1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (C) 2000-2001 Qualcomm Incorporated 4 Copyright (C) 2011 ProFUSION Embedded Systems 5 6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License version 2 as 10 published by the Free Software Foundation; 11 12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 23 SOFTWARE IS DISCLAIMED. 24 */ 25 26 /* Bluetooth HCI core. */ 27 28 #include <linux/export.h> 29 #include <linux/idr.h> 30 #include <linux/rfkill.h> 31 #include <linux/debugfs.h> 32 #include <linux/crypto.h> 33 #include <asm/unaligned.h> 34 35 #include <net/bluetooth/bluetooth.h> 36 #include <net/bluetooth/hci_core.h> 37 #include <net/bluetooth/l2cap.h> 38 #include <net/bluetooth/mgmt.h> 39 40 #include "smp.h" 41 42 static void hci_rx_work(struct work_struct *work); 43 static void hci_cmd_work(struct work_struct *work); 44 static void hci_tx_work(struct work_struct *work); 45 46 /* HCI device list */ 47 LIST_HEAD(hci_dev_list); 48 DEFINE_RWLOCK(hci_dev_list_lock); 49 50 /* HCI callback list */ 51 LIST_HEAD(hci_cb_list); 52 DEFINE_RWLOCK(hci_cb_list_lock); 53 54 /* HCI ID Numbering */ 55 static DEFINE_IDA(hci_index_ida); 56 57 /* ----- HCI requests ----- */ 58 59 #define HCI_REQ_DONE 0 60 #define HCI_REQ_PEND 1 61 #define HCI_REQ_CANCELED 2 62 63 #define hci_req_lock(d) mutex_lock(&d->req_lock) 64 #define hci_req_unlock(d) mutex_unlock(&d->req_lock) 65 66 /* ---- HCI notifications ---- */ 67 68 static void hci_notify(struct hci_dev *hdev, int event) 69 { 70 hci_sock_dev_event(hdev, event); 71 } 72 73 /* ---- HCI debugfs entries ---- */ 74 75 static ssize_t dut_mode_read(struct file *file, char __user *user_buf, 76 size_t count, loff_t *ppos) 77 { 78 struct hci_dev *hdev = file->private_data; 79 char buf[3]; 80 81 buf[0] = test_bit(HCI_DUT_MODE, &hdev->dbg_flags) ? 'Y': 'N'; 82 buf[1] = '\n'; 83 buf[2] = '\0'; 84 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 85 } 86 87 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf, 88 size_t count, loff_t *ppos) 89 { 90 struct hci_dev *hdev = file->private_data; 91 struct sk_buff *skb; 92 char buf[32]; 93 size_t buf_size = min(count, (sizeof(buf)-1)); 94 bool enable; 95 int err; 96 97 if (!test_bit(HCI_UP, &hdev->flags)) 98 return -ENETDOWN; 99 100 if (copy_from_user(buf, user_buf, buf_size)) 101 return -EFAULT; 102 103 buf[buf_size] = '\0'; 104 if (strtobool(buf, &enable)) 105 return -EINVAL; 106 107 if (enable == test_bit(HCI_DUT_MODE, &hdev->dbg_flags)) 108 return -EALREADY; 109 110 hci_req_lock(hdev); 111 if (enable) 112 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL, 113 HCI_CMD_TIMEOUT); 114 else 115 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, 116 HCI_CMD_TIMEOUT); 117 hci_req_unlock(hdev); 118 119 if (IS_ERR(skb)) 120 return PTR_ERR(skb); 121 122 err = -bt_to_errno(skb->data[0]); 123 kfree_skb(skb); 124 125 if (err < 0) 126 return err; 127 128 change_bit(HCI_DUT_MODE, &hdev->dbg_flags); 129 130 return count; 131 } 132 133 static const struct file_operations dut_mode_fops = { 134 .open = simple_open, 135 .read = dut_mode_read, 136 .write = dut_mode_write, 137 .llseek = default_llseek, 138 }; 139 140 static int features_show(struct seq_file *f, void *ptr) 141 { 142 struct hci_dev *hdev = f->private; 143 u8 p; 144 145 hci_dev_lock(hdev); 146 for (p = 0; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) { 147 seq_printf(f, "%2u: 0x%2.2x 0x%2.2x 0x%2.2x 0x%2.2x " 148 "0x%2.2x 0x%2.2x 0x%2.2x 0x%2.2x\n", p, 149 hdev->features[p][0], hdev->features[p][1], 150 hdev->features[p][2], hdev->features[p][3], 151 hdev->features[p][4], hdev->features[p][5], 152 hdev->features[p][6], hdev->features[p][7]); 153 } 154 if (lmp_le_capable(hdev)) 155 seq_printf(f, "LE: 0x%2.2x 0x%2.2x 0x%2.2x 0x%2.2x " 156 "0x%2.2x 0x%2.2x 0x%2.2x 0x%2.2x\n", 157 hdev->le_features[0], hdev->le_features[1], 158 hdev->le_features[2], hdev->le_features[3], 159 hdev->le_features[4], hdev->le_features[5], 160 hdev->le_features[6], hdev->le_features[7]); 161 hci_dev_unlock(hdev); 162 163 return 0; 164 } 165 166 static int features_open(struct inode *inode, struct file *file) 167 { 168 return single_open(file, features_show, inode->i_private); 169 } 170 171 static const struct file_operations features_fops = { 172 .open = features_open, 173 .read = seq_read, 174 .llseek = seq_lseek, 175 .release = single_release, 176 }; 177 178 static int blacklist_show(struct seq_file *f, void *p) 179 { 180 struct hci_dev *hdev = f->private; 181 struct bdaddr_list *b; 182 183 hci_dev_lock(hdev); 184 list_for_each_entry(b, &hdev->blacklist, list) 185 seq_printf(f, "%pMR (type %u)\n", &b->bdaddr, b->bdaddr_type); 186 hci_dev_unlock(hdev); 187 188 return 0; 189 } 190 191 static int blacklist_open(struct inode *inode, struct file *file) 192 { 193 return single_open(file, blacklist_show, inode->i_private); 194 } 195 196 static const struct file_operations blacklist_fops = { 197 .open = blacklist_open, 198 .read = seq_read, 199 .llseek = seq_lseek, 200 .release = single_release, 201 }; 202 203 static int whitelist_show(struct seq_file *f, void *p) 204 { 205 struct hci_dev *hdev = f->private; 206 struct bdaddr_list *b; 207 208 hci_dev_lock(hdev); 209 list_for_each_entry(b, &hdev->whitelist, list) 210 seq_printf(f, "%pMR (type %u)\n", &b->bdaddr, b->bdaddr_type); 211 hci_dev_unlock(hdev); 212 213 return 0; 214 } 215 216 static int whitelist_open(struct inode *inode, struct file *file) 217 { 218 return single_open(file, whitelist_show, inode->i_private); 219 } 220 221 static const struct file_operations whitelist_fops = { 222 .open = whitelist_open, 223 .read = seq_read, 224 .llseek = seq_lseek, 225 .release = single_release, 226 }; 227 228 static int uuids_show(struct seq_file *f, void *p) 229 { 230 struct hci_dev *hdev = f->private; 231 struct bt_uuid *uuid; 232 233 hci_dev_lock(hdev); 234 list_for_each_entry(uuid, &hdev->uuids, list) { 235 u8 i, val[16]; 236 237 /* The Bluetooth UUID values are stored in big endian, 238 * but with reversed byte order. So convert them into 239 * the right order for the %pUb modifier. 240 */ 241 for (i = 0; i < 16; i++) 242 val[i] = uuid->uuid[15 - i]; 243 244 seq_printf(f, "%pUb\n", val); 245 } 246 hci_dev_unlock(hdev); 247 248 return 0; 249 } 250 251 static int uuids_open(struct inode *inode, struct file *file) 252 { 253 return single_open(file, uuids_show, inode->i_private); 254 } 255 256 static const struct file_operations uuids_fops = { 257 .open = uuids_open, 258 .read = seq_read, 259 .llseek = seq_lseek, 260 .release = single_release, 261 }; 262 263 static int inquiry_cache_show(struct seq_file *f, void *p) 264 { 265 struct hci_dev *hdev = f->private; 266 struct discovery_state *cache = &hdev->discovery; 267 struct inquiry_entry *e; 268 269 hci_dev_lock(hdev); 270 271 list_for_each_entry(e, &cache->all, all) { 272 struct inquiry_data *data = &e->data; 273 seq_printf(f, "%pMR %d %d %d 0x%.2x%.2x%.2x 0x%.4x %d %d %u\n", 274 &data->bdaddr, 275 data->pscan_rep_mode, data->pscan_period_mode, 276 data->pscan_mode, data->dev_class[2], 277 data->dev_class[1], data->dev_class[0], 278 __le16_to_cpu(data->clock_offset), 279 data->rssi, data->ssp_mode, e->timestamp); 280 } 281 282 hci_dev_unlock(hdev); 283 284 return 0; 285 } 286 287 static int inquiry_cache_open(struct inode *inode, struct file *file) 288 { 289 return single_open(file, inquiry_cache_show, inode->i_private); 290 } 291 292 static const struct file_operations inquiry_cache_fops = { 293 .open = inquiry_cache_open, 294 .read = seq_read, 295 .llseek = seq_lseek, 296 .release = single_release, 297 }; 298 299 static int link_keys_show(struct seq_file *f, void *ptr) 300 { 301 struct hci_dev *hdev = f->private; 302 struct list_head *p, *n; 303 304 hci_dev_lock(hdev); 305 list_for_each_safe(p, n, &hdev->link_keys) { 306 struct link_key *key = list_entry(p, struct link_key, list); 307 seq_printf(f, "%pMR %u %*phN %u\n", &key->bdaddr, key->type, 308 HCI_LINK_KEY_SIZE, key->val, key->pin_len); 309 } 310 hci_dev_unlock(hdev); 311 312 return 0; 313 } 314 315 static int link_keys_open(struct inode *inode, struct file *file) 316 { 317 return single_open(file, link_keys_show, inode->i_private); 318 } 319 320 static const struct file_operations link_keys_fops = { 321 .open = link_keys_open, 322 .read = seq_read, 323 .llseek = seq_lseek, 324 .release = single_release, 325 }; 326 327 static int dev_class_show(struct seq_file *f, void *ptr) 328 { 329 struct hci_dev *hdev = f->private; 330 331 hci_dev_lock(hdev); 332 seq_printf(f, "0x%.2x%.2x%.2x\n", hdev->dev_class[2], 333 hdev->dev_class[1], hdev->dev_class[0]); 334 hci_dev_unlock(hdev); 335 336 return 0; 337 } 338 339 static int dev_class_open(struct inode *inode, struct file *file) 340 { 341 return single_open(file, dev_class_show, inode->i_private); 342 } 343 344 static const struct file_operations dev_class_fops = { 345 .open = dev_class_open, 346 .read = seq_read, 347 .llseek = seq_lseek, 348 .release = single_release, 349 }; 350 351 static int voice_setting_get(void *data, u64 *val) 352 { 353 struct hci_dev *hdev = data; 354 355 hci_dev_lock(hdev); 356 *val = hdev->voice_setting; 357 hci_dev_unlock(hdev); 358 359 return 0; 360 } 361 362 DEFINE_SIMPLE_ATTRIBUTE(voice_setting_fops, voice_setting_get, 363 NULL, "0x%4.4llx\n"); 364 365 static int auto_accept_delay_set(void *data, u64 val) 366 { 367 struct hci_dev *hdev = data; 368 369 hci_dev_lock(hdev); 370 hdev->auto_accept_delay = val; 371 hci_dev_unlock(hdev); 372 373 return 0; 374 } 375 376 static int auto_accept_delay_get(void *data, u64 *val) 377 { 378 struct hci_dev *hdev = data; 379 380 hci_dev_lock(hdev); 381 *val = hdev->auto_accept_delay; 382 hci_dev_unlock(hdev); 383 384 return 0; 385 } 386 387 DEFINE_SIMPLE_ATTRIBUTE(auto_accept_delay_fops, auto_accept_delay_get, 388 auto_accept_delay_set, "%llu\n"); 389 390 static ssize_t force_sc_support_read(struct file *file, char __user *user_buf, 391 size_t count, loff_t *ppos) 392 { 393 struct hci_dev *hdev = file->private_data; 394 char buf[3]; 395 396 buf[0] = test_bit(HCI_FORCE_SC, &hdev->dbg_flags) ? 'Y': 'N'; 397 buf[1] = '\n'; 398 buf[2] = '\0'; 399 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 400 } 401 402 static ssize_t force_sc_support_write(struct file *file, 403 const char __user *user_buf, 404 size_t count, loff_t *ppos) 405 { 406 struct hci_dev *hdev = file->private_data; 407 char buf[32]; 408 size_t buf_size = min(count, (sizeof(buf)-1)); 409 bool enable; 410 411 if (test_bit(HCI_UP, &hdev->flags)) 412 return -EBUSY; 413 414 if (copy_from_user(buf, user_buf, buf_size)) 415 return -EFAULT; 416 417 buf[buf_size] = '\0'; 418 if (strtobool(buf, &enable)) 419 return -EINVAL; 420 421 if (enable == test_bit(HCI_FORCE_SC, &hdev->dbg_flags)) 422 return -EALREADY; 423 424 change_bit(HCI_FORCE_SC, &hdev->dbg_flags); 425 426 return count; 427 } 428 429 static const struct file_operations force_sc_support_fops = { 430 .open = simple_open, 431 .read = force_sc_support_read, 432 .write = force_sc_support_write, 433 .llseek = default_llseek, 434 }; 435 436 static ssize_t sc_only_mode_read(struct file *file, char __user *user_buf, 437 size_t count, loff_t *ppos) 438 { 439 struct hci_dev *hdev = file->private_data; 440 char buf[3]; 441 442 buf[0] = test_bit(HCI_SC_ONLY, &hdev->dev_flags) ? 'Y': 'N'; 443 buf[1] = '\n'; 444 buf[2] = '\0'; 445 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 446 } 447 448 static const struct file_operations sc_only_mode_fops = { 449 .open = simple_open, 450 .read = sc_only_mode_read, 451 .llseek = default_llseek, 452 }; 453 454 static int idle_timeout_set(void *data, u64 val) 455 { 456 struct hci_dev *hdev = data; 457 458 if (val != 0 && (val < 500 || val > 3600000)) 459 return -EINVAL; 460 461 hci_dev_lock(hdev); 462 hdev->idle_timeout = val; 463 hci_dev_unlock(hdev); 464 465 return 0; 466 } 467 468 static int idle_timeout_get(void *data, u64 *val) 469 { 470 struct hci_dev *hdev = data; 471 472 hci_dev_lock(hdev); 473 *val = hdev->idle_timeout; 474 hci_dev_unlock(hdev); 475 476 return 0; 477 } 478 479 DEFINE_SIMPLE_ATTRIBUTE(idle_timeout_fops, idle_timeout_get, 480 idle_timeout_set, "%llu\n"); 481 482 static int rpa_timeout_set(void *data, u64 val) 483 { 484 struct hci_dev *hdev = data; 485 486 /* Require the RPA timeout to be at least 30 seconds and at most 487 * 24 hours. 488 */ 489 if (val < 30 || val > (60 * 60 * 24)) 490 return -EINVAL; 491 492 hci_dev_lock(hdev); 493 hdev->rpa_timeout = val; 494 hci_dev_unlock(hdev); 495 496 return 0; 497 } 498 499 static int rpa_timeout_get(void *data, u64 *val) 500 { 501 struct hci_dev *hdev = data; 502 503 hci_dev_lock(hdev); 504 *val = hdev->rpa_timeout; 505 hci_dev_unlock(hdev); 506 507 return 0; 508 } 509 510 DEFINE_SIMPLE_ATTRIBUTE(rpa_timeout_fops, rpa_timeout_get, 511 rpa_timeout_set, "%llu\n"); 512 513 static int sniff_min_interval_set(void *data, u64 val) 514 { 515 struct hci_dev *hdev = data; 516 517 if (val == 0 || val % 2 || val > hdev->sniff_max_interval) 518 return -EINVAL; 519 520 hci_dev_lock(hdev); 521 hdev->sniff_min_interval = val; 522 hci_dev_unlock(hdev); 523 524 return 0; 525 } 526 527 static int sniff_min_interval_get(void *data, u64 *val) 528 { 529 struct hci_dev *hdev = data; 530 531 hci_dev_lock(hdev); 532 *val = hdev->sniff_min_interval; 533 hci_dev_unlock(hdev); 534 535 return 0; 536 } 537 538 DEFINE_SIMPLE_ATTRIBUTE(sniff_min_interval_fops, sniff_min_interval_get, 539 sniff_min_interval_set, "%llu\n"); 540 541 static int sniff_max_interval_set(void *data, u64 val) 542 { 543 struct hci_dev *hdev = data; 544 545 if (val == 0 || val % 2 || val < hdev->sniff_min_interval) 546 return -EINVAL; 547 548 hci_dev_lock(hdev); 549 hdev->sniff_max_interval = val; 550 hci_dev_unlock(hdev); 551 552 return 0; 553 } 554 555 static int sniff_max_interval_get(void *data, u64 *val) 556 { 557 struct hci_dev *hdev = data; 558 559 hci_dev_lock(hdev); 560 *val = hdev->sniff_max_interval; 561 hci_dev_unlock(hdev); 562 563 return 0; 564 } 565 566 DEFINE_SIMPLE_ATTRIBUTE(sniff_max_interval_fops, sniff_max_interval_get, 567 sniff_max_interval_set, "%llu\n"); 568 569 static int conn_info_min_age_set(void *data, u64 val) 570 { 571 struct hci_dev *hdev = data; 572 573 if (val == 0 || val > hdev->conn_info_max_age) 574 return -EINVAL; 575 576 hci_dev_lock(hdev); 577 hdev->conn_info_min_age = val; 578 hci_dev_unlock(hdev); 579 580 return 0; 581 } 582 583 static int conn_info_min_age_get(void *data, u64 *val) 584 { 585 struct hci_dev *hdev = data; 586 587 hci_dev_lock(hdev); 588 *val = hdev->conn_info_min_age; 589 hci_dev_unlock(hdev); 590 591 return 0; 592 } 593 594 DEFINE_SIMPLE_ATTRIBUTE(conn_info_min_age_fops, conn_info_min_age_get, 595 conn_info_min_age_set, "%llu\n"); 596 597 static int conn_info_max_age_set(void *data, u64 val) 598 { 599 struct hci_dev *hdev = data; 600 601 if (val == 0 || val < hdev->conn_info_min_age) 602 return -EINVAL; 603 604 hci_dev_lock(hdev); 605 hdev->conn_info_max_age = val; 606 hci_dev_unlock(hdev); 607 608 return 0; 609 } 610 611 static int conn_info_max_age_get(void *data, u64 *val) 612 { 613 struct hci_dev *hdev = data; 614 615 hci_dev_lock(hdev); 616 *val = hdev->conn_info_max_age; 617 hci_dev_unlock(hdev); 618 619 return 0; 620 } 621 622 DEFINE_SIMPLE_ATTRIBUTE(conn_info_max_age_fops, conn_info_max_age_get, 623 conn_info_max_age_set, "%llu\n"); 624 625 static int identity_show(struct seq_file *f, void *p) 626 { 627 struct hci_dev *hdev = f->private; 628 bdaddr_t addr; 629 u8 addr_type; 630 631 hci_dev_lock(hdev); 632 633 hci_copy_identity_address(hdev, &addr, &addr_type); 634 635 seq_printf(f, "%pMR (type %u) %*phN %pMR\n", &addr, addr_type, 636 16, hdev->irk, &hdev->rpa); 637 638 hci_dev_unlock(hdev); 639 640 return 0; 641 } 642 643 static int identity_open(struct inode *inode, struct file *file) 644 { 645 return single_open(file, identity_show, inode->i_private); 646 } 647 648 static const struct file_operations identity_fops = { 649 .open = identity_open, 650 .read = seq_read, 651 .llseek = seq_lseek, 652 .release = single_release, 653 }; 654 655 static int random_address_show(struct seq_file *f, void *p) 656 { 657 struct hci_dev *hdev = f->private; 658 659 hci_dev_lock(hdev); 660 seq_printf(f, "%pMR\n", &hdev->random_addr); 661 hci_dev_unlock(hdev); 662 663 return 0; 664 } 665 666 static int random_address_open(struct inode *inode, struct file *file) 667 { 668 return single_open(file, random_address_show, inode->i_private); 669 } 670 671 static const struct file_operations random_address_fops = { 672 .open = random_address_open, 673 .read = seq_read, 674 .llseek = seq_lseek, 675 .release = single_release, 676 }; 677 678 static int static_address_show(struct seq_file *f, void *p) 679 { 680 struct hci_dev *hdev = f->private; 681 682 hci_dev_lock(hdev); 683 seq_printf(f, "%pMR\n", &hdev->static_addr); 684 hci_dev_unlock(hdev); 685 686 return 0; 687 } 688 689 static int static_address_open(struct inode *inode, struct file *file) 690 { 691 return single_open(file, static_address_show, inode->i_private); 692 } 693 694 static const struct file_operations static_address_fops = { 695 .open = static_address_open, 696 .read = seq_read, 697 .llseek = seq_lseek, 698 .release = single_release, 699 }; 700 701 static ssize_t force_static_address_read(struct file *file, 702 char __user *user_buf, 703 size_t count, loff_t *ppos) 704 { 705 struct hci_dev *hdev = file->private_data; 706 char buf[3]; 707 708 buf[0] = test_bit(HCI_FORCE_STATIC_ADDR, &hdev->dbg_flags) ? 'Y': 'N'; 709 buf[1] = '\n'; 710 buf[2] = '\0'; 711 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 712 } 713 714 static ssize_t force_static_address_write(struct file *file, 715 const char __user *user_buf, 716 size_t count, loff_t *ppos) 717 { 718 struct hci_dev *hdev = file->private_data; 719 char buf[32]; 720 size_t buf_size = min(count, (sizeof(buf)-1)); 721 bool enable; 722 723 if (test_bit(HCI_UP, &hdev->flags)) 724 return -EBUSY; 725 726 if (copy_from_user(buf, user_buf, buf_size)) 727 return -EFAULT; 728 729 buf[buf_size] = '\0'; 730 if (strtobool(buf, &enable)) 731 return -EINVAL; 732 733 if (enable == test_bit(HCI_FORCE_STATIC_ADDR, &hdev->dbg_flags)) 734 return -EALREADY; 735 736 change_bit(HCI_FORCE_STATIC_ADDR, &hdev->dbg_flags); 737 738 return count; 739 } 740 741 static const struct file_operations force_static_address_fops = { 742 .open = simple_open, 743 .read = force_static_address_read, 744 .write = force_static_address_write, 745 .llseek = default_llseek, 746 }; 747 748 static int white_list_show(struct seq_file *f, void *ptr) 749 { 750 struct hci_dev *hdev = f->private; 751 struct bdaddr_list *b; 752 753 hci_dev_lock(hdev); 754 list_for_each_entry(b, &hdev->le_white_list, list) 755 seq_printf(f, "%pMR (type %u)\n", &b->bdaddr, b->bdaddr_type); 756 hci_dev_unlock(hdev); 757 758 return 0; 759 } 760 761 static int white_list_open(struct inode *inode, struct file *file) 762 { 763 return single_open(file, white_list_show, inode->i_private); 764 } 765 766 static const struct file_operations white_list_fops = { 767 .open = white_list_open, 768 .read = seq_read, 769 .llseek = seq_lseek, 770 .release = single_release, 771 }; 772 773 static int identity_resolving_keys_show(struct seq_file *f, void *ptr) 774 { 775 struct hci_dev *hdev = f->private; 776 struct list_head *p, *n; 777 778 hci_dev_lock(hdev); 779 list_for_each_safe(p, n, &hdev->identity_resolving_keys) { 780 struct smp_irk *irk = list_entry(p, struct smp_irk, list); 781 seq_printf(f, "%pMR (type %u) %*phN %pMR\n", 782 &irk->bdaddr, irk->addr_type, 783 16, irk->val, &irk->rpa); 784 } 785 hci_dev_unlock(hdev); 786 787 return 0; 788 } 789 790 static int identity_resolving_keys_open(struct inode *inode, struct file *file) 791 { 792 return single_open(file, identity_resolving_keys_show, 793 inode->i_private); 794 } 795 796 static const struct file_operations identity_resolving_keys_fops = { 797 .open = identity_resolving_keys_open, 798 .read = seq_read, 799 .llseek = seq_lseek, 800 .release = single_release, 801 }; 802 803 static int long_term_keys_show(struct seq_file *f, void *ptr) 804 { 805 struct hci_dev *hdev = f->private; 806 struct list_head *p, *n; 807 808 hci_dev_lock(hdev); 809 list_for_each_safe(p, n, &hdev->long_term_keys) { 810 struct smp_ltk *ltk = list_entry(p, struct smp_ltk, list); 811 seq_printf(f, "%pMR (type %u) %u 0x%02x %u %.4x %.16llx %*phN\n", 812 <k->bdaddr, ltk->bdaddr_type, ltk->authenticated, 813 ltk->type, ltk->enc_size, __le16_to_cpu(ltk->ediv), 814 __le64_to_cpu(ltk->rand), 16, ltk->val); 815 } 816 hci_dev_unlock(hdev); 817 818 return 0; 819 } 820 821 static int long_term_keys_open(struct inode *inode, struct file *file) 822 { 823 return single_open(file, long_term_keys_show, inode->i_private); 824 } 825 826 static const struct file_operations long_term_keys_fops = { 827 .open = long_term_keys_open, 828 .read = seq_read, 829 .llseek = seq_lseek, 830 .release = single_release, 831 }; 832 833 static int conn_min_interval_set(void *data, u64 val) 834 { 835 struct hci_dev *hdev = data; 836 837 if (val < 0x0006 || val > 0x0c80 || val > hdev->le_conn_max_interval) 838 return -EINVAL; 839 840 hci_dev_lock(hdev); 841 hdev->le_conn_min_interval = val; 842 hci_dev_unlock(hdev); 843 844 return 0; 845 } 846 847 static int conn_min_interval_get(void *data, u64 *val) 848 { 849 struct hci_dev *hdev = data; 850 851 hci_dev_lock(hdev); 852 *val = hdev->le_conn_min_interval; 853 hci_dev_unlock(hdev); 854 855 return 0; 856 } 857 858 DEFINE_SIMPLE_ATTRIBUTE(conn_min_interval_fops, conn_min_interval_get, 859 conn_min_interval_set, "%llu\n"); 860 861 static int conn_max_interval_set(void *data, u64 val) 862 { 863 struct hci_dev *hdev = data; 864 865 if (val < 0x0006 || val > 0x0c80 || val < hdev->le_conn_min_interval) 866 return -EINVAL; 867 868 hci_dev_lock(hdev); 869 hdev->le_conn_max_interval = val; 870 hci_dev_unlock(hdev); 871 872 return 0; 873 } 874 875 static int conn_max_interval_get(void *data, u64 *val) 876 { 877 struct hci_dev *hdev = data; 878 879 hci_dev_lock(hdev); 880 *val = hdev->le_conn_max_interval; 881 hci_dev_unlock(hdev); 882 883 return 0; 884 } 885 886 DEFINE_SIMPLE_ATTRIBUTE(conn_max_interval_fops, conn_max_interval_get, 887 conn_max_interval_set, "%llu\n"); 888 889 static int conn_latency_set(void *data, u64 val) 890 { 891 struct hci_dev *hdev = data; 892 893 if (val > 0x01f3) 894 return -EINVAL; 895 896 hci_dev_lock(hdev); 897 hdev->le_conn_latency = val; 898 hci_dev_unlock(hdev); 899 900 return 0; 901 } 902 903 static int conn_latency_get(void *data, u64 *val) 904 { 905 struct hci_dev *hdev = data; 906 907 hci_dev_lock(hdev); 908 *val = hdev->le_conn_latency; 909 hci_dev_unlock(hdev); 910 911 return 0; 912 } 913 914 DEFINE_SIMPLE_ATTRIBUTE(conn_latency_fops, conn_latency_get, 915 conn_latency_set, "%llu\n"); 916 917 static int supervision_timeout_set(void *data, u64 val) 918 { 919 struct hci_dev *hdev = data; 920 921 if (val < 0x000a || val > 0x0c80) 922 return -EINVAL; 923 924 hci_dev_lock(hdev); 925 hdev->le_supv_timeout = val; 926 hci_dev_unlock(hdev); 927 928 return 0; 929 } 930 931 static int supervision_timeout_get(void *data, u64 *val) 932 { 933 struct hci_dev *hdev = data; 934 935 hci_dev_lock(hdev); 936 *val = hdev->le_supv_timeout; 937 hci_dev_unlock(hdev); 938 939 return 0; 940 } 941 942 DEFINE_SIMPLE_ATTRIBUTE(supervision_timeout_fops, supervision_timeout_get, 943 supervision_timeout_set, "%llu\n"); 944 945 static int adv_channel_map_set(void *data, u64 val) 946 { 947 struct hci_dev *hdev = data; 948 949 if (val < 0x01 || val > 0x07) 950 return -EINVAL; 951 952 hci_dev_lock(hdev); 953 hdev->le_adv_channel_map = val; 954 hci_dev_unlock(hdev); 955 956 return 0; 957 } 958 959 static int adv_channel_map_get(void *data, u64 *val) 960 { 961 struct hci_dev *hdev = data; 962 963 hci_dev_lock(hdev); 964 *val = hdev->le_adv_channel_map; 965 hci_dev_unlock(hdev); 966 967 return 0; 968 } 969 970 DEFINE_SIMPLE_ATTRIBUTE(adv_channel_map_fops, adv_channel_map_get, 971 adv_channel_map_set, "%llu\n"); 972 973 static int adv_min_interval_set(void *data, u64 val) 974 { 975 struct hci_dev *hdev = data; 976 977 if (val < 0x0020 || val > 0x4000 || val > hdev->le_adv_max_interval) 978 return -EINVAL; 979 980 hci_dev_lock(hdev); 981 hdev->le_adv_min_interval = val; 982 hci_dev_unlock(hdev); 983 984 return 0; 985 } 986 987 static int adv_min_interval_get(void *data, u64 *val) 988 { 989 struct hci_dev *hdev = data; 990 991 hci_dev_lock(hdev); 992 *val = hdev->le_adv_min_interval; 993 hci_dev_unlock(hdev); 994 995 return 0; 996 } 997 998 DEFINE_SIMPLE_ATTRIBUTE(adv_min_interval_fops, adv_min_interval_get, 999 adv_min_interval_set, "%llu\n"); 1000 1001 static int adv_max_interval_set(void *data, u64 val) 1002 { 1003 struct hci_dev *hdev = data; 1004 1005 if (val < 0x0020 || val > 0x4000 || val < hdev->le_adv_min_interval) 1006 return -EINVAL; 1007 1008 hci_dev_lock(hdev); 1009 hdev->le_adv_max_interval = val; 1010 hci_dev_unlock(hdev); 1011 1012 return 0; 1013 } 1014 1015 static int adv_max_interval_get(void *data, u64 *val) 1016 { 1017 struct hci_dev *hdev = data; 1018 1019 hci_dev_lock(hdev); 1020 *val = hdev->le_adv_max_interval; 1021 hci_dev_unlock(hdev); 1022 1023 return 0; 1024 } 1025 1026 DEFINE_SIMPLE_ATTRIBUTE(adv_max_interval_fops, adv_max_interval_get, 1027 adv_max_interval_set, "%llu\n"); 1028 1029 static int device_list_show(struct seq_file *f, void *ptr) 1030 { 1031 struct hci_dev *hdev = f->private; 1032 struct hci_conn_params *p; 1033 1034 hci_dev_lock(hdev); 1035 list_for_each_entry(p, &hdev->le_conn_params, list) { 1036 seq_printf(f, "%pMR %u %u\n", &p->addr, p->addr_type, 1037 p->auto_connect); 1038 } 1039 hci_dev_unlock(hdev); 1040 1041 return 0; 1042 } 1043 1044 static int device_list_open(struct inode *inode, struct file *file) 1045 { 1046 return single_open(file, device_list_show, inode->i_private); 1047 } 1048 1049 static const struct file_operations device_list_fops = { 1050 .open = device_list_open, 1051 .read = seq_read, 1052 .llseek = seq_lseek, 1053 .release = single_release, 1054 }; 1055 1056 /* ---- HCI requests ---- */ 1057 1058 static void hci_req_sync_complete(struct hci_dev *hdev, u8 result) 1059 { 1060 BT_DBG("%s result 0x%2.2x", hdev->name, result); 1061 1062 if (hdev->req_status == HCI_REQ_PEND) { 1063 hdev->req_result = result; 1064 hdev->req_status = HCI_REQ_DONE; 1065 wake_up_interruptible(&hdev->req_wait_q); 1066 } 1067 } 1068 1069 static void hci_req_cancel(struct hci_dev *hdev, int err) 1070 { 1071 BT_DBG("%s err 0x%2.2x", hdev->name, err); 1072 1073 if (hdev->req_status == HCI_REQ_PEND) { 1074 hdev->req_result = err; 1075 hdev->req_status = HCI_REQ_CANCELED; 1076 wake_up_interruptible(&hdev->req_wait_q); 1077 } 1078 } 1079 1080 static struct sk_buff *hci_get_cmd_complete(struct hci_dev *hdev, u16 opcode, 1081 u8 event) 1082 { 1083 struct hci_ev_cmd_complete *ev; 1084 struct hci_event_hdr *hdr; 1085 struct sk_buff *skb; 1086 1087 hci_dev_lock(hdev); 1088 1089 skb = hdev->recv_evt; 1090 hdev->recv_evt = NULL; 1091 1092 hci_dev_unlock(hdev); 1093 1094 if (!skb) 1095 return ERR_PTR(-ENODATA); 1096 1097 if (skb->len < sizeof(*hdr)) { 1098 BT_ERR("Too short HCI event"); 1099 goto failed; 1100 } 1101 1102 hdr = (void *) skb->data; 1103 skb_pull(skb, HCI_EVENT_HDR_SIZE); 1104 1105 if (event) { 1106 if (hdr->evt != event) 1107 goto failed; 1108 return skb; 1109 } 1110 1111 if (hdr->evt != HCI_EV_CMD_COMPLETE) { 1112 BT_DBG("Last event is not cmd complete (0x%2.2x)", hdr->evt); 1113 goto failed; 1114 } 1115 1116 if (skb->len < sizeof(*ev)) { 1117 BT_ERR("Too short cmd_complete event"); 1118 goto failed; 1119 } 1120 1121 ev = (void *) skb->data; 1122 skb_pull(skb, sizeof(*ev)); 1123 1124 if (opcode == __le16_to_cpu(ev->opcode)) 1125 return skb; 1126 1127 BT_DBG("opcode doesn't match (0x%2.2x != 0x%2.2x)", opcode, 1128 __le16_to_cpu(ev->opcode)); 1129 1130 failed: 1131 kfree_skb(skb); 1132 return ERR_PTR(-ENODATA); 1133 } 1134 1135 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, 1136 const void *param, u8 event, u32 timeout) 1137 { 1138 DECLARE_WAITQUEUE(wait, current); 1139 struct hci_request req; 1140 int err = 0; 1141 1142 BT_DBG("%s", hdev->name); 1143 1144 hci_req_init(&req, hdev); 1145 1146 hci_req_add_ev(&req, opcode, plen, param, event); 1147 1148 hdev->req_status = HCI_REQ_PEND; 1149 1150 err = hci_req_run(&req, hci_req_sync_complete); 1151 if (err < 0) 1152 return ERR_PTR(err); 1153 1154 add_wait_queue(&hdev->req_wait_q, &wait); 1155 set_current_state(TASK_INTERRUPTIBLE); 1156 1157 schedule_timeout(timeout); 1158 1159 remove_wait_queue(&hdev->req_wait_q, &wait); 1160 1161 if (signal_pending(current)) 1162 return ERR_PTR(-EINTR); 1163 1164 switch (hdev->req_status) { 1165 case HCI_REQ_DONE: 1166 err = -bt_to_errno(hdev->req_result); 1167 break; 1168 1169 case HCI_REQ_CANCELED: 1170 err = -hdev->req_result; 1171 break; 1172 1173 default: 1174 err = -ETIMEDOUT; 1175 break; 1176 } 1177 1178 hdev->req_status = hdev->req_result = 0; 1179 1180 BT_DBG("%s end: err %d", hdev->name, err); 1181 1182 if (err < 0) 1183 return ERR_PTR(err); 1184 1185 return hci_get_cmd_complete(hdev, opcode, event); 1186 } 1187 EXPORT_SYMBOL(__hci_cmd_sync_ev); 1188 1189 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 1190 const void *param, u32 timeout) 1191 { 1192 return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout); 1193 } 1194 EXPORT_SYMBOL(__hci_cmd_sync); 1195 1196 /* Execute request and wait for completion. */ 1197 static int __hci_req_sync(struct hci_dev *hdev, 1198 void (*func)(struct hci_request *req, 1199 unsigned long opt), 1200 unsigned long opt, __u32 timeout) 1201 { 1202 struct hci_request req; 1203 DECLARE_WAITQUEUE(wait, current); 1204 int err = 0; 1205 1206 BT_DBG("%s start", hdev->name); 1207 1208 hci_req_init(&req, hdev); 1209 1210 hdev->req_status = HCI_REQ_PEND; 1211 1212 func(&req, opt); 1213 1214 err = hci_req_run(&req, hci_req_sync_complete); 1215 if (err < 0) { 1216 hdev->req_status = 0; 1217 1218 /* ENODATA means the HCI request command queue is empty. 1219 * This can happen when a request with conditionals doesn't 1220 * trigger any commands to be sent. This is normal behavior 1221 * and should not trigger an error return. 1222 */ 1223 if (err == -ENODATA) 1224 return 0; 1225 1226 return err; 1227 } 1228 1229 add_wait_queue(&hdev->req_wait_q, &wait); 1230 set_current_state(TASK_INTERRUPTIBLE); 1231 1232 schedule_timeout(timeout); 1233 1234 remove_wait_queue(&hdev->req_wait_q, &wait); 1235 1236 if (signal_pending(current)) 1237 return -EINTR; 1238 1239 switch (hdev->req_status) { 1240 case HCI_REQ_DONE: 1241 err = -bt_to_errno(hdev->req_result); 1242 break; 1243 1244 case HCI_REQ_CANCELED: 1245 err = -hdev->req_result; 1246 break; 1247 1248 default: 1249 err = -ETIMEDOUT; 1250 break; 1251 } 1252 1253 hdev->req_status = hdev->req_result = 0; 1254 1255 BT_DBG("%s end: err %d", hdev->name, err); 1256 1257 return err; 1258 } 1259 1260 static int hci_req_sync(struct hci_dev *hdev, 1261 void (*req)(struct hci_request *req, 1262 unsigned long opt), 1263 unsigned long opt, __u32 timeout) 1264 { 1265 int ret; 1266 1267 if (!test_bit(HCI_UP, &hdev->flags)) 1268 return -ENETDOWN; 1269 1270 /* Serialize all requests */ 1271 hci_req_lock(hdev); 1272 ret = __hci_req_sync(hdev, req, opt, timeout); 1273 hci_req_unlock(hdev); 1274 1275 return ret; 1276 } 1277 1278 static void hci_reset_req(struct hci_request *req, unsigned long opt) 1279 { 1280 BT_DBG("%s %ld", req->hdev->name, opt); 1281 1282 /* Reset device */ 1283 set_bit(HCI_RESET, &req->hdev->flags); 1284 hci_req_add(req, HCI_OP_RESET, 0, NULL); 1285 } 1286 1287 static void bredr_init(struct hci_request *req) 1288 { 1289 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED; 1290 1291 /* Read Local Supported Features */ 1292 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL); 1293 1294 /* Read Local Version */ 1295 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL); 1296 1297 /* Read BD Address */ 1298 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL); 1299 } 1300 1301 static void amp_init(struct hci_request *req) 1302 { 1303 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED; 1304 1305 /* Read Local Version */ 1306 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL); 1307 1308 /* Read Local Supported Commands */ 1309 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL); 1310 1311 /* Read Local Supported Features */ 1312 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL); 1313 1314 /* Read Local AMP Info */ 1315 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL); 1316 1317 /* Read Data Blk size */ 1318 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL); 1319 1320 /* Read Flow Control Mode */ 1321 hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL); 1322 1323 /* Read Location Data */ 1324 hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL); 1325 } 1326 1327 static void hci_init1_req(struct hci_request *req, unsigned long opt) 1328 { 1329 struct hci_dev *hdev = req->hdev; 1330 1331 BT_DBG("%s %ld", hdev->name, opt); 1332 1333 /* Reset */ 1334 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) 1335 hci_reset_req(req, 0); 1336 1337 switch (hdev->dev_type) { 1338 case HCI_BREDR: 1339 bredr_init(req); 1340 break; 1341 1342 case HCI_AMP: 1343 amp_init(req); 1344 break; 1345 1346 default: 1347 BT_ERR("Unknown device type %d", hdev->dev_type); 1348 break; 1349 } 1350 } 1351 1352 static void bredr_setup(struct hci_request *req) 1353 { 1354 struct hci_dev *hdev = req->hdev; 1355 1356 __le16 param; 1357 __u8 flt_type; 1358 1359 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 1360 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL); 1361 1362 /* Read Class of Device */ 1363 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL); 1364 1365 /* Read Local Name */ 1366 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL); 1367 1368 /* Read Voice Setting */ 1369 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL); 1370 1371 /* Read Number of Supported IAC */ 1372 hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL); 1373 1374 /* Read Current IAC LAP */ 1375 hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL); 1376 1377 /* Clear Event Filters */ 1378 flt_type = HCI_FLT_CLEAR_ALL; 1379 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type); 1380 1381 /* Connection accept timeout ~20 secs */ 1382 param = cpu_to_le16(0x7d00); 1383 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, ¶m); 1384 1385 /* AVM Berlin (31), aka "BlueFRITZ!", reports version 1.2, 1386 * but it does not support page scan related HCI commands. 1387 */ 1388 if (hdev->manufacturer != 31 && hdev->hci_ver > BLUETOOTH_VER_1_1) { 1389 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL); 1390 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL); 1391 } 1392 } 1393 1394 static void le_setup(struct hci_request *req) 1395 { 1396 struct hci_dev *hdev = req->hdev; 1397 1398 /* Read LE Buffer Size */ 1399 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL); 1400 1401 /* Read LE Local Supported Features */ 1402 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL); 1403 1404 /* Read LE Supported States */ 1405 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL); 1406 1407 /* Read LE White List Size */ 1408 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE, 0, NULL); 1409 1410 /* Clear LE White List */ 1411 hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL); 1412 1413 /* LE-only controllers have LE implicitly enabled */ 1414 if (!lmp_bredr_capable(hdev)) 1415 set_bit(HCI_LE_ENABLED, &hdev->dev_flags); 1416 } 1417 1418 static u8 hci_get_inquiry_mode(struct hci_dev *hdev) 1419 { 1420 if (lmp_ext_inq_capable(hdev)) 1421 return 0x02; 1422 1423 if (lmp_inq_rssi_capable(hdev)) 1424 return 0x01; 1425 1426 if (hdev->manufacturer == 11 && hdev->hci_rev == 0x00 && 1427 hdev->lmp_subver == 0x0757) 1428 return 0x01; 1429 1430 if (hdev->manufacturer == 15) { 1431 if (hdev->hci_rev == 0x03 && hdev->lmp_subver == 0x6963) 1432 return 0x01; 1433 if (hdev->hci_rev == 0x09 && hdev->lmp_subver == 0x6963) 1434 return 0x01; 1435 if (hdev->hci_rev == 0x00 && hdev->lmp_subver == 0x6965) 1436 return 0x01; 1437 } 1438 1439 if (hdev->manufacturer == 31 && hdev->hci_rev == 0x2005 && 1440 hdev->lmp_subver == 0x1805) 1441 return 0x01; 1442 1443 return 0x00; 1444 } 1445 1446 static void hci_setup_inquiry_mode(struct hci_request *req) 1447 { 1448 u8 mode; 1449 1450 mode = hci_get_inquiry_mode(req->hdev); 1451 1452 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode); 1453 } 1454 1455 static void hci_setup_event_mask(struct hci_request *req) 1456 { 1457 struct hci_dev *hdev = req->hdev; 1458 1459 /* The second byte is 0xff instead of 0x9f (two reserved bits 1460 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 1461 * command otherwise. 1462 */ 1463 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 1464 1465 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 1466 * any event mask for pre 1.2 devices. 1467 */ 1468 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 1469 return; 1470 1471 if (lmp_bredr_capable(hdev)) { 1472 events[4] |= 0x01; /* Flow Specification Complete */ 1473 events[4] |= 0x02; /* Inquiry Result with RSSI */ 1474 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 1475 events[5] |= 0x08; /* Synchronous Connection Complete */ 1476 events[5] |= 0x10; /* Synchronous Connection Changed */ 1477 } else { 1478 /* Use a different default for LE-only devices */ 1479 memset(events, 0, sizeof(events)); 1480 events[0] |= 0x10; /* Disconnection Complete */ 1481 events[1] |= 0x08; /* Read Remote Version Information Complete */ 1482 events[1] |= 0x20; /* Command Complete */ 1483 events[1] |= 0x40; /* Command Status */ 1484 events[1] |= 0x80; /* Hardware Error */ 1485 events[2] |= 0x04; /* Number of Completed Packets */ 1486 events[3] |= 0x02; /* Data Buffer Overflow */ 1487 1488 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 1489 events[0] |= 0x80; /* Encryption Change */ 1490 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 1491 } 1492 } 1493 1494 if (lmp_inq_rssi_capable(hdev)) 1495 events[4] |= 0x02; /* Inquiry Result with RSSI */ 1496 1497 if (lmp_sniffsubr_capable(hdev)) 1498 events[5] |= 0x20; /* Sniff Subrating */ 1499 1500 if (lmp_pause_enc_capable(hdev)) 1501 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 1502 1503 if (lmp_ext_inq_capable(hdev)) 1504 events[5] |= 0x40; /* Extended Inquiry Result */ 1505 1506 if (lmp_no_flush_capable(hdev)) 1507 events[7] |= 0x01; /* Enhanced Flush Complete */ 1508 1509 if (lmp_lsto_capable(hdev)) 1510 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 1511 1512 if (lmp_ssp_capable(hdev)) { 1513 events[6] |= 0x01; /* IO Capability Request */ 1514 events[6] |= 0x02; /* IO Capability Response */ 1515 events[6] |= 0x04; /* User Confirmation Request */ 1516 events[6] |= 0x08; /* User Passkey Request */ 1517 events[6] |= 0x10; /* Remote OOB Data Request */ 1518 events[6] |= 0x20; /* Simple Pairing Complete */ 1519 events[7] |= 0x04; /* User Passkey Notification */ 1520 events[7] |= 0x08; /* Keypress Notification */ 1521 events[7] |= 0x10; /* Remote Host Supported 1522 * Features Notification 1523 */ 1524 } 1525 1526 if (lmp_le_capable(hdev)) 1527 events[7] |= 0x20; /* LE Meta-Event */ 1528 1529 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events); 1530 } 1531 1532 static void hci_init2_req(struct hci_request *req, unsigned long opt) 1533 { 1534 struct hci_dev *hdev = req->hdev; 1535 1536 if (lmp_bredr_capable(hdev)) 1537 bredr_setup(req); 1538 else 1539 clear_bit(HCI_BREDR_ENABLED, &hdev->dev_flags); 1540 1541 if (lmp_le_capable(hdev)) 1542 le_setup(req); 1543 1544 /* AVM Berlin (31), aka "BlueFRITZ!", doesn't support the read 1545 * local supported commands HCI command. 1546 */ 1547 if (hdev->manufacturer != 31 && hdev->hci_ver > BLUETOOTH_VER_1_1) 1548 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL); 1549 1550 if (lmp_ssp_capable(hdev)) { 1551 /* When SSP is available, then the host features page 1552 * should also be available as well. However some 1553 * controllers list the max_page as 0 as long as SSP 1554 * has not been enabled. To achieve proper debugging 1555 * output, force the minimum max_page to 1 at least. 1556 */ 1557 hdev->max_page = 0x01; 1558 1559 if (test_bit(HCI_SSP_ENABLED, &hdev->dev_flags)) { 1560 u8 mode = 0x01; 1561 hci_req_add(req, HCI_OP_WRITE_SSP_MODE, 1562 sizeof(mode), &mode); 1563 } else { 1564 struct hci_cp_write_eir cp; 1565 1566 memset(hdev->eir, 0, sizeof(hdev->eir)); 1567 memset(&cp, 0, sizeof(cp)); 1568 1569 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp); 1570 } 1571 } 1572 1573 if (lmp_inq_rssi_capable(hdev)) 1574 hci_setup_inquiry_mode(req); 1575 1576 if (lmp_inq_tx_pwr_capable(hdev)) 1577 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL); 1578 1579 if (lmp_ext_feat_capable(hdev)) { 1580 struct hci_cp_read_local_ext_features cp; 1581 1582 cp.page = 0x01; 1583 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES, 1584 sizeof(cp), &cp); 1585 } 1586 1587 if (test_bit(HCI_LINK_SECURITY, &hdev->dev_flags)) { 1588 u8 enable = 1; 1589 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable), 1590 &enable); 1591 } 1592 } 1593 1594 static void hci_setup_link_policy(struct hci_request *req) 1595 { 1596 struct hci_dev *hdev = req->hdev; 1597 struct hci_cp_write_def_link_policy cp; 1598 u16 link_policy = 0; 1599 1600 if (lmp_rswitch_capable(hdev)) 1601 link_policy |= HCI_LP_RSWITCH; 1602 if (lmp_hold_capable(hdev)) 1603 link_policy |= HCI_LP_HOLD; 1604 if (lmp_sniff_capable(hdev)) 1605 link_policy |= HCI_LP_SNIFF; 1606 if (lmp_park_capable(hdev)) 1607 link_policy |= HCI_LP_PARK; 1608 1609 cp.policy = cpu_to_le16(link_policy); 1610 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp); 1611 } 1612 1613 static void hci_set_le_support(struct hci_request *req) 1614 { 1615 struct hci_dev *hdev = req->hdev; 1616 struct hci_cp_write_le_host_supported cp; 1617 1618 /* LE-only devices do not support explicit enablement */ 1619 if (!lmp_bredr_capable(hdev)) 1620 return; 1621 1622 memset(&cp, 0, sizeof(cp)); 1623 1624 if (test_bit(HCI_LE_ENABLED, &hdev->dev_flags)) { 1625 cp.le = 0x01; 1626 cp.simul = 0x00; 1627 } 1628 1629 if (cp.le != lmp_host_le_capable(hdev)) 1630 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp), 1631 &cp); 1632 } 1633 1634 static void hci_set_event_mask_page_2(struct hci_request *req) 1635 { 1636 struct hci_dev *hdev = req->hdev; 1637 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 1638 1639 /* If Connectionless Slave Broadcast master role is supported 1640 * enable all necessary events for it. 1641 */ 1642 if (lmp_csb_master_capable(hdev)) { 1643 events[1] |= 0x40; /* Triggered Clock Capture */ 1644 events[1] |= 0x80; /* Synchronization Train Complete */ 1645 events[2] |= 0x10; /* Slave Page Response Timeout */ 1646 events[2] |= 0x20; /* CSB Channel Map Change */ 1647 } 1648 1649 /* If Connectionless Slave Broadcast slave role is supported 1650 * enable all necessary events for it. 1651 */ 1652 if (lmp_csb_slave_capable(hdev)) { 1653 events[2] |= 0x01; /* Synchronization Train Received */ 1654 events[2] |= 0x02; /* CSB Receive */ 1655 events[2] |= 0x04; /* CSB Timeout */ 1656 events[2] |= 0x08; /* Truncated Page Complete */ 1657 } 1658 1659 /* Enable Authenticated Payload Timeout Expired event if supported */ 1660 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) 1661 events[2] |= 0x80; 1662 1663 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events); 1664 } 1665 1666 static void hci_init3_req(struct hci_request *req, unsigned long opt) 1667 { 1668 struct hci_dev *hdev = req->hdev; 1669 u8 p; 1670 1671 hci_setup_event_mask(req); 1672 1673 /* Some Broadcom based Bluetooth controllers do not support the 1674 * Delete Stored Link Key command. They are clearly indicating its 1675 * absence in the bit mask of supported commands. 1676 * 1677 * Check the supported commands and only if the the command is marked 1678 * as supported send it. If not supported assume that the controller 1679 * does not have actual support for stored link keys which makes this 1680 * command redundant anyway. 1681 * 1682 * Some controllers indicate that they support handling deleting 1683 * stored link keys, but they don't. The quirk lets a driver 1684 * just disable this command. 1685 */ 1686 if (hdev->commands[6] & 0x80 && 1687 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) { 1688 struct hci_cp_delete_stored_link_key cp; 1689 1690 bacpy(&cp.bdaddr, BDADDR_ANY); 1691 cp.delete_all = 0x01; 1692 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY, 1693 sizeof(cp), &cp); 1694 } 1695 1696 if (hdev->commands[5] & 0x10) 1697 hci_setup_link_policy(req); 1698 1699 if (lmp_le_capable(hdev)) { 1700 u8 events[8]; 1701 1702 memset(events, 0, sizeof(events)); 1703 events[0] = 0x0f; 1704 1705 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 1706 events[0] |= 0x10; /* LE Long Term Key Request */ 1707 1708 /* If controller supports the Connection Parameters Request 1709 * Link Layer Procedure, enable the corresponding event. 1710 */ 1711 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 1712 events[0] |= 0x20; /* LE Remote Connection 1713 * Parameter Request 1714 */ 1715 1716 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events), 1717 events); 1718 1719 if (hdev->commands[25] & 0x40) { 1720 /* Read LE Advertising Channel TX Power */ 1721 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL); 1722 } 1723 1724 hci_set_le_support(req); 1725 } 1726 1727 /* Read features beyond page 1 if available */ 1728 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) { 1729 struct hci_cp_read_local_ext_features cp; 1730 1731 cp.page = p; 1732 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES, 1733 sizeof(cp), &cp); 1734 } 1735 } 1736 1737 static void hci_init4_req(struct hci_request *req, unsigned long opt) 1738 { 1739 struct hci_dev *hdev = req->hdev; 1740 1741 /* Set event mask page 2 if the HCI command for it is supported */ 1742 if (hdev->commands[22] & 0x04) 1743 hci_set_event_mask_page_2(req); 1744 1745 /* Read local codec list if the HCI command is supported */ 1746 if (hdev->commands[29] & 0x20) 1747 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL); 1748 1749 /* Get MWS transport configuration if the HCI command is supported */ 1750 if (hdev->commands[30] & 0x08) 1751 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL); 1752 1753 /* Check for Synchronization Train support */ 1754 if (lmp_sync_train_capable(hdev)) 1755 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL); 1756 1757 /* Enable Secure Connections if supported and configured */ 1758 if ((lmp_sc_capable(hdev) || 1759 test_bit(HCI_FORCE_SC, &hdev->dbg_flags)) && 1760 test_bit(HCI_SC_ENABLED, &hdev->dev_flags)) { 1761 u8 support = 0x01; 1762 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT, 1763 sizeof(support), &support); 1764 } 1765 } 1766 1767 static int __hci_init(struct hci_dev *hdev) 1768 { 1769 int err; 1770 1771 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT); 1772 if (err < 0) 1773 return err; 1774 1775 /* The Device Under Test (DUT) mode is special and available for 1776 * all controller types. So just create it early on. 1777 */ 1778 if (test_bit(HCI_SETUP, &hdev->dev_flags)) { 1779 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev, 1780 &dut_mode_fops); 1781 } 1782 1783 /* HCI_BREDR covers both single-mode LE, BR/EDR and dual-mode 1784 * BR/EDR/LE type controllers. AMP controllers only need the 1785 * first stage init. 1786 */ 1787 if (hdev->dev_type != HCI_BREDR) 1788 return 0; 1789 1790 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT); 1791 if (err < 0) 1792 return err; 1793 1794 err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT); 1795 if (err < 0) 1796 return err; 1797 1798 err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT); 1799 if (err < 0) 1800 return err; 1801 1802 /* Only create debugfs entries during the initial setup 1803 * phase and not every time the controller gets powered on. 1804 */ 1805 if (!test_bit(HCI_SETUP, &hdev->dev_flags)) 1806 return 0; 1807 1808 debugfs_create_file("features", 0444, hdev->debugfs, hdev, 1809 &features_fops); 1810 debugfs_create_u16("manufacturer", 0444, hdev->debugfs, 1811 &hdev->manufacturer); 1812 debugfs_create_u8("hci_version", 0444, hdev->debugfs, &hdev->hci_ver); 1813 debugfs_create_u16("hci_revision", 0444, hdev->debugfs, &hdev->hci_rev); 1814 debugfs_create_file("blacklist", 0444, hdev->debugfs, hdev, 1815 &blacklist_fops); 1816 debugfs_create_file("whitelist", 0444, hdev->debugfs, hdev, 1817 &whitelist_fops); 1818 debugfs_create_file("uuids", 0444, hdev->debugfs, hdev, &uuids_fops); 1819 1820 debugfs_create_file("conn_info_min_age", 0644, hdev->debugfs, hdev, 1821 &conn_info_min_age_fops); 1822 debugfs_create_file("conn_info_max_age", 0644, hdev->debugfs, hdev, 1823 &conn_info_max_age_fops); 1824 1825 if (lmp_bredr_capable(hdev)) { 1826 debugfs_create_file("inquiry_cache", 0444, hdev->debugfs, 1827 hdev, &inquiry_cache_fops); 1828 debugfs_create_file("link_keys", 0400, hdev->debugfs, 1829 hdev, &link_keys_fops); 1830 debugfs_create_file("dev_class", 0444, hdev->debugfs, 1831 hdev, &dev_class_fops); 1832 debugfs_create_file("voice_setting", 0444, hdev->debugfs, 1833 hdev, &voice_setting_fops); 1834 } 1835 1836 if (lmp_ssp_capable(hdev)) { 1837 debugfs_create_file("auto_accept_delay", 0644, hdev->debugfs, 1838 hdev, &auto_accept_delay_fops); 1839 debugfs_create_file("force_sc_support", 0644, hdev->debugfs, 1840 hdev, &force_sc_support_fops); 1841 debugfs_create_file("sc_only_mode", 0444, hdev->debugfs, 1842 hdev, &sc_only_mode_fops); 1843 } 1844 1845 if (lmp_sniff_capable(hdev)) { 1846 debugfs_create_file("idle_timeout", 0644, hdev->debugfs, 1847 hdev, &idle_timeout_fops); 1848 debugfs_create_file("sniff_min_interval", 0644, hdev->debugfs, 1849 hdev, &sniff_min_interval_fops); 1850 debugfs_create_file("sniff_max_interval", 0644, hdev->debugfs, 1851 hdev, &sniff_max_interval_fops); 1852 } 1853 1854 if (lmp_le_capable(hdev)) { 1855 debugfs_create_file("identity", 0400, hdev->debugfs, 1856 hdev, &identity_fops); 1857 debugfs_create_file("rpa_timeout", 0644, hdev->debugfs, 1858 hdev, &rpa_timeout_fops); 1859 debugfs_create_file("random_address", 0444, hdev->debugfs, 1860 hdev, &random_address_fops); 1861 debugfs_create_file("static_address", 0444, hdev->debugfs, 1862 hdev, &static_address_fops); 1863 1864 /* For controllers with a public address, provide a debug 1865 * option to force the usage of the configured static 1866 * address. By default the public address is used. 1867 */ 1868 if (bacmp(&hdev->bdaddr, BDADDR_ANY)) 1869 debugfs_create_file("force_static_address", 0644, 1870 hdev->debugfs, hdev, 1871 &force_static_address_fops); 1872 1873 debugfs_create_u8("white_list_size", 0444, hdev->debugfs, 1874 &hdev->le_white_list_size); 1875 debugfs_create_file("white_list", 0444, hdev->debugfs, hdev, 1876 &white_list_fops); 1877 debugfs_create_file("identity_resolving_keys", 0400, 1878 hdev->debugfs, hdev, 1879 &identity_resolving_keys_fops); 1880 debugfs_create_file("long_term_keys", 0400, hdev->debugfs, 1881 hdev, &long_term_keys_fops); 1882 debugfs_create_file("conn_min_interval", 0644, hdev->debugfs, 1883 hdev, &conn_min_interval_fops); 1884 debugfs_create_file("conn_max_interval", 0644, hdev->debugfs, 1885 hdev, &conn_max_interval_fops); 1886 debugfs_create_file("conn_latency", 0644, hdev->debugfs, 1887 hdev, &conn_latency_fops); 1888 debugfs_create_file("supervision_timeout", 0644, hdev->debugfs, 1889 hdev, &supervision_timeout_fops); 1890 debugfs_create_file("adv_channel_map", 0644, hdev->debugfs, 1891 hdev, &adv_channel_map_fops); 1892 debugfs_create_file("adv_min_interval", 0644, hdev->debugfs, 1893 hdev, &adv_min_interval_fops); 1894 debugfs_create_file("adv_max_interval", 0644, hdev->debugfs, 1895 hdev, &adv_max_interval_fops); 1896 debugfs_create_file("device_list", 0444, hdev->debugfs, hdev, 1897 &device_list_fops); 1898 debugfs_create_u16("discov_interleaved_timeout", 0644, 1899 hdev->debugfs, 1900 &hdev->discov_interleaved_timeout); 1901 } 1902 1903 return 0; 1904 } 1905 1906 static void hci_init0_req(struct hci_request *req, unsigned long opt) 1907 { 1908 struct hci_dev *hdev = req->hdev; 1909 1910 BT_DBG("%s %ld", hdev->name, opt); 1911 1912 /* Reset */ 1913 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) 1914 hci_reset_req(req, 0); 1915 1916 /* Read Local Version */ 1917 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL); 1918 1919 /* Read BD Address */ 1920 if (hdev->set_bdaddr) 1921 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL); 1922 } 1923 1924 static int __hci_unconf_init(struct hci_dev *hdev) 1925 { 1926 int err; 1927 1928 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 1929 return 0; 1930 1931 err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT); 1932 if (err < 0) 1933 return err; 1934 1935 return 0; 1936 } 1937 1938 static void hci_scan_req(struct hci_request *req, unsigned long opt) 1939 { 1940 __u8 scan = opt; 1941 1942 BT_DBG("%s %x", req->hdev->name, scan); 1943 1944 /* Inquiry and Page scans */ 1945 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); 1946 } 1947 1948 static void hci_auth_req(struct hci_request *req, unsigned long opt) 1949 { 1950 __u8 auth = opt; 1951 1952 BT_DBG("%s %x", req->hdev->name, auth); 1953 1954 /* Authentication */ 1955 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth); 1956 } 1957 1958 static void hci_encrypt_req(struct hci_request *req, unsigned long opt) 1959 { 1960 __u8 encrypt = opt; 1961 1962 BT_DBG("%s %x", req->hdev->name, encrypt); 1963 1964 /* Encryption */ 1965 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt); 1966 } 1967 1968 static void hci_linkpol_req(struct hci_request *req, unsigned long opt) 1969 { 1970 __le16 policy = cpu_to_le16(opt); 1971 1972 BT_DBG("%s %x", req->hdev->name, policy); 1973 1974 /* Default link policy */ 1975 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy); 1976 } 1977 1978 /* Get HCI device by index. 1979 * Device is held on return. */ 1980 struct hci_dev *hci_dev_get(int index) 1981 { 1982 struct hci_dev *hdev = NULL, *d; 1983 1984 BT_DBG("%d", index); 1985 1986 if (index < 0) 1987 return NULL; 1988 1989 read_lock(&hci_dev_list_lock); 1990 list_for_each_entry(d, &hci_dev_list, list) { 1991 if (d->id == index) { 1992 hdev = hci_dev_hold(d); 1993 break; 1994 } 1995 } 1996 read_unlock(&hci_dev_list_lock); 1997 return hdev; 1998 } 1999 2000 /* ---- Inquiry support ---- */ 2001 2002 bool hci_discovery_active(struct hci_dev *hdev) 2003 { 2004 struct discovery_state *discov = &hdev->discovery; 2005 2006 switch (discov->state) { 2007 case DISCOVERY_FINDING: 2008 case DISCOVERY_RESOLVING: 2009 return true; 2010 2011 default: 2012 return false; 2013 } 2014 } 2015 2016 void hci_discovery_set_state(struct hci_dev *hdev, int state) 2017 { 2018 int old_state = hdev->discovery.state; 2019 2020 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state); 2021 2022 if (old_state == state) 2023 return; 2024 2025 hdev->discovery.state = state; 2026 2027 switch (state) { 2028 case DISCOVERY_STOPPED: 2029 hci_update_background_scan(hdev); 2030 2031 if (old_state != DISCOVERY_STARTING) 2032 mgmt_discovering(hdev, 0); 2033 break; 2034 case DISCOVERY_STARTING: 2035 break; 2036 case DISCOVERY_FINDING: 2037 mgmt_discovering(hdev, 1); 2038 break; 2039 case DISCOVERY_RESOLVING: 2040 break; 2041 case DISCOVERY_STOPPING: 2042 break; 2043 } 2044 } 2045 2046 void hci_inquiry_cache_flush(struct hci_dev *hdev) 2047 { 2048 struct discovery_state *cache = &hdev->discovery; 2049 struct inquiry_entry *p, *n; 2050 2051 list_for_each_entry_safe(p, n, &cache->all, all) { 2052 list_del(&p->all); 2053 kfree(p); 2054 } 2055 2056 INIT_LIST_HEAD(&cache->unknown); 2057 INIT_LIST_HEAD(&cache->resolve); 2058 } 2059 2060 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, 2061 bdaddr_t *bdaddr) 2062 { 2063 struct discovery_state *cache = &hdev->discovery; 2064 struct inquiry_entry *e; 2065 2066 BT_DBG("cache %p, %pMR", cache, bdaddr); 2067 2068 list_for_each_entry(e, &cache->all, all) { 2069 if (!bacmp(&e->data.bdaddr, bdaddr)) 2070 return e; 2071 } 2072 2073 return NULL; 2074 } 2075 2076 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, 2077 bdaddr_t *bdaddr) 2078 { 2079 struct discovery_state *cache = &hdev->discovery; 2080 struct inquiry_entry *e; 2081 2082 BT_DBG("cache %p, %pMR", cache, bdaddr); 2083 2084 list_for_each_entry(e, &cache->unknown, list) { 2085 if (!bacmp(&e->data.bdaddr, bdaddr)) 2086 return e; 2087 } 2088 2089 return NULL; 2090 } 2091 2092 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, 2093 bdaddr_t *bdaddr, 2094 int state) 2095 { 2096 struct discovery_state *cache = &hdev->discovery; 2097 struct inquiry_entry *e; 2098 2099 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state); 2100 2101 list_for_each_entry(e, &cache->resolve, list) { 2102 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state) 2103 return e; 2104 if (!bacmp(&e->data.bdaddr, bdaddr)) 2105 return e; 2106 } 2107 2108 return NULL; 2109 } 2110 2111 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, 2112 struct inquiry_entry *ie) 2113 { 2114 struct discovery_state *cache = &hdev->discovery; 2115 struct list_head *pos = &cache->resolve; 2116 struct inquiry_entry *p; 2117 2118 list_del(&ie->list); 2119 2120 list_for_each_entry(p, &cache->resolve, list) { 2121 if (p->name_state != NAME_PENDING && 2122 abs(p->data.rssi) >= abs(ie->data.rssi)) 2123 break; 2124 pos = &p->list; 2125 } 2126 2127 list_add(&ie->list, pos); 2128 } 2129 2130 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, 2131 bool name_known) 2132 { 2133 struct discovery_state *cache = &hdev->discovery; 2134 struct inquiry_entry *ie; 2135 u32 flags = 0; 2136 2137 BT_DBG("cache %p, %pMR", cache, &data->bdaddr); 2138 2139 hci_remove_remote_oob_data(hdev, &data->bdaddr); 2140 2141 if (!data->ssp_mode) 2142 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 2143 2144 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr); 2145 if (ie) { 2146 if (!ie->data.ssp_mode) 2147 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 2148 2149 if (ie->name_state == NAME_NEEDED && 2150 data->rssi != ie->data.rssi) { 2151 ie->data.rssi = data->rssi; 2152 hci_inquiry_cache_update_resolve(hdev, ie); 2153 } 2154 2155 goto update; 2156 } 2157 2158 /* Entry not in the cache. Add new one. */ 2159 ie = kzalloc(sizeof(*ie), GFP_KERNEL); 2160 if (!ie) { 2161 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 2162 goto done; 2163 } 2164 2165 list_add(&ie->all, &cache->all); 2166 2167 if (name_known) { 2168 ie->name_state = NAME_KNOWN; 2169 } else { 2170 ie->name_state = NAME_NOT_KNOWN; 2171 list_add(&ie->list, &cache->unknown); 2172 } 2173 2174 update: 2175 if (name_known && ie->name_state != NAME_KNOWN && 2176 ie->name_state != NAME_PENDING) { 2177 ie->name_state = NAME_KNOWN; 2178 list_del(&ie->list); 2179 } 2180 2181 memcpy(&ie->data, data, sizeof(*data)); 2182 ie->timestamp = jiffies; 2183 cache->timestamp = jiffies; 2184 2185 if (ie->name_state == NAME_NOT_KNOWN) 2186 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 2187 2188 done: 2189 return flags; 2190 } 2191 2192 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf) 2193 { 2194 struct discovery_state *cache = &hdev->discovery; 2195 struct inquiry_info *info = (struct inquiry_info *) buf; 2196 struct inquiry_entry *e; 2197 int copied = 0; 2198 2199 list_for_each_entry(e, &cache->all, all) { 2200 struct inquiry_data *data = &e->data; 2201 2202 if (copied >= num) 2203 break; 2204 2205 bacpy(&info->bdaddr, &data->bdaddr); 2206 info->pscan_rep_mode = data->pscan_rep_mode; 2207 info->pscan_period_mode = data->pscan_period_mode; 2208 info->pscan_mode = data->pscan_mode; 2209 memcpy(info->dev_class, data->dev_class, 3); 2210 info->clock_offset = data->clock_offset; 2211 2212 info++; 2213 copied++; 2214 } 2215 2216 BT_DBG("cache %p, copied %d", cache, copied); 2217 return copied; 2218 } 2219 2220 static void hci_inq_req(struct hci_request *req, unsigned long opt) 2221 { 2222 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt; 2223 struct hci_dev *hdev = req->hdev; 2224 struct hci_cp_inquiry cp; 2225 2226 BT_DBG("%s", hdev->name); 2227 2228 if (test_bit(HCI_INQUIRY, &hdev->flags)) 2229 return; 2230 2231 /* Start Inquiry */ 2232 memcpy(&cp.lap, &ir->lap, 3); 2233 cp.length = ir->length; 2234 cp.num_rsp = ir->num_rsp; 2235 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp); 2236 } 2237 2238 int hci_inquiry(void __user *arg) 2239 { 2240 __u8 __user *ptr = arg; 2241 struct hci_inquiry_req ir; 2242 struct hci_dev *hdev; 2243 int err = 0, do_inquiry = 0, max_rsp; 2244 long timeo; 2245 __u8 *buf; 2246 2247 if (copy_from_user(&ir, ptr, sizeof(ir))) 2248 return -EFAULT; 2249 2250 hdev = hci_dev_get(ir.dev_id); 2251 if (!hdev) 2252 return -ENODEV; 2253 2254 if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) { 2255 err = -EBUSY; 2256 goto done; 2257 } 2258 2259 if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) { 2260 err = -EOPNOTSUPP; 2261 goto done; 2262 } 2263 2264 if (hdev->dev_type != HCI_BREDR) { 2265 err = -EOPNOTSUPP; 2266 goto done; 2267 } 2268 2269 if (!test_bit(HCI_BREDR_ENABLED, &hdev->dev_flags)) { 2270 err = -EOPNOTSUPP; 2271 goto done; 2272 } 2273 2274 hci_dev_lock(hdev); 2275 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX || 2276 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) { 2277 hci_inquiry_cache_flush(hdev); 2278 do_inquiry = 1; 2279 } 2280 hci_dev_unlock(hdev); 2281 2282 timeo = ir.length * msecs_to_jiffies(2000); 2283 2284 if (do_inquiry) { 2285 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir, 2286 timeo); 2287 if (err < 0) 2288 goto done; 2289 2290 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is 2291 * cleared). If it is interrupted by a signal, return -EINTR. 2292 */ 2293 if (wait_on_bit(&hdev->flags, HCI_INQUIRY, 2294 TASK_INTERRUPTIBLE)) 2295 return -EINTR; 2296 } 2297 2298 /* for unlimited number of responses we will use buffer with 2299 * 255 entries 2300 */ 2301 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp; 2302 2303 /* cache_dump can't sleep. Therefore we allocate temp buffer and then 2304 * copy it to the user space. 2305 */ 2306 buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL); 2307 if (!buf) { 2308 err = -ENOMEM; 2309 goto done; 2310 } 2311 2312 hci_dev_lock(hdev); 2313 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf); 2314 hci_dev_unlock(hdev); 2315 2316 BT_DBG("num_rsp %d", ir.num_rsp); 2317 2318 if (!copy_to_user(ptr, &ir, sizeof(ir))) { 2319 ptr += sizeof(ir); 2320 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) * 2321 ir.num_rsp)) 2322 err = -EFAULT; 2323 } else 2324 err = -EFAULT; 2325 2326 kfree(buf); 2327 2328 done: 2329 hci_dev_put(hdev); 2330 return err; 2331 } 2332 2333 static int hci_dev_do_open(struct hci_dev *hdev) 2334 { 2335 int ret = 0; 2336 2337 BT_DBG("%s %p", hdev->name, hdev); 2338 2339 hci_req_lock(hdev); 2340 2341 if (test_bit(HCI_UNREGISTER, &hdev->dev_flags)) { 2342 ret = -ENODEV; 2343 goto done; 2344 } 2345 2346 if (!test_bit(HCI_SETUP, &hdev->dev_flags) && 2347 !test_bit(HCI_CONFIG, &hdev->dev_flags)) { 2348 /* Check for rfkill but allow the HCI setup stage to 2349 * proceed (which in itself doesn't cause any RF activity). 2350 */ 2351 if (test_bit(HCI_RFKILLED, &hdev->dev_flags)) { 2352 ret = -ERFKILL; 2353 goto done; 2354 } 2355 2356 /* Check for valid public address or a configured static 2357 * random adddress, but let the HCI setup proceed to 2358 * be able to determine if there is a public address 2359 * or not. 2360 * 2361 * In case of user channel usage, it is not important 2362 * if a public address or static random address is 2363 * available. 2364 * 2365 * This check is only valid for BR/EDR controllers 2366 * since AMP controllers do not have an address. 2367 */ 2368 if (!test_bit(HCI_USER_CHANNEL, &hdev->dev_flags) && 2369 hdev->dev_type == HCI_BREDR && 2370 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 2371 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 2372 ret = -EADDRNOTAVAIL; 2373 goto done; 2374 } 2375 } 2376 2377 if (test_bit(HCI_UP, &hdev->flags)) { 2378 ret = -EALREADY; 2379 goto done; 2380 } 2381 2382 if (hdev->open(hdev)) { 2383 ret = -EIO; 2384 goto done; 2385 } 2386 2387 atomic_set(&hdev->cmd_cnt, 1); 2388 set_bit(HCI_INIT, &hdev->flags); 2389 2390 if (test_bit(HCI_SETUP, &hdev->dev_flags)) { 2391 if (hdev->setup) 2392 ret = hdev->setup(hdev); 2393 2394 /* The transport driver can set these quirks before 2395 * creating the HCI device or in its setup callback. 2396 * 2397 * In case any of them is set, the controller has to 2398 * start up as unconfigured. 2399 */ 2400 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || 2401 test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks)) 2402 set_bit(HCI_UNCONFIGURED, &hdev->dev_flags); 2403 2404 /* For an unconfigured controller it is required to 2405 * read at least the version information provided by 2406 * the Read Local Version Information command. 2407 * 2408 * If the set_bdaddr driver callback is provided, then 2409 * also the original Bluetooth public device address 2410 * will be read using the Read BD Address command. 2411 */ 2412 if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) 2413 ret = __hci_unconf_init(hdev); 2414 } 2415 2416 if (test_bit(HCI_CONFIG, &hdev->dev_flags)) { 2417 /* If public address change is configured, ensure that 2418 * the address gets programmed. If the driver does not 2419 * support changing the public address, fail the power 2420 * on procedure. 2421 */ 2422 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 2423 hdev->set_bdaddr) 2424 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 2425 else 2426 ret = -EADDRNOTAVAIL; 2427 } 2428 2429 if (!ret) { 2430 if (!test_bit(HCI_UNCONFIGURED, &hdev->dev_flags) && 2431 !test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) 2432 ret = __hci_init(hdev); 2433 } 2434 2435 clear_bit(HCI_INIT, &hdev->flags); 2436 2437 if (!ret) { 2438 hci_dev_hold(hdev); 2439 set_bit(HCI_RPA_EXPIRED, &hdev->dev_flags); 2440 set_bit(HCI_UP, &hdev->flags); 2441 hci_notify(hdev, HCI_DEV_UP); 2442 if (!test_bit(HCI_SETUP, &hdev->dev_flags) && 2443 !test_bit(HCI_CONFIG, &hdev->dev_flags) && 2444 !test_bit(HCI_UNCONFIGURED, &hdev->dev_flags) && 2445 !test_bit(HCI_USER_CHANNEL, &hdev->dev_flags) && 2446 hdev->dev_type == HCI_BREDR) { 2447 hci_dev_lock(hdev); 2448 mgmt_powered(hdev, 1); 2449 hci_dev_unlock(hdev); 2450 } 2451 } else { 2452 /* Init failed, cleanup */ 2453 flush_work(&hdev->tx_work); 2454 flush_work(&hdev->cmd_work); 2455 flush_work(&hdev->rx_work); 2456 2457 skb_queue_purge(&hdev->cmd_q); 2458 skb_queue_purge(&hdev->rx_q); 2459 2460 if (hdev->flush) 2461 hdev->flush(hdev); 2462 2463 if (hdev->sent_cmd) { 2464 kfree_skb(hdev->sent_cmd); 2465 hdev->sent_cmd = NULL; 2466 } 2467 2468 hdev->close(hdev); 2469 hdev->flags &= BIT(HCI_RAW); 2470 } 2471 2472 done: 2473 hci_req_unlock(hdev); 2474 return ret; 2475 } 2476 2477 /* ---- HCI ioctl helpers ---- */ 2478 2479 int hci_dev_open(__u16 dev) 2480 { 2481 struct hci_dev *hdev; 2482 int err; 2483 2484 hdev = hci_dev_get(dev); 2485 if (!hdev) 2486 return -ENODEV; 2487 2488 /* Devices that are marked as unconfigured can only be powered 2489 * up as user channel. Trying to bring them up as normal devices 2490 * will result into a failure. Only user channel operation is 2491 * possible. 2492 * 2493 * When this function is called for a user channel, the flag 2494 * HCI_USER_CHANNEL will be set first before attempting to 2495 * open the device. 2496 */ 2497 if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags) && 2498 !test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) { 2499 err = -EOPNOTSUPP; 2500 goto done; 2501 } 2502 2503 /* We need to ensure that no other power on/off work is pending 2504 * before proceeding to call hci_dev_do_open. This is 2505 * particularly important if the setup procedure has not yet 2506 * completed. 2507 */ 2508 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags)) 2509 cancel_delayed_work(&hdev->power_off); 2510 2511 /* After this call it is guaranteed that the setup procedure 2512 * has finished. This means that error conditions like RFKILL 2513 * or no valid public or static random address apply. 2514 */ 2515 flush_workqueue(hdev->req_workqueue); 2516 2517 /* For controllers not using the management interface and that 2518 * are brought up using legacy ioctl, set the HCI_BONDABLE bit 2519 * so that pairing works for them. Once the management interface 2520 * is in use this bit will be cleared again and userspace has 2521 * to explicitly enable it. 2522 */ 2523 if (!test_bit(HCI_USER_CHANNEL, &hdev->dev_flags) && 2524 !test_bit(HCI_MGMT, &hdev->dev_flags)) 2525 set_bit(HCI_BONDABLE, &hdev->dev_flags); 2526 2527 err = hci_dev_do_open(hdev); 2528 2529 done: 2530 hci_dev_put(hdev); 2531 return err; 2532 } 2533 2534 /* This function requires the caller holds hdev->lock */ 2535 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 2536 { 2537 struct hci_conn_params *p; 2538 2539 list_for_each_entry(p, &hdev->le_conn_params, list) { 2540 if (p->conn) { 2541 hci_conn_drop(p->conn); 2542 p->conn = NULL; 2543 } 2544 list_del_init(&p->action); 2545 } 2546 2547 BT_DBG("All LE pending actions cleared"); 2548 } 2549 2550 static int hci_dev_do_close(struct hci_dev *hdev) 2551 { 2552 BT_DBG("%s %p", hdev->name, hdev); 2553 2554 cancel_delayed_work(&hdev->power_off); 2555 2556 hci_req_cancel(hdev, ENODEV); 2557 hci_req_lock(hdev); 2558 2559 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 2560 cancel_delayed_work_sync(&hdev->cmd_timer); 2561 hci_req_unlock(hdev); 2562 return 0; 2563 } 2564 2565 /* Flush RX and TX works */ 2566 flush_work(&hdev->tx_work); 2567 flush_work(&hdev->rx_work); 2568 2569 if (hdev->discov_timeout > 0) { 2570 cancel_delayed_work(&hdev->discov_off); 2571 hdev->discov_timeout = 0; 2572 clear_bit(HCI_DISCOVERABLE, &hdev->dev_flags); 2573 clear_bit(HCI_LIMITED_DISCOVERABLE, &hdev->dev_flags); 2574 } 2575 2576 if (test_and_clear_bit(HCI_SERVICE_CACHE, &hdev->dev_flags)) 2577 cancel_delayed_work(&hdev->service_cache); 2578 2579 cancel_delayed_work_sync(&hdev->le_scan_disable); 2580 2581 if (test_bit(HCI_MGMT, &hdev->dev_flags)) 2582 cancel_delayed_work_sync(&hdev->rpa_expired); 2583 2584 hci_dev_lock(hdev); 2585 hci_inquiry_cache_flush(hdev); 2586 hci_pend_le_actions_clear(hdev); 2587 hci_conn_hash_flush(hdev); 2588 hci_dev_unlock(hdev); 2589 2590 hci_notify(hdev, HCI_DEV_DOWN); 2591 2592 if (hdev->flush) 2593 hdev->flush(hdev); 2594 2595 /* Reset device */ 2596 skb_queue_purge(&hdev->cmd_q); 2597 atomic_set(&hdev->cmd_cnt, 1); 2598 if (!test_bit(HCI_AUTO_OFF, &hdev->dev_flags) && 2599 !test_bit(HCI_UNCONFIGURED, &hdev->dev_flags) && 2600 test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) { 2601 set_bit(HCI_INIT, &hdev->flags); 2602 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT); 2603 clear_bit(HCI_INIT, &hdev->flags); 2604 } 2605 2606 /* flush cmd work */ 2607 flush_work(&hdev->cmd_work); 2608 2609 /* Drop queues */ 2610 skb_queue_purge(&hdev->rx_q); 2611 skb_queue_purge(&hdev->cmd_q); 2612 skb_queue_purge(&hdev->raw_q); 2613 2614 /* Drop last sent command */ 2615 if (hdev->sent_cmd) { 2616 cancel_delayed_work_sync(&hdev->cmd_timer); 2617 kfree_skb(hdev->sent_cmd); 2618 hdev->sent_cmd = NULL; 2619 } 2620 2621 kfree_skb(hdev->recv_evt); 2622 hdev->recv_evt = NULL; 2623 2624 /* After this point our queues are empty 2625 * and no tasks are scheduled. */ 2626 hdev->close(hdev); 2627 2628 /* Clear flags */ 2629 hdev->flags &= BIT(HCI_RAW); 2630 hdev->dev_flags &= ~HCI_PERSISTENT_MASK; 2631 2632 if (!test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags)) { 2633 if (hdev->dev_type == HCI_BREDR) { 2634 hci_dev_lock(hdev); 2635 mgmt_powered(hdev, 0); 2636 hci_dev_unlock(hdev); 2637 } 2638 } 2639 2640 /* Controller radio is available but is currently powered down */ 2641 hdev->amp_status = AMP_STATUS_POWERED_DOWN; 2642 2643 memset(hdev->eir, 0, sizeof(hdev->eir)); 2644 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 2645 bacpy(&hdev->random_addr, BDADDR_ANY); 2646 2647 hci_req_unlock(hdev); 2648 2649 hci_dev_put(hdev); 2650 return 0; 2651 } 2652 2653 int hci_dev_close(__u16 dev) 2654 { 2655 struct hci_dev *hdev; 2656 int err; 2657 2658 hdev = hci_dev_get(dev); 2659 if (!hdev) 2660 return -ENODEV; 2661 2662 if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) { 2663 err = -EBUSY; 2664 goto done; 2665 } 2666 2667 if (test_and_clear_bit(HCI_AUTO_OFF, &hdev->dev_flags)) 2668 cancel_delayed_work(&hdev->power_off); 2669 2670 err = hci_dev_do_close(hdev); 2671 2672 done: 2673 hci_dev_put(hdev); 2674 return err; 2675 } 2676 2677 int hci_dev_reset(__u16 dev) 2678 { 2679 struct hci_dev *hdev; 2680 int ret = 0; 2681 2682 hdev = hci_dev_get(dev); 2683 if (!hdev) 2684 return -ENODEV; 2685 2686 hci_req_lock(hdev); 2687 2688 if (!test_bit(HCI_UP, &hdev->flags)) { 2689 ret = -ENETDOWN; 2690 goto done; 2691 } 2692 2693 if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) { 2694 ret = -EBUSY; 2695 goto done; 2696 } 2697 2698 if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) { 2699 ret = -EOPNOTSUPP; 2700 goto done; 2701 } 2702 2703 /* Drop queues */ 2704 skb_queue_purge(&hdev->rx_q); 2705 skb_queue_purge(&hdev->cmd_q); 2706 2707 hci_dev_lock(hdev); 2708 hci_inquiry_cache_flush(hdev); 2709 hci_conn_hash_flush(hdev); 2710 hci_dev_unlock(hdev); 2711 2712 if (hdev->flush) 2713 hdev->flush(hdev); 2714 2715 atomic_set(&hdev->cmd_cnt, 1); 2716 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0; 2717 2718 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT); 2719 2720 done: 2721 hci_req_unlock(hdev); 2722 hci_dev_put(hdev); 2723 return ret; 2724 } 2725 2726 int hci_dev_reset_stat(__u16 dev) 2727 { 2728 struct hci_dev *hdev; 2729 int ret = 0; 2730 2731 hdev = hci_dev_get(dev); 2732 if (!hdev) 2733 return -ENODEV; 2734 2735 if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) { 2736 ret = -EBUSY; 2737 goto done; 2738 } 2739 2740 if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) { 2741 ret = -EOPNOTSUPP; 2742 goto done; 2743 } 2744 2745 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats)); 2746 2747 done: 2748 hci_dev_put(hdev); 2749 return ret; 2750 } 2751 2752 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan) 2753 { 2754 bool conn_changed, discov_changed; 2755 2756 BT_DBG("%s scan 0x%02x", hdev->name, scan); 2757 2758 if ((scan & SCAN_PAGE)) 2759 conn_changed = !test_and_set_bit(HCI_CONNECTABLE, 2760 &hdev->dev_flags); 2761 else 2762 conn_changed = test_and_clear_bit(HCI_CONNECTABLE, 2763 &hdev->dev_flags); 2764 2765 if ((scan & SCAN_INQUIRY)) { 2766 discov_changed = !test_and_set_bit(HCI_DISCOVERABLE, 2767 &hdev->dev_flags); 2768 } else { 2769 clear_bit(HCI_LIMITED_DISCOVERABLE, &hdev->dev_flags); 2770 discov_changed = test_and_clear_bit(HCI_DISCOVERABLE, 2771 &hdev->dev_flags); 2772 } 2773 2774 if (!test_bit(HCI_MGMT, &hdev->dev_flags)) 2775 return; 2776 2777 if (conn_changed || discov_changed) { 2778 /* In case this was disabled through mgmt */ 2779 set_bit(HCI_BREDR_ENABLED, &hdev->dev_flags); 2780 2781 if (test_bit(HCI_LE_ENABLED, &hdev->dev_flags)) 2782 mgmt_update_adv_data(hdev); 2783 2784 mgmt_new_settings(hdev); 2785 } 2786 } 2787 2788 int hci_dev_cmd(unsigned int cmd, void __user *arg) 2789 { 2790 struct hci_dev *hdev; 2791 struct hci_dev_req dr; 2792 int err = 0; 2793 2794 if (copy_from_user(&dr, arg, sizeof(dr))) 2795 return -EFAULT; 2796 2797 hdev = hci_dev_get(dr.dev_id); 2798 if (!hdev) 2799 return -ENODEV; 2800 2801 if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) { 2802 err = -EBUSY; 2803 goto done; 2804 } 2805 2806 if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) { 2807 err = -EOPNOTSUPP; 2808 goto done; 2809 } 2810 2811 if (hdev->dev_type != HCI_BREDR) { 2812 err = -EOPNOTSUPP; 2813 goto done; 2814 } 2815 2816 if (!test_bit(HCI_BREDR_ENABLED, &hdev->dev_flags)) { 2817 err = -EOPNOTSUPP; 2818 goto done; 2819 } 2820 2821 switch (cmd) { 2822 case HCISETAUTH: 2823 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt, 2824 HCI_INIT_TIMEOUT); 2825 break; 2826 2827 case HCISETENCRYPT: 2828 if (!lmp_encrypt_capable(hdev)) { 2829 err = -EOPNOTSUPP; 2830 break; 2831 } 2832 2833 if (!test_bit(HCI_AUTH, &hdev->flags)) { 2834 /* Auth must be enabled first */ 2835 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt, 2836 HCI_INIT_TIMEOUT); 2837 if (err) 2838 break; 2839 } 2840 2841 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt, 2842 HCI_INIT_TIMEOUT); 2843 break; 2844 2845 case HCISETSCAN: 2846 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt, 2847 HCI_INIT_TIMEOUT); 2848 2849 /* Ensure that the connectable and discoverable states 2850 * get correctly modified as this was a non-mgmt change. 2851 */ 2852 if (!err) 2853 hci_update_scan_state(hdev, dr.dev_opt); 2854 break; 2855 2856 case HCISETLINKPOL: 2857 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt, 2858 HCI_INIT_TIMEOUT); 2859 break; 2860 2861 case HCISETLINKMODE: 2862 hdev->link_mode = ((__u16) dr.dev_opt) & 2863 (HCI_LM_MASTER | HCI_LM_ACCEPT); 2864 break; 2865 2866 case HCISETPTYPE: 2867 hdev->pkt_type = (__u16) dr.dev_opt; 2868 break; 2869 2870 case HCISETACLMTU: 2871 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1); 2872 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0); 2873 break; 2874 2875 case HCISETSCOMTU: 2876 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1); 2877 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0); 2878 break; 2879 2880 default: 2881 err = -EINVAL; 2882 break; 2883 } 2884 2885 done: 2886 hci_dev_put(hdev); 2887 return err; 2888 } 2889 2890 int hci_get_dev_list(void __user *arg) 2891 { 2892 struct hci_dev *hdev; 2893 struct hci_dev_list_req *dl; 2894 struct hci_dev_req *dr; 2895 int n = 0, size, err; 2896 __u16 dev_num; 2897 2898 if (get_user(dev_num, (__u16 __user *) arg)) 2899 return -EFAULT; 2900 2901 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr)) 2902 return -EINVAL; 2903 2904 size = sizeof(*dl) + dev_num * sizeof(*dr); 2905 2906 dl = kzalloc(size, GFP_KERNEL); 2907 if (!dl) 2908 return -ENOMEM; 2909 2910 dr = dl->dev_req; 2911 2912 read_lock(&hci_dev_list_lock); 2913 list_for_each_entry(hdev, &hci_dev_list, list) { 2914 unsigned long flags = hdev->flags; 2915 2916 /* When the auto-off is configured it means the transport 2917 * is running, but in that case still indicate that the 2918 * device is actually down. 2919 */ 2920 if (test_bit(HCI_AUTO_OFF, &hdev->dev_flags)) 2921 flags &= ~BIT(HCI_UP); 2922 2923 (dr + n)->dev_id = hdev->id; 2924 (dr + n)->dev_opt = flags; 2925 2926 if (++n >= dev_num) 2927 break; 2928 } 2929 read_unlock(&hci_dev_list_lock); 2930 2931 dl->dev_num = n; 2932 size = sizeof(*dl) + n * sizeof(*dr); 2933 2934 err = copy_to_user(arg, dl, size); 2935 kfree(dl); 2936 2937 return err ? -EFAULT : 0; 2938 } 2939 2940 int hci_get_dev_info(void __user *arg) 2941 { 2942 struct hci_dev *hdev; 2943 struct hci_dev_info di; 2944 unsigned long flags; 2945 int err = 0; 2946 2947 if (copy_from_user(&di, arg, sizeof(di))) 2948 return -EFAULT; 2949 2950 hdev = hci_dev_get(di.dev_id); 2951 if (!hdev) 2952 return -ENODEV; 2953 2954 /* When the auto-off is configured it means the transport 2955 * is running, but in that case still indicate that the 2956 * device is actually down. 2957 */ 2958 if (test_bit(HCI_AUTO_OFF, &hdev->dev_flags)) 2959 flags = hdev->flags & ~BIT(HCI_UP); 2960 else 2961 flags = hdev->flags; 2962 2963 strcpy(di.name, hdev->name); 2964 di.bdaddr = hdev->bdaddr; 2965 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4); 2966 di.flags = flags; 2967 di.pkt_type = hdev->pkt_type; 2968 if (lmp_bredr_capable(hdev)) { 2969 di.acl_mtu = hdev->acl_mtu; 2970 di.acl_pkts = hdev->acl_pkts; 2971 di.sco_mtu = hdev->sco_mtu; 2972 di.sco_pkts = hdev->sco_pkts; 2973 } else { 2974 di.acl_mtu = hdev->le_mtu; 2975 di.acl_pkts = hdev->le_pkts; 2976 di.sco_mtu = 0; 2977 di.sco_pkts = 0; 2978 } 2979 di.link_policy = hdev->link_policy; 2980 di.link_mode = hdev->link_mode; 2981 2982 memcpy(&di.stat, &hdev->stat, sizeof(di.stat)); 2983 memcpy(&di.features, &hdev->features, sizeof(di.features)); 2984 2985 if (copy_to_user(arg, &di, sizeof(di))) 2986 err = -EFAULT; 2987 2988 hci_dev_put(hdev); 2989 2990 return err; 2991 } 2992 2993 /* ---- Interface to HCI drivers ---- */ 2994 2995 static int hci_rfkill_set_block(void *data, bool blocked) 2996 { 2997 struct hci_dev *hdev = data; 2998 2999 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked); 3000 3001 if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) 3002 return -EBUSY; 3003 3004 if (blocked) { 3005 set_bit(HCI_RFKILLED, &hdev->dev_flags); 3006 if (!test_bit(HCI_SETUP, &hdev->dev_flags) && 3007 !test_bit(HCI_CONFIG, &hdev->dev_flags)) 3008 hci_dev_do_close(hdev); 3009 } else { 3010 clear_bit(HCI_RFKILLED, &hdev->dev_flags); 3011 } 3012 3013 return 0; 3014 } 3015 3016 static const struct rfkill_ops hci_rfkill_ops = { 3017 .set_block = hci_rfkill_set_block, 3018 }; 3019 3020 static void hci_power_on(struct work_struct *work) 3021 { 3022 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on); 3023 int err; 3024 3025 BT_DBG("%s", hdev->name); 3026 3027 err = hci_dev_do_open(hdev); 3028 if (err < 0) { 3029 mgmt_set_powered_failed(hdev, err); 3030 return; 3031 } 3032 3033 /* During the HCI setup phase, a few error conditions are 3034 * ignored and they need to be checked now. If they are still 3035 * valid, it is important to turn the device back off. 3036 */ 3037 if (test_bit(HCI_RFKILLED, &hdev->dev_flags) || 3038 test_bit(HCI_UNCONFIGURED, &hdev->dev_flags) || 3039 (hdev->dev_type == HCI_BREDR && 3040 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 3041 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 3042 clear_bit(HCI_AUTO_OFF, &hdev->dev_flags); 3043 hci_dev_do_close(hdev); 3044 } else if (test_bit(HCI_AUTO_OFF, &hdev->dev_flags)) { 3045 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 3046 HCI_AUTO_OFF_TIMEOUT); 3047 } 3048 3049 if (test_and_clear_bit(HCI_SETUP, &hdev->dev_flags)) { 3050 /* For unconfigured devices, set the HCI_RAW flag 3051 * so that userspace can easily identify them. 3052 */ 3053 if (test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) 3054 set_bit(HCI_RAW, &hdev->flags); 3055 3056 /* For fully configured devices, this will send 3057 * the Index Added event. For unconfigured devices, 3058 * it will send Unconfigued Index Added event. 3059 * 3060 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 3061 * and no event will be send. 3062 */ 3063 mgmt_index_added(hdev); 3064 } else if (test_and_clear_bit(HCI_CONFIG, &hdev->dev_flags)) { 3065 /* When the controller is now configured, then it 3066 * is important to clear the HCI_RAW flag. 3067 */ 3068 if (!test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) 3069 clear_bit(HCI_RAW, &hdev->flags); 3070 3071 /* Powering on the controller with HCI_CONFIG set only 3072 * happens with the transition from unconfigured to 3073 * configured. This will send the Index Added event. 3074 */ 3075 mgmt_index_added(hdev); 3076 } 3077 } 3078 3079 static void hci_power_off(struct work_struct *work) 3080 { 3081 struct hci_dev *hdev = container_of(work, struct hci_dev, 3082 power_off.work); 3083 3084 BT_DBG("%s", hdev->name); 3085 3086 hci_dev_do_close(hdev); 3087 } 3088 3089 static void hci_discov_off(struct work_struct *work) 3090 { 3091 struct hci_dev *hdev; 3092 3093 hdev = container_of(work, struct hci_dev, discov_off.work); 3094 3095 BT_DBG("%s", hdev->name); 3096 3097 mgmt_discoverable_timeout(hdev); 3098 } 3099 3100 void hci_uuids_clear(struct hci_dev *hdev) 3101 { 3102 struct bt_uuid *uuid, *tmp; 3103 3104 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) { 3105 list_del(&uuid->list); 3106 kfree(uuid); 3107 } 3108 } 3109 3110 void hci_link_keys_clear(struct hci_dev *hdev) 3111 { 3112 struct list_head *p, *n; 3113 3114 list_for_each_safe(p, n, &hdev->link_keys) { 3115 struct link_key *key; 3116 3117 key = list_entry(p, struct link_key, list); 3118 3119 list_del(p); 3120 kfree(key); 3121 } 3122 } 3123 3124 void hci_smp_ltks_clear(struct hci_dev *hdev) 3125 { 3126 struct smp_ltk *k, *tmp; 3127 3128 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) { 3129 list_del(&k->list); 3130 kfree(k); 3131 } 3132 } 3133 3134 void hci_smp_irks_clear(struct hci_dev *hdev) 3135 { 3136 struct smp_irk *k, *tmp; 3137 3138 list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) { 3139 list_del(&k->list); 3140 kfree(k); 3141 } 3142 } 3143 3144 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 3145 { 3146 struct link_key *k; 3147 3148 list_for_each_entry(k, &hdev->link_keys, list) 3149 if (bacmp(bdaddr, &k->bdaddr) == 0) 3150 return k; 3151 3152 return NULL; 3153 } 3154 3155 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn, 3156 u8 key_type, u8 old_key_type) 3157 { 3158 /* Legacy key */ 3159 if (key_type < 0x03) 3160 return true; 3161 3162 /* Debug keys are insecure so don't store them persistently */ 3163 if (key_type == HCI_LK_DEBUG_COMBINATION) 3164 return false; 3165 3166 /* Changed combination key and there's no previous one */ 3167 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff) 3168 return false; 3169 3170 /* Security mode 3 case */ 3171 if (!conn) 3172 return true; 3173 3174 /* Neither local nor remote side had no-bonding as requirement */ 3175 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01) 3176 return true; 3177 3178 /* Local side had dedicated bonding as requirement */ 3179 if (conn->auth_type == 0x02 || conn->auth_type == 0x03) 3180 return true; 3181 3182 /* Remote side had dedicated bonding as requirement */ 3183 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03) 3184 return true; 3185 3186 /* If none of the above criteria match, then don't store the key 3187 * persistently */ 3188 return false; 3189 } 3190 3191 static u8 ltk_role(u8 type) 3192 { 3193 if (type == SMP_LTK) 3194 return HCI_ROLE_MASTER; 3195 3196 return HCI_ROLE_SLAVE; 3197 } 3198 3199 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, __le16 ediv, __le64 rand, 3200 u8 role) 3201 { 3202 struct smp_ltk *k; 3203 3204 list_for_each_entry(k, &hdev->long_term_keys, list) { 3205 if (k->ediv != ediv || k->rand != rand) 3206 continue; 3207 3208 if (ltk_role(k->type) != role) 3209 continue; 3210 3211 return k; 3212 } 3213 3214 return NULL; 3215 } 3216 3217 struct smp_ltk *hci_find_ltk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, 3218 u8 addr_type, u8 role) 3219 { 3220 struct smp_ltk *k; 3221 3222 list_for_each_entry(k, &hdev->long_term_keys, list) 3223 if (addr_type == k->bdaddr_type && 3224 bacmp(bdaddr, &k->bdaddr) == 0 && 3225 ltk_role(k->type) == role) 3226 return k; 3227 3228 return NULL; 3229 } 3230 3231 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa) 3232 { 3233 struct smp_irk *irk; 3234 3235 list_for_each_entry(irk, &hdev->identity_resolving_keys, list) { 3236 if (!bacmp(&irk->rpa, rpa)) 3237 return irk; 3238 } 3239 3240 list_for_each_entry(irk, &hdev->identity_resolving_keys, list) { 3241 if (smp_irk_matches(hdev->tfm_aes, irk->val, rpa)) { 3242 bacpy(&irk->rpa, rpa); 3243 return irk; 3244 } 3245 } 3246 3247 return NULL; 3248 } 3249 3250 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, 3251 u8 addr_type) 3252 { 3253 struct smp_irk *irk; 3254 3255 /* Identity Address must be public or static random */ 3256 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0) 3257 return NULL; 3258 3259 list_for_each_entry(irk, &hdev->identity_resolving_keys, list) { 3260 if (addr_type == irk->addr_type && 3261 bacmp(bdaddr, &irk->bdaddr) == 0) 3262 return irk; 3263 } 3264 3265 return NULL; 3266 } 3267 3268 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, 3269 bdaddr_t *bdaddr, u8 *val, u8 type, 3270 u8 pin_len, bool *persistent) 3271 { 3272 struct link_key *key, *old_key; 3273 u8 old_key_type; 3274 3275 old_key = hci_find_link_key(hdev, bdaddr); 3276 if (old_key) { 3277 old_key_type = old_key->type; 3278 key = old_key; 3279 } else { 3280 old_key_type = conn ? conn->key_type : 0xff; 3281 key = kzalloc(sizeof(*key), GFP_KERNEL); 3282 if (!key) 3283 return NULL; 3284 list_add(&key->list, &hdev->link_keys); 3285 } 3286 3287 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type); 3288 3289 /* Some buggy controller combinations generate a changed 3290 * combination key for legacy pairing even when there's no 3291 * previous key */ 3292 if (type == HCI_LK_CHANGED_COMBINATION && 3293 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) { 3294 type = HCI_LK_COMBINATION; 3295 if (conn) 3296 conn->key_type = type; 3297 } 3298 3299 bacpy(&key->bdaddr, bdaddr); 3300 memcpy(key->val, val, HCI_LINK_KEY_SIZE); 3301 key->pin_len = pin_len; 3302 3303 if (type == HCI_LK_CHANGED_COMBINATION) 3304 key->type = old_key_type; 3305 else 3306 key->type = type; 3307 3308 if (persistent) 3309 *persistent = hci_persistent_key(hdev, conn, type, 3310 old_key_type); 3311 3312 return key; 3313 } 3314 3315 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 3316 u8 addr_type, u8 type, u8 authenticated, 3317 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand) 3318 { 3319 struct smp_ltk *key, *old_key; 3320 u8 role = ltk_role(type); 3321 3322 old_key = hci_find_ltk_by_addr(hdev, bdaddr, addr_type, role); 3323 if (old_key) 3324 key = old_key; 3325 else { 3326 key = kzalloc(sizeof(*key), GFP_KERNEL); 3327 if (!key) 3328 return NULL; 3329 list_add(&key->list, &hdev->long_term_keys); 3330 } 3331 3332 bacpy(&key->bdaddr, bdaddr); 3333 key->bdaddr_type = addr_type; 3334 memcpy(key->val, tk, sizeof(key->val)); 3335 key->authenticated = authenticated; 3336 key->ediv = ediv; 3337 key->rand = rand; 3338 key->enc_size = enc_size; 3339 key->type = type; 3340 3341 return key; 3342 } 3343 3344 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, 3345 u8 addr_type, u8 val[16], bdaddr_t *rpa) 3346 { 3347 struct smp_irk *irk; 3348 3349 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type); 3350 if (!irk) { 3351 irk = kzalloc(sizeof(*irk), GFP_KERNEL); 3352 if (!irk) 3353 return NULL; 3354 3355 bacpy(&irk->bdaddr, bdaddr); 3356 irk->addr_type = addr_type; 3357 3358 list_add(&irk->list, &hdev->identity_resolving_keys); 3359 } 3360 3361 memcpy(irk->val, val, 16); 3362 bacpy(&irk->rpa, rpa); 3363 3364 return irk; 3365 } 3366 3367 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 3368 { 3369 struct link_key *key; 3370 3371 key = hci_find_link_key(hdev, bdaddr); 3372 if (!key) 3373 return -ENOENT; 3374 3375 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 3376 3377 list_del(&key->list); 3378 kfree(key); 3379 3380 return 0; 3381 } 3382 3383 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type) 3384 { 3385 struct smp_ltk *k, *tmp; 3386 int removed = 0; 3387 3388 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) { 3389 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type) 3390 continue; 3391 3392 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 3393 3394 list_del(&k->list); 3395 kfree(k); 3396 removed++; 3397 } 3398 3399 return removed ? 0 : -ENOENT; 3400 } 3401 3402 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type) 3403 { 3404 struct smp_irk *k, *tmp; 3405 3406 list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) { 3407 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type) 3408 continue; 3409 3410 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 3411 3412 list_del(&k->list); 3413 kfree(k); 3414 } 3415 } 3416 3417 /* HCI command timer function */ 3418 static void hci_cmd_timeout(struct work_struct *work) 3419 { 3420 struct hci_dev *hdev = container_of(work, struct hci_dev, 3421 cmd_timer.work); 3422 3423 if (hdev->sent_cmd) { 3424 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data; 3425 u16 opcode = __le16_to_cpu(sent->opcode); 3426 3427 BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode); 3428 } else { 3429 BT_ERR("%s command tx timeout", hdev->name); 3430 } 3431 3432 atomic_set(&hdev->cmd_cnt, 1); 3433 queue_work(hdev->workqueue, &hdev->cmd_work); 3434 } 3435 3436 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, 3437 bdaddr_t *bdaddr) 3438 { 3439 struct oob_data *data; 3440 3441 list_for_each_entry(data, &hdev->remote_oob_data, list) 3442 if (bacmp(bdaddr, &data->bdaddr) == 0) 3443 return data; 3444 3445 return NULL; 3446 } 3447 3448 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr) 3449 { 3450 struct oob_data *data; 3451 3452 data = hci_find_remote_oob_data(hdev, bdaddr); 3453 if (!data) 3454 return -ENOENT; 3455 3456 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 3457 3458 list_del(&data->list); 3459 kfree(data); 3460 3461 return 0; 3462 } 3463 3464 void hci_remote_oob_data_clear(struct hci_dev *hdev) 3465 { 3466 struct oob_data *data, *n; 3467 3468 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) { 3469 list_del(&data->list); 3470 kfree(data); 3471 } 3472 } 3473 3474 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 3475 u8 *hash, u8 *randomizer) 3476 { 3477 struct oob_data *data; 3478 3479 data = hci_find_remote_oob_data(hdev, bdaddr); 3480 if (!data) { 3481 data = kmalloc(sizeof(*data), GFP_KERNEL); 3482 if (!data) 3483 return -ENOMEM; 3484 3485 bacpy(&data->bdaddr, bdaddr); 3486 list_add(&data->list, &hdev->remote_oob_data); 3487 } 3488 3489 memcpy(data->hash192, hash, sizeof(data->hash192)); 3490 memcpy(data->randomizer192, randomizer, sizeof(data->randomizer192)); 3491 3492 memset(data->hash256, 0, sizeof(data->hash256)); 3493 memset(data->randomizer256, 0, sizeof(data->randomizer256)); 3494 3495 BT_DBG("%s for %pMR", hdev->name, bdaddr); 3496 3497 return 0; 3498 } 3499 3500 int hci_add_remote_oob_ext_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 3501 u8 *hash192, u8 *randomizer192, 3502 u8 *hash256, u8 *randomizer256) 3503 { 3504 struct oob_data *data; 3505 3506 data = hci_find_remote_oob_data(hdev, bdaddr); 3507 if (!data) { 3508 data = kmalloc(sizeof(*data), GFP_KERNEL); 3509 if (!data) 3510 return -ENOMEM; 3511 3512 bacpy(&data->bdaddr, bdaddr); 3513 list_add(&data->list, &hdev->remote_oob_data); 3514 } 3515 3516 memcpy(data->hash192, hash192, sizeof(data->hash192)); 3517 memcpy(data->randomizer192, randomizer192, sizeof(data->randomizer192)); 3518 3519 memcpy(data->hash256, hash256, sizeof(data->hash256)); 3520 memcpy(data->randomizer256, randomizer256, sizeof(data->randomizer256)); 3521 3522 BT_DBG("%s for %pMR", hdev->name, bdaddr); 3523 3524 return 0; 3525 } 3526 3527 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list, 3528 bdaddr_t *bdaddr, u8 type) 3529 { 3530 struct bdaddr_list *b; 3531 3532 list_for_each_entry(b, bdaddr_list, list) { 3533 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 3534 return b; 3535 } 3536 3537 return NULL; 3538 } 3539 3540 void hci_bdaddr_list_clear(struct list_head *bdaddr_list) 3541 { 3542 struct list_head *p, *n; 3543 3544 list_for_each_safe(p, n, bdaddr_list) { 3545 struct bdaddr_list *b = list_entry(p, struct bdaddr_list, list); 3546 3547 list_del(p); 3548 kfree(b); 3549 } 3550 } 3551 3552 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type) 3553 { 3554 struct bdaddr_list *entry; 3555 3556 if (!bacmp(bdaddr, BDADDR_ANY)) 3557 return -EBADF; 3558 3559 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 3560 return -EEXIST; 3561 3562 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 3563 if (!entry) 3564 return -ENOMEM; 3565 3566 bacpy(&entry->bdaddr, bdaddr); 3567 entry->bdaddr_type = type; 3568 3569 list_add(&entry->list, list); 3570 3571 return 0; 3572 } 3573 3574 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type) 3575 { 3576 struct bdaddr_list *entry; 3577 3578 if (!bacmp(bdaddr, BDADDR_ANY)) { 3579 hci_bdaddr_list_clear(list); 3580 return 0; 3581 } 3582 3583 entry = hci_bdaddr_list_lookup(list, bdaddr, type); 3584 if (!entry) 3585 return -ENOENT; 3586 3587 list_del(&entry->list); 3588 kfree(entry); 3589 3590 return 0; 3591 } 3592 3593 /* This function requires the caller holds hdev->lock */ 3594 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev, 3595 bdaddr_t *addr, u8 addr_type) 3596 { 3597 struct hci_conn_params *params; 3598 3599 /* The conn params list only contains identity addresses */ 3600 if (!hci_is_identity_address(addr, addr_type)) 3601 return NULL; 3602 3603 list_for_each_entry(params, &hdev->le_conn_params, list) { 3604 if (bacmp(¶ms->addr, addr) == 0 && 3605 params->addr_type == addr_type) { 3606 return params; 3607 } 3608 } 3609 3610 return NULL; 3611 } 3612 3613 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type) 3614 { 3615 struct hci_conn *conn; 3616 3617 conn = hci_conn_hash_lookup_ba(hdev, LE_LINK, addr); 3618 if (!conn) 3619 return false; 3620 3621 if (conn->dst_type != type) 3622 return false; 3623 3624 if (conn->state != BT_CONNECTED) 3625 return false; 3626 3627 return true; 3628 } 3629 3630 /* This function requires the caller holds hdev->lock */ 3631 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list, 3632 bdaddr_t *addr, u8 addr_type) 3633 { 3634 struct hci_conn_params *param; 3635 3636 /* The list only contains identity addresses */ 3637 if (!hci_is_identity_address(addr, addr_type)) 3638 return NULL; 3639 3640 list_for_each_entry(param, list, action) { 3641 if (bacmp(¶m->addr, addr) == 0 && 3642 param->addr_type == addr_type) 3643 return param; 3644 } 3645 3646 return NULL; 3647 } 3648 3649 /* This function requires the caller holds hdev->lock */ 3650 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev, 3651 bdaddr_t *addr, u8 addr_type) 3652 { 3653 struct hci_conn_params *params; 3654 3655 if (!hci_is_identity_address(addr, addr_type)) 3656 return NULL; 3657 3658 params = hci_conn_params_lookup(hdev, addr, addr_type); 3659 if (params) 3660 return params; 3661 3662 params = kzalloc(sizeof(*params), GFP_KERNEL); 3663 if (!params) { 3664 BT_ERR("Out of memory"); 3665 return NULL; 3666 } 3667 3668 bacpy(¶ms->addr, addr); 3669 params->addr_type = addr_type; 3670 3671 list_add(¶ms->list, &hdev->le_conn_params); 3672 INIT_LIST_HEAD(¶ms->action); 3673 3674 params->conn_min_interval = hdev->le_conn_min_interval; 3675 params->conn_max_interval = hdev->le_conn_max_interval; 3676 params->conn_latency = hdev->le_conn_latency; 3677 params->supervision_timeout = hdev->le_supv_timeout; 3678 params->auto_connect = HCI_AUTO_CONN_DISABLED; 3679 3680 BT_DBG("addr %pMR (type %u)", addr, addr_type); 3681 3682 return params; 3683 } 3684 3685 /* This function requires the caller holds hdev->lock */ 3686 int hci_conn_params_set(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type, 3687 u8 auto_connect) 3688 { 3689 struct hci_conn_params *params; 3690 3691 params = hci_conn_params_add(hdev, addr, addr_type); 3692 if (!params) 3693 return -EIO; 3694 3695 if (params->auto_connect == auto_connect) 3696 return 0; 3697 3698 list_del_init(¶ms->action); 3699 3700 switch (auto_connect) { 3701 case HCI_AUTO_CONN_DISABLED: 3702 case HCI_AUTO_CONN_LINK_LOSS: 3703 hci_update_background_scan(hdev); 3704 break; 3705 case HCI_AUTO_CONN_REPORT: 3706 list_add(¶ms->action, &hdev->pend_le_reports); 3707 hci_update_background_scan(hdev); 3708 break; 3709 case HCI_AUTO_CONN_DIRECT: 3710 case HCI_AUTO_CONN_ALWAYS: 3711 if (!is_connected(hdev, addr, addr_type)) { 3712 list_add(¶ms->action, &hdev->pend_le_conns); 3713 hci_update_background_scan(hdev); 3714 } 3715 break; 3716 } 3717 3718 params->auto_connect = auto_connect; 3719 3720 BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type, 3721 auto_connect); 3722 3723 return 0; 3724 } 3725 3726 /* This function requires the caller holds hdev->lock */ 3727 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type) 3728 { 3729 struct hci_conn_params *params; 3730 3731 params = hci_conn_params_lookup(hdev, addr, addr_type); 3732 if (!params) 3733 return; 3734 3735 if (params->conn) 3736 hci_conn_drop(params->conn); 3737 3738 list_del(¶ms->action); 3739 list_del(¶ms->list); 3740 kfree(params); 3741 3742 hci_update_background_scan(hdev); 3743 3744 BT_DBG("addr %pMR (type %u)", addr, addr_type); 3745 } 3746 3747 /* This function requires the caller holds hdev->lock */ 3748 void hci_conn_params_clear_disabled(struct hci_dev *hdev) 3749 { 3750 struct hci_conn_params *params, *tmp; 3751 3752 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) { 3753 if (params->auto_connect != HCI_AUTO_CONN_DISABLED) 3754 continue; 3755 list_del(¶ms->list); 3756 kfree(params); 3757 } 3758 3759 BT_DBG("All LE disabled connection parameters were removed"); 3760 } 3761 3762 /* This function requires the caller holds hdev->lock */ 3763 void hci_conn_params_clear_all(struct hci_dev *hdev) 3764 { 3765 struct hci_conn_params *params, *tmp; 3766 3767 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) { 3768 if (params->conn) 3769 hci_conn_drop(params->conn); 3770 list_del(¶ms->action); 3771 list_del(¶ms->list); 3772 kfree(params); 3773 } 3774 3775 hci_update_background_scan(hdev); 3776 3777 BT_DBG("All LE connection parameters were removed"); 3778 } 3779 3780 static void inquiry_complete(struct hci_dev *hdev, u8 status) 3781 { 3782 if (status) { 3783 BT_ERR("Failed to start inquiry: status %d", status); 3784 3785 hci_dev_lock(hdev); 3786 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 3787 hci_dev_unlock(hdev); 3788 return; 3789 } 3790 } 3791 3792 static void le_scan_disable_work_complete(struct hci_dev *hdev, u8 status) 3793 { 3794 /* General inquiry access code (GIAC) */ 3795 u8 lap[3] = { 0x33, 0x8b, 0x9e }; 3796 struct hci_request req; 3797 struct hci_cp_inquiry cp; 3798 int err; 3799 3800 if (status) { 3801 BT_ERR("Failed to disable LE scanning: status %d", status); 3802 return; 3803 } 3804 3805 switch (hdev->discovery.type) { 3806 case DISCOV_TYPE_LE: 3807 hci_dev_lock(hdev); 3808 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 3809 hci_dev_unlock(hdev); 3810 break; 3811 3812 case DISCOV_TYPE_INTERLEAVED: 3813 hci_req_init(&req, hdev); 3814 3815 memset(&cp, 0, sizeof(cp)); 3816 memcpy(&cp.lap, lap, sizeof(cp.lap)); 3817 cp.length = DISCOV_INTERLEAVED_INQUIRY_LEN; 3818 hci_req_add(&req, HCI_OP_INQUIRY, sizeof(cp), &cp); 3819 3820 hci_dev_lock(hdev); 3821 3822 hci_inquiry_cache_flush(hdev); 3823 3824 err = hci_req_run(&req, inquiry_complete); 3825 if (err) { 3826 BT_ERR("Inquiry request failed: err %d", err); 3827 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 3828 } 3829 3830 hci_dev_unlock(hdev); 3831 break; 3832 } 3833 } 3834 3835 static void le_scan_disable_work(struct work_struct *work) 3836 { 3837 struct hci_dev *hdev = container_of(work, struct hci_dev, 3838 le_scan_disable.work); 3839 struct hci_request req; 3840 int err; 3841 3842 BT_DBG("%s", hdev->name); 3843 3844 hci_req_init(&req, hdev); 3845 3846 hci_req_add_le_scan_disable(&req); 3847 3848 err = hci_req_run(&req, le_scan_disable_work_complete); 3849 if (err) 3850 BT_ERR("Disable LE scanning request failed: err %d", err); 3851 } 3852 3853 static void set_random_addr(struct hci_request *req, bdaddr_t *rpa) 3854 { 3855 struct hci_dev *hdev = req->hdev; 3856 3857 /* If we're advertising or initiating an LE connection we can't 3858 * go ahead and change the random address at this time. This is 3859 * because the eventual initiator address used for the 3860 * subsequently created connection will be undefined (some 3861 * controllers use the new address and others the one we had 3862 * when the operation started). 3863 * 3864 * In this kind of scenario skip the update and let the random 3865 * address be updated at the next cycle. 3866 */ 3867 if (test_bit(HCI_LE_ADV, &hdev->dev_flags) || 3868 hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT)) { 3869 BT_DBG("Deferring random address update"); 3870 return; 3871 } 3872 3873 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa); 3874 } 3875 3876 int hci_update_random_address(struct hci_request *req, bool require_privacy, 3877 u8 *own_addr_type) 3878 { 3879 struct hci_dev *hdev = req->hdev; 3880 int err; 3881 3882 /* If privacy is enabled use a resolvable private address. If 3883 * current RPA has expired or there is something else than 3884 * the current RPA in use, then generate a new one. 3885 */ 3886 if (test_bit(HCI_PRIVACY, &hdev->dev_flags)) { 3887 int to; 3888 3889 *own_addr_type = ADDR_LE_DEV_RANDOM; 3890 3891 if (!test_and_clear_bit(HCI_RPA_EXPIRED, &hdev->dev_flags) && 3892 !bacmp(&hdev->random_addr, &hdev->rpa)) 3893 return 0; 3894 3895 err = smp_generate_rpa(hdev->tfm_aes, hdev->irk, &hdev->rpa); 3896 if (err < 0) { 3897 BT_ERR("%s failed to generate new RPA", hdev->name); 3898 return err; 3899 } 3900 3901 set_random_addr(req, &hdev->rpa); 3902 3903 to = msecs_to_jiffies(hdev->rpa_timeout * 1000); 3904 queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to); 3905 3906 return 0; 3907 } 3908 3909 /* In case of required privacy without resolvable private address, 3910 * use an unresolvable private address. This is useful for active 3911 * scanning and non-connectable advertising. 3912 */ 3913 if (require_privacy) { 3914 bdaddr_t urpa; 3915 3916 get_random_bytes(&urpa, 6); 3917 urpa.b[5] &= 0x3f; /* Clear two most significant bits */ 3918 3919 *own_addr_type = ADDR_LE_DEV_RANDOM; 3920 set_random_addr(req, &urpa); 3921 return 0; 3922 } 3923 3924 /* If forcing static address is in use or there is no public 3925 * address use the static address as random address (but skip 3926 * the HCI command if the current random address is already the 3927 * static one. 3928 */ 3929 if (test_bit(HCI_FORCE_STATIC_ADDR, &hdev->dbg_flags) || 3930 !bacmp(&hdev->bdaddr, BDADDR_ANY)) { 3931 *own_addr_type = ADDR_LE_DEV_RANDOM; 3932 if (bacmp(&hdev->static_addr, &hdev->random_addr)) 3933 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, 3934 &hdev->static_addr); 3935 return 0; 3936 } 3937 3938 /* Neither privacy nor static address is being used so use a 3939 * public address. 3940 */ 3941 *own_addr_type = ADDR_LE_DEV_PUBLIC; 3942 3943 return 0; 3944 } 3945 3946 /* Copy the Identity Address of the controller. 3947 * 3948 * If the controller has a public BD_ADDR, then by default use that one. 3949 * If this is a LE only controller without a public address, default to 3950 * the static random address. 3951 * 3952 * For debugging purposes it is possible to force controllers with a 3953 * public address to use the static random address instead. 3954 */ 3955 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr, 3956 u8 *bdaddr_type) 3957 { 3958 if (test_bit(HCI_FORCE_STATIC_ADDR, &hdev->dbg_flags) || 3959 !bacmp(&hdev->bdaddr, BDADDR_ANY)) { 3960 bacpy(bdaddr, &hdev->static_addr); 3961 *bdaddr_type = ADDR_LE_DEV_RANDOM; 3962 } else { 3963 bacpy(bdaddr, &hdev->bdaddr); 3964 *bdaddr_type = ADDR_LE_DEV_PUBLIC; 3965 } 3966 } 3967 3968 /* Alloc HCI device */ 3969 struct hci_dev *hci_alloc_dev(void) 3970 { 3971 struct hci_dev *hdev; 3972 3973 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL); 3974 if (!hdev) 3975 return NULL; 3976 3977 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1); 3978 hdev->esco_type = (ESCO_HV1); 3979 hdev->link_mode = (HCI_LM_ACCEPT); 3980 hdev->num_iac = 0x01; /* One IAC support is mandatory */ 3981 hdev->io_capability = 0x03; /* No Input No Output */ 3982 hdev->manufacturer = 0xffff; /* Default to internal use */ 3983 hdev->inq_tx_power = HCI_TX_POWER_INVALID; 3984 hdev->adv_tx_power = HCI_TX_POWER_INVALID; 3985 3986 hdev->sniff_max_interval = 800; 3987 hdev->sniff_min_interval = 80; 3988 3989 hdev->le_adv_channel_map = 0x07; 3990 hdev->le_adv_min_interval = 0x0800; 3991 hdev->le_adv_max_interval = 0x0800; 3992 hdev->le_scan_interval = 0x0060; 3993 hdev->le_scan_window = 0x0030; 3994 hdev->le_conn_min_interval = 0x0028; 3995 hdev->le_conn_max_interval = 0x0038; 3996 hdev->le_conn_latency = 0x0000; 3997 hdev->le_supv_timeout = 0x002a; 3998 3999 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT; 4000 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT; 4001 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE; 4002 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE; 4003 4004 mutex_init(&hdev->lock); 4005 mutex_init(&hdev->req_lock); 4006 4007 INIT_LIST_HEAD(&hdev->mgmt_pending); 4008 INIT_LIST_HEAD(&hdev->blacklist); 4009 INIT_LIST_HEAD(&hdev->whitelist); 4010 INIT_LIST_HEAD(&hdev->uuids); 4011 INIT_LIST_HEAD(&hdev->link_keys); 4012 INIT_LIST_HEAD(&hdev->long_term_keys); 4013 INIT_LIST_HEAD(&hdev->identity_resolving_keys); 4014 INIT_LIST_HEAD(&hdev->remote_oob_data); 4015 INIT_LIST_HEAD(&hdev->le_white_list); 4016 INIT_LIST_HEAD(&hdev->le_conn_params); 4017 INIT_LIST_HEAD(&hdev->pend_le_conns); 4018 INIT_LIST_HEAD(&hdev->pend_le_reports); 4019 INIT_LIST_HEAD(&hdev->conn_hash.list); 4020 4021 INIT_WORK(&hdev->rx_work, hci_rx_work); 4022 INIT_WORK(&hdev->cmd_work, hci_cmd_work); 4023 INIT_WORK(&hdev->tx_work, hci_tx_work); 4024 INIT_WORK(&hdev->power_on, hci_power_on); 4025 4026 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off); 4027 INIT_DELAYED_WORK(&hdev->discov_off, hci_discov_off); 4028 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work); 4029 4030 skb_queue_head_init(&hdev->rx_q); 4031 skb_queue_head_init(&hdev->cmd_q); 4032 skb_queue_head_init(&hdev->raw_q); 4033 4034 init_waitqueue_head(&hdev->req_wait_q); 4035 4036 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout); 4037 4038 hci_init_sysfs(hdev); 4039 discovery_init(hdev); 4040 4041 return hdev; 4042 } 4043 EXPORT_SYMBOL(hci_alloc_dev); 4044 4045 /* Free HCI device */ 4046 void hci_free_dev(struct hci_dev *hdev) 4047 { 4048 /* will free via device release */ 4049 put_device(&hdev->dev); 4050 } 4051 EXPORT_SYMBOL(hci_free_dev); 4052 4053 /* Register HCI device */ 4054 int hci_register_dev(struct hci_dev *hdev) 4055 { 4056 int id, error; 4057 4058 if (!hdev->open || !hdev->close || !hdev->send) 4059 return -EINVAL; 4060 4061 /* Do not allow HCI_AMP devices to register at index 0, 4062 * so the index can be used as the AMP controller ID. 4063 */ 4064 switch (hdev->dev_type) { 4065 case HCI_BREDR: 4066 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL); 4067 break; 4068 case HCI_AMP: 4069 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL); 4070 break; 4071 default: 4072 return -EINVAL; 4073 } 4074 4075 if (id < 0) 4076 return id; 4077 4078 sprintf(hdev->name, "hci%d", id); 4079 hdev->id = id; 4080 4081 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 4082 4083 hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND | 4084 WQ_MEM_RECLAIM, 1, hdev->name); 4085 if (!hdev->workqueue) { 4086 error = -ENOMEM; 4087 goto err; 4088 } 4089 4090 hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND | 4091 WQ_MEM_RECLAIM, 1, hdev->name); 4092 if (!hdev->req_workqueue) { 4093 destroy_workqueue(hdev->workqueue); 4094 error = -ENOMEM; 4095 goto err; 4096 } 4097 4098 if (!IS_ERR_OR_NULL(bt_debugfs)) 4099 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs); 4100 4101 dev_set_name(&hdev->dev, "%s", hdev->name); 4102 4103 hdev->tfm_aes = crypto_alloc_blkcipher("ecb(aes)", 0, 4104 CRYPTO_ALG_ASYNC); 4105 if (IS_ERR(hdev->tfm_aes)) { 4106 BT_ERR("Unable to create crypto context"); 4107 error = PTR_ERR(hdev->tfm_aes); 4108 hdev->tfm_aes = NULL; 4109 goto err_wqueue; 4110 } 4111 4112 error = device_add(&hdev->dev); 4113 if (error < 0) 4114 goto err_tfm; 4115 4116 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev, 4117 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, 4118 hdev); 4119 if (hdev->rfkill) { 4120 if (rfkill_register(hdev->rfkill) < 0) { 4121 rfkill_destroy(hdev->rfkill); 4122 hdev->rfkill = NULL; 4123 } 4124 } 4125 4126 if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) 4127 set_bit(HCI_RFKILLED, &hdev->dev_flags); 4128 4129 set_bit(HCI_SETUP, &hdev->dev_flags); 4130 set_bit(HCI_AUTO_OFF, &hdev->dev_flags); 4131 4132 if (hdev->dev_type == HCI_BREDR) { 4133 /* Assume BR/EDR support until proven otherwise (such as 4134 * through reading supported features during init. 4135 */ 4136 set_bit(HCI_BREDR_ENABLED, &hdev->dev_flags); 4137 } 4138 4139 write_lock(&hci_dev_list_lock); 4140 list_add(&hdev->list, &hci_dev_list); 4141 write_unlock(&hci_dev_list_lock); 4142 4143 /* Devices that are marked for raw-only usage are unconfigured 4144 * and should not be included in normal operation. 4145 */ 4146 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 4147 set_bit(HCI_UNCONFIGURED, &hdev->dev_flags); 4148 4149 hci_notify(hdev, HCI_DEV_REG); 4150 hci_dev_hold(hdev); 4151 4152 queue_work(hdev->req_workqueue, &hdev->power_on); 4153 4154 return id; 4155 4156 err_tfm: 4157 crypto_free_blkcipher(hdev->tfm_aes); 4158 err_wqueue: 4159 destroy_workqueue(hdev->workqueue); 4160 destroy_workqueue(hdev->req_workqueue); 4161 err: 4162 ida_simple_remove(&hci_index_ida, hdev->id); 4163 4164 return error; 4165 } 4166 EXPORT_SYMBOL(hci_register_dev); 4167 4168 /* Unregister HCI device */ 4169 void hci_unregister_dev(struct hci_dev *hdev) 4170 { 4171 int i, id; 4172 4173 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 4174 4175 set_bit(HCI_UNREGISTER, &hdev->dev_flags); 4176 4177 id = hdev->id; 4178 4179 write_lock(&hci_dev_list_lock); 4180 list_del(&hdev->list); 4181 write_unlock(&hci_dev_list_lock); 4182 4183 hci_dev_do_close(hdev); 4184 4185 for (i = 0; i < NUM_REASSEMBLY; i++) 4186 kfree_skb(hdev->reassembly[i]); 4187 4188 cancel_work_sync(&hdev->power_on); 4189 4190 if (!test_bit(HCI_INIT, &hdev->flags) && 4191 !test_bit(HCI_SETUP, &hdev->dev_flags) && 4192 !test_bit(HCI_CONFIG, &hdev->dev_flags)) { 4193 hci_dev_lock(hdev); 4194 mgmt_index_removed(hdev); 4195 hci_dev_unlock(hdev); 4196 } 4197 4198 /* mgmt_index_removed should take care of emptying the 4199 * pending list */ 4200 BUG_ON(!list_empty(&hdev->mgmt_pending)); 4201 4202 hci_notify(hdev, HCI_DEV_UNREG); 4203 4204 if (hdev->rfkill) { 4205 rfkill_unregister(hdev->rfkill); 4206 rfkill_destroy(hdev->rfkill); 4207 } 4208 4209 if (hdev->tfm_aes) 4210 crypto_free_blkcipher(hdev->tfm_aes); 4211 4212 device_del(&hdev->dev); 4213 4214 debugfs_remove_recursive(hdev->debugfs); 4215 4216 destroy_workqueue(hdev->workqueue); 4217 destroy_workqueue(hdev->req_workqueue); 4218 4219 hci_dev_lock(hdev); 4220 hci_bdaddr_list_clear(&hdev->blacklist); 4221 hci_bdaddr_list_clear(&hdev->whitelist); 4222 hci_uuids_clear(hdev); 4223 hci_link_keys_clear(hdev); 4224 hci_smp_ltks_clear(hdev); 4225 hci_smp_irks_clear(hdev); 4226 hci_remote_oob_data_clear(hdev); 4227 hci_bdaddr_list_clear(&hdev->le_white_list); 4228 hci_conn_params_clear_all(hdev); 4229 hci_dev_unlock(hdev); 4230 4231 hci_dev_put(hdev); 4232 4233 ida_simple_remove(&hci_index_ida, id); 4234 } 4235 EXPORT_SYMBOL(hci_unregister_dev); 4236 4237 /* Suspend HCI device */ 4238 int hci_suspend_dev(struct hci_dev *hdev) 4239 { 4240 hci_notify(hdev, HCI_DEV_SUSPEND); 4241 return 0; 4242 } 4243 EXPORT_SYMBOL(hci_suspend_dev); 4244 4245 /* Resume HCI device */ 4246 int hci_resume_dev(struct hci_dev *hdev) 4247 { 4248 hci_notify(hdev, HCI_DEV_RESUME); 4249 return 0; 4250 } 4251 EXPORT_SYMBOL(hci_resume_dev); 4252 4253 /* Receive frame from HCI drivers */ 4254 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb) 4255 { 4256 if (!hdev || (!test_bit(HCI_UP, &hdev->flags) 4257 && !test_bit(HCI_INIT, &hdev->flags))) { 4258 kfree_skb(skb); 4259 return -ENXIO; 4260 } 4261 4262 /* Incoming skb */ 4263 bt_cb(skb)->incoming = 1; 4264 4265 /* Time stamp */ 4266 __net_timestamp(skb); 4267 4268 skb_queue_tail(&hdev->rx_q, skb); 4269 queue_work(hdev->workqueue, &hdev->rx_work); 4270 4271 return 0; 4272 } 4273 EXPORT_SYMBOL(hci_recv_frame); 4274 4275 static int hci_reassembly(struct hci_dev *hdev, int type, void *data, 4276 int count, __u8 index) 4277 { 4278 int len = 0; 4279 int hlen = 0; 4280 int remain = count; 4281 struct sk_buff *skb; 4282 struct bt_skb_cb *scb; 4283 4284 if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) || 4285 index >= NUM_REASSEMBLY) 4286 return -EILSEQ; 4287 4288 skb = hdev->reassembly[index]; 4289 4290 if (!skb) { 4291 switch (type) { 4292 case HCI_ACLDATA_PKT: 4293 len = HCI_MAX_FRAME_SIZE; 4294 hlen = HCI_ACL_HDR_SIZE; 4295 break; 4296 case HCI_EVENT_PKT: 4297 len = HCI_MAX_EVENT_SIZE; 4298 hlen = HCI_EVENT_HDR_SIZE; 4299 break; 4300 case HCI_SCODATA_PKT: 4301 len = HCI_MAX_SCO_SIZE; 4302 hlen = HCI_SCO_HDR_SIZE; 4303 break; 4304 } 4305 4306 skb = bt_skb_alloc(len, GFP_ATOMIC); 4307 if (!skb) 4308 return -ENOMEM; 4309 4310 scb = (void *) skb->cb; 4311 scb->expect = hlen; 4312 scb->pkt_type = type; 4313 4314 hdev->reassembly[index] = skb; 4315 } 4316 4317 while (count) { 4318 scb = (void *) skb->cb; 4319 len = min_t(uint, scb->expect, count); 4320 4321 memcpy(skb_put(skb, len), data, len); 4322 4323 count -= len; 4324 data += len; 4325 scb->expect -= len; 4326 remain = count; 4327 4328 switch (type) { 4329 case HCI_EVENT_PKT: 4330 if (skb->len == HCI_EVENT_HDR_SIZE) { 4331 struct hci_event_hdr *h = hci_event_hdr(skb); 4332 scb->expect = h->plen; 4333 4334 if (skb_tailroom(skb) < scb->expect) { 4335 kfree_skb(skb); 4336 hdev->reassembly[index] = NULL; 4337 return -ENOMEM; 4338 } 4339 } 4340 break; 4341 4342 case HCI_ACLDATA_PKT: 4343 if (skb->len == HCI_ACL_HDR_SIZE) { 4344 struct hci_acl_hdr *h = hci_acl_hdr(skb); 4345 scb->expect = __le16_to_cpu(h->dlen); 4346 4347 if (skb_tailroom(skb) < scb->expect) { 4348 kfree_skb(skb); 4349 hdev->reassembly[index] = NULL; 4350 return -ENOMEM; 4351 } 4352 } 4353 break; 4354 4355 case HCI_SCODATA_PKT: 4356 if (skb->len == HCI_SCO_HDR_SIZE) { 4357 struct hci_sco_hdr *h = hci_sco_hdr(skb); 4358 scb->expect = h->dlen; 4359 4360 if (skb_tailroom(skb) < scb->expect) { 4361 kfree_skb(skb); 4362 hdev->reassembly[index] = NULL; 4363 return -ENOMEM; 4364 } 4365 } 4366 break; 4367 } 4368 4369 if (scb->expect == 0) { 4370 /* Complete frame */ 4371 4372 bt_cb(skb)->pkt_type = type; 4373 hci_recv_frame(hdev, skb); 4374 4375 hdev->reassembly[index] = NULL; 4376 return remain; 4377 } 4378 } 4379 4380 return remain; 4381 } 4382 4383 int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count) 4384 { 4385 int rem = 0; 4386 4387 if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) 4388 return -EILSEQ; 4389 4390 while (count) { 4391 rem = hci_reassembly(hdev, type, data, count, type - 1); 4392 if (rem < 0) 4393 return rem; 4394 4395 data += (count - rem); 4396 count = rem; 4397 } 4398 4399 return rem; 4400 } 4401 EXPORT_SYMBOL(hci_recv_fragment); 4402 4403 #define STREAM_REASSEMBLY 0 4404 4405 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count) 4406 { 4407 int type; 4408 int rem = 0; 4409 4410 while (count) { 4411 struct sk_buff *skb = hdev->reassembly[STREAM_REASSEMBLY]; 4412 4413 if (!skb) { 4414 struct { char type; } *pkt; 4415 4416 /* Start of the frame */ 4417 pkt = data; 4418 type = pkt->type; 4419 4420 data++; 4421 count--; 4422 } else 4423 type = bt_cb(skb)->pkt_type; 4424 4425 rem = hci_reassembly(hdev, type, data, count, 4426 STREAM_REASSEMBLY); 4427 if (rem < 0) 4428 return rem; 4429 4430 data += (count - rem); 4431 count = rem; 4432 } 4433 4434 return rem; 4435 } 4436 EXPORT_SYMBOL(hci_recv_stream_fragment); 4437 4438 /* ---- Interface to upper protocols ---- */ 4439 4440 int hci_register_cb(struct hci_cb *cb) 4441 { 4442 BT_DBG("%p name %s", cb, cb->name); 4443 4444 write_lock(&hci_cb_list_lock); 4445 list_add(&cb->list, &hci_cb_list); 4446 write_unlock(&hci_cb_list_lock); 4447 4448 return 0; 4449 } 4450 EXPORT_SYMBOL(hci_register_cb); 4451 4452 int hci_unregister_cb(struct hci_cb *cb) 4453 { 4454 BT_DBG("%p name %s", cb, cb->name); 4455 4456 write_lock(&hci_cb_list_lock); 4457 list_del(&cb->list); 4458 write_unlock(&hci_cb_list_lock); 4459 4460 return 0; 4461 } 4462 EXPORT_SYMBOL(hci_unregister_cb); 4463 4464 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb) 4465 { 4466 int err; 4467 4468 BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len); 4469 4470 /* Time stamp */ 4471 __net_timestamp(skb); 4472 4473 /* Send copy to monitor */ 4474 hci_send_to_monitor(hdev, skb); 4475 4476 if (atomic_read(&hdev->promisc)) { 4477 /* Send copy to the sockets */ 4478 hci_send_to_sock(hdev, skb); 4479 } 4480 4481 /* Get rid of skb owner, prior to sending to the driver. */ 4482 skb_orphan(skb); 4483 4484 err = hdev->send(hdev, skb); 4485 if (err < 0) { 4486 BT_ERR("%s sending frame failed (%d)", hdev->name, err); 4487 kfree_skb(skb); 4488 } 4489 } 4490 4491 void hci_req_init(struct hci_request *req, struct hci_dev *hdev) 4492 { 4493 skb_queue_head_init(&req->cmd_q); 4494 req->hdev = hdev; 4495 req->err = 0; 4496 } 4497 4498 int hci_req_run(struct hci_request *req, hci_req_complete_t complete) 4499 { 4500 struct hci_dev *hdev = req->hdev; 4501 struct sk_buff *skb; 4502 unsigned long flags; 4503 4504 BT_DBG("length %u", skb_queue_len(&req->cmd_q)); 4505 4506 /* If an error occured during request building, remove all HCI 4507 * commands queued on the HCI request queue. 4508 */ 4509 if (req->err) { 4510 skb_queue_purge(&req->cmd_q); 4511 return req->err; 4512 } 4513 4514 /* Do not allow empty requests */ 4515 if (skb_queue_empty(&req->cmd_q)) 4516 return -ENODATA; 4517 4518 skb = skb_peek_tail(&req->cmd_q); 4519 bt_cb(skb)->req.complete = complete; 4520 4521 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 4522 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); 4523 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 4524 4525 queue_work(hdev->workqueue, &hdev->cmd_work); 4526 4527 return 0; 4528 } 4529 4530 bool hci_req_pending(struct hci_dev *hdev) 4531 { 4532 return (hdev->req_status == HCI_REQ_PEND); 4533 } 4534 4535 static struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, 4536 u32 plen, const void *param) 4537 { 4538 int len = HCI_COMMAND_HDR_SIZE + plen; 4539 struct hci_command_hdr *hdr; 4540 struct sk_buff *skb; 4541 4542 skb = bt_skb_alloc(len, GFP_ATOMIC); 4543 if (!skb) 4544 return NULL; 4545 4546 hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE); 4547 hdr->opcode = cpu_to_le16(opcode); 4548 hdr->plen = plen; 4549 4550 if (plen) 4551 memcpy(skb_put(skb, plen), param, plen); 4552 4553 BT_DBG("skb len %d", skb->len); 4554 4555 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT; 4556 4557 return skb; 4558 } 4559 4560 /* Send HCI command */ 4561 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, 4562 const void *param) 4563 { 4564 struct sk_buff *skb; 4565 4566 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen); 4567 4568 skb = hci_prepare_cmd(hdev, opcode, plen, param); 4569 if (!skb) { 4570 BT_ERR("%s no memory for command", hdev->name); 4571 return -ENOMEM; 4572 } 4573 4574 /* Stand-alone HCI commands must be flaged as 4575 * single-command requests. 4576 */ 4577 bt_cb(skb)->req.start = true; 4578 4579 skb_queue_tail(&hdev->cmd_q, skb); 4580 queue_work(hdev->workqueue, &hdev->cmd_work); 4581 4582 return 0; 4583 } 4584 4585 /* Queue a command to an asynchronous HCI request */ 4586 void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen, 4587 const void *param, u8 event) 4588 { 4589 struct hci_dev *hdev = req->hdev; 4590 struct sk_buff *skb; 4591 4592 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen); 4593 4594 /* If an error occured during request building, there is no point in 4595 * queueing the HCI command. We can simply return. 4596 */ 4597 if (req->err) 4598 return; 4599 4600 skb = hci_prepare_cmd(hdev, opcode, plen, param); 4601 if (!skb) { 4602 BT_ERR("%s no memory for command (opcode 0x%4.4x)", 4603 hdev->name, opcode); 4604 req->err = -ENOMEM; 4605 return; 4606 } 4607 4608 if (skb_queue_empty(&req->cmd_q)) 4609 bt_cb(skb)->req.start = true; 4610 4611 bt_cb(skb)->req.event = event; 4612 4613 skb_queue_tail(&req->cmd_q, skb); 4614 } 4615 4616 void hci_req_add(struct hci_request *req, u16 opcode, u32 plen, 4617 const void *param) 4618 { 4619 hci_req_add_ev(req, opcode, plen, param, 0); 4620 } 4621 4622 /* Get data from the previously sent command */ 4623 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode) 4624 { 4625 struct hci_command_hdr *hdr; 4626 4627 if (!hdev->sent_cmd) 4628 return NULL; 4629 4630 hdr = (void *) hdev->sent_cmd->data; 4631 4632 if (hdr->opcode != cpu_to_le16(opcode)) 4633 return NULL; 4634 4635 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode); 4636 4637 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE; 4638 } 4639 4640 /* Send ACL data */ 4641 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags) 4642 { 4643 struct hci_acl_hdr *hdr; 4644 int len = skb->len; 4645 4646 skb_push(skb, HCI_ACL_HDR_SIZE); 4647 skb_reset_transport_header(skb); 4648 hdr = (struct hci_acl_hdr *)skb_transport_header(skb); 4649 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags)); 4650 hdr->dlen = cpu_to_le16(len); 4651 } 4652 4653 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue, 4654 struct sk_buff *skb, __u16 flags) 4655 { 4656 struct hci_conn *conn = chan->conn; 4657 struct hci_dev *hdev = conn->hdev; 4658 struct sk_buff *list; 4659 4660 skb->len = skb_headlen(skb); 4661 skb->data_len = 0; 4662 4663 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT; 4664 4665 switch (hdev->dev_type) { 4666 case HCI_BREDR: 4667 hci_add_acl_hdr(skb, conn->handle, flags); 4668 break; 4669 case HCI_AMP: 4670 hci_add_acl_hdr(skb, chan->handle, flags); 4671 break; 4672 default: 4673 BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type); 4674 return; 4675 } 4676 4677 list = skb_shinfo(skb)->frag_list; 4678 if (!list) { 4679 /* Non fragmented */ 4680 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len); 4681 4682 skb_queue_tail(queue, skb); 4683 } else { 4684 /* Fragmented */ 4685 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 4686 4687 skb_shinfo(skb)->frag_list = NULL; 4688 4689 /* Queue all fragments atomically */ 4690 spin_lock(&queue->lock); 4691 4692 __skb_queue_tail(queue, skb); 4693 4694 flags &= ~ACL_START; 4695 flags |= ACL_CONT; 4696 do { 4697 skb = list; list = list->next; 4698 4699 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT; 4700 hci_add_acl_hdr(skb, conn->handle, flags); 4701 4702 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 4703 4704 __skb_queue_tail(queue, skb); 4705 } while (list); 4706 4707 spin_unlock(&queue->lock); 4708 } 4709 } 4710 4711 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags) 4712 { 4713 struct hci_dev *hdev = chan->conn->hdev; 4714 4715 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags); 4716 4717 hci_queue_acl(chan, &chan->data_q, skb, flags); 4718 4719 queue_work(hdev->workqueue, &hdev->tx_work); 4720 } 4721 4722 /* Send SCO data */ 4723 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb) 4724 { 4725 struct hci_dev *hdev = conn->hdev; 4726 struct hci_sco_hdr hdr; 4727 4728 BT_DBG("%s len %d", hdev->name, skb->len); 4729 4730 hdr.handle = cpu_to_le16(conn->handle); 4731 hdr.dlen = skb->len; 4732 4733 skb_push(skb, HCI_SCO_HDR_SIZE); 4734 skb_reset_transport_header(skb); 4735 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE); 4736 4737 bt_cb(skb)->pkt_type = HCI_SCODATA_PKT; 4738 4739 skb_queue_tail(&conn->data_q, skb); 4740 queue_work(hdev->workqueue, &hdev->tx_work); 4741 } 4742 4743 /* ---- HCI TX task (outgoing data) ---- */ 4744 4745 /* HCI Connection scheduler */ 4746 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, 4747 int *quote) 4748 { 4749 struct hci_conn_hash *h = &hdev->conn_hash; 4750 struct hci_conn *conn = NULL, *c; 4751 unsigned int num = 0, min = ~0; 4752 4753 /* We don't have to lock device here. Connections are always 4754 * added and removed with TX task disabled. */ 4755 4756 rcu_read_lock(); 4757 4758 list_for_each_entry_rcu(c, &h->list, list) { 4759 if (c->type != type || skb_queue_empty(&c->data_q)) 4760 continue; 4761 4762 if (c->state != BT_CONNECTED && c->state != BT_CONFIG) 4763 continue; 4764 4765 num++; 4766 4767 if (c->sent < min) { 4768 min = c->sent; 4769 conn = c; 4770 } 4771 4772 if (hci_conn_num(hdev, type) == num) 4773 break; 4774 } 4775 4776 rcu_read_unlock(); 4777 4778 if (conn) { 4779 int cnt, q; 4780 4781 switch (conn->type) { 4782 case ACL_LINK: 4783 cnt = hdev->acl_cnt; 4784 break; 4785 case SCO_LINK: 4786 case ESCO_LINK: 4787 cnt = hdev->sco_cnt; 4788 break; 4789 case LE_LINK: 4790 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 4791 break; 4792 default: 4793 cnt = 0; 4794 BT_ERR("Unknown link type"); 4795 } 4796 4797 q = cnt / num; 4798 *quote = q ? q : 1; 4799 } else 4800 *quote = 0; 4801 4802 BT_DBG("conn %p quote %d", conn, *quote); 4803 return conn; 4804 } 4805 4806 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type) 4807 { 4808 struct hci_conn_hash *h = &hdev->conn_hash; 4809 struct hci_conn *c; 4810 4811 BT_ERR("%s link tx timeout", hdev->name); 4812 4813 rcu_read_lock(); 4814 4815 /* Kill stalled connections */ 4816 list_for_each_entry_rcu(c, &h->list, list) { 4817 if (c->type == type && c->sent) { 4818 BT_ERR("%s killing stalled connection %pMR", 4819 hdev->name, &c->dst); 4820 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM); 4821 } 4822 } 4823 4824 rcu_read_unlock(); 4825 } 4826 4827 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type, 4828 int *quote) 4829 { 4830 struct hci_conn_hash *h = &hdev->conn_hash; 4831 struct hci_chan *chan = NULL; 4832 unsigned int num = 0, min = ~0, cur_prio = 0; 4833 struct hci_conn *conn; 4834 int cnt, q, conn_num = 0; 4835 4836 BT_DBG("%s", hdev->name); 4837 4838 rcu_read_lock(); 4839 4840 list_for_each_entry_rcu(conn, &h->list, list) { 4841 struct hci_chan *tmp; 4842 4843 if (conn->type != type) 4844 continue; 4845 4846 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 4847 continue; 4848 4849 conn_num++; 4850 4851 list_for_each_entry_rcu(tmp, &conn->chan_list, list) { 4852 struct sk_buff *skb; 4853 4854 if (skb_queue_empty(&tmp->data_q)) 4855 continue; 4856 4857 skb = skb_peek(&tmp->data_q); 4858 if (skb->priority < cur_prio) 4859 continue; 4860 4861 if (skb->priority > cur_prio) { 4862 num = 0; 4863 min = ~0; 4864 cur_prio = skb->priority; 4865 } 4866 4867 num++; 4868 4869 if (conn->sent < min) { 4870 min = conn->sent; 4871 chan = tmp; 4872 } 4873 } 4874 4875 if (hci_conn_num(hdev, type) == conn_num) 4876 break; 4877 } 4878 4879 rcu_read_unlock(); 4880 4881 if (!chan) 4882 return NULL; 4883 4884 switch (chan->conn->type) { 4885 case ACL_LINK: 4886 cnt = hdev->acl_cnt; 4887 break; 4888 case AMP_LINK: 4889 cnt = hdev->block_cnt; 4890 break; 4891 case SCO_LINK: 4892 case ESCO_LINK: 4893 cnt = hdev->sco_cnt; 4894 break; 4895 case LE_LINK: 4896 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 4897 break; 4898 default: 4899 cnt = 0; 4900 BT_ERR("Unknown link type"); 4901 } 4902 4903 q = cnt / num; 4904 *quote = q ? q : 1; 4905 BT_DBG("chan %p quote %d", chan, *quote); 4906 return chan; 4907 } 4908 4909 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type) 4910 { 4911 struct hci_conn_hash *h = &hdev->conn_hash; 4912 struct hci_conn *conn; 4913 int num = 0; 4914 4915 BT_DBG("%s", hdev->name); 4916 4917 rcu_read_lock(); 4918 4919 list_for_each_entry_rcu(conn, &h->list, list) { 4920 struct hci_chan *chan; 4921 4922 if (conn->type != type) 4923 continue; 4924 4925 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 4926 continue; 4927 4928 num++; 4929 4930 list_for_each_entry_rcu(chan, &conn->chan_list, list) { 4931 struct sk_buff *skb; 4932 4933 if (chan->sent) { 4934 chan->sent = 0; 4935 continue; 4936 } 4937 4938 if (skb_queue_empty(&chan->data_q)) 4939 continue; 4940 4941 skb = skb_peek(&chan->data_q); 4942 if (skb->priority >= HCI_PRIO_MAX - 1) 4943 continue; 4944 4945 skb->priority = HCI_PRIO_MAX - 1; 4946 4947 BT_DBG("chan %p skb %p promoted to %d", chan, skb, 4948 skb->priority); 4949 } 4950 4951 if (hci_conn_num(hdev, type) == num) 4952 break; 4953 } 4954 4955 rcu_read_unlock(); 4956 4957 } 4958 4959 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb) 4960 { 4961 /* Calculate count of blocks used by this packet */ 4962 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len); 4963 } 4964 4965 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt) 4966 { 4967 if (!test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) { 4968 /* ACL tx timeout must be longer than maximum 4969 * link supervision timeout (40.9 seconds) */ 4970 if (!cnt && time_after(jiffies, hdev->acl_last_tx + 4971 HCI_ACL_TX_TIMEOUT)) 4972 hci_link_tx_to(hdev, ACL_LINK); 4973 } 4974 } 4975 4976 static void hci_sched_acl_pkt(struct hci_dev *hdev) 4977 { 4978 unsigned int cnt = hdev->acl_cnt; 4979 struct hci_chan *chan; 4980 struct sk_buff *skb; 4981 int quote; 4982 4983 __check_timeout(hdev, cnt); 4984 4985 while (hdev->acl_cnt && 4986 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) { 4987 u32 priority = (skb_peek(&chan->data_q))->priority; 4988 while (quote-- && (skb = skb_peek(&chan->data_q))) { 4989 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 4990 skb->len, skb->priority); 4991 4992 /* Stop if priority has changed */ 4993 if (skb->priority < priority) 4994 break; 4995 4996 skb = skb_dequeue(&chan->data_q); 4997 4998 hci_conn_enter_active_mode(chan->conn, 4999 bt_cb(skb)->force_active); 5000 5001 hci_send_frame(hdev, skb); 5002 hdev->acl_last_tx = jiffies; 5003 5004 hdev->acl_cnt--; 5005 chan->sent++; 5006 chan->conn->sent++; 5007 } 5008 } 5009 5010 if (cnt != hdev->acl_cnt) 5011 hci_prio_recalculate(hdev, ACL_LINK); 5012 } 5013 5014 static void hci_sched_acl_blk(struct hci_dev *hdev) 5015 { 5016 unsigned int cnt = hdev->block_cnt; 5017 struct hci_chan *chan; 5018 struct sk_buff *skb; 5019 int quote; 5020 u8 type; 5021 5022 __check_timeout(hdev, cnt); 5023 5024 BT_DBG("%s", hdev->name); 5025 5026 if (hdev->dev_type == HCI_AMP) 5027 type = AMP_LINK; 5028 else 5029 type = ACL_LINK; 5030 5031 while (hdev->block_cnt > 0 && 5032 (chan = hci_chan_sent(hdev, type, "e))) { 5033 u32 priority = (skb_peek(&chan->data_q))->priority; 5034 while (quote > 0 && (skb = skb_peek(&chan->data_q))) { 5035 int blocks; 5036 5037 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 5038 skb->len, skb->priority); 5039 5040 /* Stop if priority has changed */ 5041 if (skb->priority < priority) 5042 break; 5043 5044 skb = skb_dequeue(&chan->data_q); 5045 5046 blocks = __get_blocks(hdev, skb); 5047 if (blocks > hdev->block_cnt) 5048 return; 5049 5050 hci_conn_enter_active_mode(chan->conn, 5051 bt_cb(skb)->force_active); 5052 5053 hci_send_frame(hdev, skb); 5054 hdev->acl_last_tx = jiffies; 5055 5056 hdev->block_cnt -= blocks; 5057 quote -= blocks; 5058 5059 chan->sent += blocks; 5060 chan->conn->sent += blocks; 5061 } 5062 } 5063 5064 if (cnt != hdev->block_cnt) 5065 hci_prio_recalculate(hdev, type); 5066 } 5067 5068 static void hci_sched_acl(struct hci_dev *hdev) 5069 { 5070 BT_DBG("%s", hdev->name); 5071 5072 /* No ACL link over BR/EDR controller */ 5073 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_BREDR) 5074 return; 5075 5076 /* No AMP link over AMP controller */ 5077 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP) 5078 return; 5079 5080 switch (hdev->flow_ctl_mode) { 5081 case HCI_FLOW_CTL_MODE_PACKET_BASED: 5082 hci_sched_acl_pkt(hdev); 5083 break; 5084 5085 case HCI_FLOW_CTL_MODE_BLOCK_BASED: 5086 hci_sched_acl_blk(hdev); 5087 break; 5088 } 5089 } 5090 5091 /* Schedule SCO */ 5092 static void hci_sched_sco(struct hci_dev *hdev) 5093 { 5094 struct hci_conn *conn; 5095 struct sk_buff *skb; 5096 int quote; 5097 5098 BT_DBG("%s", hdev->name); 5099 5100 if (!hci_conn_num(hdev, SCO_LINK)) 5101 return; 5102 5103 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) { 5104 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 5105 BT_DBG("skb %p len %d", skb, skb->len); 5106 hci_send_frame(hdev, skb); 5107 5108 conn->sent++; 5109 if (conn->sent == ~0) 5110 conn->sent = 0; 5111 } 5112 } 5113 } 5114 5115 static void hci_sched_esco(struct hci_dev *hdev) 5116 { 5117 struct hci_conn *conn; 5118 struct sk_buff *skb; 5119 int quote; 5120 5121 BT_DBG("%s", hdev->name); 5122 5123 if (!hci_conn_num(hdev, ESCO_LINK)) 5124 return; 5125 5126 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, 5127 "e))) { 5128 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 5129 BT_DBG("skb %p len %d", skb, skb->len); 5130 hci_send_frame(hdev, skb); 5131 5132 conn->sent++; 5133 if (conn->sent == ~0) 5134 conn->sent = 0; 5135 } 5136 } 5137 } 5138 5139 static void hci_sched_le(struct hci_dev *hdev) 5140 { 5141 struct hci_chan *chan; 5142 struct sk_buff *skb; 5143 int quote, cnt, tmp; 5144 5145 BT_DBG("%s", hdev->name); 5146 5147 if (!hci_conn_num(hdev, LE_LINK)) 5148 return; 5149 5150 if (!test_bit(HCI_UNCONFIGURED, &hdev->dev_flags)) { 5151 /* LE tx timeout must be longer than maximum 5152 * link supervision timeout (40.9 seconds) */ 5153 if (!hdev->le_cnt && hdev->le_pkts && 5154 time_after(jiffies, hdev->le_last_tx + HZ * 45)) 5155 hci_link_tx_to(hdev, LE_LINK); 5156 } 5157 5158 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt; 5159 tmp = cnt; 5160 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) { 5161 u32 priority = (skb_peek(&chan->data_q))->priority; 5162 while (quote-- && (skb = skb_peek(&chan->data_q))) { 5163 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 5164 skb->len, skb->priority); 5165 5166 /* Stop if priority has changed */ 5167 if (skb->priority < priority) 5168 break; 5169 5170 skb = skb_dequeue(&chan->data_q); 5171 5172 hci_send_frame(hdev, skb); 5173 hdev->le_last_tx = jiffies; 5174 5175 cnt--; 5176 chan->sent++; 5177 chan->conn->sent++; 5178 } 5179 } 5180 5181 if (hdev->le_pkts) 5182 hdev->le_cnt = cnt; 5183 else 5184 hdev->acl_cnt = cnt; 5185 5186 if (cnt != tmp) 5187 hci_prio_recalculate(hdev, LE_LINK); 5188 } 5189 5190 static void hci_tx_work(struct work_struct *work) 5191 { 5192 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work); 5193 struct sk_buff *skb; 5194 5195 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt, 5196 hdev->sco_cnt, hdev->le_cnt); 5197 5198 if (!test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) { 5199 /* Schedule queues and send stuff to HCI driver */ 5200 hci_sched_acl(hdev); 5201 hci_sched_sco(hdev); 5202 hci_sched_esco(hdev); 5203 hci_sched_le(hdev); 5204 } 5205 5206 /* Send next queued raw (unknown type) packet */ 5207 while ((skb = skb_dequeue(&hdev->raw_q))) 5208 hci_send_frame(hdev, skb); 5209 } 5210 5211 /* ----- HCI RX task (incoming data processing) ----- */ 5212 5213 /* ACL data packet */ 5214 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb) 5215 { 5216 struct hci_acl_hdr *hdr = (void *) skb->data; 5217 struct hci_conn *conn; 5218 __u16 handle, flags; 5219 5220 skb_pull(skb, HCI_ACL_HDR_SIZE); 5221 5222 handle = __le16_to_cpu(hdr->handle); 5223 flags = hci_flags(handle); 5224 handle = hci_handle(handle); 5225 5226 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len, 5227 handle, flags); 5228 5229 hdev->stat.acl_rx++; 5230 5231 hci_dev_lock(hdev); 5232 conn = hci_conn_hash_lookup_handle(hdev, handle); 5233 hci_dev_unlock(hdev); 5234 5235 if (conn) { 5236 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF); 5237 5238 /* Send to upper protocol */ 5239 l2cap_recv_acldata(conn, skb, flags); 5240 return; 5241 } else { 5242 BT_ERR("%s ACL packet for unknown connection handle %d", 5243 hdev->name, handle); 5244 } 5245 5246 kfree_skb(skb); 5247 } 5248 5249 /* SCO data packet */ 5250 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb) 5251 { 5252 struct hci_sco_hdr *hdr = (void *) skb->data; 5253 struct hci_conn *conn; 5254 __u16 handle; 5255 5256 skb_pull(skb, HCI_SCO_HDR_SIZE); 5257 5258 handle = __le16_to_cpu(hdr->handle); 5259 5260 BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle); 5261 5262 hdev->stat.sco_rx++; 5263 5264 hci_dev_lock(hdev); 5265 conn = hci_conn_hash_lookup_handle(hdev, handle); 5266 hci_dev_unlock(hdev); 5267 5268 if (conn) { 5269 /* Send to upper protocol */ 5270 sco_recv_scodata(conn, skb); 5271 return; 5272 } else { 5273 BT_ERR("%s SCO packet for unknown connection handle %d", 5274 hdev->name, handle); 5275 } 5276 5277 kfree_skb(skb); 5278 } 5279 5280 static bool hci_req_is_complete(struct hci_dev *hdev) 5281 { 5282 struct sk_buff *skb; 5283 5284 skb = skb_peek(&hdev->cmd_q); 5285 if (!skb) 5286 return true; 5287 5288 return bt_cb(skb)->req.start; 5289 } 5290 5291 static void hci_resend_last(struct hci_dev *hdev) 5292 { 5293 struct hci_command_hdr *sent; 5294 struct sk_buff *skb; 5295 u16 opcode; 5296 5297 if (!hdev->sent_cmd) 5298 return; 5299 5300 sent = (void *) hdev->sent_cmd->data; 5301 opcode = __le16_to_cpu(sent->opcode); 5302 if (opcode == HCI_OP_RESET) 5303 return; 5304 5305 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL); 5306 if (!skb) 5307 return; 5308 5309 skb_queue_head(&hdev->cmd_q, skb); 5310 queue_work(hdev->workqueue, &hdev->cmd_work); 5311 } 5312 5313 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status) 5314 { 5315 hci_req_complete_t req_complete = NULL; 5316 struct sk_buff *skb; 5317 unsigned long flags; 5318 5319 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status); 5320 5321 /* If the completed command doesn't match the last one that was 5322 * sent we need to do special handling of it. 5323 */ 5324 if (!hci_sent_cmd_data(hdev, opcode)) { 5325 /* Some CSR based controllers generate a spontaneous 5326 * reset complete event during init and any pending 5327 * command will never be completed. In such a case we 5328 * need to resend whatever was the last sent 5329 * command. 5330 */ 5331 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET) 5332 hci_resend_last(hdev); 5333 5334 return; 5335 } 5336 5337 /* If the command succeeded and there's still more commands in 5338 * this request the request is not yet complete. 5339 */ 5340 if (!status && !hci_req_is_complete(hdev)) 5341 return; 5342 5343 /* If this was the last command in a request the complete 5344 * callback would be found in hdev->sent_cmd instead of the 5345 * command queue (hdev->cmd_q). 5346 */ 5347 if (hdev->sent_cmd) { 5348 req_complete = bt_cb(hdev->sent_cmd)->req.complete; 5349 5350 if (req_complete) { 5351 /* We must set the complete callback to NULL to 5352 * avoid calling the callback more than once if 5353 * this function gets called again. 5354 */ 5355 bt_cb(hdev->sent_cmd)->req.complete = NULL; 5356 5357 goto call_complete; 5358 } 5359 } 5360 5361 /* Remove all pending commands belonging to this request */ 5362 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 5363 while ((skb = __skb_dequeue(&hdev->cmd_q))) { 5364 if (bt_cb(skb)->req.start) { 5365 __skb_queue_head(&hdev->cmd_q, skb); 5366 break; 5367 } 5368 5369 req_complete = bt_cb(skb)->req.complete; 5370 kfree_skb(skb); 5371 } 5372 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 5373 5374 call_complete: 5375 if (req_complete) 5376 req_complete(hdev, status); 5377 } 5378 5379 static void hci_rx_work(struct work_struct *work) 5380 { 5381 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work); 5382 struct sk_buff *skb; 5383 5384 BT_DBG("%s", hdev->name); 5385 5386 while ((skb = skb_dequeue(&hdev->rx_q))) { 5387 /* Send copy to monitor */ 5388 hci_send_to_monitor(hdev, skb); 5389 5390 if (atomic_read(&hdev->promisc)) { 5391 /* Send copy to the sockets */ 5392 hci_send_to_sock(hdev, skb); 5393 } 5394 5395 if (test_bit(HCI_USER_CHANNEL, &hdev->dev_flags)) { 5396 kfree_skb(skb); 5397 continue; 5398 } 5399 5400 if (test_bit(HCI_INIT, &hdev->flags)) { 5401 /* Don't process data packets in this states. */ 5402 switch (bt_cb(skb)->pkt_type) { 5403 case HCI_ACLDATA_PKT: 5404 case HCI_SCODATA_PKT: 5405 kfree_skb(skb); 5406 continue; 5407 } 5408 } 5409 5410 /* Process frame */ 5411 switch (bt_cb(skb)->pkt_type) { 5412 case HCI_EVENT_PKT: 5413 BT_DBG("%s Event packet", hdev->name); 5414 hci_event_packet(hdev, skb); 5415 break; 5416 5417 case HCI_ACLDATA_PKT: 5418 BT_DBG("%s ACL data packet", hdev->name); 5419 hci_acldata_packet(hdev, skb); 5420 break; 5421 5422 case HCI_SCODATA_PKT: 5423 BT_DBG("%s SCO data packet", hdev->name); 5424 hci_scodata_packet(hdev, skb); 5425 break; 5426 5427 default: 5428 kfree_skb(skb); 5429 break; 5430 } 5431 } 5432 } 5433 5434 static void hci_cmd_work(struct work_struct *work) 5435 { 5436 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work); 5437 struct sk_buff *skb; 5438 5439 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name, 5440 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q)); 5441 5442 /* Send queued commands */ 5443 if (atomic_read(&hdev->cmd_cnt)) { 5444 skb = skb_dequeue(&hdev->cmd_q); 5445 if (!skb) 5446 return; 5447 5448 kfree_skb(hdev->sent_cmd); 5449 5450 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL); 5451 if (hdev->sent_cmd) { 5452 atomic_dec(&hdev->cmd_cnt); 5453 hci_send_frame(hdev, skb); 5454 if (test_bit(HCI_RESET, &hdev->flags)) 5455 cancel_delayed_work(&hdev->cmd_timer); 5456 else 5457 schedule_delayed_work(&hdev->cmd_timer, 5458 HCI_CMD_TIMEOUT); 5459 } else { 5460 skb_queue_head(&hdev->cmd_q, skb); 5461 queue_work(hdev->workqueue, &hdev->cmd_work); 5462 } 5463 } 5464 } 5465 5466 void hci_req_add_le_scan_disable(struct hci_request *req) 5467 { 5468 struct hci_cp_le_set_scan_enable cp; 5469 5470 memset(&cp, 0, sizeof(cp)); 5471 cp.enable = LE_SCAN_DISABLE; 5472 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp); 5473 } 5474 5475 static void add_to_white_list(struct hci_request *req, 5476 struct hci_conn_params *params) 5477 { 5478 struct hci_cp_le_add_to_white_list cp; 5479 5480 cp.bdaddr_type = params->addr_type; 5481 bacpy(&cp.bdaddr, ¶ms->addr); 5482 5483 hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp); 5484 } 5485 5486 static u8 update_white_list(struct hci_request *req) 5487 { 5488 struct hci_dev *hdev = req->hdev; 5489 struct hci_conn_params *params; 5490 struct bdaddr_list *b; 5491 uint8_t white_list_entries = 0; 5492 5493 /* Go through the current white list programmed into the 5494 * controller one by one and check if that address is still 5495 * in the list of pending connections or list of devices to 5496 * report. If not present in either list, then queue the 5497 * command to remove it from the controller. 5498 */ 5499 list_for_each_entry(b, &hdev->le_white_list, list) { 5500 struct hci_cp_le_del_from_white_list cp; 5501 5502 if (hci_pend_le_action_lookup(&hdev->pend_le_conns, 5503 &b->bdaddr, b->bdaddr_type) || 5504 hci_pend_le_action_lookup(&hdev->pend_le_reports, 5505 &b->bdaddr, b->bdaddr_type)) { 5506 white_list_entries++; 5507 continue; 5508 } 5509 5510 cp.bdaddr_type = b->bdaddr_type; 5511 bacpy(&cp.bdaddr, &b->bdaddr); 5512 5513 hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST, 5514 sizeof(cp), &cp); 5515 } 5516 5517 /* Since all no longer valid white list entries have been 5518 * removed, walk through the list of pending connections 5519 * and ensure that any new device gets programmed into 5520 * the controller. 5521 * 5522 * If the list of the devices is larger than the list of 5523 * available white list entries in the controller, then 5524 * just abort and return filer policy value to not use the 5525 * white list. 5526 */ 5527 list_for_each_entry(params, &hdev->pend_le_conns, action) { 5528 if (hci_bdaddr_list_lookup(&hdev->le_white_list, 5529 ¶ms->addr, params->addr_type)) 5530 continue; 5531 5532 if (white_list_entries >= hdev->le_white_list_size) { 5533 /* Select filter policy to accept all advertising */ 5534 return 0x00; 5535 } 5536 5537 if (hci_find_irk_by_addr(hdev, ¶ms->addr, 5538 params->addr_type)) { 5539 /* White list can not be used with RPAs */ 5540 return 0x00; 5541 } 5542 5543 white_list_entries++; 5544 add_to_white_list(req, params); 5545 } 5546 5547 /* After adding all new pending connections, walk through 5548 * the list of pending reports and also add these to the 5549 * white list if there is still space. 5550 */ 5551 list_for_each_entry(params, &hdev->pend_le_reports, action) { 5552 if (hci_bdaddr_list_lookup(&hdev->le_white_list, 5553 ¶ms->addr, params->addr_type)) 5554 continue; 5555 5556 if (white_list_entries >= hdev->le_white_list_size) { 5557 /* Select filter policy to accept all advertising */ 5558 return 0x00; 5559 } 5560 5561 if (hci_find_irk_by_addr(hdev, ¶ms->addr, 5562 params->addr_type)) { 5563 /* White list can not be used with RPAs */ 5564 return 0x00; 5565 } 5566 5567 white_list_entries++; 5568 add_to_white_list(req, params); 5569 } 5570 5571 /* Select filter policy to use white list */ 5572 return 0x01; 5573 } 5574 5575 void hci_req_add_le_passive_scan(struct hci_request *req) 5576 { 5577 struct hci_cp_le_set_scan_param param_cp; 5578 struct hci_cp_le_set_scan_enable enable_cp; 5579 struct hci_dev *hdev = req->hdev; 5580 u8 own_addr_type; 5581 u8 filter_policy; 5582 5583 /* Set require_privacy to false since no SCAN_REQ are send 5584 * during passive scanning. Not using an unresolvable address 5585 * here is important so that peer devices using direct 5586 * advertising with our address will be correctly reported 5587 * by the controller. 5588 */ 5589 if (hci_update_random_address(req, false, &own_addr_type)) 5590 return; 5591 5592 /* Adding or removing entries from the white list must 5593 * happen before enabling scanning. The controller does 5594 * not allow white list modification while scanning. 5595 */ 5596 filter_policy = update_white_list(req); 5597 5598 memset(¶m_cp, 0, sizeof(param_cp)); 5599 param_cp.type = LE_SCAN_PASSIVE; 5600 param_cp.interval = cpu_to_le16(hdev->le_scan_interval); 5601 param_cp.window = cpu_to_le16(hdev->le_scan_window); 5602 param_cp.own_address_type = own_addr_type; 5603 param_cp.filter_policy = filter_policy; 5604 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp), 5605 ¶m_cp); 5606 5607 memset(&enable_cp, 0, sizeof(enable_cp)); 5608 enable_cp.enable = LE_SCAN_ENABLE; 5609 enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; 5610 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp), 5611 &enable_cp); 5612 } 5613 5614 static void update_background_scan_complete(struct hci_dev *hdev, u8 status) 5615 { 5616 if (status) 5617 BT_DBG("HCI request failed to update background scanning: " 5618 "status 0x%2.2x", status); 5619 } 5620 5621 /* This function controls the background scanning based on hdev->pend_le_conns 5622 * list. If there are pending LE connection we start the background scanning, 5623 * otherwise we stop it. 5624 * 5625 * This function requires the caller holds hdev->lock. 5626 */ 5627 void hci_update_background_scan(struct hci_dev *hdev) 5628 { 5629 struct hci_request req; 5630 struct hci_conn *conn; 5631 int err; 5632 5633 if (!test_bit(HCI_UP, &hdev->flags) || 5634 test_bit(HCI_INIT, &hdev->flags) || 5635 test_bit(HCI_SETUP, &hdev->dev_flags) || 5636 test_bit(HCI_CONFIG, &hdev->dev_flags) || 5637 test_bit(HCI_AUTO_OFF, &hdev->dev_flags) || 5638 test_bit(HCI_UNREGISTER, &hdev->dev_flags)) 5639 return; 5640 5641 /* No point in doing scanning if LE support hasn't been enabled */ 5642 if (!test_bit(HCI_LE_ENABLED, &hdev->dev_flags)) 5643 return; 5644 5645 /* If discovery is active don't interfere with it */ 5646 if (hdev->discovery.state != DISCOVERY_STOPPED) 5647 return; 5648 5649 hci_req_init(&req, hdev); 5650 5651 if (list_empty(&hdev->pend_le_conns) && 5652 list_empty(&hdev->pend_le_reports)) { 5653 /* If there is no pending LE connections or devices 5654 * to be scanned for, we should stop the background 5655 * scanning. 5656 */ 5657 5658 /* If controller is not scanning we are done. */ 5659 if (!test_bit(HCI_LE_SCAN, &hdev->dev_flags)) 5660 return; 5661 5662 hci_req_add_le_scan_disable(&req); 5663 5664 BT_DBG("%s stopping background scanning", hdev->name); 5665 } else { 5666 /* If there is at least one pending LE connection, we should 5667 * keep the background scan running. 5668 */ 5669 5670 /* If controller is connecting, we should not start scanning 5671 * since some controllers are not able to scan and connect at 5672 * the same time. 5673 */ 5674 conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT); 5675 if (conn) 5676 return; 5677 5678 /* If controller is currently scanning, we stop it to ensure we 5679 * don't miss any advertising (due to duplicates filter). 5680 */ 5681 if (test_bit(HCI_LE_SCAN, &hdev->dev_flags)) 5682 hci_req_add_le_scan_disable(&req); 5683 5684 hci_req_add_le_passive_scan(&req); 5685 5686 BT_DBG("%s starting background scanning", hdev->name); 5687 } 5688 5689 err = hci_req_run(&req, update_background_scan_complete); 5690 if (err) 5691 BT_ERR("Failed to run HCI request: err %d", err); 5692 } 5693