xref: /openbmc/linux/net/bluetooth/hci_core.c (revision 9d64fc08)
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4    Copyright (C) 2011 ProFUSION Embedded Systems
5 
6    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License version 2 as
10    published by the Free Software Foundation;
11 
12    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 
21    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23    SOFTWARE IS DISCLAIMED.
24 */
25 
26 /* Bluetooth HCI core. */
27 
28 #include <linux/export.h>
29 #include <linux/idr.h>
30 #include <linux/rfkill.h>
31 #include <linux/debugfs.h>
32 #include <linux/crypto.h>
33 #include <asm/unaligned.h>
34 
35 #include <net/bluetooth/bluetooth.h>
36 #include <net/bluetooth/hci_core.h>
37 #include <net/bluetooth/l2cap.h>
38 #include <net/bluetooth/mgmt.h>
39 
40 #include "hci_request.h"
41 #include "hci_debugfs.h"
42 #include "smp.h"
43 #include "leds.h"
44 
45 static void hci_rx_work(struct work_struct *work);
46 static void hci_cmd_work(struct work_struct *work);
47 static void hci_tx_work(struct work_struct *work);
48 
49 /* HCI device list */
50 LIST_HEAD(hci_dev_list);
51 DEFINE_RWLOCK(hci_dev_list_lock);
52 
53 /* HCI callback list */
54 LIST_HEAD(hci_cb_list);
55 DEFINE_MUTEX(hci_cb_list_lock);
56 
57 /* HCI ID Numbering */
58 static DEFINE_IDA(hci_index_ida);
59 
60 /* ---- HCI debugfs entries ---- */
61 
62 static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
63 			     size_t count, loff_t *ppos)
64 {
65 	struct hci_dev *hdev = file->private_data;
66 	char buf[3];
67 
68 	buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
69 	buf[1] = '\n';
70 	buf[2] = '\0';
71 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
72 }
73 
74 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
75 			      size_t count, loff_t *ppos)
76 {
77 	struct hci_dev *hdev = file->private_data;
78 	struct sk_buff *skb;
79 	char buf[32];
80 	size_t buf_size = min(count, (sizeof(buf)-1));
81 	bool enable;
82 
83 	if (!test_bit(HCI_UP, &hdev->flags))
84 		return -ENETDOWN;
85 
86 	if (copy_from_user(buf, user_buf, buf_size))
87 		return -EFAULT;
88 
89 	buf[buf_size] = '\0';
90 	if (strtobool(buf, &enable))
91 		return -EINVAL;
92 
93 	if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
94 		return -EALREADY;
95 
96 	hci_req_sync_lock(hdev);
97 	if (enable)
98 		skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
99 				     HCI_CMD_TIMEOUT);
100 	else
101 		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
102 				     HCI_CMD_TIMEOUT);
103 	hci_req_sync_unlock(hdev);
104 
105 	if (IS_ERR(skb))
106 		return PTR_ERR(skb);
107 
108 	kfree_skb(skb);
109 
110 	hci_dev_change_flag(hdev, HCI_DUT_MODE);
111 
112 	return count;
113 }
114 
115 static const struct file_operations dut_mode_fops = {
116 	.open		= simple_open,
117 	.read		= dut_mode_read,
118 	.write		= dut_mode_write,
119 	.llseek		= default_llseek,
120 };
121 
122 static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
123 				size_t count, loff_t *ppos)
124 {
125 	struct hci_dev *hdev = file->private_data;
126 	char buf[3];
127 
128 	buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
129 	buf[1] = '\n';
130 	buf[2] = '\0';
131 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
132 }
133 
134 static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
135 				 size_t count, loff_t *ppos)
136 {
137 	struct hci_dev *hdev = file->private_data;
138 	char buf[32];
139 	size_t buf_size = min(count, (sizeof(buf)-1));
140 	bool enable;
141 	int err;
142 
143 	if (copy_from_user(buf, user_buf, buf_size))
144 		return -EFAULT;
145 
146 	buf[buf_size] = '\0';
147 	if (strtobool(buf, &enable))
148 		return -EINVAL;
149 
150 	/* When the diagnostic flags are not persistent and the transport
151 	 * is not active or in user channel operation, then there is no need
152 	 * for the vendor callback. Instead just store the desired value and
153 	 * the setting will be programmed when the controller gets powered on.
154 	 */
155 	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
156 	    (!test_bit(HCI_RUNNING, &hdev->flags) ||
157 	     hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
158 		goto done;
159 
160 	hci_req_sync_lock(hdev);
161 	err = hdev->set_diag(hdev, enable);
162 	hci_req_sync_unlock(hdev);
163 
164 	if (err < 0)
165 		return err;
166 
167 done:
168 	if (enable)
169 		hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
170 	else
171 		hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
172 
173 	return count;
174 }
175 
176 static const struct file_operations vendor_diag_fops = {
177 	.open		= simple_open,
178 	.read		= vendor_diag_read,
179 	.write		= vendor_diag_write,
180 	.llseek		= default_llseek,
181 };
182 
183 static void hci_debugfs_create_basic(struct hci_dev *hdev)
184 {
185 	debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
186 			    &dut_mode_fops);
187 
188 	if (hdev->set_diag)
189 		debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
190 				    &vendor_diag_fops);
191 }
192 
193 static int hci_reset_req(struct hci_request *req, unsigned long opt)
194 {
195 	BT_DBG("%s %ld", req->hdev->name, opt);
196 
197 	/* Reset device */
198 	set_bit(HCI_RESET, &req->hdev->flags);
199 	hci_req_add(req, HCI_OP_RESET, 0, NULL);
200 	return 0;
201 }
202 
203 static void bredr_init(struct hci_request *req)
204 {
205 	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
206 
207 	/* Read Local Supported Features */
208 	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
209 
210 	/* Read Local Version */
211 	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
212 
213 	/* Read BD Address */
214 	hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
215 }
216 
217 static void amp_init1(struct hci_request *req)
218 {
219 	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
220 
221 	/* Read Local Version */
222 	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
223 
224 	/* Read Local Supported Commands */
225 	hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
226 
227 	/* Read Local AMP Info */
228 	hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
229 
230 	/* Read Data Blk size */
231 	hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
232 
233 	/* Read Flow Control Mode */
234 	hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
235 
236 	/* Read Location Data */
237 	hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
238 }
239 
240 static int amp_init2(struct hci_request *req)
241 {
242 	/* Read Local Supported Features. Not all AMP controllers
243 	 * support this so it's placed conditionally in the second
244 	 * stage init.
245 	 */
246 	if (req->hdev->commands[14] & 0x20)
247 		hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
248 
249 	return 0;
250 }
251 
252 static int hci_init1_req(struct hci_request *req, unsigned long opt)
253 {
254 	struct hci_dev *hdev = req->hdev;
255 
256 	BT_DBG("%s %ld", hdev->name, opt);
257 
258 	/* Reset */
259 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
260 		hci_reset_req(req, 0);
261 
262 	switch (hdev->dev_type) {
263 	case HCI_PRIMARY:
264 		bredr_init(req);
265 		break;
266 	case HCI_AMP:
267 		amp_init1(req);
268 		break;
269 	default:
270 		BT_ERR("Unknown device type %d", hdev->dev_type);
271 		break;
272 	}
273 
274 	return 0;
275 }
276 
277 static void bredr_setup(struct hci_request *req)
278 {
279 	__le16 param;
280 	__u8 flt_type;
281 
282 	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
283 	hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
284 
285 	/* Read Class of Device */
286 	hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
287 
288 	/* Read Local Name */
289 	hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
290 
291 	/* Read Voice Setting */
292 	hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
293 
294 	/* Read Number of Supported IAC */
295 	hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
296 
297 	/* Read Current IAC LAP */
298 	hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
299 
300 	/* Clear Event Filters */
301 	flt_type = HCI_FLT_CLEAR_ALL;
302 	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
303 
304 	/* Connection accept timeout ~20 secs */
305 	param = cpu_to_le16(0x7d00);
306 	hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
307 }
308 
309 static void le_setup(struct hci_request *req)
310 {
311 	struct hci_dev *hdev = req->hdev;
312 
313 	/* Read LE Buffer Size */
314 	hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
315 
316 	/* Read LE Local Supported Features */
317 	hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
318 
319 	/* Read LE Supported States */
320 	hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
321 
322 	/* LE-only controllers have LE implicitly enabled */
323 	if (!lmp_bredr_capable(hdev))
324 		hci_dev_set_flag(hdev, HCI_LE_ENABLED);
325 }
326 
327 static void hci_setup_event_mask(struct hci_request *req)
328 {
329 	struct hci_dev *hdev = req->hdev;
330 
331 	/* The second byte is 0xff instead of 0x9f (two reserved bits
332 	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
333 	 * command otherwise.
334 	 */
335 	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
336 
337 	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
338 	 * any event mask for pre 1.2 devices.
339 	 */
340 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
341 		return;
342 
343 	if (lmp_bredr_capable(hdev)) {
344 		events[4] |= 0x01; /* Flow Specification Complete */
345 	} else {
346 		/* Use a different default for LE-only devices */
347 		memset(events, 0, sizeof(events));
348 		events[1] |= 0x20; /* Command Complete */
349 		events[1] |= 0x40; /* Command Status */
350 		events[1] |= 0x80; /* Hardware Error */
351 
352 		/* If the controller supports the Disconnect command, enable
353 		 * the corresponding event. In addition enable packet flow
354 		 * control related events.
355 		 */
356 		if (hdev->commands[0] & 0x20) {
357 			events[0] |= 0x10; /* Disconnection Complete */
358 			events[2] |= 0x04; /* Number of Completed Packets */
359 			events[3] |= 0x02; /* Data Buffer Overflow */
360 		}
361 
362 		/* If the controller supports the Read Remote Version
363 		 * Information command, enable the corresponding event.
364 		 */
365 		if (hdev->commands[2] & 0x80)
366 			events[1] |= 0x08; /* Read Remote Version Information
367 					    * Complete
368 					    */
369 
370 		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
371 			events[0] |= 0x80; /* Encryption Change */
372 			events[5] |= 0x80; /* Encryption Key Refresh Complete */
373 		}
374 	}
375 
376 	if (lmp_inq_rssi_capable(hdev) ||
377 	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
378 		events[4] |= 0x02; /* Inquiry Result with RSSI */
379 
380 	if (lmp_ext_feat_capable(hdev))
381 		events[4] |= 0x04; /* Read Remote Extended Features Complete */
382 
383 	if (lmp_esco_capable(hdev)) {
384 		events[5] |= 0x08; /* Synchronous Connection Complete */
385 		events[5] |= 0x10; /* Synchronous Connection Changed */
386 	}
387 
388 	if (lmp_sniffsubr_capable(hdev))
389 		events[5] |= 0x20; /* Sniff Subrating */
390 
391 	if (lmp_pause_enc_capable(hdev))
392 		events[5] |= 0x80; /* Encryption Key Refresh Complete */
393 
394 	if (lmp_ext_inq_capable(hdev))
395 		events[5] |= 0x40; /* Extended Inquiry Result */
396 
397 	if (lmp_no_flush_capable(hdev))
398 		events[7] |= 0x01; /* Enhanced Flush Complete */
399 
400 	if (lmp_lsto_capable(hdev))
401 		events[6] |= 0x80; /* Link Supervision Timeout Changed */
402 
403 	if (lmp_ssp_capable(hdev)) {
404 		events[6] |= 0x01;	/* IO Capability Request */
405 		events[6] |= 0x02;	/* IO Capability Response */
406 		events[6] |= 0x04;	/* User Confirmation Request */
407 		events[6] |= 0x08;	/* User Passkey Request */
408 		events[6] |= 0x10;	/* Remote OOB Data Request */
409 		events[6] |= 0x20;	/* Simple Pairing Complete */
410 		events[7] |= 0x04;	/* User Passkey Notification */
411 		events[7] |= 0x08;	/* Keypress Notification */
412 		events[7] |= 0x10;	/* Remote Host Supported
413 					 * Features Notification
414 					 */
415 	}
416 
417 	if (lmp_le_capable(hdev))
418 		events[7] |= 0x20;	/* LE Meta-Event */
419 
420 	hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
421 }
422 
423 static int hci_init2_req(struct hci_request *req, unsigned long opt)
424 {
425 	struct hci_dev *hdev = req->hdev;
426 
427 	if (hdev->dev_type == HCI_AMP)
428 		return amp_init2(req);
429 
430 	if (lmp_bredr_capable(hdev))
431 		bredr_setup(req);
432 	else
433 		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
434 
435 	if (lmp_le_capable(hdev))
436 		le_setup(req);
437 
438 	/* All Bluetooth 1.2 and later controllers should support the
439 	 * HCI command for reading the local supported commands.
440 	 *
441 	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
442 	 * but do not have support for this command. If that is the case,
443 	 * the driver can quirk the behavior and skip reading the local
444 	 * supported commands.
445 	 */
446 	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
447 	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
448 		hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
449 
450 	if (lmp_ssp_capable(hdev)) {
451 		/* When SSP is available, then the host features page
452 		 * should also be available as well. However some
453 		 * controllers list the max_page as 0 as long as SSP
454 		 * has not been enabled. To achieve proper debugging
455 		 * output, force the minimum max_page to 1 at least.
456 		 */
457 		hdev->max_page = 0x01;
458 
459 		if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
460 			u8 mode = 0x01;
461 
462 			hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
463 				    sizeof(mode), &mode);
464 		} else {
465 			struct hci_cp_write_eir cp;
466 
467 			memset(hdev->eir, 0, sizeof(hdev->eir));
468 			memset(&cp, 0, sizeof(cp));
469 
470 			hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
471 		}
472 	}
473 
474 	if (lmp_inq_rssi_capable(hdev) ||
475 	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
476 		u8 mode;
477 
478 		/* If Extended Inquiry Result events are supported, then
479 		 * they are clearly preferred over Inquiry Result with RSSI
480 		 * events.
481 		 */
482 		mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
483 
484 		hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
485 	}
486 
487 	if (lmp_inq_tx_pwr_capable(hdev))
488 		hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
489 
490 	if (lmp_ext_feat_capable(hdev)) {
491 		struct hci_cp_read_local_ext_features cp;
492 
493 		cp.page = 0x01;
494 		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
495 			    sizeof(cp), &cp);
496 	}
497 
498 	if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
499 		u8 enable = 1;
500 		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
501 			    &enable);
502 	}
503 
504 	return 0;
505 }
506 
507 static void hci_setup_link_policy(struct hci_request *req)
508 {
509 	struct hci_dev *hdev = req->hdev;
510 	struct hci_cp_write_def_link_policy cp;
511 	u16 link_policy = 0;
512 
513 	if (lmp_rswitch_capable(hdev))
514 		link_policy |= HCI_LP_RSWITCH;
515 	if (lmp_hold_capable(hdev))
516 		link_policy |= HCI_LP_HOLD;
517 	if (lmp_sniff_capable(hdev))
518 		link_policy |= HCI_LP_SNIFF;
519 	if (lmp_park_capable(hdev))
520 		link_policy |= HCI_LP_PARK;
521 
522 	cp.policy = cpu_to_le16(link_policy);
523 	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
524 }
525 
526 static void hci_set_le_support(struct hci_request *req)
527 {
528 	struct hci_dev *hdev = req->hdev;
529 	struct hci_cp_write_le_host_supported cp;
530 
531 	/* LE-only devices do not support explicit enablement */
532 	if (!lmp_bredr_capable(hdev))
533 		return;
534 
535 	memset(&cp, 0, sizeof(cp));
536 
537 	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
538 		cp.le = 0x01;
539 		cp.simul = 0x00;
540 	}
541 
542 	if (cp.le != lmp_host_le_capable(hdev))
543 		hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
544 			    &cp);
545 }
546 
547 static void hci_set_event_mask_page_2(struct hci_request *req)
548 {
549 	struct hci_dev *hdev = req->hdev;
550 	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
551 	bool changed = false;
552 
553 	/* If Connectionless Slave Broadcast master role is supported
554 	 * enable all necessary events for it.
555 	 */
556 	if (lmp_csb_master_capable(hdev)) {
557 		events[1] |= 0x40;	/* Triggered Clock Capture */
558 		events[1] |= 0x80;	/* Synchronization Train Complete */
559 		events[2] |= 0x10;	/* Slave Page Response Timeout */
560 		events[2] |= 0x20;	/* CSB Channel Map Change */
561 		changed = true;
562 	}
563 
564 	/* If Connectionless Slave Broadcast slave role is supported
565 	 * enable all necessary events for it.
566 	 */
567 	if (lmp_csb_slave_capable(hdev)) {
568 		events[2] |= 0x01;	/* Synchronization Train Received */
569 		events[2] |= 0x02;	/* CSB Receive */
570 		events[2] |= 0x04;	/* CSB Timeout */
571 		events[2] |= 0x08;	/* Truncated Page Complete */
572 		changed = true;
573 	}
574 
575 	/* Enable Authenticated Payload Timeout Expired event if supported */
576 	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
577 		events[2] |= 0x80;
578 		changed = true;
579 	}
580 
581 	/* Some Broadcom based controllers indicate support for Set Event
582 	 * Mask Page 2 command, but then actually do not support it. Since
583 	 * the default value is all bits set to zero, the command is only
584 	 * required if the event mask has to be changed. In case no change
585 	 * to the event mask is needed, skip this command.
586 	 */
587 	if (changed)
588 		hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
589 			    sizeof(events), events);
590 }
591 
592 static int hci_init3_req(struct hci_request *req, unsigned long opt)
593 {
594 	struct hci_dev *hdev = req->hdev;
595 	u8 p;
596 
597 	hci_setup_event_mask(req);
598 
599 	if (hdev->commands[6] & 0x20 &&
600 	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
601 		struct hci_cp_read_stored_link_key cp;
602 
603 		bacpy(&cp.bdaddr, BDADDR_ANY);
604 		cp.read_all = 0x01;
605 		hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
606 	}
607 
608 	if (hdev->commands[5] & 0x10)
609 		hci_setup_link_policy(req);
610 
611 	if (hdev->commands[8] & 0x01)
612 		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
613 
614 	/* Some older Broadcom based Bluetooth 1.2 controllers do not
615 	 * support the Read Page Scan Type command. Check support for
616 	 * this command in the bit mask of supported commands.
617 	 */
618 	if (hdev->commands[13] & 0x01)
619 		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
620 
621 	if (lmp_le_capable(hdev)) {
622 		u8 events[8];
623 
624 		memset(events, 0, sizeof(events));
625 
626 		if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
627 			events[0] |= 0x10;	/* LE Long Term Key Request */
628 
629 		/* If controller supports the Connection Parameters Request
630 		 * Link Layer Procedure, enable the corresponding event.
631 		 */
632 		if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
633 			events[0] |= 0x20;	/* LE Remote Connection
634 						 * Parameter Request
635 						 */
636 
637 		/* If the controller supports the Data Length Extension
638 		 * feature, enable the corresponding event.
639 		 */
640 		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
641 			events[0] |= 0x40;	/* LE Data Length Change */
642 
643 		/* If the controller supports Extended Scanner Filter
644 		 * Policies, enable the correspondig event.
645 		 */
646 		if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
647 			events[1] |= 0x04;	/* LE Direct Advertising
648 						 * Report
649 						 */
650 
651 		/* If the controller supports Channel Selection Algorithm #2
652 		 * feature, enable the corresponding event.
653 		 */
654 		if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
655 			events[2] |= 0x08;	/* LE Channel Selection
656 						 * Algorithm
657 						 */
658 
659 		/* If the controller supports the LE Set Scan Enable command,
660 		 * enable the corresponding advertising report event.
661 		 */
662 		if (hdev->commands[26] & 0x08)
663 			events[0] |= 0x02;	/* LE Advertising Report */
664 
665 		/* If the controller supports the LE Create Connection
666 		 * command, enable the corresponding event.
667 		 */
668 		if (hdev->commands[26] & 0x10)
669 			events[0] |= 0x01;	/* LE Connection Complete */
670 
671 		/* If the controller supports the LE Connection Update
672 		 * command, enable the corresponding event.
673 		 */
674 		if (hdev->commands[27] & 0x04)
675 			events[0] |= 0x04;	/* LE Connection Update
676 						 * Complete
677 						 */
678 
679 		/* If the controller supports the LE Read Remote Used Features
680 		 * command, enable the corresponding event.
681 		 */
682 		if (hdev->commands[27] & 0x20)
683 			events[0] |= 0x08;	/* LE Read Remote Used
684 						 * Features Complete
685 						 */
686 
687 		/* If the controller supports the LE Read Local P-256
688 		 * Public Key command, enable the corresponding event.
689 		 */
690 		if (hdev->commands[34] & 0x02)
691 			events[0] |= 0x80;	/* LE Read Local P-256
692 						 * Public Key Complete
693 						 */
694 
695 		/* If the controller supports the LE Generate DHKey
696 		 * command, enable the corresponding event.
697 		 */
698 		if (hdev->commands[34] & 0x04)
699 			events[1] |= 0x01;	/* LE Generate DHKey Complete */
700 
701 		/* If the controller supports the LE Set Default PHY or
702 		 * LE Set PHY commands, enable the corresponding event.
703 		 */
704 		if (hdev->commands[35] & (0x20 | 0x40))
705 			events[1] |= 0x08;        /* LE PHY Update Complete */
706 
707 		hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
708 			    events);
709 
710 		if (hdev->commands[25] & 0x40) {
711 			/* Read LE Advertising Channel TX Power */
712 			hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
713 		}
714 
715 		if (hdev->commands[26] & 0x40) {
716 			/* Read LE White List Size */
717 			hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
718 				    0, NULL);
719 		}
720 
721 		if (hdev->commands[26] & 0x80) {
722 			/* Clear LE White List */
723 			hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
724 		}
725 
726 		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
727 			/* Read LE Maximum Data Length */
728 			hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
729 
730 			/* Read LE Suggested Default Data Length */
731 			hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
732 		}
733 
734 		hci_set_le_support(req);
735 	}
736 
737 	/* Read features beyond page 1 if available */
738 	for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
739 		struct hci_cp_read_local_ext_features cp;
740 
741 		cp.page = p;
742 		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
743 			    sizeof(cp), &cp);
744 	}
745 
746 	return 0;
747 }
748 
749 static int hci_init4_req(struct hci_request *req, unsigned long opt)
750 {
751 	struct hci_dev *hdev = req->hdev;
752 
753 	/* Some Broadcom based Bluetooth controllers do not support the
754 	 * Delete Stored Link Key command. They are clearly indicating its
755 	 * absence in the bit mask of supported commands.
756 	 *
757 	 * Check the supported commands and only if the the command is marked
758 	 * as supported send it. If not supported assume that the controller
759 	 * does not have actual support for stored link keys which makes this
760 	 * command redundant anyway.
761 	 *
762 	 * Some controllers indicate that they support handling deleting
763 	 * stored link keys, but they don't. The quirk lets a driver
764 	 * just disable this command.
765 	 */
766 	if (hdev->commands[6] & 0x80 &&
767 	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
768 		struct hci_cp_delete_stored_link_key cp;
769 
770 		bacpy(&cp.bdaddr, BDADDR_ANY);
771 		cp.delete_all = 0x01;
772 		hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
773 			    sizeof(cp), &cp);
774 	}
775 
776 	/* Set event mask page 2 if the HCI command for it is supported */
777 	if (hdev->commands[22] & 0x04)
778 		hci_set_event_mask_page_2(req);
779 
780 	/* Read local codec list if the HCI command is supported */
781 	if (hdev->commands[29] & 0x20)
782 		hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
783 
784 	/* Get MWS transport configuration if the HCI command is supported */
785 	if (hdev->commands[30] & 0x08)
786 		hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
787 
788 	/* Check for Synchronization Train support */
789 	if (lmp_sync_train_capable(hdev))
790 		hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
791 
792 	/* Enable Secure Connections if supported and configured */
793 	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
794 	    bredr_sc_enabled(hdev)) {
795 		u8 support = 0x01;
796 
797 		hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
798 			    sizeof(support), &support);
799 	}
800 
801 	/* Set Suggested Default Data Length to maximum if supported */
802 	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
803 		struct hci_cp_le_write_def_data_len cp;
804 
805 		cp.tx_len = hdev->le_max_tx_len;
806 		cp.tx_time = hdev->le_max_tx_time;
807 		hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
808 	}
809 
810 	/* Set Default PHY parameters if command is supported */
811 	if (hdev->commands[35] & 0x20) {
812 		struct hci_cp_le_set_default_phy cp;
813 
814 		/* No transmitter PHY or receiver PHY preferences */
815 		cp.all_phys = 0x03;
816 		cp.tx_phys = 0;
817 		cp.rx_phys = 0;
818 
819 		hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
820 	}
821 
822 	return 0;
823 }
824 
825 static int __hci_init(struct hci_dev *hdev)
826 {
827 	int err;
828 
829 	err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
830 	if (err < 0)
831 		return err;
832 
833 	if (hci_dev_test_flag(hdev, HCI_SETUP))
834 		hci_debugfs_create_basic(hdev);
835 
836 	err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
837 	if (err < 0)
838 		return err;
839 
840 	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
841 	 * BR/EDR/LE type controllers. AMP controllers only need the
842 	 * first two stages of init.
843 	 */
844 	if (hdev->dev_type != HCI_PRIMARY)
845 		return 0;
846 
847 	err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
848 	if (err < 0)
849 		return err;
850 
851 	err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
852 	if (err < 0)
853 		return err;
854 
855 	/* This function is only called when the controller is actually in
856 	 * configured state. When the controller is marked as unconfigured,
857 	 * this initialization procedure is not run.
858 	 *
859 	 * It means that it is possible that a controller runs through its
860 	 * setup phase and then discovers missing settings. If that is the
861 	 * case, then this function will not be called. It then will only
862 	 * be called during the config phase.
863 	 *
864 	 * So only when in setup phase or config phase, create the debugfs
865 	 * entries and register the SMP channels.
866 	 */
867 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
868 	    !hci_dev_test_flag(hdev, HCI_CONFIG))
869 		return 0;
870 
871 	hci_debugfs_create_common(hdev);
872 
873 	if (lmp_bredr_capable(hdev))
874 		hci_debugfs_create_bredr(hdev);
875 
876 	if (lmp_le_capable(hdev))
877 		hci_debugfs_create_le(hdev);
878 
879 	return 0;
880 }
881 
882 static int hci_init0_req(struct hci_request *req, unsigned long opt)
883 {
884 	struct hci_dev *hdev = req->hdev;
885 
886 	BT_DBG("%s %ld", hdev->name, opt);
887 
888 	/* Reset */
889 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
890 		hci_reset_req(req, 0);
891 
892 	/* Read Local Version */
893 	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
894 
895 	/* Read BD Address */
896 	if (hdev->set_bdaddr)
897 		hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
898 
899 	return 0;
900 }
901 
902 static int __hci_unconf_init(struct hci_dev *hdev)
903 {
904 	int err;
905 
906 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
907 		return 0;
908 
909 	err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
910 	if (err < 0)
911 		return err;
912 
913 	if (hci_dev_test_flag(hdev, HCI_SETUP))
914 		hci_debugfs_create_basic(hdev);
915 
916 	return 0;
917 }
918 
919 static int hci_scan_req(struct hci_request *req, unsigned long opt)
920 {
921 	__u8 scan = opt;
922 
923 	BT_DBG("%s %x", req->hdev->name, scan);
924 
925 	/* Inquiry and Page scans */
926 	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
927 	return 0;
928 }
929 
930 static int hci_auth_req(struct hci_request *req, unsigned long opt)
931 {
932 	__u8 auth = opt;
933 
934 	BT_DBG("%s %x", req->hdev->name, auth);
935 
936 	/* Authentication */
937 	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
938 	return 0;
939 }
940 
941 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
942 {
943 	__u8 encrypt = opt;
944 
945 	BT_DBG("%s %x", req->hdev->name, encrypt);
946 
947 	/* Encryption */
948 	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
949 	return 0;
950 }
951 
952 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
953 {
954 	__le16 policy = cpu_to_le16(opt);
955 
956 	BT_DBG("%s %x", req->hdev->name, policy);
957 
958 	/* Default link policy */
959 	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
960 	return 0;
961 }
962 
963 /* Get HCI device by index.
964  * Device is held on return. */
965 struct hci_dev *hci_dev_get(int index)
966 {
967 	struct hci_dev *hdev = NULL, *d;
968 
969 	BT_DBG("%d", index);
970 
971 	if (index < 0)
972 		return NULL;
973 
974 	read_lock(&hci_dev_list_lock);
975 	list_for_each_entry(d, &hci_dev_list, list) {
976 		if (d->id == index) {
977 			hdev = hci_dev_hold(d);
978 			break;
979 		}
980 	}
981 	read_unlock(&hci_dev_list_lock);
982 	return hdev;
983 }
984 
985 /* ---- Inquiry support ---- */
986 
987 bool hci_discovery_active(struct hci_dev *hdev)
988 {
989 	struct discovery_state *discov = &hdev->discovery;
990 
991 	switch (discov->state) {
992 	case DISCOVERY_FINDING:
993 	case DISCOVERY_RESOLVING:
994 		return true;
995 
996 	default:
997 		return false;
998 	}
999 }
1000 
1001 void hci_discovery_set_state(struct hci_dev *hdev, int state)
1002 {
1003 	int old_state = hdev->discovery.state;
1004 
1005 	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1006 
1007 	if (old_state == state)
1008 		return;
1009 
1010 	hdev->discovery.state = state;
1011 
1012 	switch (state) {
1013 	case DISCOVERY_STOPPED:
1014 		hci_update_background_scan(hdev);
1015 
1016 		if (old_state != DISCOVERY_STARTING)
1017 			mgmt_discovering(hdev, 0);
1018 		break;
1019 	case DISCOVERY_STARTING:
1020 		break;
1021 	case DISCOVERY_FINDING:
1022 		mgmt_discovering(hdev, 1);
1023 		break;
1024 	case DISCOVERY_RESOLVING:
1025 		break;
1026 	case DISCOVERY_STOPPING:
1027 		break;
1028 	}
1029 }
1030 
1031 void hci_inquiry_cache_flush(struct hci_dev *hdev)
1032 {
1033 	struct discovery_state *cache = &hdev->discovery;
1034 	struct inquiry_entry *p, *n;
1035 
1036 	list_for_each_entry_safe(p, n, &cache->all, all) {
1037 		list_del(&p->all);
1038 		kfree(p);
1039 	}
1040 
1041 	INIT_LIST_HEAD(&cache->unknown);
1042 	INIT_LIST_HEAD(&cache->resolve);
1043 }
1044 
1045 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1046 					       bdaddr_t *bdaddr)
1047 {
1048 	struct discovery_state *cache = &hdev->discovery;
1049 	struct inquiry_entry *e;
1050 
1051 	BT_DBG("cache %p, %pMR", cache, bdaddr);
1052 
1053 	list_for_each_entry(e, &cache->all, all) {
1054 		if (!bacmp(&e->data.bdaddr, bdaddr))
1055 			return e;
1056 	}
1057 
1058 	return NULL;
1059 }
1060 
1061 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1062 						       bdaddr_t *bdaddr)
1063 {
1064 	struct discovery_state *cache = &hdev->discovery;
1065 	struct inquiry_entry *e;
1066 
1067 	BT_DBG("cache %p, %pMR", cache, bdaddr);
1068 
1069 	list_for_each_entry(e, &cache->unknown, list) {
1070 		if (!bacmp(&e->data.bdaddr, bdaddr))
1071 			return e;
1072 	}
1073 
1074 	return NULL;
1075 }
1076 
1077 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1078 						       bdaddr_t *bdaddr,
1079 						       int state)
1080 {
1081 	struct discovery_state *cache = &hdev->discovery;
1082 	struct inquiry_entry *e;
1083 
1084 	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1085 
1086 	list_for_each_entry(e, &cache->resolve, list) {
1087 		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1088 			return e;
1089 		if (!bacmp(&e->data.bdaddr, bdaddr))
1090 			return e;
1091 	}
1092 
1093 	return NULL;
1094 }
1095 
1096 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1097 				      struct inquiry_entry *ie)
1098 {
1099 	struct discovery_state *cache = &hdev->discovery;
1100 	struct list_head *pos = &cache->resolve;
1101 	struct inquiry_entry *p;
1102 
1103 	list_del(&ie->list);
1104 
1105 	list_for_each_entry(p, &cache->resolve, list) {
1106 		if (p->name_state != NAME_PENDING &&
1107 		    abs(p->data.rssi) >= abs(ie->data.rssi))
1108 			break;
1109 		pos = &p->list;
1110 	}
1111 
1112 	list_add(&ie->list, pos);
1113 }
1114 
1115 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1116 			     bool name_known)
1117 {
1118 	struct discovery_state *cache = &hdev->discovery;
1119 	struct inquiry_entry *ie;
1120 	u32 flags = 0;
1121 
1122 	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1123 
1124 	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1125 
1126 	if (!data->ssp_mode)
1127 		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1128 
1129 	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1130 	if (ie) {
1131 		if (!ie->data.ssp_mode)
1132 			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1133 
1134 		if (ie->name_state == NAME_NEEDED &&
1135 		    data->rssi != ie->data.rssi) {
1136 			ie->data.rssi = data->rssi;
1137 			hci_inquiry_cache_update_resolve(hdev, ie);
1138 		}
1139 
1140 		goto update;
1141 	}
1142 
1143 	/* Entry not in the cache. Add new one. */
1144 	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1145 	if (!ie) {
1146 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1147 		goto done;
1148 	}
1149 
1150 	list_add(&ie->all, &cache->all);
1151 
1152 	if (name_known) {
1153 		ie->name_state = NAME_KNOWN;
1154 	} else {
1155 		ie->name_state = NAME_NOT_KNOWN;
1156 		list_add(&ie->list, &cache->unknown);
1157 	}
1158 
1159 update:
1160 	if (name_known && ie->name_state != NAME_KNOWN &&
1161 	    ie->name_state != NAME_PENDING) {
1162 		ie->name_state = NAME_KNOWN;
1163 		list_del(&ie->list);
1164 	}
1165 
1166 	memcpy(&ie->data, data, sizeof(*data));
1167 	ie->timestamp = jiffies;
1168 	cache->timestamp = jiffies;
1169 
1170 	if (ie->name_state == NAME_NOT_KNOWN)
1171 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1172 
1173 done:
1174 	return flags;
1175 }
1176 
1177 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1178 {
1179 	struct discovery_state *cache = &hdev->discovery;
1180 	struct inquiry_info *info = (struct inquiry_info *) buf;
1181 	struct inquiry_entry *e;
1182 	int copied = 0;
1183 
1184 	list_for_each_entry(e, &cache->all, all) {
1185 		struct inquiry_data *data = &e->data;
1186 
1187 		if (copied >= num)
1188 			break;
1189 
1190 		bacpy(&info->bdaddr, &data->bdaddr);
1191 		info->pscan_rep_mode	= data->pscan_rep_mode;
1192 		info->pscan_period_mode	= data->pscan_period_mode;
1193 		info->pscan_mode	= data->pscan_mode;
1194 		memcpy(info->dev_class, data->dev_class, 3);
1195 		info->clock_offset	= data->clock_offset;
1196 
1197 		info++;
1198 		copied++;
1199 	}
1200 
1201 	BT_DBG("cache %p, copied %d", cache, copied);
1202 	return copied;
1203 }
1204 
1205 static int hci_inq_req(struct hci_request *req, unsigned long opt)
1206 {
1207 	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1208 	struct hci_dev *hdev = req->hdev;
1209 	struct hci_cp_inquiry cp;
1210 
1211 	BT_DBG("%s", hdev->name);
1212 
1213 	if (test_bit(HCI_INQUIRY, &hdev->flags))
1214 		return 0;
1215 
1216 	/* Start Inquiry */
1217 	memcpy(&cp.lap, &ir->lap, 3);
1218 	cp.length  = ir->length;
1219 	cp.num_rsp = ir->num_rsp;
1220 	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1221 
1222 	return 0;
1223 }
1224 
1225 int hci_inquiry(void __user *arg)
1226 {
1227 	__u8 __user *ptr = arg;
1228 	struct hci_inquiry_req ir;
1229 	struct hci_dev *hdev;
1230 	int err = 0, do_inquiry = 0, max_rsp;
1231 	long timeo;
1232 	__u8 *buf;
1233 
1234 	if (copy_from_user(&ir, ptr, sizeof(ir)))
1235 		return -EFAULT;
1236 
1237 	hdev = hci_dev_get(ir.dev_id);
1238 	if (!hdev)
1239 		return -ENODEV;
1240 
1241 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1242 		err = -EBUSY;
1243 		goto done;
1244 	}
1245 
1246 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1247 		err = -EOPNOTSUPP;
1248 		goto done;
1249 	}
1250 
1251 	if (hdev->dev_type != HCI_PRIMARY) {
1252 		err = -EOPNOTSUPP;
1253 		goto done;
1254 	}
1255 
1256 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1257 		err = -EOPNOTSUPP;
1258 		goto done;
1259 	}
1260 
1261 	hci_dev_lock(hdev);
1262 	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1263 	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1264 		hci_inquiry_cache_flush(hdev);
1265 		do_inquiry = 1;
1266 	}
1267 	hci_dev_unlock(hdev);
1268 
1269 	timeo = ir.length * msecs_to_jiffies(2000);
1270 
1271 	if (do_inquiry) {
1272 		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1273 				   timeo, NULL);
1274 		if (err < 0)
1275 			goto done;
1276 
1277 		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1278 		 * cleared). If it is interrupted by a signal, return -EINTR.
1279 		 */
1280 		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1281 				TASK_INTERRUPTIBLE))
1282 			return -EINTR;
1283 	}
1284 
1285 	/* for unlimited number of responses we will use buffer with
1286 	 * 255 entries
1287 	 */
1288 	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1289 
1290 	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
1291 	 * copy it to the user space.
1292 	 */
1293 	buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
1294 	if (!buf) {
1295 		err = -ENOMEM;
1296 		goto done;
1297 	}
1298 
1299 	hci_dev_lock(hdev);
1300 	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1301 	hci_dev_unlock(hdev);
1302 
1303 	BT_DBG("num_rsp %d", ir.num_rsp);
1304 
1305 	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1306 		ptr += sizeof(ir);
1307 		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1308 				 ir.num_rsp))
1309 			err = -EFAULT;
1310 	} else
1311 		err = -EFAULT;
1312 
1313 	kfree(buf);
1314 
1315 done:
1316 	hci_dev_put(hdev);
1317 	return err;
1318 }
1319 
1320 static int hci_dev_do_open(struct hci_dev *hdev)
1321 {
1322 	int ret = 0;
1323 
1324 	BT_DBG("%s %p", hdev->name, hdev);
1325 
1326 	hci_req_sync_lock(hdev);
1327 
1328 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1329 		ret = -ENODEV;
1330 		goto done;
1331 	}
1332 
1333 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1334 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1335 		/* Check for rfkill but allow the HCI setup stage to
1336 		 * proceed (which in itself doesn't cause any RF activity).
1337 		 */
1338 		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1339 			ret = -ERFKILL;
1340 			goto done;
1341 		}
1342 
1343 		/* Check for valid public address or a configured static
1344 		 * random adddress, but let the HCI setup proceed to
1345 		 * be able to determine if there is a public address
1346 		 * or not.
1347 		 *
1348 		 * In case of user channel usage, it is not important
1349 		 * if a public address or static random address is
1350 		 * available.
1351 		 *
1352 		 * This check is only valid for BR/EDR controllers
1353 		 * since AMP controllers do not have an address.
1354 		 */
1355 		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1356 		    hdev->dev_type == HCI_PRIMARY &&
1357 		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1358 		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1359 			ret = -EADDRNOTAVAIL;
1360 			goto done;
1361 		}
1362 	}
1363 
1364 	if (test_bit(HCI_UP, &hdev->flags)) {
1365 		ret = -EALREADY;
1366 		goto done;
1367 	}
1368 
1369 	if (hdev->open(hdev)) {
1370 		ret = -EIO;
1371 		goto done;
1372 	}
1373 
1374 	set_bit(HCI_RUNNING, &hdev->flags);
1375 	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1376 
1377 	atomic_set(&hdev->cmd_cnt, 1);
1378 	set_bit(HCI_INIT, &hdev->flags);
1379 
1380 	if (hci_dev_test_flag(hdev, HCI_SETUP)) {
1381 		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1382 
1383 		if (hdev->setup)
1384 			ret = hdev->setup(hdev);
1385 
1386 		/* The transport driver can set these quirks before
1387 		 * creating the HCI device or in its setup callback.
1388 		 *
1389 		 * In case any of them is set, the controller has to
1390 		 * start up as unconfigured.
1391 		 */
1392 		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1393 		    test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks))
1394 			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1395 
1396 		/* For an unconfigured controller it is required to
1397 		 * read at least the version information provided by
1398 		 * the Read Local Version Information command.
1399 		 *
1400 		 * If the set_bdaddr driver callback is provided, then
1401 		 * also the original Bluetooth public device address
1402 		 * will be read using the Read BD Address command.
1403 		 */
1404 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1405 			ret = __hci_unconf_init(hdev);
1406 	}
1407 
1408 	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1409 		/* If public address change is configured, ensure that
1410 		 * the address gets programmed. If the driver does not
1411 		 * support changing the public address, fail the power
1412 		 * on procedure.
1413 		 */
1414 		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1415 		    hdev->set_bdaddr)
1416 			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1417 		else
1418 			ret = -EADDRNOTAVAIL;
1419 	}
1420 
1421 	if (!ret) {
1422 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1423 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1424 			ret = __hci_init(hdev);
1425 			if (!ret && hdev->post_init)
1426 				ret = hdev->post_init(hdev);
1427 		}
1428 	}
1429 
1430 	/* If the HCI Reset command is clearing all diagnostic settings,
1431 	 * then they need to be reprogrammed after the init procedure
1432 	 * completed.
1433 	 */
1434 	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1435 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1436 	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1437 		ret = hdev->set_diag(hdev, true);
1438 
1439 	clear_bit(HCI_INIT, &hdev->flags);
1440 
1441 	if (!ret) {
1442 		hci_dev_hold(hdev);
1443 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1444 		set_bit(HCI_UP, &hdev->flags);
1445 		hci_sock_dev_event(hdev, HCI_DEV_UP);
1446 		hci_leds_update_powered(hdev, true);
1447 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1448 		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1449 		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1450 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1451 		    hci_dev_test_flag(hdev, HCI_MGMT) &&
1452 		    hdev->dev_type == HCI_PRIMARY) {
1453 			ret = __hci_req_hci_power_on(hdev);
1454 			mgmt_power_on(hdev, ret);
1455 		}
1456 	} else {
1457 		/* Init failed, cleanup */
1458 		flush_work(&hdev->tx_work);
1459 		flush_work(&hdev->cmd_work);
1460 		flush_work(&hdev->rx_work);
1461 
1462 		skb_queue_purge(&hdev->cmd_q);
1463 		skb_queue_purge(&hdev->rx_q);
1464 
1465 		if (hdev->flush)
1466 			hdev->flush(hdev);
1467 
1468 		if (hdev->sent_cmd) {
1469 			kfree_skb(hdev->sent_cmd);
1470 			hdev->sent_cmd = NULL;
1471 		}
1472 
1473 		clear_bit(HCI_RUNNING, &hdev->flags);
1474 		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1475 
1476 		hdev->close(hdev);
1477 		hdev->flags &= BIT(HCI_RAW);
1478 	}
1479 
1480 done:
1481 	hci_req_sync_unlock(hdev);
1482 	return ret;
1483 }
1484 
1485 /* ---- HCI ioctl helpers ---- */
1486 
1487 int hci_dev_open(__u16 dev)
1488 {
1489 	struct hci_dev *hdev;
1490 	int err;
1491 
1492 	hdev = hci_dev_get(dev);
1493 	if (!hdev)
1494 		return -ENODEV;
1495 
1496 	/* Devices that are marked as unconfigured can only be powered
1497 	 * up as user channel. Trying to bring them up as normal devices
1498 	 * will result into a failure. Only user channel operation is
1499 	 * possible.
1500 	 *
1501 	 * When this function is called for a user channel, the flag
1502 	 * HCI_USER_CHANNEL will be set first before attempting to
1503 	 * open the device.
1504 	 */
1505 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1506 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1507 		err = -EOPNOTSUPP;
1508 		goto done;
1509 	}
1510 
1511 	/* We need to ensure that no other power on/off work is pending
1512 	 * before proceeding to call hci_dev_do_open. This is
1513 	 * particularly important if the setup procedure has not yet
1514 	 * completed.
1515 	 */
1516 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1517 		cancel_delayed_work(&hdev->power_off);
1518 
1519 	/* After this call it is guaranteed that the setup procedure
1520 	 * has finished. This means that error conditions like RFKILL
1521 	 * or no valid public or static random address apply.
1522 	 */
1523 	flush_workqueue(hdev->req_workqueue);
1524 
1525 	/* For controllers not using the management interface and that
1526 	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1527 	 * so that pairing works for them. Once the management interface
1528 	 * is in use this bit will be cleared again and userspace has
1529 	 * to explicitly enable it.
1530 	 */
1531 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1532 	    !hci_dev_test_flag(hdev, HCI_MGMT))
1533 		hci_dev_set_flag(hdev, HCI_BONDABLE);
1534 
1535 	err = hci_dev_do_open(hdev);
1536 
1537 done:
1538 	hci_dev_put(hdev);
1539 	return err;
1540 }
1541 
1542 /* This function requires the caller holds hdev->lock */
1543 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1544 {
1545 	struct hci_conn_params *p;
1546 
1547 	list_for_each_entry(p, &hdev->le_conn_params, list) {
1548 		if (p->conn) {
1549 			hci_conn_drop(p->conn);
1550 			hci_conn_put(p->conn);
1551 			p->conn = NULL;
1552 		}
1553 		list_del_init(&p->action);
1554 	}
1555 
1556 	BT_DBG("All LE pending actions cleared");
1557 }
1558 
1559 int hci_dev_do_close(struct hci_dev *hdev)
1560 {
1561 	bool auto_off;
1562 
1563 	BT_DBG("%s %p", hdev->name, hdev);
1564 
1565 	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1566 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1567 	    test_bit(HCI_UP, &hdev->flags)) {
1568 		/* Execute vendor specific shutdown routine */
1569 		if (hdev->shutdown)
1570 			hdev->shutdown(hdev);
1571 	}
1572 
1573 	cancel_delayed_work(&hdev->power_off);
1574 
1575 	hci_request_cancel_all(hdev);
1576 	hci_req_sync_lock(hdev);
1577 
1578 	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1579 		cancel_delayed_work_sync(&hdev->cmd_timer);
1580 		hci_req_sync_unlock(hdev);
1581 		return 0;
1582 	}
1583 
1584 	hci_leds_update_powered(hdev, false);
1585 
1586 	/* Flush RX and TX works */
1587 	flush_work(&hdev->tx_work);
1588 	flush_work(&hdev->rx_work);
1589 
1590 	if (hdev->discov_timeout > 0) {
1591 		hdev->discov_timeout = 0;
1592 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1593 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1594 	}
1595 
1596 	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1597 		cancel_delayed_work(&hdev->service_cache);
1598 
1599 	if (hci_dev_test_flag(hdev, HCI_MGMT))
1600 		cancel_delayed_work_sync(&hdev->rpa_expired);
1601 
1602 	/* Avoid potential lockdep warnings from the *_flush() calls by
1603 	 * ensuring the workqueue is empty up front.
1604 	 */
1605 	drain_workqueue(hdev->workqueue);
1606 
1607 	hci_dev_lock(hdev);
1608 
1609 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1610 
1611 	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1612 
1613 	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1614 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1615 	    hci_dev_test_flag(hdev, HCI_MGMT))
1616 		__mgmt_power_off(hdev);
1617 
1618 	hci_inquiry_cache_flush(hdev);
1619 	hci_pend_le_actions_clear(hdev);
1620 	hci_conn_hash_flush(hdev);
1621 	hci_dev_unlock(hdev);
1622 
1623 	smp_unregister(hdev);
1624 
1625 	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1626 
1627 	if (hdev->flush)
1628 		hdev->flush(hdev);
1629 
1630 	/* Reset device */
1631 	skb_queue_purge(&hdev->cmd_q);
1632 	atomic_set(&hdev->cmd_cnt, 1);
1633 	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1634 	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1635 		set_bit(HCI_INIT, &hdev->flags);
1636 		__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1637 		clear_bit(HCI_INIT, &hdev->flags);
1638 	}
1639 
1640 	/* flush cmd  work */
1641 	flush_work(&hdev->cmd_work);
1642 
1643 	/* Drop queues */
1644 	skb_queue_purge(&hdev->rx_q);
1645 	skb_queue_purge(&hdev->cmd_q);
1646 	skb_queue_purge(&hdev->raw_q);
1647 
1648 	/* Drop last sent command */
1649 	if (hdev->sent_cmd) {
1650 		cancel_delayed_work_sync(&hdev->cmd_timer);
1651 		kfree_skb(hdev->sent_cmd);
1652 		hdev->sent_cmd = NULL;
1653 	}
1654 
1655 	clear_bit(HCI_RUNNING, &hdev->flags);
1656 	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1657 
1658 	/* After this point our queues are empty
1659 	 * and no tasks are scheduled. */
1660 	hdev->close(hdev);
1661 
1662 	/* Clear flags */
1663 	hdev->flags &= BIT(HCI_RAW);
1664 	hci_dev_clear_volatile_flags(hdev);
1665 
1666 	/* Controller radio is available but is currently powered down */
1667 	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1668 
1669 	memset(hdev->eir, 0, sizeof(hdev->eir));
1670 	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1671 	bacpy(&hdev->random_addr, BDADDR_ANY);
1672 
1673 	hci_req_sync_unlock(hdev);
1674 
1675 	hci_dev_put(hdev);
1676 	return 0;
1677 }
1678 
1679 int hci_dev_close(__u16 dev)
1680 {
1681 	struct hci_dev *hdev;
1682 	int err;
1683 
1684 	hdev = hci_dev_get(dev);
1685 	if (!hdev)
1686 		return -ENODEV;
1687 
1688 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1689 		err = -EBUSY;
1690 		goto done;
1691 	}
1692 
1693 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1694 		cancel_delayed_work(&hdev->power_off);
1695 
1696 	err = hci_dev_do_close(hdev);
1697 
1698 done:
1699 	hci_dev_put(hdev);
1700 	return err;
1701 }
1702 
1703 static int hci_dev_do_reset(struct hci_dev *hdev)
1704 {
1705 	int ret;
1706 
1707 	BT_DBG("%s %p", hdev->name, hdev);
1708 
1709 	hci_req_sync_lock(hdev);
1710 
1711 	/* Drop queues */
1712 	skb_queue_purge(&hdev->rx_q);
1713 	skb_queue_purge(&hdev->cmd_q);
1714 
1715 	/* Avoid potential lockdep warnings from the *_flush() calls by
1716 	 * ensuring the workqueue is empty up front.
1717 	 */
1718 	drain_workqueue(hdev->workqueue);
1719 
1720 	hci_dev_lock(hdev);
1721 	hci_inquiry_cache_flush(hdev);
1722 	hci_conn_hash_flush(hdev);
1723 	hci_dev_unlock(hdev);
1724 
1725 	if (hdev->flush)
1726 		hdev->flush(hdev);
1727 
1728 	atomic_set(&hdev->cmd_cnt, 1);
1729 	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1730 
1731 	ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1732 
1733 	hci_req_sync_unlock(hdev);
1734 	return ret;
1735 }
1736 
1737 int hci_dev_reset(__u16 dev)
1738 {
1739 	struct hci_dev *hdev;
1740 	int err;
1741 
1742 	hdev = hci_dev_get(dev);
1743 	if (!hdev)
1744 		return -ENODEV;
1745 
1746 	if (!test_bit(HCI_UP, &hdev->flags)) {
1747 		err = -ENETDOWN;
1748 		goto done;
1749 	}
1750 
1751 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1752 		err = -EBUSY;
1753 		goto done;
1754 	}
1755 
1756 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1757 		err = -EOPNOTSUPP;
1758 		goto done;
1759 	}
1760 
1761 	err = hci_dev_do_reset(hdev);
1762 
1763 done:
1764 	hci_dev_put(hdev);
1765 	return err;
1766 }
1767 
1768 int hci_dev_reset_stat(__u16 dev)
1769 {
1770 	struct hci_dev *hdev;
1771 	int ret = 0;
1772 
1773 	hdev = hci_dev_get(dev);
1774 	if (!hdev)
1775 		return -ENODEV;
1776 
1777 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1778 		ret = -EBUSY;
1779 		goto done;
1780 	}
1781 
1782 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1783 		ret = -EOPNOTSUPP;
1784 		goto done;
1785 	}
1786 
1787 	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1788 
1789 done:
1790 	hci_dev_put(hdev);
1791 	return ret;
1792 }
1793 
1794 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1795 {
1796 	bool conn_changed, discov_changed;
1797 
1798 	BT_DBG("%s scan 0x%02x", hdev->name, scan);
1799 
1800 	if ((scan & SCAN_PAGE))
1801 		conn_changed = !hci_dev_test_and_set_flag(hdev,
1802 							  HCI_CONNECTABLE);
1803 	else
1804 		conn_changed = hci_dev_test_and_clear_flag(hdev,
1805 							   HCI_CONNECTABLE);
1806 
1807 	if ((scan & SCAN_INQUIRY)) {
1808 		discov_changed = !hci_dev_test_and_set_flag(hdev,
1809 							    HCI_DISCOVERABLE);
1810 	} else {
1811 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1812 		discov_changed = hci_dev_test_and_clear_flag(hdev,
1813 							     HCI_DISCOVERABLE);
1814 	}
1815 
1816 	if (!hci_dev_test_flag(hdev, HCI_MGMT))
1817 		return;
1818 
1819 	if (conn_changed || discov_changed) {
1820 		/* In case this was disabled through mgmt */
1821 		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1822 
1823 		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1824 			hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1825 
1826 		mgmt_new_settings(hdev);
1827 	}
1828 }
1829 
1830 int hci_dev_cmd(unsigned int cmd, void __user *arg)
1831 {
1832 	struct hci_dev *hdev;
1833 	struct hci_dev_req dr;
1834 	int err = 0;
1835 
1836 	if (copy_from_user(&dr, arg, sizeof(dr)))
1837 		return -EFAULT;
1838 
1839 	hdev = hci_dev_get(dr.dev_id);
1840 	if (!hdev)
1841 		return -ENODEV;
1842 
1843 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1844 		err = -EBUSY;
1845 		goto done;
1846 	}
1847 
1848 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1849 		err = -EOPNOTSUPP;
1850 		goto done;
1851 	}
1852 
1853 	if (hdev->dev_type != HCI_PRIMARY) {
1854 		err = -EOPNOTSUPP;
1855 		goto done;
1856 	}
1857 
1858 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1859 		err = -EOPNOTSUPP;
1860 		goto done;
1861 	}
1862 
1863 	switch (cmd) {
1864 	case HCISETAUTH:
1865 		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1866 				   HCI_INIT_TIMEOUT, NULL);
1867 		break;
1868 
1869 	case HCISETENCRYPT:
1870 		if (!lmp_encrypt_capable(hdev)) {
1871 			err = -EOPNOTSUPP;
1872 			break;
1873 		}
1874 
1875 		if (!test_bit(HCI_AUTH, &hdev->flags)) {
1876 			/* Auth must be enabled first */
1877 			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
1878 					   HCI_INIT_TIMEOUT, NULL);
1879 			if (err)
1880 				break;
1881 		}
1882 
1883 		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
1884 				   HCI_INIT_TIMEOUT, NULL);
1885 		break;
1886 
1887 	case HCISETSCAN:
1888 		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
1889 				   HCI_INIT_TIMEOUT, NULL);
1890 
1891 		/* Ensure that the connectable and discoverable states
1892 		 * get correctly modified as this was a non-mgmt change.
1893 		 */
1894 		if (!err)
1895 			hci_update_scan_state(hdev, dr.dev_opt);
1896 		break;
1897 
1898 	case HCISETLINKPOL:
1899 		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
1900 				   HCI_INIT_TIMEOUT, NULL);
1901 		break;
1902 
1903 	case HCISETLINKMODE:
1904 		hdev->link_mode = ((__u16) dr.dev_opt) &
1905 					(HCI_LM_MASTER | HCI_LM_ACCEPT);
1906 		break;
1907 
1908 	case HCISETPTYPE:
1909 		hdev->pkt_type = (__u16) dr.dev_opt;
1910 		break;
1911 
1912 	case HCISETACLMTU:
1913 		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
1914 		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
1915 		break;
1916 
1917 	case HCISETSCOMTU:
1918 		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
1919 		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
1920 		break;
1921 
1922 	default:
1923 		err = -EINVAL;
1924 		break;
1925 	}
1926 
1927 done:
1928 	hci_dev_put(hdev);
1929 	return err;
1930 }
1931 
1932 int hci_get_dev_list(void __user *arg)
1933 {
1934 	struct hci_dev *hdev;
1935 	struct hci_dev_list_req *dl;
1936 	struct hci_dev_req *dr;
1937 	int n = 0, size, err;
1938 	__u16 dev_num;
1939 
1940 	if (get_user(dev_num, (__u16 __user *) arg))
1941 		return -EFAULT;
1942 
1943 	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
1944 		return -EINVAL;
1945 
1946 	size = sizeof(*dl) + dev_num * sizeof(*dr);
1947 
1948 	dl = kzalloc(size, GFP_KERNEL);
1949 	if (!dl)
1950 		return -ENOMEM;
1951 
1952 	dr = dl->dev_req;
1953 
1954 	read_lock(&hci_dev_list_lock);
1955 	list_for_each_entry(hdev, &hci_dev_list, list) {
1956 		unsigned long flags = hdev->flags;
1957 
1958 		/* When the auto-off is configured it means the transport
1959 		 * is running, but in that case still indicate that the
1960 		 * device is actually down.
1961 		 */
1962 		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
1963 			flags &= ~BIT(HCI_UP);
1964 
1965 		(dr + n)->dev_id  = hdev->id;
1966 		(dr + n)->dev_opt = flags;
1967 
1968 		if (++n >= dev_num)
1969 			break;
1970 	}
1971 	read_unlock(&hci_dev_list_lock);
1972 
1973 	dl->dev_num = n;
1974 	size = sizeof(*dl) + n * sizeof(*dr);
1975 
1976 	err = copy_to_user(arg, dl, size);
1977 	kfree(dl);
1978 
1979 	return err ? -EFAULT : 0;
1980 }
1981 
1982 int hci_get_dev_info(void __user *arg)
1983 {
1984 	struct hci_dev *hdev;
1985 	struct hci_dev_info di;
1986 	unsigned long flags;
1987 	int err = 0;
1988 
1989 	if (copy_from_user(&di, arg, sizeof(di)))
1990 		return -EFAULT;
1991 
1992 	hdev = hci_dev_get(di.dev_id);
1993 	if (!hdev)
1994 		return -ENODEV;
1995 
1996 	/* When the auto-off is configured it means the transport
1997 	 * is running, but in that case still indicate that the
1998 	 * device is actually down.
1999 	 */
2000 	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2001 		flags = hdev->flags & ~BIT(HCI_UP);
2002 	else
2003 		flags = hdev->flags;
2004 
2005 	strcpy(di.name, hdev->name);
2006 	di.bdaddr   = hdev->bdaddr;
2007 	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2008 	di.flags    = flags;
2009 	di.pkt_type = hdev->pkt_type;
2010 	if (lmp_bredr_capable(hdev)) {
2011 		di.acl_mtu  = hdev->acl_mtu;
2012 		di.acl_pkts = hdev->acl_pkts;
2013 		di.sco_mtu  = hdev->sco_mtu;
2014 		di.sco_pkts = hdev->sco_pkts;
2015 	} else {
2016 		di.acl_mtu  = hdev->le_mtu;
2017 		di.acl_pkts = hdev->le_pkts;
2018 		di.sco_mtu  = 0;
2019 		di.sco_pkts = 0;
2020 	}
2021 	di.link_policy = hdev->link_policy;
2022 	di.link_mode   = hdev->link_mode;
2023 
2024 	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2025 	memcpy(&di.features, &hdev->features, sizeof(di.features));
2026 
2027 	if (copy_to_user(arg, &di, sizeof(di)))
2028 		err = -EFAULT;
2029 
2030 	hci_dev_put(hdev);
2031 
2032 	return err;
2033 }
2034 
2035 /* ---- Interface to HCI drivers ---- */
2036 
2037 static int hci_rfkill_set_block(void *data, bool blocked)
2038 {
2039 	struct hci_dev *hdev = data;
2040 
2041 	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2042 
2043 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2044 		return -EBUSY;
2045 
2046 	if (blocked) {
2047 		hci_dev_set_flag(hdev, HCI_RFKILLED);
2048 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2049 		    !hci_dev_test_flag(hdev, HCI_CONFIG))
2050 			hci_dev_do_close(hdev);
2051 	} else {
2052 		hci_dev_clear_flag(hdev, HCI_RFKILLED);
2053 	}
2054 
2055 	return 0;
2056 }
2057 
2058 static const struct rfkill_ops hci_rfkill_ops = {
2059 	.set_block = hci_rfkill_set_block,
2060 };
2061 
2062 static void hci_power_on(struct work_struct *work)
2063 {
2064 	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2065 	int err;
2066 
2067 	BT_DBG("%s", hdev->name);
2068 
2069 	if (test_bit(HCI_UP, &hdev->flags) &&
2070 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
2071 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2072 		cancel_delayed_work(&hdev->power_off);
2073 		hci_req_sync_lock(hdev);
2074 		err = __hci_req_hci_power_on(hdev);
2075 		hci_req_sync_unlock(hdev);
2076 		mgmt_power_on(hdev, err);
2077 		return;
2078 	}
2079 
2080 	err = hci_dev_do_open(hdev);
2081 	if (err < 0) {
2082 		hci_dev_lock(hdev);
2083 		mgmt_set_powered_failed(hdev, err);
2084 		hci_dev_unlock(hdev);
2085 		return;
2086 	}
2087 
2088 	/* During the HCI setup phase, a few error conditions are
2089 	 * ignored and they need to be checked now. If they are still
2090 	 * valid, it is important to turn the device back off.
2091 	 */
2092 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2093 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2094 	    (hdev->dev_type == HCI_PRIMARY &&
2095 	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2096 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2097 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2098 		hci_dev_do_close(hdev);
2099 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2100 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2101 				   HCI_AUTO_OFF_TIMEOUT);
2102 	}
2103 
2104 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2105 		/* For unconfigured devices, set the HCI_RAW flag
2106 		 * so that userspace can easily identify them.
2107 		 */
2108 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2109 			set_bit(HCI_RAW, &hdev->flags);
2110 
2111 		/* For fully configured devices, this will send
2112 		 * the Index Added event. For unconfigured devices,
2113 		 * it will send Unconfigued Index Added event.
2114 		 *
2115 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2116 		 * and no event will be send.
2117 		 */
2118 		mgmt_index_added(hdev);
2119 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2120 		/* When the controller is now configured, then it
2121 		 * is important to clear the HCI_RAW flag.
2122 		 */
2123 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2124 			clear_bit(HCI_RAW, &hdev->flags);
2125 
2126 		/* Powering on the controller with HCI_CONFIG set only
2127 		 * happens with the transition from unconfigured to
2128 		 * configured. This will send the Index Added event.
2129 		 */
2130 		mgmt_index_added(hdev);
2131 	}
2132 }
2133 
2134 static void hci_power_off(struct work_struct *work)
2135 {
2136 	struct hci_dev *hdev = container_of(work, struct hci_dev,
2137 					    power_off.work);
2138 
2139 	BT_DBG("%s", hdev->name);
2140 
2141 	hci_dev_do_close(hdev);
2142 }
2143 
2144 static void hci_error_reset(struct work_struct *work)
2145 {
2146 	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2147 
2148 	BT_DBG("%s", hdev->name);
2149 
2150 	if (hdev->hw_error)
2151 		hdev->hw_error(hdev, hdev->hw_error_code);
2152 	else
2153 		BT_ERR("%s hardware error 0x%2.2x", hdev->name,
2154 		       hdev->hw_error_code);
2155 
2156 	if (hci_dev_do_close(hdev))
2157 		return;
2158 
2159 	hci_dev_do_open(hdev);
2160 }
2161 
2162 void hci_uuids_clear(struct hci_dev *hdev)
2163 {
2164 	struct bt_uuid *uuid, *tmp;
2165 
2166 	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2167 		list_del(&uuid->list);
2168 		kfree(uuid);
2169 	}
2170 }
2171 
2172 void hci_link_keys_clear(struct hci_dev *hdev)
2173 {
2174 	struct link_key *key;
2175 
2176 	list_for_each_entry_rcu(key, &hdev->link_keys, list) {
2177 		list_del_rcu(&key->list);
2178 		kfree_rcu(key, rcu);
2179 	}
2180 }
2181 
2182 void hci_smp_ltks_clear(struct hci_dev *hdev)
2183 {
2184 	struct smp_ltk *k;
2185 
2186 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2187 		list_del_rcu(&k->list);
2188 		kfree_rcu(k, rcu);
2189 	}
2190 }
2191 
2192 void hci_smp_irks_clear(struct hci_dev *hdev)
2193 {
2194 	struct smp_irk *k;
2195 
2196 	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2197 		list_del_rcu(&k->list);
2198 		kfree_rcu(k, rcu);
2199 	}
2200 }
2201 
2202 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2203 {
2204 	struct link_key *k;
2205 
2206 	rcu_read_lock();
2207 	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2208 		if (bacmp(bdaddr, &k->bdaddr) == 0) {
2209 			rcu_read_unlock();
2210 			return k;
2211 		}
2212 	}
2213 	rcu_read_unlock();
2214 
2215 	return NULL;
2216 }
2217 
2218 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2219 			       u8 key_type, u8 old_key_type)
2220 {
2221 	/* Legacy key */
2222 	if (key_type < 0x03)
2223 		return true;
2224 
2225 	/* Debug keys are insecure so don't store them persistently */
2226 	if (key_type == HCI_LK_DEBUG_COMBINATION)
2227 		return false;
2228 
2229 	/* Changed combination key and there's no previous one */
2230 	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2231 		return false;
2232 
2233 	/* Security mode 3 case */
2234 	if (!conn)
2235 		return true;
2236 
2237 	/* BR/EDR key derived using SC from an LE link */
2238 	if (conn->type == LE_LINK)
2239 		return true;
2240 
2241 	/* Neither local nor remote side had no-bonding as requirement */
2242 	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2243 		return true;
2244 
2245 	/* Local side had dedicated bonding as requirement */
2246 	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2247 		return true;
2248 
2249 	/* Remote side had dedicated bonding as requirement */
2250 	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2251 		return true;
2252 
2253 	/* If none of the above criteria match, then don't store the key
2254 	 * persistently */
2255 	return false;
2256 }
2257 
2258 static u8 ltk_role(u8 type)
2259 {
2260 	if (type == SMP_LTK)
2261 		return HCI_ROLE_MASTER;
2262 
2263 	return HCI_ROLE_SLAVE;
2264 }
2265 
2266 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2267 			     u8 addr_type, u8 role)
2268 {
2269 	struct smp_ltk *k;
2270 
2271 	rcu_read_lock();
2272 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2273 		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2274 			continue;
2275 
2276 		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2277 			rcu_read_unlock();
2278 			return k;
2279 		}
2280 	}
2281 	rcu_read_unlock();
2282 
2283 	return NULL;
2284 }
2285 
2286 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2287 {
2288 	struct smp_irk *irk;
2289 
2290 	rcu_read_lock();
2291 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2292 		if (!bacmp(&irk->rpa, rpa)) {
2293 			rcu_read_unlock();
2294 			return irk;
2295 		}
2296 	}
2297 
2298 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2299 		if (smp_irk_matches(hdev, irk->val, rpa)) {
2300 			bacpy(&irk->rpa, rpa);
2301 			rcu_read_unlock();
2302 			return irk;
2303 		}
2304 	}
2305 	rcu_read_unlock();
2306 
2307 	return NULL;
2308 }
2309 
2310 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2311 				     u8 addr_type)
2312 {
2313 	struct smp_irk *irk;
2314 
2315 	/* Identity Address must be public or static random */
2316 	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2317 		return NULL;
2318 
2319 	rcu_read_lock();
2320 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2321 		if (addr_type == irk->addr_type &&
2322 		    bacmp(bdaddr, &irk->bdaddr) == 0) {
2323 			rcu_read_unlock();
2324 			return irk;
2325 		}
2326 	}
2327 	rcu_read_unlock();
2328 
2329 	return NULL;
2330 }
2331 
2332 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2333 				  bdaddr_t *bdaddr, u8 *val, u8 type,
2334 				  u8 pin_len, bool *persistent)
2335 {
2336 	struct link_key *key, *old_key;
2337 	u8 old_key_type;
2338 
2339 	old_key = hci_find_link_key(hdev, bdaddr);
2340 	if (old_key) {
2341 		old_key_type = old_key->type;
2342 		key = old_key;
2343 	} else {
2344 		old_key_type = conn ? conn->key_type : 0xff;
2345 		key = kzalloc(sizeof(*key), GFP_KERNEL);
2346 		if (!key)
2347 			return NULL;
2348 		list_add_rcu(&key->list, &hdev->link_keys);
2349 	}
2350 
2351 	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2352 
2353 	/* Some buggy controller combinations generate a changed
2354 	 * combination key for legacy pairing even when there's no
2355 	 * previous key */
2356 	if (type == HCI_LK_CHANGED_COMBINATION &&
2357 	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2358 		type = HCI_LK_COMBINATION;
2359 		if (conn)
2360 			conn->key_type = type;
2361 	}
2362 
2363 	bacpy(&key->bdaddr, bdaddr);
2364 	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2365 	key->pin_len = pin_len;
2366 
2367 	if (type == HCI_LK_CHANGED_COMBINATION)
2368 		key->type = old_key_type;
2369 	else
2370 		key->type = type;
2371 
2372 	if (persistent)
2373 		*persistent = hci_persistent_key(hdev, conn, type,
2374 						 old_key_type);
2375 
2376 	return key;
2377 }
2378 
2379 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2380 			    u8 addr_type, u8 type, u8 authenticated,
2381 			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2382 {
2383 	struct smp_ltk *key, *old_key;
2384 	u8 role = ltk_role(type);
2385 
2386 	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2387 	if (old_key)
2388 		key = old_key;
2389 	else {
2390 		key = kzalloc(sizeof(*key), GFP_KERNEL);
2391 		if (!key)
2392 			return NULL;
2393 		list_add_rcu(&key->list, &hdev->long_term_keys);
2394 	}
2395 
2396 	bacpy(&key->bdaddr, bdaddr);
2397 	key->bdaddr_type = addr_type;
2398 	memcpy(key->val, tk, sizeof(key->val));
2399 	key->authenticated = authenticated;
2400 	key->ediv = ediv;
2401 	key->rand = rand;
2402 	key->enc_size = enc_size;
2403 	key->type = type;
2404 
2405 	return key;
2406 }
2407 
2408 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2409 			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
2410 {
2411 	struct smp_irk *irk;
2412 
2413 	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2414 	if (!irk) {
2415 		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2416 		if (!irk)
2417 			return NULL;
2418 
2419 		bacpy(&irk->bdaddr, bdaddr);
2420 		irk->addr_type = addr_type;
2421 
2422 		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2423 	}
2424 
2425 	memcpy(irk->val, val, 16);
2426 	bacpy(&irk->rpa, rpa);
2427 
2428 	return irk;
2429 }
2430 
2431 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2432 {
2433 	struct link_key *key;
2434 
2435 	key = hci_find_link_key(hdev, bdaddr);
2436 	if (!key)
2437 		return -ENOENT;
2438 
2439 	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2440 
2441 	list_del_rcu(&key->list);
2442 	kfree_rcu(key, rcu);
2443 
2444 	return 0;
2445 }
2446 
2447 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2448 {
2449 	struct smp_ltk *k;
2450 	int removed = 0;
2451 
2452 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2453 		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2454 			continue;
2455 
2456 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2457 
2458 		list_del_rcu(&k->list);
2459 		kfree_rcu(k, rcu);
2460 		removed++;
2461 	}
2462 
2463 	return removed ? 0 : -ENOENT;
2464 }
2465 
2466 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2467 {
2468 	struct smp_irk *k;
2469 
2470 	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2471 		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2472 			continue;
2473 
2474 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2475 
2476 		list_del_rcu(&k->list);
2477 		kfree_rcu(k, rcu);
2478 	}
2479 }
2480 
2481 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2482 {
2483 	struct smp_ltk *k;
2484 	struct smp_irk *irk;
2485 	u8 addr_type;
2486 
2487 	if (type == BDADDR_BREDR) {
2488 		if (hci_find_link_key(hdev, bdaddr))
2489 			return true;
2490 		return false;
2491 	}
2492 
2493 	/* Convert to HCI addr type which struct smp_ltk uses */
2494 	if (type == BDADDR_LE_PUBLIC)
2495 		addr_type = ADDR_LE_DEV_PUBLIC;
2496 	else
2497 		addr_type = ADDR_LE_DEV_RANDOM;
2498 
2499 	irk = hci_get_irk(hdev, bdaddr, addr_type);
2500 	if (irk) {
2501 		bdaddr = &irk->bdaddr;
2502 		addr_type = irk->addr_type;
2503 	}
2504 
2505 	rcu_read_lock();
2506 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2507 		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2508 			rcu_read_unlock();
2509 			return true;
2510 		}
2511 	}
2512 	rcu_read_unlock();
2513 
2514 	return false;
2515 }
2516 
2517 /* HCI command timer function */
2518 static void hci_cmd_timeout(struct work_struct *work)
2519 {
2520 	struct hci_dev *hdev = container_of(work, struct hci_dev,
2521 					    cmd_timer.work);
2522 
2523 	if (hdev->sent_cmd) {
2524 		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2525 		u16 opcode = __le16_to_cpu(sent->opcode);
2526 
2527 		BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode);
2528 	} else {
2529 		BT_ERR("%s command tx timeout", hdev->name);
2530 	}
2531 
2532 	atomic_set(&hdev->cmd_cnt, 1);
2533 	queue_work(hdev->workqueue, &hdev->cmd_work);
2534 }
2535 
2536 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2537 					  bdaddr_t *bdaddr, u8 bdaddr_type)
2538 {
2539 	struct oob_data *data;
2540 
2541 	list_for_each_entry(data, &hdev->remote_oob_data, list) {
2542 		if (bacmp(bdaddr, &data->bdaddr) != 0)
2543 			continue;
2544 		if (data->bdaddr_type != bdaddr_type)
2545 			continue;
2546 		return data;
2547 	}
2548 
2549 	return NULL;
2550 }
2551 
2552 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2553 			       u8 bdaddr_type)
2554 {
2555 	struct oob_data *data;
2556 
2557 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2558 	if (!data)
2559 		return -ENOENT;
2560 
2561 	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2562 
2563 	list_del(&data->list);
2564 	kfree(data);
2565 
2566 	return 0;
2567 }
2568 
2569 void hci_remote_oob_data_clear(struct hci_dev *hdev)
2570 {
2571 	struct oob_data *data, *n;
2572 
2573 	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2574 		list_del(&data->list);
2575 		kfree(data);
2576 	}
2577 }
2578 
2579 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2580 			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
2581 			    u8 *hash256, u8 *rand256)
2582 {
2583 	struct oob_data *data;
2584 
2585 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2586 	if (!data) {
2587 		data = kmalloc(sizeof(*data), GFP_KERNEL);
2588 		if (!data)
2589 			return -ENOMEM;
2590 
2591 		bacpy(&data->bdaddr, bdaddr);
2592 		data->bdaddr_type = bdaddr_type;
2593 		list_add(&data->list, &hdev->remote_oob_data);
2594 	}
2595 
2596 	if (hash192 && rand192) {
2597 		memcpy(data->hash192, hash192, sizeof(data->hash192));
2598 		memcpy(data->rand192, rand192, sizeof(data->rand192));
2599 		if (hash256 && rand256)
2600 			data->present = 0x03;
2601 	} else {
2602 		memset(data->hash192, 0, sizeof(data->hash192));
2603 		memset(data->rand192, 0, sizeof(data->rand192));
2604 		if (hash256 && rand256)
2605 			data->present = 0x02;
2606 		else
2607 			data->present = 0x00;
2608 	}
2609 
2610 	if (hash256 && rand256) {
2611 		memcpy(data->hash256, hash256, sizeof(data->hash256));
2612 		memcpy(data->rand256, rand256, sizeof(data->rand256));
2613 	} else {
2614 		memset(data->hash256, 0, sizeof(data->hash256));
2615 		memset(data->rand256, 0, sizeof(data->rand256));
2616 		if (hash192 && rand192)
2617 			data->present = 0x01;
2618 	}
2619 
2620 	BT_DBG("%s for %pMR", hdev->name, bdaddr);
2621 
2622 	return 0;
2623 }
2624 
2625 /* This function requires the caller holds hdev->lock */
2626 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2627 {
2628 	struct adv_info *adv_instance;
2629 
2630 	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2631 		if (adv_instance->instance == instance)
2632 			return adv_instance;
2633 	}
2634 
2635 	return NULL;
2636 }
2637 
2638 /* This function requires the caller holds hdev->lock */
2639 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2640 {
2641 	struct adv_info *cur_instance;
2642 
2643 	cur_instance = hci_find_adv_instance(hdev, instance);
2644 	if (!cur_instance)
2645 		return NULL;
2646 
2647 	if (cur_instance == list_last_entry(&hdev->adv_instances,
2648 					    struct adv_info, list))
2649 		return list_first_entry(&hdev->adv_instances,
2650 						 struct adv_info, list);
2651 	else
2652 		return list_next_entry(cur_instance, list);
2653 }
2654 
2655 /* This function requires the caller holds hdev->lock */
2656 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2657 {
2658 	struct adv_info *adv_instance;
2659 
2660 	adv_instance = hci_find_adv_instance(hdev, instance);
2661 	if (!adv_instance)
2662 		return -ENOENT;
2663 
2664 	BT_DBG("%s removing %dMR", hdev->name, instance);
2665 
2666 	if (hdev->cur_adv_instance == instance) {
2667 		if (hdev->adv_instance_timeout) {
2668 			cancel_delayed_work(&hdev->adv_instance_expire);
2669 			hdev->adv_instance_timeout = 0;
2670 		}
2671 		hdev->cur_adv_instance = 0x00;
2672 	}
2673 
2674 	list_del(&adv_instance->list);
2675 	kfree(adv_instance);
2676 
2677 	hdev->adv_instance_cnt--;
2678 
2679 	return 0;
2680 }
2681 
2682 /* This function requires the caller holds hdev->lock */
2683 void hci_adv_instances_clear(struct hci_dev *hdev)
2684 {
2685 	struct adv_info *adv_instance, *n;
2686 
2687 	if (hdev->adv_instance_timeout) {
2688 		cancel_delayed_work(&hdev->adv_instance_expire);
2689 		hdev->adv_instance_timeout = 0;
2690 	}
2691 
2692 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2693 		list_del(&adv_instance->list);
2694 		kfree(adv_instance);
2695 	}
2696 
2697 	hdev->adv_instance_cnt = 0;
2698 	hdev->cur_adv_instance = 0x00;
2699 }
2700 
2701 /* This function requires the caller holds hdev->lock */
2702 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2703 			 u16 adv_data_len, u8 *adv_data,
2704 			 u16 scan_rsp_len, u8 *scan_rsp_data,
2705 			 u16 timeout, u16 duration)
2706 {
2707 	struct adv_info *adv_instance;
2708 
2709 	adv_instance = hci_find_adv_instance(hdev, instance);
2710 	if (adv_instance) {
2711 		memset(adv_instance->adv_data, 0,
2712 		       sizeof(adv_instance->adv_data));
2713 		memset(adv_instance->scan_rsp_data, 0,
2714 		       sizeof(adv_instance->scan_rsp_data));
2715 	} else {
2716 		if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES ||
2717 		    instance < 1 || instance > HCI_MAX_ADV_INSTANCES)
2718 			return -EOVERFLOW;
2719 
2720 		adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2721 		if (!adv_instance)
2722 			return -ENOMEM;
2723 
2724 		adv_instance->pending = true;
2725 		adv_instance->instance = instance;
2726 		list_add(&adv_instance->list, &hdev->adv_instances);
2727 		hdev->adv_instance_cnt++;
2728 	}
2729 
2730 	adv_instance->flags = flags;
2731 	adv_instance->adv_data_len = adv_data_len;
2732 	adv_instance->scan_rsp_len = scan_rsp_len;
2733 
2734 	if (adv_data_len)
2735 		memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2736 
2737 	if (scan_rsp_len)
2738 		memcpy(adv_instance->scan_rsp_data,
2739 		       scan_rsp_data, scan_rsp_len);
2740 
2741 	adv_instance->timeout = timeout;
2742 	adv_instance->remaining_time = timeout;
2743 
2744 	if (duration == 0)
2745 		adv_instance->duration = HCI_DEFAULT_ADV_DURATION;
2746 	else
2747 		adv_instance->duration = duration;
2748 
2749 	BT_DBG("%s for %dMR", hdev->name, instance);
2750 
2751 	return 0;
2752 }
2753 
2754 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2755 					 bdaddr_t *bdaddr, u8 type)
2756 {
2757 	struct bdaddr_list *b;
2758 
2759 	list_for_each_entry(b, bdaddr_list, list) {
2760 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2761 			return b;
2762 	}
2763 
2764 	return NULL;
2765 }
2766 
2767 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2768 {
2769 	struct bdaddr_list *b, *n;
2770 
2771 	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2772 		list_del(&b->list);
2773 		kfree(b);
2774 	}
2775 }
2776 
2777 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2778 {
2779 	struct bdaddr_list *entry;
2780 
2781 	if (!bacmp(bdaddr, BDADDR_ANY))
2782 		return -EBADF;
2783 
2784 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2785 		return -EEXIST;
2786 
2787 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2788 	if (!entry)
2789 		return -ENOMEM;
2790 
2791 	bacpy(&entry->bdaddr, bdaddr);
2792 	entry->bdaddr_type = type;
2793 
2794 	list_add(&entry->list, list);
2795 
2796 	return 0;
2797 }
2798 
2799 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2800 {
2801 	struct bdaddr_list *entry;
2802 
2803 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2804 		hci_bdaddr_list_clear(list);
2805 		return 0;
2806 	}
2807 
2808 	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2809 	if (!entry)
2810 		return -ENOENT;
2811 
2812 	list_del(&entry->list);
2813 	kfree(entry);
2814 
2815 	return 0;
2816 }
2817 
2818 /* This function requires the caller holds hdev->lock */
2819 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2820 					       bdaddr_t *addr, u8 addr_type)
2821 {
2822 	struct hci_conn_params *params;
2823 
2824 	list_for_each_entry(params, &hdev->le_conn_params, list) {
2825 		if (bacmp(&params->addr, addr) == 0 &&
2826 		    params->addr_type == addr_type) {
2827 			return params;
2828 		}
2829 	}
2830 
2831 	return NULL;
2832 }
2833 
2834 /* This function requires the caller holds hdev->lock */
2835 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2836 						  bdaddr_t *addr, u8 addr_type)
2837 {
2838 	struct hci_conn_params *param;
2839 
2840 	list_for_each_entry(param, list, action) {
2841 		if (bacmp(&param->addr, addr) == 0 &&
2842 		    param->addr_type == addr_type)
2843 			return param;
2844 	}
2845 
2846 	return NULL;
2847 }
2848 
2849 /* This function requires the caller holds hdev->lock */
2850 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2851 					    bdaddr_t *addr, u8 addr_type)
2852 {
2853 	struct hci_conn_params *params;
2854 
2855 	params = hci_conn_params_lookup(hdev, addr, addr_type);
2856 	if (params)
2857 		return params;
2858 
2859 	params = kzalloc(sizeof(*params), GFP_KERNEL);
2860 	if (!params) {
2861 		BT_ERR("Out of memory");
2862 		return NULL;
2863 	}
2864 
2865 	bacpy(&params->addr, addr);
2866 	params->addr_type = addr_type;
2867 
2868 	list_add(&params->list, &hdev->le_conn_params);
2869 	INIT_LIST_HEAD(&params->action);
2870 
2871 	params->conn_min_interval = hdev->le_conn_min_interval;
2872 	params->conn_max_interval = hdev->le_conn_max_interval;
2873 	params->conn_latency = hdev->le_conn_latency;
2874 	params->supervision_timeout = hdev->le_supv_timeout;
2875 	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2876 
2877 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2878 
2879 	return params;
2880 }
2881 
2882 static void hci_conn_params_free(struct hci_conn_params *params)
2883 {
2884 	if (params->conn) {
2885 		hci_conn_drop(params->conn);
2886 		hci_conn_put(params->conn);
2887 	}
2888 
2889 	list_del(&params->action);
2890 	list_del(&params->list);
2891 	kfree(params);
2892 }
2893 
2894 /* This function requires the caller holds hdev->lock */
2895 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2896 {
2897 	struct hci_conn_params *params;
2898 
2899 	params = hci_conn_params_lookup(hdev, addr, addr_type);
2900 	if (!params)
2901 		return;
2902 
2903 	hci_conn_params_free(params);
2904 
2905 	hci_update_background_scan(hdev);
2906 
2907 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2908 }
2909 
2910 /* This function requires the caller holds hdev->lock */
2911 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2912 {
2913 	struct hci_conn_params *params, *tmp;
2914 
2915 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2916 		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2917 			continue;
2918 
2919 		/* If trying to estabilish one time connection to disabled
2920 		 * device, leave the params, but mark them as just once.
2921 		 */
2922 		if (params->explicit_connect) {
2923 			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2924 			continue;
2925 		}
2926 
2927 		list_del(&params->list);
2928 		kfree(params);
2929 	}
2930 
2931 	BT_DBG("All LE disabled connection parameters were removed");
2932 }
2933 
2934 /* This function requires the caller holds hdev->lock */
2935 static void hci_conn_params_clear_all(struct hci_dev *hdev)
2936 {
2937 	struct hci_conn_params *params, *tmp;
2938 
2939 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2940 		hci_conn_params_free(params);
2941 
2942 	BT_DBG("All LE connection parameters were removed");
2943 }
2944 
2945 /* Copy the Identity Address of the controller.
2946  *
2947  * If the controller has a public BD_ADDR, then by default use that one.
2948  * If this is a LE only controller without a public address, default to
2949  * the static random address.
2950  *
2951  * For debugging purposes it is possible to force controllers with a
2952  * public address to use the static random address instead.
2953  *
2954  * In case BR/EDR has been disabled on a dual-mode controller and
2955  * userspace has configured a static address, then that address
2956  * becomes the identity address instead of the public BR/EDR address.
2957  */
2958 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2959 			       u8 *bdaddr_type)
2960 {
2961 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2962 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2963 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2964 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2965 		bacpy(bdaddr, &hdev->static_addr);
2966 		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2967 	} else {
2968 		bacpy(bdaddr, &hdev->bdaddr);
2969 		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2970 	}
2971 }
2972 
2973 /* Alloc HCI device */
2974 struct hci_dev *hci_alloc_dev(void)
2975 {
2976 	struct hci_dev *hdev;
2977 
2978 	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2979 	if (!hdev)
2980 		return NULL;
2981 
2982 	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2983 	hdev->esco_type = (ESCO_HV1);
2984 	hdev->link_mode = (HCI_LM_ACCEPT);
2985 	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2986 	hdev->io_capability = 0x03;	/* No Input No Output */
2987 	hdev->manufacturer = 0xffff;	/* Default to internal use */
2988 	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2989 	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2990 	hdev->adv_instance_cnt = 0;
2991 	hdev->cur_adv_instance = 0x00;
2992 	hdev->adv_instance_timeout = 0;
2993 
2994 	hdev->sniff_max_interval = 800;
2995 	hdev->sniff_min_interval = 80;
2996 
2997 	hdev->le_adv_channel_map = 0x07;
2998 	hdev->le_adv_min_interval = 0x0800;
2999 	hdev->le_adv_max_interval = 0x0800;
3000 	hdev->le_scan_interval = 0x0060;
3001 	hdev->le_scan_window = 0x0030;
3002 	hdev->le_conn_min_interval = 0x0018;
3003 	hdev->le_conn_max_interval = 0x0028;
3004 	hdev->le_conn_latency = 0x0000;
3005 	hdev->le_supv_timeout = 0x002a;
3006 	hdev->le_def_tx_len = 0x001b;
3007 	hdev->le_def_tx_time = 0x0148;
3008 	hdev->le_max_tx_len = 0x001b;
3009 	hdev->le_max_tx_time = 0x0148;
3010 	hdev->le_max_rx_len = 0x001b;
3011 	hdev->le_max_rx_time = 0x0148;
3012 
3013 	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3014 	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3015 	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3016 	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3017 
3018 	mutex_init(&hdev->lock);
3019 	mutex_init(&hdev->req_lock);
3020 
3021 	INIT_LIST_HEAD(&hdev->mgmt_pending);
3022 	INIT_LIST_HEAD(&hdev->blacklist);
3023 	INIT_LIST_HEAD(&hdev->whitelist);
3024 	INIT_LIST_HEAD(&hdev->uuids);
3025 	INIT_LIST_HEAD(&hdev->link_keys);
3026 	INIT_LIST_HEAD(&hdev->long_term_keys);
3027 	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3028 	INIT_LIST_HEAD(&hdev->remote_oob_data);
3029 	INIT_LIST_HEAD(&hdev->le_white_list);
3030 	INIT_LIST_HEAD(&hdev->le_conn_params);
3031 	INIT_LIST_HEAD(&hdev->pend_le_conns);
3032 	INIT_LIST_HEAD(&hdev->pend_le_reports);
3033 	INIT_LIST_HEAD(&hdev->conn_hash.list);
3034 	INIT_LIST_HEAD(&hdev->adv_instances);
3035 
3036 	INIT_WORK(&hdev->rx_work, hci_rx_work);
3037 	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3038 	INIT_WORK(&hdev->tx_work, hci_tx_work);
3039 	INIT_WORK(&hdev->power_on, hci_power_on);
3040 	INIT_WORK(&hdev->error_reset, hci_error_reset);
3041 
3042 	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3043 
3044 	skb_queue_head_init(&hdev->rx_q);
3045 	skb_queue_head_init(&hdev->cmd_q);
3046 	skb_queue_head_init(&hdev->raw_q);
3047 
3048 	init_waitqueue_head(&hdev->req_wait_q);
3049 
3050 	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3051 
3052 	hci_request_setup(hdev);
3053 
3054 	hci_init_sysfs(hdev);
3055 	discovery_init(hdev);
3056 
3057 	return hdev;
3058 }
3059 EXPORT_SYMBOL(hci_alloc_dev);
3060 
3061 /* Free HCI device */
3062 void hci_free_dev(struct hci_dev *hdev)
3063 {
3064 	/* will free via device release */
3065 	put_device(&hdev->dev);
3066 }
3067 EXPORT_SYMBOL(hci_free_dev);
3068 
3069 /* Register HCI device */
3070 int hci_register_dev(struct hci_dev *hdev)
3071 {
3072 	int id, error;
3073 
3074 	if (!hdev->open || !hdev->close || !hdev->send)
3075 		return -EINVAL;
3076 
3077 	/* Do not allow HCI_AMP devices to register at index 0,
3078 	 * so the index can be used as the AMP controller ID.
3079 	 */
3080 	switch (hdev->dev_type) {
3081 	case HCI_PRIMARY:
3082 		id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3083 		break;
3084 	case HCI_AMP:
3085 		id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3086 		break;
3087 	default:
3088 		return -EINVAL;
3089 	}
3090 
3091 	if (id < 0)
3092 		return id;
3093 
3094 	sprintf(hdev->name, "hci%d", id);
3095 	hdev->id = id;
3096 
3097 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3098 
3099 	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
3100 	if (!hdev->workqueue) {
3101 		error = -ENOMEM;
3102 		goto err;
3103 	}
3104 
3105 	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3106 						      hdev->name);
3107 	if (!hdev->req_workqueue) {
3108 		destroy_workqueue(hdev->workqueue);
3109 		error = -ENOMEM;
3110 		goto err;
3111 	}
3112 
3113 	if (!IS_ERR_OR_NULL(bt_debugfs))
3114 		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3115 
3116 	dev_set_name(&hdev->dev, "%s", hdev->name);
3117 
3118 	error = device_add(&hdev->dev);
3119 	if (error < 0)
3120 		goto err_wqueue;
3121 
3122 	hci_leds_init(hdev);
3123 
3124 	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3125 				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3126 				    hdev);
3127 	if (hdev->rfkill) {
3128 		if (rfkill_register(hdev->rfkill) < 0) {
3129 			rfkill_destroy(hdev->rfkill);
3130 			hdev->rfkill = NULL;
3131 		}
3132 	}
3133 
3134 	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3135 		hci_dev_set_flag(hdev, HCI_RFKILLED);
3136 
3137 	hci_dev_set_flag(hdev, HCI_SETUP);
3138 	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3139 
3140 	if (hdev->dev_type == HCI_PRIMARY) {
3141 		/* Assume BR/EDR support until proven otherwise (such as
3142 		 * through reading supported features during init.
3143 		 */
3144 		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3145 	}
3146 
3147 	write_lock(&hci_dev_list_lock);
3148 	list_add(&hdev->list, &hci_dev_list);
3149 	write_unlock(&hci_dev_list_lock);
3150 
3151 	/* Devices that are marked for raw-only usage are unconfigured
3152 	 * and should not be included in normal operation.
3153 	 */
3154 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3155 		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3156 
3157 	hci_sock_dev_event(hdev, HCI_DEV_REG);
3158 	hci_dev_hold(hdev);
3159 
3160 	queue_work(hdev->req_workqueue, &hdev->power_on);
3161 
3162 	return id;
3163 
3164 err_wqueue:
3165 	destroy_workqueue(hdev->workqueue);
3166 	destroy_workqueue(hdev->req_workqueue);
3167 err:
3168 	ida_simple_remove(&hci_index_ida, hdev->id);
3169 
3170 	return error;
3171 }
3172 EXPORT_SYMBOL(hci_register_dev);
3173 
3174 /* Unregister HCI device */
3175 void hci_unregister_dev(struct hci_dev *hdev)
3176 {
3177 	int id;
3178 
3179 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3180 
3181 	hci_dev_set_flag(hdev, HCI_UNREGISTER);
3182 
3183 	id = hdev->id;
3184 
3185 	write_lock(&hci_dev_list_lock);
3186 	list_del(&hdev->list);
3187 	write_unlock(&hci_dev_list_lock);
3188 
3189 	cancel_work_sync(&hdev->power_on);
3190 
3191 	hci_dev_do_close(hdev);
3192 
3193 	if (!test_bit(HCI_INIT, &hdev->flags) &&
3194 	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
3195 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3196 		hci_dev_lock(hdev);
3197 		mgmt_index_removed(hdev);
3198 		hci_dev_unlock(hdev);
3199 	}
3200 
3201 	/* mgmt_index_removed should take care of emptying the
3202 	 * pending list */
3203 	BUG_ON(!list_empty(&hdev->mgmt_pending));
3204 
3205 	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3206 
3207 	if (hdev->rfkill) {
3208 		rfkill_unregister(hdev->rfkill);
3209 		rfkill_destroy(hdev->rfkill);
3210 	}
3211 
3212 	device_del(&hdev->dev);
3213 
3214 	debugfs_remove_recursive(hdev->debugfs);
3215 	kfree_const(hdev->hw_info);
3216 	kfree_const(hdev->fw_info);
3217 
3218 	destroy_workqueue(hdev->workqueue);
3219 	destroy_workqueue(hdev->req_workqueue);
3220 
3221 	hci_dev_lock(hdev);
3222 	hci_bdaddr_list_clear(&hdev->blacklist);
3223 	hci_bdaddr_list_clear(&hdev->whitelist);
3224 	hci_uuids_clear(hdev);
3225 	hci_link_keys_clear(hdev);
3226 	hci_smp_ltks_clear(hdev);
3227 	hci_smp_irks_clear(hdev);
3228 	hci_remote_oob_data_clear(hdev);
3229 	hci_adv_instances_clear(hdev);
3230 	hci_bdaddr_list_clear(&hdev->le_white_list);
3231 	hci_conn_params_clear_all(hdev);
3232 	hci_discovery_filter_clear(hdev);
3233 	hci_dev_unlock(hdev);
3234 
3235 	hci_dev_put(hdev);
3236 
3237 	ida_simple_remove(&hci_index_ida, id);
3238 }
3239 EXPORT_SYMBOL(hci_unregister_dev);
3240 
3241 /* Suspend HCI device */
3242 int hci_suspend_dev(struct hci_dev *hdev)
3243 {
3244 	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3245 	return 0;
3246 }
3247 EXPORT_SYMBOL(hci_suspend_dev);
3248 
3249 /* Resume HCI device */
3250 int hci_resume_dev(struct hci_dev *hdev)
3251 {
3252 	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3253 	return 0;
3254 }
3255 EXPORT_SYMBOL(hci_resume_dev);
3256 
3257 /* Reset HCI device */
3258 int hci_reset_dev(struct hci_dev *hdev)
3259 {
3260 	const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3261 	struct sk_buff *skb;
3262 
3263 	skb = bt_skb_alloc(3, GFP_ATOMIC);
3264 	if (!skb)
3265 		return -ENOMEM;
3266 
3267 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3268 	skb_put_data(skb, hw_err, 3);
3269 
3270 	/* Send Hardware Error to upper stack */
3271 	return hci_recv_frame(hdev, skb);
3272 }
3273 EXPORT_SYMBOL(hci_reset_dev);
3274 
3275 /* Receive frame from HCI drivers */
3276 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3277 {
3278 	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3279 		      && !test_bit(HCI_INIT, &hdev->flags))) {
3280 		kfree_skb(skb);
3281 		return -ENXIO;
3282 	}
3283 
3284 	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3285 	    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3286 	    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) {
3287 		kfree_skb(skb);
3288 		return -EINVAL;
3289 	}
3290 
3291 	/* Incoming skb */
3292 	bt_cb(skb)->incoming = 1;
3293 
3294 	/* Time stamp */
3295 	__net_timestamp(skb);
3296 
3297 	skb_queue_tail(&hdev->rx_q, skb);
3298 	queue_work(hdev->workqueue, &hdev->rx_work);
3299 
3300 	return 0;
3301 }
3302 EXPORT_SYMBOL(hci_recv_frame);
3303 
3304 /* Receive diagnostic message from HCI drivers */
3305 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3306 {
3307 	/* Mark as diagnostic packet */
3308 	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3309 
3310 	/* Time stamp */
3311 	__net_timestamp(skb);
3312 
3313 	skb_queue_tail(&hdev->rx_q, skb);
3314 	queue_work(hdev->workqueue, &hdev->rx_work);
3315 
3316 	return 0;
3317 }
3318 EXPORT_SYMBOL(hci_recv_diag);
3319 
3320 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3321 {
3322 	va_list vargs;
3323 
3324 	va_start(vargs, fmt);
3325 	kfree_const(hdev->hw_info);
3326 	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3327 	va_end(vargs);
3328 }
3329 EXPORT_SYMBOL(hci_set_hw_info);
3330 
3331 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3332 {
3333 	va_list vargs;
3334 
3335 	va_start(vargs, fmt);
3336 	kfree_const(hdev->fw_info);
3337 	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3338 	va_end(vargs);
3339 }
3340 EXPORT_SYMBOL(hci_set_fw_info);
3341 
3342 /* ---- Interface to upper protocols ---- */
3343 
3344 int hci_register_cb(struct hci_cb *cb)
3345 {
3346 	BT_DBG("%p name %s", cb, cb->name);
3347 
3348 	mutex_lock(&hci_cb_list_lock);
3349 	list_add_tail(&cb->list, &hci_cb_list);
3350 	mutex_unlock(&hci_cb_list_lock);
3351 
3352 	return 0;
3353 }
3354 EXPORT_SYMBOL(hci_register_cb);
3355 
3356 int hci_unregister_cb(struct hci_cb *cb)
3357 {
3358 	BT_DBG("%p name %s", cb, cb->name);
3359 
3360 	mutex_lock(&hci_cb_list_lock);
3361 	list_del(&cb->list);
3362 	mutex_unlock(&hci_cb_list_lock);
3363 
3364 	return 0;
3365 }
3366 EXPORT_SYMBOL(hci_unregister_cb);
3367 
3368 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
3369 {
3370 	int err;
3371 
3372 	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
3373 	       skb->len);
3374 
3375 	/* Time stamp */
3376 	__net_timestamp(skb);
3377 
3378 	/* Send copy to monitor */
3379 	hci_send_to_monitor(hdev, skb);
3380 
3381 	if (atomic_read(&hdev->promisc)) {
3382 		/* Send copy to the sockets */
3383 		hci_send_to_sock(hdev, skb);
3384 	}
3385 
3386 	/* Get rid of skb owner, prior to sending to the driver. */
3387 	skb_orphan(skb);
3388 
3389 	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
3390 		kfree_skb(skb);
3391 		return;
3392 	}
3393 
3394 	err = hdev->send(hdev, skb);
3395 	if (err < 0) {
3396 		BT_ERR("%s sending frame failed (%d)", hdev->name, err);
3397 		kfree_skb(skb);
3398 	}
3399 }
3400 
3401 /* Send HCI command */
3402 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
3403 		 const void *param)
3404 {
3405 	struct sk_buff *skb;
3406 
3407 	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
3408 
3409 	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3410 	if (!skb) {
3411 		BT_ERR("%s no memory for command", hdev->name);
3412 		return -ENOMEM;
3413 	}
3414 
3415 	/* Stand-alone HCI commands must be flagged as
3416 	 * single-command requests.
3417 	 */
3418 	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3419 
3420 	skb_queue_tail(&hdev->cmd_q, skb);
3421 	queue_work(hdev->workqueue, &hdev->cmd_work);
3422 
3423 	return 0;
3424 }
3425 
3426 /* Get data from the previously sent command */
3427 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3428 {
3429 	struct hci_command_hdr *hdr;
3430 
3431 	if (!hdev->sent_cmd)
3432 		return NULL;
3433 
3434 	hdr = (void *) hdev->sent_cmd->data;
3435 
3436 	if (hdr->opcode != cpu_to_le16(opcode))
3437 		return NULL;
3438 
3439 	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3440 
3441 	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3442 }
3443 
3444 /* Send HCI command and wait for command commplete event */
3445 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
3446 			     const void *param, u32 timeout)
3447 {
3448 	struct sk_buff *skb;
3449 
3450 	if (!test_bit(HCI_UP, &hdev->flags))
3451 		return ERR_PTR(-ENETDOWN);
3452 
3453 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
3454 
3455 	hci_req_sync_lock(hdev);
3456 	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
3457 	hci_req_sync_unlock(hdev);
3458 
3459 	return skb;
3460 }
3461 EXPORT_SYMBOL(hci_cmd_sync);
3462 
3463 /* Send ACL data */
3464 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3465 {
3466 	struct hci_acl_hdr *hdr;
3467 	int len = skb->len;
3468 
3469 	skb_push(skb, HCI_ACL_HDR_SIZE);
3470 	skb_reset_transport_header(skb);
3471 	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3472 	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3473 	hdr->dlen   = cpu_to_le16(len);
3474 }
3475 
3476 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3477 			  struct sk_buff *skb, __u16 flags)
3478 {
3479 	struct hci_conn *conn = chan->conn;
3480 	struct hci_dev *hdev = conn->hdev;
3481 	struct sk_buff *list;
3482 
3483 	skb->len = skb_headlen(skb);
3484 	skb->data_len = 0;
3485 
3486 	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3487 
3488 	switch (hdev->dev_type) {
3489 	case HCI_PRIMARY:
3490 		hci_add_acl_hdr(skb, conn->handle, flags);
3491 		break;
3492 	case HCI_AMP:
3493 		hci_add_acl_hdr(skb, chan->handle, flags);
3494 		break;
3495 	default:
3496 		BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type);
3497 		return;
3498 	}
3499 
3500 	list = skb_shinfo(skb)->frag_list;
3501 	if (!list) {
3502 		/* Non fragmented */
3503 		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3504 
3505 		skb_queue_tail(queue, skb);
3506 	} else {
3507 		/* Fragmented */
3508 		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3509 
3510 		skb_shinfo(skb)->frag_list = NULL;
3511 
3512 		/* Queue all fragments atomically. We need to use spin_lock_bh
3513 		 * here because of 6LoWPAN links, as there this function is
3514 		 * called from softirq and using normal spin lock could cause
3515 		 * deadlocks.
3516 		 */
3517 		spin_lock_bh(&queue->lock);
3518 
3519 		__skb_queue_tail(queue, skb);
3520 
3521 		flags &= ~ACL_START;
3522 		flags |= ACL_CONT;
3523 		do {
3524 			skb = list; list = list->next;
3525 
3526 			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3527 			hci_add_acl_hdr(skb, conn->handle, flags);
3528 
3529 			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3530 
3531 			__skb_queue_tail(queue, skb);
3532 		} while (list);
3533 
3534 		spin_unlock_bh(&queue->lock);
3535 	}
3536 }
3537 
3538 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3539 {
3540 	struct hci_dev *hdev = chan->conn->hdev;
3541 
3542 	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3543 
3544 	hci_queue_acl(chan, &chan->data_q, skb, flags);
3545 
3546 	queue_work(hdev->workqueue, &hdev->tx_work);
3547 }
3548 
3549 /* Send SCO data */
3550 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3551 {
3552 	struct hci_dev *hdev = conn->hdev;
3553 	struct hci_sco_hdr hdr;
3554 
3555 	BT_DBG("%s len %d", hdev->name, skb->len);
3556 
3557 	hdr.handle = cpu_to_le16(conn->handle);
3558 	hdr.dlen   = skb->len;
3559 
3560 	skb_push(skb, HCI_SCO_HDR_SIZE);
3561 	skb_reset_transport_header(skb);
3562 	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3563 
3564 	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3565 
3566 	skb_queue_tail(&conn->data_q, skb);
3567 	queue_work(hdev->workqueue, &hdev->tx_work);
3568 }
3569 
3570 /* ---- HCI TX task (outgoing data) ---- */
3571 
3572 /* HCI Connection scheduler */
3573 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3574 				     int *quote)
3575 {
3576 	struct hci_conn_hash *h = &hdev->conn_hash;
3577 	struct hci_conn *conn = NULL, *c;
3578 	unsigned int num = 0, min = ~0;
3579 
3580 	/* We don't have to lock device here. Connections are always
3581 	 * added and removed with TX task disabled. */
3582 
3583 	rcu_read_lock();
3584 
3585 	list_for_each_entry_rcu(c, &h->list, list) {
3586 		if (c->type != type || skb_queue_empty(&c->data_q))
3587 			continue;
3588 
3589 		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3590 			continue;
3591 
3592 		num++;
3593 
3594 		if (c->sent < min) {
3595 			min  = c->sent;
3596 			conn = c;
3597 		}
3598 
3599 		if (hci_conn_num(hdev, type) == num)
3600 			break;
3601 	}
3602 
3603 	rcu_read_unlock();
3604 
3605 	if (conn) {
3606 		int cnt, q;
3607 
3608 		switch (conn->type) {
3609 		case ACL_LINK:
3610 			cnt = hdev->acl_cnt;
3611 			break;
3612 		case SCO_LINK:
3613 		case ESCO_LINK:
3614 			cnt = hdev->sco_cnt;
3615 			break;
3616 		case LE_LINK:
3617 			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3618 			break;
3619 		default:
3620 			cnt = 0;
3621 			BT_ERR("Unknown link type");
3622 		}
3623 
3624 		q = cnt / num;
3625 		*quote = q ? q : 1;
3626 	} else
3627 		*quote = 0;
3628 
3629 	BT_DBG("conn %p quote %d", conn, *quote);
3630 	return conn;
3631 }
3632 
3633 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3634 {
3635 	struct hci_conn_hash *h = &hdev->conn_hash;
3636 	struct hci_conn *c;
3637 
3638 	BT_ERR("%s link tx timeout", hdev->name);
3639 
3640 	rcu_read_lock();
3641 
3642 	/* Kill stalled connections */
3643 	list_for_each_entry_rcu(c, &h->list, list) {
3644 		if (c->type == type && c->sent) {
3645 			BT_ERR("%s killing stalled connection %pMR",
3646 			       hdev->name, &c->dst);
3647 			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3648 		}
3649 	}
3650 
3651 	rcu_read_unlock();
3652 }
3653 
3654 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3655 				      int *quote)
3656 {
3657 	struct hci_conn_hash *h = &hdev->conn_hash;
3658 	struct hci_chan *chan = NULL;
3659 	unsigned int num = 0, min = ~0, cur_prio = 0;
3660 	struct hci_conn *conn;
3661 	int cnt, q, conn_num = 0;
3662 
3663 	BT_DBG("%s", hdev->name);
3664 
3665 	rcu_read_lock();
3666 
3667 	list_for_each_entry_rcu(conn, &h->list, list) {
3668 		struct hci_chan *tmp;
3669 
3670 		if (conn->type != type)
3671 			continue;
3672 
3673 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3674 			continue;
3675 
3676 		conn_num++;
3677 
3678 		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3679 			struct sk_buff *skb;
3680 
3681 			if (skb_queue_empty(&tmp->data_q))
3682 				continue;
3683 
3684 			skb = skb_peek(&tmp->data_q);
3685 			if (skb->priority < cur_prio)
3686 				continue;
3687 
3688 			if (skb->priority > cur_prio) {
3689 				num = 0;
3690 				min = ~0;
3691 				cur_prio = skb->priority;
3692 			}
3693 
3694 			num++;
3695 
3696 			if (conn->sent < min) {
3697 				min  = conn->sent;
3698 				chan = tmp;
3699 			}
3700 		}
3701 
3702 		if (hci_conn_num(hdev, type) == conn_num)
3703 			break;
3704 	}
3705 
3706 	rcu_read_unlock();
3707 
3708 	if (!chan)
3709 		return NULL;
3710 
3711 	switch (chan->conn->type) {
3712 	case ACL_LINK:
3713 		cnt = hdev->acl_cnt;
3714 		break;
3715 	case AMP_LINK:
3716 		cnt = hdev->block_cnt;
3717 		break;
3718 	case SCO_LINK:
3719 	case ESCO_LINK:
3720 		cnt = hdev->sco_cnt;
3721 		break;
3722 	case LE_LINK:
3723 		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3724 		break;
3725 	default:
3726 		cnt = 0;
3727 		BT_ERR("Unknown link type");
3728 	}
3729 
3730 	q = cnt / num;
3731 	*quote = q ? q : 1;
3732 	BT_DBG("chan %p quote %d", chan, *quote);
3733 	return chan;
3734 }
3735 
3736 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3737 {
3738 	struct hci_conn_hash *h = &hdev->conn_hash;
3739 	struct hci_conn *conn;
3740 	int num = 0;
3741 
3742 	BT_DBG("%s", hdev->name);
3743 
3744 	rcu_read_lock();
3745 
3746 	list_for_each_entry_rcu(conn, &h->list, list) {
3747 		struct hci_chan *chan;
3748 
3749 		if (conn->type != type)
3750 			continue;
3751 
3752 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3753 			continue;
3754 
3755 		num++;
3756 
3757 		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3758 			struct sk_buff *skb;
3759 
3760 			if (chan->sent) {
3761 				chan->sent = 0;
3762 				continue;
3763 			}
3764 
3765 			if (skb_queue_empty(&chan->data_q))
3766 				continue;
3767 
3768 			skb = skb_peek(&chan->data_q);
3769 			if (skb->priority >= HCI_PRIO_MAX - 1)
3770 				continue;
3771 
3772 			skb->priority = HCI_PRIO_MAX - 1;
3773 
3774 			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3775 			       skb->priority);
3776 		}
3777 
3778 		if (hci_conn_num(hdev, type) == num)
3779 			break;
3780 	}
3781 
3782 	rcu_read_unlock();
3783 
3784 }
3785 
3786 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3787 {
3788 	/* Calculate count of blocks used by this packet */
3789 	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3790 }
3791 
3792 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
3793 {
3794 	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3795 		/* ACL tx timeout must be longer than maximum
3796 		 * link supervision timeout (40.9 seconds) */
3797 		if (!cnt && time_after(jiffies, hdev->acl_last_tx +
3798 				       HCI_ACL_TX_TIMEOUT))
3799 			hci_link_tx_to(hdev, ACL_LINK);
3800 	}
3801 }
3802 
3803 static void hci_sched_acl_pkt(struct hci_dev *hdev)
3804 {
3805 	unsigned int cnt = hdev->acl_cnt;
3806 	struct hci_chan *chan;
3807 	struct sk_buff *skb;
3808 	int quote;
3809 
3810 	__check_timeout(hdev, cnt);
3811 
3812 	while (hdev->acl_cnt &&
3813 	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3814 		u32 priority = (skb_peek(&chan->data_q))->priority;
3815 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3816 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3817 			       skb->len, skb->priority);
3818 
3819 			/* Stop if priority has changed */
3820 			if (skb->priority < priority)
3821 				break;
3822 
3823 			skb = skb_dequeue(&chan->data_q);
3824 
3825 			hci_conn_enter_active_mode(chan->conn,
3826 						   bt_cb(skb)->force_active);
3827 
3828 			hci_send_frame(hdev, skb);
3829 			hdev->acl_last_tx = jiffies;
3830 
3831 			hdev->acl_cnt--;
3832 			chan->sent++;
3833 			chan->conn->sent++;
3834 		}
3835 	}
3836 
3837 	if (cnt != hdev->acl_cnt)
3838 		hci_prio_recalculate(hdev, ACL_LINK);
3839 }
3840 
3841 static void hci_sched_acl_blk(struct hci_dev *hdev)
3842 {
3843 	unsigned int cnt = hdev->block_cnt;
3844 	struct hci_chan *chan;
3845 	struct sk_buff *skb;
3846 	int quote;
3847 	u8 type;
3848 
3849 	__check_timeout(hdev, cnt);
3850 
3851 	BT_DBG("%s", hdev->name);
3852 
3853 	if (hdev->dev_type == HCI_AMP)
3854 		type = AMP_LINK;
3855 	else
3856 		type = ACL_LINK;
3857 
3858 	while (hdev->block_cnt > 0 &&
3859 	       (chan = hci_chan_sent(hdev, type, &quote))) {
3860 		u32 priority = (skb_peek(&chan->data_q))->priority;
3861 		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3862 			int blocks;
3863 
3864 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3865 			       skb->len, skb->priority);
3866 
3867 			/* Stop if priority has changed */
3868 			if (skb->priority < priority)
3869 				break;
3870 
3871 			skb = skb_dequeue(&chan->data_q);
3872 
3873 			blocks = __get_blocks(hdev, skb);
3874 			if (blocks > hdev->block_cnt)
3875 				return;
3876 
3877 			hci_conn_enter_active_mode(chan->conn,
3878 						   bt_cb(skb)->force_active);
3879 
3880 			hci_send_frame(hdev, skb);
3881 			hdev->acl_last_tx = jiffies;
3882 
3883 			hdev->block_cnt -= blocks;
3884 			quote -= blocks;
3885 
3886 			chan->sent += blocks;
3887 			chan->conn->sent += blocks;
3888 		}
3889 	}
3890 
3891 	if (cnt != hdev->block_cnt)
3892 		hci_prio_recalculate(hdev, type);
3893 }
3894 
3895 static void hci_sched_acl(struct hci_dev *hdev)
3896 {
3897 	BT_DBG("%s", hdev->name);
3898 
3899 	/* No ACL link over BR/EDR controller */
3900 	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3901 		return;
3902 
3903 	/* No AMP link over AMP controller */
3904 	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3905 		return;
3906 
3907 	switch (hdev->flow_ctl_mode) {
3908 	case HCI_FLOW_CTL_MODE_PACKET_BASED:
3909 		hci_sched_acl_pkt(hdev);
3910 		break;
3911 
3912 	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3913 		hci_sched_acl_blk(hdev);
3914 		break;
3915 	}
3916 }
3917 
3918 /* Schedule SCO */
3919 static void hci_sched_sco(struct hci_dev *hdev)
3920 {
3921 	struct hci_conn *conn;
3922 	struct sk_buff *skb;
3923 	int quote;
3924 
3925 	BT_DBG("%s", hdev->name);
3926 
3927 	if (!hci_conn_num(hdev, SCO_LINK))
3928 		return;
3929 
3930 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3931 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3932 			BT_DBG("skb %p len %d", skb, skb->len);
3933 			hci_send_frame(hdev, skb);
3934 
3935 			conn->sent++;
3936 			if (conn->sent == ~0)
3937 				conn->sent = 0;
3938 		}
3939 	}
3940 }
3941 
3942 static void hci_sched_esco(struct hci_dev *hdev)
3943 {
3944 	struct hci_conn *conn;
3945 	struct sk_buff *skb;
3946 	int quote;
3947 
3948 	BT_DBG("%s", hdev->name);
3949 
3950 	if (!hci_conn_num(hdev, ESCO_LINK))
3951 		return;
3952 
3953 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3954 						     &quote))) {
3955 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3956 			BT_DBG("skb %p len %d", skb, skb->len);
3957 			hci_send_frame(hdev, skb);
3958 
3959 			conn->sent++;
3960 			if (conn->sent == ~0)
3961 				conn->sent = 0;
3962 		}
3963 	}
3964 }
3965 
3966 static void hci_sched_le(struct hci_dev *hdev)
3967 {
3968 	struct hci_chan *chan;
3969 	struct sk_buff *skb;
3970 	int quote, cnt, tmp;
3971 
3972 	BT_DBG("%s", hdev->name);
3973 
3974 	if (!hci_conn_num(hdev, LE_LINK))
3975 		return;
3976 
3977 	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
3978 		/* LE tx timeout must be longer than maximum
3979 		 * link supervision timeout (40.9 seconds) */
3980 		if (!hdev->le_cnt && hdev->le_pkts &&
3981 		    time_after(jiffies, hdev->le_last_tx + HZ * 45))
3982 			hci_link_tx_to(hdev, LE_LINK);
3983 	}
3984 
3985 	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3986 	tmp = cnt;
3987 	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3988 		u32 priority = (skb_peek(&chan->data_q))->priority;
3989 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3990 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3991 			       skb->len, skb->priority);
3992 
3993 			/* Stop if priority has changed */
3994 			if (skb->priority < priority)
3995 				break;
3996 
3997 			skb = skb_dequeue(&chan->data_q);
3998 
3999 			hci_send_frame(hdev, skb);
4000 			hdev->le_last_tx = jiffies;
4001 
4002 			cnt--;
4003 			chan->sent++;
4004 			chan->conn->sent++;
4005 		}
4006 	}
4007 
4008 	if (hdev->le_pkts)
4009 		hdev->le_cnt = cnt;
4010 	else
4011 		hdev->acl_cnt = cnt;
4012 
4013 	if (cnt != tmp)
4014 		hci_prio_recalculate(hdev, LE_LINK);
4015 }
4016 
4017 static void hci_tx_work(struct work_struct *work)
4018 {
4019 	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4020 	struct sk_buff *skb;
4021 
4022 	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4023 	       hdev->sco_cnt, hdev->le_cnt);
4024 
4025 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4026 		/* Schedule queues and send stuff to HCI driver */
4027 		hci_sched_acl(hdev);
4028 		hci_sched_sco(hdev);
4029 		hci_sched_esco(hdev);
4030 		hci_sched_le(hdev);
4031 	}
4032 
4033 	/* Send next queued raw (unknown type) packet */
4034 	while ((skb = skb_dequeue(&hdev->raw_q)))
4035 		hci_send_frame(hdev, skb);
4036 }
4037 
4038 /* ----- HCI RX task (incoming data processing) ----- */
4039 
4040 /* ACL data packet */
4041 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4042 {
4043 	struct hci_acl_hdr *hdr = (void *) skb->data;
4044 	struct hci_conn *conn;
4045 	__u16 handle, flags;
4046 
4047 	skb_pull(skb, HCI_ACL_HDR_SIZE);
4048 
4049 	handle = __le16_to_cpu(hdr->handle);
4050 	flags  = hci_flags(handle);
4051 	handle = hci_handle(handle);
4052 
4053 	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4054 	       handle, flags);
4055 
4056 	hdev->stat.acl_rx++;
4057 
4058 	hci_dev_lock(hdev);
4059 	conn = hci_conn_hash_lookup_handle(hdev, handle);
4060 	hci_dev_unlock(hdev);
4061 
4062 	if (conn) {
4063 		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4064 
4065 		/* Send to upper protocol */
4066 		l2cap_recv_acldata(conn, skb, flags);
4067 		return;
4068 	} else {
4069 		BT_ERR("%s ACL packet for unknown connection handle %d",
4070 		       hdev->name, handle);
4071 	}
4072 
4073 	kfree_skb(skb);
4074 }
4075 
4076 /* SCO data packet */
4077 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4078 {
4079 	struct hci_sco_hdr *hdr = (void *) skb->data;
4080 	struct hci_conn *conn;
4081 	__u16 handle;
4082 
4083 	skb_pull(skb, HCI_SCO_HDR_SIZE);
4084 
4085 	handle = __le16_to_cpu(hdr->handle);
4086 
4087 	BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle);
4088 
4089 	hdev->stat.sco_rx++;
4090 
4091 	hci_dev_lock(hdev);
4092 	conn = hci_conn_hash_lookup_handle(hdev, handle);
4093 	hci_dev_unlock(hdev);
4094 
4095 	if (conn) {
4096 		/* Send to upper protocol */
4097 		sco_recv_scodata(conn, skb);
4098 		return;
4099 	} else {
4100 		BT_ERR("%s SCO packet for unknown connection handle %d",
4101 		       hdev->name, handle);
4102 	}
4103 
4104 	kfree_skb(skb);
4105 }
4106 
4107 static bool hci_req_is_complete(struct hci_dev *hdev)
4108 {
4109 	struct sk_buff *skb;
4110 
4111 	skb = skb_peek(&hdev->cmd_q);
4112 	if (!skb)
4113 		return true;
4114 
4115 	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4116 }
4117 
4118 static void hci_resend_last(struct hci_dev *hdev)
4119 {
4120 	struct hci_command_hdr *sent;
4121 	struct sk_buff *skb;
4122 	u16 opcode;
4123 
4124 	if (!hdev->sent_cmd)
4125 		return;
4126 
4127 	sent = (void *) hdev->sent_cmd->data;
4128 	opcode = __le16_to_cpu(sent->opcode);
4129 	if (opcode == HCI_OP_RESET)
4130 		return;
4131 
4132 	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4133 	if (!skb)
4134 		return;
4135 
4136 	skb_queue_head(&hdev->cmd_q, skb);
4137 	queue_work(hdev->workqueue, &hdev->cmd_work);
4138 }
4139 
4140 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4141 			  hci_req_complete_t *req_complete,
4142 			  hci_req_complete_skb_t *req_complete_skb)
4143 {
4144 	struct sk_buff *skb;
4145 	unsigned long flags;
4146 
4147 	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4148 
4149 	/* If the completed command doesn't match the last one that was
4150 	 * sent we need to do special handling of it.
4151 	 */
4152 	if (!hci_sent_cmd_data(hdev, opcode)) {
4153 		/* Some CSR based controllers generate a spontaneous
4154 		 * reset complete event during init and any pending
4155 		 * command will never be completed. In such a case we
4156 		 * need to resend whatever was the last sent
4157 		 * command.
4158 		 */
4159 		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4160 			hci_resend_last(hdev);
4161 
4162 		return;
4163 	}
4164 
4165 	/* If the command succeeded and there's still more commands in
4166 	 * this request the request is not yet complete.
4167 	 */
4168 	if (!status && !hci_req_is_complete(hdev))
4169 		return;
4170 
4171 	/* If this was the last command in a request the complete
4172 	 * callback would be found in hdev->sent_cmd instead of the
4173 	 * command queue (hdev->cmd_q).
4174 	 */
4175 	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4176 		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4177 		return;
4178 	}
4179 
4180 	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4181 		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4182 		return;
4183 	}
4184 
4185 	/* Remove all pending commands belonging to this request */
4186 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4187 	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4188 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4189 			__skb_queue_head(&hdev->cmd_q, skb);
4190 			break;
4191 		}
4192 
4193 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4194 			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4195 		else
4196 			*req_complete = bt_cb(skb)->hci.req_complete;
4197 		kfree_skb(skb);
4198 	}
4199 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4200 }
4201 
4202 static void hci_rx_work(struct work_struct *work)
4203 {
4204 	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4205 	struct sk_buff *skb;
4206 
4207 	BT_DBG("%s", hdev->name);
4208 
4209 	while ((skb = skb_dequeue(&hdev->rx_q))) {
4210 		/* Send copy to monitor */
4211 		hci_send_to_monitor(hdev, skb);
4212 
4213 		if (atomic_read(&hdev->promisc)) {
4214 			/* Send copy to the sockets */
4215 			hci_send_to_sock(hdev, skb);
4216 		}
4217 
4218 		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4219 			kfree_skb(skb);
4220 			continue;
4221 		}
4222 
4223 		if (test_bit(HCI_INIT, &hdev->flags)) {
4224 			/* Don't process data packets in this states. */
4225 			switch (hci_skb_pkt_type(skb)) {
4226 			case HCI_ACLDATA_PKT:
4227 			case HCI_SCODATA_PKT:
4228 				kfree_skb(skb);
4229 				continue;
4230 			}
4231 		}
4232 
4233 		/* Process frame */
4234 		switch (hci_skb_pkt_type(skb)) {
4235 		case HCI_EVENT_PKT:
4236 			BT_DBG("%s Event packet", hdev->name);
4237 			hci_event_packet(hdev, skb);
4238 			break;
4239 
4240 		case HCI_ACLDATA_PKT:
4241 			BT_DBG("%s ACL data packet", hdev->name);
4242 			hci_acldata_packet(hdev, skb);
4243 			break;
4244 
4245 		case HCI_SCODATA_PKT:
4246 			BT_DBG("%s SCO data packet", hdev->name);
4247 			hci_scodata_packet(hdev, skb);
4248 			break;
4249 
4250 		default:
4251 			kfree_skb(skb);
4252 			break;
4253 		}
4254 	}
4255 }
4256 
4257 static void hci_cmd_work(struct work_struct *work)
4258 {
4259 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4260 	struct sk_buff *skb;
4261 
4262 	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4263 	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4264 
4265 	/* Send queued commands */
4266 	if (atomic_read(&hdev->cmd_cnt)) {
4267 		skb = skb_dequeue(&hdev->cmd_q);
4268 		if (!skb)
4269 			return;
4270 
4271 		kfree_skb(hdev->sent_cmd);
4272 
4273 		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4274 		if (hdev->sent_cmd) {
4275 			atomic_dec(&hdev->cmd_cnt);
4276 			hci_send_frame(hdev, skb);
4277 			if (test_bit(HCI_RESET, &hdev->flags))
4278 				cancel_delayed_work(&hdev->cmd_timer);
4279 			else
4280 				schedule_delayed_work(&hdev->cmd_timer,
4281 						      HCI_CMD_TIMEOUT);
4282 		} else {
4283 			skb_queue_head(&hdev->cmd_q, skb);
4284 			queue_work(hdev->workqueue, &hdev->cmd_work);
4285 		}
4286 	}
4287 }
4288