xref: /openbmc/linux/net/bluetooth/hci_core.c (revision 9ab55d7f)
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4    Copyright (C) 2011 ProFUSION Embedded Systems
5 
6    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License version 2 as
10    published by the Free Software Foundation;
11 
12    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 
21    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23    SOFTWARE IS DISCLAIMED.
24 */
25 
26 /* Bluetooth HCI core. */
27 
28 #include <linux/export.h>
29 #include <linux/rfkill.h>
30 #include <linux/debugfs.h>
31 #include <linux/crypto.h>
32 #include <linux/property.h>
33 #include <linux/suspend.h>
34 #include <linux/wait.h>
35 #include <asm/unaligned.h>
36 
37 #include <net/bluetooth/bluetooth.h>
38 #include <net/bluetooth/hci_core.h>
39 #include <net/bluetooth/l2cap.h>
40 #include <net/bluetooth/mgmt.h>
41 
42 #include "hci_request.h"
43 #include "hci_debugfs.h"
44 #include "smp.h"
45 #include "leds.h"
46 #include "msft.h"
47 
48 static void hci_rx_work(struct work_struct *work);
49 static void hci_cmd_work(struct work_struct *work);
50 static void hci_tx_work(struct work_struct *work);
51 
52 /* HCI device list */
53 LIST_HEAD(hci_dev_list);
54 DEFINE_RWLOCK(hci_dev_list_lock);
55 
56 /* HCI callback list */
57 LIST_HEAD(hci_cb_list);
58 DEFINE_MUTEX(hci_cb_list_lock);
59 
60 /* HCI ID Numbering */
61 static DEFINE_IDA(hci_index_ida);
62 
63 /* ---- HCI debugfs entries ---- */
64 
65 static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
66 			     size_t count, loff_t *ppos)
67 {
68 	struct hci_dev *hdev = file->private_data;
69 	char buf[3];
70 
71 	buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
72 	buf[1] = '\n';
73 	buf[2] = '\0';
74 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
75 }
76 
77 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
78 			      size_t count, loff_t *ppos)
79 {
80 	struct hci_dev *hdev = file->private_data;
81 	struct sk_buff *skb;
82 	bool enable;
83 	int err;
84 
85 	if (!test_bit(HCI_UP, &hdev->flags))
86 		return -ENETDOWN;
87 
88 	err = kstrtobool_from_user(user_buf, count, &enable);
89 	if (err)
90 		return err;
91 
92 	if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
93 		return -EALREADY;
94 
95 	hci_req_sync_lock(hdev);
96 	if (enable)
97 		skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
98 				     HCI_CMD_TIMEOUT);
99 	else
100 		skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
101 				     HCI_CMD_TIMEOUT);
102 	hci_req_sync_unlock(hdev);
103 
104 	if (IS_ERR(skb))
105 		return PTR_ERR(skb);
106 
107 	kfree_skb(skb);
108 
109 	hci_dev_change_flag(hdev, HCI_DUT_MODE);
110 
111 	return count;
112 }
113 
114 static const struct file_operations dut_mode_fops = {
115 	.open		= simple_open,
116 	.read		= dut_mode_read,
117 	.write		= dut_mode_write,
118 	.llseek		= default_llseek,
119 };
120 
121 static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
122 				size_t count, loff_t *ppos)
123 {
124 	struct hci_dev *hdev = file->private_data;
125 	char buf[3];
126 
127 	buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
128 	buf[1] = '\n';
129 	buf[2] = '\0';
130 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
131 }
132 
133 static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
134 				 size_t count, loff_t *ppos)
135 {
136 	struct hci_dev *hdev = file->private_data;
137 	bool enable;
138 	int err;
139 
140 	err = kstrtobool_from_user(user_buf, count, &enable);
141 	if (err)
142 		return err;
143 
144 	/* When the diagnostic flags are not persistent and the transport
145 	 * is not active or in user channel operation, then there is no need
146 	 * for the vendor callback. Instead just store the desired value and
147 	 * the setting will be programmed when the controller gets powered on.
148 	 */
149 	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
150 	    (!test_bit(HCI_RUNNING, &hdev->flags) ||
151 	     hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
152 		goto done;
153 
154 	hci_req_sync_lock(hdev);
155 	err = hdev->set_diag(hdev, enable);
156 	hci_req_sync_unlock(hdev);
157 
158 	if (err < 0)
159 		return err;
160 
161 done:
162 	if (enable)
163 		hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
164 	else
165 		hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
166 
167 	return count;
168 }
169 
170 static const struct file_operations vendor_diag_fops = {
171 	.open		= simple_open,
172 	.read		= vendor_diag_read,
173 	.write		= vendor_diag_write,
174 	.llseek		= default_llseek,
175 };
176 
177 static void hci_debugfs_create_basic(struct hci_dev *hdev)
178 {
179 	debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
180 			    &dut_mode_fops);
181 
182 	if (hdev->set_diag)
183 		debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
184 				    &vendor_diag_fops);
185 }
186 
187 static int hci_reset_req(struct hci_request *req, unsigned long opt)
188 {
189 	BT_DBG("%s %ld", req->hdev->name, opt);
190 
191 	/* Reset device */
192 	set_bit(HCI_RESET, &req->hdev->flags);
193 	hci_req_add(req, HCI_OP_RESET, 0, NULL);
194 	return 0;
195 }
196 
197 static void bredr_init(struct hci_request *req)
198 {
199 	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
200 
201 	/* Read Local Supported Features */
202 	hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
203 
204 	/* Read Local Version */
205 	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
206 
207 	/* Read BD Address */
208 	hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
209 }
210 
211 static void amp_init1(struct hci_request *req)
212 {
213 	req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
214 
215 	/* Read Local Version */
216 	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
217 
218 	/* Read Local Supported Commands */
219 	hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
220 
221 	/* Read Local AMP Info */
222 	hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
223 
224 	/* Read Data Blk size */
225 	hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
226 
227 	/* Read Flow Control Mode */
228 	hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
229 
230 	/* Read Location Data */
231 	hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
232 }
233 
234 static int amp_init2(struct hci_request *req)
235 {
236 	/* Read Local Supported Features. Not all AMP controllers
237 	 * support this so it's placed conditionally in the second
238 	 * stage init.
239 	 */
240 	if (req->hdev->commands[14] & 0x20)
241 		hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
242 
243 	return 0;
244 }
245 
246 static int hci_init1_req(struct hci_request *req, unsigned long opt)
247 {
248 	struct hci_dev *hdev = req->hdev;
249 
250 	BT_DBG("%s %ld", hdev->name, opt);
251 
252 	/* Reset */
253 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
254 		hci_reset_req(req, 0);
255 
256 	switch (hdev->dev_type) {
257 	case HCI_PRIMARY:
258 		bredr_init(req);
259 		break;
260 	case HCI_AMP:
261 		amp_init1(req);
262 		break;
263 	default:
264 		bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
265 		break;
266 	}
267 
268 	return 0;
269 }
270 
271 static void bredr_setup(struct hci_request *req)
272 {
273 	__le16 param;
274 	__u8 flt_type;
275 
276 	/* Read Buffer Size (ACL mtu, max pkt, etc.) */
277 	hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
278 
279 	/* Read Class of Device */
280 	hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
281 
282 	/* Read Local Name */
283 	hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
284 
285 	/* Read Voice Setting */
286 	hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
287 
288 	/* Read Number of Supported IAC */
289 	hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
290 
291 	/* Read Current IAC LAP */
292 	hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
293 
294 	/* Clear Event Filters */
295 	flt_type = HCI_FLT_CLEAR_ALL;
296 	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
297 
298 	/* Connection accept timeout ~20 secs */
299 	param = cpu_to_le16(0x7d00);
300 	hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
301 }
302 
303 static void le_setup(struct hci_request *req)
304 {
305 	struct hci_dev *hdev = req->hdev;
306 
307 	/* Read LE Buffer Size */
308 	hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
309 
310 	/* Read LE Local Supported Features */
311 	hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
312 
313 	/* Read LE Supported States */
314 	hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
315 
316 	/* LE-only controllers have LE implicitly enabled */
317 	if (!lmp_bredr_capable(hdev))
318 		hci_dev_set_flag(hdev, HCI_LE_ENABLED);
319 }
320 
321 static void hci_setup_event_mask(struct hci_request *req)
322 {
323 	struct hci_dev *hdev = req->hdev;
324 
325 	/* The second byte is 0xff instead of 0x9f (two reserved bits
326 	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
327 	 * command otherwise.
328 	 */
329 	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
330 
331 	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
332 	 * any event mask for pre 1.2 devices.
333 	 */
334 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
335 		return;
336 
337 	if (lmp_bredr_capable(hdev)) {
338 		events[4] |= 0x01; /* Flow Specification Complete */
339 	} else {
340 		/* Use a different default for LE-only devices */
341 		memset(events, 0, sizeof(events));
342 		events[1] |= 0x20; /* Command Complete */
343 		events[1] |= 0x40; /* Command Status */
344 		events[1] |= 0x80; /* Hardware Error */
345 
346 		/* If the controller supports the Disconnect command, enable
347 		 * the corresponding event. In addition enable packet flow
348 		 * control related events.
349 		 */
350 		if (hdev->commands[0] & 0x20) {
351 			events[0] |= 0x10; /* Disconnection Complete */
352 			events[2] |= 0x04; /* Number of Completed Packets */
353 			events[3] |= 0x02; /* Data Buffer Overflow */
354 		}
355 
356 		/* If the controller supports the Read Remote Version
357 		 * Information command, enable the corresponding event.
358 		 */
359 		if (hdev->commands[2] & 0x80)
360 			events[1] |= 0x08; /* Read Remote Version Information
361 					    * Complete
362 					    */
363 
364 		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
365 			events[0] |= 0x80; /* Encryption Change */
366 			events[5] |= 0x80; /* Encryption Key Refresh Complete */
367 		}
368 	}
369 
370 	if (lmp_inq_rssi_capable(hdev) ||
371 	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
372 		events[4] |= 0x02; /* Inquiry Result with RSSI */
373 
374 	if (lmp_ext_feat_capable(hdev))
375 		events[4] |= 0x04; /* Read Remote Extended Features Complete */
376 
377 	if (lmp_esco_capable(hdev)) {
378 		events[5] |= 0x08; /* Synchronous Connection Complete */
379 		events[5] |= 0x10; /* Synchronous Connection Changed */
380 	}
381 
382 	if (lmp_sniffsubr_capable(hdev))
383 		events[5] |= 0x20; /* Sniff Subrating */
384 
385 	if (lmp_pause_enc_capable(hdev))
386 		events[5] |= 0x80; /* Encryption Key Refresh Complete */
387 
388 	if (lmp_ext_inq_capable(hdev))
389 		events[5] |= 0x40; /* Extended Inquiry Result */
390 
391 	if (lmp_no_flush_capable(hdev))
392 		events[7] |= 0x01; /* Enhanced Flush Complete */
393 
394 	if (lmp_lsto_capable(hdev))
395 		events[6] |= 0x80; /* Link Supervision Timeout Changed */
396 
397 	if (lmp_ssp_capable(hdev)) {
398 		events[6] |= 0x01;	/* IO Capability Request */
399 		events[6] |= 0x02;	/* IO Capability Response */
400 		events[6] |= 0x04;	/* User Confirmation Request */
401 		events[6] |= 0x08;	/* User Passkey Request */
402 		events[6] |= 0x10;	/* Remote OOB Data Request */
403 		events[6] |= 0x20;	/* Simple Pairing Complete */
404 		events[7] |= 0x04;	/* User Passkey Notification */
405 		events[7] |= 0x08;	/* Keypress Notification */
406 		events[7] |= 0x10;	/* Remote Host Supported
407 					 * Features Notification
408 					 */
409 	}
410 
411 	if (lmp_le_capable(hdev))
412 		events[7] |= 0x20;	/* LE Meta-Event */
413 
414 	hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
415 }
416 
417 static int hci_init2_req(struct hci_request *req, unsigned long opt)
418 {
419 	struct hci_dev *hdev = req->hdev;
420 
421 	if (hdev->dev_type == HCI_AMP)
422 		return amp_init2(req);
423 
424 	if (lmp_bredr_capable(hdev))
425 		bredr_setup(req);
426 	else
427 		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
428 
429 	if (lmp_le_capable(hdev))
430 		le_setup(req);
431 
432 	/* All Bluetooth 1.2 and later controllers should support the
433 	 * HCI command for reading the local supported commands.
434 	 *
435 	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
436 	 * but do not have support for this command. If that is the case,
437 	 * the driver can quirk the behavior and skip reading the local
438 	 * supported commands.
439 	 */
440 	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
441 	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
442 		hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
443 
444 	if (lmp_ssp_capable(hdev)) {
445 		/* When SSP is available, then the host features page
446 		 * should also be available as well. However some
447 		 * controllers list the max_page as 0 as long as SSP
448 		 * has not been enabled. To achieve proper debugging
449 		 * output, force the minimum max_page to 1 at least.
450 		 */
451 		hdev->max_page = 0x01;
452 
453 		if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
454 			u8 mode = 0x01;
455 
456 			hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
457 				    sizeof(mode), &mode);
458 		} else {
459 			struct hci_cp_write_eir cp;
460 
461 			memset(hdev->eir, 0, sizeof(hdev->eir));
462 			memset(&cp, 0, sizeof(cp));
463 
464 			hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
465 		}
466 	}
467 
468 	if (lmp_inq_rssi_capable(hdev) ||
469 	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
470 		u8 mode;
471 
472 		/* If Extended Inquiry Result events are supported, then
473 		 * they are clearly preferred over Inquiry Result with RSSI
474 		 * events.
475 		 */
476 		mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
477 
478 		hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
479 	}
480 
481 	if (lmp_inq_tx_pwr_capable(hdev))
482 		hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
483 
484 	if (lmp_ext_feat_capable(hdev)) {
485 		struct hci_cp_read_local_ext_features cp;
486 
487 		cp.page = 0x01;
488 		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
489 			    sizeof(cp), &cp);
490 	}
491 
492 	if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
493 		u8 enable = 1;
494 		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
495 			    &enable);
496 	}
497 
498 	return 0;
499 }
500 
501 static void hci_setup_link_policy(struct hci_request *req)
502 {
503 	struct hci_dev *hdev = req->hdev;
504 	struct hci_cp_write_def_link_policy cp;
505 	u16 link_policy = 0;
506 
507 	if (lmp_rswitch_capable(hdev))
508 		link_policy |= HCI_LP_RSWITCH;
509 	if (lmp_hold_capable(hdev))
510 		link_policy |= HCI_LP_HOLD;
511 	if (lmp_sniff_capable(hdev))
512 		link_policy |= HCI_LP_SNIFF;
513 	if (lmp_park_capable(hdev))
514 		link_policy |= HCI_LP_PARK;
515 
516 	cp.policy = cpu_to_le16(link_policy);
517 	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
518 }
519 
520 static void hci_set_le_support(struct hci_request *req)
521 {
522 	struct hci_dev *hdev = req->hdev;
523 	struct hci_cp_write_le_host_supported cp;
524 
525 	/* LE-only devices do not support explicit enablement */
526 	if (!lmp_bredr_capable(hdev))
527 		return;
528 
529 	memset(&cp, 0, sizeof(cp));
530 
531 	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
532 		cp.le = 0x01;
533 		cp.simul = 0x00;
534 	}
535 
536 	if (cp.le != lmp_host_le_capable(hdev))
537 		hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
538 			    &cp);
539 }
540 
541 static void hci_set_event_mask_page_2(struct hci_request *req)
542 {
543 	struct hci_dev *hdev = req->hdev;
544 	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
545 	bool changed = false;
546 
547 	/* If Connectionless Slave Broadcast master role is supported
548 	 * enable all necessary events for it.
549 	 */
550 	if (lmp_csb_master_capable(hdev)) {
551 		events[1] |= 0x40;	/* Triggered Clock Capture */
552 		events[1] |= 0x80;	/* Synchronization Train Complete */
553 		events[2] |= 0x10;	/* Slave Page Response Timeout */
554 		events[2] |= 0x20;	/* CSB Channel Map Change */
555 		changed = true;
556 	}
557 
558 	/* If Connectionless Slave Broadcast slave role is supported
559 	 * enable all necessary events for it.
560 	 */
561 	if (lmp_csb_slave_capable(hdev)) {
562 		events[2] |= 0x01;	/* Synchronization Train Received */
563 		events[2] |= 0x02;	/* CSB Receive */
564 		events[2] |= 0x04;	/* CSB Timeout */
565 		events[2] |= 0x08;	/* Truncated Page Complete */
566 		changed = true;
567 	}
568 
569 	/* Enable Authenticated Payload Timeout Expired event if supported */
570 	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
571 		events[2] |= 0x80;
572 		changed = true;
573 	}
574 
575 	/* Some Broadcom based controllers indicate support for Set Event
576 	 * Mask Page 2 command, but then actually do not support it. Since
577 	 * the default value is all bits set to zero, the command is only
578 	 * required if the event mask has to be changed. In case no change
579 	 * to the event mask is needed, skip this command.
580 	 */
581 	if (changed)
582 		hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
583 			    sizeof(events), events);
584 }
585 
586 static int hci_init3_req(struct hci_request *req, unsigned long opt)
587 {
588 	struct hci_dev *hdev = req->hdev;
589 	u8 p;
590 
591 	hci_setup_event_mask(req);
592 
593 	if (hdev->commands[6] & 0x20 &&
594 	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
595 		struct hci_cp_read_stored_link_key cp;
596 
597 		bacpy(&cp.bdaddr, BDADDR_ANY);
598 		cp.read_all = 0x01;
599 		hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
600 	}
601 
602 	if (hdev->commands[5] & 0x10)
603 		hci_setup_link_policy(req);
604 
605 	if (hdev->commands[8] & 0x01)
606 		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
607 
608 	if (hdev->commands[18] & 0x04 &&
609 	    !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
610 		hci_req_add(req, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 0, NULL);
611 
612 	/* Some older Broadcom based Bluetooth 1.2 controllers do not
613 	 * support the Read Page Scan Type command. Check support for
614 	 * this command in the bit mask of supported commands.
615 	 */
616 	if (hdev->commands[13] & 0x01)
617 		hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
618 
619 	if (lmp_le_capable(hdev)) {
620 		u8 events[8];
621 
622 		memset(events, 0, sizeof(events));
623 
624 		if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
625 			events[0] |= 0x10;	/* LE Long Term Key Request */
626 
627 		/* If controller supports the Connection Parameters Request
628 		 * Link Layer Procedure, enable the corresponding event.
629 		 */
630 		if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
631 			events[0] |= 0x20;	/* LE Remote Connection
632 						 * Parameter Request
633 						 */
634 
635 		/* If the controller supports the Data Length Extension
636 		 * feature, enable the corresponding event.
637 		 */
638 		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
639 			events[0] |= 0x40;	/* LE Data Length Change */
640 
641 		/* If the controller supports LL Privacy feature, enable
642 		 * the corresponding event.
643 		 */
644 		if (hdev->le_features[0] & HCI_LE_LL_PRIVACY)
645 			events[1] |= 0x02;	/* LE Enhanced Connection
646 						 * Complete
647 						 */
648 
649 		/* If the controller supports Extended Scanner Filter
650 		 * Policies, enable the correspondig event.
651 		 */
652 		if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
653 			events[1] |= 0x04;	/* LE Direct Advertising
654 						 * Report
655 						 */
656 
657 		/* If the controller supports Channel Selection Algorithm #2
658 		 * feature, enable the corresponding event.
659 		 */
660 		if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
661 			events[2] |= 0x08;	/* LE Channel Selection
662 						 * Algorithm
663 						 */
664 
665 		/* If the controller supports the LE Set Scan Enable command,
666 		 * enable the corresponding advertising report event.
667 		 */
668 		if (hdev->commands[26] & 0x08)
669 			events[0] |= 0x02;	/* LE Advertising Report */
670 
671 		/* If the controller supports the LE Create Connection
672 		 * command, enable the corresponding event.
673 		 */
674 		if (hdev->commands[26] & 0x10)
675 			events[0] |= 0x01;	/* LE Connection Complete */
676 
677 		/* If the controller supports the LE Connection Update
678 		 * command, enable the corresponding event.
679 		 */
680 		if (hdev->commands[27] & 0x04)
681 			events[0] |= 0x04;	/* LE Connection Update
682 						 * Complete
683 						 */
684 
685 		/* If the controller supports the LE Read Remote Used Features
686 		 * command, enable the corresponding event.
687 		 */
688 		if (hdev->commands[27] & 0x20)
689 			events[0] |= 0x08;	/* LE Read Remote Used
690 						 * Features Complete
691 						 */
692 
693 		/* If the controller supports the LE Read Local P-256
694 		 * Public Key command, enable the corresponding event.
695 		 */
696 		if (hdev->commands[34] & 0x02)
697 			events[0] |= 0x80;	/* LE Read Local P-256
698 						 * Public Key Complete
699 						 */
700 
701 		/* If the controller supports the LE Generate DHKey
702 		 * command, enable the corresponding event.
703 		 */
704 		if (hdev->commands[34] & 0x04)
705 			events[1] |= 0x01;	/* LE Generate DHKey Complete */
706 
707 		/* If the controller supports the LE Set Default PHY or
708 		 * LE Set PHY commands, enable the corresponding event.
709 		 */
710 		if (hdev->commands[35] & (0x20 | 0x40))
711 			events[1] |= 0x08;        /* LE PHY Update Complete */
712 
713 		/* If the controller supports LE Set Extended Scan Parameters
714 		 * and LE Set Extended Scan Enable commands, enable the
715 		 * corresponding event.
716 		 */
717 		if (use_ext_scan(hdev))
718 			events[1] |= 0x10;	/* LE Extended Advertising
719 						 * Report
720 						 */
721 
722 		/* If the controller supports the LE Extended Advertising
723 		 * command, enable the corresponding event.
724 		 */
725 		if (ext_adv_capable(hdev))
726 			events[2] |= 0x02;	/* LE Advertising Set
727 						 * Terminated
728 						 */
729 
730 		hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
731 			    events);
732 
733 		/* Read LE Advertising Channel TX Power */
734 		if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
735 			/* HCI TS spec forbids mixing of legacy and extended
736 			 * advertising commands wherein READ_ADV_TX_POWER is
737 			 * also included. So do not call it if extended adv
738 			 * is supported otherwise controller will return
739 			 * COMMAND_DISALLOWED for extended commands.
740 			 */
741 			hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
742 		}
743 
744 		if (hdev->commands[26] & 0x40) {
745 			/* Read LE White List Size */
746 			hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
747 				    0, NULL);
748 		}
749 
750 		if (hdev->commands[26] & 0x80) {
751 			/* Clear LE White List */
752 			hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
753 		}
754 
755 		if (hdev->commands[34] & 0x40) {
756 			/* Read LE Resolving List Size */
757 			hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
758 				    0, NULL);
759 		}
760 
761 		if (hdev->commands[34] & 0x20) {
762 			/* Clear LE Resolving List */
763 			hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL);
764 		}
765 
766 		if (hdev->commands[35] & 0x40) {
767 			__le16 rpa_timeout = cpu_to_le16(hdev->rpa_timeout);
768 
769 			/* Set RPA timeout */
770 			hci_req_add(req, HCI_OP_LE_SET_RPA_TIMEOUT, 2,
771 				    &rpa_timeout);
772 		}
773 
774 		if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
775 			/* Read LE Maximum Data Length */
776 			hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
777 
778 			/* Read LE Suggested Default Data Length */
779 			hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
780 		}
781 
782 		if (ext_adv_capable(hdev)) {
783 			/* Read LE Number of Supported Advertising Sets */
784 			hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
785 				    0, NULL);
786 		}
787 
788 		hci_set_le_support(req);
789 	}
790 
791 	/* Read features beyond page 1 if available */
792 	for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
793 		struct hci_cp_read_local_ext_features cp;
794 
795 		cp.page = p;
796 		hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
797 			    sizeof(cp), &cp);
798 	}
799 
800 	return 0;
801 }
802 
803 static int hci_init4_req(struct hci_request *req, unsigned long opt)
804 {
805 	struct hci_dev *hdev = req->hdev;
806 
807 	/* Some Broadcom based Bluetooth controllers do not support the
808 	 * Delete Stored Link Key command. They are clearly indicating its
809 	 * absence in the bit mask of supported commands.
810 	 *
811 	 * Check the supported commands and only if the command is marked
812 	 * as supported send it. If not supported assume that the controller
813 	 * does not have actual support for stored link keys which makes this
814 	 * command redundant anyway.
815 	 *
816 	 * Some controllers indicate that they support handling deleting
817 	 * stored link keys, but they don't. The quirk lets a driver
818 	 * just disable this command.
819 	 */
820 	if (hdev->commands[6] & 0x80 &&
821 	    !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
822 		struct hci_cp_delete_stored_link_key cp;
823 
824 		bacpy(&cp.bdaddr, BDADDR_ANY);
825 		cp.delete_all = 0x01;
826 		hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
827 			    sizeof(cp), &cp);
828 	}
829 
830 	/* Set event mask page 2 if the HCI command for it is supported */
831 	if (hdev->commands[22] & 0x04)
832 		hci_set_event_mask_page_2(req);
833 
834 	/* Read local codec list if the HCI command is supported */
835 	if (hdev->commands[29] & 0x20)
836 		hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
837 
838 	/* Read local pairing options if the HCI command is supported */
839 	if (hdev->commands[41] & 0x08)
840 		hci_req_add(req, HCI_OP_READ_LOCAL_PAIRING_OPTS, 0, NULL);
841 
842 	/* Get MWS transport configuration if the HCI command is supported */
843 	if (hdev->commands[30] & 0x08)
844 		hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
845 
846 	/* Check for Synchronization Train support */
847 	if (lmp_sync_train_capable(hdev))
848 		hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
849 
850 	/* Enable Secure Connections if supported and configured */
851 	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
852 	    bredr_sc_enabled(hdev)) {
853 		u8 support = 0x01;
854 
855 		hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
856 			    sizeof(support), &support);
857 	}
858 
859 	/* Set erroneous data reporting if supported to the wideband speech
860 	 * setting value
861 	 */
862 	if (hdev->commands[18] & 0x08 &&
863 	    !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) {
864 		bool enabled = hci_dev_test_flag(hdev,
865 						 HCI_WIDEBAND_SPEECH_ENABLED);
866 
867 		if (enabled !=
868 		    (hdev->err_data_reporting == ERR_DATA_REPORTING_ENABLED)) {
869 			struct hci_cp_write_def_err_data_reporting cp;
870 
871 			cp.err_data_reporting = enabled ?
872 						ERR_DATA_REPORTING_ENABLED :
873 						ERR_DATA_REPORTING_DISABLED;
874 
875 			hci_req_add(req, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
876 				    sizeof(cp), &cp);
877 		}
878 	}
879 
880 	/* Set Suggested Default Data Length to maximum if supported */
881 	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
882 		struct hci_cp_le_write_def_data_len cp;
883 
884 		cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
885 		cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
886 		hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
887 	}
888 
889 	/* Set Default PHY parameters if command is supported */
890 	if (hdev->commands[35] & 0x20) {
891 		struct hci_cp_le_set_default_phy cp;
892 
893 		cp.all_phys = 0x00;
894 		cp.tx_phys = hdev->le_tx_def_phys;
895 		cp.rx_phys = hdev->le_rx_def_phys;
896 
897 		hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
898 	}
899 
900 	return 0;
901 }
902 
903 static int __hci_init(struct hci_dev *hdev)
904 {
905 	int err;
906 
907 	err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
908 	if (err < 0)
909 		return err;
910 
911 	if (hci_dev_test_flag(hdev, HCI_SETUP))
912 		hci_debugfs_create_basic(hdev);
913 
914 	err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
915 	if (err < 0)
916 		return err;
917 
918 	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
919 	 * BR/EDR/LE type controllers. AMP controllers only need the
920 	 * first two stages of init.
921 	 */
922 	if (hdev->dev_type != HCI_PRIMARY)
923 		return 0;
924 
925 	err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
926 	if (err < 0)
927 		return err;
928 
929 	err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
930 	if (err < 0)
931 		return err;
932 
933 	/* This function is only called when the controller is actually in
934 	 * configured state. When the controller is marked as unconfigured,
935 	 * this initialization procedure is not run.
936 	 *
937 	 * It means that it is possible that a controller runs through its
938 	 * setup phase and then discovers missing settings. If that is the
939 	 * case, then this function will not be called. It then will only
940 	 * be called during the config phase.
941 	 *
942 	 * So only when in setup phase or config phase, create the debugfs
943 	 * entries and register the SMP channels.
944 	 */
945 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
946 	    !hci_dev_test_flag(hdev, HCI_CONFIG))
947 		return 0;
948 
949 	hci_debugfs_create_common(hdev);
950 
951 	if (lmp_bredr_capable(hdev))
952 		hci_debugfs_create_bredr(hdev);
953 
954 	if (lmp_le_capable(hdev))
955 		hci_debugfs_create_le(hdev);
956 
957 	return 0;
958 }
959 
960 static int hci_init0_req(struct hci_request *req, unsigned long opt)
961 {
962 	struct hci_dev *hdev = req->hdev;
963 
964 	BT_DBG("%s %ld", hdev->name, opt);
965 
966 	/* Reset */
967 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
968 		hci_reset_req(req, 0);
969 
970 	/* Read Local Version */
971 	hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
972 
973 	/* Read BD Address */
974 	if (hdev->set_bdaddr)
975 		hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
976 
977 	return 0;
978 }
979 
980 static int __hci_unconf_init(struct hci_dev *hdev)
981 {
982 	int err;
983 
984 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
985 		return 0;
986 
987 	err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
988 	if (err < 0)
989 		return err;
990 
991 	if (hci_dev_test_flag(hdev, HCI_SETUP))
992 		hci_debugfs_create_basic(hdev);
993 
994 	return 0;
995 }
996 
997 static int hci_scan_req(struct hci_request *req, unsigned long opt)
998 {
999 	__u8 scan = opt;
1000 
1001 	BT_DBG("%s %x", req->hdev->name, scan);
1002 
1003 	/* Inquiry and Page scans */
1004 	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1005 	return 0;
1006 }
1007 
1008 static int hci_auth_req(struct hci_request *req, unsigned long opt)
1009 {
1010 	__u8 auth = opt;
1011 
1012 	BT_DBG("%s %x", req->hdev->name, auth);
1013 
1014 	/* Authentication */
1015 	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
1016 	return 0;
1017 }
1018 
1019 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
1020 {
1021 	__u8 encrypt = opt;
1022 
1023 	BT_DBG("%s %x", req->hdev->name, encrypt);
1024 
1025 	/* Encryption */
1026 	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
1027 	return 0;
1028 }
1029 
1030 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
1031 {
1032 	__le16 policy = cpu_to_le16(opt);
1033 
1034 	BT_DBG("%s %x", req->hdev->name, policy);
1035 
1036 	/* Default link policy */
1037 	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
1038 	return 0;
1039 }
1040 
1041 /* Get HCI device by index.
1042  * Device is held on return. */
1043 struct hci_dev *hci_dev_get(int index)
1044 {
1045 	struct hci_dev *hdev = NULL, *d;
1046 
1047 	BT_DBG("%d", index);
1048 
1049 	if (index < 0)
1050 		return NULL;
1051 
1052 	read_lock(&hci_dev_list_lock);
1053 	list_for_each_entry(d, &hci_dev_list, list) {
1054 		if (d->id == index) {
1055 			hdev = hci_dev_hold(d);
1056 			break;
1057 		}
1058 	}
1059 	read_unlock(&hci_dev_list_lock);
1060 	return hdev;
1061 }
1062 
1063 /* ---- Inquiry support ---- */
1064 
1065 bool hci_discovery_active(struct hci_dev *hdev)
1066 {
1067 	struct discovery_state *discov = &hdev->discovery;
1068 
1069 	switch (discov->state) {
1070 	case DISCOVERY_FINDING:
1071 	case DISCOVERY_RESOLVING:
1072 		return true;
1073 
1074 	default:
1075 		return false;
1076 	}
1077 }
1078 
1079 void hci_discovery_set_state(struct hci_dev *hdev, int state)
1080 {
1081 	int old_state = hdev->discovery.state;
1082 
1083 	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1084 
1085 	if (old_state == state)
1086 		return;
1087 
1088 	hdev->discovery.state = state;
1089 
1090 	switch (state) {
1091 	case DISCOVERY_STOPPED:
1092 		hci_update_background_scan(hdev);
1093 
1094 		if (old_state != DISCOVERY_STARTING)
1095 			mgmt_discovering(hdev, 0);
1096 		break;
1097 	case DISCOVERY_STARTING:
1098 		break;
1099 	case DISCOVERY_FINDING:
1100 		mgmt_discovering(hdev, 1);
1101 		break;
1102 	case DISCOVERY_RESOLVING:
1103 		break;
1104 	case DISCOVERY_STOPPING:
1105 		break;
1106 	}
1107 }
1108 
1109 void hci_inquiry_cache_flush(struct hci_dev *hdev)
1110 {
1111 	struct discovery_state *cache = &hdev->discovery;
1112 	struct inquiry_entry *p, *n;
1113 
1114 	list_for_each_entry_safe(p, n, &cache->all, all) {
1115 		list_del(&p->all);
1116 		kfree(p);
1117 	}
1118 
1119 	INIT_LIST_HEAD(&cache->unknown);
1120 	INIT_LIST_HEAD(&cache->resolve);
1121 }
1122 
1123 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1124 					       bdaddr_t *bdaddr)
1125 {
1126 	struct discovery_state *cache = &hdev->discovery;
1127 	struct inquiry_entry *e;
1128 
1129 	BT_DBG("cache %p, %pMR", cache, bdaddr);
1130 
1131 	list_for_each_entry(e, &cache->all, all) {
1132 		if (!bacmp(&e->data.bdaddr, bdaddr))
1133 			return e;
1134 	}
1135 
1136 	return NULL;
1137 }
1138 
1139 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1140 						       bdaddr_t *bdaddr)
1141 {
1142 	struct discovery_state *cache = &hdev->discovery;
1143 	struct inquiry_entry *e;
1144 
1145 	BT_DBG("cache %p, %pMR", cache, bdaddr);
1146 
1147 	list_for_each_entry(e, &cache->unknown, list) {
1148 		if (!bacmp(&e->data.bdaddr, bdaddr))
1149 			return e;
1150 	}
1151 
1152 	return NULL;
1153 }
1154 
1155 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1156 						       bdaddr_t *bdaddr,
1157 						       int state)
1158 {
1159 	struct discovery_state *cache = &hdev->discovery;
1160 	struct inquiry_entry *e;
1161 
1162 	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1163 
1164 	list_for_each_entry(e, &cache->resolve, list) {
1165 		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1166 			return e;
1167 		if (!bacmp(&e->data.bdaddr, bdaddr))
1168 			return e;
1169 	}
1170 
1171 	return NULL;
1172 }
1173 
1174 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1175 				      struct inquiry_entry *ie)
1176 {
1177 	struct discovery_state *cache = &hdev->discovery;
1178 	struct list_head *pos = &cache->resolve;
1179 	struct inquiry_entry *p;
1180 
1181 	list_del(&ie->list);
1182 
1183 	list_for_each_entry(p, &cache->resolve, list) {
1184 		if (p->name_state != NAME_PENDING &&
1185 		    abs(p->data.rssi) >= abs(ie->data.rssi))
1186 			break;
1187 		pos = &p->list;
1188 	}
1189 
1190 	list_add(&ie->list, pos);
1191 }
1192 
1193 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1194 			     bool name_known)
1195 {
1196 	struct discovery_state *cache = &hdev->discovery;
1197 	struct inquiry_entry *ie;
1198 	u32 flags = 0;
1199 
1200 	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1201 
1202 	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1203 
1204 	if (!data->ssp_mode)
1205 		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1206 
1207 	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1208 	if (ie) {
1209 		if (!ie->data.ssp_mode)
1210 			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1211 
1212 		if (ie->name_state == NAME_NEEDED &&
1213 		    data->rssi != ie->data.rssi) {
1214 			ie->data.rssi = data->rssi;
1215 			hci_inquiry_cache_update_resolve(hdev, ie);
1216 		}
1217 
1218 		goto update;
1219 	}
1220 
1221 	/* Entry not in the cache. Add new one. */
1222 	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1223 	if (!ie) {
1224 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1225 		goto done;
1226 	}
1227 
1228 	list_add(&ie->all, &cache->all);
1229 
1230 	if (name_known) {
1231 		ie->name_state = NAME_KNOWN;
1232 	} else {
1233 		ie->name_state = NAME_NOT_KNOWN;
1234 		list_add(&ie->list, &cache->unknown);
1235 	}
1236 
1237 update:
1238 	if (name_known && ie->name_state != NAME_KNOWN &&
1239 	    ie->name_state != NAME_PENDING) {
1240 		ie->name_state = NAME_KNOWN;
1241 		list_del(&ie->list);
1242 	}
1243 
1244 	memcpy(&ie->data, data, sizeof(*data));
1245 	ie->timestamp = jiffies;
1246 	cache->timestamp = jiffies;
1247 
1248 	if (ie->name_state == NAME_NOT_KNOWN)
1249 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1250 
1251 done:
1252 	return flags;
1253 }
1254 
1255 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1256 {
1257 	struct discovery_state *cache = &hdev->discovery;
1258 	struct inquiry_info *info = (struct inquiry_info *) buf;
1259 	struct inquiry_entry *e;
1260 	int copied = 0;
1261 
1262 	list_for_each_entry(e, &cache->all, all) {
1263 		struct inquiry_data *data = &e->data;
1264 
1265 		if (copied >= num)
1266 			break;
1267 
1268 		bacpy(&info->bdaddr, &data->bdaddr);
1269 		info->pscan_rep_mode	= data->pscan_rep_mode;
1270 		info->pscan_period_mode	= data->pscan_period_mode;
1271 		info->pscan_mode	= data->pscan_mode;
1272 		memcpy(info->dev_class, data->dev_class, 3);
1273 		info->clock_offset	= data->clock_offset;
1274 
1275 		info++;
1276 		copied++;
1277 	}
1278 
1279 	BT_DBG("cache %p, copied %d", cache, copied);
1280 	return copied;
1281 }
1282 
1283 static int hci_inq_req(struct hci_request *req, unsigned long opt)
1284 {
1285 	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1286 	struct hci_dev *hdev = req->hdev;
1287 	struct hci_cp_inquiry cp;
1288 
1289 	BT_DBG("%s", hdev->name);
1290 
1291 	if (test_bit(HCI_INQUIRY, &hdev->flags))
1292 		return 0;
1293 
1294 	/* Start Inquiry */
1295 	memcpy(&cp.lap, &ir->lap, 3);
1296 	cp.length  = ir->length;
1297 	cp.num_rsp = ir->num_rsp;
1298 	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1299 
1300 	return 0;
1301 }
1302 
1303 int hci_inquiry(void __user *arg)
1304 {
1305 	__u8 __user *ptr = arg;
1306 	struct hci_inquiry_req ir;
1307 	struct hci_dev *hdev;
1308 	int err = 0, do_inquiry = 0, max_rsp;
1309 	long timeo;
1310 	__u8 *buf;
1311 
1312 	if (copy_from_user(&ir, ptr, sizeof(ir)))
1313 		return -EFAULT;
1314 
1315 	hdev = hci_dev_get(ir.dev_id);
1316 	if (!hdev)
1317 		return -ENODEV;
1318 
1319 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1320 		err = -EBUSY;
1321 		goto done;
1322 	}
1323 
1324 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1325 		err = -EOPNOTSUPP;
1326 		goto done;
1327 	}
1328 
1329 	if (hdev->dev_type != HCI_PRIMARY) {
1330 		err = -EOPNOTSUPP;
1331 		goto done;
1332 	}
1333 
1334 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1335 		err = -EOPNOTSUPP;
1336 		goto done;
1337 	}
1338 
1339 	hci_dev_lock(hdev);
1340 	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1341 	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1342 		hci_inquiry_cache_flush(hdev);
1343 		do_inquiry = 1;
1344 	}
1345 	hci_dev_unlock(hdev);
1346 
1347 	timeo = ir.length * msecs_to_jiffies(2000);
1348 
1349 	if (do_inquiry) {
1350 		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1351 				   timeo, NULL);
1352 		if (err < 0)
1353 			goto done;
1354 
1355 		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1356 		 * cleared). If it is interrupted by a signal, return -EINTR.
1357 		 */
1358 		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1359 				TASK_INTERRUPTIBLE))
1360 			return -EINTR;
1361 	}
1362 
1363 	/* for unlimited number of responses we will use buffer with
1364 	 * 255 entries
1365 	 */
1366 	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1367 
1368 	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
1369 	 * copy it to the user space.
1370 	 */
1371 	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
1372 	if (!buf) {
1373 		err = -ENOMEM;
1374 		goto done;
1375 	}
1376 
1377 	hci_dev_lock(hdev);
1378 	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1379 	hci_dev_unlock(hdev);
1380 
1381 	BT_DBG("num_rsp %d", ir.num_rsp);
1382 
1383 	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1384 		ptr += sizeof(ir);
1385 		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1386 				 ir.num_rsp))
1387 			err = -EFAULT;
1388 	} else
1389 		err = -EFAULT;
1390 
1391 	kfree(buf);
1392 
1393 done:
1394 	hci_dev_put(hdev);
1395 	return err;
1396 }
1397 
1398 /**
1399  * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
1400  *				       (BD_ADDR) for a HCI device from
1401  *				       a firmware node property.
1402  * @hdev:	The HCI device
1403  *
1404  * Search the firmware node for 'local-bd-address'.
1405  *
1406  * All-zero BD addresses are rejected, because those could be properties
1407  * that exist in the firmware tables, but were not updated by the firmware. For
1408  * example, the DTS could define 'local-bd-address', with zero BD addresses.
1409  */
1410 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
1411 {
1412 	struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
1413 	bdaddr_t ba;
1414 	int ret;
1415 
1416 	ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
1417 					    (u8 *)&ba, sizeof(ba));
1418 	if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
1419 		return;
1420 
1421 	bacpy(&hdev->public_addr, &ba);
1422 }
1423 
1424 static int hci_dev_do_open(struct hci_dev *hdev)
1425 {
1426 	int ret = 0;
1427 
1428 	BT_DBG("%s %p", hdev->name, hdev);
1429 
1430 	hci_req_sync_lock(hdev);
1431 
1432 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1433 		ret = -ENODEV;
1434 		goto done;
1435 	}
1436 
1437 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1438 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1439 		/* Check for rfkill but allow the HCI setup stage to
1440 		 * proceed (which in itself doesn't cause any RF activity).
1441 		 */
1442 		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1443 			ret = -ERFKILL;
1444 			goto done;
1445 		}
1446 
1447 		/* Check for valid public address or a configured static
1448 		 * random adddress, but let the HCI setup proceed to
1449 		 * be able to determine if there is a public address
1450 		 * or not.
1451 		 *
1452 		 * In case of user channel usage, it is not important
1453 		 * if a public address or static random address is
1454 		 * available.
1455 		 *
1456 		 * This check is only valid for BR/EDR controllers
1457 		 * since AMP controllers do not have an address.
1458 		 */
1459 		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1460 		    hdev->dev_type == HCI_PRIMARY &&
1461 		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1462 		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1463 			ret = -EADDRNOTAVAIL;
1464 			goto done;
1465 		}
1466 	}
1467 
1468 	if (test_bit(HCI_UP, &hdev->flags)) {
1469 		ret = -EALREADY;
1470 		goto done;
1471 	}
1472 
1473 	if (hdev->open(hdev)) {
1474 		ret = -EIO;
1475 		goto done;
1476 	}
1477 
1478 	set_bit(HCI_RUNNING, &hdev->flags);
1479 	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1480 
1481 	atomic_set(&hdev->cmd_cnt, 1);
1482 	set_bit(HCI_INIT, &hdev->flags);
1483 
1484 	if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1485 	    test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
1486 		bool invalid_bdaddr;
1487 
1488 		hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1489 
1490 		if (hdev->setup)
1491 			ret = hdev->setup(hdev);
1492 
1493 		/* The transport driver can set the quirk to mark the
1494 		 * BD_ADDR invalid before creating the HCI device or in
1495 		 * its setup callback.
1496 		 */
1497 		invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR,
1498 					  &hdev->quirks);
1499 
1500 		if (ret)
1501 			goto setup_failed;
1502 
1503 		if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
1504 			if (!bacmp(&hdev->public_addr, BDADDR_ANY))
1505 				hci_dev_get_bd_addr_from_property(hdev);
1506 
1507 			if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1508 			    hdev->set_bdaddr) {
1509 				ret = hdev->set_bdaddr(hdev,
1510 						       &hdev->public_addr);
1511 
1512 				/* If setting of the BD_ADDR from the device
1513 				 * property succeeds, then treat the address
1514 				 * as valid even if the invalid BD_ADDR
1515 				 * quirk indicates otherwise.
1516 				 */
1517 				if (!ret)
1518 					invalid_bdaddr = false;
1519 			}
1520 		}
1521 
1522 setup_failed:
1523 		/* The transport driver can set these quirks before
1524 		 * creating the HCI device or in its setup callback.
1525 		 *
1526 		 * For the invalid BD_ADDR quirk it is possible that
1527 		 * it becomes a valid address if the bootloader does
1528 		 * provide it (see above).
1529 		 *
1530 		 * In case any of them is set, the controller has to
1531 		 * start up as unconfigured.
1532 		 */
1533 		if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1534 		    invalid_bdaddr)
1535 			hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1536 
1537 		/* For an unconfigured controller it is required to
1538 		 * read at least the version information provided by
1539 		 * the Read Local Version Information command.
1540 		 *
1541 		 * If the set_bdaddr driver callback is provided, then
1542 		 * also the original Bluetooth public device address
1543 		 * will be read using the Read BD Address command.
1544 		 */
1545 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1546 			ret = __hci_unconf_init(hdev);
1547 	}
1548 
1549 	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1550 		/* If public address change is configured, ensure that
1551 		 * the address gets programmed. If the driver does not
1552 		 * support changing the public address, fail the power
1553 		 * on procedure.
1554 		 */
1555 		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1556 		    hdev->set_bdaddr)
1557 			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1558 		else
1559 			ret = -EADDRNOTAVAIL;
1560 	}
1561 
1562 	if (!ret) {
1563 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1564 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1565 			ret = __hci_init(hdev);
1566 			if (!ret && hdev->post_init)
1567 				ret = hdev->post_init(hdev);
1568 		}
1569 	}
1570 
1571 	/* If the HCI Reset command is clearing all diagnostic settings,
1572 	 * then they need to be reprogrammed after the init procedure
1573 	 * completed.
1574 	 */
1575 	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1576 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1577 	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1578 		ret = hdev->set_diag(hdev, true);
1579 
1580 	msft_do_open(hdev);
1581 
1582 	clear_bit(HCI_INIT, &hdev->flags);
1583 
1584 	if (!ret) {
1585 		hci_dev_hold(hdev);
1586 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1587 		hci_adv_instances_set_rpa_expired(hdev, true);
1588 		set_bit(HCI_UP, &hdev->flags);
1589 		hci_sock_dev_event(hdev, HCI_DEV_UP);
1590 		hci_leds_update_powered(hdev, true);
1591 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1592 		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1593 		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1594 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1595 		    hci_dev_test_flag(hdev, HCI_MGMT) &&
1596 		    hdev->dev_type == HCI_PRIMARY) {
1597 			ret = __hci_req_hci_power_on(hdev);
1598 			mgmt_power_on(hdev, ret);
1599 		}
1600 	} else {
1601 		/* Init failed, cleanup */
1602 		flush_work(&hdev->tx_work);
1603 		flush_work(&hdev->cmd_work);
1604 		flush_work(&hdev->rx_work);
1605 
1606 		skb_queue_purge(&hdev->cmd_q);
1607 		skb_queue_purge(&hdev->rx_q);
1608 
1609 		if (hdev->flush)
1610 			hdev->flush(hdev);
1611 
1612 		if (hdev->sent_cmd) {
1613 			kfree_skb(hdev->sent_cmd);
1614 			hdev->sent_cmd = NULL;
1615 		}
1616 
1617 		clear_bit(HCI_RUNNING, &hdev->flags);
1618 		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1619 
1620 		hdev->close(hdev);
1621 		hdev->flags &= BIT(HCI_RAW);
1622 	}
1623 
1624 done:
1625 	hci_req_sync_unlock(hdev);
1626 	return ret;
1627 }
1628 
1629 /* ---- HCI ioctl helpers ---- */
1630 
1631 int hci_dev_open(__u16 dev)
1632 {
1633 	struct hci_dev *hdev;
1634 	int err;
1635 
1636 	hdev = hci_dev_get(dev);
1637 	if (!hdev)
1638 		return -ENODEV;
1639 
1640 	/* Devices that are marked as unconfigured can only be powered
1641 	 * up as user channel. Trying to bring them up as normal devices
1642 	 * will result into a failure. Only user channel operation is
1643 	 * possible.
1644 	 *
1645 	 * When this function is called for a user channel, the flag
1646 	 * HCI_USER_CHANNEL will be set first before attempting to
1647 	 * open the device.
1648 	 */
1649 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1650 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1651 		err = -EOPNOTSUPP;
1652 		goto done;
1653 	}
1654 
1655 	/* We need to ensure that no other power on/off work is pending
1656 	 * before proceeding to call hci_dev_do_open. This is
1657 	 * particularly important if the setup procedure has not yet
1658 	 * completed.
1659 	 */
1660 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1661 		cancel_delayed_work(&hdev->power_off);
1662 
1663 	/* After this call it is guaranteed that the setup procedure
1664 	 * has finished. This means that error conditions like RFKILL
1665 	 * or no valid public or static random address apply.
1666 	 */
1667 	flush_workqueue(hdev->req_workqueue);
1668 
1669 	/* For controllers not using the management interface and that
1670 	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1671 	 * so that pairing works for them. Once the management interface
1672 	 * is in use this bit will be cleared again and userspace has
1673 	 * to explicitly enable it.
1674 	 */
1675 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1676 	    !hci_dev_test_flag(hdev, HCI_MGMT))
1677 		hci_dev_set_flag(hdev, HCI_BONDABLE);
1678 
1679 	err = hci_dev_do_open(hdev);
1680 
1681 done:
1682 	hci_dev_put(hdev);
1683 	return err;
1684 }
1685 
1686 /* This function requires the caller holds hdev->lock */
1687 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1688 {
1689 	struct hci_conn_params *p;
1690 
1691 	list_for_each_entry(p, &hdev->le_conn_params, list) {
1692 		if (p->conn) {
1693 			hci_conn_drop(p->conn);
1694 			hci_conn_put(p->conn);
1695 			p->conn = NULL;
1696 		}
1697 		list_del_init(&p->action);
1698 	}
1699 
1700 	BT_DBG("All LE pending actions cleared");
1701 }
1702 
1703 int hci_dev_do_close(struct hci_dev *hdev)
1704 {
1705 	bool auto_off;
1706 
1707 	BT_DBG("%s %p", hdev->name, hdev);
1708 
1709 	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1710 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1711 	    test_bit(HCI_UP, &hdev->flags)) {
1712 		/* Execute vendor specific shutdown routine */
1713 		if (hdev->shutdown)
1714 			hdev->shutdown(hdev);
1715 	}
1716 
1717 	cancel_delayed_work(&hdev->power_off);
1718 
1719 	hci_request_cancel_all(hdev);
1720 	hci_req_sync_lock(hdev);
1721 
1722 	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1723 		cancel_delayed_work_sync(&hdev->cmd_timer);
1724 		hci_req_sync_unlock(hdev);
1725 		return 0;
1726 	}
1727 
1728 	hci_leds_update_powered(hdev, false);
1729 
1730 	/* Flush RX and TX works */
1731 	flush_work(&hdev->tx_work);
1732 	flush_work(&hdev->rx_work);
1733 
1734 	if (hdev->discov_timeout > 0) {
1735 		hdev->discov_timeout = 0;
1736 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1737 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1738 	}
1739 
1740 	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1741 		cancel_delayed_work(&hdev->service_cache);
1742 
1743 	if (hci_dev_test_flag(hdev, HCI_MGMT)) {
1744 		struct adv_info *adv_instance;
1745 
1746 		cancel_delayed_work_sync(&hdev->rpa_expired);
1747 
1748 		list_for_each_entry(adv_instance, &hdev->adv_instances, list)
1749 			cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1750 	}
1751 
1752 	/* Avoid potential lockdep warnings from the *_flush() calls by
1753 	 * ensuring the workqueue is empty up front.
1754 	 */
1755 	drain_workqueue(hdev->workqueue);
1756 
1757 	hci_dev_lock(hdev);
1758 
1759 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1760 
1761 	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1762 
1763 	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1764 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1765 	    hci_dev_test_flag(hdev, HCI_MGMT))
1766 		__mgmt_power_off(hdev);
1767 
1768 	hci_inquiry_cache_flush(hdev);
1769 	hci_pend_le_actions_clear(hdev);
1770 	hci_conn_hash_flush(hdev);
1771 	hci_dev_unlock(hdev);
1772 
1773 	smp_unregister(hdev);
1774 
1775 	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1776 
1777 	msft_do_close(hdev);
1778 
1779 	if (hdev->flush)
1780 		hdev->flush(hdev);
1781 
1782 	/* Reset device */
1783 	skb_queue_purge(&hdev->cmd_q);
1784 	atomic_set(&hdev->cmd_cnt, 1);
1785 	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1786 	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1787 		set_bit(HCI_INIT, &hdev->flags);
1788 		__hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1789 		clear_bit(HCI_INIT, &hdev->flags);
1790 	}
1791 
1792 	/* flush cmd  work */
1793 	flush_work(&hdev->cmd_work);
1794 
1795 	/* Drop queues */
1796 	skb_queue_purge(&hdev->rx_q);
1797 	skb_queue_purge(&hdev->cmd_q);
1798 	skb_queue_purge(&hdev->raw_q);
1799 
1800 	/* Drop last sent command */
1801 	if (hdev->sent_cmd) {
1802 		cancel_delayed_work_sync(&hdev->cmd_timer);
1803 		kfree_skb(hdev->sent_cmd);
1804 		hdev->sent_cmd = NULL;
1805 	}
1806 
1807 	clear_bit(HCI_RUNNING, &hdev->flags);
1808 	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1809 
1810 	if (test_and_clear_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks))
1811 		wake_up(&hdev->suspend_wait_q);
1812 
1813 	/* After this point our queues are empty
1814 	 * and no tasks are scheduled. */
1815 	hdev->close(hdev);
1816 
1817 	/* Clear flags */
1818 	hdev->flags &= BIT(HCI_RAW);
1819 	hci_dev_clear_volatile_flags(hdev);
1820 
1821 	/* Controller radio is available but is currently powered down */
1822 	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1823 
1824 	memset(hdev->eir, 0, sizeof(hdev->eir));
1825 	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1826 	bacpy(&hdev->random_addr, BDADDR_ANY);
1827 
1828 	hci_req_sync_unlock(hdev);
1829 
1830 	hci_dev_put(hdev);
1831 	return 0;
1832 }
1833 
1834 int hci_dev_close(__u16 dev)
1835 {
1836 	struct hci_dev *hdev;
1837 	int err;
1838 
1839 	hdev = hci_dev_get(dev);
1840 	if (!hdev)
1841 		return -ENODEV;
1842 
1843 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1844 		err = -EBUSY;
1845 		goto done;
1846 	}
1847 
1848 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1849 		cancel_delayed_work(&hdev->power_off);
1850 
1851 	err = hci_dev_do_close(hdev);
1852 
1853 done:
1854 	hci_dev_put(hdev);
1855 	return err;
1856 }
1857 
1858 static int hci_dev_do_reset(struct hci_dev *hdev)
1859 {
1860 	int ret;
1861 
1862 	BT_DBG("%s %p", hdev->name, hdev);
1863 
1864 	hci_req_sync_lock(hdev);
1865 
1866 	/* Drop queues */
1867 	skb_queue_purge(&hdev->rx_q);
1868 	skb_queue_purge(&hdev->cmd_q);
1869 
1870 	/* Avoid potential lockdep warnings from the *_flush() calls by
1871 	 * ensuring the workqueue is empty up front.
1872 	 */
1873 	drain_workqueue(hdev->workqueue);
1874 
1875 	hci_dev_lock(hdev);
1876 	hci_inquiry_cache_flush(hdev);
1877 	hci_conn_hash_flush(hdev);
1878 	hci_dev_unlock(hdev);
1879 
1880 	if (hdev->flush)
1881 		hdev->flush(hdev);
1882 
1883 	atomic_set(&hdev->cmd_cnt, 1);
1884 	hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1885 
1886 	ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1887 
1888 	hci_req_sync_unlock(hdev);
1889 	return ret;
1890 }
1891 
1892 int hci_dev_reset(__u16 dev)
1893 {
1894 	struct hci_dev *hdev;
1895 	int err;
1896 
1897 	hdev = hci_dev_get(dev);
1898 	if (!hdev)
1899 		return -ENODEV;
1900 
1901 	if (!test_bit(HCI_UP, &hdev->flags)) {
1902 		err = -ENETDOWN;
1903 		goto done;
1904 	}
1905 
1906 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1907 		err = -EBUSY;
1908 		goto done;
1909 	}
1910 
1911 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1912 		err = -EOPNOTSUPP;
1913 		goto done;
1914 	}
1915 
1916 	err = hci_dev_do_reset(hdev);
1917 
1918 done:
1919 	hci_dev_put(hdev);
1920 	return err;
1921 }
1922 
1923 int hci_dev_reset_stat(__u16 dev)
1924 {
1925 	struct hci_dev *hdev;
1926 	int ret = 0;
1927 
1928 	hdev = hci_dev_get(dev);
1929 	if (!hdev)
1930 		return -ENODEV;
1931 
1932 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1933 		ret = -EBUSY;
1934 		goto done;
1935 	}
1936 
1937 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1938 		ret = -EOPNOTSUPP;
1939 		goto done;
1940 	}
1941 
1942 	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1943 
1944 done:
1945 	hci_dev_put(hdev);
1946 	return ret;
1947 }
1948 
1949 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1950 {
1951 	bool conn_changed, discov_changed;
1952 
1953 	BT_DBG("%s scan 0x%02x", hdev->name, scan);
1954 
1955 	if ((scan & SCAN_PAGE))
1956 		conn_changed = !hci_dev_test_and_set_flag(hdev,
1957 							  HCI_CONNECTABLE);
1958 	else
1959 		conn_changed = hci_dev_test_and_clear_flag(hdev,
1960 							   HCI_CONNECTABLE);
1961 
1962 	if ((scan & SCAN_INQUIRY)) {
1963 		discov_changed = !hci_dev_test_and_set_flag(hdev,
1964 							    HCI_DISCOVERABLE);
1965 	} else {
1966 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1967 		discov_changed = hci_dev_test_and_clear_flag(hdev,
1968 							     HCI_DISCOVERABLE);
1969 	}
1970 
1971 	if (!hci_dev_test_flag(hdev, HCI_MGMT))
1972 		return;
1973 
1974 	if (conn_changed || discov_changed) {
1975 		/* In case this was disabled through mgmt */
1976 		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1977 
1978 		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1979 			hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1980 
1981 		mgmt_new_settings(hdev);
1982 	}
1983 }
1984 
1985 int hci_dev_cmd(unsigned int cmd, void __user *arg)
1986 {
1987 	struct hci_dev *hdev;
1988 	struct hci_dev_req dr;
1989 	int err = 0;
1990 
1991 	if (copy_from_user(&dr, arg, sizeof(dr)))
1992 		return -EFAULT;
1993 
1994 	hdev = hci_dev_get(dr.dev_id);
1995 	if (!hdev)
1996 		return -ENODEV;
1997 
1998 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1999 		err = -EBUSY;
2000 		goto done;
2001 	}
2002 
2003 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
2004 		err = -EOPNOTSUPP;
2005 		goto done;
2006 	}
2007 
2008 	if (hdev->dev_type != HCI_PRIMARY) {
2009 		err = -EOPNOTSUPP;
2010 		goto done;
2011 	}
2012 
2013 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
2014 		err = -EOPNOTSUPP;
2015 		goto done;
2016 	}
2017 
2018 	switch (cmd) {
2019 	case HCISETAUTH:
2020 		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2021 				   HCI_INIT_TIMEOUT, NULL);
2022 		break;
2023 
2024 	case HCISETENCRYPT:
2025 		if (!lmp_encrypt_capable(hdev)) {
2026 			err = -EOPNOTSUPP;
2027 			break;
2028 		}
2029 
2030 		if (!test_bit(HCI_AUTH, &hdev->flags)) {
2031 			/* Auth must be enabled first */
2032 			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2033 					   HCI_INIT_TIMEOUT, NULL);
2034 			if (err)
2035 				break;
2036 		}
2037 
2038 		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
2039 				   HCI_INIT_TIMEOUT, NULL);
2040 		break;
2041 
2042 	case HCISETSCAN:
2043 		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
2044 				   HCI_INIT_TIMEOUT, NULL);
2045 
2046 		/* Ensure that the connectable and discoverable states
2047 		 * get correctly modified as this was a non-mgmt change.
2048 		 */
2049 		if (!err)
2050 			hci_update_scan_state(hdev, dr.dev_opt);
2051 		break;
2052 
2053 	case HCISETLINKPOL:
2054 		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
2055 				   HCI_INIT_TIMEOUT, NULL);
2056 		break;
2057 
2058 	case HCISETLINKMODE:
2059 		hdev->link_mode = ((__u16) dr.dev_opt) &
2060 					(HCI_LM_MASTER | HCI_LM_ACCEPT);
2061 		break;
2062 
2063 	case HCISETPTYPE:
2064 		if (hdev->pkt_type == (__u16) dr.dev_opt)
2065 			break;
2066 
2067 		hdev->pkt_type = (__u16) dr.dev_opt;
2068 		mgmt_phy_configuration_changed(hdev, NULL);
2069 		break;
2070 
2071 	case HCISETACLMTU:
2072 		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
2073 		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2074 		break;
2075 
2076 	case HCISETSCOMTU:
2077 		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
2078 		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2079 		break;
2080 
2081 	default:
2082 		err = -EINVAL;
2083 		break;
2084 	}
2085 
2086 done:
2087 	hci_dev_put(hdev);
2088 	return err;
2089 }
2090 
2091 int hci_get_dev_list(void __user *arg)
2092 {
2093 	struct hci_dev *hdev;
2094 	struct hci_dev_list_req *dl;
2095 	struct hci_dev_req *dr;
2096 	int n = 0, size, err;
2097 	__u16 dev_num;
2098 
2099 	if (get_user(dev_num, (__u16 __user *) arg))
2100 		return -EFAULT;
2101 
2102 	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2103 		return -EINVAL;
2104 
2105 	size = sizeof(*dl) + dev_num * sizeof(*dr);
2106 
2107 	dl = kzalloc(size, GFP_KERNEL);
2108 	if (!dl)
2109 		return -ENOMEM;
2110 
2111 	dr = dl->dev_req;
2112 
2113 	read_lock(&hci_dev_list_lock);
2114 	list_for_each_entry(hdev, &hci_dev_list, list) {
2115 		unsigned long flags = hdev->flags;
2116 
2117 		/* When the auto-off is configured it means the transport
2118 		 * is running, but in that case still indicate that the
2119 		 * device is actually down.
2120 		 */
2121 		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2122 			flags &= ~BIT(HCI_UP);
2123 
2124 		(dr + n)->dev_id  = hdev->id;
2125 		(dr + n)->dev_opt = flags;
2126 
2127 		if (++n >= dev_num)
2128 			break;
2129 	}
2130 	read_unlock(&hci_dev_list_lock);
2131 
2132 	dl->dev_num = n;
2133 	size = sizeof(*dl) + n * sizeof(*dr);
2134 
2135 	err = copy_to_user(arg, dl, size);
2136 	kfree(dl);
2137 
2138 	return err ? -EFAULT : 0;
2139 }
2140 
2141 int hci_get_dev_info(void __user *arg)
2142 {
2143 	struct hci_dev *hdev;
2144 	struct hci_dev_info di;
2145 	unsigned long flags;
2146 	int err = 0;
2147 
2148 	if (copy_from_user(&di, arg, sizeof(di)))
2149 		return -EFAULT;
2150 
2151 	hdev = hci_dev_get(di.dev_id);
2152 	if (!hdev)
2153 		return -ENODEV;
2154 
2155 	/* When the auto-off is configured it means the transport
2156 	 * is running, but in that case still indicate that the
2157 	 * device is actually down.
2158 	 */
2159 	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2160 		flags = hdev->flags & ~BIT(HCI_UP);
2161 	else
2162 		flags = hdev->flags;
2163 
2164 	strcpy(di.name, hdev->name);
2165 	di.bdaddr   = hdev->bdaddr;
2166 	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2167 	di.flags    = flags;
2168 	di.pkt_type = hdev->pkt_type;
2169 	if (lmp_bredr_capable(hdev)) {
2170 		di.acl_mtu  = hdev->acl_mtu;
2171 		di.acl_pkts = hdev->acl_pkts;
2172 		di.sco_mtu  = hdev->sco_mtu;
2173 		di.sco_pkts = hdev->sco_pkts;
2174 	} else {
2175 		di.acl_mtu  = hdev->le_mtu;
2176 		di.acl_pkts = hdev->le_pkts;
2177 		di.sco_mtu  = 0;
2178 		di.sco_pkts = 0;
2179 	}
2180 	di.link_policy = hdev->link_policy;
2181 	di.link_mode   = hdev->link_mode;
2182 
2183 	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2184 	memcpy(&di.features, &hdev->features, sizeof(di.features));
2185 
2186 	if (copy_to_user(arg, &di, sizeof(di)))
2187 		err = -EFAULT;
2188 
2189 	hci_dev_put(hdev);
2190 
2191 	return err;
2192 }
2193 
2194 /* ---- Interface to HCI drivers ---- */
2195 
2196 static int hci_rfkill_set_block(void *data, bool blocked)
2197 {
2198 	struct hci_dev *hdev = data;
2199 
2200 	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2201 
2202 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2203 		return -EBUSY;
2204 
2205 	if (blocked) {
2206 		hci_dev_set_flag(hdev, HCI_RFKILLED);
2207 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2208 		    !hci_dev_test_flag(hdev, HCI_CONFIG))
2209 			hci_dev_do_close(hdev);
2210 	} else {
2211 		hci_dev_clear_flag(hdev, HCI_RFKILLED);
2212 	}
2213 
2214 	return 0;
2215 }
2216 
2217 static const struct rfkill_ops hci_rfkill_ops = {
2218 	.set_block = hci_rfkill_set_block,
2219 };
2220 
2221 static void hci_power_on(struct work_struct *work)
2222 {
2223 	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2224 	int err;
2225 
2226 	BT_DBG("%s", hdev->name);
2227 
2228 	if (test_bit(HCI_UP, &hdev->flags) &&
2229 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
2230 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2231 		cancel_delayed_work(&hdev->power_off);
2232 		hci_req_sync_lock(hdev);
2233 		err = __hci_req_hci_power_on(hdev);
2234 		hci_req_sync_unlock(hdev);
2235 		mgmt_power_on(hdev, err);
2236 		return;
2237 	}
2238 
2239 	err = hci_dev_do_open(hdev);
2240 	if (err < 0) {
2241 		hci_dev_lock(hdev);
2242 		mgmt_set_powered_failed(hdev, err);
2243 		hci_dev_unlock(hdev);
2244 		return;
2245 	}
2246 
2247 	/* During the HCI setup phase, a few error conditions are
2248 	 * ignored and they need to be checked now. If they are still
2249 	 * valid, it is important to turn the device back off.
2250 	 */
2251 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2252 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2253 	    (hdev->dev_type == HCI_PRIMARY &&
2254 	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2255 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2256 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2257 		hci_dev_do_close(hdev);
2258 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2259 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2260 				   HCI_AUTO_OFF_TIMEOUT);
2261 	}
2262 
2263 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2264 		/* For unconfigured devices, set the HCI_RAW flag
2265 		 * so that userspace can easily identify them.
2266 		 */
2267 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2268 			set_bit(HCI_RAW, &hdev->flags);
2269 
2270 		/* For fully configured devices, this will send
2271 		 * the Index Added event. For unconfigured devices,
2272 		 * it will send Unconfigued Index Added event.
2273 		 *
2274 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2275 		 * and no event will be send.
2276 		 */
2277 		mgmt_index_added(hdev);
2278 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2279 		/* When the controller is now configured, then it
2280 		 * is important to clear the HCI_RAW flag.
2281 		 */
2282 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2283 			clear_bit(HCI_RAW, &hdev->flags);
2284 
2285 		/* Powering on the controller with HCI_CONFIG set only
2286 		 * happens with the transition from unconfigured to
2287 		 * configured. This will send the Index Added event.
2288 		 */
2289 		mgmt_index_added(hdev);
2290 	}
2291 }
2292 
2293 static void hci_power_off(struct work_struct *work)
2294 {
2295 	struct hci_dev *hdev = container_of(work, struct hci_dev,
2296 					    power_off.work);
2297 
2298 	BT_DBG("%s", hdev->name);
2299 
2300 	hci_dev_do_close(hdev);
2301 }
2302 
2303 static void hci_error_reset(struct work_struct *work)
2304 {
2305 	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2306 
2307 	BT_DBG("%s", hdev->name);
2308 
2309 	if (hdev->hw_error)
2310 		hdev->hw_error(hdev, hdev->hw_error_code);
2311 	else
2312 		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
2313 
2314 	if (hci_dev_do_close(hdev))
2315 		return;
2316 
2317 	hci_dev_do_open(hdev);
2318 }
2319 
2320 void hci_uuids_clear(struct hci_dev *hdev)
2321 {
2322 	struct bt_uuid *uuid, *tmp;
2323 
2324 	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2325 		list_del(&uuid->list);
2326 		kfree(uuid);
2327 	}
2328 }
2329 
2330 void hci_link_keys_clear(struct hci_dev *hdev)
2331 {
2332 	struct link_key *key;
2333 
2334 	list_for_each_entry(key, &hdev->link_keys, list) {
2335 		list_del_rcu(&key->list);
2336 		kfree_rcu(key, rcu);
2337 	}
2338 }
2339 
2340 void hci_smp_ltks_clear(struct hci_dev *hdev)
2341 {
2342 	struct smp_ltk *k;
2343 
2344 	list_for_each_entry(k, &hdev->long_term_keys, list) {
2345 		list_del_rcu(&k->list);
2346 		kfree_rcu(k, rcu);
2347 	}
2348 }
2349 
2350 void hci_smp_irks_clear(struct hci_dev *hdev)
2351 {
2352 	struct smp_irk *k;
2353 
2354 	list_for_each_entry(k, &hdev->identity_resolving_keys, list) {
2355 		list_del_rcu(&k->list);
2356 		kfree_rcu(k, rcu);
2357 	}
2358 }
2359 
2360 void hci_blocked_keys_clear(struct hci_dev *hdev)
2361 {
2362 	struct blocked_key *b;
2363 
2364 	list_for_each_entry(b, &hdev->blocked_keys, list) {
2365 		list_del_rcu(&b->list);
2366 		kfree_rcu(b, rcu);
2367 	}
2368 }
2369 
2370 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
2371 {
2372 	bool blocked = false;
2373 	struct blocked_key *b;
2374 
2375 	rcu_read_lock();
2376 	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
2377 		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
2378 			blocked = true;
2379 			break;
2380 		}
2381 	}
2382 
2383 	rcu_read_unlock();
2384 	return blocked;
2385 }
2386 
2387 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2388 {
2389 	struct link_key *k;
2390 
2391 	rcu_read_lock();
2392 	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2393 		if (bacmp(bdaddr, &k->bdaddr) == 0) {
2394 			rcu_read_unlock();
2395 
2396 			if (hci_is_blocked_key(hdev,
2397 					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
2398 					       k->val)) {
2399 				bt_dev_warn_ratelimited(hdev,
2400 							"Link key blocked for %pMR",
2401 							&k->bdaddr);
2402 				return NULL;
2403 			}
2404 
2405 			return k;
2406 		}
2407 	}
2408 	rcu_read_unlock();
2409 
2410 	return NULL;
2411 }
2412 
2413 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2414 			       u8 key_type, u8 old_key_type)
2415 {
2416 	/* Legacy key */
2417 	if (key_type < 0x03)
2418 		return true;
2419 
2420 	/* Debug keys are insecure so don't store them persistently */
2421 	if (key_type == HCI_LK_DEBUG_COMBINATION)
2422 		return false;
2423 
2424 	/* Changed combination key and there's no previous one */
2425 	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2426 		return false;
2427 
2428 	/* Security mode 3 case */
2429 	if (!conn)
2430 		return true;
2431 
2432 	/* BR/EDR key derived using SC from an LE link */
2433 	if (conn->type == LE_LINK)
2434 		return true;
2435 
2436 	/* Neither local nor remote side had no-bonding as requirement */
2437 	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2438 		return true;
2439 
2440 	/* Local side had dedicated bonding as requirement */
2441 	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2442 		return true;
2443 
2444 	/* Remote side had dedicated bonding as requirement */
2445 	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2446 		return true;
2447 
2448 	/* If none of the above criteria match, then don't store the key
2449 	 * persistently */
2450 	return false;
2451 }
2452 
2453 static u8 ltk_role(u8 type)
2454 {
2455 	if (type == SMP_LTK)
2456 		return HCI_ROLE_MASTER;
2457 
2458 	return HCI_ROLE_SLAVE;
2459 }
2460 
2461 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2462 			     u8 addr_type, u8 role)
2463 {
2464 	struct smp_ltk *k;
2465 
2466 	rcu_read_lock();
2467 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2468 		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2469 			continue;
2470 
2471 		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2472 			rcu_read_unlock();
2473 
2474 			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
2475 					       k->val)) {
2476 				bt_dev_warn_ratelimited(hdev,
2477 							"LTK blocked for %pMR",
2478 							&k->bdaddr);
2479 				return NULL;
2480 			}
2481 
2482 			return k;
2483 		}
2484 	}
2485 	rcu_read_unlock();
2486 
2487 	return NULL;
2488 }
2489 
2490 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2491 {
2492 	struct smp_irk *irk_to_return = NULL;
2493 	struct smp_irk *irk;
2494 
2495 	rcu_read_lock();
2496 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2497 		if (!bacmp(&irk->rpa, rpa)) {
2498 			irk_to_return = irk;
2499 			goto done;
2500 		}
2501 	}
2502 
2503 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2504 		if (smp_irk_matches(hdev, irk->val, rpa)) {
2505 			bacpy(&irk->rpa, rpa);
2506 			irk_to_return = irk;
2507 			goto done;
2508 		}
2509 	}
2510 
2511 done:
2512 	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2513 						irk_to_return->val)) {
2514 		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2515 					&irk_to_return->bdaddr);
2516 		irk_to_return = NULL;
2517 	}
2518 
2519 	rcu_read_unlock();
2520 
2521 	return irk_to_return;
2522 }
2523 
2524 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2525 				     u8 addr_type)
2526 {
2527 	struct smp_irk *irk_to_return = NULL;
2528 	struct smp_irk *irk;
2529 
2530 	/* Identity Address must be public or static random */
2531 	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2532 		return NULL;
2533 
2534 	rcu_read_lock();
2535 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2536 		if (addr_type == irk->addr_type &&
2537 		    bacmp(bdaddr, &irk->bdaddr) == 0) {
2538 			irk_to_return = irk;
2539 			goto done;
2540 		}
2541 	}
2542 
2543 done:
2544 
2545 	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2546 						irk_to_return->val)) {
2547 		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2548 					&irk_to_return->bdaddr);
2549 		irk_to_return = NULL;
2550 	}
2551 
2552 	rcu_read_unlock();
2553 
2554 	return irk_to_return;
2555 }
2556 
2557 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2558 				  bdaddr_t *bdaddr, u8 *val, u8 type,
2559 				  u8 pin_len, bool *persistent)
2560 {
2561 	struct link_key *key, *old_key;
2562 	u8 old_key_type;
2563 
2564 	old_key = hci_find_link_key(hdev, bdaddr);
2565 	if (old_key) {
2566 		old_key_type = old_key->type;
2567 		key = old_key;
2568 	} else {
2569 		old_key_type = conn ? conn->key_type : 0xff;
2570 		key = kzalloc(sizeof(*key), GFP_KERNEL);
2571 		if (!key)
2572 			return NULL;
2573 		list_add_rcu(&key->list, &hdev->link_keys);
2574 	}
2575 
2576 	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2577 
2578 	/* Some buggy controller combinations generate a changed
2579 	 * combination key for legacy pairing even when there's no
2580 	 * previous key */
2581 	if (type == HCI_LK_CHANGED_COMBINATION &&
2582 	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2583 		type = HCI_LK_COMBINATION;
2584 		if (conn)
2585 			conn->key_type = type;
2586 	}
2587 
2588 	bacpy(&key->bdaddr, bdaddr);
2589 	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2590 	key->pin_len = pin_len;
2591 
2592 	if (type == HCI_LK_CHANGED_COMBINATION)
2593 		key->type = old_key_type;
2594 	else
2595 		key->type = type;
2596 
2597 	if (persistent)
2598 		*persistent = hci_persistent_key(hdev, conn, type,
2599 						 old_key_type);
2600 
2601 	return key;
2602 }
2603 
2604 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2605 			    u8 addr_type, u8 type, u8 authenticated,
2606 			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2607 {
2608 	struct smp_ltk *key, *old_key;
2609 	u8 role = ltk_role(type);
2610 
2611 	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2612 	if (old_key)
2613 		key = old_key;
2614 	else {
2615 		key = kzalloc(sizeof(*key), GFP_KERNEL);
2616 		if (!key)
2617 			return NULL;
2618 		list_add_rcu(&key->list, &hdev->long_term_keys);
2619 	}
2620 
2621 	bacpy(&key->bdaddr, bdaddr);
2622 	key->bdaddr_type = addr_type;
2623 	memcpy(key->val, tk, sizeof(key->val));
2624 	key->authenticated = authenticated;
2625 	key->ediv = ediv;
2626 	key->rand = rand;
2627 	key->enc_size = enc_size;
2628 	key->type = type;
2629 
2630 	return key;
2631 }
2632 
2633 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2634 			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
2635 {
2636 	struct smp_irk *irk;
2637 
2638 	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2639 	if (!irk) {
2640 		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2641 		if (!irk)
2642 			return NULL;
2643 
2644 		bacpy(&irk->bdaddr, bdaddr);
2645 		irk->addr_type = addr_type;
2646 
2647 		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2648 	}
2649 
2650 	memcpy(irk->val, val, 16);
2651 	bacpy(&irk->rpa, rpa);
2652 
2653 	return irk;
2654 }
2655 
2656 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2657 {
2658 	struct link_key *key;
2659 
2660 	key = hci_find_link_key(hdev, bdaddr);
2661 	if (!key)
2662 		return -ENOENT;
2663 
2664 	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2665 
2666 	list_del_rcu(&key->list);
2667 	kfree_rcu(key, rcu);
2668 
2669 	return 0;
2670 }
2671 
2672 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2673 {
2674 	struct smp_ltk *k;
2675 	int removed = 0;
2676 
2677 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2678 		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2679 			continue;
2680 
2681 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2682 
2683 		list_del_rcu(&k->list);
2684 		kfree_rcu(k, rcu);
2685 		removed++;
2686 	}
2687 
2688 	return removed ? 0 : -ENOENT;
2689 }
2690 
2691 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2692 {
2693 	struct smp_irk *k;
2694 
2695 	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2696 		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2697 			continue;
2698 
2699 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2700 
2701 		list_del_rcu(&k->list);
2702 		kfree_rcu(k, rcu);
2703 	}
2704 }
2705 
2706 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2707 {
2708 	struct smp_ltk *k;
2709 	struct smp_irk *irk;
2710 	u8 addr_type;
2711 
2712 	if (type == BDADDR_BREDR) {
2713 		if (hci_find_link_key(hdev, bdaddr))
2714 			return true;
2715 		return false;
2716 	}
2717 
2718 	/* Convert to HCI addr type which struct smp_ltk uses */
2719 	if (type == BDADDR_LE_PUBLIC)
2720 		addr_type = ADDR_LE_DEV_PUBLIC;
2721 	else
2722 		addr_type = ADDR_LE_DEV_RANDOM;
2723 
2724 	irk = hci_get_irk(hdev, bdaddr, addr_type);
2725 	if (irk) {
2726 		bdaddr = &irk->bdaddr;
2727 		addr_type = irk->addr_type;
2728 	}
2729 
2730 	rcu_read_lock();
2731 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2732 		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2733 			rcu_read_unlock();
2734 			return true;
2735 		}
2736 	}
2737 	rcu_read_unlock();
2738 
2739 	return false;
2740 }
2741 
2742 /* HCI command timer function */
2743 static void hci_cmd_timeout(struct work_struct *work)
2744 {
2745 	struct hci_dev *hdev = container_of(work, struct hci_dev,
2746 					    cmd_timer.work);
2747 
2748 	if (hdev->sent_cmd) {
2749 		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2750 		u16 opcode = __le16_to_cpu(sent->opcode);
2751 
2752 		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
2753 	} else {
2754 		bt_dev_err(hdev, "command tx timeout");
2755 	}
2756 
2757 	if (hdev->cmd_timeout)
2758 		hdev->cmd_timeout(hdev);
2759 
2760 	atomic_set(&hdev->cmd_cnt, 1);
2761 	queue_work(hdev->workqueue, &hdev->cmd_work);
2762 }
2763 
2764 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2765 					  bdaddr_t *bdaddr, u8 bdaddr_type)
2766 {
2767 	struct oob_data *data;
2768 
2769 	list_for_each_entry(data, &hdev->remote_oob_data, list) {
2770 		if (bacmp(bdaddr, &data->bdaddr) != 0)
2771 			continue;
2772 		if (data->bdaddr_type != bdaddr_type)
2773 			continue;
2774 		return data;
2775 	}
2776 
2777 	return NULL;
2778 }
2779 
2780 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2781 			       u8 bdaddr_type)
2782 {
2783 	struct oob_data *data;
2784 
2785 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2786 	if (!data)
2787 		return -ENOENT;
2788 
2789 	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2790 
2791 	list_del(&data->list);
2792 	kfree(data);
2793 
2794 	return 0;
2795 }
2796 
2797 void hci_remote_oob_data_clear(struct hci_dev *hdev)
2798 {
2799 	struct oob_data *data, *n;
2800 
2801 	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2802 		list_del(&data->list);
2803 		kfree(data);
2804 	}
2805 }
2806 
2807 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2808 			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
2809 			    u8 *hash256, u8 *rand256)
2810 {
2811 	struct oob_data *data;
2812 
2813 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2814 	if (!data) {
2815 		data = kmalloc(sizeof(*data), GFP_KERNEL);
2816 		if (!data)
2817 			return -ENOMEM;
2818 
2819 		bacpy(&data->bdaddr, bdaddr);
2820 		data->bdaddr_type = bdaddr_type;
2821 		list_add(&data->list, &hdev->remote_oob_data);
2822 	}
2823 
2824 	if (hash192 && rand192) {
2825 		memcpy(data->hash192, hash192, sizeof(data->hash192));
2826 		memcpy(data->rand192, rand192, sizeof(data->rand192));
2827 		if (hash256 && rand256)
2828 			data->present = 0x03;
2829 	} else {
2830 		memset(data->hash192, 0, sizeof(data->hash192));
2831 		memset(data->rand192, 0, sizeof(data->rand192));
2832 		if (hash256 && rand256)
2833 			data->present = 0x02;
2834 		else
2835 			data->present = 0x00;
2836 	}
2837 
2838 	if (hash256 && rand256) {
2839 		memcpy(data->hash256, hash256, sizeof(data->hash256));
2840 		memcpy(data->rand256, rand256, sizeof(data->rand256));
2841 	} else {
2842 		memset(data->hash256, 0, sizeof(data->hash256));
2843 		memset(data->rand256, 0, sizeof(data->rand256));
2844 		if (hash192 && rand192)
2845 			data->present = 0x01;
2846 	}
2847 
2848 	BT_DBG("%s for %pMR", hdev->name, bdaddr);
2849 
2850 	return 0;
2851 }
2852 
2853 /* This function requires the caller holds hdev->lock */
2854 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2855 {
2856 	struct adv_info *adv_instance;
2857 
2858 	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2859 		if (adv_instance->instance == instance)
2860 			return adv_instance;
2861 	}
2862 
2863 	return NULL;
2864 }
2865 
2866 /* This function requires the caller holds hdev->lock */
2867 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2868 {
2869 	struct adv_info *cur_instance;
2870 
2871 	cur_instance = hci_find_adv_instance(hdev, instance);
2872 	if (!cur_instance)
2873 		return NULL;
2874 
2875 	if (cur_instance == list_last_entry(&hdev->adv_instances,
2876 					    struct adv_info, list))
2877 		return list_first_entry(&hdev->adv_instances,
2878 						 struct adv_info, list);
2879 	else
2880 		return list_next_entry(cur_instance, list);
2881 }
2882 
2883 /* This function requires the caller holds hdev->lock */
2884 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2885 {
2886 	struct adv_info *adv_instance;
2887 
2888 	adv_instance = hci_find_adv_instance(hdev, instance);
2889 	if (!adv_instance)
2890 		return -ENOENT;
2891 
2892 	BT_DBG("%s removing %dMR", hdev->name, instance);
2893 
2894 	if (hdev->cur_adv_instance == instance) {
2895 		if (hdev->adv_instance_timeout) {
2896 			cancel_delayed_work(&hdev->adv_instance_expire);
2897 			hdev->adv_instance_timeout = 0;
2898 		}
2899 		hdev->cur_adv_instance = 0x00;
2900 	}
2901 
2902 	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2903 
2904 	list_del(&adv_instance->list);
2905 	kfree(adv_instance);
2906 
2907 	hdev->adv_instance_cnt--;
2908 
2909 	return 0;
2910 }
2911 
2912 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
2913 {
2914 	struct adv_info *adv_instance, *n;
2915 
2916 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
2917 		adv_instance->rpa_expired = rpa_expired;
2918 }
2919 
2920 /* This function requires the caller holds hdev->lock */
2921 void hci_adv_instances_clear(struct hci_dev *hdev)
2922 {
2923 	struct adv_info *adv_instance, *n;
2924 
2925 	if (hdev->adv_instance_timeout) {
2926 		cancel_delayed_work(&hdev->adv_instance_expire);
2927 		hdev->adv_instance_timeout = 0;
2928 	}
2929 
2930 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2931 		cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2932 		list_del(&adv_instance->list);
2933 		kfree(adv_instance);
2934 	}
2935 
2936 	hdev->adv_instance_cnt = 0;
2937 	hdev->cur_adv_instance = 0x00;
2938 }
2939 
2940 static void adv_instance_rpa_expired(struct work_struct *work)
2941 {
2942 	struct adv_info *adv_instance = container_of(work, struct adv_info,
2943 						     rpa_expired_cb.work);
2944 
2945 	BT_DBG("");
2946 
2947 	adv_instance->rpa_expired = true;
2948 }
2949 
2950 /* This function requires the caller holds hdev->lock */
2951 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2952 			 u16 adv_data_len, u8 *adv_data,
2953 			 u16 scan_rsp_len, u8 *scan_rsp_data,
2954 			 u16 timeout, u16 duration)
2955 {
2956 	struct adv_info *adv_instance;
2957 
2958 	adv_instance = hci_find_adv_instance(hdev, instance);
2959 	if (adv_instance) {
2960 		memset(adv_instance->adv_data, 0,
2961 		       sizeof(adv_instance->adv_data));
2962 		memset(adv_instance->scan_rsp_data, 0,
2963 		       sizeof(adv_instance->scan_rsp_data));
2964 	} else {
2965 		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
2966 		    instance < 1 || instance > hdev->le_num_of_adv_sets)
2967 			return -EOVERFLOW;
2968 
2969 		adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2970 		if (!adv_instance)
2971 			return -ENOMEM;
2972 
2973 		adv_instance->pending = true;
2974 		adv_instance->instance = instance;
2975 		list_add(&adv_instance->list, &hdev->adv_instances);
2976 		hdev->adv_instance_cnt++;
2977 	}
2978 
2979 	adv_instance->flags = flags;
2980 	adv_instance->adv_data_len = adv_data_len;
2981 	adv_instance->scan_rsp_len = scan_rsp_len;
2982 
2983 	if (adv_data_len)
2984 		memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2985 
2986 	if (scan_rsp_len)
2987 		memcpy(adv_instance->scan_rsp_data,
2988 		       scan_rsp_data, scan_rsp_len);
2989 
2990 	adv_instance->timeout = timeout;
2991 	adv_instance->remaining_time = timeout;
2992 
2993 	if (duration == 0)
2994 		adv_instance->duration = hdev->def_multi_adv_rotation_duration;
2995 	else
2996 		adv_instance->duration = duration;
2997 
2998 	adv_instance->tx_power = HCI_TX_POWER_INVALID;
2999 
3000 	INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb,
3001 			  adv_instance_rpa_expired);
3002 
3003 	BT_DBG("%s for %dMR", hdev->name, instance);
3004 
3005 	return 0;
3006 }
3007 
3008 /* This function requires the caller holds hdev->lock */
3009 void hci_adv_monitors_clear(struct hci_dev *hdev)
3010 {
3011 	struct adv_monitor *monitor;
3012 	int handle;
3013 
3014 	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
3015 		hci_free_adv_monitor(monitor);
3016 
3017 	idr_destroy(&hdev->adv_monitors_idr);
3018 }
3019 
3020 void hci_free_adv_monitor(struct adv_monitor *monitor)
3021 {
3022 	struct adv_pattern *pattern;
3023 	struct adv_pattern *tmp;
3024 
3025 	if (!monitor)
3026 		return;
3027 
3028 	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list)
3029 		kfree(pattern);
3030 
3031 	kfree(monitor);
3032 }
3033 
3034 /* This function requires the caller holds hdev->lock */
3035 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
3036 {
3037 	int min, max, handle;
3038 
3039 	if (!monitor)
3040 		return -EINVAL;
3041 
3042 	min = HCI_MIN_ADV_MONITOR_HANDLE;
3043 	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
3044 	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
3045 			   GFP_KERNEL);
3046 	if (handle < 0)
3047 		return handle;
3048 
3049 	hdev->adv_monitors_cnt++;
3050 	monitor->handle = handle;
3051 
3052 	hci_update_background_scan(hdev);
3053 
3054 	return 0;
3055 }
3056 
3057 static int free_adv_monitor(int id, void *ptr, void *data)
3058 {
3059 	struct hci_dev *hdev = data;
3060 	struct adv_monitor *monitor = ptr;
3061 
3062 	idr_remove(&hdev->adv_monitors_idr, monitor->handle);
3063 	hci_free_adv_monitor(monitor);
3064 	hdev->adv_monitors_cnt--;
3065 
3066 	return 0;
3067 }
3068 
3069 /* This function requires the caller holds hdev->lock */
3070 int hci_remove_adv_monitor(struct hci_dev *hdev, u16 handle)
3071 {
3072 	struct adv_monitor *monitor;
3073 
3074 	if (handle) {
3075 		monitor = idr_find(&hdev->adv_monitors_idr, handle);
3076 		if (!monitor)
3077 			return -ENOENT;
3078 
3079 		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
3080 		hci_free_adv_monitor(monitor);
3081 		hdev->adv_monitors_cnt--;
3082 	} else {
3083 		/* Remove all monitors if handle is 0. */
3084 		idr_for_each(&hdev->adv_monitors_idr, &free_adv_monitor, hdev);
3085 	}
3086 
3087 	hci_update_background_scan(hdev);
3088 
3089 	return 0;
3090 }
3091 
3092 /* This function requires the caller holds hdev->lock */
3093 bool hci_is_adv_monitoring(struct hci_dev *hdev)
3094 {
3095 	return !idr_is_empty(&hdev->adv_monitors_idr);
3096 }
3097 
3098 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
3099 					 bdaddr_t *bdaddr, u8 type)
3100 {
3101 	struct bdaddr_list *b;
3102 
3103 	list_for_each_entry(b, bdaddr_list, list) {
3104 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3105 			return b;
3106 	}
3107 
3108 	return NULL;
3109 }
3110 
3111 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
3112 				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
3113 				u8 type)
3114 {
3115 	struct bdaddr_list_with_irk *b;
3116 
3117 	list_for_each_entry(b, bdaddr_list, list) {
3118 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3119 			return b;
3120 	}
3121 
3122 	return NULL;
3123 }
3124 
3125 struct bdaddr_list_with_flags *
3126 hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
3127 				  bdaddr_t *bdaddr, u8 type)
3128 {
3129 	struct bdaddr_list_with_flags *b;
3130 
3131 	list_for_each_entry(b, bdaddr_list, list) {
3132 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3133 			return b;
3134 	}
3135 
3136 	return NULL;
3137 }
3138 
3139 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
3140 {
3141 	struct bdaddr_list *b, *n;
3142 
3143 	list_for_each_entry_safe(b, n, bdaddr_list, list) {
3144 		list_del(&b->list);
3145 		kfree(b);
3146 	}
3147 }
3148 
3149 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3150 {
3151 	struct bdaddr_list *entry;
3152 
3153 	if (!bacmp(bdaddr, BDADDR_ANY))
3154 		return -EBADF;
3155 
3156 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
3157 		return -EEXIST;
3158 
3159 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3160 	if (!entry)
3161 		return -ENOMEM;
3162 
3163 	bacpy(&entry->bdaddr, bdaddr);
3164 	entry->bdaddr_type = type;
3165 
3166 	list_add(&entry->list, list);
3167 
3168 	return 0;
3169 }
3170 
3171 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3172 					u8 type, u8 *peer_irk, u8 *local_irk)
3173 {
3174 	struct bdaddr_list_with_irk *entry;
3175 
3176 	if (!bacmp(bdaddr, BDADDR_ANY))
3177 		return -EBADF;
3178 
3179 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
3180 		return -EEXIST;
3181 
3182 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3183 	if (!entry)
3184 		return -ENOMEM;
3185 
3186 	bacpy(&entry->bdaddr, bdaddr);
3187 	entry->bdaddr_type = type;
3188 
3189 	if (peer_irk)
3190 		memcpy(entry->peer_irk, peer_irk, 16);
3191 
3192 	if (local_irk)
3193 		memcpy(entry->local_irk, local_irk, 16);
3194 
3195 	list_add(&entry->list, list);
3196 
3197 	return 0;
3198 }
3199 
3200 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3201 				   u8 type, u32 flags)
3202 {
3203 	struct bdaddr_list_with_flags *entry;
3204 
3205 	if (!bacmp(bdaddr, BDADDR_ANY))
3206 		return -EBADF;
3207 
3208 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
3209 		return -EEXIST;
3210 
3211 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3212 	if (!entry)
3213 		return -ENOMEM;
3214 
3215 	bacpy(&entry->bdaddr, bdaddr);
3216 	entry->bdaddr_type = type;
3217 	entry->current_flags = flags;
3218 
3219 	list_add(&entry->list, list);
3220 
3221 	return 0;
3222 }
3223 
3224 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3225 {
3226 	struct bdaddr_list *entry;
3227 
3228 	if (!bacmp(bdaddr, BDADDR_ANY)) {
3229 		hci_bdaddr_list_clear(list);
3230 		return 0;
3231 	}
3232 
3233 	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
3234 	if (!entry)
3235 		return -ENOENT;
3236 
3237 	list_del(&entry->list);
3238 	kfree(entry);
3239 
3240 	return 0;
3241 }
3242 
3243 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3244 							u8 type)
3245 {
3246 	struct bdaddr_list_with_irk *entry;
3247 
3248 	if (!bacmp(bdaddr, BDADDR_ANY)) {
3249 		hci_bdaddr_list_clear(list);
3250 		return 0;
3251 	}
3252 
3253 	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
3254 	if (!entry)
3255 		return -ENOENT;
3256 
3257 	list_del(&entry->list);
3258 	kfree(entry);
3259 
3260 	return 0;
3261 }
3262 
3263 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3264 				   u8 type)
3265 {
3266 	struct bdaddr_list_with_flags *entry;
3267 
3268 	if (!bacmp(bdaddr, BDADDR_ANY)) {
3269 		hci_bdaddr_list_clear(list);
3270 		return 0;
3271 	}
3272 
3273 	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
3274 	if (!entry)
3275 		return -ENOENT;
3276 
3277 	list_del(&entry->list);
3278 	kfree(entry);
3279 
3280 	return 0;
3281 }
3282 
3283 /* This function requires the caller holds hdev->lock */
3284 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3285 					       bdaddr_t *addr, u8 addr_type)
3286 {
3287 	struct hci_conn_params *params;
3288 
3289 	list_for_each_entry(params, &hdev->le_conn_params, list) {
3290 		if (bacmp(&params->addr, addr) == 0 &&
3291 		    params->addr_type == addr_type) {
3292 			return params;
3293 		}
3294 	}
3295 
3296 	return NULL;
3297 }
3298 
3299 /* This function requires the caller holds hdev->lock */
3300 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
3301 						  bdaddr_t *addr, u8 addr_type)
3302 {
3303 	struct hci_conn_params *param;
3304 
3305 	switch (addr_type) {
3306 	case ADDR_LE_DEV_PUBLIC_RESOLVED:
3307 		addr_type = ADDR_LE_DEV_PUBLIC;
3308 		break;
3309 	case ADDR_LE_DEV_RANDOM_RESOLVED:
3310 		addr_type = ADDR_LE_DEV_RANDOM;
3311 		break;
3312 	}
3313 
3314 	list_for_each_entry(param, list, action) {
3315 		if (bacmp(&param->addr, addr) == 0 &&
3316 		    param->addr_type == addr_type)
3317 			return param;
3318 	}
3319 
3320 	return NULL;
3321 }
3322 
3323 /* This function requires the caller holds hdev->lock */
3324 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
3325 					    bdaddr_t *addr, u8 addr_type)
3326 {
3327 	struct hci_conn_params *params;
3328 
3329 	params = hci_conn_params_lookup(hdev, addr, addr_type);
3330 	if (params)
3331 		return params;
3332 
3333 	params = kzalloc(sizeof(*params), GFP_KERNEL);
3334 	if (!params) {
3335 		bt_dev_err(hdev, "out of memory");
3336 		return NULL;
3337 	}
3338 
3339 	bacpy(&params->addr, addr);
3340 	params->addr_type = addr_type;
3341 
3342 	list_add(&params->list, &hdev->le_conn_params);
3343 	INIT_LIST_HEAD(&params->action);
3344 
3345 	params->conn_min_interval = hdev->le_conn_min_interval;
3346 	params->conn_max_interval = hdev->le_conn_max_interval;
3347 	params->conn_latency = hdev->le_conn_latency;
3348 	params->supervision_timeout = hdev->le_supv_timeout;
3349 	params->auto_connect = HCI_AUTO_CONN_DISABLED;
3350 
3351 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3352 
3353 	return params;
3354 }
3355 
3356 static void hci_conn_params_free(struct hci_conn_params *params)
3357 {
3358 	if (params->conn) {
3359 		hci_conn_drop(params->conn);
3360 		hci_conn_put(params->conn);
3361 	}
3362 
3363 	list_del(&params->action);
3364 	list_del(&params->list);
3365 	kfree(params);
3366 }
3367 
3368 /* This function requires the caller holds hdev->lock */
3369 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3370 {
3371 	struct hci_conn_params *params;
3372 
3373 	params = hci_conn_params_lookup(hdev, addr, addr_type);
3374 	if (!params)
3375 		return;
3376 
3377 	hci_conn_params_free(params);
3378 
3379 	hci_update_background_scan(hdev);
3380 
3381 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
3382 }
3383 
3384 /* This function requires the caller holds hdev->lock */
3385 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
3386 {
3387 	struct hci_conn_params *params, *tmp;
3388 
3389 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3390 		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
3391 			continue;
3392 
3393 		/* If trying to estabilish one time connection to disabled
3394 		 * device, leave the params, but mark them as just once.
3395 		 */
3396 		if (params->explicit_connect) {
3397 			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
3398 			continue;
3399 		}
3400 
3401 		list_del(&params->list);
3402 		kfree(params);
3403 	}
3404 
3405 	BT_DBG("All LE disabled connection parameters were removed");
3406 }
3407 
3408 /* This function requires the caller holds hdev->lock */
3409 static void hci_conn_params_clear_all(struct hci_dev *hdev)
3410 {
3411 	struct hci_conn_params *params, *tmp;
3412 
3413 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
3414 		hci_conn_params_free(params);
3415 
3416 	BT_DBG("All LE connection parameters were removed");
3417 }
3418 
3419 /* Copy the Identity Address of the controller.
3420  *
3421  * If the controller has a public BD_ADDR, then by default use that one.
3422  * If this is a LE only controller without a public address, default to
3423  * the static random address.
3424  *
3425  * For debugging purposes it is possible to force controllers with a
3426  * public address to use the static random address instead.
3427  *
3428  * In case BR/EDR has been disabled on a dual-mode controller and
3429  * userspace has configured a static address, then that address
3430  * becomes the identity address instead of the public BR/EDR address.
3431  */
3432 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3433 			       u8 *bdaddr_type)
3434 {
3435 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3436 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
3437 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
3438 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
3439 		bacpy(bdaddr, &hdev->static_addr);
3440 		*bdaddr_type = ADDR_LE_DEV_RANDOM;
3441 	} else {
3442 		bacpy(bdaddr, &hdev->bdaddr);
3443 		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
3444 	}
3445 }
3446 
3447 static void hci_suspend_clear_tasks(struct hci_dev *hdev)
3448 {
3449 	int i;
3450 
3451 	for (i = 0; i < __SUSPEND_NUM_TASKS; i++)
3452 		clear_bit(i, hdev->suspend_tasks);
3453 
3454 	wake_up(&hdev->suspend_wait_q);
3455 }
3456 
3457 static int hci_suspend_wait_event(struct hci_dev *hdev)
3458 {
3459 #define WAKE_COND                                                              \
3460 	(find_first_bit(hdev->suspend_tasks, __SUSPEND_NUM_TASKS) ==           \
3461 	 __SUSPEND_NUM_TASKS)
3462 
3463 	int i;
3464 	int ret = wait_event_timeout(hdev->suspend_wait_q,
3465 				     WAKE_COND, SUSPEND_NOTIFIER_TIMEOUT);
3466 
3467 	if (ret == 0) {
3468 		bt_dev_err(hdev, "Timed out waiting for suspend events");
3469 		for (i = 0; i < __SUSPEND_NUM_TASKS; ++i) {
3470 			if (test_bit(i, hdev->suspend_tasks))
3471 				bt_dev_err(hdev, "Suspend timeout bit: %d", i);
3472 			clear_bit(i, hdev->suspend_tasks);
3473 		}
3474 
3475 		ret = -ETIMEDOUT;
3476 	} else {
3477 		ret = 0;
3478 	}
3479 
3480 	return ret;
3481 }
3482 
3483 static void hci_prepare_suspend(struct work_struct *work)
3484 {
3485 	struct hci_dev *hdev =
3486 		container_of(work, struct hci_dev, suspend_prepare);
3487 
3488 	hci_dev_lock(hdev);
3489 	hci_req_prepare_suspend(hdev, hdev->suspend_state_next);
3490 	hci_dev_unlock(hdev);
3491 }
3492 
3493 static int hci_change_suspend_state(struct hci_dev *hdev,
3494 				    enum suspended_state next)
3495 {
3496 	hdev->suspend_state_next = next;
3497 	set_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks);
3498 	queue_work(hdev->req_workqueue, &hdev->suspend_prepare);
3499 	return hci_suspend_wait_event(hdev);
3500 }
3501 
3502 static void hci_clear_wake_reason(struct hci_dev *hdev)
3503 {
3504 	hci_dev_lock(hdev);
3505 
3506 	hdev->wake_reason = 0;
3507 	bacpy(&hdev->wake_addr, BDADDR_ANY);
3508 	hdev->wake_addr_type = 0;
3509 
3510 	hci_dev_unlock(hdev);
3511 }
3512 
3513 static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
3514 				void *data)
3515 {
3516 	struct hci_dev *hdev =
3517 		container_of(nb, struct hci_dev, suspend_notifier);
3518 	int ret = 0;
3519 	u8 state = BT_RUNNING;
3520 
3521 	/* If powering down, wait for completion. */
3522 	if (mgmt_powering_down(hdev)) {
3523 		set_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks);
3524 		ret = hci_suspend_wait_event(hdev);
3525 		if (ret)
3526 			goto done;
3527 	}
3528 
3529 	/* Suspend notifier should only act on events when powered. */
3530 	if (!hdev_is_powered(hdev))
3531 		goto done;
3532 
3533 	if (action == PM_SUSPEND_PREPARE) {
3534 		/* Suspend consists of two actions:
3535 		 *  - First, disconnect everything and make the controller not
3536 		 *    connectable (disabling scanning)
3537 		 *  - Second, program event filter/whitelist and enable scan
3538 		 */
3539 		ret = hci_change_suspend_state(hdev, BT_SUSPEND_DISCONNECT);
3540 		if (!ret)
3541 			state = BT_SUSPEND_DISCONNECT;
3542 
3543 		/* Only configure whitelist if disconnect succeeded and wake
3544 		 * isn't being prevented.
3545 		 */
3546 		if (!ret && !(hdev->prevent_wake && hdev->prevent_wake(hdev))) {
3547 			ret = hci_change_suspend_state(hdev,
3548 						BT_SUSPEND_CONFIGURE_WAKE);
3549 			if (!ret)
3550 				state = BT_SUSPEND_CONFIGURE_WAKE;
3551 		}
3552 
3553 		hci_clear_wake_reason(hdev);
3554 		mgmt_suspending(hdev, state);
3555 
3556 	} else if (action == PM_POST_SUSPEND) {
3557 		ret = hci_change_suspend_state(hdev, BT_RUNNING);
3558 
3559 		mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
3560 			      hdev->wake_addr_type);
3561 	}
3562 
3563 done:
3564 	/* We always allow suspend even if suspend preparation failed and
3565 	 * attempt to recover in resume.
3566 	 */
3567 	if (ret)
3568 		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
3569 			   action, ret);
3570 
3571 	return NOTIFY_DONE;
3572 }
3573 
3574 /* Alloc HCI device */
3575 struct hci_dev *hci_alloc_dev(void)
3576 {
3577 	struct hci_dev *hdev;
3578 
3579 	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
3580 	if (!hdev)
3581 		return NULL;
3582 
3583 	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3584 	hdev->esco_type = (ESCO_HV1);
3585 	hdev->link_mode = (HCI_LM_ACCEPT);
3586 	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
3587 	hdev->io_capability = 0x03;	/* No Input No Output */
3588 	hdev->manufacturer = 0xffff;	/* Default to internal use */
3589 	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3590 	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3591 	hdev->adv_instance_cnt = 0;
3592 	hdev->cur_adv_instance = 0x00;
3593 	hdev->adv_instance_timeout = 0;
3594 
3595 	hdev->sniff_max_interval = 800;
3596 	hdev->sniff_min_interval = 80;
3597 
3598 	hdev->le_adv_channel_map = 0x07;
3599 	hdev->le_adv_min_interval = 0x0800;
3600 	hdev->le_adv_max_interval = 0x0800;
3601 	hdev->le_scan_interval = 0x0060;
3602 	hdev->le_scan_window = 0x0030;
3603 	hdev->le_scan_int_suspend = 0x0400;
3604 	hdev->le_scan_window_suspend = 0x0012;
3605 	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
3606 	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
3607 	hdev->le_scan_int_connect = 0x0060;
3608 	hdev->le_scan_window_connect = 0x0060;
3609 	hdev->le_conn_min_interval = 0x0018;
3610 	hdev->le_conn_max_interval = 0x0028;
3611 	hdev->le_conn_latency = 0x0000;
3612 	hdev->le_supv_timeout = 0x002a;
3613 	hdev->le_def_tx_len = 0x001b;
3614 	hdev->le_def_tx_time = 0x0148;
3615 	hdev->le_max_tx_len = 0x001b;
3616 	hdev->le_max_tx_time = 0x0148;
3617 	hdev->le_max_rx_len = 0x001b;
3618 	hdev->le_max_rx_time = 0x0148;
3619 	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
3620 	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
3621 	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
3622 	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
3623 	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
3624 	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
3625 	hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
3626 
3627 	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3628 	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3629 	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3630 	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3631 	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
3632 	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
3633 
3634 	/* default 1.28 sec page scan */
3635 	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
3636 	hdev->def_page_scan_int = 0x0800;
3637 	hdev->def_page_scan_window = 0x0012;
3638 
3639 	mutex_init(&hdev->lock);
3640 	mutex_init(&hdev->req_lock);
3641 
3642 	INIT_LIST_HEAD(&hdev->mgmt_pending);
3643 	INIT_LIST_HEAD(&hdev->blacklist);
3644 	INIT_LIST_HEAD(&hdev->whitelist);
3645 	INIT_LIST_HEAD(&hdev->uuids);
3646 	INIT_LIST_HEAD(&hdev->link_keys);
3647 	INIT_LIST_HEAD(&hdev->long_term_keys);
3648 	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3649 	INIT_LIST_HEAD(&hdev->remote_oob_data);
3650 	INIT_LIST_HEAD(&hdev->le_white_list);
3651 	INIT_LIST_HEAD(&hdev->le_resolv_list);
3652 	INIT_LIST_HEAD(&hdev->le_conn_params);
3653 	INIT_LIST_HEAD(&hdev->pend_le_conns);
3654 	INIT_LIST_HEAD(&hdev->pend_le_reports);
3655 	INIT_LIST_HEAD(&hdev->conn_hash.list);
3656 	INIT_LIST_HEAD(&hdev->adv_instances);
3657 	INIT_LIST_HEAD(&hdev->blocked_keys);
3658 
3659 	INIT_WORK(&hdev->rx_work, hci_rx_work);
3660 	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3661 	INIT_WORK(&hdev->tx_work, hci_tx_work);
3662 	INIT_WORK(&hdev->power_on, hci_power_on);
3663 	INIT_WORK(&hdev->error_reset, hci_error_reset);
3664 	INIT_WORK(&hdev->suspend_prepare, hci_prepare_suspend);
3665 
3666 	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3667 
3668 	skb_queue_head_init(&hdev->rx_q);
3669 	skb_queue_head_init(&hdev->cmd_q);
3670 	skb_queue_head_init(&hdev->raw_q);
3671 
3672 	init_waitqueue_head(&hdev->req_wait_q);
3673 	init_waitqueue_head(&hdev->suspend_wait_q);
3674 
3675 	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3676 
3677 	hci_request_setup(hdev);
3678 
3679 	hci_init_sysfs(hdev);
3680 	discovery_init(hdev);
3681 
3682 	return hdev;
3683 }
3684 EXPORT_SYMBOL(hci_alloc_dev);
3685 
3686 /* Free HCI device */
3687 void hci_free_dev(struct hci_dev *hdev)
3688 {
3689 	/* will free via device release */
3690 	put_device(&hdev->dev);
3691 }
3692 EXPORT_SYMBOL(hci_free_dev);
3693 
3694 /* Register HCI device */
3695 int hci_register_dev(struct hci_dev *hdev)
3696 {
3697 	int id, error;
3698 
3699 	if (!hdev->open || !hdev->close || !hdev->send)
3700 		return -EINVAL;
3701 
3702 	/* Do not allow HCI_AMP devices to register at index 0,
3703 	 * so the index can be used as the AMP controller ID.
3704 	 */
3705 	switch (hdev->dev_type) {
3706 	case HCI_PRIMARY:
3707 		id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3708 		break;
3709 	case HCI_AMP:
3710 		id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3711 		break;
3712 	default:
3713 		return -EINVAL;
3714 	}
3715 
3716 	if (id < 0)
3717 		return id;
3718 
3719 	sprintf(hdev->name, "hci%d", id);
3720 	hdev->id = id;
3721 
3722 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3723 
3724 	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
3725 	if (!hdev->workqueue) {
3726 		error = -ENOMEM;
3727 		goto err;
3728 	}
3729 
3730 	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3731 						      hdev->name);
3732 	if (!hdev->req_workqueue) {
3733 		destroy_workqueue(hdev->workqueue);
3734 		error = -ENOMEM;
3735 		goto err;
3736 	}
3737 
3738 	if (!IS_ERR_OR_NULL(bt_debugfs))
3739 		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3740 
3741 	dev_set_name(&hdev->dev, "%s", hdev->name);
3742 
3743 	error = device_add(&hdev->dev);
3744 	if (error < 0)
3745 		goto err_wqueue;
3746 
3747 	hci_leds_init(hdev);
3748 
3749 	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3750 				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3751 				    hdev);
3752 	if (hdev->rfkill) {
3753 		if (rfkill_register(hdev->rfkill) < 0) {
3754 			rfkill_destroy(hdev->rfkill);
3755 			hdev->rfkill = NULL;
3756 		}
3757 	}
3758 
3759 	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3760 		hci_dev_set_flag(hdev, HCI_RFKILLED);
3761 
3762 	hci_dev_set_flag(hdev, HCI_SETUP);
3763 	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3764 
3765 	if (hdev->dev_type == HCI_PRIMARY) {
3766 		/* Assume BR/EDR support until proven otherwise (such as
3767 		 * through reading supported features during init.
3768 		 */
3769 		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3770 	}
3771 
3772 	write_lock(&hci_dev_list_lock);
3773 	list_add(&hdev->list, &hci_dev_list);
3774 	write_unlock(&hci_dev_list_lock);
3775 
3776 	/* Devices that are marked for raw-only usage are unconfigured
3777 	 * and should not be included in normal operation.
3778 	 */
3779 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3780 		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3781 
3782 	hci_sock_dev_event(hdev, HCI_DEV_REG);
3783 	hci_dev_hold(hdev);
3784 
3785 	hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
3786 	error = register_pm_notifier(&hdev->suspend_notifier);
3787 	if (error)
3788 		goto err_wqueue;
3789 
3790 	queue_work(hdev->req_workqueue, &hdev->power_on);
3791 
3792 	idr_init(&hdev->adv_monitors_idr);
3793 
3794 	return id;
3795 
3796 err_wqueue:
3797 	destroy_workqueue(hdev->workqueue);
3798 	destroy_workqueue(hdev->req_workqueue);
3799 err:
3800 	ida_simple_remove(&hci_index_ida, hdev->id);
3801 
3802 	return error;
3803 }
3804 EXPORT_SYMBOL(hci_register_dev);
3805 
3806 /* Unregister HCI device */
3807 void hci_unregister_dev(struct hci_dev *hdev)
3808 {
3809 	int id;
3810 
3811 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3812 
3813 	hci_dev_set_flag(hdev, HCI_UNREGISTER);
3814 
3815 	id = hdev->id;
3816 
3817 	write_lock(&hci_dev_list_lock);
3818 	list_del(&hdev->list);
3819 	write_unlock(&hci_dev_list_lock);
3820 
3821 	cancel_work_sync(&hdev->power_on);
3822 
3823 	hci_suspend_clear_tasks(hdev);
3824 	unregister_pm_notifier(&hdev->suspend_notifier);
3825 	cancel_work_sync(&hdev->suspend_prepare);
3826 
3827 	hci_dev_do_close(hdev);
3828 
3829 	if (!test_bit(HCI_INIT, &hdev->flags) &&
3830 	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
3831 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3832 		hci_dev_lock(hdev);
3833 		mgmt_index_removed(hdev);
3834 		hci_dev_unlock(hdev);
3835 	}
3836 
3837 	/* mgmt_index_removed should take care of emptying the
3838 	 * pending list */
3839 	BUG_ON(!list_empty(&hdev->mgmt_pending));
3840 
3841 	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3842 
3843 	if (hdev->rfkill) {
3844 		rfkill_unregister(hdev->rfkill);
3845 		rfkill_destroy(hdev->rfkill);
3846 	}
3847 
3848 	device_del(&hdev->dev);
3849 
3850 	debugfs_remove_recursive(hdev->debugfs);
3851 	kfree_const(hdev->hw_info);
3852 	kfree_const(hdev->fw_info);
3853 
3854 	destroy_workqueue(hdev->workqueue);
3855 	destroy_workqueue(hdev->req_workqueue);
3856 
3857 	hci_dev_lock(hdev);
3858 	hci_bdaddr_list_clear(&hdev->blacklist);
3859 	hci_bdaddr_list_clear(&hdev->whitelist);
3860 	hci_uuids_clear(hdev);
3861 	hci_link_keys_clear(hdev);
3862 	hci_smp_ltks_clear(hdev);
3863 	hci_smp_irks_clear(hdev);
3864 	hci_remote_oob_data_clear(hdev);
3865 	hci_adv_instances_clear(hdev);
3866 	hci_adv_monitors_clear(hdev);
3867 	hci_bdaddr_list_clear(&hdev->le_white_list);
3868 	hci_bdaddr_list_clear(&hdev->le_resolv_list);
3869 	hci_conn_params_clear_all(hdev);
3870 	hci_discovery_filter_clear(hdev);
3871 	hci_blocked_keys_clear(hdev);
3872 	hci_dev_unlock(hdev);
3873 
3874 	hci_dev_put(hdev);
3875 
3876 	ida_simple_remove(&hci_index_ida, id);
3877 }
3878 EXPORT_SYMBOL(hci_unregister_dev);
3879 
3880 /* Suspend HCI device */
3881 int hci_suspend_dev(struct hci_dev *hdev)
3882 {
3883 	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3884 	return 0;
3885 }
3886 EXPORT_SYMBOL(hci_suspend_dev);
3887 
3888 /* Resume HCI device */
3889 int hci_resume_dev(struct hci_dev *hdev)
3890 {
3891 	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3892 	return 0;
3893 }
3894 EXPORT_SYMBOL(hci_resume_dev);
3895 
3896 /* Reset HCI device */
3897 int hci_reset_dev(struct hci_dev *hdev)
3898 {
3899 	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3900 	struct sk_buff *skb;
3901 
3902 	skb = bt_skb_alloc(3, GFP_ATOMIC);
3903 	if (!skb)
3904 		return -ENOMEM;
3905 
3906 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3907 	skb_put_data(skb, hw_err, 3);
3908 
3909 	/* Send Hardware Error to upper stack */
3910 	return hci_recv_frame(hdev, skb);
3911 }
3912 EXPORT_SYMBOL(hci_reset_dev);
3913 
3914 /* Receive frame from HCI drivers */
3915 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3916 {
3917 	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3918 		      && !test_bit(HCI_INIT, &hdev->flags))) {
3919 		kfree_skb(skb);
3920 		return -ENXIO;
3921 	}
3922 
3923 	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3924 	    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3925 	    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
3926 	    hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
3927 		kfree_skb(skb);
3928 		return -EINVAL;
3929 	}
3930 
3931 	/* Incoming skb */
3932 	bt_cb(skb)->incoming = 1;
3933 
3934 	/* Time stamp */
3935 	__net_timestamp(skb);
3936 
3937 	skb_queue_tail(&hdev->rx_q, skb);
3938 	queue_work(hdev->workqueue, &hdev->rx_work);
3939 
3940 	return 0;
3941 }
3942 EXPORT_SYMBOL(hci_recv_frame);
3943 
3944 /* Receive diagnostic message from HCI drivers */
3945 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3946 {
3947 	/* Mark as diagnostic packet */
3948 	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3949 
3950 	/* Time stamp */
3951 	__net_timestamp(skb);
3952 
3953 	skb_queue_tail(&hdev->rx_q, skb);
3954 	queue_work(hdev->workqueue, &hdev->rx_work);
3955 
3956 	return 0;
3957 }
3958 EXPORT_SYMBOL(hci_recv_diag);
3959 
3960 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3961 {
3962 	va_list vargs;
3963 
3964 	va_start(vargs, fmt);
3965 	kfree_const(hdev->hw_info);
3966 	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3967 	va_end(vargs);
3968 }
3969 EXPORT_SYMBOL(hci_set_hw_info);
3970 
3971 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3972 {
3973 	va_list vargs;
3974 
3975 	va_start(vargs, fmt);
3976 	kfree_const(hdev->fw_info);
3977 	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3978 	va_end(vargs);
3979 }
3980 EXPORT_SYMBOL(hci_set_fw_info);
3981 
3982 /* ---- Interface to upper protocols ---- */
3983 
3984 int hci_register_cb(struct hci_cb *cb)
3985 {
3986 	BT_DBG("%p name %s", cb, cb->name);
3987 
3988 	mutex_lock(&hci_cb_list_lock);
3989 	list_add_tail(&cb->list, &hci_cb_list);
3990 	mutex_unlock(&hci_cb_list_lock);
3991 
3992 	return 0;
3993 }
3994 EXPORT_SYMBOL(hci_register_cb);
3995 
3996 int hci_unregister_cb(struct hci_cb *cb)
3997 {
3998 	BT_DBG("%p name %s", cb, cb->name);
3999 
4000 	mutex_lock(&hci_cb_list_lock);
4001 	list_del(&cb->list);
4002 	mutex_unlock(&hci_cb_list_lock);
4003 
4004 	return 0;
4005 }
4006 EXPORT_SYMBOL(hci_unregister_cb);
4007 
4008 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
4009 {
4010 	int err;
4011 
4012 	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
4013 	       skb->len);
4014 
4015 	/* Time stamp */
4016 	__net_timestamp(skb);
4017 
4018 	/* Send copy to monitor */
4019 	hci_send_to_monitor(hdev, skb);
4020 
4021 	if (atomic_read(&hdev->promisc)) {
4022 		/* Send copy to the sockets */
4023 		hci_send_to_sock(hdev, skb);
4024 	}
4025 
4026 	/* Get rid of skb owner, prior to sending to the driver. */
4027 	skb_orphan(skb);
4028 
4029 	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
4030 		kfree_skb(skb);
4031 		return;
4032 	}
4033 
4034 	err = hdev->send(hdev, skb);
4035 	if (err < 0) {
4036 		bt_dev_err(hdev, "sending frame failed (%d)", err);
4037 		kfree_skb(skb);
4038 	}
4039 }
4040 
4041 /* Send HCI command */
4042 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
4043 		 const void *param)
4044 {
4045 	struct sk_buff *skb;
4046 
4047 	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
4048 
4049 	skb = hci_prepare_cmd(hdev, opcode, plen, param);
4050 	if (!skb) {
4051 		bt_dev_err(hdev, "no memory for command");
4052 		return -ENOMEM;
4053 	}
4054 
4055 	/* Stand-alone HCI commands must be flagged as
4056 	 * single-command requests.
4057 	 */
4058 	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
4059 
4060 	skb_queue_tail(&hdev->cmd_q, skb);
4061 	queue_work(hdev->workqueue, &hdev->cmd_work);
4062 
4063 	return 0;
4064 }
4065 
4066 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
4067 		   const void *param)
4068 {
4069 	struct sk_buff *skb;
4070 
4071 	if (hci_opcode_ogf(opcode) != 0x3f) {
4072 		/* A controller receiving a command shall respond with either
4073 		 * a Command Status Event or a Command Complete Event.
4074 		 * Therefore, all standard HCI commands must be sent via the
4075 		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
4076 		 * Some vendors do not comply with this rule for vendor-specific
4077 		 * commands and do not return any event. We want to support
4078 		 * unresponded commands for such cases only.
4079 		 */
4080 		bt_dev_err(hdev, "unresponded command not supported");
4081 		return -EINVAL;
4082 	}
4083 
4084 	skb = hci_prepare_cmd(hdev, opcode, plen, param);
4085 	if (!skb) {
4086 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
4087 			   opcode);
4088 		return -ENOMEM;
4089 	}
4090 
4091 	hci_send_frame(hdev, skb);
4092 
4093 	return 0;
4094 }
4095 EXPORT_SYMBOL(__hci_cmd_send);
4096 
4097 /* Get data from the previously sent command */
4098 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
4099 {
4100 	struct hci_command_hdr *hdr;
4101 
4102 	if (!hdev->sent_cmd)
4103 		return NULL;
4104 
4105 	hdr = (void *) hdev->sent_cmd->data;
4106 
4107 	if (hdr->opcode != cpu_to_le16(opcode))
4108 		return NULL;
4109 
4110 	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
4111 
4112 	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
4113 }
4114 
4115 /* Send HCI command and wait for command commplete event */
4116 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
4117 			     const void *param, u32 timeout)
4118 {
4119 	struct sk_buff *skb;
4120 
4121 	if (!test_bit(HCI_UP, &hdev->flags))
4122 		return ERR_PTR(-ENETDOWN);
4123 
4124 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
4125 
4126 	hci_req_sync_lock(hdev);
4127 	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
4128 	hci_req_sync_unlock(hdev);
4129 
4130 	return skb;
4131 }
4132 EXPORT_SYMBOL(hci_cmd_sync);
4133 
4134 /* Send ACL data */
4135 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
4136 {
4137 	struct hci_acl_hdr *hdr;
4138 	int len = skb->len;
4139 
4140 	skb_push(skb, HCI_ACL_HDR_SIZE);
4141 	skb_reset_transport_header(skb);
4142 	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
4143 	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
4144 	hdr->dlen   = cpu_to_le16(len);
4145 }
4146 
4147 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
4148 			  struct sk_buff *skb, __u16 flags)
4149 {
4150 	struct hci_conn *conn = chan->conn;
4151 	struct hci_dev *hdev = conn->hdev;
4152 	struct sk_buff *list;
4153 
4154 	skb->len = skb_headlen(skb);
4155 	skb->data_len = 0;
4156 
4157 	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4158 
4159 	switch (hdev->dev_type) {
4160 	case HCI_PRIMARY:
4161 		hci_add_acl_hdr(skb, conn->handle, flags);
4162 		break;
4163 	case HCI_AMP:
4164 		hci_add_acl_hdr(skb, chan->handle, flags);
4165 		break;
4166 	default:
4167 		bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
4168 		return;
4169 	}
4170 
4171 	list = skb_shinfo(skb)->frag_list;
4172 	if (!list) {
4173 		/* Non fragmented */
4174 		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
4175 
4176 		skb_queue_tail(queue, skb);
4177 	} else {
4178 		/* Fragmented */
4179 		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4180 
4181 		skb_shinfo(skb)->frag_list = NULL;
4182 
4183 		/* Queue all fragments atomically. We need to use spin_lock_bh
4184 		 * here because of 6LoWPAN links, as there this function is
4185 		 * called from softirq and using normal spin lock could cause
4186 		 * deadlocks.
4187 		 */
4188 		spin_lock_bh(&queue->lock);
4189 
4190 		__skb_queue_tail(queue, skb);
4191 
4192 		flags &= ~ACL_START;
4193 		flags |= ACL_CONT;
4194 		do {
4195 			skb = list; list = list->next;
4196 
4197 			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4198 			hci_add_acl_hdr(skb, conn->handle, flags);
4199 
4200 			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4201 
4202 			__skb_queue_tail(queue, skb);
4203 		} while (list);
4204 
4205 		spin_unlock_bh(&queue->lock);
4206 	}
4207 }
4208 
4209 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
4210 {
4211 	struct hci_dev *hdev = chan->conn->hdev;
4212 
4213 	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
4214 
4215 	hci_queue_acl(chan, &chan->data_q, skb, flags);
4216 
4217 	queue_work(hdev->workqueue, &hdev->tx_work);
4218 }
4219 
4220 /* Send SCO data */
4221 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
4222 {
4223 	struct hci_dev *hdev = conn->hdev;
4224 	struct hci_sco_hdr hdr;
4225 
4226 	BT_DBG("%s len %d", hdev->name, skb->len);
4227 
4228 	hdr.handle = cpu_to_le16(conn->handle);
4229 	hdr.dlen   = skb->len;
4230 
4231 	skb_push(skb, HCI_SCO_HDR_SIZE);
4232 	skb_reset_transport_header(skb);
4233 	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
4234 
4235 	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
4236 
4237 	skb_queue_tail(&conn->data_q, skb);
4238 	queue_work(hdev->workqueue, &hdev->tx_work);
4239 }
4240 
4241 /* ---- HCI TX task (outgoing data) ---- */
4242 
4243 /* HCI Connection scheduler */
4244 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
4245 				     int *quote)
4246 {
4247 	struct hci_conn_hash *h = &hdev->conn_hash;
4248 	struct hci_conn *conn = NULL, *c;
4249 	unsigned int num = 0, min = ~0;
4250 
4251 	/* We don't have to lock device here. Connections are always
4252 	 * added and removed with TX task disabled. */
4253 
4254 	rcu_read_lock();
4255 
4256 	list_for_each_entry_rcu(c, &h->list, list) {
4257 		if (c->type != type || skb_queue_empty(&c->data_q))
4258 			continue;
4259 
4260 		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
4261 			continue;
4262 
4263 		num++;
4264 
4265 		if (c->sent < min) {
4266 			min  = c->sent;
4267 			conn = c;
4268 		}
4269 
4270 		if (hci_conn_num(hdev, type) == num)
4271 			break;
4272 	}
4273 
4274 	rcu_read_unlock();
4275 
4276 	if (conn) {
4277 		int cnt, q;
4278 
4279 		switch (conn->type) {
4280 		case ACL_LINK:
4281 			cnt = hdev->acl_cnt;
4282 			break;
4283 		case SCO_LINK:
4284 		case ESCO_LINK:
4285 			cnt = hdev->sco_cnt;
4286 			break;
4287 		case LE_LINK:
4288 			cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4289 			break;
4290 		default:
4291 			cnt = 0;
4292 			bt_dev_err(hdev, "unknown link type %d", conn->type);
4293 		}
4294 
4295 		q = cnt / num;
4296 		*quote = q ? q : 1;
4297 	} else
4298 		*quote = 0;
4299 
4300 	BT_DBG("conn %p quote %d", conn, *quote);
4301 	return conn;
4302 }
4303 
4304 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
4305 {
4306 	struct hci_conn_hash *h = &hdev->conn_hash;
4307 	struct hci_conn *c;
4308 
4309 	bt_dev_err(hdev, "link tx timeout");
4310 
4311 	rcu_read_lock();
4312 
4313 	/* Kill stalled connections */
4314 	list_for_each_entry_rcu(c, &h->list, list) {
4315 		if (c->type == type && c->sent) {
4316 			bt_dev_err(hdev, "killing stalled connection %pMR",
4317 				   &c->dst);
4318 			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
4319 		}
4320 	}
4321 
4322 	rcu_read_unlock();
4323 }
4324 
4325 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
4326 				      int *quote)
4327 {
4328 	struct hci_conn_hash *h = &hdev->conn_hash;
4329 	struct hci_chan *chan = NULL;
4330 	unsigned int num = 0, min = ~0, cur_prio = 0;
4331 	struct hci_conn *conn;
4332 	int cnt, q, conn_num = 0;
4333 
4334 	BT_DBG("%s", hdev->name);
4335 
4336 	rcu_read_lock();
4337 
4338 	list_for_each_entry_rcu(conn, &h->list, list) {
4339 		struct hci_chan *tmp;
4340 
4341 		if (conn->type != type)
4342 			continue;
4343 
4344 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4345 			continue;
4346 
4347 		conn_num++;
4348 
4349 		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
4350 			struct sk_buff *skb;
4351 
4352 			if (skb_queue_empty(&tmp->data_q))
4353 				continue;
4354 
4355 			skb = skb_peek(&tmp->data_q);
4356 			if (skb->priority < cur_prio)
4357 				continue;
4358 
4359 			if (skb->priority > cur_prio) {
4360 				num = 0;
4361 				min = ~0;
4362 				cur_prio = skb->priority;
4363 			}
4364 
4365 			num++;
4366 
4367 			if (conn->sent < min) {
4368 				min  = conn->sent;
4369 				chan = tmp;
4370 			}
4371 		}
4372 
4373 		if (hci_conn_num(hdev, type) == conn_num)
4374 			break;
4375 	}
4376 
4377 	rcu_read_unlock();
4378 
4379 	if (!chan)
4380 		return NULL;
4381 
4382 	switch (chan->conn->type) {
4383 	case ACL_LINK:
4384 		cnt = hdev->acl_cnt;
4385 		break;
4386 	case AMP_LINK:
4387 		cnt = hdev->block_cnt;
4388 		break;
4389 	case SCO_LINK:
4390 	case ESCO_LINK:
4391 		cnt = hdev->sco_cnt;
4392 		break;
4393 	case LE_LINK:
4394 		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4395 		break;
4396 	default:
4397 		cnt = 0;
4398 		bt_dev_err(hdev, "unknown link type %d", chan->conn->type);
4399 	}
4400 
4401 	q = cnt / num;
4402 	*quote = q ? q : 1;
4403 	BT_DBG("chan %p quote %d", chan, *quote);
4404 	return chan;
4405 }
4406 
4407 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
4408 {
4409 	struct hci_conn_hash *h = &hdev->conn_hash;
4410 	struct hci_conn *conn;
4411 	int num = 0;
4412 
4413 	BT_DBG("%s", hdev->name);
4414 
4415 	rcu_read_lock();
4416 
4417 	list_for_each_entry_rcu(conn, &h->list, list) {
4418 		struct hci_chan *chan;
4419 
4420 		if (conn->type != type)
4421 			continue;
4422 
4423 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4424 			continue;
4425 
4426 		num++;
4427 
4428 		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
4429 			struct sk_buff *skb;
4430 
4431 			if (chan->sent) {
4432 				chan->sent = 0;
4433 				continue;
4434 			}
4435 
4436 			if (skb_queue_empty(&chan->data_q))
4437 				continue;
4438 
4439 			skb = skb_peek(&chan->data_q);
4440 			if (skb->priority >= HCI_PRIO_MAX - 1)
4441 				continue;
4442 
4443 			skb->priority = HCI_PRIO_MAX - 1;
4444 
4445 			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
4446 			       skb->priority);
4447 		}
4448 
4449 		if (hci_conn_num(hdev, type) == num)
4450 			break;
4451 	}
4452 
4453 	rcu_read_unlock();
4454 
4455 }
4456 
4457 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4458 {
4459 	/* Calculate count of blocks used by this packet */
4460 	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4461 }
4462 
4463 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
4464 {
4465 	if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4466 		/* ACL tx timeout must be longer than maximum
4467 		 * link supervision timeout (40.9 seconds) */
4468 		if (!cnt && time_after(jiffies, hdev->acl_last_tx +
4469 				       HCI_ACL_TX_TIMEOUT))
4470 			hci_link_tx_to(hdev, ACL_LINK);
4471 	}
4472 }
4473 
4474 /* Schedule SCO */
4475 static void hci_sched_sco(struct hci_dev *hdev)
4476 {
4477 	struct hci_conn *conn;
4478 	struct sk_buff *skb;
4479 	int quote;
4480 
4481 	BT_DBG("%s", hdev->name);
4482 
4483 	if (!hci_conn_num(hdev, SCO_LINK))
4484 		return;
4485 
4486 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
4487 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4488 			BT_DBG("skb %p len %d", skb, skb->len);
4489 			hci_send_frame(hdev, skb);
4490 
4491 			conn->sent++;
4492 			if (conn->sent == ~0)
4493 				conn->sent = 0;
4494 		}
4495 	}
4496 }
4497 
4498 static void hci_sched_esco(struct hci_dev *hdev)
4499 {
4500 	struct hci_conn *conn;
4501 	struct sk_buff *skb;
4502 	int quote;
4503 
4504 	BT_DBG("%s", hdev->name);
4505 
4506 	if (!hci_conn_num(hdev, ESCO_LINK))
4507 		return;
4508 
4509 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4510 						     &quote))) {
4511 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4512 			BT_DBG("skb %p len %d", skb, skb->len);
4513 			hci_send_frame(hdev, skb);
4514 
4515 			conn->sent++;
4516 			if (conn->sent == ~0)
4517 				conn->sent = 0;
4518 		}
4519 	}
4520 }
4521 
4522 static void hci_sched_acl_pkt(struct hci_dev *hdev)
4523 {
4524 	unsigned int cnt = hdev->acl_cnt;
4525 	struct hci_chan *chan;
4526 	struct sk_buff *skb;
4527 	int quote;
4528 
4529 	__check_timeout(hdev, cnt);
4530 
4531 	while (hdev->acl_cnt &&
4532 	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
4533 		u32 priority = (skb_peek(&chan->data_q))->priority;
4534 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4535 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4536 			       skb->len, skb->priority);
4537 
4538 			/* Stop if priority has changed */
4539 			if (skb->priority < priority)
4540 				break;
4541 
4542 			skb = skb_dequeue(&chan->data_q);
4543 
4544 			hci_conn_enter_active_mode(chan->conn,
4545 						   bt_cb(skb)->force_active);
4546 
4547 			hci_send_frame(hdev, skb);
4548 			hdev->acl_last_tx = jiffies;
4549 
4550 			hdev->acl_cnt--;
4551 			chan->sent++;
4552 			chan->conn->sent++;
4553 
4554 			/* Send pending SCO packets right away */
4555 			hci_sched_sco(hdev);
4556 			hci_sched_esco(hdev);
4557 		}
4558 	}
4559 
4560 	if (cnt != hdev->acl_cnt)
4561 		hci_prio_recalculate(hdev, ACL_LINK);
4562 }
4563 
4564 static void hci_sched_acl_blk(struct hci_dev *hdev)
4565 {
4566 	unsigned int cnt = hdev->block_cnt;
4567 	struct hci_chan *chan;
4568 	struct sk_buff *skb;
4569 	int quote;
4570 	u8 type;
4571 
4572 	__check_timeout(hdev, cnt);
4573 
4574 	BT_DBG("%s", hdev->name);
4575 
4576 	if (hdev->dev_type == HCI_AMP)
4577 		type = AMP_LINK;
4578 	else
4579 		type = ACL_LINK;
4580 
4581 	while (hdev->block_cnt > 0 &&
4582 	       (chan = hci_chan_sent(hdev, type, &quote))) {
4583 		u32 priority = (skb_peek(&chan->data_q))->priority;
4584 		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
4585 			int blocks;
4586 
4587 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4588 			       skb->len, skb->priority);
4589 
4590 			/* Stop if priority has changed */
4591 			if (skb->priority < priority)
4592 				break;
4593 
4594 			skb = skb_dequeue(&chan->data_q);
4595 
4596 			blocks = __get_blocks(hdev, skb);
4597 			if (blocks > hdev->block_cnt)
4598 				return;
4599 
4600 			hci_conn_enter_active_mode(chan->conn,
4601 						   bt_cb(skb)->force_active);
4602 
4603 			hci_send_frame(hdev, skb);
4604 			hdev->acl_last_tx = jiffies;
4605 
4606 			hdev->block_cnt -= blocks;
4607 			quote -= blocks;
4608 
4609 			chan->sent += blocks;
4610 			chan->conn->sent += blocks;
4611 		}
4612 	}
4613 
4614 	if (cnt != hdev->block_cnt)
4615 		hci_prio_recalculate(hdev, type);
4616 }
4617 
4618 static void hci_sched_acl(struct hci_dev *hdev)
4619 {
4620 	BT_DBG("%s", hdev->name);
4621 
4622 	/* No ACL link over BR/EDR controller */
4623 	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
4624 		return;
4625 
4626 	/* No AMP link over AMP controller */
4627 	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4628 		return;
4629 
4630 	switch (hdev->flow_ctl_mode) {
4631 	case HCI_FLOW_CTL_MODE_PACKET_BASED:
4632 		hci_sched_acl_pkt(hdev);
4633 		break;
4634 
4635 	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4636 		hci_sched_acl_blk(hdev);
4637 		break;
4638 	}
4639 }
4640 
4641 static void hci_sched_le(struct hci_dev *hdev)
4642 {
4643 	struct hci_chan *chan;
4644 	struct sk_buff *skb;
4645 	int quote, cnt, tmp;
4646 
4647 	BT_DBG("%s", hdev->name);
4648 
4649 	if (!hci_conn_num(hdev, LE_LINK))
4650 		return;
4651 
4652 	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4653 
4654 	__check_timeout(hdev, cnt);
4655 
4656 	tmp = cnt;
4657 	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
4658 		u32 priority = (skb_peek(&chan->data_q))->priority;
4659 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
4660 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4661 			       skb->len, skb->priority);
4662 
4663 			/* Stop if priority has changed */
4664 			if (skb->priority < priority)
4665 				break;
4666 
4667 			skb = skb_dequeue(&chan->data_q);
4668 
4669 			hci_send_frame(hdev, skb);
4670 			hdev->le_last_tx = jiffies;
4671 
4672 			cnt--;
4673 			chan->sent++;
4674 			chan->conn->sent++;
4675 
4676 			/* Send pending SCO packets right away */
4677 			hci_sched_sco(hdev);
4678 			hci_sched_esco(hdev);
4679 		}
4680 	}
4681 
4682 	if (hdev->le_pkts)
4683 		hdev->le_cnt = cnt;
4684 	else
4685 		hdev->acl_cnt = cnt;
4686 
4687 	if (cnt != tmp)
4688 		hci_prio_recalculate(hdev, LE_LINK);
4689 }
4690 
4691 static void hci_tx_work(struct work_struct *work)
4692 {
4693 	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4694 	struct sk_buff *skb;
4695 
4696 	BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4697 	       hdev->sco_cnt, hdev->le_cnt);
4698 
4699 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4700 		/* Schedule queues and send stuff to HCI driver */
4701 		hci_sched_sco(hdev);
4702 		hci_sched_esco(hdev);
4703 		hci_sched_acl(hdev);
4704 		hci_sched_le(hdev);
4705 	}
4706 
4707 	/* Send next queued raw (unknown type) packet */
4708 	while ((skb = skb_dequeue(&hdev->raw_q)))
4709 		hci_send_frame(hdev, skb);
4710 }
4711 
4712 /* ----- HCI RX task (incoming data processing) ----- */
4713 
4714 /* ACL data packet */
4715 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4716 {
4717 	struct hci_acl_hdr *hdr = (void *) skb->data;
4718 	struct hci_conn *conn;
4719 	__u16 handle, flags;
4720 
4721 	skb_pull(skb, HCI_ACL_HDR_SIZE);
4722 
4723 	handle = __le16_to_cpu(hdr->handle);
4724 	flags  = hci_flags(handle);
4725 	handle = hci_handle(handle);
4726 
4727 	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4728 	       handle, flags);
4729 
4730 	hdev->stat.acl_rx++;
4731 
4732 	hci_dev_lock(hdev);
4733 	conn = hci_conn_hash_lookup_handle(hdev, handle);
4734 	hci_dev_unlock(hdev);
4735 
4736 	if (conn) {
4737 		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4738 
4739 		/* Send to upper protocol */
4740 		l2cap_recv_acldata(conn, skb, flags);
4741 		return;
4742 	} else {
4743 		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
4744 			   handle);
4745 	}
4746 
4747 	kfree_skb(skb);
4748 }
4749 
4750 /* SCO data packet */
4751 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4752 {
4753 	struct hci_sco_hdr *hdr = (void *) skb->data;
4754 	struct hci_conn *conn;
4755 	__u16 handle, flags;
4756 
4757 	skb_pull(skb, HCI_SCO_HDR_SIZE);
4758 
4759 	handle = __le16_to_cpu(hdr->handle);
4760 	flags  = hci_flags(handle);
4761 	handle = hci_handle(handle);
4762 
4763 	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4764 	       handle, flags);
4765 
4766 	hdev->stat.sco_rx++;
4767 
4768 	hci_dev_lock(hdev);
4769 	conn = hci_conn_hash_lookup_handle(hdev, handle);
4770 	hci_dev_unlock(hdev);
4771 
4772 	if (conn) {
4773 		/* Send to upper protocol */
4774 		bt_cb(skb)->sco.pkt_status = flags & 0x03;
4775 		sco_recv_scodata(conn, skb);
4776 		return;
4777 	} else {
4778 		bt_dev_err(hdev, "SCO packet for unknown connection handle %d",
4779 			   handle);
4780 	}
4781 
4782 	kfree_skb(skb);
4783 }
4784 
4785 static bool hci_req_is_complete(struct hci_dev *hdev)
4786 {
4787 	struct sk_buff *skb;
4788 
4789 	skb = skb_peek(&hdev->cmd_q);
4790 	if (!skb)
4791 		return true;
4792 
4793 	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4794 }
4795 
4796 static void hci_resend_last(struct hci_dev *hdev)
4797 {
4798 	struct hci_command_hdr *sent;
4799 	struct sk_buff *skb;
4800 	u16 opcode;
4801 
4802 	if (!hdev->sent_cmd)
4803 		return;
4804 
4805 	sent = (void *) hdev->sent_cmd->data;
4806 	opcode = __le16_to_cpu(sent->opcode);
4807 	if (opcode == HCI_OP_RESET)
4808 		return;
4809 
4810 	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4811 	if (!skb)
4812 		return;
4813 
4814 	skb_queue_head(&hdev->cmd_q, skb);
4815 	queue_work(hdev->workqueue, &hdev->cmd_work);
4816 }
4817 
4818 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4819 			  hci_req_complete_t *req_complete,
4820 			  hci_req_complete_skb_t *req_complete_skb)
4821 {
4822 	struct sk_buff *skb;
4823 	unsigned long flags;
4824 
4825 	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4826 
4827 	/* If the completed command doesn't match the last one that was
4828 	 * sent we need to do special handling of it.
4829 	 */
4830 	if (!hci_sent_cmd_data(hdev, opcode)) {
4831 		/* Some CSR based controllers generate a spontaneous
4832 		 * reset complete event during init and any pending
4833 		 * command will never be completed. In such a case we
4834 		 * need to resend whatever was the last sent
4835 		 * command.
4836 		 */
4837 		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4838 			hci_resend_last(hdev);
4839 
4840 		return;
4841 	}
4842 
4843 	/* If we reach this point this event matches the last command sent */
4844 	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4845 
4846 	/* If the command succeeded and there's still more commands in
4847 	 * this request the request is not yet complete.
4848 	 */
4849 	if (!status && !hci_req_is_complete(hdev))
4850 		return;
4851 
4852 	/* If this was the last command in a request the complete
4853 	 * callback would be found in hdev->sent_cmd instead of the
4854 	 * command queue (hdev->cmd_q).
4855 	 */
4856 	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4857 		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4858 		return;
4859 	}
4860 
4861 	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4862 		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4863 		return;
4864 	}
4865 
4866 	/* Remove all pending commands belonging to this request */
4867 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4868 	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4869 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4870 			__skb_queue_head(&hdev->cmd_q, skb);
4871 			break;
4872 		}
4873 
4874 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4875 			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4876 		else
4877 			*req_complete = bt_cb(skb)->hci.req_complete;
4878 		kfree_skb(skb);
4879 	}
4880 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4881 }
4882 
4883 static void hci_rx_work(struct work_struct *work)
4884 {
4885 	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4886 	struct sk_buff *skb;
4887 
4888 	BT_DBG("%s", hdev->name);
4889 
4890 	while ((skb = skb_dequeue(&hdev->rx_q))) {
4891 		/* Send copy to monitor */
4892 		hci_send_to_monitor(hdev, skb);
4893 
4894 		if (atomic_read(&hdev->promisc)) {
4895 			/* Send copy to the sockets */
4896 			hci_send_to_sock(hdev, skb);
4897 		}
4898 
4899 		/* If the device has been opened in HCI_USER_CHANNEL,
4900 		 * the userspace has exclusive access to device.
4901 		 * When device is HCI_INIT, we still need to process
4902 		 * the data packets to the driver in order
4903 		 * to complete its setup().
4904 		 */
4905 		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4906 		    !test_bit(HCI_INIT, &hdev->flags)) {
4907 			kfree_skb(skb);
4908 			continue;
4909 		}
4910 
4911 		if (test_bit(HCI_INIT, &hdev->flags)) {
4912 			/* Don't process data packets in this states. */
4913 			switch (hci_skb_pkt_type(skb)) {
4914 			case HCI_ACLDATA_PKT:
4915 			case HCI_SCODATA_PKT:
4916 			case HCI_ISODATA_PKT:
4917 				kfree_skb(skb);
4918 				continue;
4919 			}
4920 		}
4921 
4922 		/* Process frame */
4923 		switch (hci_skb_pkt_type(skb)) {
4924 		case HCI_EVENT_PKT:
4925 			BT_DBG("%s Event packet", hdev->name);
4926 			hci_event_packet(hdev, skb);
4927 			break;
4928 
4929 		case HCI_ACLDATA_PKT:
4930 			BT_DBG("%s ACL data packet", hdev->name);
4931 			hci_acldata_packet(hdev, skb);
4932 			break;
4933 
4934 		case HCI_SCODATA_PKT:
4935 			BT_DBG("%s SCO data packet", hdev->name);
4936 			hci_scodata_packet(hdev, skb);
4937 			break;
4938 
4939 		default:
4940 			kfree_skb(skb);
4941 			break;
4942 		}
4943 	}
4944 }
4945 
4946 static void hci_cmd_work(struct work_struct *work)
4947 {
4948 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4949 	struct sk_buff *skb;
4950 
4951 	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4952 	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4953 
4954 	/* Send queued commands */
4955 	if (atomic_read(&hdev->cmd_cnt)) {
4956 		skb = skb_dequeue(&hdev->cmd_q);
4957 		if (!skb)
4958 			return;
4959 
4960 		kfree_skb(hdev->sent_cmd);
4961 
4962 		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4963 		if (hdev->sent_cmd) {
4964 			if (hci_req_status_pend(hdev))
4965 				hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4966 			atomic_dec(&hdev->cmd_cnt);
4967 			hci_send_frame(hdev, skb);
4968 			if (test_bit(HCI_RESET, &hdev->flags))
4969 				cancel_delayed_work(&hdev->cmd_timer);
4970 			else
4971 				schedule_delayed_work(&hdev->cmd_timer,
4972 						      HCI_CMD_TIMEOUT);
4973 		} else {
4974 			skb_queue_head(&hdev->cmd_q, skb);
4975 			queue_work(hdev->workqueue, &hdev->cmd_work);
4976 		}
4977 	}
4978 }
4979