1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (C) 2000-2001 Qualcomm Incorporated 4 Copyright (C) 2011 ProFUSION Embedded Systems 5 6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License version 2 as 10 published by the Free Software Foundation; 11 12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 23 SOFTWARE IS DISCLAIMED. 24 */ 25 26 /* Bluetooth HCI core. */ 27 28 #include <linux/export.h> 29 #include <linux/idr.h> 30 #include <linux/rfkill.h> 31 #include <linux/debugfs.h> 32 #include <linux/crypto.h> 33 #include <linux/property.h> 34 #include <asm/unaligned.h> 35 36 #include <net/bluetooth/bluetooth.h> 37 #include <net/bluetooth/hci_core.h> 38 #include <net/bluetooth/l2cap.h> 39 #include <net/bluetooth/mgmt.h> 40 41 #include "hci_request.h" 42 #include "hci_debugfs.h" 43 #include "smp.h" 44 #include "leds.h" 45 46 static void hci_rx_work(struct work_struct *work); 47 static void hci_cmd_work(struct work_struct *work); 48 static void hci_tx_work(struct work_struct *work); 49 50 /* HCI device list */ 51 LIST_HEAD(hci_dev_list); 52 DEFINE_RWLOCK(hci_dev_list_lock); 53 54 /* HCI callback list */ 55 LIST_HEAD(hci_cb_list); 56 DEFINE_MUTEX(hci_cb_list_lock); 57 58 /* HCI ID Numbering */ 59 static DEFINE_IDA(hci_index_ida); 60 61 /* ---- HCI debugfs entries ---- */ 62 63 static ssize_t dut_mode_read(struct file *file, char __user *user_buf, 64 size_t count, loff_t *ppos) 65 { 66 struct hci_dev *hdev = file->private_data; 67 char buf[3]; 68 69 buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N'; 70 buf[1] = '\n'; 71 buf[2] = '\0'; 72 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 73 } 74 75 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf, 76 size_t count, loff_t *ppos) 77 { 78 struct hci_dev *hdev = file->private_data; 79 struct sk_buff *skb; 80 bool enable; 81 int err; 82 83 if (!test_bit(HCI_UP, &hdev->flags)) 84 return -ENETDOWN; 85 86 err = kstrtobool_from_user(user_buf, count, &enable); 87 if (err) 88 return err; 89 90 if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE)) 91 return -EALREADY; 92 93 hci_req_sync_lock(hdev); 94 if (enable) 95 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL, 96 HCI_CMD_TIMEOUT); 97 else 98 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, 99 HCI_CMD_TIMEOUT); 100 hci_req_sync_unlock(hdev); 101 102 if (IS_ERR(skb)) 103 return PTR_ERR(skb); 104 105 kfree_skb(skb); 106 107 hci_dev_change_flag(hdev, HCI_DUT_MODE); 108 109 return count; 110 } 111 112 static const struct file_operations dut_mode_fops = { 113 .open = simple_open, 114 .read = dut_mode_read, 115 .write = dut_mode_write, 116 .llseek = default_llseek, 117 }; 118 119 static ssize_t vendor_diag_read(struct file *file, char __user *user_buf, 120 size_t count, loff_t *ppos) 121 { 122 struct hci_dev *hdev = file->private_data; 123 char buf[3]; 124 125 buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N'; 126 buf[1] = '\n'; 127 buf[2] = '\0'; 128 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 129 } 130 131 static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf, 132 size_t count, loff_t *ppos) 133 { 134 struct hci_dev *hdev = file->private_data; 135 bool enable; 136 int err; 137 138 err = kstrtobool_from_user(user_buf, count, &enable); 139 if (err) 140 return err; 141 142 /* When the diagnostic flags are not persistent and the transport 143 * is not active or in user channel operation, then there is no need 144 * for the vendor callback. Instead just store the desired value and 145 * the setting will be programmed when the controller gets powered on. 146 */ 147 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 148 (!test_bit(HCI_RUNNING, &hdev->flags) || 149 hci_dev_test_flag(hdev, HCI_USER_CHANNEL))) 150 goto done; 151 152 hci_req_sync_lock(hdev); 153 err = hdev->set_diag(hdev, enable); 154 hci_req_sync_unlock(hdev); 155 156 if (err < 0) 157 return err; 158 159 done: 160 if (enable) 161 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG); 162 else 163 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG); 164 165 return count; 166 } 167 168 static const struct file_operations vendor_diag_fops = { 169 .open = simple_open, 170 .read = vendor_diag_read, 171 .write = vendor_diag_write, 172 .llseek = default_llseek, 173 }; 174 175 static void hci_debugfs_create_basic(struct hci_dev *hdev) 176 { 177 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev, 178 &dut_mode_fops); 179 180 if (hdev->set_diag) 181 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev, 182 &vendor_diag_fops); 183 } 184 185 static int hci_reset_req(struct hci_request *req, unsigned long opt) 186 { 187 BT_DBG("%s %ld", req->hdev->name, opt); 188 189 /* Reset device */ 190 set_bit(HCI_RESET, &req->hdev->flags); 191 hci_req_add(req, HCI_OP_RESET, 0, NULL); 192 return 0; 193 } 194 195 static void bredr_init(struct hci_request *req) 196 { 197 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED; 198 199 /* Read Local Supported Features */ 200 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL); 201 202 /* Read Local Version */ 203 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL); 204 205 /* Read BD Address */ 206 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL); 207 } 208 209 static void amp_init1(struct hci_request *req) 210 { 211 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED; 212 213 /* Read Local Version */ 214 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL); 215 216 /* Read Local Supported Commands */ 217 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL); 218 219 /* Read Local AMP Info */ 220 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL); 221 222 /* Read Data Blk size */ 223 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL); 224 225 /* Read Flow Control Mode */ 226 hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL); 227 228 /* Read Location Data */ 229 hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL); 230 } 231 232 static int amp_init2(struct hci_request *req) 233 { 234 /* Read Local Supported Features. Not all AMP controllers 235 * support this so it's placed conditionally in the second 236 * stage init. 237 */ 238 if (req->hdev->commands[14] & 0x20) 239 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL); 240 241 return 0; 242 } 243 244 static int hci_init1_req(struct hci_request *req, unsigned long opt) 245 { 246 struct hci_dev *hdev = req->hdev; 247 248 BT_DBG("%s %ld", hdev->name, opt); 249 250 /* Reset */ 251 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) 252 hci_reset_req(req, 0); 253 254 switch (hdev->dev_type) { 255 case HCI_PRIMARY: 256 bredr_init(req); 257 break; 258 case HCI_AMP: 259 amp_init1(req); 260 break; 261 default: 262 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type); 263 break; 264 } 265 266 return 0; 267 } 268 269 static void bredr_setup(struct hci_request *req) 270 { 271 __le16 param; 272 __u8 flt_type; 273 274 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 275 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL); 276 277 /* Read Class of Device */ 278 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL); 279 280 /* Read Local Name */ 281 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL); 282 283 /* Read Voice Setting */ 284 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL); 285 286 /* Read Number of Supported IAC */ 287 hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL); 288 289 /* Read Current IAC LAP */ 290 hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL); 291 292 /* Clear Event Filters */ 293 flt_type = HCI_FLT_CLEAR_ALL; 294 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type); 295 296 /* Connection accept timeout ~20 secs */ 297 param = cpu_to_le16(0x7d00); 298 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, ¶m); 299 } 300 301 static void le_setup(struct hci_request *req) 302 { 303 struct hci_dev *hdev = req->hdev; 304 305 /* Read LE Buffer Size */ 306 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL); 307 308 /* Read LE Local Supported Features */ 309 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL); 310 311 /* Read LE Supported States */ 312 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL); 313 314 /* LE-only controllers have LE implicitly enabled */ 315 if (!lmp_bredr_capable(hdev)) 316 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 317 } 318 319 static void hci_setup_event_mask(struct hci_request *req) 320 { 321 struct hci_dev *hdev = req->hdev; 322 323 /* The second byte is 0xff instead of 0x9f (two reserved bits 324 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 325 * command otherwise. 326 */ 327 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 328 329 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 330 * any event mask for pre 1.2 devices. 331 */ 332 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 333 return; 334 335 if (lmp_bredr_capable(hdev)) { 336 events[4] |= 0x01; /* Flow Specification Complete */ 337 } else { 338 /* Use a different default for LE-only devices */ 339 memset(events, 0, sizeof(events)); 340 events[1] |= 0x20; /* Command Complete */ 341 events[1] |= 0x40; /* Command Status */ 342 events[1] |= 0x80; /* Hardware Error */ 343 344 /* If the controller supports the Disconnect command, enable 345 * the corresponding event. In addition enable packet flow 346 * control related events. 347 */ 348 if (hdev->commands[0] & 0x20) { 349 events[0] |= 0x10; /* Disconnection Complete */ 350 events[2] |= 0x04; /* Number of Completed Packets */ 351 events[3] |= 0x02; /* Data Buffer Overflow */ 352 } 353 354 /* If the controller supports the Read Remote Version 355 * Information command, enable the corresponding event. 356 */ 357 if (hdev->commands[2] & 0x80) 358 events[1] |= 0x08; /* Read Remote Version Information 359 * Complete 360 */ 361 362 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 363 events[0] |= 0x80; /* Encryption Change */ 364 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 365 } 366 } 367 368 if (lmp_inq_rssi_capable(hdev) || 369 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 370 events[4] |= 0x02; /* Inquiry Result with RSSI */ 371 372 if (lmp_ext_feat_capable(hdev)) 373 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 374 375 if (lmp_esco_capable(hdev)) { 376 events[5] |= 0x08; /* Synchronous Connection Complete */ 377 events[5] |= 0x10; /* Synchronous Connection Changed */ 378 } 379 380 if (lmp_sniffsubr_capable(hdev)) 381 events[5] |= 0x20; /* Sniff Subrating */ 382 383 if (lmp_pause_enc_capable(hdev)) 384 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 385 386 if (lmp_ext_inq_capable(hdev)) 387 events[5] |= 0x40; /* Extended Inquiry Result */ 388 389 if (lmp_no_flush_capable(hdev)) 390 events[7] |= 0x01; /* Enhanced Flush Complete */ 391 392 if (lmp_lsto_capable(hdev)) 393 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 394 395 if (lmp_ssp_capable(hdev)) { 396 events[6] |= 0x01; /* IO Capability Request */ 397 events[6] |= 0x02; /* IO Capability Response */ 398 events[6] |= 0x04; /* User Confirmation Request */ 399 events[6] |= 0x08; /* User Passkey Request */ 400 events[6] |= 0x10; /* Remote OOB Data Request */ 401 events[6] |= 0x20; /* Simple Pairing Complete */ 402 events[7] |= 0x04; /* User Passkey Notification */ 403 events[7] |= 0x08; /* Keypress Notification */ 404 events[7] |= 0x10; /* Remote Host Supported 405 * Features Notification 406 */ 407 } 408 409 if (lmp_le_capable(hdev)) 410 events[7] |= 0x20; /* LE Meta-Event */ 411 412 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events); 413 } 414 415 static int hci_init2_req(struct hci_request *req, unsigned long opt) 416 { 417 struct hci_dev *hdev = req->hdev; 418 419 if (hdev->dev_type == HCI_AMP) 420 return amp_init2(req); 421 422 if (lmp_bredr_capable(hdev)) 423 bredr_setup(req); 424 else 425 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); 426 427 if (lmp_le_capable(hdev)) 428 le_setup(req); 429 430 /* All Bluetooth 1.2 and later controllers should support the 431 * HCI command for reading the local supported commands. 432 * 433 * Unfortunately some controllers indicate Bluetooth 1.2 support, 434 * but do not have support for this command. If that is the case, 435 * the driver can quirk the behavior and skip reading the local 436 * supported commands. 437 */ 438 if (hdev->hci_ver > BLUETOOTH_VER_1_1 && 439 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) 440 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL); 441 442 if (lmp_ssp_capable(hdev)) { 443 /* When SSP is available, then the host features page 444 * should also be available as well. However some 445 * controllers list the max_page as 0 as long as SSP 446 * has not been enabled. To achieve proper debugging 447 * output, force the minimum max_page to 1 at least. 448 */ 449 hdev->max_page = 0x01; 450 451 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) { 452 u8 mode = 0x01; 453 454 hci_req_add(req, HCI_OP_WRITE_SSP_MODE, 455 sizeof(mode), &mode); 456 } else { 457 struct hci_cp_write_eir cp; 458 459 memset(hdev->eir, 0, sizeof(hdev->eir)); 460 memset(&cp, 0, sizeof(cp)); 461 462 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp); 463 } 464 } 465 466 if (lmp_inq_rssi_capable(hdev) || 467 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) { 468 u8 mode; 469 470 /* If Extended Inquiry Result events are supported, then 471 * they are clearly preferred over Inquiry Result with RSSI 472 * events. 473 */ 474 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; 475 476 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode); 477 } 478 479 if (lmp_inq_tx_pwr_capable(hdev)) 480 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL); 481 482 if (lmp_ext_feat_capable(hdev)) { 483 struct hci_cp_read_local_ext_features cp; 484 485 cp.page = 0x01; 486 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES, 487 sizeof(cp), &cp); 488 } 489 490 if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) { 491 u8 enable = 1; 492 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable), 493 &enable); 494 } 495 496 return 0; 497 } 498 499 static void hci_setup_link_policy(struct hci_request *req) 500 { 501 struct hci_dev *hdev = req->hdev; 502 struct hci_cp_write_def_link_policy cp; 503 u16 link_policy = 0; 504 505 if (lmp_rswitch_capable(hdev)) 506 link_policy |= HCI_LP_RSWITCH; 507 if (lmp_hold_capable(hdev)) 508 link_policy |= HCI_LP_HOLD; 509 if (lmp_sniff_capable(hdev)) 510 link_policy |= HCI_LP_SNIFF; 511 if (lmp_park_capable(hdev)) 512 link_policy |= HCI_LP_PARK; 513 514 cp.policy = cpu_to_le16(link_policy); 515 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp); 516 } 517 518 static void hci_set_le_support(struct hci_request *req) 519 { 520 struct hci_dev *hdev = req->hdev; 521 struct hci_cp_write_le_host_supported cp; 522 523 /* LE-only devices do not support explicit enablement */ 524 if (!lmp_bredr_capable(hdev)) 525 return; 526 527 memset(&cp, 0, sizeof(cp)); 528 529 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 530 cp.le = 0x01; 531 cp.simul = 0x00; 532 } 533 534 if (cp.le != lmp_host_le_capable(hdev)) 535 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp), 536 &cp); 537 } 538 539 static void hci_set_event_mask_page_2(struct hci_request *req) 540 { 541 struct hci_dev *hdev = req->hdev; 542 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 543 bool changed = false; 544 545 /* If Connectionless Slave Broadcast master role is supported 546 * enable all necessary events for it. 547 */ 548 if (lmp_csb_master_capable(hdev)) { 549 events[1] |= 0x40; /* Triggered Clock Capture */ 550 events[1] |= 0x80; /* Synchronization Train Complete */ 551 events[2] |= 0x10; /* Slave Page Response Timeout */ 552 events[2] |= 0x20; /* CSB Channel Map Change */ 553 changed = true; 554 } 555 556 /* If Connectionless Slave Broadcast slave role is supported 557 * enable all necessary events for it. 558 */ 559 if (lmp_csb_slave_capable(hdev)) { 560 events[2] |= 0x01; /* Synchronization Train Received */ 561 events[2] |= 0x02; /* CSB Receive */ 562 events[2] |= 0x04; /* CSB Timeout */ 563 events[2] |= 0x08; /* Truncated Page Complete */ 564 changed = true; 565 } 566 567 /* Enable Authenticated Payload Timeout Expired event if supported */ 568 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { 569 events[2] |= 0x80; 570 changed = true; 571 } 572 573 /* Some Broadcom based controllers indicate support for Set Event 574 * Mask Page 2 command, but then actually do not support it. Since 575 * the default value is all bits set to zero, the command is only 576 * required if the event mask has to be changed. In case no change 577 * to the event mask is needed, skip this command. 578 */ 579 if (changed) 580 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, 581 sizeof(events), events); 582 } 583 584 static int hci_init3_req(struct hci_request *req, unsigned long opt) 585 { 586 struct hci_dev *hdev = req->hdev; 587 u8 p; 588 589 hci_setup_event_mask(req); 590 591 if (hdev->commands[6] & 0x20 && 592 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) { 593 struct hci_cp_read_stored_link_key cp; 594 595 bacpy(&cp.bdaddr, BDADDR_ANY); 596 cp.read_all = 0x01; 597 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp); 598 } 599 600 if (hdev->commands[5] & 0x10) 601 hci_setup_link_policy(req); 602 603 if (hdev->commands[8] & 0x01) 604 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL); 605 606 /* Some older Broadcom based Bluetooth 1.2 controllers do not 607 * support the Read Page Scan Type command. Check support for 608 * this command in the bit mask of supported commands. 609 */ 610 if (hdev->commands[13] & 0x01) 611 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL); 612 613 if (lmp_le_capable(hdev)) { 614 u8 events[8]; 615 616 memset(events, 0, sizeof(events)); 617 618 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 619 events[0] |= 0x10; /* LE Long Term Key Request */ 620 621 /* If controller supports the Connection Parameters Request 622 * Link Layer Procedure, enable the corresponding event. 623 */ 624 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 625 events[0] |= 0x20; /* LE Remote Connection 626 * Parameter Request 627 */ 628 629 /* If the controller supports the Data Length Extension 630 * feature, enable the corresponding event. 631 */ 632 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) 633 events[0] |= 0x40; /* LE Data Length Change */ 634 635 /* If the controller supports Extended Scanner Filter 636 * Policies, enable the correspondig event. 637 */ 638 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) 639 events[1] |= 0x04; /* LE Direct Advertising 640 * Report 641 */ 642 643 /* If the controller supports Channel Selection Algorithm #2 644 * feature, enable the corresponding event. 645 */ 646 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) 647 events[2] |= 0x08; /* LE Channel Selection 648 * Algorithm 649 */ 650 651 /* If the controller supports the LE Set Scan Enable command, 652 * enable the corresponding advertising report event. 653 */ 654 if (hdev->commands[26] & 0x08) 655 events[0] |= 0x02; /* LE Advertising Report */ 656 657 /* If the controller supports the LE Create Connection 658 * command, enable the corresponding event. 659 */ 660 if (hdev->commands[26] & 0x10) 661 events[0] |= 0x01; /* LE Connection Complete */ 662 663 /* If the controller supports the LE Connection Update 664 * command, enable the corresponding event. 665 */ 666 if (hdev->commands[27] & 0x04) 667 events[0] |= 0x04; /* LE Connection Update 668 * Complete 669 */ 670 671 /* If the controller supports the LE Read Remote Used Features 672 * command, enable the corresponding event. 673 */ 674 if (hdev->commands[27] & 0x20) 675 events[0] |= 0x08; /* LE Read Remote Used 676 * Features Complete 677 */ 678 679 /* If the controller supports the LE Read Local P-256 680 * Public Key command, enable the corresponding event. 681 */ 682 if (hdev->commands[34] & 0x02) 683 events[0] |= 0x80; /* LE Read Local P-256 684 * Public Key Complete 685 */ 686 687 /* If the controller supports the LE Generate DHKey 688 * command, enable the corresponding event. 689 */ 690 if (hdev->commands[34] & 0x04) 691 events[1] |= 0x01; /* LE Generate DHKey Complete */ 692 693 /* If the controller supports the LE Set Default PHY or 694 * LE Set PHY commands, enable the corresponding event. 695 */ 696 if (hdev->commands[35] & (0x20 | 0x40)) 697 events[1] |= 0x08; /* LE PHY Update Complete */ 698 699 /* If the controller supports LE Set Extended Scan Parameters 700 * and LE Set Extended Scan Enable commands, enable the 701 * corresponding event. 702 */ 703 if (use_ext_scan(hdev)) 704 events[1] |= 0x10; /* LE Extended Advertising 705 * Report 706 */ 707 708 /* If the controller supports the LE Extended Create Connection 709 * command, enable the corresponding event. 710 */ 711 if (use_ext_conn(hdev)) 712 events[1] |= 0x02; /* LE Enhanced Connection 713 * Complete 714 */ 715 716 /* If the controller supports the LE Extended Advertising 717 * command, enable the corresponding event. 718 */ 719 if (ext_adv_capable(hdev)) 720 events[2] |= 0x02; /* LE Advertising Set 721 * Terminated 722 */ 723 724 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events), 725 events); 726 727 /* Read LE Advertising Channel TX Power */ 728 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) { 729 /* HCI TS spec forbids mixing of legacy and extended 730 * advertising commands wherein READ_ADV_TX_POWER is 731 * also included. So do not call it if extended adv 732 * is supported otherwise controller will return 733 * COMMAND_DISALLOWED for extended commands. 734 */ 735 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL); 736 } 737 738 if (hdev->commands[26] & 0x40) { 739 /* Read LE White List Size */ 740 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE, 741 0, NULL); 742 } 743 744 if (hdev->commands[26] & 0x80) { 745 /* Clear LE White List */ 746 hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL); 747 } 748 749 if (hdev->commands[34] & 0x40) { 750 /* Read LE Resolving List Size */ 751 hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE, 752 0, NULL); 753 } 754 755 if (hdev->commands[34] & 0x20) { 756 /* Clear LE Resolving List */ 757 hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL); 758 } 759 760 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) { 761 /* Read LE Maximum Data Length */ 762 hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL); 763 764 /* Read LE Suggested Default Data Length */ 765 hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL); 766 } 767 768 if (ext_adv_capable(hdev)) { 769 /* Read LE Number of Supported Advertising Sets */ 770 hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 771 0, NULL); 772 } 773 774 hci_set_le_support(req); 775 } 776 777 /* Read features beyond page 1 if available */ 778 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) { 779 struct hci_cp_read_local_ext_features cp; 780 781 cp.page = p; 782 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES, 783 sizeof(cp), &cp); 784 } 785 786 return 0; 787 } 788 789 static int hci_init4_req(struct hci_request *req, unsigned long opt) 790 { 791 struct hci_dev *hdev = req->hdev; 792 793 /* Some Broadcom based Bluetooth controllers do not support the 794 * Delete Stored Link Key command. They are clearly indicating its 795 * absence in the bit mask of supported commands. 796 * 797 * Check the supported commands and only if the the command is marked 798 * as supported send it. If not supported assume that the controller 799 * does not have actual support for stored link keys which makes this 800 * command redundant anyway. 801 * 802 * Some controllers indicate that they support handling deleting 803 * stored link keys, but they don't. The quirk lets a driver 804 * just disable this command. 805 */ 806 if (hdev->commands[6] & 0x80 && 807 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) { 808 struct hci_cp_delete_stored_link_key cp; 809 810 bacpy(&cp.bdaddr, BDADDR_ANY); 811 cp.delete_all = 0x01; 812 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY, 813 sizeof(cp), &cp); 814 } 815 816 /* Set event mask page 2 if the HCI command for it is supported */ 817 if (hdev->commands[22] & 0x04) 818 hci_set_event_mask_page_2(req); 819 820 /* Read local codec list if the HCI command is supported */ 821 if (hdev->commands[29] & 0x20) 822 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL); 823 824 /* Get MWS transport configuration if the HCI command is supported */ 825 if (hdev->commands[30] & 0x08) 826 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL); 827 828 /* Check for Synchronization Train support */ 829 if (lmp_sync_train_capable(hdev)) 830 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL); 831 832 /* Enable Secure Connections if supported and configured */ 833 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) && 834 bredr_sc_enabled(hdev)) { 835 u8 support = 0x01; 836 837 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT, 838 sizeof(support), &support); 839 } 840 841 /* Set Suggested Default Data Length to maximum if supported */ 842 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) { 843 struct hci_cp_le_write_def_data_len cp; 844 845 cp.tx_len = hdev->le_max_tx_len; 846 cp.tx_time = hdev->le_max_tx_time; 847 hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp); 848 } 849 850 /* Set Default PHY parameters if command is supported */ 851 if (hdev->commands[35] & 0x20) { 852 struct hci_cp_le_set_default_phy cp; 853 854 cp.all_phys = 0x00; 855 cp.tx_phys = hdev->le_tx_def_phys; 856 cp.rx_phys = hdev->le_rx_def_phys; 857 858 hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp); 859 } 860 861 return 0; 862 } 863 864 static int __hci_init(struct hci_dev *hdev) 865 { 866 int err; 867 868 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL); 869 if (err < 0) 870 return err; 871 872 if (hci_dev_test_flag(hdev, HCI_SETUP)) 873 hci_debugfs_create_basic(hdev); 874 875 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL); 876 if (err < 0) 877 return err; 878 879 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode 880 * BR/EDR/LE type controllers. AMP controllers only need the 881 * first two stages of init. 882 */ 883 if (hdev->dev_type != HCI_PRIMARY) 884 return 0; 885 886 err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL); 887 if (err < 0) 888 return err; 889 890 err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL); 891 if (err < 0) 892 return err; 893 894 /* This function is only called when the controller is actually in 895 * configured state. When the controller is marked as unconfigured, 896 * this initialization procedure is not run. 897 * 898 * It means that it is possible that a controller runs through its 899 * setup phase and then discovers missing settings. If that is the 900 * case, then this function will not be called. It then will only 901 * be called during the config phase. 902 * 903 * So only when in setup phase or config phase, create the debugfs 904 * entries and register the SMP channels. 905 */ 906 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 907 !hci_dev_test_flag(hdev, HCI_CONFIG)) 908 return 0; 909 910 hci_debugfs_create_common(hdev); 911 912 if (lmp_bredr_capable(hdev)) 913 hci_debugfs_create_bredr(hdev); 914 915 if (lmp_le_capable(hdev)) 916 hci_debugfs_create_le(hdev); 917 918 return 0; 919 } 920 921 static int hci_init0_req(struct hci_request *req, unsigned long opt) 922 { 923 struct hci_dev *hdev = req->hdev; 924 925 BT_DBG("%s %ld", hdev->name, opt); 926 927 /* Reset */ 928 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) 929 hci_reset_req(req, 0); 930 931 /* Read Local Version */ 932 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL); 933 934 /* Read BD Address */ 935 if (hdev->set_bdaddr) 936 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL); 937 938 return 0; 939 } 940 941 static int __hci_unconf_init(struct hci_dev *hdev) 942 { 943 int err; 944 945 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 946 return 0; 947 948 err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL); 949 if (err < 0) 950 return err; 951 952 if (hci_dev_test_flag(hdev, HCI_SETUP)) 953 hci_debugfs_create_basic(hdev); 954 955 return 0; 956 } 957 958 static int hci_scan_req(struct hci_request *req, unsigned long opt) 959 { 960 __u8 scan = opt; 961 962 BT_DBG("%s %x", req->hdev->name, scan); 963 964 /* Inquiry and Page scans */ 965 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); 966 return 0; 967 } 968 969 static int hci_auth_req(struct hci_request *req, unsigned long opt) 970 { 971 __u8 auth = opt; 972 973 BT_DBG("%s %x", req->hdev->name, auth); 974 975 /* Authentication */ 976 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth); 977 return 0; 978 } 979 980 static int hci_encrypt_req(struct hci_request *req, unsigned long opt) 981 { 982 __u8 encrypt = opt; 983 984 BT_DBG("%s %x", req->hdev->name, encrypt); 985 986 /* Encryption */ 987 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt); 988 return 0; 989 } 990 991 static int hci_linkpol_req(struct hci_request *req, unsigned long opt) 992 { 993 __le16 policy = cpu_to_le16(opt); 994 995 BT_DBG("%s %x", req->hdev->name, policy); 996 997 /* Default link policy */ 998 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy); 999 return 0; 1000 } 1001 1002 /* Get HCI device by index. 1003 * Device is held on return. */ 1004 struct hci_dev *hci_dev_get(int index) 1005 { 1006 struct hci_dev *hdev = NULL, *d; 1007 1008 BT_DBG("%d", index); 1009 1010 if (index < 0) 1011 return NULL; 1012 1013 read_lock(&hci_dev_list_lock); 1014 list_for_each_entry(d, &hci_dev_list, list) { 1015 if (d->id == index) { 1016 hdev = hci_dev_hold(d); 1017 break; 1018 } 1019 } 1020 read_unlock(&hci_dev_list_lock); 1021 return hdev; 1022 } 1023 1024 /* ---- Inquiry support ---- */ 1025 1026 bool hci_discovery_active(struct hci_dev *hdev) 1027 { 1028 struct discovery_state *discov = &hdev->discovery; 1029 1030 switch (discov->state) { 1031 case DISCOVERY_FINDING: 1032 case DISCOVERY_RESOLVING: 1033 return true; 1034 1035 default: 1036 return false; 1037 } 1038 } 1039 1040 void hci_discovery_set_state(struct hci_dev *hdev, int state) 1041 { 1042 int old_state = hdev->discovery.state; 1043 1044 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state); 1045 1046 if (old_state == state) 1047 return; 1048 1049 hdev->discovery.state = state; 1050 1051 switch (state) { 1052 case DISCOVERY_STOPPED: 1053 hci_update_background_scan(hdev); 1054 1055 if (old_state != DISCOVERY_STARTING) 1056 mgmt_discovering(hdev, 0); 1057 break; 1058 case DISCOVERY_STARTING: 1059 break; 1060 case DISCOVERY_FINDING: 1061 mgmt_discovering(hdev, 1); 1062 break; 1063 case DISCOVERY_RESOLVING: 1064 break; 1065 case DISCOVERY_STOPPING: 1066 break; 1067 } 1068 } 1069 1070 void hci_inquiry_cache_flush(struct hci_dev *hdev) 1071 { 1072 struct discovery_state *cache = &hdev->discovery; 1073 struct inquiry_entry *p, *n; 1074 1075 list_for_each_entry_safe(p, n, &cache->all, all) { 1076 list_del(&p->all); 1077 kfree(p); 1078 } 1079 1080 INIT_LIST_HEAD(&cache->unknown); 1081 INIT_LIST_HEAD(&cache->resolve); 1082 } 1083 1084 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, 1085 bdaddr_t *bdaddr) 1086 { 1087 struct discovery_state *cache = &hdev->discovery; 1088 struct inquiry_entry *e; 1089 1090 BT_DBG("cache %p, %pMR", cache, bdaddr); 1091 1092 list_for_each_entry(e, &cache->all, all) { 1093 if (!bacmp(&e->data.bdaddr, bdaddr)) 1094 return e; 1095 } 1096 1097 return NULL; 1098 } 1099 1100 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, 1101 bdaddr_t *bdaddr) 1102 { 1103 struct discovery_state *cache = &hdev->discovery; 1104 struct inquiry_entry *e; 1105 1106 BT_DBG("cache %p, %pMR", cache, bdaddr); 1107 1108 list_for_each_entry(e, &cache->unknown, list) { 1109 if (!bacmp(&e->data.bdaddr, bdaddr)) 1110 return e; 1111 } 1112 1113 return NULL; 1114 } 1115 1116 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, 1117 bdaddr_t *bdaddr, 1118 int state) 1119 { 1120 struct discovery_state *cache = &hdev->discovery; 1121 struct inquiry_entry *e; 1122 1123 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state); 1124 1125 list_for_each_entry(e, &cache->resolve, list) { 1126 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state) 1127 return e; 1128 if (!bacmp(&e->data.bdaddr, bdaddr)) 1129 return e; 1130 } 1131 1132 return NULL; 1133 } 1134 1135 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, 1136 struct inquiry_entry *ie) 1137 { 1138 struct discovery_state *cache = &hdev->discovery; 1139 struct list_head *pos = &cache->resolve; 1140 struct inquiry_entry *p; 1141 1142 list_del(&ie->list); 1143 1144 list_for_each_entry(p, &cache->resolve, list) { 1145 if (p->name_state != NAME_PENDING && 1146 abs(p->data.rssi) >= abs(ie->data.rssi)) 1147 break; 1148 pos = &p->list; 1149 } 1150 1151 list_add(&ie->list, pos); 1152 } 1153 1154 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, 1155 bool name_known) 1156 { 1157 struct discovery_state *cache = &hdev->discovery; 1158 struct inquiry_entry *ie; 1159 u32 flags = 0; 1160 1161 BT_DBG("cache %p, %pMR", cache, &data->bdaddr); 1162 1163 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR); 1164 1165 if (!data->ssp_mode) 1166 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 1167 1168 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr); 1169 if (ie) { 1170 if (!ie->data.ssp_mode) 1171 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 1172 1173 if (ie->name_state == NAME_NEEDED && 1174 data->rssi != ie->data.rssi) { 1175 ie->data.rssi = data->rssi; 1176 hci_inquiry_cache_update_resolve(hdev, ie); 1177 } 1178 1179 goto update; 1180 } 1181 1182 /* Entry not in the cache. Add new one. */ 1183 ie = kzalloc(sizeof(*ie), GFP_KERNEL); 1184 if (!ie) { 1185 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 1186 goto done; 1187 } 1188 1189 list_add(&ie->all, &cache->all); 1190 1191 if (name_known) { 1192 ie->name_state = NAME_KNOWN; 1193 } else { 1194 ie->name_state = NAME_NOT_KNOWN; 1195 list_add(&ie->list, &cache->unknown); 1196 } 1197 1198 update: 1199 if (name_known && ie->name_state != NAME_KNOWN && 1200 ie->name_state != NAME_PENDING) { 1201 ie->name_state = NAME_KNOWN; 1202 list_del(&ie->list); 1203 } 1204 1205 memcpy(&ie->data, data, sizeof(*data)); 1206 ie->timestamp = jiffies; 1207 cache->timestamp = jiffies; 1208 1209 if (ie->name_state == NAME_NOT_KNOWN) 1210 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 1211 1212 done: 1213 return flags; 1214 } 1215 1216 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf) 1217 { 1218 struct discovery_state *cache = &hdev->discovery; 1219 struct inquiry_info *info = (struct inquiry_info *) buf; 1220 struct inquiry_entry *e; 1221 int copied = 0; 1222 1223 list_for_each_entry(e, &cache->all, all) { 1224 struct inquiry_data *data = &e->data; 1225 1226 if (copied >= num) 1227 break; 1228 1229 bacpy(&info->bdaddr, &data->bdaddr); 1230 info->pscan_rep_mode = data->pscan_rep_mode; 1231 info->pscan_period_mode = data->pscan_period_mode; 1232 info->pscan_mode = data->pscan_mode; 1233 memcpy(info->dev_class, data->dev_class, 3); 1234 info->clock_offset = data->clock_offset; 1235 1236 info++; 1237 copied++; 1238 } 1239 1240 BT_DBG("cache %p, copied %d", cache, copied); 1241 return copied; 1242 } 1243 1244 static int hci_inq_req(struct hci_request *req, unsigned long opt) 1245 { 1246 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt; 1247 struct hci_dev *hdev = req->hdev; 1248 struct hci_cp_inquiry cp; 1249 1250 BT_DBG("%s", hdev->name); 1251 1252 if (test_bit(HCI_INQUIRY, &hdev->flags)) 1253 return 0; 1254 1255 /* Start Inquiry */ 1256 memcpy(&cp.lap, &ir->lap, 3); 1257 cp.length = ir->length; 1258 cp.num_rsp = ir->num_rsp; 1259 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp); 1260 1261 return 0; 1262 } 1263 1264 int hci_inquiry(void __user *arg) 1265 { 1266 __u8 __user *ptr = arg; 1267 struct hci_inquiry_req ir; 1268 struct hci_dev *hdev; 1269 int err = 0, do_inquiry = 0, max_rsp; 1270 long timeo; 1271 __u8 *buf; 1272 1273 if (copy_from_user(&ir, ptr, sizeof(ir))) 1274 return -EFAULT; 1275 1276 hdev = hci_dev_get(ir.dev_id); 1277 if (!hdev) 1278 return -ENODEV; 1279 1280 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1281 err = -EBUSY; 1282 goto done; 1283 } 1284 1285 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1286 err = -EOPNOTSUPP; 1287 goto done; 1288 } 1289 1290 if (hdev->dev_type != HCI_PRIMARY) { 1291 err = -EOPNOTSUPP; 1292 goto done; 1293 } 1294 1295 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 1296 err = -EOPNOTSUPP; 1297 goto done; 1298 } 1299 1300 hci_dev_lock(hdev); 1301 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX || 1302 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) { 1303 hci_inquiry_cache_flush(hdev); 1304 do_inquiry = 1; 1305 } 1306 hci_dev_unlock(hdev); 1307 1308 timeo = ir.length * msecs_to_jiffies(2000); 1309 1310 if (do_inquiry) { 1311 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir, 1312 timeo, NULL); 1313 if (err < 0) 1314 goto done; 1315 1316 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is 1317 * cleared). If it is interrupted by a signal, return -EINTR. 1318 */ 1319 if (wait_on_bit(&hdev->flags, HCI_INQUIRY, 1320 TASK_INTERRUPTIBLE)) 1321 return -EINTR; 1322 } 1323 1324 /* for unlimited number of responses we will use buffer with 1325 * 255 entries 1326 */ 1327 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp; 1328 1329 /* cache_dump can't sleep. Therefore we allocate temp buffer and then 1330 * copy it to the user space. 1331 */ 1332 buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL); 1333 if (!buf) { 1334 err = -ENOMEM; 1335 goto done; 1336 } 1337 1338 hci_dev_lock(hdev); 1339 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf); 1340 hci_dev_unlock(hdev); 1341 1342 BT_DBG("num_rsp %d", ir.num_rsp); 1343 1344 if (!copy_to_user(ptr, &ir, sizeof(ir))) { 1345 ptr += sizeof(ir); 1346 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) * 1347 ir.num_rsp)) 1348 err = -EFAULT; 1349 } else 1350 err = -EFAULT; 1351 1352 kfree(buf); 1353 1354 done: 1355 hci_dev_put(hdev); 1356 return err; 1357 } 1358 1359 /** 1360 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address 1361 * (BD_ADDR) for a HCI device from 1362 * a firmware node property. 1363 * @hdev: The HCI device 1364 * 1365 * Search the firmware node for 'local-bd-address'. 1366 * 1367 * All-zero BD addresses are rejected, because those could be properties 1368 * that exist in the firmware tables, but were not updated by the firmware. For 1369 * example, the DTS could define 'local-bd-address', with zero BD addresses. 1370 */ 1371 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev) 1372 { 1373 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent); 1374 bdaddr_t ba; 1375 int ret; 1376 1377 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address", 1378 (u8 *)&ba, sizeof(ba)); 1379 if (ret < 0 || !bacmp(&ba, BDADDR_ANY)) 1380 return; 1381 1382 bacpy(&hdev->public_addr, &ba); 1383 } 1384 1385 static int hci_dev_do_open(struct hci_dev *hdev) 1386 { 1387 int ret = 0; 1388 1389 BT_DBG("%s %p", hdev->name, hdev); 1390 1391 hci_req_sync_lock(hdev); 1392 1393 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 1394 ret = -ENODEV; 1395 goto done; 1396 } 1397 1398 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 1399 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 1400 /* Check for rfkill but allow the HCI setup stage to 1401 * proceed (which in itself doesn't cause any RF activity). 1402 */ 1403 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { 1404 ret = -ERFKILL; 1405 goto done; 1406 } 1407 1408 /* Check for valid public address or a configured static 1409 * random adddress, but let the HCI setup proceed to 1410 * be able to determine if there is a public address 1411 * or not. 1412 * 1413 * In case of user channel usage, it is not important 1414 * if a public address or static random address is 1415 * available. 1416 * 1417 * This check is only valid for BR/EDR controllers 1418 * since AMP controllers do not have an address. 1419 */ 1420 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1421 hdev->dev_type == HCI_PRIMARY && 1422 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 1423 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 1424 ret = -EADDRNOTAVAIL; 1425 goto done; 1426 } 1427 } 1428 1429 if (test_bit(HCI_UP, &hdev->flags)) { 1430 ret = -EALREADY; 1431 goto done; 1432 } 1433 1434 if (hdev->open(hdev)) { 1435 ret = -EIO; 1436 goto done; 1437 } 1438 1439 set_bit(HCI_RUNNING, &hdev->flags); 1440 hci_sock_dev_event(hdev, HCI_DEV_OPEN); 1441 1442 atomic_set(&hdev->cmd_cnt, 1); 1443 set_bit(HCI_INIT, &hdev->flags); 1444 1445 if (hci_dev_test_flag(hdev, HCI_SETUP) || 1446 test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) { 1447 hci_sock_dev_event(hdev, HCI_DEV_SETUP); 1448 1449 if (hdev->setup) 1450 ret = hdev->setup(hdev); 1451 1452 if (ret) 1453 goto setup_failed; 1454 1455 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) { 1456 if (!bacmp(&hdev->public_addr, BDADDR_ANY)) 1457 hci_dev_get_bd_addr_from_property(hdev); 1458 1459 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 1460 hdev->set_bdaddr) 1461 ret = hdev->set_bdaddr(hdev, 1462 &hdev->public_addr); 1463 } 1464 1465 setup_failed: 1466 /* The transport driver can set these quirks before 1467 * creating the HCI device or in its setup callback. 1468 * 1469 * In case any of them is set, the controller has to 1470 * start up as unconfigured. 1471 */ 1472 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || 1473 test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks)) 1474 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 1475 1476 /* For an unconfigured controller it is required to 1477 * read at least the version information provided by 1478 * the Read Local Version Information command. 1479 * 1480 * If the set_bdaddr driver callback is provided, then 1481 * also the original Bluetooth public device address 1482 * will be read using the Read BD Address command. 1483 */ 1484 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 1485 ret = __hci_unconf_init(hdev); 1486 } 1487 1488 if (hci_dev_test_flag(hdev, HCI_CONFIG)) { 1489 /* If public address change is configured, ensure that 1490 * the address gets programmed. If the driver does not 1491 * support changing the public address, fail the power 1492 * on procedure. 1493 */ 1494 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 1495 hdev->set_bdaddr) 1496 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 1497 else 1498 ret = -EADDRNOTAVAIL; 1499 } 1500 1501 if (!ret) { 1502 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 1503 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1504 ret = __hci_init(hdev); 1505 if (!ret && hdev->post_init) 1506 ret = hdev->post_init(hdev); 1507 } 1508 } 1509 1510 /* If the HCI Reset command is clearing all diagnostic settings, 1511 * then they need to be reprogrammed after the init procedure 1512 * completed. 1513 */ 1514 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 1515 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1516 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) 1517 ret = hdev->set_diag(hdev, true); 1518 1519 clear_bit(HCI_INIT, &hdev->flags); 1520 1521 if (!ret) { 1522 hci_dev_hold(hdev); 1523 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 1524 hci_adv_instances_set_rpa_expired(hdev, true); 1525 set_bit(HCI_UP, &hdev->flags); 1526 hci_sock_dev_event(hdev, HCI_DEV_UP); 1527 hci_leds_update_powered(hdev, true); 1528 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 1529 !hci_dev_test_flag(hdev, HCI_CONFIG) && 1530 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 1531 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1532 hci_dev_test_flag(hdev, HCI_MGMT) && 1533 hdev->dev_type == HCI_PRIMARY) { 1534 ret = __hci_req_hci_power_on(hdev); 1535 mgmt_power_on(hdev, ret); 1536 } 1537 } else { 1538 /* Init failed, cleanup */ 1539 flush_work(&hdev->tx_work); 1540 flush_work(&hdev->cmd_work); 1541 flush_work(&hdev->rx_work); 1542 1543 skb_queue_purge(&hdev->cmd_q); 1544 skb_queue_purge(&hdev->rx_q); 1545 1546 if (hdev->flush) 1547 hdev->flush(hdev); 1548 1549 if (hdev->sent_cmd) { 1550 kfree_skb(hdev->sent_cmd); 1551 hdev->sent_cmd = NULL; 1552 } 1553 1554 clear_bit(HCI_RUNNING, &hdev->flags); 1555 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 1556 1557 hdev->close(hdev); 1558 hdev->flags &= BIT(HCI_RAW); 1559 } 1560 1561 done: 1562 hci_req_sync_unlock(hdev); 1563 return ret; 1564 } 1565 1566 /* ---- HCI ioctl helpers ---- */ 1567 1568 int hci_dev_open(__u16 dev) 1569 { 1570 struct hci_dev *hdev; 1571 int err; 1572 1573 hdev = hci_dev_get(dev); 1574 if (!hdev) 1575 return -ENODEV; 1576 1577 /* Devices that are marked as unconfigured can only be powered 1578 * up as user channel. Trying to bring them up as normal devices 1579 * will result into a failure. Only user channel operation is 1580 * possible. 1581 * 1582 * When this function is called for a user channel, the flag 1583 * HCI_USER_CHANNEL will be set first before attempting to 1584 * open the device. 1585 */ 1586 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 1587 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1588 err = -EOPNOTSUPP; 1589 goto done; 1590 } 1591 1592 /* We need to ensure that no other power on/off work is pending 1593 * before proceeding to call hci_dev_do_open. This is 1594 * particularly important if the setup procedure has not yet 1595 * completed. 1596 */ 1597 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) 1598 cancel_delayed_work(&hdev->power_off); 1599 1600 /* After this call it is guaranteed that the setup procedure 1601 * has finished. This means that error conditions like RFKILL 1602 * or no valid public or static random address apply. 1603 */ 1604 flush_workqueue(hdev->req_workqueue); 1605 1606 /* For controllers not using the management interface and that 1607 * are brought up using legacy ioctl, set the HCI_BONDABLE bit 1608 * so that pairing works for them. Once the management interface 1609 * is in use this bit will be cleared again and userspace has 1610 * to explicitly enable it. 1611 */ 1612 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1613 !hci_dev_test_flag(hdev, HCI_MGMT)) 1614 hci_dev_set_flag(hdev, HCI_BONDABLE); 1615 1616 err = hci_dev_do_open(hdev); 1617 1618 done: 1619 hci_dev_put(hdev); 1620 return err; 1621 } 1622 1623 /* This function requires the caller holds hdev->lock */ 1624 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 1625 { 1626 struct hci_conn_params *p; 1627 1628 list_for_each_entry(p, &hdev->le_conn_params, list) { 1629 if (p->conn) { 1630 hci_conn_drop(p->conn); 1631 hci_conn_put(p->conn); 1632 p->conn = NULL; 1633 } 1634 list_del_init(&p->action); 1635 } 1636 1637 BT_DBG("All LE pending actions cleared"); 1638 } 1639 1640 int hci_dev_do_close(struct hci_dev *hdev) 1641 { 1642 bool auto_off; 1643 1644 BT_DBG("%s %p", hdev->name, hdev); 1645 1646 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && 1647 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1648 test_bit(HCI_UP, &hdev->flags)) { 1649 /* Execute vendor specific shutdown routine */ 1650 if (hdev->shutdown) 1651 hdev->shutdown(hdev); 1652 } 1653 1654 cancel_delayed_work(&hdev->power_off); 1655 1656 hci_request_cancel_all(hdev); 1657 hci_req_sync_lock(hdev); 1658 1659 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 1660 cancel_delayed_work_sync(&hdev->cmd_timer); 1661 hci_req_sync_unlock(hdev); 1662 return 0; 1663 } 1664 1665 hci_leds_update_powered(hdev, false); 1666 1667 /* Flush RX and TX works */ 1668 flush_work(&hdev->tx_work); 1669 flush_work(&hdev->rx_work); 1670 1671 if (hdev->discov_timeout > 0) { 1672 hdev->discov_timeout = 0; 1673 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 1674 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 1675 } 1676 1677 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) 1678 cancel_delayed_work(&hdev->service_cache); 1679 1680 if (hci_dev_test_flag(hdev, HCI_MGMT)) { 1681 struct adv_info *adv_instance; 1682 1683 cancel_delayed_work_sync(&hdev->rpa_expired); 1684 1685 list_for_each_entry(adv_instance, &hdev->adv_instances, list) 1686 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 1687 } 1688 1689 /* Avoid potential lockdep warnings from the *_flush() calls by 1690 * ensuring the workqueue is empty up front. 1691 */ 1692 drain_workqueue(hdev->workqueue); 1693 1694 hci_dev_lock(hdev); 1695 1696 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 1697 1698 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); 1699 1700 if (!auto_off && hdev->dev_type == HCI_PRIMARY && 1701 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1702 hci_dev_test_flag(hdev, HCI_MGMT)) 1703 __mgmt_power_off(hdev); 1704 1705 hci_inquiry_cache_flush(hdev); 1706 hci_pend_le_actions_clear(hdev); 1707 hci_conn_hash_flush(hdev); 1708 hci_dev_unlock(hdev); 1709 1710 smp_unregister(hdev); 1711 1712 hci_sock_dev_event(hdev, HCI_DEV_DOWN); 1713 1714 if (hdev->flush) 1715 hdev->flush(hdev); 1716 1717 /* Reset device */ 1718 skb_queue_purge(&hdev->cmd_q); 1719 atomic_set(&hdev->cmd_cnt, 1); 1720 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && 1721 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1722 set_bit(HCI_INIT, &hdev->flags); 1723 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL); 1724 clear_bit(HCI_INIT, &hdev->flags); 1725 } 1726 1727 /* flush cmd work */ 1728 flush_work(&hdev->cmd_work); 1729 1730 /* Drop queues */ 1731 skb_queue_purge(&hdev->rx_q); 1732 skb_queue_purge(&hdev->cmd_q); 1733 skb_queue_purge(&hdev->raw_q); 1734 1735 /* Drop last sent command */ 1736 if (hdev->sent_cmd) { 1737 cancel_delayed_work_sync(&hdev->cmd_timer); 1738 kfree_skb(hdev->sent_cmd); 1739 hdev->sent_cmd = NULL; 1740 } 1741 1742 clear_bit(HCI_RUNNING, &hdev->flags); 1743 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 1744 1745 /* After this point our queues are empty 1746 * and no tasks are scheduled. */ 1747 hdev->close(hdev); 1748 1749 /* Clear flags */ 1750 hdev->flags &= BIT(HCI_RAW); 1751 hci_dev_clear_volatile_flags(hdev); 1752 1753 /* Controller radio is available but is currently powered down */ 1754 hdev->amp_status = AMP_STATUS_POWERED_DOWN; 1755 1756 memset(hdev->eir, 0, sizeof(hdev->eir)); 1757 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 1758 bacpy(&hdev->random_addr, BDADDR_ANY); 1759 1760 hci_req_sync_unlock(hdev); 1761 1762 hci_dev_put(hdev); 1763 return 0; 1764 } 1765 1766 int hci_dev_close(__u16 dev) 1767 { 1768 struct hci_dev *hdev; 1769 int err; 1770 1771 hdev = hci_dev_get(dev); 1772 if (!hdev) 1773 return -ENODEV; 1774 1775 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1776 err = -EBUSY; 1777 goto done; 1778 } 1779 1780 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) 1781 cancel_delayed_work(&hdev->power_off); 1782 1783 err = hci_dev_do_close(hdev); 1784 1785 done: 1786 hci_dev_put(hdev); 1787 return err; 1788 } 1789 1790 static int hci_dev_do_reset(struct hci_dev *hdev) 1791 { 1792 int ret; 1793 1794 BT_DBG("%s %p", hdev->name, hdev); 1795 1796 hci_req_sync_lock(hdev); 1797 1798 /* Drop queues */ 1799 skb_queue_purge(&hdev->rx_q); 1800 skb_queue_purge(&hdev->cmd_q); 1801 1802 /* Avoid potential lockdep warnings from the *_flush() calls by 1803 * ensuring the workqueue is empty up front. 1804 */ 1805 drain_workqueue(hdev->workqueue); 1806 1807 hci_dev_lock(hdev); 1808 hci_inquiry_cache_flush(hdev); 1809 hci_conn_hash_flush(hdev); 1810 hci_dev_unlock(hdev); 1811 1812 if (hdev->flush) 1813 hdev->flush(hdev); 1814 1815 atomic_set(&hdev->cmd_cnt, 1); 1816 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0; 1817 1818 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL); 1819 1820 hci_req_sync_unlock(hdev); 1821 return ret; 1822 } 1823 1824 int hci_dev_reset(__u16 dev) 1825 { 1826 struct hci_dev *hdev; 1827 int err; 1828 1829 hdev = hci_dev_get(dev); 1830 if (!hdev) 1831 return -ENODEV; 1832 1833 if (!test_bit(HCI_UP, &hdev->flags)) { 1834 err = -ENETDOWN; 1835 goto done; 1836 } 1837 1838 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1839 err = -EBUSY; 1840 goto done; 1841 } 1842 1843 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1844 err = -EOPNOTSUPP; 1845 goto done; 1846 } 1847 1848 err = hci_dev_do_reset(hdev); 1849 1850 done: 1851 hci_dev_put(hdev); 1852 return err; 1853 } 1854 1855 int hci_dev_reset_stat(__u16 dev) 1856 { 1857 struct hci_dev *hdev; 1858 int ret = 0; 1859 1860 hdev = hci_dev_get(dev); 1861 if (!hdev) 1862 return -ENODEV; 1863 1864 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1865 ret = -EBUSY; 1866 goto done; 1867 } 1868 1869 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1870 ret = -EOPNOTSUPP; 1871 goto done; 1872 } 1873 1874 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats)); 1875 1876 done: 1877 hci_dev_put(hdev); 1878 return ret; 1879 } 1880 1881 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan) 1882 { 1883 bool conn_changed, discov_changed; 1884 1885 BT_DBG("%s scan 0x%02x", hdev->name, scan); 1886 1887 if ((scan & SCAN_PAGE)) 1888 conn_changed = !hci_dev_test_and_set_flag(hdev, 1889 HCI_CONNECTABLE); 1890 else 1891 conn_changed = hci_dev_test_and_clear_flag(hdev, 1892 HCI_CONNECTABLE); 1893 1894 if ((scan & SCAN_INQUIRY)) { 1895 discov_changed = !hci_dev_test_and_set_flag(hdev, 1896 HCI_DISCOVERABLE); 1897 } else { 1898 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 1899 discov_changed = hci_dev_test_and_clear_flag(hdev, 1900 HCI_DISCOVERABLE); 1901 } 1902 1903 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 1904 return; 1905 1906 if (conn_changed || discov_changed) { 1907 /* In case this was disabled through mgmt */ 1908 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); 1909 1910 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1911 hci_req_update_adv_data(hdev, hdev->cur_adv_instance); 1912 1913 mgmt_new_settings(hdev); 1914 } 1915 } 1916 1917 int hci_dev_cmd(unsigned int cmd, void __user *arg) 1918 { 1919 struct hci_dev *hdev; 1920 struct hci_dev_req dr; 1921 int err = 0; 1922 1923 if (copy_from_user(&dr, arg, sizeof(dr))) 1924 return -EFAULT; 1925 1926 hdev = hci_dev_get(dr.dev_id); 1927 if (!hdev) 1928 return -ENODEV; 1929 1930 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1931 err = -EBUSY; 1932 goto done; 1933 } 1934 1935 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1936 err = -EOPNOTSUPP; 1937 goto done; 1938 } 1939 1940 if (hdev->dev_type != HCI_PRIMARY) { 1941 err = -EOPNOTSUPP; 1942 goto done; 1943 } 1944 1945 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 1946 err = -EOPNOTSUPP; 1947 goto done; 1948 } 1949 1950 switch (cmd) { 1951 case HCISETAUTH: 1952 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt, 1953 HCI_INIT_TIMEOUT, NULL); 1954 break; 1955 1956 case HCISETENCRYPT: 1957 if (!lmp_encrypt_capable(hdev)) { 1958 err = -EOPNOTSUPP; 1959 break; 1960 } 1961 1962 if (!test_bit(HCI_AUTH, &hdev->flags)) { 1963 /* Auth must be enabled first */ 1964 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt, 1965 HCI_INIT_TIMEOUT, NULL); 1966 if (err) 1967 break; 1968 } 1969 1970 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt, 1971 HCI_INIT_TIMEOUT, NULL); 1972 break; 1973 1974 case HCISETSCAN: 1975 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt, 1976 HCI_INIT_TIMEOUT, NULL); 1977 1978 /* Ensure that the connectable and discoverable states 1979 * get correctly modified as this was a non-mgmt change. 1980 */ 1981 if (!err) 1982 hci_update_scan_state(hdev, dr.dev_opt); 1983 break; 1984 1985 case HCISETLINKPOL: 1986 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt, 1987 HCI_INIT_TIMEOUT, NULL); 1988 break; 1989 1990 case HCISETLINKMODE: 1991 hdev->link_mode = ((__u16) dr.dev_opt) & 1992 (HCI_LM_MASTER | HCI_LM_ACCEPT); 1993 break; 1994 1995 case HCISETPTYPE: 1996 if (hdev->pkt_type == (__u16) dr.dev_opt) 1997 break; 1998 1999 hdev->pkt_type = (__u16) dr.dev_opt; 2000 mgmt_phy_configuration_changed(hdev, NULL); 2001 break; 2002 2003 case HCISETACLMTU: 2004 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1); 2005 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0); 2006 break; 2007 2008 case HCISETSCOMTU: 2009 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1); 2010 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0); 2011 break; 2012 2013 default: 2014 err = -EINVAL; 2015 break; 2016 } 2017 2018 done: 2019 hci_dev_put(hdev); 2020 return err; 2021 } 2022 2023 int hci_get_dev_list(void __user *arg) 2024 { 2025 struct hci_dev *hdev; 2026 struct hci_dev_list_req *dl; 2027 struct hci_dev_req *dr; 2028 int n = 0, size, err; 2029 __u16 dev_num; 2030 2031 if (get_user(dev_num, (__u16 __user *) arg)) 2032 return -EFAULT; 2033 2034 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr)) 2035 return -EINVAL; 2036 2037 size = sizeof(*dl) + dev_num * sizeof(*dr); 2038 2039 dl = kzalloc(size, GFP_KERNEL); 2040 if (!dl) 2041 return -ENOMEM; 2042 2043 dr = dl->dev_req; 2044 2045 read_lock(&hci_dev_list_lock); 2046 list_for_each_entry(hdev, &hci_dev_list, list) { 2047 unsigned long flags = hdev->flags; 2048 2049 /* When the auto-off is configured it means the transport 2050 * is running, but in that case still indicate that the 2051 * device is actually down. 2052 */ 2053 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) 2054 flags &= ~BIT(HCI_UP); 2055 2056 (dr + n)->dev_id = hdev->id; 2057 (dr + n)->dev_opt = flags; 2058 2059 if (++n >= dev_num) 2060 break; 2061 } 2062 read_unlock(&hci_dev_list_lock); 2063 2064 dl->dev_num = n; 2065 size = sizeof(*dl) + n * sizeof(*dr); 2066 2067 err = copy_to_user(arg, dl, size); 2068 kfree(dl); 2069 2070 return err ? -EFAULT : 0; 2071 } 2072 2073 int hci_get_dev_info(void __user *arg) 2074 { 2075 struct hci_dev *hdev; 2076 struct hci_dev_info di; 2077 unsigned long flags; 2078 int err = 0; 2079 2080 if (copy_from_user(&di, arg, sizeof(di))) 2081 return -EFAULT; 2082 2083 hdev = hci_dev_get(di.dev_id); 2084 if (!hdev) 2085 return -ENODEV; 2086 2087 /* When the auto-off is configured it means the transport 2088 * is running, but in that case still indicate that the 2089 * device is actually down. 2090 */ 2091 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) 2092 flags = hdev->flags & ~BIT(HCI_UP); 2093 else 2094 flags = hdev->flags; 2095 2096 strcpy(di.name, hdev->name); 2097 di.bdaddr = hdev->bdaddr; 2098 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4); 2099 di.flags = flags; 2100 di.pkt_type = hdev->pkt_type; 2101 if (lmp_bredr_capable(hdev)) { 2102 di.acl_mtu = hdev->acl_mtu; 2103 di.acl_pkts = hdev->acl_pkts; 2104 di.sco_mtu = hdev->sco_mtu; 2105 di.sco_pkts = hdev->sco_pkts; 2106 } else { 2107 di.acl_mtu = hdev->le_mtu; 2108 di.acl_pkts = hdev->le_pkts; 2109 di.sco_mtu = 0; 2110 di.sco_pkts = 0; 2111 } 2112 di.link_policy = hdev->link_policy; 2113 di.link_mode = hdev->link_mode; 2114 2115 memcpy(&di.stat, &hdev->stat, sizeof(di.stat)); 2116 memcpy(&di.features, &hdev->features, sizeof(di.features)); 2117 2118 if (copy_to_user(arg, &di, sizeof(di))) 2119 err = -EFAULT; 2120 2121 hci_dev_put(hdev); 2122 2123 return err; 2124 } 2125 2126 /* ---- Interface to HCI drivers ---- */ 2127 2128 static int hci_rfkill_set_block(void *data, bool blocked) 2129 { 2130 struct hci_dev *hdev = data; 2131 2132 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked); 2133 2134 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) 2135 return -EBUSY; 2136 2137 if (blocked) { 2138 hci_dev_set_flag(hdev, HCI_RFKILLED); 2139 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 2140 !hci_dev_test_flag(hdev, HCI_CONFIG)) 2141 hci_dev_do_close(hdev); 2142 } else { 2143 hci_dev_clear_flag(hdev, HCI_RFKILLED); 2144 } 2145 2146 return 0; 2147 } 2148 2149 static const struct rfkill_ops hci_rfkill_ops = { 2150 .set_block = hci_rfkill_set_block, 2151 }; 2152 2153 static void hci_power_on(struct work_struct *work) 2154 { 2155 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on); 2156 int err; 2157 2158 BT_DBG("%s", hdev->name); 2159 2160 if (test_bit(HCI_UP, &hdev->flags) && 2161 hci_dev_test_flag(hdev, HCI_MGMT) && 2162 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 2163 cancel_delayed_work(&hdev->power_off); 2164 hci_req_sync_lock(hdev); 2165 err = __hci_req_hci_power_on(hdev); 2166 hci_req_sync_unlock(hdev); 2167 mgmt_power_on(hdev, err); 2168 return; 2169 } 2170 2171 err = hci_dev_do_open(hdev); 2172 if (err < 0) { 2173 hci_dev_lock(hdev); 2174 mgmt_set_powered_failed(hdev, err); 2175 hci_dev_unlock(hdev); 2176 return; 2177 } 2178 2179 /* During the HCI setup phase, a few error conditions are 2180 * ignored and they need to be checked now. If they are still 2181 * valid, it is important to turn the device back off. 2182 */ 2183 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 2184 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 2185 (hdev->dev_type == HCI_PRIMARY && 2186 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 2187 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 2188 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 2189 hci_dev_do_close(hdev); 2190 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 2191 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 2192 HCI_AUTO_OFF_TIMEOUT); 2193 } 2194 2195 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 2196 /* For unconfigured devices, set the HCI_RAW flag 2197 * so that userspace can easily identify them. 2198 */ 2199 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 2200 set_bit(HCI_RAW, &hdev->flags); 2201 2202 /* For fully configured devices, this will send 2203 * the Index Added event. For unconfigured devices, 2204 * it will send Unconfigued Index Added event. 2205 * 2206 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 2207 * and no event will be send. 2208 */ 2209 mgmt_index_added(hdev); 2210 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 2211 /* When the controller is now configured, then it 2212 * is important to clear the HCI_RAW flag. 2213 */ 2214 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 2215 clear_bit(HCI_RAW, &hdev->flags); 2216 2217 /* Powering on the controller with HCI_CONFIG set only 2218 * happens with the transition from unconfigured to 2219 * configured. This will send the Index Added event. 2220 */ 2221 mgmt_index_added(hdev); 2222 } 2223 } 2224 2225 static void hci_power_off(struct work_struct *work) 2226 { 2227 struct hci_dev *hdev = container_of(work, struct hci_dev, 2228 power_off.work); 2229 2230 BT_DBG("%s", hdev->name); 2231 2232 hci_dev_do_close(hdev); 2233 } 2234 2235 static void hci_error_reset(struct work_struct *work) 2236 { 2237 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset); 2238 2239 BT_DBG("%s", hdev->name); 2240 2241 if (hdev->hw_error) 2242 hdev->hw_error(hdev, hdev->hw_error_code); 2243 else 2244 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code); 2245 2246 if (hci_dev_do_close(hdev)) 2247 return; 2248 2249 hci_dev_do_open(hdev); 2250 } 2251 2252 void hci_uuids_clear(struct hci_dev *hdev) 2253 { 2254 struct bt_uuid *uuid, *tmp; 2255 2256 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) { 2257 list_del(&uuid->list); 2258 kfree(uuid); 2259 } 2260 } 2261 2262 void hci_link_keys_clear(struct hci_dev *hdev) 2263 { 2264 struct link_key *key; 2265 2266 list_for_each_entry_rcu(key, &hdev->link_keys, list) { 2267 list_del_rcu(&key->list); 2268 kfree_rcu(key, rcu); 2269 } 2270 } 2271 2272 void hci_smp_ltks_clear(struct hci_dev *hdev) 2273 { 2274 struct smp_ltk *k; 2275 2276 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 2277 list_del_rcu(&k->list); 2278 kfree_rcu(k, rcu); 2279 } 2280 } 2281 2282 void hci_smp_irks_clear(struct hci_dev *hdev) 2283 { 2284 struct smp_irk *k; 2285 2286 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) { 2287 list_del_rcu(&k->list); 2288 kfree_rcu(k, rcu); 2289 } 2290 } 2291 2292 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 2293 { 2294 struct link_key *k; 2295 2296 rcu_read_lock(); 2297 list_for_each_entry_rcu(k, &hdev->link_keys, list) { 2298 if (bacmp(bdaddr, &k->bdaddr) == 0) { 2299 rcu_read_unlock(); 2300 return k; 2301 } 2302 } 2303 rcu_read_unlock(); 2304 2305 return NULL; 2306 } 2307 2308 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn, 2309 u8 key_type, u8 old_key_type) 2310 { 2311 /* Legacy key */ 2312 if (key_type < 0x03) 2313 return true; 2314 2315 /* Debug keys are insecure so don't store them persistently */ 2316 if (key_type == HCI_LK_DEBUG_COMBINATION) 2317 return false; 2318 2319 /* Changed combination key and there's no previous one */ 2320 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff) 2321 return false; 2322 2323 /* Security mode 3 case */ 2324 if (!conn) 2325 return true; 2326 2327 /* BR/EDR key derived using SC from an LE link */ 2328 if (conn->type == LE_LINK) 2329 return true; 2330 2331 /* Neither local nor remote side had no-bonding as requirement */ 2332 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01) 2333 return true; 2334 2335 /* Local side had dedicated bonding as requirement */ 2336 if (conn->auth_type == 0x02 || conn->auth_type == 0x03) 2337 return true; 2338 2339 /* Remote side had dedicated bonding as requirement */ 2340 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03) 2341 return true; 2342 2343 /* If none of the above criteria match, then don't store the key 2344 * persistently */ 2345 return false; 2346 } 2347 2348 static u8 ltk_role(u8 type) 2349 { 2350 if (type == SMP_LTK) 2351 return HCI_ROLE_MASTER; 2352 2353 return HCI_ROLE_SLAVE; 2354 } 2355 2356 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 2357 u8 addr_type, u8 role) 2358 { 2359 struct smp_ltk *k; 2360 2361 rcu_read_lock(); 2362 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 2363 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr)) 2364 continue; 2365 2366 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) { 2367 rcu_read_unlock(); 2368 return k; 2369 } 2370 } 2371 rcu_read_unlock(); 2372 2373 return NULL; 2374 } 2375 2376 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa) 2377 { 2378 struct smp_irk *irk; 2379 2380 rcu_read_lock(); 2381 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 2382 if (!bacmp(&irk->rpa, rpa)) { 2383 rcu_read_unlock(); 2384 return irk; 2385 } 2386 } 2387 2388 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 2389 if (smp_irk_matches(hdev, irk->val, rpa)) { 2390 bacpy(&irk->rpa, rpa); 2391 rcu_read_unlock(); 2392 return irk; 2393 } 2394 } 2395 rcu_read_unlock(); 2396 2397 return NULL; 2398 } 2399 2400 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, 2401 u8 addr_type) 2402 { 2403 struct smp_irk *irk; 2404 2405 /* Identity Address must be public or static random */ 2406 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0) 2407 return NULL; 2408 2409 rcu_read_lock(); 2410 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 2411 if (addr_type == irk->addr_type && 2412 bacmp(bdaddr, &irk->bdaddr) == 0) { 2413 rcu_read_unlock(); 2414 return irk; 2415 } 2416 } 2417 rcu_read_unlock(); 2418 2419 return NULL; 2420 } 2421 2422 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, 2423 bdaddr_t *bdaddr, u8 *val, u8 type, 2424 u8 pin_len, bool *persistent) 2425 { 2426 struct link_key *key, *old_key; 2427 u8 old_key_type; 2428 2429 old_key = hci_find_link_key(hdev, bdaddr); 2430 if (old_key) { 2431 old_key_type = old_key->type; 2432 key = old_key; 2433 } else { 2434 old_key_type = conn ? conn->key_type : 0xff; 2435 key = kzalloc(sizeof(*key), GFP_KERNEL); 2436 if (!key) 2437 return NULL; 2438 list_add_rcu(&key->list, &hdev->link_keys); 2439 } 2440 2441 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type); 2442 2443 /* Some buggy controller combinations generate a changed 2444 * combination key for legacy pairing even when there's no 2445 * previous key */ 2446 if (type == HCI_LK_CHANGED_COMBINATION && 2447 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) { 2448 type = HCI_LK_COMBINATION; 2449 if (conn) 2450 conn->key_type = type; 2451 } 2452 2453 bacpy(&key->bdaddr, bdaddr); 2454 memcpy(key->val, val, HCI_LINK_KEY_SIZE); 2455 key->pin_len = pin_len; 2456 2457 if (type == HCI_LK_CHANGED_COMBINATION) 2458 key->type = old_key_type; 2459 else 2460 key->type = type; 2461 2462 if (persistent) 2463 *persistent = hci_persistent_key(hdev, conn, type, 2464 old_key_type); 2465 2466 return key; 2467 } 2468 2469 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 2470 u8 addr_type, u8 type, u8 authenticated, 2471 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand) 2472 { 2473 struct smp_ltk *key, *old_key; 2474 u8 role = ltk_role(type); 2475 2476 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role); 2477 if (old_key) 2478 key = old_key; 2479 else { 2480 key = kzalloc(sizeof(*key), GFP_KERNEL); 2481 if (!key) 2482 return NULL; 2483 list_add_rcu(&key->list, &hdev->long_term_keys); 2484 } 2485 2486 bacpy(&key->bdaddr, bdaddr); 2487 key->bdaddr_type = addr_type; 2488 memcpy(key->val, tk, sizeof(key->val)); 2489 key->authenticated = authenticated; 2490 key->ediv = ediv; 2491 key->rand = rand; 2492 key->enc_size = enc_size; 2493 key->type = type; 2494 2495 return key; 2496 } 2497 2498 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, 2499 u8 addr_type, u8 val[16], bdaddr_t *rpa) 2500 { 2501 struct smp_irk *irk; 2502 2503 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type); 2504 if (!irk) { 2505 irk = kzalloc(sizeof(*irk), GFP_KERNEL); 2506 if (!irk) 2507 return NULL; 2508 2509 bacpy(&irk->bdaddr, bdaddr); 2510 irk->addr_type = addr_type; 2511 2512 list_add_rcu(&irk->list, &hdev->identity_resolving_keys); 2513 } 2514 2515 memcpy(irk->val, val, 16); 2516 bacpy(&irk->rpa, rpa); 2517 2518 return irk; 2519 } 2520 2521 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 2522 { 2523 struct link_key *key; 2524 2525 key = hci_find_link_key(hdev, bdaddr); 2526 if (!key) 2527 return -ENOENT; 2528 2529 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 2530 2531 list_del_rcu(&key->list); 2532 kfree_rcu(key, rcu); 2533 2534 return 0; 2535 } 2536 2537 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type) 2538 { 2539 struct smp_ltk *k; 2540 int removed = 0; 2541 2542 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 2543 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type) 2544 continue; 2545 2546 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 2547 2548 list_del_rcu(&k->list); 2549 kfree_rcu(k, rcu); 2550 removed++; 2551 } 2552 2553 return removed ? 0 : -ENOENT; 2554 } 2555 2556 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type) 2557 { 2558 struct smp_irk *k; 2559 2560 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) { 2561 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type) 2562 continue; 2563 2564 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 2565 2566 list_del_rcu(&k->list); 2567 kfree_rcu(k, rcu); 2568 } 2569 } 2570 2571 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type) 2572 { 2573 struct smp_ltk *k; 2574 struct smp_irk *irk; 2575 u8 addr_type; 2576 2577 if (type == BDADDR_BREDR) { 2578 if (hci_find_link_key(hdev, bdaddr)) 2579 return true; 2580 return false; 2581 } 2582 2583 /* Convert to HCI addr type which struct smp_ltk uses */ 2584 if (type == BDADDR_LE_PUBLIC) 2585 addr_type = ADDR_LE_DEV_PUBLIC; 2586 else 2587 addr_type = ADDR_LE_DEV_RANDOM; 2588 2589 irk = hci_get_irk(hdev, bdaddr, addr_type); 2590 if (irk) { 2591 bdaddr = &irk->bdaddr; 2592 addr_type = irk->addr_type; 2593 } 2594 2595 rcu_read_lock(); 2596 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 2597 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) { 2598 rcu_read_unlock(); 2599 return true; 2600 } 2601 } 2602 rcu_read_unlock(); 2603 2604 return false; 2605 } 2606 2607 /* HCI command timer function */ 2608 static void hci_cmd_timeout(struct work_struct *work) 2609 { 2610 struct hci_dev *hdev = container_of(work, struct hci_dev, 2611 cmd_timer.work); 2612 2613 if (hdev->sent_cmd) { 2614 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data; 2615 u16 opcode = __le16_to_cpu(sent->opcode); 2616 2617 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode); 2618 } else { 2619 bt_dev_err(hdev, "command tx timeout"); 2620 } 2621 2622 if (hdev->cmd_timeout) 2623 hdev->cmd_timeout(hdev); 2624 2625 atomic_set(&hdev->cmd_cnt, 1); 2626 queue_work(hdev->workqueue, &hdev->cmd_work); 2627 } 2628 2629 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, 2630 bdaddr_t *bdaddr, u8 bdaddr_type) 2631 { 2632 struct oob_data *data; 2633 2634 list_for_each_entry(data, &hdev->remote_oob_data, list) { 2635 if (bacmp(bdaddr, &data->bdaddr) != 0) 2636 continue; 2637 if (data->bdaddr_type != bdaddr_type) 2638 continue; 2639 return data; 2640 } 2641 2642 return NULL; 2643 } 2644 2645 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 2646 u8 bdaddr_type) 2647 { 2648 struct oob_data *data; 2649 2650 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); 2651 if (!data) 2652 return -ENOENT; 2653 2654 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type); 2655 2656 list_del(&data->list); 2657 kfree(data); 2658 2659 return 0; 2660 } 2661 2662 void hci_remote_oob_data_clear(struct hci_dev *hdev) 2663 { 2664 struct oob_data *data, *n; 2665 2666 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) { 2667 list_del(&data->list); 2668 kfree(data); 2669 } 2670 } 2671 2672 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 2673 u8 bdaddr_type, u8 *hash192, u8 *rand192, 2674 u8 *hash256, u8 *rand256) 2675 { 2676 struct oob_data *data; 2677 2678 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); 2679 if (!data) { 2680 data = kmalloc(sizeof(*data), GFP_KERNEL); 2681 if (!data) 2682 return -ENOMEM; 2683 2684 bacpy(&data->bdaddr, bdaddr); 2685 data->bdaddr_type = bdaddr_type; 2686 list_add(&data->list, &hdev->remote_oob_data); 2687 } 2688 2689 if (hash192 && rand192) { 2690 memcpy(data->hash192, hash192, sizeof(data->hash192)); 2691 memcpy(data->rand192, rand192, sizeof(data->rand192)); 2692 if (hash256 && rand256) 2693 data->present = 0x03; 2694 } else { 2695 memset(data->hash192, 0, sizeof(data->hash192)); 2696 memset(data->rand192, 0, sizeof(data->rand192)); 2697 if (hash256 && rand256) 2698 data->present = 0x02; 2699 else 2700 data->present = 0x00; 2701 } 2702 2703 if (hash256 && rand256) { 2704 memcpy(data->hash256, hash256, sizeof(data->hash256)); 2705 memcpy(data->rand256, rand256, sizeof(data->rand256)); 2706 } else { 2707 memset(data->hash256, 0, sizeof(data->hash256)); 2708 memset(data->rand256, 0, sizeof(data->rand256)); 2709 if (hash192 && rand192) 2710 data->present = 0x01; 2711 } 2712 2713 BT_DBG("%s for %pMR", hdev->name, bdaddr); 2714 2715 return 0; 2716 } 2717 2718 /* This function requires the caller holds hdev->lock */ 2719 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance) 2720 { 2721 struct adv_info *adv_instance; 2722 2723 list_for_each_entry(adv_instance, &hdev->adv_instances, list) { 2724 if (adv_instance->instance == instance) 2725 return adv_instance; 2726 } 2727 2728 return NULL; 2729 } 2730 2731 /* This function requires the caller holds hdev->lock */ 2732 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance) 2733 { 2734 struct adv_info *cur_instance; 2735 2736 cur_instance = hci_find_adv_instance(hdev, instance); 2737 if (!cur_instance) 2738 return NULL; 2739 2740 if (cur_instance == list_last_entry(&hdev->adv_instances, 2741 struct adv_info, list)) 2742 return list_first_entry(&hdev->adv_instances, 2743 struct adv_info, list); 2744 else 2745 return list_next_entry(cur_instance, list); 2746 } 2747 2748 /* This function requires the caller holds hdev->lock */ 2749 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance) 2750 { 2751 struct adv_info *adv_instance; 2752 2753 adv_instance = hci_find_adv_instance(hdev, instance); 2754 if (!adv_instance) 2755 return -ENOENT; 2756 2757 BT_DBG("%s removing %dMR", hdev->name, instance); 2758 2759 if (hdev->cur_adv_instance == instance) { 2760 if (hdev->adv_instance_timeout) { 2761 cancel_delayed_work(&hdev->adv_instance_expire); 2762 hdev->adv_instance_timeout = 0; 2763 } 2764 hdev->cur_adv_instance = 0x00; 2765 } 2766 2767 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 2768 2769 list_del(&adv_instance->list); 2770 kfree(adv_instance); 2771 2772 hdev->adv_instance_cnt--; 2773 2774 return 0; 2775 } 2776 2777 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired) 2778 { 2779 struct adv_info *adv_instance, *n; 2780 2781 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) 2782 adv_instance->rpa_expired = rpa_expired; 2783 } 2784 2785 /* This function requires the caller holds hdev->lock */ 2786 void hci_adv_instances_clear(struct hci_dev *hdev) 2787 { 2788 struct adv_info *adv_instance, *n; 2789 2790 if (hdev->adv_instance_timeout) { 2791 cancel_delayed_work(&hdev->adv_instance_expire); 2792 hdev->adv_instance_timeout = 0; 2793 } 2794 2795 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) { 2796 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 2797 list_del(&adv_instance->list); 2798 kfree(adv_instance); 2799 } 2800 2801 hdev->adv_instance_cnt = 0; 2802 hdev->cur_adv_instance = 0x00; 2803 } 2804 2805 static void adv_instance_rpa_expired(struct work_struct *work) 2806 { 2807 struct adv_info *adv_instance = container_of(work, struct adv_info, 2808 rpa_expired_cb.work); 2809 2810 BT_DBG(""); 2811 2812 adv_instance->rpa_expired = true; 2813 } 2814 2815 /* This function requires the caller holds hdev->lock */ 2816 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags, 2817 u16 adv_data_len, u8 *adv_data, 2818 u16 scan_rsp_len, u8 *scan_rsp_data, 2819 u16 timeout, u16 duration) 2820 { 2821 struct adv_info *adv_instance; 2822 2823 adv_instance = hci_find_adv_instance(hdev, instance); 2824 if (adv_instance) { 2825 memset(adv_instance->adv_data, 0, 2826 sizeof(adv_instance->adv_data)); 2827 memset(adv_instance->scan_rsp_data, 0, 2828 sizeof(adv_instance->scan_rsp_data)); 2829 } else { 2830 if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets || 2831 instance < 1 || instance > HCI_MAX_ADV_INSTANCES) 2832 return -EOVERFLOW; 2833 2834 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL); 2835 if (!adv_instance) 2836 return -ENOMEM; 2837 2838 adv_instance->pending = true; 2839 adv_instance->instance = instance; 2840 list_add(&adv_instance->list, &hdev->adv_instances); 2841 hdev->adv_instance_cnt++; 2842 } 2843 2844 adv_instance->flags = flags; 2845 adv_instance->adv_data_len = adv_data_len; 2846 adv_instance->scan_rsp_len = scan_rsp_len; 2847 2848 if (adv_data_len) 2849 memcpy(adv_instance->adv_data, adv_data, adv_data_len); 2850 2851 if (scan_rsp_len) 2852 memcpy(adv_instance->scan_rsp_data, 2853 scan_rsp_data, scan_rsp_len); 2854 2855 adv_instance->timeout = timeout; 2856 adv_instance->remaining_time = timeout; 2857 2858 if (duration == 0) 2859 adv_instance->duration = HCI_DEFAULT_ADV_DURATION; 2860 else 2861 adv_instance->duration = duration; 2862 2863 adv_instance->tx_power = HCI_TX_POWER_INVALID; 2864 2865 INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb, 2866 adv_instance_rpa_expired); 2867 2868 BT_DBG("%s for %dMR", hdev->name, instance); 2869 2870 return 0; 2871 } 2872 2873 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list, 2874 bdaddr_t *bdaddr, u8 type) 2875 { 2876 struct bdaddr_list *b; 2877 2878 list_for_each_entry(b, bdaddr_list, list) { 2879 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 2880 return b; 2881 } 2882 2883 return NULL; 2884 } 2885 2886 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk( 2887 struct list_head *bdaddr_list, bdaddr_t *bdaddr, 2888 u8 type) 2889 { 2890 struct bdaddr_list_with_irk *b; 2891 2892 list_for_each_entry(b, bdaddr_list, list) { 2893 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 2894 return b; 2895 } 2896 2897 return NULL; 2898 } 2899 2900 void hci_bdaddr_list_clear(struct list_head *bdaddr_list) 2901 { 2902 struct bdaddr_list *b, *n; 2903 2904 list_for_each_entry_safe(b, n, bdaddr_list, list) { 2905 list_del(&b->list); 2906 kfree(b); 2907 } 2908 } 2909 2910 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type) 2911 { 2912 struct bdaddr_list *entry; 2913 2914 if (!bacmp(bdaddr, BDADDR_ANY)) 2915 return -EBADF; 2916 2917 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 2918 return -EEXIST; 2919 2920 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 2921 if (!entry) 2922 return -ENOMEM; 2923 2924 bacpy(&entry->bdaddr, bdaddr); 2925 entry->bdaddr_type = type; 2926 2927 list_add(&entry->list, list); 2928 2929 return 0; 2930 } 2931 2932 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr, 2933 u8 type, u8 *peer_irk, u8 *local_irk) 2934 { 2935 struct bdaddr_list_with_irk *entry; 2936 2937 if (!bacmp(bdaddr, BDADDR_ANY)) 2938 return -EBADF; 2939 2940 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 2941 return -EEXIST; 2942 2943 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 2944 if (!entry) 2945 return -ENOMEM; 2946 2947 bacpy(&entry->bdaddr, bdaddr); 2948 entry->bdaddr_type = type; 2949 2950 if (peer_irk) 2951 memcpy(entry->peer_irk, peer_irk, 16); 2952 2953 if (local_irk) 2954 memcpy(entry->local_irk, local_irk, 16); 2955 2956 list_add(&entry->list, list); 2957 2958 return 0; 2959 } 2960 2961 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type) 2962 { 2963 struct bdaddr_list *entry; 2964 2965 if (!bacmp(bdaddr, BDADDR_ANY)) { 2966 hci_bdaddr_list_clear(list); 2967 return 0; 2968 } 2969 2970 entry = hci_bdaddr_list_lookup(list, bdaddr, type); 2971 if (!entry) 2972 return -ENOENT; 2973 2974 list_del(&entry->list); 2975 kfree(entry); 2976 2977 return 0; 2978 } 2979 2980 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr, 2981 u8 type) 2982 { 2983 struct bdaddr_list_with_irk *entry; 2984 2985 if (!bacmp(bdaddr, BDADDR_ANY)) { 2986 hci_bdaddr_list_clear(list); 2987 return 0; 2988 } 2989 2990 entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type); 2991 if (!entry) 2992 return -ENOENT; 2993 2994 list_del(&entry->list); 2995 kfree(entry); 2996 2997 return 0; 2998 } 2999 3000 /* This function requires the caller holds hdev->lock */ 3001 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev, 3002 bdaddr_t *addr, u8 addr_type) 3003 { 3004 struct hci_conn_params *params; 3005 3006 list_for_each_entry(params, &hdev->le_conn_params, list) { 3007 if (bacmp(¶ms->addr, addr) == 0 && 3008 params->addr_type == addr_type) { 3009 return params; 3010 } 3011 } 3012 3013 return NULL; 3014 } 3015 3016 /* This function requires the caller holds hdev->lock */ 3017 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list, 3018 bdaddr_t *addr, u8 addr_type) 3019 { 3020 struct hci_conn_params *param; 3021 3022 list_for_each_entry(param, list, action) { 3023 if (bacmp(¶m->addr, addr) == 0 && 3024 param->addr_type == addr_type) 3025 return param; 3026 } 3027 3028 return NULL; 3029 } 3030 3031 /* This function requires the caller holds hdev->lock */ 3032 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev, 3033 bdaddr_t *addr, u8 addr_type) 3034 { 3035 struct hci_conn_params *params; 3036 3037 params = hci_conn_params_lookup(hdev, addr, addr_type); 3038 if (params) 3039 return params; 3040 3041 params = kzalloc(sizeof(*params), GFP_KERNEL); 3042 if (!params) { 3043 bt_dev_err(hdev, "out of memory"); 3044 return NULL; 3045 } 3046 3047 bacpy(¶ms->addr, addr); 3048 params->addr_type = addr_type; 3049 3050 list_add(¶ms->list, &hdev->le_conn_params); 3051 INIT_LIST_HEAD(¶ms->action); 3052 3053 params->conn_min_interval = hdev->le_conn_min_interval; 3054 params->conn_max_interval = hdev->le_conn_max_interval; 3055 params->conn_latency = hdev->le_conn_latency; 3056 params->supervision_timeout = hdev->le_supv_timeout; 3057 params->auto_connect = HCI_AUTO_CONN_DISABLED; 3058 3059 BT_DBG("addr %pMR (type %u)", addr, addr_type); 3060 3061 return params; 3062 } 3063 3064 static void hci_conn_params_free(struct hci_conn_params *params) 3065 { 3066 if (params->conn) { 3067 hci_conn_drop(params->conn); 3068 hci_conn_put(params->conn); 3069 } 3070 3071 list_del(¶ms->action); 3072 list_del(¶ms->list); 3073 kfree(params); 3074 } 3075 3076 /* This function requires the caller holds hdev->lock */ 3077 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type) 3078 { 3079 struct hci_conn_params *params; 3080 3081 params = hci_conn_params_lookup(hdev, addr, addr_type); 3082 if (!params) 3083 return; 3084 3085 hci_conn_params_free(params); 3086 3087 hci_update_background_scan(hdev); 3088 3089 BT_DBG("addr %pMR (type %u)", addr, addr_type); 3090 } 3091 3092 /* This function requires the caller holds hdev->lock */ 3093 void hci_conn_params_clear_disabled(struct hci_dev *hdev) 3094 { 3095 struct hci_conn_params *params, *tmp; 3096 3097 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) { 3098 if (params->auto_connect != HCI_AUTO_CONN_DISABLED) 3099 continue; 3100 3101 /* If trying to estabilish one time connection to disabled 3102 * device, leave the params, but mark them as just once. 3103 */ 3104 if (params->explicit_connect) { 3105 params->auto_connect = HCI_AUTO_CONN_EXPLICIT; 3106 continue; 3107 } 3108 3109 list_del(¶ms->list); 3110 kfree(params); 3111 } 3112 3113 BT_DBG("All LE disabled connection parameters were removed"); 3114 } 3115 3116 /* This function requires the caller holds hdev->lock */ 3117 static void hci_conn_params_clear_all(struct hci_dev *hdev) 3118 { 3119 struct hci_conn_params *params, *tmp; 3120 3121 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) 3122 hci_conn_params_free(params); 3123 3124 BT_DBG("All LE connection parameters were removed"); 3125 } 3126 3127 /* Copy the Identity Address of the controller. 3128 * 3129 * If the controller has a public BD_ADDR, then by default use that one. 3130 * If this is a LE only controller without a public address, default to 3131 * the static random address. 3132 * 3133 * For debugging purposes it is possible to force controllers with a 3134 * public address to use the static random address instead. 3135 * 3136 * In case BR/EDR has been disabled on a dual-mode controller and 3137 * userspace has configured a static address, then that address 3138 * becomes the identity address instead of the public BR/EDR address. 3139 */ 3140 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr, 3141 u8 *bdaddr_type) 3142 { 3143 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 3144 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 3145 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 3146 bacmp(&hdev->static_addr, BDADDR_ANY))) { 3147 bacpy(bdaddr, &hdev->static_addr); 3148 *bdaddr_type = ADDR_LE_DEV_RANDOM; 3149 } else { 3150 bacpy(bdaddr, &hdev->bdaddr); 3151 *bdaddr_type = ADDR_LE_DEV_PUBLIC; 3152 } 3153 } 3154 3155 /* Alloc HCI device */ 3156 struct hci_dev *hci_alloc_dev(void) 3157 { 3158 struct hci_dev *hdev; 3159 3160 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL); 3161 if (!hdev) 3162 return NULL; 3163 3164 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1); 3165 hdev->esco_type = (ESCO_HV1); 3166 hdev->link_mode = (HCI_LM_ACCEPT); 3167 hdev->num_iac = 0x01; /* One IAC support is mandatory */ 3168 hdev->io_capability = 0x03; /* No Input No Output */ 3169 hdev->manufacturer = 0xffff; /* Default to internal use */ 3170 hdev->inq_tx_power = HCI_TX_POWER_INVALID; 3171 hdev->adv_tx_power = HCI_TX_POWER_INVALID; 3172 hdev->adv_instance_cnt = 0; 3173 hdev->cur_adv_instance = 0x00; 3174 hdev->adv_instance_timeout = 0; 3175 3176 hdev->sniff_max_interval = 800; 3177 hdev->sniff_min_interval = 80; 3178 3179 hdev->le_adv_channel_map = 0x07; 3180 hdev->le_adv_min_interval = 0x0800; 3181 hdev->le_adv_max_interval = 0x0800; 3182 hdev->le_scan_interval = 0x0060; 3183 hdev->le_scan_window = 0x0030; 3184 hdev->le_conn_min_interval = 0x0018; 3185 hdev->le_conn_max_interval = 0x0028; 3186 hdev->le_conn_latency = 0x0000; 3187 hdev->le_supv_timeout = 0x002a; 3188 hdev->le_def_tx_len = 0x001b; 3189 hdev->le_def_tx_time = 0x0148; 3190 hdev->le_max_tx_len = 0x001b; 3191 hdev->le_max_tx_time = 0x0148; 3192 hdev->le_max_rx_len = 0x001b; 3193 hdev->le_max_rx_time = 0x0148; 3194 hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE; 3195 hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE; 3196 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M; 3197 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M; 3198 hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES; 3199 3200 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT; 3201 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT; 3202 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE; 3203 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE; 3204 hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT; 3205 hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE; 3206 3207 mutex_init(&hdev->lock); 3208 mutex_init(&hdev->req_lock); 3209 3210 INIT_LIST_HEAD(&hdev->mgmt_pending); 3211 INIT_LIST_HEAD(&hdev->blacklist); 3212 INIT_LIST_HEAD(&hdev->whitelist); 3213 INIT_LIST_HEAD(&hdev->uuids); 3214 INIT_LIST_HEAD(&hdev->link_keys); 3215 INIT_LIST_HEAD(&hdev->long_term_keys); 3216 INIT_LIST_HEAD(&hdev->identity_resolving_keys); 3217 INIT_LIST_HEAD(&hdev->remote_oob_data); 3218 INIT_LIST_HEAD(&hdev->le_white_list); 3219 INIT_LIST_HEAD(&hdev->le_resolv_list); 3220 INIT_LIST_HEAD(&hdev->le_conn_params); 3221 INIT_LIST_HEAD(&hdev->pend_le_conns); 3222 INIT_LIST_HEAD(&hdev->pend_le_reports); 3223 INIT_LIST_HEAD(&hdev->conn_hash.list); 3224 INIT_LIST_HEAD(&hdev->adv_instances); 3225 3226 INIT_WORK(&hdev->rx_work, hci_rx_work); 3227 INIT_WORK(&hdev->cmd_work, hci_cmd_work); 3228 INIT_WORK(&hdev->tx_work, hci_tx_work); 3229 INIT_WORK(&hdev->power_on, hci_power_on); 3230 INIT_WORK(&hdev->error_reset, hci_error_reset); 3231 3232 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off); 3233 3234 skb_queue_head_init(&hdev->rx_q); 3235 skb_queue_head_init(&hdev->cmd_q); 3236 skb_queue_head_init(&hdev->raw_q); 3237 3238 init_waitqueue_head(&hdev->req_wait_q); 3239 3240 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout); 3241 3242 hci_request_setup(hdev); 3243 3244 hci_init_sysfs(hdev); 3245 discovery_init(hdev); 3246 3247 return hdev; 3248 } 3249 EXPORT_SYMBOL(hci_alloc_dev); 3250 3251 /* Free HCI device */ 3252 void hci_free_dev(struct hci_dev *hdev) 3253 { 3254 /* will free via device release */ 3255 put_device(&hdev->dev); 3256 } 3257 EXPORT_SYMBOL(hci_free_dev); 3258 3259 /* Register HCI device */ 3260 int hci_register_dev(struct hci_dev *hdev) 3261 { 3262 int id, error; 3263 3264 if (!hdev->open || !hdev->close || !hdev->send) 3265 return -EINVAL; 3266 3267 /* Do not allow HCI_AMP devices to register at index 0, 3268 * so the index can be used as the AMP controller ID. 3269 */ 3270 switch (hdev->dev_type) { 3271 case HCI_PRIMARY: 3272 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL); 3273 break; 3274 case HCI_AMP: 3275 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL); 3276 break; 3277 default: 3278 return -EINVAL; 3279 } 3280 3281 if (id < 0) 3282 return id; 3283 3284 sprintf(hdev->name, "hci%d", id); 3285 hdev->id = id; 3286 3287 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 3288 3289 hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name); 3290 if (!hdev->workqueue) { 3291 error = -ENOMEM; 3292 goto err; 3293 } 3294 3295 hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, 3296 hdev->name); 3297 if (!hdev->req_workqueue) { 3298 destroy_workqueue(hdev->workqueue); 3299 error = -ENOMEM; 3300 goto err; 3301 } 3302 3303 if (!IS_ERR_OR_NULL(bt_debugfs)) 3304 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs); 3305 3306 dev_set_name(&hdev->dev, "%s", hdev->name); 3307 3308 error = device_add(&hdev->dev); 3309 if (error < 0) 3310 goto err_wqueue; 3311 3312 hci_leds_init(hdev); 3313 3314 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev, 3315 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, 3316 hdev); 3317 if (hdev->rfkill) { 3318 if (rfkill_register(hdev->rfkill) < 0) { 3319 rfkill_destroy(hdev->rfkill); 3320 hdev->rfkill = NULL; 3321 } 3322 } 3323 3324 if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) 3325 hci_dev_set_flag(hdev, HCI_RFKILLED); 3326 3327 hci_dev_set_flag(hdev, HCI_SETUP); 3328 hci_dev_set_flag(hdev, HCI_AUTO_OFF); 3329 3330 if (hdev->dev_type == HCI_PRIMARY) { 3331 /* Assume BR/EDR support until proven otherwise (such as 3332 * through reading supported features during init. 3333 */ 3334 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); 3335 } 3336 3337 write_lock(&hci_dev_list_lock); 3338 list_add(&hdev->list, &hci_dev_list); 3339 write_unlock(&hci_dev_list_lock); 3340 3341 /* Devices that are marked for raw-only usage are unconfigured 3342 * and should not be included in normal operation. 3343 */ 3344 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 3345 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 3346 3347 hci_sock_dev_event(hdev, HCI_DEV_REG); 3348 hci_dev_hold(hdev); 3349 3350 queue_work(hdev->req_workqueue, &hdev->power_on); 3351 3352 return id; 3353 3354 err_wqueue: 3355 destroy_workqueue(hdev->workqueue); 3356 destroy_workqueue(hdev->req_workqueue); 3357 err: 3358 ida_simple_remove(&hci_index_ida, hdev->id); 3359 3360 return error; 3361 } 3362 EXPORT_SYMBOL(hci_register_dev); 3363 3364 /* Unregister HCI device */ 3365 void hci_unregister_dev(struct hci_dev *hdev) 3366 { 3367 int id; 3368 3369 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 3370 3371 hci_dev_set_flag(hdev, HCI_UNREGISTER); 3372 3373 id = hdev->id; 3374 3375 write_lock(&hci_dev_list_lock); 3376 list_del(&hdev->list); 3377 write_unlock(&hci_dev_list_lock); 3378 3379 cancel_work_sync(&hdev->power_on); 3380 3381 hci_dev_do_close(hdev); 3382 3383 if (!test_bit(HCI_INIT, &hdev->flags) && 3384 !hci_dev_test_flag(hdev, HCI_SETUP) && 3385 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 3386 hci_dev_lock(hdev); 3387 mgmt_index_removed(hdev); 3388 hci_dev_unlock(hdev); 3389 } 3390 3391 /* mgmt_index_removed should take care of emptying the 3392 * pending list */ 3393 BUG_ON(!list_empty(&hdev->mgmt_pending)); 3394 3395 hci_sock_dev_event(hdev, HCI_DEV_UNREG); 3396 3397 if (hdev->rfkill) { 3398 rfkill_unregister(hdev->rfkill); 3399 rfkill_destroy(hdev->rfkill); 3400 } 3401 3402 device_del(&hdev->dev); 3403 3404 debugfs_remove_recursive(hdev->debugfs); 3405 kfree_const(hdev->hw_info); 3406 kfree_const(hdev->fw_info); 3407 3408 destroy_workqueue(hdev->workqueue); 3409 destroy_workqueue(hdev->req_workqueue); 3410 3411 hci_dev_lock(hdev); 3412 hci_bdaddr_list_clear(&hdev->blacklist); 3413 hci_bdaddr_list_clear(&hdev->whitelist); 3414 hci_uuids_clear(hdev); 3415 hci_link_keys_clear(hdev); 3416 hci_smp_ltks_clear(hdev); 3417 hci_smp_irks_clear(hdev); 3418 hci_remote_oob_data_clear(hdev); 3419 hci_adv_instances_clear(hdev); 3420 hci_bdaddr_list_clear(&hdev->le_white_list); 3421 hci_bdaddr_list_clear(&hdev->le_resolv_list); 3422 hci_conn_params_clear_all(hdev); 3423 hci_discovery_filter_clear(hdev); 3424 hci_dev_unlock(hdev); 3425 3426 hci_dev_put(hdev); 3427 3428 ida_simple_remove(&hci_index_ida, id); 3429 } 3430 EXPORT_SYMBOL(hci_unregister_dev); 3431 3432 /* Suspend HCI device */ 3433 int hci_suspend_dev(struct hci_dev *hdev) 3434 { 3435 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND); 3436 return 0; 3437 } 3438 EXPORT_SYMBOL(hci_suspend_dev); 3439 3440 /* Resume HCI device */ 3441 int hci_resume_dev(struct hci_dev *hdev) 3442 { 3443 hci_sock_dev_event(hdev, HCI_DEV_RESUME); 3444 return 0; 3445 } 3446 EXPORT_SYMBOL(hci_resume_dev); 3447 3448 /* Reset HCI device */ 3449 int hci_reset_dev(struct hci_dev *hdev) 3450 { 3451 static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 }; 3452 struct sk_buff *skb; 3453 3454 skb = bt_skb_alloc(3, GFP_ATOMIC); 3455 if (!skb) 3456 return -ENOMEM; 3457 3458 hci_skb_pkt_type(skb) = HCI_EVENT_PKT; 3459 skb_put_data(skb, hw_err, 3); 3460 3461 /* Send Hardware Error to upper stack */ 3462 return hci_recv_frame(hdev, skb); 3463 } 3464 EXPORT_SYMBOL(hci_reset_dev); 3465 3466 /* Receive frame from HCI drivers */ 3467 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb) 3468 { 3469 if (!hdev || (!test_bit(HCI_UP, &hdev->flags) 3470 && !test_bit(HCI_INIT, &hdev->flags))) { 3471 kfree_skb(skb); 3472 return -ENXIO; 3473 } 3474 3475 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT && 3476 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 3477 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) { 3478 kfree_skb(skb); 3479 return -EINVAL; 3480 } 3481 3482 /* Incoming skb */ 3483 bt_cb(skb)->incoming = 1; 3484 3485 /* Time stamp */ 3486 __net_timestamp(skb); 3487 3488 skb_queue_tail(&hdev->rx_q, skb); 3489 queue_work(hdev->workqueue, &hdev->rx_work); 3490 3491 return 0; 3492 } 3493 EXPORT_SYMBOL(hci_recv_frame); 3494 3495 /* Receive diagnostic message from HCI drivers */ 3496 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb) 3497 { 3498 /* Mark as diagnostic packet */ 3499 hci_skb_pkt_type(skb) = HCI_DIAG_PKT; 3500 3501 /* Time stamp */ 3502 __net_timestamp(skb); 3503 3504 skb_queue_tail(&hdev->rx_q, skb); 3505 queue_work(hdev->workqueue, &hdev->rx_work); 3506 3507 return 0; 3508 } 3509 EXPORT_SYMBOL(hci_recv_diag); 3510 3511 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...) 3512 { 3513 va_list vargs; 3514 3515 va_start(vargs, fmt); 3516 kfree_const(hdev->hw_info); 3517 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs); 3518 va_end(vargs); 3519 } 3520 EXPORT_SYMBOL(hci_set_hw_info); 3521 3522 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...) 3523 { 3524 va_list vargs; 3525 3526 va_start(vargs, fmt); 3527 kfree_const(hdev->fw_info); 3528 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs); 3529 va_end(vargs); 3530 } 3531 EXPORT_SYMBOL(hci_set_fw_info); 3532 3533 /* ---- Interface to upper protocols ---- */ 3534 3535 int hci_register_cb(struct hci_cb *cb) 3536 { 3537 BT_DBG("%p name %s", cb, cb->name); 3538 3539 mutex_lock(&hci_cb_list_lock); 3540 list_add_tail(&cb->list, &hci_cb_list); 3541 mutex_unlock(&hci_cb_list_lock); 3542 3543 return 0; 3544 } 3545 EXPORT_SYMBOL(hci_register_cb); 3546 3547 int hci_unregister_cb(struct hci_cb *cb) 3548 { 3549 BT_DBG("%p name %s", cb, cb->name); 3550 3551 mutex_lock(&hci_cb_list_lock); 3552 list_del(&cb->list); 3553 mutex_unlock(&hci_cb_list_lock); 3554 3555 return 0; 3556 } 3557 EXPORT_SYMBOL(hci_unregister_cb); 3558 3559 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb) 3560 { 3561 int err; 3562 3563 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb), 3564 skb->len); 3565 3566 /* Time stamp */ 3567 __net_timestamp(skb); 3568 3569 /* Send copy to monitor */ 3570 hci_send_to_monitor(hdev, skb); 3571 3572 if (atomic_read(&hdev->promisc)) { 3573 /* Send copy to the sockets */ 3574 hci_send_to_sock(hdev, skb); 3575 } 3576 3577 /* Get rid of skb owner, prior to sending to the driver. */ 3578 skb_orphan(skb); 3579 3580 if (!test_bit(HCI_RUNNING, &hdev->flags)) { 3581 kfree_skb(skb); 3582 return; 3583 } 3584 3585 err = hdev->send(hdev, skb); 3586 if (err < 0) { 3587 bt_dev_err(hdev, "sending frame failed (%d)", err); 3588 kfree_skb(skb); 3589 } 3590 } 3591 3592 /* Send HCI command */ 3593 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, 3594 const void *param) 3595 { 3596 struct sk_buff *skb; 3597 3598 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen); 3599 3600 skb = hci_prepare_cmd(hdev, opcode, plen, param); 3601 if (!skb) { 3602 bt_dev_err(hdev, "no memory for command"); 3603 return -ENOMEM; 3604 } 3605 3606 /* Stand-alone HCI commands must be flagged as 3607 * single-command requests. 3608 */ 3609 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 3610 3611 skb_queue_tail(&hdev->cmd_q, skb); 3612 queue_work(hdev->workqueue, &hdev->cmd_work); 3613 3614 return 0; 3615 } 3616 3617 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen, 3618 const void *param) 3619 { 3620 struct sk_buff *skb; 3621 3622 if (hci_opcode_ogf(opcode) != 0x3f) { 3623 /* A controller receiving a command shall respond with either 3624 * a Command Status Event or a Command Complete Event. 3625 * Therefore, all standard HCI commands must be sent via the 3626 * standard API, using hci_send_cmd or hci_cmd_sync helpers. 3627 * Some vendors do not comply with this rule for vendor-specific 3628 * commands and do not return any event. We want to support 3629 * unresponded commands for such cases only. 3630 */ 3631 bt_dev_err(hdev, "unresponded command not supported"); 3632 return -EINVAL; 3633 } 3634 3635 skb = hci_prepare_cmd(hdev, opcode, plen, param); 3636 if (!skb) { 3637 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 3638 opcode); 3639 return -ENOMEM; 3640 } 3641 3642 hci_send_frame(hdev, skb); 3643 3644 return 0; 3645 } 3646 EXPORT_SYMBOL(__hci_cmd_send); 3647 3648 /* Get data from the previously sent command */ 3649 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode) 3650 { 3651 struct hci_command_hdr *hdr; 3652 3653 if (!hdev->sent_cmd) 3654 return NULL; 3655 3656 hdr = (void *) hdev->sent_cmd->data; 3657 3658 if (hdr->opcode != cpu_to_le16(opcode)) 3659 return NULL; 3660 3661 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode); 3662 3663 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE; 3664 } 3665 3666 /* Send HCI command and wait for command commplete event */ 3667 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 3668 const void *param, u32 timeout) 3669 { 3670 struct sk_buff *skb; 3671 3672 if (!test_bit(HCI_UP, &hdev->flags)) 3673 return ERR_PTR(-ENETDOWN); 3674 3675 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 3676 3677 hci_req_sync_lock(hdev); 3678 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); 3679 hci_req_sync_unlock(hdev); 3680 3681 return skb; 3682 } 3683 EXPORT_SYMBOL(hci_cmd_sync); 3684 3685 /* Send ACL data */ 3686 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags) 3687 { 3688 struct hci_acl_hdr *hdr; 3689 int len = skb->len; 3690 3691 skb_push(skb, HCI_ACL_HDR_SIZE); 3692 skb_reset_transport_header(skb); 3693 hdr = (struct hci_acl_hdr *)skb_transport_header(skb); 3694 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags)); 3695 hdr->dlen = cpu_to_le16(len); 3696 } 3697 3698 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue, 3699 struct sk_buff *skb, __u16 flags) 3700 { 3701 struct hci_conn *conn = chan->conn; 3702 struct hci_dev *hdev = conn->hdev; 3703 struct sk_buff *list; 3704 3705 skb->len = skb_headlen(skb); 3706 skb->data_len = 0; 3707 3708 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT; 3709 3710 switch (hdev->dev_type) { 3711 case HCI_PRIMARY: 3712 hci_add_acl_hdr(skb, conn->handle, flags); 3713 break; 3714 case HCI_AMP: 3715 hci_add_acl_hdr(skb, chan->handle, flags); 3716 break; 3717 default: 3718 bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type); 3719 return; 3720 } 3721 3722 list = skb_shinfo(skb)->frag_list; 3723 if (!list) { 3724 /* Non fragmented */ 3725 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len); 3726 3727 skb_queue_tail(queue, skb); 3728 } else { 3729 /* Fragmented */ 3730 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3731 3732 skb_shinfo(skb)->frag_list = NULL; 3733 3734 /* Queue all fragments atomically. We need to use spin_lock_bh 3735 * here because of 6LoWPAN links, as there this function is 3736 * called from softirq and using normal spin lock could cause 3737 * deadlocks. 3738 */ 3739 spin_lock_bh(&queue->lock); 3740 3741 __skb_queue_tail(queue, skb); 3742 3743 flags &= ~ACL_START; 3744 flags |= ACL_CONT; 3745 do { 3746 skb = list; list = list->next; 3747 3748 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT; 3749 hci_add_acl_hdr(skb, conn->handle, flags); 3750 3751 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3752 3753 __skb_queue_tail(queue, skb); 3754 } while (list); 3755 3756 spin_unlock_bh(&queue->lock); 3757 } 3758 } 3759 3760 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags) 3761 { 3762 struct hci_dev *hdev = chan->conn->hdev; 3763 3764 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags); 3765 3766 hci_queue_acl(chan, &chan->data_q, skb, flags); 3767 3768 queue_work(hdev->workqueue, &hdev->tx_work); 3769 } 3770 3771 /* Send SCO data */ 3772 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb) 3773 { 3774 struct hci_dev *hdev = conn->hdev; 3775 struct hci_sco_hdr hdr; 3776 3777 BT_DBG("%s len %d", hdev->name, skb->len); 3778 3779 hdr.handle = cpu_to_le16(conn->handle); 3780 hdr.dlen = skb->len; 3781 3782 skb_push(skb, HCI_SCO_HDR_SIZE); 3783 skb_reset_transport_header(skb); 3784 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE); 3785 3786 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT; 3787 3788 skb_queue_tail(&conn->data_q, skb); 3789 queue_work(hdev->workqueue, &hdev->tx_work); 3790 } 3791 3792 /* ---- HCI TX task (outgoing data) ---- */ 3793 3794 /* HCI Connection scheduler */ 3795 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, 3796 int *quote) 3797 { 3798 struct hci_conn_hash *h = &hdev->conn_hash; 3799 struct hci_conn *conn = NULL, *c; 3800 unsigned int num = 0, min = ~0; 3801 3802 /* We don't have to lock device here. Connections are always 3803 * added and removed with TX task disabled. */ 3804 3805 rcu_read_lock(); 3806 3807 list_for_each_entry_rcu(c, &h->list, list) { 3808 if (c->type != type || skb_queue_empty(&c->data_q)) 3809 continue; 3810 3811 if (c->state != BT_CONNECTED && c->state != BT_CONFIG) 3812 continue; 3813 3814 num++; 3815 3816 if (c->sent < min) { 3817 min = c->sent; 3818 conn = c; 3819 } 3820 3821 if (hci_conn_num(hdev, type) == num) 3822 break; 3823 } 3824 3825 rcu_read_unlock(); 3826 3827 if (conn) { 3828 int cnt, q; 3829 3830 switch (conn->type) { 3831 case ACL_LINK: 3832 cnt = hdev->acl_cnt; 3833 break; 3834 case SCO_LINK: 3835 case ESCO_LINK: 3836 cnt = hdev->sco_cnt; 3837 break; 3838 case LE_LINK: 3839 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 3840 break; 3841 default: 3842 cnt = 0; 3843 bt_dev_err(hdev, "unknown link type %d", conn->type); 3844 } 3845 3846 q = cnt / num; 3847 *quote = q ? q : 1; 3848 } else 3849 *quote = 0; 3850 3851 BT_DBG("conn %p quote %d", conn, *quote); 3852 return conn; 3853 } 3854 3855 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type) 3856 { 3857 struct hci_conn_hash *h = &hdev->conn_hash; 3858 struct hci_conn *c; 3859 3860 bt_dev_err(hdev, "link tx timeout"); 3861 3862 rcu_read_lock(); 3863 3864 /* Kill stalled connections */ 3865 list_for_each_entry_rcu(c, &h->list, list) { 3866 if (c->type == type && c->sent) { 3867 bt_dev_err(hdev, "killing stalled connection %pMR", 3868 &c->dst); 3869 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM); 3870 } 3871 } 3872 3873 rcu_read_unlock(); 3874 } 3875 3876 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type, 3877 int *quote) 3878 { 3879 struct hci_conn_hash *h = &hdev->conn_hash; 3880 struct hci_chan *chan = NULL; 3881 unsigned int num = 0, min = ~0, cur_prio = 0; 3882 struct hci_conn *conn; 3883 int cnt, q, conn_num = 0; 3884 3885 BT_DBG("%s", hdev->name); 3886 3887 rcu_read_lock(); 3888 3889 list_for_each_entry_rcu(conn, &h->list, list) { 3890 struct hci_chan *tmp; 3891 3892 if (conn->type != type) 3893 continue; 3894 3895 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3896 continue; 3897 3898 conn_num++; 3899 3900 list_for_each_entry_rcu(tmp, &conn->chan_list, list) { 3901 struct sk_buff *skb; 3902 3903 if (skb_queue_empty(&tmp->data_q)) 3904 continue; 3905 3906 skb = skb_peek(&tmp->data_q); 3907 if (skb->priority < cur_prio) 3908 continue; 3909 3910 if (skb->priority > cur_prio) { 3911 num = 0; 3912 min = ~0; 3913 cur_prio = skb->priority; 3914 } 3915 3916 num++; 3917 3918 if (conn->sent < min) { 3919 min = conn->sent; 3920 chan = tmp; 3921 } 3922 } 3923 3924 if (hci_conn_num(hdev, type) == conn_num) 3925 break; 3926 } 3927 3928 rcu_read_unlock(); 3929 3930 if (!chan) 3931 return NULL; 3932 3933 switch (chan->conn->type) { 3934 case ACL_LINK: 3935 cnt = hdev->acl_cnt; 3936 break; 3937 case AMP_LINK: 3938 cnt = hdev->block_cnt; 3939 break; 3940 case SCO_LINK: 3941 case ESCO_LINK: 3942 cnt = hdev->sco_cnt; 3943 break; 3944 case LE_LINK: 3945 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 3946 break; 3947 default: 3948 cnt = 0; 3949 bt_dev_err(hdev, "unknown link type %d", chan->conn->type); 3950 } 3951 3952 q = cnt / num; 3953 *quote = q ? q : 1; 3954 BT_DBG("chan %p quote %d", chan, *quote); 3955 return chan; 3956 } 3957 3958 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type) 3959 { 3960 struct hci_conn_hash *h = &hdev->conn_hash; 3961 struct hci_conn *conn; 3962 int num = 0; 3963 3964 BT_DBG("%s", hdev->name); 3965 3966 rcu_read_lock(); 3967 3968 list_for_each_entry_rcu(conn, &h->list, list) { 3969 struct hci_chan *chan; 3970 3971 if (conn->type != type) 3972 continue; 3973 3974 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3975 continue; 3976 3977 num++; 3978 3979 list_for_each_entry_rcu(chan, &conn->chan_list, list) { 3980 struct sk_buff *skb; 3981 3982 if (chan->sent) { 3983 chan->sent = 0; 3984 continue; 3985 } 3986 3987 if (skb_queue_empty(&chan->data_q)) 3988 continue; 3989 3990 skb = skb_peek(&chan->data_q); 3991 if (skb->priority >= HCI_PRIO_MAX - 1) 3992 continue; 3993 3994 skb->priority = HCI_PRIO_MAX - 1; 3995 3996 BT_DBG("chan %p skb %p promoted to %d", chan, skb, 3997 skb->priority); 3998 } 3999 4000 if (hci_conn_num(hdev, type) == num) 4001 break; 4002 } 4003 4004 rcu_read_unlock(); 4005 4006 } 4007 4008 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb) 4009 { 4010 /* Calculate count of blocks used by this packet */ 4011 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len); 4012 } 4013 4014 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt) 4015 { 4016 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 4017 /* ACL tx timeout must be longer than maximum 4018 * link supervision timeout (40.9 seconds) */ 4019 if (!cnt && time_after(jiffies, hdev->acl_last_tx + 4020 HCI_ACL_TX_TIMEOUT)) 4021 hci_link_tx_to(hdev, ACL_LINK); 4022 } 4023 } 4024 4025 static void hci_sched_acl_pkt(struct hci_dev *hdev) 4026 { 4027 unsigned int cnt = hdev->acl_cnt; 4028 struct hci_chan *chan; 4029 struct sk_buff *skb; 4030 int quote; 4031 4032 __check_timeout(hdev, cnt); 4033 4034 while (hdev->acl_cnt && 4035 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) { 4036 u32 priority = (skb_peek(&chan->data_q))->priority; 4037 while (quote-- && (skb = skb_peek(&chan->data_q))) { 4038 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 4039 skb->len, skb->priority); 4040 4041 /* Stop if priority has changed */ 4042 if (skb->priority < priority) 4043 break; 4044 4045 skb = skb_dequeue(&chan->data_q); 4046 4047 hci_conn_enter_active_mode(chan->conn, 4048 bt_cb(skb)->force_active); 4049 4050 hci_send_frame(hdev, skb); 4051 hdev->acl_last_tx = jiffies; 4052 4053 hdev->acl_cnt--; 4054 chan->sent++; 4055 chan->conn->sent++; 4056 } 4057 } 4058 4059 if (cnt != hdev->acl_cnt) 4060 hci_prio_recalculate(hdev, ACL_LINK); 4061 } 4062 4063 static void hci_sched_acl_blk(struct hci_dev *hdev) 4064 { 4065 unsigned int cnt = hdev->block_cnt; 4066 struct hci_chan *chan; 4067 struct sk_buff *skb; 4068 int quote; 4069 u8 type; 4070 4071 __check_timeout(hdev, cnt); 4072 4073 BT_DBG("%s", hdev->name); 4074 4075 if (hdev->dev_type == HCI_AMP) 4076 type = AMP_LINK; 4077 else 4078 type = ACL_LINK; 4079 4080 while (hdev->block_cnt > 0 && 4081 (chan = hci_chan_sent(hdev, type, "e))) { 4082 u32 priority = (skb_peek(&chan->data_q))->priority; 4083 while (quote > 0 && (skb = skb_peek(&chan->data_q))) { 4084 int blocks; 4085 4086 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 4087 skb->len, skb->priority); 4088 4089 /* Stop if priority has changed */ 4090 if (skb->priority < priority) 4091 break; 4092 4093 skb = skb_dequeue(&chan->data_q); 4094 4095 blocks = __get_blocks(hdev, skb); 4096 if (blocks > hdev->block_cnt) 4097 return; 4098 4099 hci_conn_enter_active_mode(chan->conn, 4100 bt_cb(skb)->force_active); 4101 4102 hci_send_frame(hdev, skb); 4103 hdev->acl_last_tx = jiffies; 4104 4105 hdev->block_cnt -= blocks; 4106 quote -= blocks; 4107 4108 chan->sent += blocks; 4109 chan->conn->sent += blocks; 4110 } 4111 } 4112 4113 if (cnt != hdev->block_cnt) 4114 hci_prio_recalculate(hdev, type); 4115 } 4116 4117 static void hci_sched_acl(struct hci_dev *hdev) 4118 { 4119 BT_DBG("%s", hdev->name); 4120 4121 /* No ACL link over BR/EDR controller */ 4122 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY) 4123 return; 4124 4125 /* No AMP link over AMP controller */ 4126 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP) 4127 return; 4128 4129 switch (hdev->flow_ctl_mode) { 4130 case HCI_FLOW_CTL_MODE_PACKET_BASED: 4131 hci_sched_acl_pkt(hdev); 4132 break; 4133 4134 case HCI_FLOW_CTL_MODE_BLOCK_BASED: 4135 hci_sched_acl_blk(hdev); 4136 break; 4137 } 4138 } 4139 4140 /* Schedule SCO */ 4141 static void hci_sched_sco(struct hci_dev *hdev) 4142 { 4143 struct hci_conn *conn; 4144 struct sk_buff *skb; 4145 int quote; 4146 4147 BT_DBG("%s", hdev->name); 4148 4149 if (!hci_conn_num(hdev, SCO_LINK)) 4150 return; 4151 4152 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) { 4153 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 4154 BT_DBG("skb %p len %d", skb, skb->len); 4155 hci_send_frame(hdev, skb); 4156 4157 conn->sent++; 4158 if (conn->sent == ~0) 4159 conn->sent = 0; 4160 } 4161 } 4162 } 4163 4164 static void hci_sched_esco(struct hci_dev *hdev) 4165 { 4166 struct hci_conn *conn; 4167 struct sk_buff *skb; 4168 int quote; 4169 4170 BT_DBG("%s", hdev->name); 4171 4172 if (!hci_conn_num(hdev, ESCO_LINK)) 4173 return; 4174 4175 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, 4176 "e))) { 4177 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 4178 BT_DBG("skb %p len %d", skb, skb->len); 4179 hci_send_frame(hdev, skb); 4180 4181 conn->sent++; 4182 if (conn->sent == ~0) 4183 conn->sent = 0; 4184 } 4185 } 4186 } 4187 4188 static void hci_sched_le(struct hci_dev *hdev) 4189 { 4190 struct hci_chan *chan; 4191 struct sk_buff *skb; 4192 int quote, cnt, tmp; 4193 4194 BT_DBG("%s", hdev->name); 4195 4196 if (!hci_conn_num(hdev, LE_LINK)) 4197 return; 4198 4199 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 4200 /* LE tx timeout must be longer than maximum 4201 * link supervision timeout (40.9 seconds) */ 4202 if (!hdev->le_cnt && hdev->le_pkts && 4203 time_after(jiffies, hdev->le_last_tx + HZ * 45)) 4204 hci_link_tx_to(hdev, LE_LINK); 4205 } 4206 4207 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt; 4208 tmp = cnt; 4209 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) { 4210 u32 priority = (skb_peek(&chan->data_q))->priority; 4211 while (quote-- && (skb = skb_peek(&chan->data_q))) { 4212 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 4213 skb->len, skb->priority); 4214 4215 /* Stop if priority has changed */ 4216 if (skb->priority < priority) 4217 break; 4218 4219 skb = skb_dequeue(&chan->data_q); 4220 4221 hci_send_frame(hdev, skb); 4222 hdev->le_last_tx = jiffies; 4223 4224 cnt--; 4225 chan->sent++; 4226 chan->conn->sent++; 4227 } 4228 } 4229 4230 if (hdev->le_pkts) 4231 hdev->le_cnt = cnt; 4232 else 4233 hdev->acl_cnt = cnt; 4234 4235 if (cnt != tmp) 4236 hci_prio_recalculate(hdev, LE_LINK); 4237 } 4238 4239 static void hci_tx_work(struct work_struct *work) 4240 { 4241 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work); 4242 struct sk_buff *skb; 4243 4244 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt, 4245 hdev->sco_cnt, hdev->le_cnt); 4246 4247 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4248 /* Schedule queues and send stuff to HCI driver */ 4249 hci_sched_acl(hdev); 4250 hci_sched_sco(hdev); 4251 hci_sched_esco(hdev); 4252 hci_sched_le(hdev); 4253 } 4254 4255 /* Send next queued raw (unknown type) packet */ 4256 while ((skb = skb_dequeue(&hdev->raw_q))) 4257 hci_send_frame(hdev, skb); 4258 } 4259 4260 /* ----- HCI RX task (incoming data processing) ----- */ 4261 4262 /* ACL data packet */ 4263 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb) 4264 { 4265 struct hci_acl_hdr *hdr = (void *) skb->data; 4266 struct hci_conn *conn; 4267 __u16 handle, flags; 4268 4269 skb_pull(skb, HCI_ACL_HDR_SIZE); 4270 4271 handle = __le16_to_cpu(hdr->handle); 4272 flags = hci_flags(handle); 4273 handle = hci_handle(handle); 4274 4275 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len, 4276 handle, flags); 4277 4278 hdev->stat.acl_rx++; 4279 4280 hci_dev_lock(hdev); 4281 conn = hci_conn_hash_lookup_handle(hdev, handle); 4282 hci_dev_unlock(hdev); 4283 4284 if (conn) { 4285 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF); 4286 4287 /* Send to upper protocol */ 4288 l2cap_recv_acldata(conn, skb, flags); 4289 return; 4290 } else { 4291 bt_dev_err(hdev, "ACL packet for unknown connection handle %d", 4292 handle); 4293 } 4294 4295 kfree_skb(skb); 4296 } 4297 4298 /* SCO data packet */ 4299 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb) 4300 { 4301 struct hci_sco_hdr *hdr = (void *) skb->data; 4302 struct hci_conn *conn; 4303 __u16 handle; 4304 4305 skb_pull(skb, HCI_SCO_HDR_SIZE); 4306 4307 handle = __le16_to_cpu(hdr->handle); 4308 4309 BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle); 4310 4311 hdev->stat.sco_rx++; 4312 4313 hci_dev_lock(hdev); 4314 conn = hci_conn_hash_lookup_handle(hdev, handle); 4315 hci_dev_unlock(hdev); 4316 4317 if (conn) { 4318 /* Send to upper protocol */ 4319 sco_recv_scodata(conn, skb); 4320 return; 4321 } else { 4322 bt_dev_err(hdev, "SCO packet for unknown connection handle %d", 4323 handle); 4324 } 4325 4326 kfree_skb(skb); 4327 } 4328 4329 static bool hci_req_is_complete(struct hci_dev *hdev) 4330 { 4331 struct sk_buff *skb; 4332 4333 skb = skb_peek(&hdev->cmd_q); 4334 if (!skb) 4335 return true; 4336 4337 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START); 4338 } 4339 4340 static void hci_resend_last(struct hci_dev *hdev) 4341 { 4342 struct hci_command_hdr *sent; 4343 struct sk_buff *skb; 4344 u16 opcode; 4345 4346 if (!hdev->sent_cmd) 4347 return; 4348 4349 sent = (void *) hdev->sent_cmd->data; 4350 opcode = __le16_to_cpu(sent->opcode); 4351 if (opcode == HCI_OP_RESET) 4352 return; 4353 4354 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL); 4355 if (!skb) 4356 return; 4357 4358 skb_queue_head(&hdev->cmd_q, skb); 4359 queue_work(hdev->workqueue, &hdev->cmd_work); 4360 } 4361 4362 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status, 4363 hci_req_complete_t *req_complete, 4364 hci_req_complete_skb_t *req_complete_skb) 4365 { 4366 struct sk_buff *skb; 4367 unsigned long flags; 4368 4369 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status); 4370 4371 /* If the completed command doesn't match the last one that was 4372 * sent we need to do special handling of it. 4373 */ 4374 if (!hci_sent_cmd_data(hdev, opcode)) { 4375 /* Some CSR based controllers generate a spontaneous 4376 * reset complete event during init and any pending 4377 * command will never be completed. In such a case we 4378 * need to resend whatever was the last sent 4379 * command. 4380 */ 4381 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET) 4382 hci_resend_last(hdev); 4383 4384 return; 4385 } 4386 4387 /* If we reach this point this event matches the last command sent */ 4388 hci_dev_clear_flag(hdev, HCI_CMD_PENDING); 4389 4390 /* If the command succeeded and there's still more commands in 4391 * this request the request is not yet complete. 4392 */ 4393 if (!status && !hci_req_is_complete(hdev)) 4394 return; 4395 4396 /* If this was the last command in a request the complete 4397 * callback would be found in hdev->sent_cmd instead of the 4398 * command queue (hdev->cmd_q). 4399 */ 4400 if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) { 4401 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb; 4402 return; 4403 } 4404 4405 if (bt_cb(hdev->sent_cmd)->hci.req_complete) { 4406 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete; 4407 return; 4408 } 4409 4410 /* Remove all pending commands belonging to this request */ 4411 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 4412 while ((skb = __skb_dequeue(&hdev->cmd_q))) { 4413 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) { 4414 __skb_queue_head(&hdev->cmd_q, skb); 4415 break; 4416 } 4417 4418 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) 4419 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb; 4420 else 4421 *req_complete = bt_cb(skb)->hci.req_complete; 4422 kfree_skb(skb); 4423 } 4424 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 4425 } 4426 4427 static void hci_rx_work(struct work_struct *work) 4428 { 4429 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work); 4430 struct sk_buff *skb; 4431 4432 BT_DBG("%s", hdev->name); 4433 4434 while ((skb = skb_dequeue(&hdev->rx_q))) { 4435 /* Send copy to monitor */ 4436 hci_send_to_monitor(hdev, skb); 4437 4438 if (atomic_read(&hdev->promisc)) { 4439 /* Send copy to the sockets */ 4440 hci_send_to_sock(hdev, skb); 4441 } 4442 4443 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4444 kfree_skb(skb); 4445 continue; 4446 } 4447 4448 if (test_bit(HCI_INIT, &hdev->flags)) { 4449 /* Don't process data packets in this states. */ 4450 switch (hci_skb_pkt_type(skb)) { 4451 case HCI_ACLDATA_PKT: 4452 case HCI_SCODATA_PKT: 4453 kfree_skb(skb); 4454 continue; 4455 } 4456 } 4457 4458 /* Process frame */ 4459 switch (hci_skb_pkt_type(skb)) { 4460 case HCI_EVENT_PKT: 4461 BT_DBG("%s Event packet", hdev->name); 4462 hci_event_packet(hdev, skb); 4463 break; 4464 4465 case HCI_ACLDATA_PKT: 4466 BT_DBG("%s ACL data packet", hdev->name); 4467 hci_acldata_packet(hdev, skb); 4468 break; 4469 4470 case HCI_SCODATA_PKT: 4471 BT_DBG("%s SCO data packet", hdev->name); 4472 hci_scodata_packet(hdev, skb); 4473 break; 4474 4475 default: 4476 kfree_skb(skb); 4477 break; 4478 } 4479 } 4480 } 4481 4482 static void hci_cmd_work(struct work_struct *work) 4483 { 4484 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work); 4485 struct sk_buff *skb; 4486 4487 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name, 4488 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q)); 4489 4490 /* Send queued commands */ 4491 if (atomic_read(&hdev->cmd_cnt)) { 4492 skb = skb_dequeue(&hdev->cmd_q); 4493 if (!skb) 4494 return; 4495 4496 kfree_skb(hdev->sent_cmd); 4497 4498 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL); 4499 if (hdev->sent_cmd) { 4500 if (hci_req_status_pend(hdev)) 4501 hci_dev_set_flag(hdev, HCI_CMD_PENDING); 4502 atomic_dec(&hdev->cmd_cnt); 4503 hci_send_frame(hdev, skb); 4504 if (test_bit(HCI_RESET, &hdev->flags)) 4505 cancel_delayed_work(&hdev->cmd_timer); 4506 else 4507 schedule_delayed_work(&hdev->cmd_timer, 4508 HCI_CMD_TIMEOUT); 4509 } else { 4510 skb_queue_head(&hdev->cmd_q, skb); 4511 queue_work(hdev->workqueue, &hdev->cmd_work); 4512 } 4513 } 4514 } 4515