xref: /openbmc/linux/net/bluetooth/hci_core.c (revision bfb41e46)
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4    Copyright (C) 2011 ProFUSION Embedded Systems
5 
6    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License version 2 as
10    published by the Free Software Foundation;
11 
12    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 
21    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23    SOFTWARE IS DISCLAIMED.
24 */
25 
26 /* Bluetooth HCI core. */
27 
28 #include <linux/export.h>
29 #include <linux/rfkill.h>
30 #include <linux/debugfs.h>
31 #include <linux/crypto.h>
32 #include <linux/kcov.h>
33 #include <linux/property.h>
34 #include <linux/suspend.h>
35 #include <linux/wait.h>
36 #include <asm/unaligned.h>
37 
38 #include <net/bluetooth/bluetooth.h>
39 #include <net/bluetooth/hci_core.h>
40 #include <net/bluetooth/l2cap.h>
41 #include <net/bluetooth/mgmt.h>
42 
43 #include "hci_request.h"
44 #include "hci_debugfs.h"
45 #include "smp.h"
46 #include "leds.h"
47 #include "msft.h"
48 #include "aosp.h"
49 #include "hci_codec.h"
50 
51 static void hci_rx_work(struct work_struct *work);
52 static void hci_cmd_work(struct work_struct *work);
53 static void hci_tx_work(struct work_struct *work);
54 
55 /* HCI device list */
56 LIST_HEAD(hci_dev_list);
57 DEFINE_RWLOCK(hci_dev_list_lock);
58 
59 /* HCI callback list */
60 LIST_HEAD(hci_cb_list);
61 DEFINE_MUTEX(hci_cb_list_lock);
62 
63 /* HCI ID Numbering */
64 static DEFINE_IDA(hci_index_ida);
65 
66 static int hci_scan_req(struct hci_request *req, unsigned long opt)
67 {
68 	__u8 scan = opt;
69 
70 	BT_DBG("%s %x", req->hdev->name, scan);
71 
72 	/* Inquiry and Page scans */
73 	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
74 	return 0;
75 }
76 
77 static int hci_auth_req(struct hci_request *req, unsigned long opt)
78 {
79 	__u8 auth = opt;
80 
81 	BT_DBG("%s %x", req->hdev->name, auth);
82 
83 	/* Authentication */
84 	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
85 	return 0;
86 }
87 
88 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
89 {
90 	__u8 encrypt = opt;
91 
92 	BT_DBG("%s %x", req->hdev->name, encrypt);
93 
94 	/* Encryption */
95 	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
96 	return 0;
97 }
98 
99 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
100 {
101 	__le16 policy = cpu_to_le16(opt);
102 
103 	BT_DBG("%s %x", req->hdev->name, policy);
104 
105 	/* Default link policy */
106 	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
107 	return 0;
108 }
109 
110 /* Get HCI device by index.
111  * Device is held on return. */
112 struct hci_dev *hci_dev_get(int index)
113 {
114 	struct hci_dev *hdev = NULL, *d;
115 
116 	BT_DBG("%d", index);
117 
118 	if (index < 0)
119 		return NULL;
120 
121 	read_lock(&hci_dev_list_lock);
122 	list_for_each_entry(d, &hci_dev_list, list) {
123 		if (d->id == index) {
124 			hdev = hci_dev_hold(d);
125 			break;
126 		}
127 	}
128 	read_unlock(&hci_dev_list_lock);
129 	return hdev;
130 }
131 
132 /* ---- Inquiry support ---- */
133 
134 bool hci_discovery_active(struct hci_dev *hdev)
135 {
136 	struct discovery_state *discov = &hdev->discovery;
137 
138 	switch (discov->state) {
139 	case DISCOVERY_FINDING:
140 	case DISCOVERY_RESOLVING:
141 		return true;
142 
143 	default:
144 		return false;
145 	}
146 }
147 
148 void hci_discovery_set_state(struct hci_dev *hdev, int state)
149 {
150 	int old_state = hdev->discovery.state;
151 
152 	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
153 
154 	if (old_state == state)
155 		return;
156 
157 	hdev->discovery.state = state;
158 
159 	switch (state) {
160 	case DISCOVERY_STOPPED:
161 		hci_update_passive_scan(hdev);
162 
163 		if (old_state != DISCOVERY_STARTING)
164 			mgmt_discovering(hdev, 0);
165 		break;
166 	case DISCOVERY_STARTING:
167 		break;
168 	case DISCOVERY_FINDING:
169 		mgmt_discovering(hdev, 1);
170 		break;
171 	case DISCOVERY_RESOLVING:
172 		break;
173 	case DISCOVERY_STOPPING:
174 		break;
175 	}
176 }
177 
178 void hci_inquiry_cache_flush(struct hci_dev *hdev)
179 {
180 	struct discovery_state *cache = &hdev->discovery;
181 	struct inquiry_entry *p, *n;
182 
183 	list_for_each_entry_safe(p, n, &cache->all, all) {
184 		list_del(&p->all);
185 		kfree(p);
186 	}
187 
188 	INIT_LIST_HEAD(&cache->unknown);
189 	INIT_LIST_HEAD(&cache->resolve);
190 }
191 
192 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
193 					       bdaddr_t *bdaddr)
194 {
195 	struct discovery_state *cache = &hdev->discovery;
196 	struct inquiry_entry *e;
197 
198 	BT_DBG("cache %p, %pMR", cache, bdaddr);
199 
200 	list_for_each_entry(e, &cache->all, all) {
201 		if (!bacmp(&e->data.bdaddr, bdaddr))
202 			return e;
203 	}
204 
205 	return NULL;
206 }
207 
208 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
209 						       bdaddr_t *bdaddr)
210 {
211 	struct discovery_state *cache = &hdev->discovery;
212 	struct inquiry_entry *e;
213 
214 	BT_DBG("cache %p, %pMR", cache, bdaddr);
215 
216 	list_for_each_entry(e, &cache->unknown, list) {
217 		if (!bacmp(&e->data.bdaddr, bdaddr))
218 			return e;
219 	}
220 
221 	return NULL;
222 }
223 
224 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
225 						       bdaddr_t *bdaddr,
226 						       int state)
227 {
228 	struct discovery_state *cache = &hdev->discovery;
229 	struct inquiry_entry *e;
230 
231 	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
232 
233 	list_for_each_entry(e, &cache->resolve, list) {
234 		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
235 			return e;
236 		if (!bacmp(&e->data.bdaddr, bdaddr))
237 			return e;
238 	}
239 
240 	return NULL;
241 }
242 
243 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
244 				      struct inquiry_entry *ie)
245 {
246 	struct discovery_state *cache = &hdev->discovery;
247 	struct list_head *pos = &cache->resolve;
248 	struct inquiry_entry *p;
249 
250 	list_del(&ie->list);
251 
252 	list_for_each_entry(p, &cache->resolve, list) {
253 		if (p->name_state != NAME_PENDING &&
254 		    abs(p->data.rssi) >= abs(ie->data.rssi))
255 			break;
256 		pos = &p->list;
257 	}
258 
259 	list_add(&ie->list, pos);
260 }
261 
262 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
263 			     bool name_known)
264 {
265 	struct discovery_state *cache = &hdev->discovery;
266 	struct inquiry_entry *ie;
267 	u32 flags = 0;
268 
269 	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
270 
271 	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
272 
273 	if (!data->ssp_mode)
274 		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
275 
276 	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
277 	if (ie) {
278 		if (!ie->data.ssp_mode)
279 			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
280 
281 		if (ie->name_state == NAME_NEEDED &&
282 		    data->rssi != ie->data.rssi) {
283 			ie->data.rssi = data->rssi;
284 			hci_inquiry_cache_update_resolve(hdev, ie);
285 		}
286 
287 		goto update;
288 	}
289 
290 	/* Entry not in the cache. Add new one. */
291 	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
292 	if (!ie) {
293 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
294 		goto done;
295 	}
296 
297 	list_add(&ie->all, &cache->all);
298 
299 	if (name_known) {
300 		ie->name_state = NAME_KNOWN;
301 	} else {
302 		ie->name_state = NAME_NOT_KNOWN;
303 		list_add(&ie->list, &cache->unknown);
304 	}
305 
306 update:
307 	if (name_known && ie->name_state != NAME_KNOWN &&
308 	    ie->name_state != NAME_PENDING) {
309 		ie->name_state = NAME_KNOWN;
310 		list_del(&ie->list);
311 	}
312 
313 	memcpy(&ie->data, data, sizeof(*data));
314 	ie->timestamp = jiffies;
315 	cache->timestamp = jiffies;
316 
317 	if (ie->name_state == NAME_NOT_KNOWN)
318 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
319 
320 done:
321 	return flags;
322 }
323 
324 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
325 {
326 	struct discovery_state *cache = &hdev->discovery;
327 	struct inquiry_info *info = (struct inquiry_info *) buf;
328 	struct inquiry_entry *e;
329 	int copied = 0;
330 
331 	list_for_each_entry(e, &cache->all, all) {
332 		struct inquiry_data *data = &e->data;
333 
334 		if (copied >= num)
335 			break;
336 
337 		bacpy(&info->bdaddr, &data->bdaddr);
338 		info->pscan_rep_mode	= data->pscan_rep_mode;
339 		info->pscan_period_mode	= data->pscan_period_mode;
340 		info->pscan_mode	= data->pscan_mode;
341 		memcpy(info->dev_class, data->dev_class, 3);
342 		info->clock_offset	= data->clock_offset;
343 
344 		info++;
345 		copied++;
346 	}
347 
348 	BT_DBG("cache %p, copied %d", cache, copied);
349 	return copied;
350 }
351 
352 static int hci_inq_req(struct hci_request *req, unsigned long opt)
353 {
354 	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
355 	struct hci_dev *hdev = req->hdev;
356 	struct hci_cp_inquiry cp;
357 
358 	BT_DBG("%s", hdev->name);
359 
360 	if (test_bit(HCI_INQUIRY, &hdev->flags))
361 		return 0;
362 
363 	/* Start Inquiry */
364 	memcpy(&cp.lap, &ir->lap, 3);
365 	cp.length  = ir->length;
366 	cp.num_rsp = ir->num_rsp;
367 	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
368 
369 	return 0;
370 }
371 
372 int hci_inquiry(void __user *arg)
373 {
374 	__u8 __user *ptr = arg;
375 	struct hci_inquiry_req ir;
376 	struct hci_dev *hdev;
377 	int err = 0, do_inquiry = 0, max_rsp;
378 	long timeo;
379 	__u8 *buf;
380 
381 	if (copy_from_user(&ir, ptr, sizeof(ir)))
382 		return -EFAULT;
383 
384 	hdev = hci_dev_get(ir.dev_id);
385 	if (!hdev)
386 		return -ENODEV;
387 
388 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
389 		err = -EBUSY;
390 		goto done;
391 	}
392 
393 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
394 		err = -EOPNOTSUPP;
395 		goto done;
396 	}
397 
398 	if (hdev->dev_type != HCI_PRIMARY) {
399 		err = -EOPNOTSUPP;
400 		goto done;
401 	}
402 
403 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
404 		err = -EOPNOTSUPP;
405 		goto done;
406 	}
407 
408 	/* Restrict maximum inquiry length to 60 seconds */
409 	if (ir.length > 60) {
410 		err = -EINVAL;
411 		goto done;
412 	}
413 
414 	hci_dev_lock(hdev);
415 	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
416 	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
417 		hci_inquiry_cache_flush(hdev);
418 		do_inquiry = 1;
419 	}
420 	hci_dev_unlock(hdev);
421 
422 	timeo = ir.length * msecs_to_jiffies(2000);
423 
424 	if (do_inquiry) {
425 		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
426 				   timeo, NULL);
427 		if (err < 0)
428 			goto done;
429 
430 		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
431 		 * cleared). If it is interrupted by a signal, return -EINTR.
432 		 */
433 		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
434 				TASK_INTERRUPTIBLE)) {
435 			err = -EINTR;
436 			goto done;
437 		}
438 	}
439 
440 	/* for unlimited number of responses we will use buffer with
441 	 * 255 entries
442 	 */
443 	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
444 
445 	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
446 	 * copy it to the user space.
447 	 */
448 	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
449 	if (!buf) {
450 		err = -ENOMEM;
451 		goto done;
452 	}
453 
454 	hci_dev_lock(hdev);
455 	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
456 	hci_dev_unlock(hdev);
457 
458 	BT_DBG("num_rsp %d", ir.num_rsp);
459 
460 	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
461 		ptr += sizeof(ir);
462 		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
463 				 ir.num_rsp))
464 			err = -EFAULT;
465 	} else
466 		err = -EFAULT;
467 
468 	kfree(buf);
469 
470 done:
471 	hci_dev_put(hdev);
472 	return err;
473 }
474 
475 static int hci_dev_do_open(struct hci_dev *hdev)
476 {
477 	int ret = 0;
478 
479 	BT_DBG("%s %p", hdev->name, hdev);
480 
481 	hci_req_sync_lock(hdev);
482 
483 	ret = hci_dev_open_sync(hdev);
484 
485 	hci_req_sync_unlock(hdev);
486 	return ret;
487 }
488 
489 /* ---- HCI ioctl helpers ---- */
490 
491 int hci_dev_open(__u16 dev)
492 {
493 	struct hci_dev *hdev;
494 	int err;
495 
496 	hdev = hci_dev_get(dev);
497 	if (!hdev)
498 		return -ENODEV;
499 
500 	/* Devices that are marked as unconfigured can only be powered
501 	 * up as user channel. Trying to bring them up as normal devices
502 	 * will result into a failure. Only user channel operation is
503 	 * possible.
504 	 *
505 	 * When this function is called for a user channel, the flag
506 	 * HCI_USER_CHANNEL will be set first before attempting to
507 	 * open the device.
508 	 */
509 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
510 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
511 		err = -EOPNOTSUPP;
512 		goto done;
513 	}
514 
515 	/* We need to ensure that no other power on/off work is pending
516 	 * before proceeding to call hci_dev_do_open. This is
517 	 * particularly important if the setup procedure has not yet
518 	 * completed.
519 	 */
520 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
521 		cancel_delayed_work(&hdev->power_off);
522 
523 	/* After this call it is guaranteed that the setup procedure
524 	 * has finished. This means that error conditions like RFKILL
525 	 * or no valid public or static random address apply.
526 	 */
527 	flush_workqueue(hdev->req_workqueue);
528 
529 	/* For controllers not using the management interface and that
530 	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
531 	 * so that pairing works for them. Once the management interface
532 	 * is in use this bit will be cleared again and userspace has
533 	 * to explicitly enable it.
534 	 */
535 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
536 	    !hci_dev_test_flag(hdev, HCI_MGMT))
537 		hci_dev_set_flag(hdev, HCI_BONDABLE);
538 
539 	err = hci_dev_do_open(hdev);
540 
541 done:
542 	hci_dev_put(hdev);
543 	return err;
544 }
545 
546 int hci_dev_do_close(struct hci_dev *hdev)
547 {
548 	int err;
549 
550 	BT_DBG("%s %p", hdev->name, hdev);
551 
552 	hci_req_sync_lock(hdev);
553 
554 	err = hci_dev_close_sync(hdev);
555 
556 	hci_req_sync_unlock(hdev);
557 
558 	return err;
559 }
560 
561 int hci_dev_close(__u16 dev)
562 {
563 	struct hci_dev *hdev;
564 	int err;
565 
566 	hdev = hci_dev_get(dev);
567 	if (!hdev)
568 		return -ENODEV;
569 
570 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
571 		err = -EBUSY;
572 		goto done;
573 	}
574 
575 	cancel_work_sync(&hdev->power_on);
576 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
577 		cancel_delayed_work(&hdev->power_off);
578 
579 	err = hci_dev_do_close(hdev);
580 
581 done:
582 	hci_dev_put(hdev);
583 	return err;
584 }
585 
586 static int hci_dev_do_reset(struct hci_dev *hdev)
587 {
588 	int ret;
589 
590 	BT_DBG("%s %p", hdev->name, hdev);
591 
592 	hci_req_sync_lock(hdev);
593 
594 	/* Drop queues */
595 	skb_queue_purge(&hdev->rx_q);
596 	skb_queue_purge(&hdev->cmd_q);
597 
598 	/* Cancel these to avoid queueing non-chained pending work */
599 	hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
600 	/* Wait for
601 	 *
602 	 *    if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
603 	 *        queue_delayed_work(&hdev->{cmd,ncmd}_timer)
604 	 *
605 	 * inside RCU section to see the flag or complete scheduling.
606 	 */
607 	synchronize_rcu();
608 	/* Explicitly cancel works in case scheduled after setting the flag. */
609 	cancel_delayed_work(&hdev->cmd_timer);
610 	cancel_delayed_work(&hdev->ncmd_timer);
611 
612 	/* Avoid potential lockdep warnings from the *_flush() calls by
613 	 * ensuring the workqueue is empty up front.
614 	 */
615 	drain_workqueue(hdev->workqueue);
616 
617 	hci_dev_lock(hdev);
618 	hci_inquiry_cache_flush(hdev);
619 	hci_conn_hash_flush(hdev);
620 	hci_dev_unlock(hdev);
621 
622 	if (hdev->flush)
623 		hdev->flush(hdev);
624 
625 	hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
626 
627 	atomic_set(&hdev->cmd_cnt, 1);
628 	hdev->acl_cnt = 0;
629 	hdev->sco_cnt = 0;
630 	hdev->le_cnt = 0;
631 	hdev->iso_cnt = 0;
632 
633 	ret = hci_reset_sync(hdev);
634 
635 	hci_req_sync_unlock(hdev);
636 	return ret;
637 }
638 
639 int hci_dev_reset(__u16 dev)
640 {
641 	struct hci_dev *hdev;
642 	int err;
643 
644 	hdev = hci_dev_get(dev);
645 	if (!hdev)
646 		return -ENODEV;
647 
648 	if (!test_bit(HCI_UP, &hdev->flags)) {
649 		err = -ENETDOWN;
650 		goto done;
651 	}
652 
653 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
654 		err = -EBUSY;
655 		goto done;
656 	}
657 
658 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
659 		err = -EOPNOTSUPP;
660 		goto done;
661 	}
662 
663 	err = hci_dev_do_reset(hdev);
664 
665 done:
666 	hci_dev_put(hdev);
667 	return err;
668 }
669 
670 int hci_dev_reset_stat(__u16 dev)
671 {
672 	struct hci_dev *hdev;
673 	int ret = 0;
674 
675 	hdev = hci_dev_get(dev);
676 	if (!hdev)
677 		return -ENODEV;
678 
679 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
680 		ret = -EBUSY;
681 		goto done;
682 	}
683 
684 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
685 		ret = -EOPNOTSUPP;
686 		goto done;
687 	}
688 
689 	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
690 
691 done:
692 	hci_dev_put(hdev);
693 	return ret;
694 }
695 
696 static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan)
697 {
698 	bool conn_changed, discov_changed;
699 
700 	BT_DBG("%s scan 0x%02x", hdev->name, scan);
701 
702 	if ((scan & SCAN_PAGE))
703 		conn_changed = !hci_dev_test_and_set_flag(hdev,
704 							  HCI_CONNECTABLE);
705 	else
706 		conn_changed = hci_dev_test_and_clear_flag(hdev,
707 							   HCI_CONNECTABLE);
708 
709 	if ((scan & SCAN_INQUIRY)) {
710 		discov_changed = !hci_dev_test_and_set_flag(hdev,
711 							    HCI_DISCOVERABLE);
712 	} else {
713 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
714 		discov_changed = hci_dev_test_and_clear_flag(hdev,
715 							     HCI_DISCOVERABLE);
716 	}
717 
718 	if (!hci_dev_test_flag(hdev, HCI_MGMT))
719 		return;
720 
721 	if (conn_changed || discov_changed) {
722 		/* In case this was disabled through mgmt */
723 		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
724 
725 		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
726 			hci_update_adv_data(hdev, hdev->cur_adv_instance);
727 
728 		mgmt_new_settings(hdev);
729 	}
730 }
731 
732 int hci_dev_cmd(unsigned int cmd, void __user *arg)
733 {
734 	struct hci_dev *hdev;
735 	struct hci_dev_req dr;
736 	int err = 0;
737 
738 	if (copy_from_user(&dr, arg, sizeof(dr)))
739 		return -EFAULT;
740 
741 	hdev = hci_dev_get(dr.dev_id);
742 	if (!hdev)
743 		return -ENODEV;
744 
745 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
746 		err = -EBUSY;
747 		goto done;
748 	}
749 
750 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
751 		err = -EOPNOTSUPP;
752 		goto done;
753 	}
754 
755 	if (hdev->dev_type != HCI_PRIMARY) {
756 		err = -EOPNOTSUPP;
757 		goto done;
758 	}
759 
760 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
761 		err = -EOPNOTSUPP;
762 		goto done;
763 	}
764 
765 	switch (cmd) {
766 	case HCISETAUTH:
767 		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
768 				   HCI_INIT_TIMEOUT, NULL);
769 		break;
770 
771 	case HCISETENCRYPT:
772 		if (!lmp_encrypt_capable(hdev)) {
773 			err = -EOPNOTSUPP;
774 			break;
775 		}
776 
777 		if (!test_bit(HCI_AUTH, &hdev->flags)) {
778 			/* Auth must be enabled first */
779 			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
780 					   HCI_INIT_TIMEOUT, NULL);
781 			if (err)
782 				break;
783 		}
784 
785 		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
786 				   HCI_INIT_TIMEOUT, NULL);
787 		break;
788 
789 	case HCISETSCAN:
790 		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
791 				   HCI_INIT_TIMEOUT, NULL);
792 
793 		/* Ensure that the connectable and discoverable states
794 		 * get correctly modified as this was a non-mgmt change.
795 		 */
796 		if (!err)
797 			hci_update_passive_scan_state(hdev, dr.dev_opt);
798 		break;
799 
800 	case HCISETLINKPOL:
801 		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
802 				   HCI_INIT_TIMEOUT, NULL);
803 		break;
804 
805 	case HCISETLINKMODE:
806 		hdev->link_mode = ((__u16) dr.dev_opt) &
807 					(HCI_LM_MASTER | HCI_LM_ACCEPT);
808 		break;
809 
810 	case HCISETPTYPE:
811 		if (hdev->pkt_type == (__u16) dr.dev_opt)
812 			break;
813 
814 		hdev->pkt_type = (__u16) dr.dev_opt;
815 		mgmt_phy_configuration_changed(hdev, NULL);
816 		break;
817 
818 	case HCISETACLMTU:
819 		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
820 		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
821 		break;
822 
823 	case HCISETSCOMTU:
824 		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
825 		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
826 		break;
827 
828 	default:
829 		err = -EINVAL;
830 		break;
831 	}
832 
833 done:
834 	hci_dev_put(hdev);
835 	return err;
836 }
837 
838 int hci_get_dev_list(void __user *arg)
839 {
840 	struct hci_dev *hdev;
841 	struct hci_dev_list_req *dl;
842 	struct hci_dev_req *dr;
843 	int n = 0, size, err;
844 	__u16 dev_num;
845 
846 	if (get_user(dev_num, (__u16 __user *) arg))
847 		return -EFAULT;
848 
849 	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
850 		return -EINVAL;
851 
852 	size = sizeof(*dl) + dev_num * sizeof(*dr);
853 
854 	dl = kzalloc(size, GFP_KERNEL);
855 	if (!dl)
856 		return -ENOMEM;
857 
858 	dr = dl->dev_req;
859 
860 	read_lock(&hci_dev_list_lock);
861 	list_for_each_entry(hdev, &hci_dev_list, list) {
862 		unsigned long flags = hdev->flags;
863 
864 		/* When the auto-off is configured it means the transport
865 		 * is running, but in that case still indicate that the
866 		 * device is actually down.
867 		 */
868 		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
869 			flags &= ~BIT(HCI_UP);
870 
871 		(dr + n)->dev_id  = hdev->id;
872 		(dr + n)->dev_opt = flags;
873 
874 		if (++n >= dev_num)
875 			break;
876 	}
877 	read_unlock(&hci_dev_list_lock);
878 
879 	dl->dev_num = n;
880 	size = sizeof(*dl) + n * sizeof(*dr);
881 
882 	err = copy_to_user(arg, dl, size);
883 	kfree(dl);
884 
885 	return err ? -EFAULT : 0;
886 }
887 
888 int hci_get_dev_info(void __user *arg)
889 {
890 	struct hci_dev *hdev;
891 	struct hci_dev_info di;
892 	unsigned long flags;
893 	int err = 0;
894 
895 	if (copy_from_user(&di, arg, sizeof(di)))
896 		return -EFAULT;
897 
898 	hdev = hci_dev_get(di.dev_id);
899 	if (!hdev)
900 		return -ENODEV;
901 
902 	/* When the auto-off is configured it means the transport
903 	 * is running, but in that case still indicate that the
904 	 * device is actually down.
905 	 */
906 	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
907 		flags = hdev->flags & ~BIT(HCI_UP);
908 	else
909 		flags = hdev->flags;
910 
911 	strcpy(di.name, hdev->name);
912 	di.bdaddr   = hdev->bdaddr;
913 	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
914 	di.flags    = flags;
915 	di.pkt_type = hdev->pkt_type;
916 	if (lmp_bredr_capable(hdev)) {
917 		di.acl_mtu  = hdev->acl_mtu;
918 		di.acl_pkts = hdev->acl_pkts;
919 		di.sco_mtu  = hdev->sco_mtu;
920 		di.sco_pkts = hdev->sco_pkts;
921 	} else {
922 		di.acl_mtu  = hdev->le_mtu;
923 		di.acl_pkts = hdev->le_pkts;
924 		di.sco_mtu  = 0;
925 		di.sco_pkts = 0;
926 	}
927 	di.link_policy = hdev->link_policy;
928 	di.link_mode   = hdev->link_mode;
929 
930 	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
931 	memcpy(&di.features, &hdev->features, sizeof(di.features));
932 
933 	if (copy_to_user(arg, &di, sizeof(di)))
934 		err = -EFAULT;
935 
936 	hci_dev_put(hdev);
937 
938 	return err;
939 }
940 
941 /* ---- Interface to HCI drivers ---- */
942 
943 static int hci_rfkill_set_block(void *data, bool blocked)
944 {
945 	struct hci_dev *hdev = data;
946 
947 	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
948 
949 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
950 		return -EBUSY;
951 
952 	if (blocked) {
953 		hci_dev_set_flag(hdev, HCI_RFKILLED);
954 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
955 		    !hci_dev_test_flag(hdev, HCI_CONFIG))
956 			hci_dev_do_close(hdev);
957 	} else {
958 		hci_dev_clear_flag(hdev, HCI_RFKILLED);
959 	}
960 
961 	return 0;
962 }
963 
964 static const struct rfkill_ops hci_rfkill_ops = {
965 	.set_block = hci_rfkill_set_block,
966 };
967 
968 static void hci_power_on(struct work_struct *work)
969 {
970 	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
971 	int err;
972 
973 	BT_DBG("%s", hdev->name);
974 
975 	if (test_bit(HCI_UP, &hdev->flags) &&
976 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
977 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
978 		cancel_delayed_work(&hdev->power_off);
979 		err = hci_powered_update_sync(hdev);
980 		mgmt_power_on(hdev, err);
981 		return;
982 	}
983 
984 	err = hci_dev_do_open(hdev);
985 	if (err < 0) {
986 		hci_dev_lock(hdev);
987 		mgmt_set_powered_failed(hdev, err);
988 		hci_dev_unlock(hdev);
989 		return;
990 	}
991 
992 	/* During the HCI setup phase, a few error conditions are
993 	 * ignored and they need to be checked now. If they are still
994 	 * valid, it is important to turn the device back off.
995 	 */
996 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
997 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
998 	    (hdev->dev_type == HCI_PRIMARY &&
999 	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1000 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
1001 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
1002 		hci_dev_do_close(hdev);
1003 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
1004 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
1005 				   HCI_AUTO_OFF_TIMEOUT);
1006 	}
1007 
1008 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
1009 		/* For unconfigured devices, set the HCI_RAW flag
1010 		 * so that userspace can easily identify them.
1011 		 */
1012 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1013 			set_bit(HCI_RAW, &hdev->flags);
1014 
1015 		/* For fully configured devices, this will send
1016 		 * the Index Added event. For unconfigured devices,
1017 		 * it will send Unconfigued Index Added event.
1018 		 *
1019 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
1020 		 * and no event will be send.
1021 		 */
1022 		mgmt_index_added(hdev);
1023 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
1024 		/* When the controller is now configured, then it
1025 		 * is important to clear the HCI_RAW flag.
1026 		 */
1027 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1028 			clear_bit(HCI_RAW, &hdev->flags);
1029 
1030 		/* Powering on the controller with HCI_CONFIG set only
1031 		 * happens with the transition from unconfigured to
1032 		 * configured. This will send the Index Added event.
1033 		 */
1034 		mgmt_index_added(hdev);
1035 	}
1036 }
1037 
1038 static void hci_power_off(struct work_struct *work)
1039 {
1040 	struct hci_dev *hdev = container_of(work, struct hci_dev,
1041 					    power_off.work);
1042 
1043 	BT_DBG("%s", hdev->name);
1044 
1045 	hci_dev_do_close(hdev);
1046 }
1047 
1048 static void hci_error_reset(struct work_struct *work)
1049 {
1050 	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
1051 
1052 	BT_DBG("%s", hdev->name);
1053 
1054 	if (hdev->hw_error)
1055 		hdev->hw_error(hdev, hdev->hw_error_code);
1056 	else
1057 		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
1058 
1059 	if (hci_dev_do_close(hdev))
1060 		return;
1061 
1062 	hci_dev_do_open(hdev);
1063 }
1064 
1065 void hci_uuids_clear(struct hci_dev *hdev)
1066 {
1067 	struct bt_uuid *uuid, *tmp;
1068 
1069 	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1070 		list_del(&uuid->list);
1071 		kfree(uuid);
1072 	}
1073 }
1074 
1075 void hci_link_keys_clear(struct hci_dev *hdev)
1076 {
1077 	struct link_key *key;
1078 
1079 	list_for_each_entry(key, &hdev->link_keys, list) {
1080 		list_del_rcu(&key->list);
1081 		kfree_rcu(key, rcu);
1082 	}
1083 }
1084 
1085 void hci_smp_ltks_clear(struct hci_dev *hdev)
1086 {
1087 	struct smp_ltk *k;
1088 
1089 	list_for_each_entry(k, &hdev->long_term_keys, list) {
1090 		list_del_rcu(&k->list);
1091 		kfree_rcu(k, rcu);
1092 	}
1093 }
1094 
1095 void hci_smp_irks_clear(struct hci_dev *hdev)
1096 {
1097 	struct smp_irk *k;
1098 
1099 	list_for_each_entry(k, &hdev->identity_resolving_keys, list) {
1100 		list_del_rcu(&k->list);
1101 		kfree_rcu(k, rcu);
1102 	}
1103 }
1104 
1105 void hci_blocked_keys_clear(struct hci_dev *hdev)
1106 {
1107 	struct blocked_key *b;
1108 
1109 	list_for_each_entry(b, &hdev->blocked_keys, list) {
1110 		list_del_rcu(&b->list);
1111 		kfree_rcu(b, rcu);
1112 	}
1113 }
1114 
1115 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
1116 {
1117 	bool blocked = false;
1118 	struct blocked_key *b;
1119 
1120 	rcu_read_lock();
1121 	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
1122 		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
1123 			blocked = true;
1124 			break;
1125 		}
1126 	}
1127 
1128 	rcu_read_unlock();
1129 	return blocked;
1130 }
1131 
1132 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1133 {
1134 	struct link_key *k;
1135 
1136 	rcu_read_lock();
1137 	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
1138 		if (bacmp(bdaddr, &k->bdaddr) == 0) {
1139 			rcu_read_unlock();
1140 
1141 			if (hci_is_blocked_key(hdev,
1142 					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
1143 					       k->val)) {
1144 				bt_dev_warn_ratelimited(hdev,
1145 							"Link key blocked for %pMR",
1146 							&k->bdaddr);
1147 				return NULL;
1148 			}
1149 
1150 			return k;
1151 		}
1152 	}
1153 	rcu_read_unlock();
1154 
1155 	return NULL;
1156 }
1157 
1158 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1159 			       u8 key_type, u8 old_key_type)
1160 {
1161 	/* Legacy key */
1162 	if (key_type < 0x03)
1163 		return true;
1164 
1165 	/* Debug keys are insecure so don't store them persistently */
1166 	if (key_type == HCI_LK_DEBUG_COMBINATION)
1167 		return false;
1168 
1169 	/* Changed combination key and there's no previous one */
1170 	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1171 		return false;
1172 
1173 	/* Security mode 3 case */
1174 	if (!conn)
1175 		return true;
1176 
1177 	/* BR/EDR key derived using SC from an LE link */
1178 	if (conn->type == LE_LINK)
1179 		return true;
1180 
1181 	/* Neither local nor remote side had no-bonding as requirement */
1182 	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1183 		return true;
1184 
1185 	/* Local side had dedicated bonding as requirement */
1186 	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1187 		return true;
1188 
1189 	/* Remote side had dedicated bonding as requirement */
1190 	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1191 		return true;
1192 
1193 	/* If none of the above criteria match, then don't store the key
1194 	 * persistently */
1195 	return false;
1196 }
1197 
1198 static u8 ltk_role(u8 type)
1199 {
1200 	if (type == SMP_LTK)
1201 		return HCI_ROLE_MASTER;
1202 
1203 	return HCI_ROLE_SLAVE;
1204 }
1205 
1206 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1207 			     u8 addr_type, u8 role)
1208 {
1209 	struct smp_ltk *k;
1210 
1211 	rcu_read_lock();
1212 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1213 		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
1214 			continue;
1215 
1216 		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
1217 			rcu_read_unlock();
1218 
1219 			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
1220 					       k->val)) {
1221 				bt_dev_warn_ratelimited(hdev,
1222 							"LTK blocked for %pMR",
1223 							&k->bdaddr);
1224 				return NULL;
1225 			}
1226 
1227 			return k;
1228 		}
1229 	}
1230 	rcu_read_unlock();
1231 
1232 	return NULL;
1233 }
1234 
1235 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
1236 {
1237 	struct smp_irk *irk_to_return = NULL;
1238 	struct smp_irk *irk;
1239 
1240 	rcu_read_lock();
1241 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1242 		if (!bacmp(&irk->rpa, rpa)) {
1243 			irk_to_return = irk;
1244 			goto done;
1245 		}
1246 	}
1247 
1248 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1249 		if (smp_irk_matches(hdev, irk->val, rpa)) {
1250 			bacpy(&irk->rpa, rpa);
1251 			irk_to_return = irk;
1252 			goto done;
1253 		}
1254 	}
1255 
1256 done:
1257 	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1258 						irk_to_return->val)) {
1259 		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1260 					&irk_to_return->bdaddr);
1261 		irk_to_return = NULL;
1262 	}
1263 
1264 	rcu_read_unlock();
1265 
1266 	return irk_to_return;
1267 }
1268 
1269 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1270 				     u8 addr_type)
1271 {
1272 	struct smp_irk *irk_to_return = NULL;
1273 	struct smp_irk *irk;
1274 
1275 	/* Identity Address must be public or static random */
1276 	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
1277 		return NULL;
1278 
1279 	rcu_read_lock();
1280 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1281 		if (addr_type == irk->addr_type &&
1282 		    bacmp(bdaddr, &irk->bdaddr) == 0) {
1283 			irk_to_return = irk;
1284 			goto done;
1285 		}
1286 	}
1287 
1288 done:
1289 
1290 	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1291 						irk_to_return->val)) {
1292 		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1293 					&irk_to_return->bdaddr);
1294 		irk_to_return = NULL;
1295 	}
1296 
1297 	rcu_read_unlock();
1298 
1299 	return irk_to_return;
1300 }
1301 
1302 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1303 				  bdaddr_t *bdaddr, u8 *val, u8 type,
1304 				  u8 pin_len, bool *persistent)
1305 {
1306 	struct link_key *key, *old_key;
1307 	u8 old_key_type;
1308 
1309 	old_key = hci_find_link_key(hdev, bdaddr);
1310 	if (old_key) {
1311 		old_key_type = old_key->type;
1312 		key = old_key;
1313 	} else {
1314 		old_key_type = conn ? conn->key_type : 0xff;
1315 		key = kzalloc(sizeof(*key), GFP_KERNEL);
1316 		if (!key)
1317 			return NULL;
1318 		list_add_rcu(&key->list, &hdev->link_keys);
1319 	}
1320 
1321 	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1322 
1323 	/* Some buggy controller combinations generate a changed
1324 	 * combination key for legacy pairing even when there's no
1325 	 * previous key */
1326 	if (type == HCI_LK_CHANGED_COMBINATION &&
1327 	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1328 		type = HCI_LK_COMBINATION;
1329 		if (conn)
1330 			conn->key_type = type;
1331 	}
1332 
1333 	bacpy(&key->bdaddr, bdaddr);
1334 	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1335 	key->pin_len = pin_len;
1336 
1337 	if (type == HCI_LK_CHANGED_COMBINATION)
1338 		key->type = old_key_type;
1339 	else
1340 		key->type = type;
1341 
1342 	if (persistent)
1343 		*persistent = hci_persistent_key(hdev, conn, type,
1344 						 old_key_type);
1345 
1346 	return key;
1347 }
1348 
1349 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1350 			    u8 addr_type, u8 type, u8 authenticated,
1351 			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
1352 {
1353 	struct smp_ltk *key, *old_key;
1354 	u8 role = ltk_role(type);
1355 
1356 	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
1357 	if (old_key)
1358 		key = old_key;
1359 	else {
1360 		key = kzalloc(sizeof(*key), GFP_KERNEL);
1361 		if (!key)
1362 			return NULL;
1363 		list_add_rcu(&key->list, &hdev->long_term_keys);
1364 	}
1365 
1366 	bacpy(&key->bdaddr, bdaddr);
1367 	key->bdaddr_type = addr_type;
1368 	memcpy(key->val, tk, sizeof(key->val));
1369 	key->authenticated = authenticated;
1370 	key->ediv = ediv;
1371 	key->rand = rand;
1372 	key->enc_size = enc_size;
1373 	key->type = type;
1374 
1375 	return key;
1376 }
1377 
1378 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1379 			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
1380 {
1381 	struct smp_irk *irk;
1382 
1383 	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
1384 	if (!irk) {
1385 		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
1386 		if (!irk)
1387 			return NULL;
1388 
1389 		bacpy(&irk->bdaddr, bdaddr);
1390 		irk->addr_type = addr_type;
1391 
1392 		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
1393 	}
1394 
1395 	memcpy(irk->val, val, 16);
1396 	bacpy(&irk->rpa, rpa);
1397 
1398 	return irk;
1399 }
1400 
1401 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1402 {
1403 	struct link_key *key;
1404 
1405 	key = hci_find_link_key(hdev, bdaddr);
1406 	if (!key)
1407 		return -ENOENT;
1408 
1409 	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1410 
1411 	list_del_rcu(&key->list);
1412 	kfree_rcu(key, rcu);
1413 
1414 	return 0;
1415 }
1416 
1417 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
1418 {
1419 	struct smp_ltk *k, *tmp;
1420 	int removed = 0;
1421 
1422 	list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) {
1423 		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
1424 			continue;
1425 
1426 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1427 
1428 		list_del_rcu(&k->list);
1429 		kfree_rcu(k, rcu);
1430 		removed++;
1431 	}
1432 
1433 	return removed ? 0 : -ENOENT;
1434 }
1435 
1436 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
1437 {
1438 	struct smp_irk *k, *tmp;
1439 
1440 	list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) {
1441 		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
1442 			continue;
1443 
1444 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1445 
1446 		list_del_rcu(&k->list);
1447 		kfree_rcu(k, rcu);
1448 	}
1449 }
1450 
1451 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1452 {
1453 	struct smp_ltk *k;
1454 	struct smp_irk *irk;
1455 	u8 addr_type;
1456 
1457 	if (type == BDADDR_BREDR) {
1458 		if (hci_find_link_key(hdev, bdaddr))
1459 			return true;
1460 		return false;
1461 	}
1462 
1463 	/* Convert to HCI addr type which struct smp_ltk uses */
1464 	if (type == BDADDR_LE_PUBLIC)
1465 		addr_type = ADDR_LE_DEV_PUBLIC;
1466 	else
1467 		addr_type = ADDR_LE_DEV_RANDOM;
1468 
1469 	irk = hci_get_irk(hdev, bdaddr, addr_type);
1470 	if (irk) {
1471 		bdaddr = &irk->bdaddr;
1472 		addr_type = irk->addr_type;
1473 	}
1474 
1475 	rcu_read_lock();
1476 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1477 		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
1478 			rcu_read_unlock();
1479 			return true;
1480 		}
1481 	}
1482 	rcu_read_unlock();
1483 
1484 	return false;
1485 }
1486 
1487 /* HCI command timer function */
1488 static void hci_cmd_timeout(struct work_struct *work)
1489 {
1490 	struct hci_dev *hdev = container_of(work, struct hci_dev,
1491 					    cmd_timer.work);
1492 
1493 	if (hdev->sent_cmd) {
1494 		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
1495 		u16 opcode = __le16_to_cpu(sent->opcode);
1496 
1497 		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
1498 	} else {
1499 		bt_dev_err(hdev, "command tx timeout");
1500 	}
1501 
1502 	if (hdev->cmd_timeout)
1503 		hdev->cmd_timeout(hdev);
1504 
1505 	atomic_set(&hdev->cmd_cnt, 1);
1506 	queue_work(hdev->workqueue, &hdev->cmd_work);
1507 }
1508 
1509 /* HCI ncmd timer function */
1510 static void hci_ncmd_timeout(struct work_struct *work)
1511 {
1512 	struct hci_dev *hdev = container_of(work, struct hci_dev,
1513 					    ncmd_timer.work);
1514 
1515 	bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
1516 
1517 	/* During HCI_INIT phase no events can be injected if the ncmd timer
1518 	 * triggers since the procedure has its own timeout handling.
1519 	 */
1520 	if (test_bit(HCI_INIT, &hdev->flags))
1521 		return;
1522 
1523 	/* This is an irrecoverable state, inject hardware error event */
1524 	hci_reset_dev(hdev);
1525 }
1526 
1527 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1528 					  bdaddr_t *bdaddr, u8 bdaddr_type)
1529 {
1530 	struct oob_data *data;
1531 
1532 	list_for_each_entry(data, &hdev->remote_oob_data, list) {
1533 		if (bacmp(bdaddr, &data->bdaddr) != 0)
1534 			continue;
1535 		if (data->bdaddr_type != bdaddr_type)
1536 			continue;
1537 		return data;
1538 	}
1539 
1540 	return NULL;
1541 }
1542 
1543 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1544 			       u8 bdaddr_type)
1545 {
1546 	struct oob_data *data;
1547 
1548 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1549 	if (!data)
1550 		return -ENOENT;
1551 
1552 	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
1553 
1554 	list_del(&data->list);
1555 	kfree(data);
1556 
1557 	return 0;
1558 }
1559 
1560 void hci_remote_oob_data_clear(struct hci_dev *hdev)
1561 {
1562 	struct oob_data *data, *n;
1563 
1564 	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1565 		list_del(&data->list);
1566 		kfree(data);
1567 	}
1568 }
1569 
1570 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1571 			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
1572 			    u8 *hash256, u8 *rand256)
1573 {
1574 	struct oob_data *data;
1575 
1576 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1577 	if (!data) {
1578 		data = kmalloc(sizeof(*data), GFP_KERNEL);
1579 		if (!data)
1580 			return -ENOMEM;
1581 
1582 		bacpy(&data->bdaddr, bdaddr);
1583 		data->bdaddr_type = bdaddr_type;
1584 		list_add(&data->list, &hdev->remote_oob_data);
1585 	}
1586 
1587 	if (hash192 && rand192) {
1588 		memcpy(data->hash192, hash192, sizeof(data->hash192));
1589 		memcpy(data->rand192, rand192, sizeof(data->rand192));
1590 		if (hash256 && rand256)
1591 			data->present = 0x03;
1592 	} else {
1593 		memset(data->hash192, 0, sizeof(data->hash192));
1594 		memset(data->rand192, 0, sizeof(data->rand192));
1595 		if (hash256 && rand256)
1596 			data->present = 0x02;
1597 		else
1598 			data->present = 0x00;
1599 	}
1600 
1601 	if (hash256 && rand256) {
1602 		memcpy(data->hash256, hash256, sizeof(data->hash256));
1603 		memcpy(data->rand256, rand256, sizeof(data->rand256));
1604 	} else {
1605 		memset(data->hash256, 0, sizeof(data->hash256));
1606 		memset(data->rand256, 0, sizeof(data->rand256));
1607 		if (hash192 && rand192)
1608 			data->present = 0x01;
1609 	}
1610 
1611 	BT_DBG("%s for %pMR", hdev->name, bdaddr);
1612 
1613 	return 0;
1614 }
1615 
1616 /* This function requires the caller holds hdev->lock */
1617 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
1618 {
1619 	struct adv_info *adv_instance;
1620 
1621 	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
1622 		if (adv_instance->instance == instance)
1623 			return adv_instance;
1624 	}
1625 
1626 	return NULL;
1627 }
1628 
1629 /* This function requires the caller holds hdev->lock */
1630 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
1631 {
1632 	struct adv_info *cur_instance;
1633 
1634 	cur_instance = hci_find_adv_instance(hdev, instance);
1635 	if (!cur_instance)
1636 		return NULL;
1637 
1638 	if (cur_instance == list_last_entry(&hdev->adv_instances,
1639 					    struct adv_info, list))
1640 		return list_first_entry(&hdev->adv_instances,
1641 						 struct adv_info, list);
1642 	else
1643 		return list_next_entry(cur_instance, list);
1644 }
1645 
1646 /* This function requires the caller holds hdev->lock */
1647 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
1648 {
1649 	struct adv_info *adv_instance;
1650 
1651 	adv_instance = hci_find_adv_instance(hdev, instance);
1652 	if (!adv_instance)
1653 		return -ENOENT;
1654 
1655 	BT_DBG("%s removing %dMR", hdev->name, instance);
1656 
1657 	if (hdev->cur_adv_instance == instance) {
1658 		if (hdev->adv_instance_timeout) {
1659 			cancel_delayed_work(&hdev->adv_instance_expire);
1660 			hdev->adv_instance_timeout = 0;
1661 		}
1662 		hdev->cur_adv_instance = 0x00;
1663 	}
1664 
1665 	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1666 
1667 	list_del(&adv_instance->list);
1668 	kfree(adv_instance);
1669 
1670 	hdev->adv_instance_cnt--;
1671 
1672 	return 0;
1673 }
1674 
1675 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
1676 {
1677 	struct adv_info *adv_instance, *n;
1678 
1679 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
1680 		adv_instance->rpa_expired = rpa_expired;
1681 }
1682 
1683 /* This function requires the caller holds hdev->lock */
1684 void hci_adv_instances_clear(struct hci_dev *hdev)
1685 {
1686 	struct adv_info *adv_instance, *n;
1687 
1688 	if (hdev->adv_instance_timeout) {
1689 		cancel_delayed_work(&hdev->adv_instance_expire);
1690 		hdev->adv_instance_timeout = 0;
1691 	}
1692 
1693 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
1694 		cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1695 		list_del(&adv_instance->list);
1696 		kfree(adv_instance);
1697 	}
1698 
1699 	hdev->adv_instance_cnt = 0;
1700 	hdev->cur_adv_instance = 0x00;
1701 }
1702 
1703 static void adv_instance_rpa_expired(struct work_struct *work)
1704 {
1705 	struct adv_info *adv_instance = container_of(work, struct adv_info,
1706 						     rpa_expired_cb.work);
1707 
1708 	BT_DBG("");
1709 
1710 	adv_instance->rpa_expired = true;
1711 }
1712 
1713 /* This function requires the caller holds hdev->lock */
1714 struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance,
1715 				      u32 flags, u16 adv_data_len, u8 *adv_data,
1716 				      u16 scan_rsp_len, u8 *scan_rsp_data,
1717 				      u16 timeout, u16 duration, s8 tx_power,
1718 				      u32 min_interval, u32 max_interval,
1719 				      u8 mesh_handle)
1720 {
1721 	struct adv_info *adv;
1722 
1723 	adv = hci_find_adv_instance(hdev, instance);
1724 	if (adv) {
1725 		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1726 		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1727 		memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data));
1728 	} else {
1729 		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
1730 		    instance < 1 || instance > hdev->le_num_of_adv_sets + 1)
1731 			return ERR_PTR(-EOVERFLOW);
1732 
1733 		adv = kzalloc(sizeof(*adv), GFP_KERNEL);
1734 		if (!adv)
1735 			return ERR_PTR(-ENOMEM);
1736 
1737 		adv->pending = true;
1738 		adv->instance = instance;
1739 		list_add(&adv->list, &hdev->adv_instances);
1740 		hdev->adv_instance_cnt++;
1741 	}
1742 
1743 	adv->flags = flags;
1744 	adv->min_interval = min_interval;
1745 	adv->max_interval = max_interval;
1746 	adv->tx_power = tx_power;
1747 	/* Defining a mesh_handle changes the timing units to ms,
1748 	 * rather than seconds, and ties the instance to the requested
1749 	 * mesh_tx queue.
1750 	 */
1751 	adv->mesh = mesh_handle;
1752 
1753 	hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data,
1754 				  scan_rsp_len, scan_rsp_data);
1755 
1756 	adv->timeout = timeout;
1757 	adv->remaining_time = timeout;
1758 
1759 	if (duration == 0)
1760 		adv->duration = hdev->def_multi_adv_rotation_duration;
1761 	else
1762 		adv->duration = duration;
1763 
1764 	INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired);
1765 
1766 	BT_DBG("%s for %dMR", hdev->name, instance);
1767 
1768 	return adv;
1769 }
1770 
1771 /* This function requires the caller holds hdev->lock */
1772 struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance,
1773 				      u32 flags, u8 data_len, u8 *data,
1774 				      u32 min_interval, u32 max_interval)
1775 {
1776 	struct adv_info *adv;
1777 
1778 	adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL,
1779 				   0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE,
1780 				   min_interval, max_interval, 0);
1781 	if (IS_ERR(adv))
1782 		return adv;
1783 
1784 	adv->periodic = true;
1785 	adv->per_adv_data_len = data_len;
1786 
1787 	if (data)
1788 		memcpy(adv->per_adv_data, data, data_len);
1789 
1790 	return adv;
1791 }
1792 
1793 /* This function requires the caller holds hdev->lock */
1794 int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
1795 			      u16 adv_data_len, u8 *adv_data,
1796 			      u16 scan_rsp_len, u8 *scan_rsp_data)
1797 {
1798 	struct adv_info *adv;
1799 
1800 	adv = hci_find_adv_instance(hdev, instance);
1801 
1802 	/* If advertisement doesn't exist, we can't modify its data */
1803 	if (!adv)
1804 		return -ENOENT;
1805 
1806 	if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) {
1807 		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1808 		memcpy(adv->adv_data, adv_data, adv_data_len);
1809 		adv->adv_data_len = adv_data_len;
1810 		adv->adv_data_changed = true;
1811 	}
1812 
1813 	if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) {
1814 		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1815 		memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len);
1816 		adv->scan_rsp_len = scan_rsp_len;
1817 		adv->scan_rsp_changed = true;
1818 	}
1819 
1820 	/* Mark as changed if there are flags which would affect it */
1821 	if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) ||
1822 	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1823 		adv->scan_rsp_changed = true;
1824 
1825 	return 0;
1826 }
1827 
1828 /* This function requires the caller holds hdev->lock */
1829 u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1830 {
1831 	u32 flags;
1832 	struct adv_info *adv;
1833 
1834 	if (instance == 0x00) {
1835 		/* Instance 0 always manages the "Tx Power" and "Flags"
1836 		 * fields
1837 		 */
1838 		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1839 
1840 		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1841 		 * corresponds to the "connectable" instance flag.
1842 		 */
1843 		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1844 			flags |= MGMT_ADV_FLAG_CONNECTABLE;
1845 
1846 		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1847 			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1848 		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1849 			flags |= MGMT_ADV_FLAG_DISCOV;
1850 
1851 		return flags;
1852 	}
1853 
1854 	adv = hci_find_adv_instance(hdev, instance);
1855 
1856 	/* Return 0 when we got an invalid instance identifier. */
1857 	if (!adv)
1858 		return 0;
1859 
1860 	return adv->flags;
1861 }
1862 
1863 bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1864 {
1865 	struct adv_info *adv;
1866 
1867 	/* Instance 0x00 always set local name */
1868 	if (instance == 0x00)
1869 		return true;
1870 
1871 	adv = hci_find_adv_instance(hdev, instance);
1872 	if (!adv)
1873 		return false;
1874 
1875 	if (adv->flags & MGMT_ADV_FLAG_APPEARANCE ||
1876 	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1877 		return true;
1878 
1879 	return adv->scan_rsp_len ? true : false;
1880 }
1881 
1882 /* This function requires the caller holds hdev->lock */
1883 void hci_adv_monitors_clear(struct hci_dev *hdev)
1884 {
1885 	struct adv_monitor *monitor;
1886 	int handle;
1887 
1888 	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
1889 		hci_free_adv_monitor(hdev, monitor);
1890 
1891 	idr_destroy(&hdev->adv_monitors_idr);
1892 }
1893 
1894 /* Frees the monitor structure and do some bookkeepings.
1895  * This function requires the caller holds hdev->lock.
1896  */
1897 void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1898 {
1899 	struct adv_pattern *pattern;
1900 	struct adv_pattern *tmp;
1901 
1902 	if (!monitor)
1903 		return;
1904 
1905 	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
1906 		list_del(&pattern->list);
1907 		kfree(pattern);
1908 	}
1909 
1910 	if (monitor->handle)
1911 		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
1912 
1913 	if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
1914 		hdev->adv_monitors_cnt--;
1915 		mgmt_adv_monitor_removed(hdev, monitor->handle);
1916 	}
1917 
1918 	kfree(monitor);
1919 }
1920 
1921 /* Assigns handle to a monitor, and if offloading is supported and power is on,
1922  * also attempts to forward the request to the controller.
1923  * This function requires the caller holds hci_req_sync_lock.
1924  */
1925 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1926 {
1927 	int min, max, handle;
1928 	int status = 0;
1929 
1930 	if (!monitor)
1931 		return -EINVAL;
1932 
1933 	hci_dev_lock(hdev);
1934 
1935 	min = HCI_MIN_ADV_MONITOR_HANDLE;
1936 	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
1937 	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
1938 			   GFP_KERNEL);
1939 
1940 	hci_dev_unlock(hdev);
1941 
1942 	if (handle < 0)
1943 		return handle;
1944 
1945 	monitor->handle = handle;
1946 
1947 	if (!hdev_is_powered(hdev))
1948 		return status;
1949 
1950 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1951 	case HCI_ADV_MONITOR_EXT_NONE:
1952 		bt_dev_dbg(hdev, "%s add monitor %d status %d", hdev->name,
1953 			   monitor->handle, status);
1954 		/* Message was not forwarded to controller - not an error */
1955 		break;
1956 
1957 	case HCI_ADV_MONITOR_EXT_MSFT:
1958 		status = msft_add_monitor_pattern(hdev, monitor);
1959 		bt_dev_dbg(hdev, "%s add monitor %d msft status %d", hdev->name,
1960 			   monitor->handle, status);
1961 		break;
1962 	}
1963 
1964 	return status;
1965 }
1966 
1967 /* Attempts to tell the controller and free the monitor. If somehow the
1968  * controller doesn't have a corresponding handle, remove anyway.
1969  * This function requires the caller holds hci_req_sync_lock.
1970  */
1971 static int hci_remove_adv_monitor(struct hci_dev *hdev,
1972 				  struct adv_monitor *monitor)
1973 {
1974 	int status = 0;
1975 	int handle;
1976 
1977 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1978 	case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
1979 		bt_dev_dbg(hdev, "%s remove monitor %d status %d", hdev->name,
1980 			   monitor->handle, status);
1981 		goto free_monitor;
1982 
1983 	case HCI_ADV_MONITOR_EXT_MSFT:
1984 		handle = monitor->handle;
1985 		status = msft_remove_monitor(hdev, monitor);
1986 		bt_dev_dbg(hdev, "%s remove monitor %d msft status %d",
1987 			   hdev->name, handle, status);
1988 		break;
1989 	}
1990 
1991 	/* In case no matching handle registered, just free the monitor */
1992 	if (status == -ENOENT)
1993 		goto free_monitor;
1994 
1995 	return status;
1996 
1997 free_monitor:
1998 	if (status == -ENOENT)
1999 		bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
2000 			    monitor->handle);
2001 	hci_free_adv_monitor(hdev, monitor);
2002 
2003 	return status;
2004 }
2005 
2006 /* This function requires the caller holds hci_req_sync_lock */
2007 int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle)
2008 {
2009 	struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
2010 
2011 	if (!monitor)
2012 		return -EINVAL;
2013 
2014 	return hci_remove_adv_monitor(hdev, monitor);
2015 }
2016 
2017 /* This function requires the caller holds hci_req_sync_lock */
2018 int hci_remove_all_adv_monitor(struct hci_dev *hdev)
2019 {
2020 	struct adv_monitor *monitor;
2021 	int idr_next_id = 0;
2022 	int status = 0;
2023 
2024 	while (1) {
2025 		monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
2026 		if (!monitor)
2027 			break;
2028 
2029 		status = hci_remove_adv_monitor(hdev, monitor);
2030 		if (status)
2031 			return status;
2032 
2033 		idr_next_id++;
2034 	}
2035 
2036 	return status;
2037 }
2038 
2039 /* This function requires the caller holds hdev->lock */
2040 bool hci_is_adv_monitoring(struct hci_dev *hdev)
2041 {
2042 	return !idr_is_empty(&hdev->adv_monitors_idr);
2043 }
2044 
2045 int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
2046 {
2047 	if (msft_monitor_supported(hdev))
2048 		return HCI_ADV_MONITOR_EXT_MSFT;
2049 
2050 	return HCI_ADV_MONITOR_EXT_NONE;
2051 }
2052 
2053 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2054 					 bdaddr_t *bdaddr, u8 type)
2055 {
2056 	struct bdaddr_list *b;
2057 
2058 	list_for_each_entry(b, bdaddr_list, list) {
2059 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2060 			return b;
2061 	}
2062 
2063 	return NULL;
2064 }
2065 
2066 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2067 				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2068 				u8 type)
2069 {
2070 	struct bdaddr_list_with_irk *b;
2071 
2072 	list_for_each_entry(b, bdaddr_list, list) {
2073 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2074 			return b;
2075 	}
2076 
2077 	return NULL;
2078 }
2079 
2080 struct bdaddr_list_with_flags *
2081 hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
2082 				  bdaddr_t *bdaddr, u8 type)
2083 {
2084 	struct bdaddr_list_with_flags *b;
2085 
2086 	list_for_each_entry(b, bdaddr_list, list) {
2087 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2088 			return b;
2089 	}
2090 
2091 	return NULL;
2092 }
2093 
2094 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2095 {
2096 	struct bdaddr_list *b, *n;
2097 
2098 	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2099 		list_del(&b->list);
2100 		kfree(b);
2101 	}
2102 }
2103 
2104 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2105 {
2106 	struct bdaddr_list *entry;
2107 
2108 	if (!bacmp(bdaddr, BDADDR_ANY))
2109 		return -EBADF;
2110 
2111 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2112 		return -EEXIST;
2113 
2114 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2115 	if (!entry)
2116 		return -ENOMEM;
2117 
2118 	bacpy(&entry->bdaddr, bdaddr);
2119 	entry->bdaddr_type = type;
2120 
2121 	list_add(&entry->list, list);
2122 
2123 	return 0;
2124 }
2125 
2126 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2127 					u8 type, u8 *peer_irk, u8 *local_irk)
2128 {
2129 	struct bdaddr_list_with_irk *entry;
2130 
2131 	if (!bacmp(bdaddr, BDADDR_ANY))
2132 		return -EBADF;
2133 
2134 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2135 		return -EEXIST;
2136 
2137 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2138 	if (!entry)
2139 		return -ENOMEM;
2140 
2141 	bacpy(&entry->bdaddr, bdaddr);
2142 	entry->bdaddr_type = type;
2143 
2144 	if (peer_irk)
2145 		memcpy(entry->peer_irk, peer_irk, 16);
2146 
2147 	if (local_irk)
2148 		memcpy(entry->local_irk, local_irk, 16);
2149 
2150 	list_add(&entry->list, list);
2151 
2152 	return 0;
2153 }
2154 
2155 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2156 				   u8 type, u32 flags)
2157 {
2158 	struct bdaddr_list_with_flags *entry;
2159 
2160 	if (!bacmp(bdaddr, BDADDR_ANY))
2161 		return -EBADF;
2162 
2163 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2164 		return -EEXIST;
2165 
2166 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2167 	if (!entry)
2168 		return -ENOMEM;
2169 
2170 	bacpy(&entry->bdaddr, bdaddr);
2171 	entry->bdaddr_type = type;
2172 	entry->flags = flags;
2173 
2174 	list_add(&entry->list, list);
2175 
2176 	return 0;
2177 }
2178 
2179 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2180 {
2181 	struct bdaddr_list *entry;
2182 
2183 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2184 		hci_bdaddr_list_clear(list);
2185 		return 0;
2186 	}
2187 
2188 	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2189 	if (!entry)
2190 		return -ENOENT;
2191 
2192 	list_del(&entry->list);
2193 	kfree(entry);
2194 
2195 	return 0;
2196 }
2197 
2198 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2199 							u8 type)
2200 {
2201 	struct bdaddr_list_with_irk *entry;
2202 
2203 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2204 		hci_bdaddr_list_clear(list);
2205 		return 0;
2206 	}
2207 
2208 	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2209 	if (!entry)
2210 		return -ENOENT;
2211 
2212 	list_del(&entry->list);
2213 	kfree(entry);
2214 
2215 	return 0;
2216 }
2217 
2218 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2219 				   u8 type)
2220 {
2221 	struct bdaddr_list_with_flags *entry;
2222 
2223 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2224 		hci_bdaddr_list_clear(list);
2225 		return 0;
2226 	}
2227 
2228 	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
2229 	if (!entry)
2230 		return -ENOENT;
2231 
2232 	list_del(&entry->list);
2233 	kfree(entry);
2234 
2235 	return 0;
2236 }
2237 
2238 /* This function requires the caller holds hdev->lock */
2239 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2240 					       bdaddr_t *addr, u8 addr_type)
2241 {
2242 	struct hci_conn_params *params;
2243 
2244 	list_for_each_entry(params, &hdev->le_conn_params, list) {
2245 		if (bacmp(&params->addr, addr) == 0 &&
2246 		    params->addr_type == addr_type) {
2247 			return params;
2248 		}
2249 	}
2250 
2251 	return NULL;
2252 }
2253 
2254 /* This function requires the caller holds hdev->lock or rcu_read_lock */
2255 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2256 						  bdaddr_t *addr, u8 addr_type)
2257 {
2258 	struct hci_conn_params *param;
2259 
2260 	rcu_read_lock();
2261 
2262 	list_for_each_entry_rcu(param, list, action) {
2263 		if (bacmp(&param->addr, addr) == 0 &&
2264 		    param->addr_type == addr_type) {
2265 			rcu_read_unlock();
2266 			return param;
2267 		}
2268 	}
2269 
2270 	rcu_read_unlock();
2271 
2272 	return NULL;
2273 }
2274 
2275 /* This function requires the caller holds hdev->lock */
2276 void hci_pend_le_list_del_init(struct hci_conn_params *param)
2277 {
2278 	if (list_empty(&param->action))
2279 		return;
2280 
2281 	list_del_rcu(&param->action);
2282 	synchronize_rcu();
2283 	INIT_LIST_HEAD(&param->action);
2284 }
2285 
2286 /* This function requires the caller holds hdev->lock */
2287 void hci_pend_le_list_add(struct hci_conn_params *param,
2288 			  struct list_head *list)
2289 {
2290 	list_add_rcu(&param->action, list);
2291 }
2292 
2293 /* This function requires the caller holds hdev->lock */
2294 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2295 					    bdaddr_t *addr, u8 addr_type)
2296 {
2297 	struct hci_conn_params *params;
2298 
2299 	params = hci_conn_params_lookup(hdev, addr, addr_type);
2300 	if (params)
2301 		return params;
2302 
2303 	params = kzalloc(sizeof(*params), GFP_KERNEL);
2304 	if (!params) {
2305 		bt_dev_err(hdev, "out of memory");
2306 		return NULL;
2307 	}
2308 
2309 	bacpy(&params->addr, addr);
2310 	params->addr_type = addr_type;
2311 
2312 	list_add(&params->list, &hdev->le_conn_params);
2313 	INIT_LIST_HEAD(&params->action);
2314 
2315 	params->conn_min_interval = hdev->le_conn_min_interval;
2316 	params->conn_max_interval = hdev->le_conn_max_interval;
2317 	params->conn_latency = hdev->le_conn_latency;
2318 	params->supervision_timeout = hdev->le_supv_timeout;
2319 	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2320 
2321 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2322 
2323 	return params;
2324 }
2325 
2326 void hci_conn_params_free(struct hci_conn_params *params)
2327 {
2328 	hci_pend_le_list_del_init(params);
2329 
2330 	if (params->conn) {
2331 		hci_conn_drop(params->conn);
2332 		hci_conn_put(params->conn);
2333 	}
2334 
2335 	list_del(&params->list);
2336 	kfree(params);
2337 }
2338 
2339 /* This function requires the caller holds hdev->lock */
2340 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2341 {
2342 	struct hci_conn_params *params;
2343 
2344 	params = hci_conn_params_lookup(hdev, addr, addr_type);
2345 	if (!params)
2346 		return;
2347 
2348 	hci_conn_params_free(params);
2349 
2350 	hci_update_passive_scan(hdev);
2351 
2352 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2353 }
2354 
2355 /* This function requires the caller holds hdev->lock */
2356 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2357 {
2358 	struct hci_conn_params *params, *tmp;
2359 
2360 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2361 		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2362 			continue;
2363 
2364 		/* If trying to establish one time connection to disabled
2365 		 * device, leave the params, but mark them as just once.
2366 		 */
2367 		if (params->explicit_connect) {
2368 			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2369 			continue;
2370 		}
2371 
2372 		hci_conn_params_free(params);
2373 	}
2374 
2375 	BT_DBG("All LE disabled connection parameters were removed");
2376 }
2377 
2378 /* This function requires the caller holds hdev->lock */
2379 static void hci_conn_params_clear_all(struct hci_dev *hdev)
2380 {
2381 	struct hci_conn_params *params, *tmp;
2382 
2383 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2384 		hci_conn_params_free(params);
2385 
2386 	BT_DBG("All LE connection parameters were removed");
2387 }
2388 
2389 /* Copy the Identity Address of the controller.
2390  *
2391  * If the controller has a public BD_ADDR, then by default use that one.
2392  * If this is a LE only controller without a public address, default to
2393  * the static random address.
2394  *
2395  * For debugging purposes it is possible to force controllers with a
2396  * public address to use the static random address instead.
2397  *
2398  * In case BR/EDR has been disabled on a dual-mode controller and
2399  * userspace has configured a static address, then that address
2400  * becomes the identity address instead of the public BR/EDR address.
2401  */
2402 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2403 			       u8 *bdaddr_type)
2404 {
2405 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2406 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2407 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2408 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2409 		bacpy(bdaddr, &hdev->static_addr);
2410 		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2411 	} else {
2412 		bacpy(bdaddr, &hdev->bdaddr);
2413 		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2414 	}
2415 }
2416 
2417 static void hci_clear_wake_reason(struct hci_dev *hdev)
2418 {
2419 	hci_dev_lock(hdev);
2420 
2421 	hdev->wake_reason = 0;
2422 	bacpy(&hdev->wake_addr, BDADDR_ANY);
2423 	hdev->wake_addr_type = 0;
2424 
2425 	hci_dev_unlock(hdev);
2426 }
2427 
2428 static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
2429 				void *data)
2430 {
2431 	struct hci_dev *hdev =
2432 		container_of(nb, struct hci_dev, suspend_notifier);
2433 	int ret = 0;
2434 
2435 	/* Userspace has full control of this device. Do nothing. */
2436 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2437 		return NOTIFY_DONE;
2438 
2439 	if (action == PM_SUSPEND_PREPARE)
2440 		ret = hci_suspend_dev(hdev);
2441 	else if (action == PM_POST_SUSPEND)
2442 		ret = hci_resume_dev(hdev);
2443 
2444 	if (ret)
2445 		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
2446 			   action, ret);
2447 
2448 	return NOTIFY_DONE;
2449 }
2450 
2451 /* Alloc HCI device */
2452 struct hci_dev *hci_alloc_dev_priv(int sizeof_priv)
2453 {
2454 	struct hci_dev *hdev;
2455 	unsigned int alloc_size;
2456 
2457 	alloc_size = sizeof(*hdev);
2458 	if (sizeof_priv) {
2459 		/* Fixme: May need ALIGN-ment? */
2460 		alloc_size += sizeof_priv;
2461 	}
2462 
2463 	hdev = kzalloc(alloc_size, GFP_KERNEL);
2464 	if (!hdev)
2465 		return NULL;
2466 
2467 	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2468 	hdev->esco_type = (ESCO_HV1);
2469 	hdev->link_mode = (HCI_LM_ACCEPT);
2470 	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2471 	hdev->io_capability = 0x03;	/* No Input No Output */
2472 	hdev->manufacturer = 0xffff;	/* Default to internal use */
2473 	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2474 	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2475 	hdev->adv_instance_cnt = 0;
2476 	hdev->cur_adv_instance = 0x00;
2477 	hdev->adv_instance_timeout = 0;
2478 
2479 	hdev->advmon_allowlist_duration = 300;
2480 	hdev->advmon_no_filter_duration = 500;
2481 	hdev->enable_advmon_interleave_scan = 0x00;	/* Default to disable */
2482 
2483 	hdev->sniff_max_interval = 800;
2484 	hdev->sniff_min_interval = 80;
2485 
2486 	hdev->le_adv_channel_map = 0x07;
2487 	hdev->le_adv_min_interval = 0x0800;
2488 	hdev->le_adv_max_interval = 0x0800;
2489 	hdev->le_scan_interval = 0x0060;
2490 	hdev->le_scan_window = 0x0030;
2491 	hdev->le_scan_int_suspend = 0x0400;
2492 	hdev->le_scan_window_suspend = 0x0012;
2493 	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
2494 	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
2495 	hdev->le_scan_int_adv_monitor = 0x0060;
2496 	hdev->le_scan_window_adv_monitor = 0x0030;
2497 	hdev->le_scan_int_connect = 0x0060;
2498 	hdev->le_scan_window_connect = 0x0060;
2499 	hdev->le_conn_min_interval = 0x0018;
2500 	hdev->le_conn_max_interval = 0x0028;
2501 	hdev->le_conn_latency = 0x0000;
2502 	hdev->le_supv_timeout = 0x002a;
2503 	hdev->le_def_tx_len = 0x001b;
2504 	hdev->le_def_tx_time = 0x0148;
2505 	hdev->le_max_tx_len = 0x001b;
2506 	hdev->le_max_tx_time = 0x0148;
2507 	hdev->le_max_rx_len = 0x001b;
2508 	hdev->le_max_rx_time = 0x0148;
2509 	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
2510 	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
2511 	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
2512 	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
2513 	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
2514 	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
2515 	hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
2516 	hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
2517 	hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
2518 
2519 	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2520 	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2521 	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2522 	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2523 	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
2524 	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
2525 
2526 	/* default 1.28 sec page scan */
2527 	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
2528 	hdev->def_page_scan_int = 0x0800;
2529 	hdev->def_page_scan_window = 0x0012;
2530 
2531 	mutex_init(&hdev->lock);
2532 	mutex_init(&hdev->req_lock);
2533 
2534 	INIT_LIST_HEAD(&hdev->mesh_pending);
2535 	INIT_LIST_HEAD(&hdev->mgmt_pending);
2536 	INIT_LIST_HEAD(&hdev->reject_list);
2537 	INIT_LIST_HEAD(&hdev->accept_list);
2538 	INIT_LIST_HEAD(&hdev->uuids);
2539 	INIT_LIST_HEAD(&hdev->link_keys);
2540 	INIT_LIST_HEAD(&hdev->long_term_keys);
2541 	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2542 	INIT_LIST_HEAD(&hdev->remote_oob_data);
2543 	INIT_LIST_HEAD(&hdev->le_accept_list);
2544 	INIT_LIST_HEAD(&hdev->le_resolv_list);
2545 	INIT_LIST_HEAD(&hdev->le_conn_params);
2546 	INIT_LIST_HEAD(&hdev->pend_le_conns);
2547 	INIT_LIST_HEAD(&hdev->pend_le_reports);
2548 	INIT_LIST_HEAD(&hdev->conn_hash.list);
2549 	INIT_LIST_HEAD(&hdev->adv_instances);
2550 	INIT_LIST_HEAD(&hdev->blocked_keys);
2551 	INIT_LIST_HEAD(&hdev->monitored_devices);
2552 
2553 	INIT_LIST_HEAD(&hdev->local_codecs);
2554 	INIT_WORK(&hdev->rx_work, hci_rx_work);
2555 	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2556 	INIT_WORK(&hdev->tx_work, hci_tx_work);
2557 	INIT_WORK(&hdev->power_on, hci_power_on);
2558 	INIT_WORK(&hdev->error_reset, hci_error_reset);
2559 
2560 	hci_cmd_sync_init(hdev);
2561 
2562 	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2563 
2564 	skb_queue_head_init(&hdev->rx_q);
2565 	skb_queue_head_init(&hdev->cmd_q);
2566 	skb_queue_head_init(&hdev->raw_q);
2567 
2568 	init_waitqueue_head(&hdev->req_wait_q);
2569 
2570 	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
2571 	INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
2572 
2573 	hci_devcd_setup(hdev);
2574 	hci_request_setup(hdev);
2575 
2576 	hci_init_sysfs(hdev);
2577 	discovery_init(hdev);
2578 
2579 	return hdev;
2580 }
2581 EXPORT_SYMBOL(hci_alloc_dev_priv);
2582 
2583 /* Free HCI device */
2584 void hci_free_dev(struct hci_dev *hdev)
2585 {
2586 	/* will free via device release */
2587 	put_device(&hdev->dev);
2588 }
2589 EXPORT_SYMBOL(hci_free_dev);
2590 
2591 /* Register HCI device */
2592 int hci_register_dev(struct hci_dev *hdev)
2593 {
2594 	int id, error;
2595 
2596 	if (!hdev->open || !hdev->close || !hdev->send)
2597 		return -EINVAL;
2598 
2599 	/* Do not allow HCI_AMP devices to register at index 0,
2600 	 * so the index can be used as the AMP controller ID.
2601 	 */
2602 	switch (hdev->dev_type) {
2603 	case HCI_PRIMARY:
2604 		id = ida_simple_get(&hci_index_ida, 0, HCI_MAX_ID, GFP_KERNEL);
2605 		break;
2606 	case HCI_AMP:
2607 		id = ida_simple_get(&hci_index_ida, 1, HCI_MAX_ID, GFP_KERNEL);
2608 		break;
2609 	default:
2610 		return -EINVAL;
2611 	}
2612 
2613 	if (id < 0)
2614 		return id;
2615 
2616 	snprintf(hdev->name, sizeof(hdev->name), "hci%d", id);
2617 	hdev->id = id;
2618 
2619 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2620 
2621 	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
2622 	if (!hdev->workqueue) {
2623 		error = -ENOMEM;
2624 		goto err;
2625 	}
2626 
2627 	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
2628 						      hdev->name);
2629 	if (!hdev->req_workqueue) {
2630 		destroy_workqueue(hdev->workqueue);
2631 		error = -ENOMEM;
2632 		goto err;
2633 	}
2634 
2635 	if (!IS_ERR_OR_NULL(bt_debugfs))
2636 		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
2637 
2638 	dev_set_name(&hdev->dev, "%s", hdev->name);
2639 
2640 	error = device_add(&hdev->dev);
2641 	if (error < 0)
2642 		goto err_wqueue;
2643 
2644 	hci_leds_init(hdev);
2645 
2646 	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2647 				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2648 				    hdev);
2649 	if (hdev->rfkill) {
2650 		if (rfkill_register(hdev->rfkill) < 0) {
2651 			rfkill_destroy(hdev->rfkill);
2652 			hdev->rfkill = NULL;
2653 		}
2654 	}
2655 
2656 	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
2657 		hci_dev_set_flag(hdev, HCI_RFKILLED);
2658 
2659 	hci_dev_set_flag(hdev, HCI_SETUP);
2660 	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
2661 
2662 	if (hdev->dev_type == HCI_PRIMARY) {
2663 		/* Assume BR/EDR support until proven otherwise (such as
2664 		 * through reading supported features during init.
2665 		 */
2666 		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
2667 	}
2668 
2669 	write_lock(&hci_dev_list_lock);
2670 	list_add(&hdev->list, &hci_dev_list);
2671 	write_unlock(&hci_dev_list_lock);
2672 
2673 	/* Devices that are marked for raw-only usage are unconfigured
2674 	 * and should not be included in normal operation.
2675 	 */
2676 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2677 		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
2678 
2679 	/* Mark Remote Wakeup connection flag as supported if driver has wakeup
2680 	 * callback.
2681 	 */
2682 	if (hdev->wakeup)
2683 		hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP;
2684 
2685 	hci_sock_dev_event(hdev, HCI_DEV_REG);
2686 	hci_dev_hold(hdev);
2687 
2688 	error = hci_register_suspend_notifier(hdev);
2689 	if (error)
2690 		BT_WARN("register suspend notifier failed error:%d\n", error);
2691 
2692 	queue_work(hdev->req_workqueue, &hdev->power_on);
2693 
2694 	idr_init(&hdev->adv_monitors_idr);
2695 	msft_register(hdev);
2696 
2697 	return id;
2698 
2699 err_wqueue:
2700 	debugfs_remove_recursive(hdev->debugfs);
2701 	destroy_workqueue(hdev->workqueue);
2702 	destroy_workqueue(hdev->req_workqueue);
2703 err:
2704 	ida_simple_remove(&hci_index_ida, hdev->id);
2705 
2706 	return error;
2707 }
2708 EXPORT_SYMBOL(hci_register_dev);
2709 
2710 /* Unregister HCI device */
2711 void hci_unregister_dev(struct hci_dev *hdev)
2712 {
2713 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2714 
2715 	mutex_lock(&hdev->unregister_lock);
2716 	hci_dev_set_flag(hdev, HCI_UNREGISTER);
2717 	mutex_unlock(&hdev->unregister_lock);
2718 
2719 	write_lock(&hci_dev_list_lock);
2720 	list_del(&hdev->list);
2721 	write_unlock(&hci_dev_list_lock);
2722 
2723 	cancel_work_sync(&hdev->power_on);
2724 
2725 	hci_cmd_sync_clear(hdev);
2726 
2727 	hci_unregister_suspend_notifier(hdev);
2728 
2729 	msft_unregister(hdev);
2730 
2731 	hci_dev_do_close(hdev);
2732 
2733 	if (!test_bit(HCI_INIT, &hdev->flags) &&
2734 	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
2735 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
2736 		hci_dev_lock(hdev);
2737 		mgmt_index_removed(hdev);
2738 		hci_dev_unlock(hdev);
2739 	}
2740 
2741 	/* mgmt_index_removed should take care of emptying the
2742 	 * pending list */
2743 	BUG_ON(!list_empty(&hdev->mgmt_pending));
2744 
2745 	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
2746 
2747 	if (hdev->rfkill) {
2748 		rfkill_unregister(hdev->rfkill);
2749 		rfkill_destroy(hdev->rfkill);
2750 	}
2751 
2752 	device_del(&hdev->dev);
2753 	/* Actual cleanup is deferred until hci_release_dev(). */
2754 	hci_dev_put(hdev);
2755 }
2756 EXPORT_SYMBOL(hci_unregister_dev);
2757 
2758 /* Release HCI device */
2759 void hci_release_dev(struct hci_dev *hdev)
2760 {
2761 	debugfs_remove_recursive(hdev->debugfs);
2762 	kfree_const(hdev->hw_info);
2763 	kfree_const(hdev->fw_info);
2764 
2765 	destroy_workqueue(hdev->workqueue);
2766 	destroy_workqueue(hdev->req_workqueue);
2767 
2768 	hci_dev_lock(hdev);
2769 	hci_bdaddr_list_clear(&hdev->reject_list);
2770 	hci_bdaddr_list_clear(&hdev->accept_list);
2771 	hci_uuids_clear(hdev);
2772 	hci_link_keys_clear(hdev);
2773 	hci_smp_ltks_clear(hdev);
2774 	hci_smp_irks_clear(hdev);
2775 	hci_remote_oob_data_clear(hdev);
2776 	hci_adv_instances_clear(hdev);
2777 	hci_adv_monitors_clear(hdev);
2778 	hci_bdaddr_list_clear(&hdev->le_accept_list);
2779 	hci_bdaddr_list_clear(&hdev->le_resolv_list);
2780 	hci_conn_params_clear_all(hdev);
2781 	hci_discovery_filter_clear(hdev);
2782 	hci_blocked_keys_clear(hdev);
2783 	hci_dev_unlock(hdev);
2784 
2785 	ida_simple_remove(&hci_index_ida, hdev->id);
2786 	kfree_skb(hdev->sent_cmd);
2787 	kfree_skb(hdev->recv_event);
2788 	kfree(hdev);
2789 }
2790 EXPORT_SYMBOL(hci_release_dev);
2791 
2792 int hci_register_suspend_notifier(struct hci_dev *hdev)
2793 {
2794 	int ret = 0;
2795 
2796 	if (!hdev->suspend_notifier.notifier_call &&
2797 	    !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
2798 		hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
2799 		ret = register_pm_notifier(&hdev->suspend_notifier);
2800 	}
2801 
2802 	return ret;
2803 }
2804 
2805 int hci_unregister_suspend_notifier(struct hci_dev *hdev)
2806 {
2807 	int ret = 0;
2808 
2809 	if (hdev->suspend_notifier.notifier_call) {
2810 		ret = unregister_pm_notifier(&hdev->suspend_notifier);
2811 		if (!ret)
2812 			hdev->suspend_notifier.notifier_call = NULL;
2813 	}
2814 
2815 	return ret;
2816 }
2817 
2818 /* Suspend HCI device */
2819 int hci_suspend_dev(struct hci_dev *hdev)
2820 {
2821 	int ret;
2822 
2823 	bt_dev_dbg(hdev, "");
2824 
2825 	/* Suspend should only act on when powered. */
2826 	if (!hdev_is_powered(hdev) ||
2827 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2828 		return 0;
2829 
2830 	/* If powering down don't attempt to suspend */
2831 	if (mgmt_powering_down(hdev))
2832 		return 0;
2833 
2834 	/* Cancel potentially blocking sync operation before suspend */
2835 	__hci_cmd_sync_cancel(hdev, -EHOSTDOWN);
2836 
2837 	hci_req_sync_lock(hdev);
2838 	ret = hci_suspend_sync(hdev);
2839 	hci_req_sync_unlock(hdev);
2840 
2841 	hci_clear_wake_reason(hdev);
2842 	mgmt_suspending(hdev, hdev->suspend_state);
2843 
2844 	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
2845 	return ret;
2846 }
2847 EXPORT_SYMBOL(hci_suspend_dev);
2848 
2849 /* Resume HCI device */
2850 int hci_resume_dev(struct hci_dev *hdev)
2851 {
2852 	int ret;
2853 
2854 	bt_dev_dbg(hdev, "");
2855 
2856 	/* Resume should only act on when powered. */
2857 	if (!hdev_is_powered(hdev) ||
2858 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2859 		return 0;
2860 
2861 	/* If powering down don't attempt to resume */
2862 	if (mgmt_powering_down(hdev))
2863 		return 0;
2864 
2865 	hci_req_sync_lock(hdev);
2866 	ret = hci_resume_sync(hdev);
2867 	hci_req_sync_unlock(hdev);
2868 
2869 	mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
2870 		      hdev->wake_addr_type);
2871 
2872 	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
2873 	return ret;
2874 }
2875 EXPORT_SYMBOL(hci_resume_dev);
2876 
2877 /* Reset HCI device */
2878 int hci_reset_dev(struct hci_dev *hdev)
2879 {
2880 	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
2881 	struct sk_buff *skb;
2882 
2883 	skb = bt_skb_alloc(3, GFP_ATOMIC);
2884 	if (!skb)
2885 		return -ENOMEM;
2886 
2887 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
2888 	skb_put_data(skb, hw_err, 3);
2889 
2890 	bt_dev_err(hdev, "Injecting HCI hardware error event");
2891 
2892 	/* Send Hardware Error to upper stack */
2893 	return hci_recv_frame(hdev, skb);
2894 }
2895 EXPORT_SYMBOL(hci_reset_dev);
2896 
2897 /* Receive frame from HCI drivers */
2898 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
2899 {
2900 	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2901 		      && !test_bit(HCI_INIT, &hdev->flags))) {
2902 		kfree_skb(skb);
2903 		return -ENXIO;
2904 	}
2905 
2906 	switch (hci_skb_pkt_type(skb)) {
2907 	case HCI_EVENT_PKT:
2908 		break;
2909 	case HCI_ACLDATA_PKT:
2910 		/* Detect if ISO packet has been sent as ACL */
2911 		if (hci_conn_num(hdev, ISO_LINK)) {
2912 			__u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle);
2913 			__u8 type;
2914 
2915 			type = hci_conn_lookup_type(hdev, hci_handle(handle));
2916 			if (type == ISO_LINK)
2917 				hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
2918 		}
2919 		break;
2920 	case HCI_SCODATA_PKT:
2921 		break;
2922 	case HCI_ISODATA_PKT:
2923 		break;
2924 	default:
2925 		kfree_skb(skb);
2926 		return -EINVAL;
2927 	}
2928 
2929 	/* Incoming skb */
2930 	bt_cb(skb)->incoming = 1;
2931 
2932 	/* Time stamp */
2933 	__net_timestamp(skb);
2934 
2935 	skb_queue_tail(&hdev->rx_q, skb);
2936 	queue_work(hdev->workqueue, &hdev->rx_work);
2937 
2938 	return 0;
2939 }
2940 EXPORT_SYMBOL(hci_recv_frame);
2941 
2942 /* Receive diagnostic message from HCI drivers */
2943 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
2944 {
2945 	/* Mark as diagnostic packet */
2946 	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
2947 
2948 	/* Time stamp */
2949 	__net_timestamp(skb);
2950 
2951 	skb_queue_tail(&hdev->rx_q, skb);
2952 	queue_work(hdev->workqueue, &hdev->rx_work);
2953 
2954 	return 0;
2955 }
2956 EXPORT_SYMBOL(hci_recv_diag);
2957 
2958 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
2959 {
2960 	va_list vargs;
2961 
2962 	va_start(vargs, fmt);
2963 	kfree_const(hdev->hw_info);
2964 	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2965 	va_end(vargs);
2966 }
2967 EXPORT_SYMBOL(hci_set_hw_info);
2968 
2969 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
2970 {
2971 	va_list vargs;
2972 
2973 	va_start(vargs, fmt);
2974 	kfree_const(hdev->fw_info);
2975 	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2976 	va_end(vargs);
2977 }
2978 EXPORT_SYMBOL(hci_set_fw_info);
2979 
2980 /* ---- Interface to upper protocols ---- */
2981 
2982 int hci_register_cb(struct hci_cb *cb)
2983 {
2984 	BT_DBG("%p name %s", cb, cb->name);
2985 
2986 	mutex_lock(&hci_cb_list_lock);
2987 	list_add_tail(&cb->list, &hci_cb_list);
2988 	mutex_unlock(&hci_cb_list_lock);
2989 
2990 	return 0;
2991 }
2992 EXPORT_SYMBOL(hci_register_cb);
2993 
2994 int hci_unregister_cb(struct hci_cb *cb)
2995 {
2996 	BT_DBG("%p name %s", cb, cb->name);
2997 
2998 	mutex_lock(&hci_cb_list_lock);
2999 	list_del(&cb->list);
3000 	mutex_unlock(&hci_cb_list_lock);
3001 
3002 	return 0;
3003 }
3004 EXPORT_SYMBOL(hci_unregister_cb);
3005 
3006 static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3007 {
3008 	int err;
3009 
3010 	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3011 	       skb->len);
3012 
3013 	/* Time stamp */
3014 	__net_timestamp(skb);
3015 
3016 	/* Send copy to monitor */
3017 	hci_send_to_monitor(hdev, skb);
3018 
3019 	if (atomic_read(&hdev->promisc)) {
3020 		/* Send copy to the sockets */
3021 		hci_send_to_sock(hdev, skb);
3022 	}
3023 
3024 	/* Get rid of skb owner, prior to sending to the driver. */
3025 	skb_orphan(skb);
3026 
3027 	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3028 		kfree_skb(skb);
3029 		return -EINVAL;
3030 	}
3031 
3032 	err = hdev->send(hdev, skb);
3033 	if (err < 0) {
3034 		bt_dev_err(hdev, "sending frame failed (%d)", err);
3035 		kfree_skb(skb);
3036 		return err;
3037 	}
3038 
3039 	return 0;
3040 }
3041 
3042 /* Send HCI command */
3043 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3044 		 const void *param)
3045 {
3046 	struct sk_buff *skb;
3047 
3048 	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3049 
3050 	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3051 	if (!skb) {
3052 		bt_dev_err(hdev, "no memory for command");
3053 		return -ENOMEM;
3054 	}
3055 
3056 	/* Stand-alone HCI commands must be flagged as
3057 	 * single-command requests.
3058 	 */
3059 	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3060 
3061 	skb_queue_tail(&hdev->cmd_q, skb);
3062 	queue_work(hdev->workqueue, &hdev->cmd_work);
3063 
3064 	return 0;
3065 }
3066 
3067 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3068 		   const void *param)
3069 {
3070 	struct sk_buff *skb;
3071 
3072 	if (hci_opcode_ogf(opcode) != 0x3f) {
3073 		/* A controller receiving a command shall respond with either
3074 		 * a Command Status Event or a Command Complete Event.
3075 		 * Therefore, all standard HCI commands must be sent via the
3076 		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3077 		 * Some vendors do not comply with this rule for vendor-specific
3078 		 * commands and do not return any event. We want to support
3079 		 * unresponded commands for such cases only.
3080 		 */
3081 		bt_dev_err(hdev, "unresponded command not supported");
3082 		return -EINVAL;
3083 	}
3084 
3085 	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3086 	if (!skb) {
3087 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3088 			   opcode);
3089 		return -ENOMEM;
3090 	}
3091 
3092 	hci_send_frame(hdev, skb);
3093 
3094 	return 0;
3095 }
3096 EXPORT_SYMBOL(__hci_cmd_send);
3097 
3098 /* Get data from the previously sent command */
3099 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3100 {
3101 	struct hci_command_hdr *hdr;
3102 
3103 	if (!hdev->sent_cmd)
3104 		return NULL;
3105 
3106 	hdr = (void *) hdev->sent_cmd->data;
3107 
3108 	if (hdr->opcode != cpu_to_le16(opcode))
3109 		return NULL;
3110 
3111 	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3112 
3113 	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3114 }
3115 
3116 /* Get data from last received event */
3117 void *hci_recv_event_data(struct hci_dev *hdev, __u8 event)
3118 {
3119 	struct hci_event_hdr *hdr;
3120 	int offset;
3121 
3122 	if (!hdev->recv_event)
3123 		return NULL;
3124 
3125 	hdr = (void *)hdev->recv_event->data;
3126 	offset = sizeof(*hdr);
3127 
3128 	if (hdr->evt != event) {
3129 		/* In case of LE metaevent check the subevent match */
3130 		if (hdr->evt == HCI_EV_LE_META) {
3131 			struct hci_ev_le_meta *ev;
3132 
3133 			ev = (void *)hdev->recv_event->data + offset;
3134 			offset += sizeof(*ev);
3135 			if (ev->subevent == event)
3136 				goto found;
3137 		}
3138 		return NULL;
3139 	}
3140 
3141 found:
3142 	bt_dev_dbg(hdev, "event 0x%2.2x", event);
3143 
3144 	return hdev->recv_event->data + offset;
3145 }
3146 
3147 /* Send ACL data */
3148 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3149 {
3150 	struct hci_acl_hdr *hdr;
3151 	int len = skb->len;
3152 
3153 	skb_push(skb, HCI_ACL_HDR_SIZE);
3154 	skb_reset_transport_header(skb);
3155 	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3156 	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3157 	hdr->dlen   = cpu_to_le16(len);
3158 }
3159 
3160 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3161 			  struct sk_buff *skb, __u16 flags)
3162 {
3163 	struct hci_conn *conn = chan->conn;
3164 	struct hci_dev *hdev = conn->hdev;
3165 	struct sk_buff *list;
3166 
3167 	skb->len = skb_headlen(skb);
3168 	skb->data_len = 0;
3169 
3170 	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3171 
3172 	switch (hdev->dev_type) {
3173 	case HCI_PRIMARY:
3174 		hci_add_acl_hdr(skb, conn->handle, flags);
3175 		break;
3176 	case HCI_AMP:
3177 		hci_add_acl_hdr(skb, chan->handle, flags);
3178 		break;
3179 	default:
3180 		bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
3181 		return;
3182 	}
3183 
3184 	list = skb_shinfo(skb)->frag_list;
3185 	if (!list) {
3186 		/* Non fragmented */
3187 		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3188 
3189 		skb_queue_tail(queue, skb);
3190 	} else {
3191 		/* Fragmented */
3192 		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3193 
3194 		skb_shinfo(skb)->frag_list = NULL;
3195 
3196 		/* Queue all fragments atomically. We need to use spin_lock_bh
3197 		 * here because of 6LoWPAN links, as there this function is
3198 		 * called from softirq and using normal spin lock could cause
3199 		 * deadlocks.
3200 		 */
3201 		spin_lock_bh(&queue->lock);
3202 
3203 		__skb_queue_tail(queue, skb);
3204 
3205 		flags &= ~ACL_START;
3206 		flags |= ACL_CONT;
3207 		do {
3208 			skb = list; list = list->next;
3209 
3210 			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3211 			hci_add_acl_hdr(skb, conn->handle, flags);
3212 
3213 			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3214 
3215 			__skb_queue_tail(queue, skb);
3216 		} while (list);
3217 
3218 		spin_unlock_bh(&queue->lock);
3219 	}
3220 }
3221 
3222 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3223 {
3224 	struct hci_dev *hdev = chan->conn->hdev;
3225 
3226 	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3227 
3228 	hci_queue_acl(chan, &chan->data_q, skb, flags);
3229 
3230 	queue_work(hdev->workqueue, &hdev->tx_work);
3231 }
3232 
3233 /* Send SCO data */
3234 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3235 {
3236 	struct hci_dev *hdev = conn->hdev;
3237 	struct hci_sco_hdr hdr;
3238 
3239 	BT_DBG("%s len %d", hdev->name, skb->len);
3240 
3241 	hdr.handle = cpu_to_le16(conn->handle);
3242 	hdr.dlen   = skb->len;
3243 
3244 	skb_push(skb, HCI_SCO_HDR_SIZE);
3245 	skb_reset_transport_header(skb);
3246 	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3247 
3248 	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3249 
3250 	skb_queue_tail(&conn->data_q, skb);
3251 	queue_work(hdev->workqueue, &hdev->tx_work);
3252 }
3253 
3254 /* Send ISO data */
3255 static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags)
3256 {
3257 	struct hci_iso_hdr *hdr;
3258 	int len = skb->len;
3259 
3260 	skb_push(skb, HCI_ISO_HDR_SIZE);
3261 	skb_reset_transport_header(skb);
3262 	hdr = (struct hci_iso_hdr *)skb_transport_header(skb);
3263 	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3264 	hdr->dlen   = cpu_to_le16(len);
3265 }
3266 
3267 static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue,
3268 			  struct sk_buff *skb)
3269 {
3270 	struct hci_dev *hdev = conn->hdev;
3271 	struct sk_buff *list;
3272 	__u16 flags;
3273 
3274 	skb->len = skb_headlen(skb);
3275 	skb->data_len = 0;
3276 
3277 	hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3278 
3279 	list = skb_shinfo(skb)->frag_list;
3280 
3281 	flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00);
3282 	hci_add_iso_hdr(skb, conn->handle, flags);
3283 
3284 	if (!list) {
3285 		/* Non fragmented */
3286 		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3287 
3288 		skb_queue_tail(queue, skb);
3289 	} else {
3290 		/* Fragmented */
3291 		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3292 
3293 		skb_shinfo(skb)->frag_list = NULL;
3294 
3295 		__skb_queue_tail(queue, skb);
3296 
3297 		do {
3298 			skb = list; list = list->next;
3299 
3300 			hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3301 			flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END,
3302 						   0x00);
3303 			hci_add_iso_hdr(skb, conn->handle, flags);
3304 
3305 			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3306 
3307 			__skb_queue_tail(queue, skb);
3308 		} while (list);
3309 	}
3310 }
3311 
3312 void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb)
3313 {
3314 	struct hci_dev *hdev = conn->hdev;
3315 
3316 	BT_DBG("%s len %d", hdev->name, skb->len);
3317 
3318 	hci_queue_iso(conn, &conn->data_q, skb);
3319 
3320 	queue_work(hdev->workqueue, &hdev->tx_work);
3321 }
3322 
3323 /* ---- HCI TX task (outgoing data) ---- */
3324 
3325 /* HCI Connection scheduler */
3326 static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote)
3327 {
3328 	struct hci_dev *hdev;
3329 	int cnt, q;
3330 
3331 	if (!conn) {
3332 		*quote = 0;
3333 		return;
3334 	}
3335 
3336 	hdev = conn->hdev;
3337 
3338 	switch (conn->type) {
3339 	case ACL_LINK:
3340 		cnt = hdev->acl_cnt;
3341 		break;
3342 	case AMP_LINK:
3343 		cnt = hdev->block_cnt;
3344 		break;
3345 	case SCO_LINK:
3346 	case ESCO_LINK:
3347 		cnt = hdev->sco_cnt;
3348 		break;
3349 	case LE_LINK:
3350 		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3351 		break;
3352 	case ISO_LINK:
3353 		cnt = hdev->iso_mtu ? hdev->iso_cnt :
3354 			hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3355 		break;
3356 	default:
3357 		cnt = 0;
3358 		bt_dev_err(hdev, "unknown link type %d", conn->type);
3359 	}
3360 
3361 	q = cnt / num;
3362 	*quote = q ? q : 1;
3363 }
3364 
3365 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3366 				     int *quote)
3367 {
3368 	struct hci_conn_hash *h = &hdev->conn_hash;
3369 	struct hci_conn *conn = NULL, *c;
3370 	unsigned int num = 0, min = ~0;
3371 
3372 	/* We don't have to lock device here. Connections are always
3373 	 * added and removed with TX task disabled. */
3374 
3375 	rcu_read_lock();
3376 
3377 	list_for_each_entry_rcu(c, &h->list, list) {
3378 		if (c->type != type || skb_queue_empty(&c->data_q))
3379 			continue;
3380 
3381 		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3382 			continue;
3383 
3384 		num++;
3385 
3386 		if (c->sent < min) {
3387 			min  = c->sent;
3388 			conn = c;
3389 		}
3390 
3391 		if (hci_conn_num(hdev, type) == num)
3392 			break;
3393 	}
3394 
3395 	rcu_read_unlock();
3396 
3397 	hci_quote_sent(conn, num, quote);
3398 
3399 	BT_DBG("conn %p quote %d", conn, *quote);
3400 	return conn;
3401 }
3402 
3403 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3404 {
3405 	struct hci_conn_hash *h = &hdev->conn_hash;
3406 	struct hci_conn *c;
3407 
3408 	bt_dev_err(hdev, "link tx timeout");
3409 
3410 	rcu_read_lock();
3411 
3412 	/* Kill stalled connections */
3413 	list_for_each_entry_rcu(c, &h->list, list) {
3414 		if (c->type == type && c->sent) {
3415 			bt_dev_err(hdev, "killing stalled connection %pMR",
3416 				   &c->dst);
3417 			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3418 		}
3419 	}
3420 
3421 	rcu_read_unlock();
3422 }
3423 
3424 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3425 				      int *quote)
3426 {
3427 	struct hci_conn_hash *h = &hdev->conn_hash;
3428 	struct hci_chan *chan = NULL;
3429 	unsigned int num = 0, min = ~0, cur_prio = 0;
3430 	struct hci_conn *conn;
3431 	int conn_num = 0;
3432 
3433 	BT_DBG("%s", hdev->name);
3434 
3435 	rcu_read_lock();
3436 
3437 	list_for_each_entry_rcu(conn, &h->list, list) {
3438 		struct hci_chan *tmp;
3439 
3440 		if (conn->type != type)
3441 			continue;
3442 
3443 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3444 			continue;
3445 
3446 		conn_num++;
3447 
3448 		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3449 			struct sk_buff *skb;
3450 
3451 			if (skb_queue_empty(&tmp->data_q))
3452 				continue;
3453 
3454 			skb = skb_peek(&tmp->data_q);
3455 			if (skb->priority < cur_prio)
3456 				continue;
3457 
3458 			if (skb->priority > cur_prio) {
3459 				num = 0;
3460 				min = ~0;
3461 				cur_prio = skb->priority;
3462 			}
3463 
3464 			num++;
3465 
3466 			if (conn->sent < min) {
3467 				min  = conn->sent;
3468 				chan = tmp;
3469 			}
3470 		}
3471 
3472 		if (hci_conn_num(hdev, type) == conn_num)
3473 			break;
3474 	}
3475 
3476 	rcu_read_unlock();
3477 
3478 	if (!chan)
3479 		return NULL;
3480 
3481 	hci_quote_sent(chan->conn, num, quote);
3482 
3483 	BT_DBG("chan %p quote %d", chan, *quote);
3484 	return chan;
3485 }
3486 
3487 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3488 {
3489 	struct hci_conn_hash *h = &hdev->conn_hash;
3490 	struct hci_conn *conn;
3491 	int num = 0;
3492 
3493 	BT_DBG("%s", hdev->name);
3494 
3495 	rcu_read_lock();
3496 
3497 	list_for_each_entry_rcu(conn, &h->list, list) {
3498 		struct hci_chan *chan;
3499 
3500 		if (conn->type != type)
3501 			continue;
3502 
3503 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3504 			continue;
3505 
3506 		num++;
3507 
3508 		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3509 			struct sk_buff *skb;
3510 
3511 			if (chan->sent) {
3512 				chan->sent = 0;
3513 				continue;
3514 			}
3515 
3516 			if (skb_queue_empty(&chan->data_q))
3517 				continue;
3518 
3519 			skb = skb_peek(&chan->data_q);
3520 			if (skb->priority >= HCI_PRIO_MAX - 1)
3521 				continue;
3522 
3523 			skb->priority = HCI_PRIO_MAX - 1;
3524 
3525 			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3526 			       skb->priority);
3527 		}
3528 
3529 		if (hci_conn_num(hdev, type) == num)
3530 			break;
3531 	}
3532 
3533 	rcu_read_unlock();
3534 
3535 }
3536 
3537 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3538 {
3539 	/* Calculate count of blocks used by this packet */
3540 	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3541 }
3542 
3543 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
3544 {
3545 	unsigned long last_tx;
3546 
3547 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3548 		return;
3549 
3550 	switch (type) {
3551 	case LE_LINK:
3552 		last_tx = hdev->le_last_tx;
3553 		break;
3554 	default:
3555 		last_tx = hdev->acl_last_tx;
3556 		break;
3557 	}
3558 
3559 	/* tx timeout must be longer than maximum link supervision timeout
3560 	 * (40.9 seconds)
3561 	 */
3562 	if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
3563 		hci_link_tx_to(hdev, type);
3564 }
3565 
3566 /* Schedule SCO */
3567 static void hci_sched_sco(struct hci_dev *hdev)
3568 {
3569 	struct hci_conn *conn;
3570 	struct sk_buff *skb;
3571 	int quote;
3572 
3573 	BT_DBG("%s", hdev->name);
3574 
3575 	if (!hci_conn_num(hdev, SCO_LINK))
3576 		return;
3577 
3578 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3579 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3580 			BT_DBG("skb %p len %d", skb, skb->len);
3581 			hci_send_frame(hdev, skb);
3582 
3583 			conn->sent++;
3584 			if (conn->sent == ~0)
3585 				conn->sent = 0;
3586 		}
3587 	}
3588 }
3589 
3590 static void hci_sched_esco(struct hci_dev *hdev)
3591 {
3592 	struct hci_conn *conn;
3593 	struct sk_buff *skb;
3594 	int quote;
3595 
3596 	BT_DBG("%s", hdev->name);
3597 
3598 	if (!hci_conn_num(hdev, ESCO_LINK))
3599 		return;
3600 
3601 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3602 						     &quote))) {
3603 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3604 			BT_DBG("skb %p len %d", skb, skb->len);
3605 			hci_send_frame(hdev, skb);
3606 
3607 			conn->sent++;
3608 			if (conn->sent == ~0)
3609 				conn->sent = 0;
3610 		}
3611 	}
3612 }
3613 
3614 static void hci_sched_acl_pkt(struct hci_dev *hdev)
3615 {
3616 	unsigned int cnt = hdev->acl_cnt;
3617 	struct hci_chan *chan;
3618 	struct sk_buff *skb;
3619 	int quote;
3620 
3621 	__check_timeout(hdev, cnt, ACL_LINK);
3622 
3623 	while (hdev->acl_cnt &&
3624 	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3625 		u32 priority = (skb_peek(&chan->data_q))->priority;
3626 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3627 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3628 			       skb->len, skb->priority);
3629 
3630 			/* Stop if priority has changed */
3631 			if (skb->priority < priority)
3632 				break;
3633 
3634 			skb = skb_dequeue(&chan->data_q);
3635 
3636 			hci_conn_enter_active_mode(chan->conn,
3637 						   bt_cb(skb)->force_active);
3638 
3639 			hci_send_frame(hdev, skb);
3640 			hdev->acl_last_tx = jiffies;
3641 
3642 			hdev->acl_cnt--;
3643 			chan->sent++;
3644 			chan->conn->sent++;
3645 
3646 			/* Send pending SCO packets right away */
3647 			hci_sched_sco(hdev);
3648 			hci_sched_esco(hdev);
3649 		}
3650 	}
3651 
3652 	if (cnt != hdev->acl_cnt)
3653 		hci_prio_recalculate(hdev, ACL_LINK);
3654 }
3655 
3656 static void hci_sched_acl_blk(struct hci_dev *hdev)
3657 {
3658 	unsigned int cnt = hdev->block_cnt;
3659 	struct hci_chan *chan;
3660 	struct sk_buff *skb;
3661 	int quote;
3662 	u8 type;
3663 
3664 	BT_DBG("%s", hdev->name);
3665 
3666 	if (hdev->dev_type == HCI_AMP)
3667 		type = AMP_LINK;
3668 	else
3669 		type = ACL_LINK;
3670 
3671 	__check_timeout(hdev, cnt, type);
3672 
3673 	while (hdev->block_cnt > 0 &&
3674 	       (chan = hci_chan_sent(hdev, type, &quote))) {
3675 		u32 priority = (skb_peek(&chan->data_q))->priority;
3676 		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3677 			int blocks;
3678 
3679 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3680 			       skb->len, skb->priority);
3681 
3682 			/* Stop if priority has changed */
3683 			if (skb->priority < priority)
3684 				break;
3685 
3686 			skb = skb_dequeue(&chan->data_q);
3687 
3688 			blocks = __get_blocks(hdev, skb);
3689 			if (blocks > hdev->block_cnt)
3690 				return;
3691 
3692 			hci_conn_enter_active_mode(chan->conn,
3693 						   bt_cb(skb)->force_active);
3694 
3695 			hci_send_frame(hdev, skb);
3696 			hdev->acl_last_tx = jiffies;
3697 
3698 			hdev->block_cnt -= blocks;
3699 			quote -= blocks;
3700 
3701 			chan->sent += blocks;
3702 			chan->conn->sent += blocks;
3703 		}
3704 	}
3705 
3706 	if (cnt != hdev->block_cnt)
3707 		hci_prio_recalculate(hdev, type);
3708 }
3709 
3710 static void hci_sched_acl(struct hci_dev *hdev)
3711 {
3712 	BT_DBG("%s", hdev->name);
3713 
3714 	/* No ACL link over BR/EDR controller */
3715 	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3716 		return;
3717 
3718 	/* No AMP link over AMP controller */
3719 	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3720 		return;
3721 
3722 	switch (hdev->flow_ctl_mode) {
3723 	case HCI_FLOW_CTL_MODE_PACKET_BASED:
3724 		hci_sched_acl_pkt(hdev);
3725 		break;
3726 
3727 	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3728 		hci_sched_acl_blk(hdev);
3729 		break;
3730 	}
3731 }
3732 
3733 static void hci_sched_le(struct hci_dev *hdev)
3734 {
3735 	struct hci_chan *chan;
3736 	struct sk_buff *skb;
3737 	int quote, cnt, tmp;
3738 
3739 	BT_DBG("%s", hdev->name);
3740 
3741 	if (!hci_conn_num(hdev, LE_LINK))
3742 		return;
3743 
3744 	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3745 
3746 	__check_timeout(hdev, cnt, LE_LINK);
3747 
3748 	tmp = cnt;
3749 	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3750 		u32 priority = (skb_peek(&chan->data_q))->priority;
3751 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3752 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3753 			       skb->len, skb->priority);
3754 
3755 			/* Stop if priority has changed */
3756 			if (skb->priority < priority)
3757 				break;
3758 
3759 			skb = skb_dequeue(&chan->data_q);
3760 
3761 			hci_send_frame(hdev, skb);
3762 			hdev->le_last_tx = jiffies;
3763 
3764 			cnt--;
3765 			chan->sent++;
3766 			chan->conn->sent++;
3767 
3768 			/* Send pending SCO packets right away */
3769 			hci_sched_sco(hdev);
3770 			hci_sched_esco(hdev);
3771 		}
3772 	}
3773 
3774 	if (hdev->le_pkts)
3775 		hdev->le_cnt = cnt;
3776 	else
3777 		hdev->acl_cnt = cnt;
3778 
3779 	if (cnt != tmp)
3780 		hci_prio_recalculate(hdev, LE_LINK);
3781 }
3782 
3783 /* Schedule CIS */
3784 static void hci_sched_iso(struct hci_dev *hdev)
3785 {
3786 	struct hci_conn *conn;
3787 	struct sk_buff *skb;
3788 	int quote, *cnt;
3789 
3790 	BT_DBG("%s", hdev->name);
3791 
3792 	if (!hci_conn_num(hdev, ISO_LINK))
3793 		return;
3794 
3795 	cnt = hdev->iso_pkts ? &hdev->iso_cnt :
3796 		hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3797 	while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, &quote))) {
3798 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3799 			BT_DBG("skb %p len %d", skb, skb->len);
3800 			hci_send_frame(hdev, skb);
3801 
3802 			conn->sent++;
3803 			if (conn->sent == ~0)
3804 				conn->sent = 0;
3805 			(*cnt)--;
3806 		}
3807 	}
3808 }
3809 
3810 static void hci_tx_work(struct work_struct *work)
3811 {
3812 	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3813 	struct sk_buff *skb;
3814 
3815 	BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt,
3816 	       hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt);
3817 
3818 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3819 		/* Schedule queues and send stuff to HCI driver */
3820 		hci_sched_sco(hdev);
3821 		hci_sched_esco(hdev);
3822 		hci_sched_iso(hdev);
3823 		hci_sched_acl(hdev);
3824 		hci_sched_le(hdev);
3825 	}
3826 
3827 	/* Send next queued raw (unknown type) packet */
3828 	while ((skb = skb_dequeue(&hdev->raw_q)))
3829 		hci_send_frame(hdev, skb);
3830 }
3831 
3832 /* ----- HCI RX task (incoming data processing) ----- */
3833 
3834 /* ACL data packet */
3835 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3836 {
3837 	struct hci_acl_hdr *hdr = (void *) skb->data;
3838 	struct hci_conn *conn;
3839 	__u16 handle, flags;
3840 
3841 	skb_pull(skb, HCI_ACL_HDR_SIZE);
3842 
3843 	handle = __le16_to_cpu(hdr->handle);
3844 	flags  = hci_flags(handle);
3845 	handle = hci_handle(handle);
3846 
3847 	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3848 	       handle, flags);
3849 
3850 	hdev->stat.acl_rx++;
3851 
3852 	hci_dev_lock(hdev);
3853 	conn = hci_conn_hash_lookup_handle(hdev, handle);
3854 	hci_dev_unlock(hdev);
3855 
3856 	if (conn) {
3857 		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3858 
3859 		/* Send to upper protocol */
3860 		l2cap_recv_acldata(conn, skb, flags);
3861 		return;
3862 	} else {
3863 		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
3864 			   handle);
3865 	}
3866 
3867 	kfree_skb(skb);
3868 }
3869 
3870 /* SCO data packet */
3871 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3872 {
3873 	struct hci_sco_hdr *hdr = (void *) skb->data;
3874 	struct hci_conn *conn;
3875 	__u16 handle, flags;
3876 
3877 	skb_pull(skb, HCI_SCO_HDR_SIZE);
3878 
3879 	handle = __le16_to_cpu(hdr->handle);
3880 	flags  = hci_flags(handle);
3881 	handle = hci_handle(handle);
3882 
3883 	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3884 	       handle, flags);
3885 
3886 	hdev->stat.sco_rx++;
3887 
3888 	hci_dev_lock(hdev);
3889 	conn = hci_conn_hash_lookup_handle(hdev, handle);
3890 	hci_dev_unlock(hdev);
3891 
3892 	if (conn) {
3893 		/* Send to upper protocol */
3894 		bt_cb(skb)->sco.pkt_status = flags & 0x03;
3895 		sco_recv_scodata(conn, skb);
3896 		return;
3897 	} else {
3898 		bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d",
3899 				       handle);
3900 	}
3901 
3902 	kfree_skb(skb);
3903 }
3904 
3905 static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3906 {
3907 	struct hci_iso_hdr *hdr;
3908 	struct hci_conn *conn;
3909 	__u16 handle, flags;
3910 
3911 	hdr = skb_pull_data(skb, sizeof(*hdr));
3912 	if (!hdr) {
3913 		bt_dev_err(hdev, "ISO packet too small");
3914 		goto drop;
3915 	}
3916 
3917 	handle = __le16_to_cpu(hdr->handle);
3918 	flags  = hci_flags(handle);
3919 	handle = hci_handle(handle);
3920 
3921 	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3922 		   handle, flags);
3923 
3924 	hci_dev_lock(hdev);
3925 	conn = hci_conn_hash_lookup_handle(hdev, handle);
3926 	hci_dev_unlock(hdev);
3927 
3928 	if (!conn) {
3929 		bt_dev_err(hdev, "ISO packet for unknown connection handle %d",
3930 			   handle);
3931 		goto drop;
3932 	}
3933 
3934 	/* Send to upper protocol */
3935 	iso_recv(conn, skb, flags);
3936 	return;
3937 
3938 drop:
3939 	kfree_skb(skb);
3940 }
3941 
3942 static bool hci_req_is_complete(struct hci_dev *hdev)
3943 {
3944 	struct sk_buff *skb;
3945 
3946 	skb = skb_peek(&hdev->cmd_q);
3947 	if (!skb)
3948 		return true;
3949 
3950 	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
3951 }
3952 
3953 static void hci_resend_last(struct hci_dev *hdev)
3954 {
3955 	struct hci_command_hdr *sent;
3956 	struct sk_buff *skb;
3957 	u16 opcode;
3958 
3959 	if (!hdev->sent_cmd)
3960 		return;
3961 
3962 	sent = (void *) hdev->sent_cmd->data;
3963 	opcode = __le16_to_cpu(sent->opcode);
3964 	if (opcode == HCI_OP_RESET)
3965 		return;
3966 
3967 	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3968 	if (!skb)
3969 		return;
3970 
3971 	skb_queue_head(&hdev->cmd_q, skb);
3972 	queue_work(hdev->workqueue, &hdev->cmd_work);
3973 }
3974 
3975 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
3976 			  hci_req_complete_t *req_complete,
3977 			  hci_req_complete_skb_t *req_complete_skb)
3978 {
3979 	struct sk_buff *skb;
3980 	unsigned long flags;
3981 
3982 	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3983 
3984 	/* If the completed command doesn't match the last one that was
3985 	 * sent we need to do special handling of it.
3986 	 */
3987 	if (!hci_sent_cmd_data(hdev, opcode)) {
3988 		/* Some CSR based controllers generate a spontaneous
3989 		 * reset complete event during init and any pending
3990 		 * command will never be completed. In such a case we
3991 		 * need to resend whatever was the last sent
3992 		 * command.
3993 		 */
3994 		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
3995 			hci_resend_last(hdev);
3996 
3997 		return;
3998 	}
3999 
4000 	/* If we reach this point this event matches the last command sent */
4001 	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4002 
4003 	/* If the command succeeded and there's still more commands in
4004 	 * this request the request is not yet complete.
4005 	 */
4006 	if (!status && !hci_req_is_complete(hdev))
4007 		return;
4008 
4009 	/* If this was the last command in a request the complete
4010 	 * callback would be found in hdev->sent_cmd instead of the
4011 	 * command queue (hdev->cmd_q).
4012 	 */
4013 	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4014 		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4015 		return;
4016 	}
4017 
4018 	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4019 		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4020 		return;
4021 	}
4022 
4023 	/* Remove all pending commands belonging to this request */
4024 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4025 	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4026 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4027 			__skb_queue_head(&hdev->cmd_q, skb);
4028 			break;
4029 		}
4030 
4031 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4032 			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4033 		else
4034 			*req_complete = bt_cb(skb)->hci.req_complete;
4035 		dev_kfree_skb_irq(skb);
4036 	}
4037 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4038 }
4039 
4040 static void hci_rx_work(struct work_struct *work)
4041 {
4042 	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4043 	struct sk_buff *skb;
4044 
4045 	BT_DBG("%s", hdev->name);
4046 
4047 	/* The kcov_remote functions used for collecting packet parsing
4048 	 * coverage information from this background thread and associate
4049 	 * the coverage with the syscall's thread which originally injected
4050 	 * the packet. This helps fuzzing the kernel.
4051 	 */
4052 	for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) {
4053 		kcov_remote_start_common(skb_get_kcov_handle(skb));
4054 
4055 		/* Send copy to monitor */
4056 		hci_send_to_monitor(hdev, skb);
4057 
4058 		if (atomic_read(&hdev->promisc)) {
4059 			/* Send copy to the sockets */
4060 			hci_send_to_sock(hdev, skb);
4061 		}
4062 
4063 		/* If the device has been opened in HCI_USER_CHANNEL,
4064 		 * the userspace has exclusive access to device.
4065 		 * When device is HCI_INIT, we still need to process
4066 		 * the data packets to the driver in order
4067 		 * to complete its setup().
4068 		 */
4069 		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4070 		    !test_bit(HCI_INIT, &hdev->flags)) {
4071 			kfree_skb(skb);
4072 			continue;
4073 		}
4074 
4075 		if (test_bit(HCI_INIT, &hdev->flags)) {
4076 			/* Don't process data packets in this states. */
4077 			switch (hci_skb_pkt_type(skb)) {
4078 			case HCI_ACLDATA_PKT:
4079 			case HCI_SCODATA_PKT:
4080 			case HCI_ISODATA_PKT:
4081 				kfree_skb(skb);
4082 				continue;
4083 			}
4084 		}
4085 
4086 		/* Process frame */
4087 		switch (hci_skb_pkt_type(skb)) {
4088 		case HCI_EVENT_PKT:
4089 			BT_DBG("%s Event packet", hdev->name);
4090 			hci_event_packet(hdev, skb);
4091 			break;
4092 
4093 		case HCI_ACLDATA_PKT:
4094 			BT_DBG("%s ACL data packet", hdev->name);
4095 			hci_acldata_packet(hdev, skb);
4096 			break;
4097 
4098 		case HCI_SCODATA_PKT:
4099 			BT_DBG("%s SCO data packet", hdev->name);
4100 			hci_scodata_packet(hdev, skb);
4101 			break;
4102 
4103 		case HCI_ISODATA_PKT:
4104 			BT_DBG("%s ISO data packet", hdev->name);
4105 			hci_isodata_packet(hdev, skb);
4106 			break;
4107 
4108 		default:
4109 			kfree_skb(skb);
4110 			break;
4111 		}
4112 	}
4113 }
4114 
4115 static void hci_cmd_work(struct work_struct *work)
4116 {
4117 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4118 	struct sk_buff *skb;
4119 
4120 	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4121 	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4122 
4123 	/* Send queued commands */
4124 	if (atomic_read(&hdev->cmd_cnt)) {
4125 		skb = skb_dequeue(&hdev->cmd_q);
4126 		if (!skb)
4127 			return;
4128 
4129 		kfree_skb(hdev->sent_cmd);
4130 
4131 		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4132 		if (hdev->sent_cmd) {
4133 			int res;
4134 			if (hci_req_status_pend(hdev))
4135 				hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4136 			atomic_dec(&hdev->cmd_cnt);
4137 
4138 			res = hci_send_frame(hdev, skb);
4139 			if (res < 0)
4140 				__hci_cmd_sync_cancel(hdev, -res);
4141 
4142 			rcu_read_lock();
4143 			if (test_bit(HCI_RESET, &hdev->flags) ||
4144 			    hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
4145 				cancel_delayed_work(&hdev->cmd_timer);
4146 			else
4147 				queue_delayed_work(hdev->workqueue, &hdev->cmd_timer,
4148 						   HCI_CMD_TIMEOUT);
4149 			rcu_read_unlock();
4150 		} else {
4151 			skb_queue_head(&hdev->cmd_q, skb);
4152 			queue_work(hdev->workqueue, &hdev->cmd_work);
4153 		}
4154 	}
4155 }
4156