 2991 2992 entry = hci_bdaddr_list_lookup(list, bdaddr, type); 2993 if (!entry) 2994 return -ENOENT; 2995 2996 list_del(&entry->list); 2997 kfree(entry); 2998 2999 return 0; 3000 } 3001 3002 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr, 3003 u8 type) 3004 { 3005 struct bdaddr_list_with_irk *entry; 3006 3007 if (!bacmp(bdaddr, BDADDR_ANY)) { 3008 hci_bdaddr_list_clear(list); 3009 return 0; 3010 } 3011 3012 entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type); 3013 if (!entry) 3014 return -ENOENT; 3015 3016 list_del(&entry->list); 3017 kfree(entry); 3018 3019 return 0; 3020 } 3021 3022 /* This function requires the caller holds hdev->lock */ 3023 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev, 3024 bdaddr_t *addr, u8 addr_type) 3025 { 3026 struct hci_conn_params *params; 3027 3028 list_for_each_entry(params, &hdev->le_conn_params, list) { 3029 if (bacmp(¶ms->addr, addr) == 0 && 3030 params->addr_type == addr_type) { 3031 return params; 3032 } 3033 } 3034 3035 return NULL; 3036 } 3037 3038 /* This function requires the caller holds hdev->lock */ 3039 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list, 3040 bdaddr_t *addr, u8 addr_type) 3041 { 3042 struct hci_conn_params *param; 3043 3044 list_for_each_entry(param, list, action) { 3045 if (bacmp(¶m->addr, addr) == 0 && 3046 param->addr_type == addr_type) 3047 return param; 3048 } 3049 3050 return NULL; 3051 } 3052 3053 /* This function requires the caller holds hdev->lock */ 3054 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev, 3055 bdaddr_t *addr, u8 addr_type) 3056 { 3057 struct hci_conn_params *params; 3058 3059 params = hci_conn_params_lookup(hdev, addr, addr_type); 3060 if (params) 3061 return params; 3062 3063 params = kzalloc(sizeof(*params), GFP_KERNEL); 3064 if (!params) { 3065 bt_dev_err(hdev, "out of memory"); 3066 return NULL; 3067 } 3068 3069 bacpy(¶ms->addr, addr); 3070 params->addr_type = addr_type; 3071 3072 list_add(¶ms->list, &hdev->le_conn_params); 3073 INIT_LIST_HEAD(¶ms->action); 3074 3075 params->conn_min_interval = hdev->le_conn_min_interval; 3076 params->conn_max_interval = hdev->le_conn_max_interval; 3077 params->conn_latency = hdev->le_conn_latency; 3078 params->supervision_timeout = hdev->le_supv_timeout; 3079 params->auto_connect = HCI_AUTO_CONN_DISABLED; 3080 3081 BT_DBG("addr %pMR (type %u)", addr, addr_type); 3082 3083 return params; 3084 } 3085 3086 static void hci_conn_params_free(struct hci_conn_params *params) 3087 { 3088 if (params->conn) { 3089 hci_conn_drop(params->conn); 3090 hci_conn_put(params->conn); 3091 } 3092 3093 list_del(¶ms->action); 3094 list_del(¶ms->list); 3095 kfree(params); 3096 } 3097 3098 /* This function requires the caller holds hdev->lock */ 3099 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type) 3100 { 3101 struct hci_conn_params *params; 3102 3103 params = hci_conn_params_lookup(hdev, addr, addr_type); 3104 if (!params) 3105 return; 3106 3107 hci_conn_params_free(params); 3108 3109 hci_update_background_scan(hdev); 3110 3111 BT_DBG("addr %pMR (type %u)", addr, addr_type); 3112 } 3113 3114 /* This function requires the caller holds hdev->lock */ 3115 void hci_conn_params_clear_disabled(struct hci_dev *hdev) 3116 { 3117 struct hci_conn_params *params, *tmp; 3118 3119 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) { 3120 if (params->auto_connect != HCI_AUTO_CONN_DISABLED) 3121 continue; 3122 3123 /* If trying to estabilish one time connection to disabled 3124 * device, leave the params, but mark them as just once. 3125 */ 3126 if (params->explicit_connect) { 3127 params->auto_connect = HCI_AUTO_CONN_EXPLICIT; 3128 continue; 3129 } 3130 3131 list_del(¶ms->list); 3132 kfree(params); 3133 } 3134 3135 BT_DBG("All LE disabled connection parameters were removed"); 3136 } 3137 3138 /* This function requires the caller holds hdev->lock */ 3139 static void hci_conn_params_clear_all(struct hci_dev *hdev) 3140 { 3141 struct hci_conn_params *params, *tmp; 3142 3143 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) 3144 hci_conn_params_free(params); 3145 3146 BT_DBG("All LE connection parameters were removed"); 3147 } 3148 3149 /* Copy the Identity Address of the controller. 3150 * 3151 * If the controller has a public BD_ADDR, then by default use that one. 3152 * If this is a LE only controller without a public address, default to 3153 * the static random address. 3154 * 3155 * For debugging purposes it is possible to force controllers with a 3156 * public address to use the static random address instead. 3157 * 3158 * In case BR/EDR has been disabled on a dual-mode controller and 3159 * userspace has configured a static address, then that address 3160 * becomes the identity address instead of the public BR/EDR address. 3161 */ 3162 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr, 3163 u8 *bdaddr_type) 3164 { 3165 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 3166 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 3167 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 3168 bacmp(&hdev->static_addr, BDADDR_ANY))) { 3169 bacpy(bdaddr, &hdev->static_addr); 3170 *bdaddr_type = ADDR_LE_DEV_RANDOM; 3171 } else { 3172 bacpy(bdaddr, &hdev->bdaddr); 3173 *bdaddr_type = ADDR_LE_DEV_PUBLIC; 3174 } 3175 } 3176 3177 /* Alloc HCI device */ 3178 struct hci_dev *hci_alloc_dev(void) 3179 { 3180 struct hci_dev *hdev; 3181 3182 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL); 3183 if (!hdev) 3184 return NULL; 3185 3186 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1); 3187 hdev->esco_type = (ESCO_HV1); 3188 hdev->link_mode = (HCI_LM_ACCEPT); 3189 hdev->num_iac = 0x01; /* One IAC support is mandatory */ 3190 hdev->io_capability = 0x03; /* No Input No Output */ 3191 hdev->manufacturer = 0xffff; /* Default to internal use */ 3192 hdev->inq_tx_power = HCI_TX_POWER_INVALID; 3193 hdev->adv_tx_power = HCI_TX_POWER_INVALID; 3194 hdev->adv_instance_cnt = 0; 3195 hdev->cur_adv_instance = 0x00; 3196 hdev->adv_instance_timeout = 0; 3197 3198 hdev->sniff_max_interval = 800; 3199 hdev->sniff_min_interval = 80; 3200 3201 hdev->le_adv_channel_map = 0x07; 3202 hdev->le_adv_min_interval = 0x0800; 3203 hdev->le_adv_max_interval = 0x0800; 3204 hdev->le_scan_interval = 0x0060; 3205 hdev->le_scan_window = 0x0030; 3206 hdev->le_conn_min_interval = 0x0018; 3207 hdev->le_conn_max_interval = 0x0028; 3208 hdev->le_conn_latency = 0x0000; 3209 hdev->le_supv_timeout = 0x002a; 3210 hdev->le_def_tx_len = 0x001b; 3211 hdev->le_def_tx_time = 0x0148; 3212 hdev->le_max_tx_len = 0x001b; 3213 hdev->le_max_tx_time = 0x0148; 3214 hdev->le_max_rx_len = 0x001b; 3215 hdev->le_max_rx_time = 0x0148; 3216 hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE; 3217 hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE; 3218 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M; 3219 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M; 3220 hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES; 3221 3222 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT; 3223 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT; 3224 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE; 3225 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE; 3226 hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT; 3227 hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE; 3228 3229 mutex_init(&hdev->lock); 3230 mutex_init(&hdev->req_lock); 3231 3232 INIT_LIST_HEAD(&hdev->mgmt_pending); 3233 INIT_LIST_HEAD(&hdev->blacklist); 3234 INIT_LIST_HEAD(&hdev->whitelist); 3235 INIT_LIST_HEAD(&hdev->uuids); 3236 INIT_LIST_HEAD(&hdev->link_keys); 3237 INIT_LIST_HEAD(&hdev->long_term_keys); 3238 INIT_LIST_HEAD(&hdev->identity_resolving_keys); 3239 INIT_LIST_HEAD(&hdev->remote_oob_data); 3240 INIT_LIST_HEAD(&hdev->le_white_list); 3241 INIT_LIST_HEAD(&hdev->le_resolv_list); 3242 INIT_LIST_HEAD(&hdev->le_conn_params); 3243 INIT_LIST_HEAD(&hdev->pend_le_conns); 3244 INIT_LIST_HEAD(&hdev->pend_le_reports); 3245 INIT_LIST_HEAD(&hdev->conn_hash.list); 3246 INIT_LIST_HEAD(&hdev->adv_instances); 3247 3248 INIT_WORK(&hdev->rx_work, hci_rx_work); 3249 INIT_WORK(&hdev->cmd_work, hci_cmd_work); 3250 INIT_WORK(&hdev->tx_work, hci_tx_work); 3251 INIT_WORK(&hdev->power_on, hci_power_on); 3252 INIT_WORK(&hdev->error_reset, hci_error_reset); 3253 3254 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off); 3255 3256 skb_queue_head_init(&hdev->rx_q); 3257 skb_queue_head_init(&hdev->cmd_q); 3258 skb_queue_head_init(&hdev->raw_q); 3259 3260 init_waitqueue_head(&hdev->req_wait_q); 3261 3262 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout); 3263 3264 hci_request_setup(hdev); 3265 3266 hci_init_sysfs(hdev); 3267 discovery_init(hdev); 3268 3269 return hdev; 3270 } 3271 EXPORT_SYMBOL(hci_alloc_dev); 3272 3273 /* Free HCI device */ 3274 void hci_free_dev(struct hci_dev *hdev) 3275 { 3276 /* will free via device release */ 3277 put_device(&hdev->dev); 3278 } 3279 EXPORT_SYMBOL(hci_free_dev); 3280 3281 /* Register HCI device */ 3282 int hci_register_dev(struct hci_dev *hdev) 3283 { 3284 int id, error; 3285 3286 if (!hdev->open || !hdev->close || !hdev->send) 3287 return -EINVAL; 3288 3289 /* Do not allow HCI_AMP devices to register at index 0, 3290 * so the index can be used as the AMP controller ID. 3291 */ 3292 switch (hdev->dev_type) { 3293 case HCI_PRIMARY: 3294 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL); 3295 break; 3296 case HCI_AMP: 3297 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL); 3298 break; 3299 default: 3300 return -EINVAL; 3301 } 3302 3303 if (id < 0) 3304 return id; 3305 3306 sprintf(hdev->name, "hci%d", id); 3307 hdev->id = id; 3308 3309 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 3310 3311 hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name); 3312 if (!hdev->workqueue) { 3313 error = -ENOMEM; 3314 goto err; 3315 } 3316 3317 hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, 3318 hdev->name); 3319 if (!hdev->req_workqueue) { 3320 destroy_workqueue(hdev->workqueue); 3321 error = -ENOMEM; 3322 goto err; 3323 } 3324 3325 if (!IS_ERR_OR_NULL(bt_debugfs)) 3326 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs); 3327 3328 dev_set_name(&hdev->dev, "%s", hdev->name); 3329 3330 error = device_add(&hdev->dev); 3331 if (error < 0) 3332 goto err_wqueue; 3333 3334 hci_leds_init(hdev); 3335 3336 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev, 3337 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, 3338 hdev); 3339 if (hdev->rfkill) { 3340 if (rfkill_register(hdev->rfkill) < 0) { 3341 rfkill_destroy(hdev->rfkill); 3342 hdev->rfkill = NULL; 3343 } 3344 } 3345 3346 if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) 3347 hci_dev_set_flag(hdev, HCI_RFKILLED); 3348 3349 hci_dev_set_flag(hdev, HCI_SETUP); 3350 hci_dev_set_flag(hdev, HCI_AUTO_OFF); 3351 3352 if (hdev->dev_type == HCI_PRIMARY) { 3353 /* Assume BR/EDR support until proven otherwise (such as 3354 * through reading supported features during init. 3355 */ 3356 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); 3357 } 3358 3359 write_lock(&hci_dev_list_lock); 3360 list_add(&hdev->list, &hci_dev_list); 3361 write_unlock(&hci_dev_list_lock); 3362 3363 /* Devices that are marked for raw-only usage are unconfigured 3364 * and should not be included in normal operation. 3365 */ 3366 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 3367 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 3368 3369 hci_sock_dev_event(hdev, HCI_DEV_REG); 3370 hci_dev_hold(hdev); 3371 3372 queue_work(hdev->req_workqueue, &hdev->power_on); 3373 3374 return id; 3375 3376 err_wqueue: 3377 destroy_workqueue(hdev->workqueue); 3378 destroy_workqueue(hdev->req_workqueue); 3379 err: 3380 ida_simple_remove(&hci_index_ida, hdev->id); 3381 3382 return error; 3383 } 3384 EXPORT_SYMBOL(hci_register_dev); 3385 3386 /* Unregister HCI device */ 3387 void hci_unregister_dev(struct hci_dev *hdev) 3388 { 3389 int id; 3390 3391 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 3392 3393 hci_dev_set_flag(hdev, HCI_UNREGISTER); 3394 3395 id = hdev->id; 3396 3397 write_lock(&hci_dev_list_lock); 3398 list_del(&hdev->list); 3399 write_unlock(&hci_dev_list_lock); 3400 3401 cancel_work_sync(&hdev->power_on); 3402 3403 hci_dev_do_close(hdev); 3404 3405 if (!test_bit(HCI_INIT, &hdev->flags) && 3406 !hci_dev_test_flag(hdev, HCI_SETUP) && 3407 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 3408 hci_dev_lock(hdev); 3409 mgmt_index_removed(hdev); 3410 hci_dev_unlock(hdev); 3411 } 3412 3413 /* mgmt_index_removed should take care of emptying the 3414 * pending list */ 3415 BUG_ON(!list_empty(&hdev->mgmt_pending)); 3416 3417 hci_sock_dev_event(hdev, HCI_DEV_UNREG); 3418 3419 if (hdev->rfkill) { 3420 rfkill_unregister(hdev->rfkill); 3421 rfkill_destroy(hdev->rfkill); 3422 } 3423 3424 device_del(&hdev->dev); 3425 3426 debugfs_remove_recursive(hdev->debugfs); 3427 kfree_const(hdev->hw_info); 3428 kfree_const(hdev->fw_info); 3429 3430 destroy_workqueue(hdev->workqueue); 3431 destroy_workqueue(hdev->req_workqueue); 3432 3433 hci_dev_lock(hdev); 3434 hci_bdaddr_list_clear(&hdev->blacklist); 3435 hci_bdaddr_list_clear(&hdev->whitelist); 3436 hci_uuids_clear(hdev); 3437 hci_link_keys_clear(hdev); 3438 hci_smp_ltks_clear(hdev); 3439 hci_smp_irks_clear(hdev); 3440 hci_remote_oob_data_clear(hdev); 3441 hci_adv_instances_clear(hdev); 3442 hci_bdaddr_list_clear(&hdev->le_white_list); 3443 hci_bdaddr_list_clear(&hdev->le_resolv_list); 3444 hci_conn_params_clear_all(hdev); 3445 hci_discovery_filter_clear(hdev); 3446 hci_dev_unlock(hdev); 3447 3448 hci_dev_put(hdev); 3449 3450 ida_simple_remove(&hci_index_ida, id); 3451 } 3452 EXPORT_SYMBOL(hci_unregister_dev); 3453 3454 /* Suspend HCI device */ 3455 int hci_suspend_dev(struct hci_dev *hdev) 3456 { 3457 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND); 3458 return 0; 3459 } 3460 EXPORT_SYMBOL(hci_suspend_dev); 3461 3462 /* Resume HCI device */ 3463 int hci_resume_dev(struct hci_dev *hdev) 3464 { 3465 hci_sock_dev_event(hdev, HCI_DEV_RESUME); 3466 return 0; 3467 } 3468 EXPORT_SYMBOL(hci_resume_dev); 3469 3470 /* Reset HCI device */ 3471 int hci_reset_dev(struct hci_dev *hdev) 3472 { 3473 static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 }; 3474 struct sk_buff *skb; 3475 3476 skb = bt_skb_alloc(3, GFP_ATOMIC); 3477 if (!skb) 3478 return -ENOMEM; 3479 3480 hci_skb_pkt_type(skb) = HCI_EVENT_PKT; 3481 skb_put_data(skb, hw_err, 3); 3482 3483 /* Send Hardware Error to upper stack */ 3484 return hci_recv_frame(hdev, skb); 3485 } 3486 EXPORT_SYMBOL(hci_reset_dev); 3487 3488 /* Receive frame from HCI drivers */ 3489 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb) 3490 { 3491 if (!hdev || (!test_bit(HCI_UP, &hdev->flags) 3492 && !test_bit(HCI_INIT, &hdev->flags))) { 3493 kfree_skb(skb); 3494 return -ENXIO; 3495 } 3496 3497 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT && 3498 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 3499 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) { 3500 kfree_skb(skb); 3501 return -EINVAL; 3502 } 3503 3504 /* Incoming skb */ 3505 bt_cb(skb)->incoming = 1; 3506 3507 /* Time stamp */ 3508 __net_timestamp(skb); 3509 3510 skb_queue_tail(&hdev->rx_q, skb); 3511 queue_work(hdev->workqueue, &hdev->rx_work); 3512 3513 return 0; 3514 } 3515 EXPORT_SYMBOL(hci_recv_frame); 3516 3517 /* Receive diagnostic message from HCI drivers */ 3518 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb) 3519 { 3520 /* Mark as diagnostic packet */ 3521 hci_skb_pkt_type(skb) = HCI_DIAG_PKT; 3522 3523 /* Time stamp */ 3524 __net_timestamp(skb); 3525 3526 skb_queue_tail(&hdev->rx_q, skb); 3527 queue_work(hdev->workqueue, &hdev->rx_work); 3528 3529 return 0; 3530 } 3531 EXPORT_SYMBOL(hci_recv_diag); 3532 3533 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...) 3534 { 3535 va_list vargs; 3536 3537 va_start(vargs, fmt); 3538 kfree_const(hdev->hw_info); 3539 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs); 3540 va_end(vargs); 3541 } 3542 EXPORT_SYMBOL(hci_set_hw_info); 3543 3544 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...) 3545 { 3546 va_list vargs; 3547 3548 va_start(vargs, fmt); 3549 kfree_const(hdev->fw_info); 3550 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs); 3551 va_end(vargs); 3552 } 3553 EXPORT_SYMBOL(hci_set_fw_info); 3554 3555 /* ---- Interface to upper protocols ---- */ 3556 3557 int hci_register_cb(struct hci_cb *cb) 3558 { 3559 BT_DBG("%p name %s", cb, cb->name); 3560 3561 mutex_lock(&hci_cb_list_lock); 3562 list_add_tail(&cb->list, &hci_cb_list); 3563 mutex_unlock(&hci_cb_list_lock); 3564 3565 return 0; 3566 } 3567 EXPORT_SYMBOL(hci_register_cb); 3568 3569 int hci_unregister_cb(struct hci_cb *cb) 3570 { 3571 BT_DBG("%p name %s", cb, cb->name); 3572 3573 mutex_lock(&hci_cb_list_lock); 3574 list_del(&cb->list); 3575 mutex_unlock(&hci_cb_list_lock); 3576 3577 return 0; 3578 } 3579 EXPORT_SYMBOL(hci_unregister_cb); 3580 3581 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb) 3582 { 3583 int err; 3584 3585 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb), 3586 skb->len); 3587 3588 /* Time stamp */ 3589 __net_timestamp(skb); 3590 3591 /* Send copy to monitor */ 3592 hci_send_to_monitor(hdev, skb); 3593 3594 if (atomic_read(&hdev->promisc)) { 3595 /* Send copy to the sockets */ 3596 hci_send_to_sock(hdev, skb); 3597 } 3598 3599 /* Get rid of skb owner, prior to sending to the driver. */ 3600 skb_orphan(skb); 3601 3602 if (!test_bit(HCI_RUNNING, &hdev->flags)) { 3603 kfree_skb(skb); 3604 return; 3605 } 3606 3607 err = hdev->send(hdev, skb); 3608 if (err < 0) { 3609 bt_dev_err(hdev, "sending frame failed (%d)", err); 3610 kfree_skb(skb); 3611 } 3612 } 3613 3614 /* Send HCI command */ 3615 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, 3616 const void *param) 3617 { 3618 struct sk_buff *skb; 3619 3620 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen); 3621 3622 skb = hci_prepare_cmd(hdev, opcode, plen, param); 3623 if (!skb) { 3624 bt_dev_err(hdev, "no memory for command"); 3625 return -ENOMEM; 3626 } 3627 3628 /* Stand-alone HCI commands must be flagged as 3629 * single-command requests. 3630 */ 3631 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 3632 3633 skb_queue_tail(&hdev->cmd_q, skb); 3634 queue_work(hdev->workqueue, &hdev->cmd_work); 3635 3636 return 0; 3637 } 3638 3639 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen, 3640 const void *param) 3641 { 3642 struct sk_buff *skb; 3643 3644 if (hci_opcode_ogf(opcode) != 0x3f) { 3645 /* A controller receiving a command shall respond with either 3646 * a Command Status Event or a Command Complete Event. 3647 * Therefore, all standard HCI commands must be sent via the 3648 * standard API, using hci_send_cmd or hci_cmd_sync helpers. 3649 * Some vendors do not comply with this rule for vendor-specific 3650 * commands and do not return any event. We want to support 3651 * unresponded commands for such cases only. 3652 */ 3653 bt_dev_err(hdev, "unresponded command not supported"); 3654 return -EINVAL; 3655 } 3656 3657 skb = hci_prepare_cmd(hdev, opcode, plen, param); 3658 if (!skb) { 3659 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 3660 opcode); 3661 return -ENOMEM; 3662 } 3663 3664 hci_send_frame(hdev, skb); 3665 3666 return 0; 3667 } 3668 EXPORT_SYMBOL(__hci_cmd_send); 3669 3670 /* Get data from the previously sent command */ 3671 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode) 3672 { 3673 struct hci_command_hdr *hdr; 3674 3675 if (!hdev->sent_cmd) 3676 return NULL; 3677 3678 hdr = (void *) hdev->sent_cmd->data; 3679 3680 if (hdr->opcode != cpu_to_le16(opcode)) 3681 return NULL; 3682 3683 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode); 3684 3685 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE; 3686 } 3687 3688 /* Send HCI command and wait for command commplete event */ 3689 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 3690 const void *param, u32 timeout) 3691 { 3692 struct sk_buff *skb; 3693 3694 if (!test_bit(HCI_UP, &hdev->flags)) 3695 return ERR_PTR(-ENETDOWN); 3696 3697 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 3698 3699 hci_req_sync_lock(hdev); 3700 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); 3701 hci_req_sync_unlock(hdev); 3702 3703 return skb; 3704 } 3705 EXPORT_SYMBOL(hci_cmd_sync); 3706 3707 /* Send ACL data */ 3708 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags) 3709 { 3710 struct hci_acl_hdr *hdr; 3711 int len = skb->len; 3712 3713 skb_push(skb, HCI_ACL_HDR_SIZE); 3714 skb_reset_transport_header(skb); 3715 hdr = (struct hci_acl_hdr *)skb_transport_header(skb); 3716 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags)); 3717 hdr->dlen = cpu_to_le16(len); 3718 } 3719 3720 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue, 3721 struct sk_buff *skb, __u16 flags) 3722 { 3723 struct hci_conn *conn = chan->conn; 3724 struct hci_dev *hdev = conn->hdev; 3725 struct sk_buff *list; 3726 3727 skb->len = skb_headlen(skb); 3728 skb->data_len = 0; 3729 3730 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT; 3731 3732 switch (hdev->dev_type) { 3733 case HCI_PRIMARY: 3734 hci_add_acl_hdr(skb, conn->handle, flags); 3735 break; 3736 case HCI_AMP: 3737 hci_add_acl_hdr(skb, chan->handle, flags); 3738 break; 3739 default: 3740 bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type); 3741 return; 3742 } 3743 3744 list = skb_shinfo(skb)->frag_list; 3745 if (!list) { 3746 /* Non fragmented */ 3747 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len); 3748 3749 skb_queue_tail(queue, skb); 3750 } else { 3751 /* Fragmented */ 3752 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3753 3754 skb_shinfo(skb)->frag_list = NULL; 3755 3756 /* Queue all fragments atomically. We need to use spin_lock_bh 3757 * here because of 6LoWPAN links, as there this function is 3758 * called from softirq and using normal spin lock could cause 3759 * deadlocks. 3760 */ 3761 spin_lock_bh(&queue->lock); 3762 3763 __skb_queue_tail(queue, skb); 3764 3765 flags &= ~ACL_START; 3766 flags |= ACL_CONT; 3767 do { 3768 skb = list; list = list->next; 3769 3770 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT; 3771 hci_add_acl_hdr(skb, conn->handle, flags); 3772 3773 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3774 3775 __skb_queue_tail(queue, skb); 3776 } while (list); 3777 3778 spin_unlock_bh(&queue->lock); 3779 } 3780 } 3781 3782 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags) 3783 { 3784 struct hci_dev *hdev = chan->conn->hdev; 3785 3786 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags); 3787 3788 hci_queue_acl(chan, &chan->data_q, skb, flags); 3789 3790 queue_work(hdev->workqueue, &hdev->tx_work); 3791 } 3792 3793 /* Send SCO data */ 3794 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb) 3795 { 3796 struct hci_dev *hdev = conn->hdev; 3797 struct hci_sco_hdr hdr; 3798 3799 BT_DBG("%s len %d", hdev->name, skb->len); 3800 3801 hdr.handle = cpu_to_le16(conn->handle); 3802 hdr.dlen = skb->len; 3803 3804 skb_push(skb, HCI_SCO_HDR_SIZE); 3805 skb_reset_transport_header(skb); 3806 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE); 3807 3808 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT; 3809 3810 skb_queue_tail(&conn->data_q, skb); 3811 queue_work(hdev->workqueue, &hdev->tx_work); 3812 } 3813 3814 /* ---- HCI TX task (outgoing data) ---- */ 3815 3816 /* HCI Connection scheduler */ 3817 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, 3818 int *quote) 3819 { 3820 struct hci_conn_hash *h = &hdev->conn_hash; 3821 struct hci_conn *conn = NULL, *c; 3822 unsigned int num = 0, min = ~0; 3823 3824 /* We don't have to lock device here. Connections are always 3825 * added and removed with TX task disabled. */ 3826 3827 rcu_read_lock(); 3828 3829 list_for_each_entry_rcu(c, &h->list, list) { 3830 if (c->type != type || skb_queue_empty(&c->data_q)) 3831 continue; 3832 3833 if (c->state != BT_CONNECTED && c->state != BT_CONFIG) 3834 continue; 3835 3836 num++; 3837 3838 if (c->sent < min) { 3839 min = c->sent; 3840 conn = c; 3841 } 3842 3843 if (hci_conn_num(hdev, type) == num) 3844 break; 3845 } 3846 3847 rcu_read_unlock(); 3848 3849 if (conn) { 3850 int cnt, q; 3851 3852 switch (conn->type) { 3853 case ACL_LINK: 3854 cnt = hdev->acl_cnt; 3855 break; 3856 case SCO_LINK: 3857 case ESCO_LINK: 3858 cnt = hdev->sco_cnt; 3859 break; 3860 case LE_LINK: 3861 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 3862 break; 3863 default: 3864 cnt = 0; 3865 bt_dev_err(hdev, "unknown link type %d", conn->type); 3866 } 3867 3868 q = cnt / num; 3869 *quote = q ? q : 1; 3870 } else 3871 *quote = 0; 3872 3873 BT_DBG("conn %p quote %d", conn, *quote); 3874 return conn; 3875 } 3876 3877 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type) 3878 { 3879 struct hci_conn_hash *h = &hdev->conn_hash; 3880 struct hci_conn *c; 3881 3882 bt_dev_err(hdev, "link tx timeout"); 3883 3884 rcu_read_lock(); 3885 3886 /* Kill stalled connections */ 3887 list_for_each_entry_rcu(c, &h->list, list) { 3888 if (c->type == type && c->sent) { 3889 bt_dev_err(hdev, "killing stalled connection %pMR", 3890 &c->dst); 3891 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM); 3892 } 3893 } 3894 3895 rcu_read_unlock(); 3896 } 3897 3898 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type, 3899 int *quote) 3900 { 3901 struct hci_conn_hash *h = &hdev->conn_hash; 3902 struct hci_chan *chan = NULL; 3903 unsigned int num = 0, min = ~0, cur_prio = 0; 3904 struct hci_conn *conn; 3905 int cnt, q, conn_num = 0; 3906 3907 BT_DBG("%s", hdev->name); 3908 3909 rcu_read_lock(); 3910 3911 list_for_each_entry_rcu(conn, &h->list, list) { 3912 struct hci_chan *tmp; 3913 3914 if (conn->type != type) 3915 continue; 3916 3917 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3918 continue; 3919 3920 conn_num++; 3921 3922 list_for_each_entry_rcu(tmp, &conn->chan_list, list) { 3923 struct sk_buff *skb; 3924 3925 if (skb_queue_empty(&tmp->data_q)) 3926 continue; 3927 3928 skb = skb_peek(&tmp->data_q); 3929 if (skb->priority < cur_prio) 3930 continue; 3931 3932 if (skb->priority > cur_prio) { 3933 num = 0; 3934 min = ~0; 3935 cur_prio = skb->priority; 3936 } 3937 3938 num++; 3939 3940 if (conn->sent < min) { 3941 min = conn->sent; 3942 chan = tmp; 3943 } 3944 } 3945 3946 if (hci_conn_num(hdev, type) == conn_num) 3947 break; 3948 } 3949 3950 rcu_read_unlock(); 3951 3952 if (!chan) 3953 return NULL; 3954 3955 switch (chan->conn->type) { 3956 case ACL_LINK: 3957 cnt = hdev->acl_cnt; 3958 break; 3959 case AMP_LINK: 3960 cnt = hdev->block_cnt; 3961 break; 3962 case SCO_LINK: 3963 case ESCO_LINK: 3964 cnt = hdev->sco_cnt; 3965 break; 3966 case LE_LINK: 3967 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 3968 break; 3969 default: 3970 cnt = 0; 3971 bt_dev_err(hdev, "unknown link type %d", chan->conn->type); 3972 } 3973 3974 q = cnt / num; 3975 *quote = q ? q : 1; 3976 BT_DBG("chan %p quote %d", chan, *quote); 3977 return chan; 3978 } 3979 3980 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type) 3981 { 3982 struct hci_conn_hash *h = &hdev->conn_hash; 3983 struct hci_conn *conn; 3984 int num = 0; 3985 3986 BT_DBG("%s", hdev->name); 3987 3988 rcu_read_lock(); 3989 3990 list_for_each_entry_rcu(conn, &h->list, list) { 3991 struct hci_chan *chan; 3992 3993 if (conn->type != type) 3994 continue; 3995 3996 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3997 continue; 3998 3999 num++; 4000 4001 list_for_each_entry_rcu(chan, &conn->chan_list, list) { 4002 struct sk_buff *skb; 4003 4004 if (chan->sent) { 4005 chan->sent = 0; 4006 continue; 4007 } 4008 4009 if (skb_queue_empty(&chan->data_q)) 4010 continue; 4011 4012 skb = skb_peek(&chan->data_q); 4013 if (skb->priority >= HCI_PRIO_MAX - 1) 4014 continue; 4015 4016 skb->priority = HCI_PRIO_MAX - 1; 4017 4018 BT_DBG("chan %p skb %p promoted to %d", chan, skb, 4019 skb->priority); 4020 } 4021 4022 if (hci_conn_num(hdev, type) == num) 4023 break; 4024 } 4025 4026 rcu_read_unlock(); 4027 4028 } 4029 4030 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb) 4031 { 4032 /* Calculate count of blocks used by this packet */ 4033 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len); 4034 } 4035 4036 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt) 4037 { 4038 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 4039 /* ACL tx timeout must be longer than maximum 4040 * link supervision timeout (40.9 seconds) */ 4041 if (!cnt && time_after(jiffies, hdev->acl_last_tx + 4042 HCI_ACL_TX_TIMEOUT)) 4043 hci_link_tx_to(hdev, ACL_LINK); 4044 } 4045 } 4046 4047 static void hci_sched_acl_pkt(struct hci_dev *hdev) 4048 { 4049 unsigned int cnt = hdev->acl_cnt; 4050 struct hci_chan *chan; 4051 struct sk_buff *skb; 4052 int quote; 4053 4054 __check_timeout(hdev, cnt); 4055 4056 while (hdev->acl_cnt && 4057 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) { 4058 u32 priority = (skb_peek(&chan->data_q))->priority; 4059 while (quote-- && (skb = skb_peek(&chan->data_q))) { 4060 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 4061 skb->len, skb->priority); 4062 4063 /* Stop if priority has changed */ 4064 if (skb->priority < priority) 4065 break; 4066 4067 skb = skb_dequeue(&chan->data_q); 4068 4069 hci_conn_enter_active_mode(chan->conn, 4070 bt_cb(skb)->force_active); 4071 4072 hci_send_frame(hdev, skb); 4073 hdev->acl_last_tx = jiffies; 4074 4075 hdev->acl_cnt--; 4076 chan->sent++; 4077 chan->conn->sent++; 4078 } 4079 } 4080 4081 if (cnt != hdev->acl_cnt) 4082 hci_prio_recalculate(hdev, ACL_LINK); 4083 } 4084 4085 static void hci_sched_acl_blk(struct hci_dev *hdev) 4086 { 4087 unsigned int cnt = hdev->block_cnt; 4088 struct hci_chan *chan; 4089 struct sk_buff *skb; 4090 int quote; 4091 u8 type; 4092 4093 __check_timeout(hdev, cnt); 4094 4095 BT_DBG("%s", hdev->name); 4096 4097 if (hdev->dev_type == HCI_AMP) 4098 type = AMP_LINK; 4099 else 4100 type = ACL_LINK; 4101 4102 while (hdev->block_cnt > 0 && 4103 (chan = hci_chan_sent(hdev, type, "e))) { 4104 u32 priority = (skb_peek(&chan->data_q))->priority; 4105 while (quote > 0 && (skb = skb_peek(&chan->data_q))) { 4106 int blocks; 4107 4108 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 4109 skb->len, skb->priority); 4110 4111 /* Stop if priority has changed */ 4112 if (skb->priority < priority) 4113 break; 4114 4115 skb = skb_dequeue(&chan->data_q); 4116 4117 blocks = __get_blocks(hdev, skb); 4118 if (blocks > hdev->block_cnt) 4119 return; 4120 4121 hci_conn_enter_active_mode(chan->conn, 4122 bt_cb(skb)->force_active); 4123 4124 hci_send_frame(hdev, skb); 4125 hdev->acl_last_tx = jiffies; 4126 4127 hdev->block_cnt -= blocks; 4128 quote -= blocks; 4129 4130 chan->sent += blocks; 4131 chan->conn->sent += blocks; 4132 } 4133 } 4134 4135 if (cnt != hdev->block_cnt) 4136 hci_prio_recalculate(hdev, type); 4137 } 4138 4139 static void hci_sched_acl(struct hci_dev *hdev) 4140 { 4141 BT_DBG("%s", hdev->name); 4142 4143 /* No ACL link over BR/EDR controller */ 4144 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY) 4145 return; 4146 4147 /* No AMP link over AMP controller */ 4148 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP) 4149 return; 4150 4151 switch (hdev->flow_ctl_mode) { 4152 case HCI_FLOW_CTL_MODE_PACKET_BASED: 4153 hci_sched_acl_pkt(hdev); 4154 break; 4155 4156 case HCI_FLOW_CTL_MODE_BLOCK_BASED: 4157 hci_sched_acl_blk(hdev); 4158 break; 4159 } 4160 } 4161 4162 /* Schedule SCO */ 4163 static void hci_sched_sco(struct hci_dev *hdev) 4164 { 4165 struct hci_conn *conn; 4166 struct sk_buff *skb; 4167 int quote; 4168 4169 BT_DBG("%s", hdev->name); 4170 4171 if (!hci_conn_num(hdev, SCO_LINK)) 4172 return; 4173 4174 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) { 4175 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 4176 BT_DBG("skb %p len %d", skb, skb->len); 4177 hci_send_frame(hdev, skb); 4178 4179 conn->sent++; 4180 if (conn->sent == ~0) 4181 conn->sent = 0; 4182 } 4183 } 4184 } 4185 4186 static void hci_sched_esco(struct hci_dev *hdev) 4187 { 4188 struct hci_conn *conn; 4189 struct sk_buff *skb; 4190 int quote; 4191 4192 BT_DBG("%s", hdev->name); 4193 4194 if (!hci_conn_num(hdev, ESCO_LINK)) 4195 return; 4196 4197 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, 4198 "e))) { 4199 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 4200 BT_DBG("skb %p len %d", skb, skb->len); 4201 hci_send_frame(hdev, skb); 4202 4203 conn->sent++; 4204 if (conn->sent == ~0) 4205 conn->sent = 0; 4206 } 4207 } 4208 } 4209 4210 static void hci_sched_le(struct hci_dev *hdev) 4211 { 4212 struct hci_chan *chan; 4213 struct sk_buff *skb; 4214 int quote, cnt, tmp; 4215 4216 BT_DBG("%s", hdev->name); 4217 4218 if (!hci_conn_num(hdev, LE_LINK)) 4219 return; 4220 4221 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 4222 /* LE tx timeout must be longer than maximum 4223 * link supervision timeout (40.9 seconds) */ 4224 if (!hdev->le_cnt && hdev->le_pkts && 4225 time_after(jiffies, hdev->le_last_tx + HZ * 45)) 4226 hci_link_tx_to(hdev, LE_LINK); 4227 } 4228 4229 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt; 4230 tmp = cnt; 4231 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) { 4232 u32 priority = (skb_peek(&chan->data_q))->priority; 4233 while (quote-- && (skb = skb_peek(&chan->data_q))) { 4234 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 4235 skb->len, skb->priority); 4236 4237 /* Stop if priority has changed */ 4238 if (skb->priority < priority) 4239 break; 4240 4241 skb = skb_dequeue(&chan->data_q); 4242 4243 hci_send_frame(hdev, skb); 4244 hdev->le_last_tx = jiffies; 4245 4246 cnt--; 4247 chan->sent++; 4248 chan->conn->sent++; 4249 } 4250 } 4251 4252 if (hdev->le_pkts) 4253 hdev->le_cnt = cnt; 4254 else 4255 hdev->acl_cnt = cnt; 4256 4257 if (cnt != tmp) 4258 hci_prio_recalculate(hdev, LE_LINK); 4259 } 4260 4261 static void hci_tx_work(struct work_struct *work) 4262 { 4263 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work); 4264 struct sk_buff *skb; 4265 4266 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt, 4267 hdev->sco_cnt, hdev->le_cnt); 4268 4269 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4270 /* Schedule queues and send stuff to HCI driver */ 4271 hci_sched_acl(hdev); 4272 hci_sched_sco(hdev); 4273 hci_sched_esco(hdev); 4274 hci_sched_le(hdev); 4275 } 4276 4277 /* Send next queued raw (unknown type) packet */ 4278 while ((skb = skb_dequeue(&hdev->raw_q))) 4279 hci_send_frame(hdev, skb); 4280 } 4281 4282 /* ----- HCI RX task (incoming data processing) ----- */ 4283 4284 /* ACL data packet */ 4285 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb) 4286 { 4287 struct hci_acl_hdr *hdr = (void *) skb->data; 4288 struct hci_conn *conn; 4289 __u16 handle, flags; 4290 4291 skb_pull(skb, HCI_ACL_HDR_SIZE); 4292 4293 handle = __le16_to_cpu(hdr->handle); 4294 flags = hci_flags(handle); 4295 handle = hci_handle(handle); 4296 4297 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len, 4298 handle, flags); 4299 4300 hdev->stat.acl_rx++; 4301 4302 hci_dev_lock(hdev); 4303 conn = hci_conn_hash_lookup_handle(hdev, handle); 4304 hci_dev_unlock(hdev); 4305 4306 if (conn) { 4307 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF); 4308 4309 /* Send to upper protocol */ 4310 l2cap_recv_acldata(conn, skb, flags); 4311 return; 4312 } else { 4313 bt_dev_err(hdev, "ACL packet for unknown connection handle %d", 4314 handle); 4315 } 4316 4317 kfree_skb(skb); 4318 } 4319 4320 /* SCO data packet */ 4321 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb) 4322 { 4323 struct hci_sco_hdr *hdr = (void *) skb->data; 4324 struct hci_conn *conn; 4325 __u16 handle; 4326 4327 skb_pull(skb, HCI_SCO_HDR_SIZE); 4328 4329 handle = __le16_to_cpu(hdr->handle); 4330 4331 BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle); 4332 4333 hdev->stat.sco_rx++; 4334 4335 hci_dev_lock(hdev); 4336 conn = hci_conn_hash_lookup_handle(hdev, handle); 4337 hci_dev_unlock(hdev); 4338 4339 if (conn) { 4340 /* Send to upper protocol */ 4341 sco_recv_scodata(conn, skb); 4342 return; 4343 } else { 4344 bt_dev_err(hdev, "SCO packet for unknown connection handle %d", 4345 handle); 4346 } 4347 4348 kfree_skb(skb); 4349 } 4350 4351 static bool hci_req_is_complete(struct hci_dev *hdev) 4352 { 4353 struct sk_buff *skb; 4354 4355 skb = skb_peek(&hdev->cmd_q); 4356 if (!skb) 4357 return true; 4358 4359 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START); 4360 } 4361 4362 static void hci_resend_last(struct hci_dev *hdev) 4363 { 4364 struct hci_command_hdr *sent; 4365 struct sk_buff *skb; 4366 u16 opcode; 4367 4368 if (!hdev->sent_cmd) 4369 return; 4370 4371 sent = (void *) hdev->sent_cmd->data; 4372 opcode = __le16_to_cpu(sent->opcode); 4373 if (opcode == HCI_OP_RESET) 4374 return; 4375 4376 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL); 4377 if (!skb) 4378 return; 4379 4380 skb_queue_head(&hdev->cmd_q, skb); 4381 queue_work(hdev->workqueue, &hdev->cmd_work); 4382 } 4383 4384 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status, 4385 hci_req_complete_t *req_complete, 4386 hci_req_complete_skb_t *req_complete_skb) 4387 { 4388 struct sk_buff *skb; 4389 unsigned long flags; 4390 4391 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status); 4392 4393 /* If the completed command doesn't match the last one that was 4394 * sent we need to do special handling of it. 4395 */ 4396 if (!hci_sent_cmd_data(hdev, opcode)) { 4397 /* Some CSR based controllers generate a spontaneous 4398 * reset complete event during init and any pending 4399 * command will never be completed. In such a case we 4400 * need to resend whatever was the last sent 4401 * command. 4402 */ 4403 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET) 4404 hci_resend_last(hdev); 4405 4406 return; 4407 } 4408 4409 /* If we reach this point this event matches the last command sent */ 4410 hci_dev_clear_flag(hdev, HCI_CMD_PENDING); 4411 4412 /* If the command succeeded and there's still more commands in 4413 * this request the request is not yet complete. 4414 */ 4415 if (!status && !hci_req_is_complete(hdev)) 4416 return; 4417 4418 /* If this was the last command in a request the complete 4419 * callback would be found in hdev->sent_cmd instead of the 4420 * command queue (hdev->cmd_q). 4421 */ 4422 if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) { 4423 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb; 4424 return; 4425 } 4426 4427 if (bt_cb(hdev->sent_cmd)->hci.req_complete) { 4428 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete; 4429 return; 4430 } 4431 4432 /* Remove all pending commands belonging to this request */ 4433 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 4434 while ((skb = __skb_dequeue(&hdev->cmd_q))) { 4435 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) { 4436 __skb_queue_head(&hdev->cmd_q, skb); 4437 break; 4438 } 4439 4440 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) 4441 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb; 4442 else 4443 *req_complete = bt_cb(skb)->hci.req_complete; 4444 kfree_skb(skb); 4445 } 4446 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 4447 } 4448 4449 static void hci_rx_work(struct work_struct *work) 4450 { 4451 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work); 4452 struct sk_buff *skb; 4453 4454 BT_DBG("%s", hdev->name); 4455 4456 while ((skb = skb_dequeue(&hdev->rx_q))) { 4457 /* Send copy to monitor */ 4458 hci_send_to_monitor(hdev, skb); 4459 4460 if (atomic_read(&hdev->promisc)) { 4461 /* Send copy to the sockets */ 4462 hci_send_to_sock(hdev, skb); 4463 } 4464 4465 /* If the device has been opened in HCI_USER_CHANNEL, 4466 * the userspace has exclusive access to device. 4467 * When device is HCI_INIT, we still need to process 4468 * the data packets to the driver in order 4469 * to complete its setup(). 4470 */ 4471 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4472 !test_bit(HCI_INIT, &hdev->flags)) { 4473 kfree_skb(skb); 4474 continue; 4475 } 4476 4477 if (test_bit(HCI_INIT, &hdev->flags)) { 4478 /* Don't process data packets in this states. */ 4479 switch (hci_skb_pkt_type(skb)) { 4480 case HCI_ACLDATA_PKT: 4481 case HCI_SCODATA_PKT: 4482 kfree_skb(skb); 4483 continue; 4484 } 4485 } 4486 4487 /* Process frame */ 4488 switch (hci_skb_pkt_type(skb)) { 4489 case HCI_EVENT_PKT: 4490 BT_DBG("%s Event packet", hdev->name); 4491 hci_event_packet(hdev, skb); 4492 break; 4493 4494 case HCI_ACLDATA_PKT: 4495 BT_DBG("%s ACL data packet", hdev->name); 4496 hci_acldata_packet(hdev, skb); 4497 break; 4498 4499 case HCI_SCODATA_PKT: 4500 BT_DBG("%s SCO data packet", hdev->name); 4501 hci_scodata_packet(hdev, skb); 4502 break; 4503 4504 default: 4505 kfree_skb(skb); 4506 break; 4507 } 4508 } 4509 } 4510 4511 static void hci_cmd_work(struct work_struct *work) 4512 { 4513 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work); 4514 struct sk_buff *skb; 4515 4516 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name, 4517 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q)); 4518 4519 /* Send queued commands */ 4520 if (atomic_read(&hdev->cmd_cnt)) { 4521 skb = skb_dequeue(&hdev->cmd_q); 4522 if (!skb) 4523 return; 4524 4525 kfree_skb(hdev->sent_cmd); 4526 4527 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL); 4528 if (hdev->sent_cmd) { 4529 if (hci_req_status_pend(hdev)) 4530 hci_dev_set_flag(hdev, HCI_CMD_PENDING); 4531 atomic_dec(&hdev->cmd_cnt); 4532 hci_send_frame(hdev, skb); 4533 if (test_bit(HCI_RESET, &hdev->flags)) 4534 cancel_delayed_work(&hdev->cmd_timer); 4535 else 4536 schedule_delayed_work(&hdev->cmd_timer, 4537 HCI_CMD_TIMEOUT); 4538 } else { 4539 skb_queue_head(&hdev->cmd_q, skb); 4540 queue_work(hdev->workqueue, &hdev->cmd_work); 4541 } 4542 } 4543 } 4544