1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (C) 2000-2001 Qualcomm Incorporated 4 Copyright (C) 2011 ProFUSION Embedded Systems 5 6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License version 2 as 10 published by the Free Software Foundation; 11 12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 23 SOFTWARE IS DISCLAIMED. 24 */ 25 26 /* Bluetooth HCI core. */ 27 28 #include <linux/export.h> 29 #include <linux/idr.h> 30 #include <linux/rfkill.h> 31 #include <linux/debugfs.h> 32 #include <linux/crypto.h> 33 #include <asm/unaligned.h> 34 35 #include <net/bluetooth/bluetooth.h> 36 #include <net/bluetooth/hci_core.h> 37 #include <net/bluetooth/l2cap.h> 38 #include <net/bluetooth/mgmt.h> 39 40 #include "hci_request.h" 41 #include "hci_debugfs.h" 42 #include "smp.h" 43 #include "leds.h" 44 45 static void hci_rx_work(struct work_struct *work); 46 static void hci_cmd_work(struct work_struct *work); 47 static void hci_tx_work(struct work_struct *work); 48 49 /* HCI device list */ 50 LIST_HEAD(hci_dev_list); 51 DEFINE_RWLOCK(hci_dev_list_lock); 52 53 /* HCI callback list */ 54 LIST_HEAD(hci_cb_list); 55 DEFINE_MUTEX(hci_cb_list_lock); 56 57 /* HCI ID Numbering */ 58 static DEFINE_IDA(hci_index_ida); 59 60 /* ---- HCI debugfs entries ---- */ 61 62 static ssize_t dut_mode_read(struct file *file, char __user *user_buf, 63 size_t count, loff_t *ppos) 64 { 65 struct hci_dev *hdev = file->private_data; 66 char buf[3]; 67 68 buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N'; 69 buf[1] = '\n'; 70 buf[2] = '\0'; 71 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 72 } 73 74 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf, 75 size_t count, loff_t *ppos) 76 { 77 struct hci_dev *hdev = file->private_data; 78 struct sk_buff *skb; 79 char buf[32]; 80 size_t buf_size = min(count, (sizeof(buf)-1)); 81 bool enable; 82 83 if (!test_bit(HCI_UP, &hdev->flags)) 84 return -ENETDOWN; 85 86 if (copy_from_user(buf, user_buf, buf_size)) 87 return -EFAULT; 88 89 buf[buf_size] = '\0'; 90 if (strtobool(buf, &enable)) 91 return -EINVAL; 92 93 if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE)) 94 return -EALREADY; 95 96 hci_req_sync_lock(hdev); 97 if (enable) 98 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL, 99 HCI_CMD_TIMEOUT); 100 else 101 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, 102 HCI_CMD_TIMEOUT); 103 hci_req_sync_unlock(hdev); 104 105 if (IS_ERR(skb)) 106 return PTR_ERR(skb); 107 108 kfree_skb(skb); 109 110 hci_dev_change_flag(hdev, HCI_DUT_MODE); 111 112 return count; 113 } 114 115 static const struct file_operations dut_mode_fops = { 116 .open = simple_open, 117 .read = dut_mode_read, 118 .write = dut_mode_write, 119 .llseek = default_llseek, 120 }; 121 122 static ssize_t vendor_diag_read(struct file *file, char __user *user_buf, 123 size_t count, loff_t *ppos) 124 { 125 struct hci_dev *hdev = file->private_data; 126 char buf[3]; 127 128 buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N'; 129 buf[1] = '\n'; 130 buf[2] = '\0'; 131 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 132 } 133 134 static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf, 135 size_t count, loff_t *ppos) 136 { 137 struct hci_dev *hdev = file->private_data; 138 char buf[32]; 139 size_t buf_size = min(count, (sizeof(buf)-1)); 140 bool enable; 141 int err; 142 143 if (copy_from_user(buf, user_buf, buf_size)) 144 return -EFAULT; 145 146 buf[buf_size] = '\0'; 147 if (strtobool(buf, &enable)) 148 return -EINVAL; 149 150 /* When the diagnostic flags are not persistent and the transport 151 * is not active, then there is no need for the vendor callback. 152 * 153 * Instead just store the desired value. If needed the setting 154 * will be programmed when the controller gets powered on. 155 */ 156 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 157 !test_bit(HCI_RUNNING, &hdev->flags)) 158 goto done; 159 160 hci_req_sync_lock(hdev); 161 err = hdev->set_diag(hdev, enable); 162 hci_req_sync_unlock(hdev); 163 164 if (err < 0) 165 return err; 166 167 done: 168 if (enable) 169 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG); 170 else 171 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG); 172 173 return count; 174 } 175 176 static const struct file_operations vendor_diag_fops = { 177 .open = simple_open, 178 .read = vendor_diag_read, 179 .write = vendor_diag_write, 180 .llseek = default_llseek, 181 }; 182 183 static void hci_debugfs_create_basic(struct hci_dev *hdev) 184 { 185 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev, 186 &dut_mode_fops); 187 188 if (hdev->set_diag) 189 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev, 190 &vendor_diag_fops); 191 } 192 193 static int hci_reset_req(struct hci_request *req, unsigned long opt) 194 { 195 BT_DBG("%s %ld", req->hdev->name, opt); 196 197 /* Reset device */ 198 set_bit(HCI_RESET, &req->hdev->flags); 199 hci_req_add(req, HCI_OP_RESET, 0, NULL); 200 return 0; 201 } 202 203 static void bredr_init(struct hci_request *req) 204 { 205 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED; 206 207 /* Read Local Supported Features */ 208 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL); 209 210 /* Read Local Version */ 211 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL); 212 213 /* Read BD Address */ 214 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL); 215 } 216 217 static void amp_init1(struct hci_request *req) 218 { 219 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED; 220 221 /* Read Local Version */ 222 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL); 223 224 /* Read Local Supported Commands */ 225 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL); 226 227 /* Read Local AMP Info */ 228 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL); 229 230 /* Read Data Blk size */ 231 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL); 232 233 /* Read Flow Control Mode */ 234 hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL); 235 236 /* Read Location Data */ 237 hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL); 238 } 239 240 static int amp_init2(struct hci_request *req) 241 { 242 /* Read Local Supported Features. Not all AMP controllers 243 * support this so it's placed conditionally in the second 244 * stage init. 245 */ 246 if (req->hdev->commands[14] & 0x20) 247 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL); 248 249 return 0; 250 } 251 252 static int hci_init1_req(struct hci_request *req, unsigned long opt) 253 { 254 struct hci_dev *hdev = req->hdev; 255 256 BT_DBG("%s %ld", hdev->name, opt); 257 258 /* Reset */ 259 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) 260 hci_reset_req(req, 0); 261 262 switch (hdev->dev_type) { 263 case HCI_BREDR: 264 bredr_init(req); 265 break; 266 267 case HCI_AMP: 268 amp_init1(req); 269 break; 270 271 default: 272 BT_ERR("Unknown device type %d", hdev->dev_type); 273 break; 274 } 275 276 return 0; 277 } 278 279 static void bredr_setup(struct hci_request *req) 280 { 281 __le16 param; 282 __u8 flt_type; 283 284 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 285 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL); 286 287 /* Read Class of Device */ 288 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL); 289 290 /* Read Local Name */ 291 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL); 292 293 /* Read Voice Setting */ 294 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL); 295 296 /* Read Number of Supported IAC */ 297 hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL); 298 299 /* Read Current IAC LAP */ 300 hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL); 301 302 /* Clear Event Filters */ 303 flt_type = HCI_FLT_CLEAR_ALL; 304 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type); 305 306 /* Connection accept timeout ~20 secs */ 307 param = cpu_to_le16(0x7d00); 308 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, ¶m); 309 } 310 311 static void le_setup(struct hci_request *req) 312 { 313 struct hci_dev *hdev = req->hdev; 314 315 /* Read LE Buffer Size */ 316 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL); 317 318 /* Read LE Local Supported Features */ 319 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL); 320 321 /* Read LE Supported States */ 322 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL); 323 324 /* LE-only controllers have LE implicitly enabled */ 325 if (!lmp_bredr_capable(hdev)) 326 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 327 } 328 329 static void hci_setup_event_mask(struct hci_request *req) 330 { 331 struct hci_dev *hdev = req->hdev; 332 333 /* The second byte is 0xff instead of 0x9f (two reserved bits 334 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 335 * command otherwise. 336 */ 337 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 338 339 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 340 * any event mask for pre 1.2 devices. 341 */ 342 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 343 return; 344 345 if (lmp_bredr_capable(hdev)) { 346 events[4] |= 0x01; /* Flow Specification Complete */ 347 } else { 348 /* Use a different default for LE-only devices */ 349 memset(events, 0, sizeof(events)); 350 events[1] |= 0x20; /* Command Complete */ 351 events[1] |= 0x40; /* Command Status */ 352 events[1] |= 0x80; /* Hardware Error */ 353 354 /* If the controller supports the Disconnect command, enable 355 * the corresponding event. In addition enable packet flow 356 * control related events. 357 */ 358 if (hdev->commands[0] & 0x20) { 359 events[0] |= 0x10; /* Disconnection Complete */ 360 events[2] |= 0x04; /* Number of Completed Packets */ 361 events[3] |= 0x02; /* Data Buffer Overflow */ 362 } 363 364 /* If the controller supports the Read Remote Version 365 * Information command, enable the corresponding event. 366 */ 367 if (hdev->commands[2] & 0x80) 368 events[1] |= 0x08; /* Read Remote Version Information 369 * Complete 370 */ 371 372 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 373 events[0] |= 0x80; /* Encryption Change */ 374 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 375 } 376 } 377 378 if (lmp_inq_rssi_capable(hdev) || 379 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 380 events[4] |= 0x02; /* Inquiry Result with RSSI */ 381 382 if (lmp_ext_feat_capable(hdev)) 383 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 384 385 if (lmp_esco_capable(hdev)) { 386 events[5] |= 0x08; /* Synchronous Connection Complete */ 387 events[5] |= 0x10; /* Synchronous Connection Changed */ 388 } 389 390 if (lmp_sniffsubr_capable(hdev)) 391 events[5] |= 0x20; /* Sniff Subrating */ 392 393 if (lmp_pause_enc_capable(hdev)) 394 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 395 396 if (lmp_ext_inq_capable(hdev)) 397 events[5] |= 0x40; /* Extended Inquiry Result */ 398 399 if (lmp_no_flush_capable(hdev)) 400 events[7] |= 0x01; /* Enhanced Flush Complete */ 401 402 if (lmp_lsto_capable(hdev)) 403 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 404 405 if (lmp_ssp_capable(hdev)) { 406 events[6] |= 0x01; /* IO Capability Request */ 407 events[6] |= 0x02; /* IO Capability Response */ 408 events[6] |= 0x04; /* User Confirmation Request */ 409 events[6] |= 0x08; /* User Passkey Request */ 410 events[6] |= 0x10; /* Remote OOB Data Request */ 411 events[6] |= 0x20; /* Simple Pairing Complete */ 412 events[7] |= 0x04; /* User Passkey Notification */ 413 events[7] |= 0x08; /* Keypress Notification */ 414 events[7] |= 0x10; /* Remote Host Supported 415 * Features Notification 416 */ 417 } 418 419 if (lmp_le_capable(hdev)) 420 events[7] |= 0x20; /* LE Meta-Event */ 421 422 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events); 423 } 424 425 static int hci_init2_req(struct hci_request *req, unsigned long opt) 426 { 427 struct hci_dev *hdev = req->hdev; 428 429 if (hdev->dev_type == HCI_AMP) 430 return amp_init2(req); 431 432 if (lmp_bredr_capable(hdev)) 433 bredr_setup(req); 434 else 435 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); 436 437 if (lmp_le_capable(hdev)) 438 le_setup(req); 439 440 /* All Bluetooth 1.2 and later controllers should support the 441 * HCI command for reading the local supported commands. 442 * 443 * Unfortunately some controllers indicate Bluetooth 1.2 support, 444 * but do not have support for this command. If that is the case, 445 * the driver can quirk the behavior and skip reading the local 446 * supported commands. 447 */ 448 if (hdev->hci_ver > BLUETOOTH_VER_1_1 && 449 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) 450 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL); 451 452 if (lmp_ssp_capable(hdev)) { 453 /* When SSP is available, then the host features page 454 * should also be available as well. However some 455 * controllers list the max_page as 0 as long as SSP 456 * has not been enabled. To achieve proper debugging 457 * output, force the minimum max_page to 1 at least. 458 */ 459 hdev->max_page = 0x01; 460 461 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) { 462 u8 mode = 0x01; 463 464 hci_req_add(req, HCI_OP_WRITE_SSP_MODE, 465 sizeof(mode), &mode); 466 } else { 467 struct hci_cp_write_eir cp; 468 469 memset(hdev->eir, 0, sizeof(hdev->eir)); 470 memset(&cp, 0, sizeof(cp)); 471 472 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp); 473 } 474 } 475 476 if (lmp_inq_rssi_capable(hdev) || 477 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) { 478 u8 mode; 479 480 /* If Extended Inquiry Result events are supported, then 481 * they are clearly preferred over Inquiry Result with RSSI 482 * events. 483 */ 484 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; 485 486 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode); 487 } 488 489 if (lmp_inq_tx_pwr_capable(hdev)) 490 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL); 491 492 if (lmp_ext_feat_capable(hdev)) { 493 struct hci_cp_read_local_ext_features cp; 494 495 cp.page = 0x01; 496 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES, 497 sizeof(cp), &cp); 498 } 499 500 if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) { 501 u8 enable = 1; 502 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable), 503 &enable); 504 } 505 506 return 0; 507 } 508 509 static void hci_setup_link_policy(struct hci_request *req) 510 { 511 struct hci_dev *hdev = req->hdev; 512 struct hci_cp_write_def_link_policy cp; 513 u16 link_policy = 0; 514 515 if (lmp_rswitch_capable(hdev)) 516 link_policy |= HCI_LP_RSWITCH; 517 if (lmp_hold_capable(hdev)) 518 link_policy |= HCI_LP_HOLD; 519 if (lmp_sniff_capable(hdev)) 520 link_policy |= HCI_LP_SNIFF; 521 if (lmp_park_capable(hdev)) 522 link_policy |= HCI_LP_PARK; 523 524 cp.policy = cpu_to_le16(link_policy); 525 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp); 526 } 527 528 static void hci_set_le_support(struct hci_request *req) 529 { 530 struct hci_dev *hdev = req->hdev; 531 struct hci_cp_write_le_host_supported cp; 532 533 /* LE-only devices do not support explicit enablement */ 534 if (!lmp_bredr_capable(hdev)) 535 return; 536 537 memset(&cp, 0, sizeof(cp)); 538 539 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 540 cp.le = 0x01; 541 cp.simul = 0x00; 542 } 543 544 if (cp.le != lmp_host_le_capable(hdev)) 545 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp), 546 &cp); 547 } 548 549 static void hci_set_event_mask_page_2(struct hci_request *req) 550 { 551 struct hci_dev *hdev = req->hdev; 552 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 553 554 /* If Connectionless Slave Broadcast master role is supported 555 * enable all necessary events for it. 556 */ 557 if (lmp_csb_master_capable(hdev)) { 558 events[1] |= 0x40; /* Triggered Clock Capture */ 559 events[1] |= 0x80; /* Synchronization Train Complete */ 560 events[2] |= 0x10; /* Slave Page Response Timeout */ 561 events[2] |= 0x20; /* CSB Channel Map Change */ 562 } 563 564 /* If Connectionless Slave Broadcast slave role is supported 565 * enable all necessary events for it. 566 */ 567 if (lmp_csb_slave_capable(hdev)) { 568 events[2] |= 0x01; /* Synchronization Train Received */ 569 events[2] |= 0x02; /* CSB Receive */ 570 events[2] |= 0x04; /* CSB Timeout */ 571 events[2] |= 0x08; /* Truncated Page Complete */ 572 } 573 574 /* Enable Authenticated Payload Timeout Expired event if supported */ 575 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) 576 events[2] |= 0x80; 577 578 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, sizeof(events), events); 579 } 580 581 static int hci_init3_req(struct hci_request *req, unsigned long opt) 582 { 583 struct hci_dev *hdev = req->hdev; 584 u8 p; 585 586 hci_setup_event_mask(req); 587 588 if (hdev->commands[6] & 0x20 && 589 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) { 590 struct hci_cp_read_stored_link_key cp; 591 592 bacpy(&cp.bdaddr, BDADDR_ANY); 593 cp.read_all = 0x01; 594 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp); 595 } 596 597 if (hdev->commands[5] & 0x10) 598 hci_setup_link_policy(req); 599 600 if (hdev->commands[8] & 0x01) 601 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL); 602 603 /* Some older Broadcom based Bluetooth 1.2 controllers do not 604 * support the Read Page Scan Type command. Check support for 605 * this command in the bit mask of supported commands. 606 */ 607 if (hdev->commands[13] & 0x01) 608 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL); 609 610 if (lmp_le_capable(hdev)) { 611 u8 events[8]; 612 613 memset(events, 0, sizeof(events)); 614 615 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 616 events[0] |= 0x10; /* LE Long Term Key Request */ 617 618 /* If controller supports the Connection Parameters Request 619 * Link Layer Procedure, enable the corresponding event. 620 */ 621 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 622 events[0] |= 0x20; /* LE Remote Connection 623 * Parameter Request 624 */ 625 626 /* If the controller supports the Data Length Extension 627 * feature, enable the corresponding event. 628 */ 629 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) 630 events[0] |= 0x40; /* LE Data Length Change */ 631 632 /* If the controller supports Extended Scanner Filter 633 * Policies, enable the correspondig event. 634 */ 635 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) 636 events[1] |= 0x04; /* LE Direct Advertising 637 * Report 638 */ 639 640 /* If the controller supports the LE Set Scan Enable command, 641 * enable the corresponding advertising report event. 642 */ 643 if (hdev->commands[26] & 0x08) 644 events[0] |= 0x02; /* LE Advertising Report */ 645 646 /* If the controller supports the LE Create Connection 647 * command, enable the corresponding event. 648 */ 649 if (hdev->commands[26] & 0x10) 650 events[0] |= 0x01; /* LE Connection Complete */ 651 652 /* If the controller supports the LE Connection Update 653 * command, enable the corresponding event. 654 */ 655 if (hdev->commands[27] & 0x04) 656 events[0] |= 0x04; /* LE Connection Update 657 * Complete 658 */ 659 660 /* If the controller supports the LE Read Remote Used Features 661 * command, enable the corresponding event. 662 */ 663 if (hdev->commands[27] & 0x20) 664 events[0] |= 0x08; /* LE Read Remote Used 665 * Features Complete 666 */ 667 668 /* If the controller supports the LE Read Local P-256 669 * Public Key command, enable the corresponding event. 670 */ 671 if (hdev->commands[34] & 0x02) 672 events[0] |= 0x80; /* LE Read Local P-256 673 * Public Key Complete 674 */ 675 676 /* If the controller supports the LE Generate DHKey 677 * command, enable the corresponding event. 678 */ 679 if (hdev->commands[34] & 0x04) 680 events[1] |= 0x01; /* LE Generate DHKey Complete */ 681 682 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events), 683 events); 684 685 if (hdev->commands[25] & 0x40) { 686 /* Read LE Advertising Channel TX Power */ 687 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL); 688 } 689 690 if (hdev->commands[26] & 0x40) { 691 /* Read LE White List Size */ 692 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE, 693 0, NULL); 694 } 695 696 if (hdev->commands[26] & 0x80) { 697 /* Clear LE White List */ 698 hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL); 699 } 700 701 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) { 702 /* Read LE Maximum Data Length */ 703 hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL); 704 705 /* Read LE Suggested Default Data Length */ 706 hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL); 707 } 708 709 hci_set_le_support(req); 710 } 711 712 /* Read features beyond page 1 if available */ 713 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) { 714 struct hci_cp_read_local_ext_features cp; 715 716 cp.page = p; 717 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES, 718 sizeof(cp), &cp); 719 } 720 721 return 0; 722 } 723 724 static int hci_init4_req(struct hci_request *req, unsigned long opt) 725 { 726 struct hci_dev *hdev = req->hdev; 727 728 /* Some Broadcom based Bluetooth controllers do not support the 729 * Delete Stored Link Key command. They are clearly indicating its 730 * absence in the bit mask of supported commands. 731 * 732 * Check the supported commands and only if the the command is marked 733 * as supported send it. If not supported assume that the controller 734 * does not have actual support for stored link keys which makes this 735 * command redundant anyway. 736 * 737 * Some controllers indicate that they support handling deleting 738 * stored link keys, but they don't. The quirk lets a driver 739 * just disable this command. 740 */ 741 if (hdev->commands[6] & 0x80 && 742 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) { 743 struct hci_cp_delete_stored_link_key cp; 744 745 bacpy(&cp.bdaddr, BDADDR_ANY); 746 cp.delete_all = 0x01; 747 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY, 748 sizeof(cp), &cp); 749 } 750 751 /* Set event mask page 2 if the HCI command for it is supported */ 752 if (hdev->commands[22] & 0x04) 753 hci_set_event_mask_page_2(req); 754 755 /* Read local codec list if the HCI command is supported */ 756 if (hdev->commands[29] & 0x20) 757 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL); 758 759 /* Get MWS transport configuration if the HCI command is supported */ 760 if (hdev->commands[30] & 0x08) 761 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL); 762 763 /* Check for Synchronization Train support */ 764 if (lmp_sync_train_capable(hdev)) 765 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL); 766 767 /* Enable Secure Connections if supported and configured */ 768 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) && 769 bredr_sc_enabled(hdev)) { 770 u8 support = 0x01; 771 772 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT, 773 sizeof(support), &support); 774 } 775 776 return 0; 777 } 778 779 static int __hci_init(struct hci_dev *hdev) 780 { 781 int err; 782 783 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL); 784 if (err < 0) 785 return err; 786 787 if (hci_dev_test_flag(hdev, HCI_SETUP)) 788 hci_debugfs_create_basic(hdev); 789 790 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL); 791 if (err < 0) 792 return err; 793 794 /* HCI_BREDR covers both single-mode LE, BR/EDR and dual-mode 795 * BR/EDR/LE type controllers. AMP controllers only need the 796 * first two stages of init. 797 */ 798 if (hdev->dev_type != HCI_BREDR) 799 return 0; 800 801 err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL); 802 if (err < 0) 803 return err; 804 805 err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL); 806 if (err < 0) 807 return err; 808 809 /* This function is only called when the controller is actually in 810 * configured state. When the controller is marked as unconfigured, 811 * this initialization procedure is not run. 812 * 813 * It means that it is possible that a controller runs through its 814 * setup phase and then discovers missing settings. If that is the 815 * case, then this function will not be called. It then will only 816 * be called during the config phase. 817 * 818 * So only when in setup phase or config phase, create the debugfs 819 * entries and register the SMP channels. 820 */ 821 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 822 !hci_dev_test_flag(hdev, HCI_CONFIG)) 823 return 0; 824 825 hci_debugfs_create_common(hdev); 826 827 if (lmp_bredr_capable(hdev)) 828 hci_debugfs_create_bredr(hdev); 829 830 if (lmp_le_capable(hdev)) 831 hci_debugfs_create_le(hdev); 832 833 return 0; 834 } 835 836 static int hci_init0_req(struct hci_request *req, unsigned long opt) 837 { 838 struct hci_dev *hdev = req->hdev; 839 840 BT_DBG("%s %ld", hdev->name, opt); 841 842 /* Reset */ 843 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) 844 hci_reset_req(req, 0); 845 846 /* Read Local Version */ 847 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL); 848 849 /* Read BD Address */ 850 if (hdev->set_bdaddr) 851 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL); 852 853 return 0; 854 } 855 856 static int __hci_unconf_init(struct hci_dev *hdev) 857 { 858 int err; 859 860 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 861 return 0; 862 863 err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL); 864 if (err < 0) 865 return err; 866 867 if (hci_dev_test_flag(hdev, HCI_SETUP)) 868 hci_debugfs_create_basic(hdev); 869 870 return 0; 871 } 872 873 static int hci_scan_req(struct hci_request *req, unsigned long opt) 874 { 875 __u8 scan = opt; 876 877 BT_DBG("%s %x", req->hdev->name, scan); 878 879 /* Inquiry and Page scans */ 880 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); 881 return 0; 882 } 883 884 static int hci_auth_req(struct hci_request *req, unsigned long opt) 885 { 886 __u8 auth = opt; 887 888 BT_DBG("%s %x", req->hdev->name, auth); 889 890 /* Authentication */ 891 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth); 892 return 0; 893 } 894 895 static int hci_encrypt_req(struct hci_request *req, unsigned long opt) 896 { 897 __u8 encrypt = opt; 898 899 BT_DBG("%s %x", req->hdev->name, encrypt); 900 901 /* Encryption */ 902 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt); 903 return 0; 904 } 905 906 static int hci_linkpol_req(struct hci_request *req, unsigned long opt) 907 { 908 __le16 policy = cpu_to_le16(opt); 909 910 BT_DBG("%s %x", req->hdev->name, policy); 911 912 /* Default link policy */ 913 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy); 914 return 0; 915 } 916 917 /* Get HCI device by index. 918 * Device is held on return. */ 919 struct hci_dev *hci_dev_get(int index) 920 { 921 struct hci_dev *hdev = NULL, *d; 922 923 BT_DBG("%d", index); 924 925 if (index < 0) 926 return NULL; 927 928 read_lock(&hci_dev_list_lock); 929 list_for_each_entry(d, &hci_dev_list, list) { 930 if (d->id == index) { 931 hdev = hci_dev_hold(d); 932 break; 933 } 934 } 935 read_unlock(&hci_dev_list_lock); 936 return hdev; 937 } 938 939 /* ---- Inquiry support ---- */ 940 941 bool hci_discovery_active(struct hci_dev *hdev) 942 { 943 struct discovery_state *discov = &hdev->discovery; 944 945 switch (discov->state) { 946 case DISCOVERY_FINDING: 947 case DISCOVERY_RESOLVING: 948 return true; 949 950 default: 951 return false; 952 } 953 } 954 955 void hci_discovery_set_state(struct hci_dev *hdev, int state) 956 { 957 int old_state = hdev->discovery.state; 958 959 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state); 960 961 if (old_state == state) 962 return; 963 964 hdev->discovery.state = state; 965 966 switch (state) { 967 case DISCOVERY_STOPPED: 968 hci_update_background_scan(hdev); 969 970 if (old_state != DISCOVERY_STARTING) 971 mgmt_discovering(hdev, 0); 972 break; 973 case DISCOVERY_STARTING: 974 break; 975 case DISCOVERY_FINDING: 976 mgmt_discovering(hdev, 1); 977 break; 978 case DISCOVERY_RESOLVING: 979 break; 980 case DISCOVERY_STOPPING: 981 break; 982 } 983 } 984 985 void hci_inquiry_cache_flush(struct hci_dev *hdev) 986 { 987 struct discovery_state *cache = &hdev->discovery; 988 struct inquiry_entry *p, *n; 989 990 list_for_each_entry_safe(p, n, &cache->all, all) { 991 list_del(&p->all); 992 kfree(p); 993 } 994 995 INIT_LIST_HEAD(&cache->unknown); 996 INIT_LIST_HEAD(&cache->resolve); 997 } 998 999 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, 1000 bdaddr_t *bdaddr) 1001 { 1002 struct discovery_state *cache = &hdev->discovery; 1003 struct inquiry_entry *e; 1004 1005 BT_DBG("cache %p, %pMR", cache, bdaddr); 1006 1007 list_for_each_entry(e, &cache->all, all) { 1008 if (!bacmp(&e->data.bdaddr, bdaddr)) 1009 return e; 1010 } 1011 1012 return NULL; 1013 } 1014 1015 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, 1016 bdaddr_t *bdaddr) 1017 { 1018 struct discovery_state *cache = &hdev->discovery; 1019 struct inquiry_entry *e; 1020 1021 BT_DBG("cache %p, %pMR", cache, bdaddr); 1022 1023 list_for_each_entry(e, &cache->unknown, list) { 1024 if (!bacmp(&e->data.bdaddr, bdaddr)) 1025 return e; 1026 } 1027 1028 return NULL; 1029 } 1030 1031 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, 1032 bdaddr_t *bdaddr, 1033 int state) 1034 { 1035 struct discovery_state *cache = &hdev->discovery; 1036 struct inquiry_entry *e; 1037 1038 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state); 1039 1040 list_for_each_entry(e, &cache->resolve, list) { 1041 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state) 1042 return e; 1043 if (!bacmp(&e->data.bdaddr, bdaddr)) 1044 return e; 1045 } 1046 1047 return NULL; 1048 } 1049 1050 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, 1051 struct inquiry_entry *ie) 1052 { 1053 struct discovery_state *cache = &hdev->discovery; 1054 struct list_head *pos = &cache->resolve; 1055 struct inquiry_entry *p; 1056 1057 list_del(&ie->list); 1058 1059 list_for_each_entry(p, &cache->resolve, list) { 1060 if (p->name_state != NAME_PENDING && 1061 abs(p->data.rssi) >= abs(ie->data.rssi)) 1062 break; 1063 pos = &p->list; 1064 } 1065 1066 list_add(&ie->list, pos); 1067 } 1068 1069 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, 1070 bool name_known) 1071 { 1072 struct discovery_state *cache = &hdev->discovery; 1073 struct inquiry_entry *ie; 1074 u32 flags = 0; 1075 1076 BT_DBG("cache %p, %pMR", cache, &data->bdaddr); 1077 1078 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR); 1079 1080 if (!data->ssp_mode) 1081 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 1082 1083 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr); 1084 if (ie) { 1085 if (!ie->data.ssp_mode) 1086 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 1087 1088 if (ie->name_state == NAME_NEEDED && 1089 data->rssi != ie->data.rssi) { 1090 ie->data.rssi = data->rssi; 1091 hci_inquiry_cache_update_resolve(hdev, ie); 1092 } 1093 1094 goto update; 1095 } 1096 1097 /* Entry not in the cache. Add new one. */ 1098 ie = kzalloc(sizeof(*ie), GFP_KERNEL); 1099 if (!ie) { 1100 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 1101 goto done; 1102 } 1103 1104 list_add(&ie->all, &cache->all); 1105 1106 if (name_known) { 1107 ie->name_state = NAME_KNOWN; 1108 } else { 1109 ie->name_state = NAME_NOT_KNOWN; 1110 list_add(&ie->list, &cache->unknown); 1111 } 1112 1113 update: 1114 if (name_known && ie->name_state != NAME_KNOWN && 1115 ie->name_state != NAME_PENDING) { 1116 ie->name_state = NAME_KNOWN; 1117 list_del(&ie->list); 1118 } 1119 1120 memcpy(&ie->data, data, sizeof(*data)); 1121 ie->timestamp = jiffies; 1122 cache->timestamp = jiffies; 1123 1124 if (ie->name_state == NAME_NOT_KNOWN) 1125 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 1126 1127 done: 1128 return flags; 1129 } 1130 1131 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf) 1132 { 1133 struct discovery_state *cache = &hdev->discovery; 1134 struct inquiry_info *info = (struct inquiry_info *) buf; 1135 struct inquiry_entry *e; 1136 int copied = 0; 1137 1138 list_for_each_entry(e, &cache->all, all) { 1139 struct inquiry_data *data = &e->data; 1140 1141 if (copied >= num) 1142 break; 1143 1144 bacpy(&info->bdaddr, &data->bdaddr); 1145 info->pscan_rep_mode = data->pscan_rep_mode; 1146 info->pscan_period_mode = data->pscan_period_mode; 1147 info->pscan_mode = data->pscan_mode; 1148 memcpy(info->dev_class, data->dev_class, 3); 1149 info->clock_offset = data->clock_offset; 1150 1151 info++; 1152 copied++; 1153 } 1154 1155 BT_DBG("cache %p, copied %d", cache, copied); 1156 return copied; 1157 } 1158 1159 static int hci_inq_req(struct hci_request *req, unsigned long opt) 1160 { 1161 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt; 1162 struct hci_dev *hdev = req->hdev; 1163 struct hci_cp_inquiry cp; 1164 1165 BT_DBG("%s", hdev->name); 1166 1167 if (test_bit(HCI_INQUIRY, &hdev->flags)) 1168 return 0; 1169 1170 /* Start Inquiry */ 1171 memcpy(&cp.lap, &ir->lap, 3); 1172 cp.length = ir->length; 1173 cp.num_rsp = ir->num_rsp; 1174 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp); 1175 1176 return 0; 1177 } 1178 1179 int hci_inquiry(void __user *arg) 1180 { 1181 __u8 __user *ptr = arg; 1182 struct hci_inquiry_req ir; 1183 struct hci_dev *hdev; 1184 int err = 0, do_inquiry = 0, max_rsp; 1185 long timeo; 1186 __u8 *buf; 1187 1188 if (copy_from_user(&ir, ptr, sizeof(ir))) 1189 return -EFAULT; 1190 1191 hdev = hci_dev_get(ir.dev_id); 1192 if (!hdev) 1193 return -ENODEV; 1194 1195 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1196 err = -EBUSY; 1197 goto done; 1198 } 1199 1200 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1201 err = -EOPNOTSUPP; 1202 goto done; 1203 } 1204 1205 if (hdev->dev_type != HCI_BREDR) { 1206 err = -EOPNOTSUPP; 1207 goto done; 1208 } 1209 1210 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 1211 err = -EOPNOTSUPP; 1212 goto done; 1213 } 1214 1215 hci_dev_lock(hdev); 1216 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX || 1217 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) { 1218 hci_inquiry_cache_flush(hdev); 1219 do_inquiry = 1; 1220 } 1221 hci_dev_unlock(hdev); 1222 1223 timeo = ir.length * msecs_to_jiffies(2000); 1224 1225 if (do_inquiry) { 1226 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir, 1227 timeo, NULL); 1228 if (err < 0) 1229 goto done; 1230 1231 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is 1232 * cleared). If it is interrupted by a signal, return -EINTR. 1233 */ 1234 if (wait_on_bit(&hdev->flags, HCI_INQUIRY, 1235 TASK_INTERRUPTIBLE)) 1236 return -EINTR; 1237 } 1238 1239 /* for unlimited number of responses we will use buffer with 1240 * 255 entries 1241 */ 1242 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp; 1243 1244 /* cache_dump can't sleep. Therefore we allocate temp buffer and then 1245 * copy it to the user space. 1246 */ 1247 buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL); 1248 if (!buf) { 1249 err = -ENOMEM; 1250 goto done; 1251 } 1252 1253 hci_dev_lock(hdev); 1254 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf); 1255 hci_dev_unlock(hdev); 1256 1257 BT_DBG("num_rsp %d", ir.num_rsp); 1258 1259 if (!copy_to_user(ptr, &ir, sizeof(ir))) { 1260 ptr += sizeof(ir); 1261 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) * 1262 ir.num_rsp)) 1263 err = -EFAULT; 1264 } else 1265 err = -EFAULT; 1266 1267 kfree(buf); 1268 1269 done: 1270 hci_dev_put(hdev); 1271 return err; 1272 } 1273 1274 static int hci_dev_do_open(struct hci_dev *hdev) 1275 { 1276 int ret = 0; 1277 1278 BT_DBG("%s %p", hdev->name, hdev); 1279 1280 hci_req_sync_lock(hdev); 1281 1282 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 1283 ret = -ENODEV; 1284 goto done; 1285 } 1286 1287 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 1288 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 1289 /* Check for rfkill but allow the HCI setup stage to 1290 * proceed (which in itself doesn't cause any RF activity). 1291 */ 1292 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { 1293 ret = -ERFKILL; 1294 goto done; 1295 } 1296 1297 /* Check for valid public address or a configured static 1298 * random adddress, but let the HCI setup proceed to 1299 * be able to determine if there is a public address 1300 * or not. 1301 * 1302 * In case of user channel usage, it is not important 1303 * if a public address or static random address is 1304 * available. 1305 * 1306 * This check is only valid for BR/EDR controllers 1307 * since AMP controllers do not have an address. 1308 */ 1309 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1310 hdev->dev_type == HCI_BREDR && 1311 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 1312 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 1313 ret = -EADDRNOTAVAIL; 1314 goto done; 1315 } 1316 } 1317 1318 if (test_bit(HCI_UP, &hdev->flags)) { 1319 ret = -EALREADY; 1320 goto done; 1321 } 1322 1323 if (hdev->open(hdev)) { 1324 ret = -EIO; 1325 goto done; 1326 } 1327 1328 set_bit(HCI_RUNNING, &hdev->flags); 1329 hci_sock_dev_event(hdev, HCI_DEV_OPEN); 1330 1331 atomic_set(&hdev->cmd_cnt, 1); 1332 set_bit(HCI_INIT, &hdev->flags); 1333 1334 if (hci_dev_test_flag(hdev, HCI_SETUP)) { 1335 hci_sock_dev_event(hdev, HCI_DEV_SETUP); 1336 1337 if (hdev->setup) 1338 ret = hdev->setup(hdev); 1339 1340 /* The transport driver can set these quirks before 1341 * creating the HCI device or in its setup callback. 1342 * 1343 * In case any of them is set, the controller has to 1344 * start up as unconfigured. 1345 */ 1346 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || 1347 test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks)) 1348 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 1349 1350 /* For an unconfigured controller it is required to 1351 * read at least the version information provided by 1352 * the Read Local Version Information command. 1353 * 1354 * If the set_bdaddr driver callback is provided, then 1355 * also the original Bluetooth public device address 1356 * will be read using the Read BD Address command. 1357 */ 1358 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 1359 ret = __hci_unconf_init(hdev); 1360 } 1361 1362 if (hci_dev_test_flag(hdev, HCI_CONFIG)) { 1363 /* If public address change is configured, ensure that 1364 * the address gets programmed. If the driver does not 1365 * support changing the public address, fail the power 1366 * on procedure. 1367 */ 1368 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 1369 hdev->set_bdaddr) 1370 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 1371 else 1372 ret = -EADDRNOTAVAIL; 1373 } 1374 1375 if (!ret) { 1376 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 1377 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1378 ret = __hci_init(hdev); 1379 if (!ret && hdev->post_init) 1380 ret = hdev->post_init(hdev); 1381 } 1382 } 1383 1384 /* If the HCI Reset command is clearing all diagnostic settings, 1385 * then they need to be reprogrammed after the init procedure 1386 * completed. 1387 */ 1388 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 1389 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) 1390 ret = hdev->set_diag(hdev, true); 1391 1392 clear_bit(HCI_INIT, &hdev->flags); 1393 1394 if (!ret) { 1395 hci_dev_hold(hdev); 1396 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 1397 set_bit(HCI_UP, &hdev->flags); 1398 hci_sock_dev_event(hdev, HCI_DEV_UP); 1399 hci_leds_update_powered(hdev, true); 1400 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 1401 !hci_dev_test_flag(hdev, HCI_CONFIG) && 1402 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 1403 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1404 hci_dev_test_flag(hdev, HCI_MGMT) && 1405 hdev->dev_type == HCI_BREDR) { 1406 ret = __hci_req_hci_power_on(hdev); 1407 mgmt_power_on(hdev, ret); 1408 } 1409 } else { 1410 /* Init failed, cleanup */ 1411 flush_work(&hdev->tx_work); 1412 flush_work(&hdev->cmd_work); 1413 flush_work(&hdev->rx_work); 1414 1415 skb_queue_purge(&hdev->cmd_q); 1416 skb_queue_purge(&hdev->rx_q); 1417 1418 if (hdev->flush) 1419 hdev->flush(hdev); 1420 1421 if (hdev->sent_cmd) { 1422 kfree_skb(hdev->sent_cmd); 1423 hdev->sent_cmd = NULL; 1424 } 1425 1426 clear_bit(HCI_RUNNING, &hdev->flags); 1427 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 1428 1429 hdev->close(hdev); 1430 hdev->flags &= BIT(HCI_RAW); 1431 } 1432 1433 done: 1434 hci_req_sync_unlock(hdev); 1435 return ret; 1436 } 1437 1438 /* ---- HCI ioctl helpers ---- */ 1439 1440 int hci_dev_open(__u16 dev) 1441 { 1442 struct hci_dev *hdev; 1443 int err; 1444 1445 hdev = hci_dev_get(dev); 1446 if (!hdev) 1447 return -ENODEV; 1448 1449 /* Devices that are marked as unconfigured can only be powered 1450 * up as user channel. Trying to bring them up as normal devices 1451 * will result into a failure. Only user channel operation is 1452 * possible. 1453 * 1454 * When this function is called for a user channel, the flag 1455 * HCI_USER_CHANNEL will be set first before attempting to 1456 * open the device. 1457 */ 1458 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 1459 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1460 err = -EOPNOTSUPP; 1461 goto done; 1462 } 1463 1464 /* We need to ensure that no other power on/off work is pending 1465 * before proceeding to call hci_dev_do_open. This is 1466 * particularly important if the setup procedure has not yet 1467 * completed. 1468 */ 1469 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) 1470 cancel_delayed_work(&hdev->power_off); 1471 1472 /* After this call it is guaranteed that the setup procedure 1473 * has finished. This means that error conditions like RFKILL 1474 * or no valid public or static random address apply. 1475 */ 1476 flush_workqueue(hdev->req_workqueue); 1477 1478 /* For controllers not using the management interface and that 1479 * are brought up using legacy ioctl, set the HCI_BONDABLE bit 1480 * so that pairing works for them. Once the management interface 1481 * is in use this bit will be cleared again and userspace has 1482 * to explicitly enable it. 1483 */ 1484 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1485 !hci_dev_test_flag(hdev, HCI_MGMT)) 1486 hci_dev_set_flag(hdev, HCI_BONDABLE); 1487 1488 err = hci_dev_do_open(hdev); 1489 1490 done: 1491 hci_dev_put(hdev); 1492 return err; 1493 } 1494 1495 /* This function requires the caller holds hdev->lock */ 1496 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 1497 { 1498 struct hci_conn_params *p; 1499 1500 list_for_each_entry(p, &hdev->le_conn_params, list) { 1501 if (p->conn) { 1502 hci_conn_drop(p->conn); 1503 hci_conn_put(p->conn); 1504 p->conn = NULL; 1505 } 1506 list_del_init(&p->action); 1507 } 1508 1509 BT_DBG("All LE pending actions cleared"); 1510 } 1511 1512 int hci_dev_do_close(struct hci_dev *hdev) 1513 { 1514 bool auto_off; 1515 1516 BT_DBG("%s %p", hdev->name, hdev); 1517 1518 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && 1519 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1520 test_bit(HCI_UP, &hdev->flags)) { 1521 /* Execute vendor specific shutdown routine */ 1522 if (hdev->shutdown) 1523 hdev->shutdown(hdev); 1524 } 1525 1526 cancel_delayed_work(&hdev->power_off); 1527 1528 hci_request_cancel_all(hdev); 1529 hci_req_sync_lock(hdev); 1530 1531 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 1532 cancel_delayed_work_sync(&hdev->cmd_timer); 1533 hci_req_sync_unlock(hdev); 1534 return 0; 1535 } 1536 1537 hci_leds_update_powered(hdev, false); 1538 1539 /* Flush RX and TX works */ 1540 flush_work(&hdev->tx_work); 1541 flush_work(&hdev->rx_work); 1542 1543 if (hdev->discov_timeout > 0) { 1544 hdev->discov_timeout = 0; 1545 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 1546 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 1547 } 1548 1549 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) 1550 cancel_delayed_work(&hdev->service_cache); 1551 1552 if (hci_dev_test_flag(hdev, HCI_MGMT)) 1553 cancel_delayed_work_sync(&hdev->rpa_expired); 1554 1555 /* Avoid potential lockdep warnings from the *_flush() calls by 1556 * ensuring the workqueue is empty up front. 1557 */ 1558 drain_workqueue(hdev->workqueue); 1559 1560 hci_dev_lock(hdev); 1561 1562 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 1563 1564 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); 1565 1566 if (!auto_off && hdev->dev_type == HCI_BREDR && 1567 hci_dev_test_flag(hdev, HCI_MGMT)) 1568 __mgmt_power_off(hdev); 1569 1570 hci_inquiry_cache_flush(hdev); 1571 hci_pend_le_actions_clear(hdev); 1572 hci_conn_hash_flush(hdev); 1573 hci_dev_unlock(hdev); 1574 1575 smp_unregister(hdev); 1576 1577 hci_sock_dev_event(hdev, HCI_DEV_DOWN); 1578 1579 if (hdev->flush) 1580 hdev->flush(hdev); 1581 1582 /* Reset device */ 1583 skb_queue_purge(&hdev->cmd_q); 1584 atomic_set(&hdev->cmd_cnt, 1); 1585 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && 1586 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1587 set_bit(HCI_INIT, &hdev->flags); 1588 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL); 1589 clear_bit(HCI_INIT, &hdev->flags); 1590 } 1591 1592 /* flush cmd work */ 1593 flush_work(&hdev->cmd_work); 1594 1595 /* Drop queues */ 1596 skb_queue_purge(&hdev->rx_q); 1597 skb_queue_purge(&hdev->cmd_q); 1598 skb_queue_purge(&hdev->raw_q); 1599 1600 /* Drop last sent command */ 1601 if (hdev->sent_cmd) { 1602 cancel_delayed_work_sync(&hdev->cmd_timer); 1603 kfree_skb(hdev->sent_cmd); 1604 hdev->sent_cmd = NULL; 1605 } 1606 1607 clear_bit(HCI_RUNNING, &hdev->flags); 1608 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 1609 1610 /* After this point our queues are empty 1611 * and no tasks are scheduled. */ 1612 hdev->close(hdev); 1613 1614 /* Clear flags */ 1615 hdev->flags &= BIT(HCI_RAW); 1616 hci_dev_clear_volatile_flags(hdev); 1617 1618 /* Controller radio is available but is currently powered down */ 1619 hdev->amp_status = AMP_STATUS_POWERED_DOWN; 1620 1621 memset(hdev->eir, 0, sizeof(hdev->eir)); 1622 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 1623 bacpy(&hdev->random_addr, BDADDR_ANY); 1624 1625 hci_req_sync_unlock(hdev); 1626 1627 hci_dev_put(hdev); 1628 return 0; 1629 } 1630 1631 int hci_dev_close(__u16 dev) 1632 { 1633 struct hci_dev *hdev; 1634 int err; 1635 1636 hdev = hci_dev_get(dev); 1637 if (!hdev) 1638 return -ENODEV; 1639 1640 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1641 err = -EBUSY; 1642 goto done; 1643 } 1644 1645 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) 1646 cancel_delayed_work(&hdev->power_off); 1647 1648 err = hci_dev_do_close(hdev); 1649 1650 done: 1651 hci_dev_put(hdev); 1652 return err; 1653 } 1654 1655 static int hci_dev_do_reset(struct hci_dev *hdev) 1656 { 1657 int ret; 1658 1659 BT_DBG("%s %p", hdev->name, hdev); 1660 1661 hci_req_sync_lock(hdev); 1662 1663 /* Drop queues */ 1664 skb_queue_purge(&hdev->rx_q); 1665 skb_queue_purge(&hdev->cmd_q); 1666 1667 /* Avoid potential lockdep warnings from the *_flush() calls by 1668 * ensuring the workqueue is empty up front. 1669 */ 1670 drain_workqueue(hdev->workqueue); 1671 1672 hci_dev_lock(hdev); 1673 hci_inquiry_cache_flush(hdev); 1674 hci_conn_hash_flush(hdev); 1675 hci_dev_unlock(hdev); 1676 1677 if (hdev->flush) 1678 hdev->flush(hdev); 1679 1680 atomic_set(&hdev->cmd_cnt, 1); 1681 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0; 1682 1683 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL); 1684 1685 hci_req_sync_unlock(hdev); 1686 return ret; 1687 } 1688 1689 int hci_dev_reset(__u16 dev) 1690 { 1691 struct hci_dev *hdev; 1692 int err; 1693 1694 hdev = hci_dev_get(dev); 1695 if (!hdev) 1696 return -ENODEV; 1697 1698 if (!test_bit(HCI_UP, &hdev->flags)) { 1699 err = -ENETDOWN; 1700 goto done; 1701 } 1702 1703 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1704 err = -EBUSY; 1705 goto done; 1706 } 1707 1708 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1709 err = -EOPNOTSUPP; 1710 goto done; 1711 } 1712 1713 err = hci_dev_do_reset(hdev); 1714 1715 done: 1716 hci_dev_put(hdev); 1717 return err; 1718 } 1719 1720 int hci_dev_reset_stat(__u16 dev) 1721 { 1722 struct hci_dev *hdev; 1723 int ret = 0; 1724 1725 hdev = hci_dev_get(dev); 1726 if (!hdev) 1727 return -ENODEV; 1728 1729 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1730 ret = -EBUSY; 1731 goto done; 1732 } 1733 1734 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1735 ret = -EOPNOTSUPP; 1736 goto done; 1737 } 1738 1739 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats)); 1740 1741 done: 1742 hci_dev_put(hdev); 1743 return ret; 1744 } 1745 1746 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan) 1747 { 1748 bool conn_changed, discov_changed; 1749 1750 BT_DBG("%s scan 0x%02x", hdev->name, scan); 1751 1752 if ((scan & SCAN_PAGE)) 1753 conn_changed = !hci_dev_test_and_set_flag(hdev, 1754 HCI_CONNECTABLE); 1755 else 1756 conn_changed = hci_dev_test_and_clear_flag(hdev, 1757 HCI_CONNECTABLE); 1758 1759 if ((scan & SCAN_INQUIRY)) { 1760 discov_changed = !hci_dev_test_and_set_flag(hdev, 1761 HCI_DISCOVERABLE); 1762 } else { 1763 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 1764 discov_changed = hci_dev_test_and_clear_flag(hdev, 1765 HCI_DISCOVERABLE); 1766 } 1767 1768 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 1769 return; 1770 1771 if (conn_changed || discov_changed) { 1772 /* In case this was disabled through mgmt */ 1773 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); 1774 1775 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 1776 hci_req_update_adv_data(hdev, hdev->cur_adv_instance); 1777 1778 mgmt_new_settings(hdev); 1779 } 1780 } 1781 1782 int hci_dev_cmd(unsigned int cmd, void __user *arg) 1783 { 1784 struct hci_dev *hdev; 1785 struct hci_dev_req dr; 1786 int err = 0; 1787 1788 if (copy_from_user(&dr, arg, sizeof(dr))) 1789 return -EFAULT; 1790 1791 hdev = hci_dev_get(dr.dev_id); 1792 if (!hdev) 1793 return -ENODEV; 1794 1795 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1796 err = -EBUSY; 1797 goto done; 1798 } 1799 1800 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1801 err = -EOPNOTSUPP; 1802 goto done; 1803 } 1804 1805 if (hdev->dev_type != HCI_BREDR) { 1806 err = -EOPNOTSUPP; 1807 goto done; 1808 } 1809 1810 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 1811 err = -EOPNOTSUPP; 1812 goto done; 1813 } 1814 1815 switch (cmd) { 1816 case HCISETAUTH: 1817 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt, 1818 HCI_INIT_TIMEOUT, NULL); 1819 break; 1820 1821 case HCISETENCRYPT: 1822 if (!lmp_encrypt_capable(hdev)) { 1823 err = -EOPNOTSUPP; 1824 break; 1825 } 1826 1827 if (!test_bit(HCI_AUTH, &hdev->flags)) { 1828 /* Auth must be enabled first */ 1829 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt, 1830 HCI_INIT_TIMEOUT, NULL); 1831 if (err) 1832 break; 1833 } 1834 1835 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt, 1836 HCI_INIT_TIMEOUT, NULL); 1837 break; 1838 1839 case HCISETSCAN: 1840 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt, 1841 HCI_INIT_TIMEOUT, NULL); 1842 1843 /* Ensure that the connectable and discoverable states 1844 * get correctly modified as this was a non-mgmt change. 1845 */ 1846 if (!err) 1847 hci_update_scan_state(hdev, dr.dev_opt); 1848 break; 1849 1850 case HCISETLINKPOL: 1851 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt, 1852 HCI_INIT_TIMEOUT, NULL); 1853 break; 1854 1855 case HCISETLINKMODE: 1856 hdev->link_mode = ((__u16) dr.dev_opt) & 1857 (HCI_LM_MASTER | HCI_LM_ACCEPT); 1858 break; 1859 1860 case HCISETPTYPE: 1861 hdev->pkt_type = (__u16) dr.dev_opt; 1862 break; 1863 1864 case HCISETACLMTU: 1865 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1); 1866 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0); 1867 break; 1868 1869 case HCISETSCOMTU: 1870 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1); 1871 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0); 1872 break; 1873 1874 default: 1875 err = -EINVAL; 1876 break; 1877 } 1878 1879 done: 1880 hci_dev_put(hdev); 1881 return err; 1882 } 1883 1884 int hci_get_dev_list(void __user *arg) 1885 { 1886 struct hci_dev *hdev; 1887 struct hci_dev_list_req *dl; 1888 struct hci_dev_req *dr; 1889 int n = 0, size, err; 1890 __u16 dev_num; 1891 1892 if (get_user(dev_num, (__u16 __user *) arg)) 1893 return -EFAULT; 1894 1895 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr)) 1896 return -EINVAL; 1897 1898 size = sizeof(*dl) + dev_num * sizeof(*dr); 1899 1900 dl = kzalloc(size, GFP_KERNEL); 1901 if (!dl) 1902 return -ENOMEM; 1903 1904 dr = dl->dev_req; 1905 1906 read_lock(&hci_dev_list_lock); 1907 list_for_each_entry(hdev, &hci_dev_list, list) { 1908 unsigned long flags = hdev->flags; 1909 1910 /* When the auto-off is configured it means the transport 1911 * is running, but in that case still indicate that the 1912 * device is actually down. 1913 */ 1914 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) 1915 flags &= ~BIT(HCI_UP); 1916 1917 (dr + n)->dev_id = hdev->id; 1918 (dr + n)->dev_opt = flags; 1919 1920 if (++n >= dev_num) 1921 break; 1922 } 1923 read_unlock(&hci_dev_list_lock); 1924 1925 dl->dev_num = n; 1926 size = sizeof(*dl) + n * sizeof(*dr); 1927 1928 err = copy_to_user(arg, dl, size); 1929 kfree(dl); 1930 1931 return err ? -EFAULT : 0; 1932 } 1933 1934 int hci_get_dev_info(void __user *arg) 1935 { 1936 struct hci_dev *hdev; 1937 struct hci_dev_info di; 1938 unsigned long flags; 1939 int err = 0; 1940 1941 if (copy_from_user(&di, arg, sizeof(di))) 1942 return -EFAULT; 1943 1944 hdev = hci_dev_get(di.dev_id); 1945 if (!hdev) 1946 return -ENODEV; 1947 1948 /* When the auto-off is configured it means the transport 1949 * is running, but in that case still indicate that the 1950 * device is actually down. 1951 */ 1952 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) 1953 flags = hdev->flags & ~BIT(HCI_UP); 1954 else 1955 flags = hdev->flags; 1956 1957 strcpy(di.name, hdev->name); 1958 di.bdaddr = hdev->bdaddr; 1959 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4); 1960 di.flags = flags; 1961 di.pkt_type = hdev->pkt_type; 1962 if (lmp_bredr_capable(hdev)) { 1963 di.acl_mtu = hdev->acl_mtu; 1964 di.acl_pkts = hdev->acl_pkts; 1965 di.sco_mtu = hdev->sco_mtu; 1966 di.sco_pkts = hdev->sco_pkts; 1967 } else { 1968 di.acl_mtu = hdev->le_mtu; 1969 di.acl_pkts = hdev->le_pkts; 1970 di.sco_mtu = 0; 1971 di.sco_pkts = 0; 1972 } 1973 di.link_policy = hdev->link_policy; 1974 di.link_mode = hdev->link_mode; 1975 1976 memcpy(&di.stat, &hdev->stat, sizeof(di.stat)); 1977 memcpy(&di.features, &hdev->features, sizeof(di.features)); 1978 1979 if (copy_to_user(arg, &di, sizeof(di))) 1980 err = -EFAULT; 1981 1982 hci_dev_put(hdev); 1983 1984 return err; 1985 } 1986 1987 /* ---- Interface to HCI drivers ---- */ 1988 1989 static int hci_rfkill_set_block(void *data, bool blocked) 1990 { 1991 struct hci_dev *hdev = data; 1992 1993 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked); 1994 1995 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) 1996 return -EBUSY; 1997 1998 if (blocked) { 1999 hci_dev_set_flag(hdev, HCI_RFKILLED); 2000 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 2001 !hci_dev_test_flag(hdev, HCI_CONFIG)) 2002 hci_dev_do_close(hdev); 2003 } else { 2004 hci_dev_clear_flag(hdev, HCI_RFKILLED); 2005 } 2006 2007 return 0; 2008 } 2009 2010 static const struct rfkill_ops hci_rfkill_ops = { 2011 .set_block = hci_rfkill_set_block, 2012 }; 2013 2014 static void hci_power_on(struct work_struct *work) 2015 { 2016 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on); 2017 int err; 2018 2019 BT_DBG("%s", hdev->name); 2020 2021 if (test_bit(HCI_UP, &hdev->flags) && 2022 hci_dev_test_flag(hdev, HCI_MGMT) && 2023 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 2024 cancel_delayed_work(&hdev->power_off); 2025 hci_req_sync_lock(hdev); 2026 err = __hci_req_hci_power_on(hdev); 2027 hci_req_sync_unlock(hdev); 2028 mgmt_power_on(hdev, err); 2029 return; 2030 } 2031 2032 err = hci_dev_do_open(hdev); 2033 if (err < 0) { 2034 hci_dev_lock(hdev); 2035 mgmt_set_powered_failed(hdev, err); 2036 hci_dev_unlock(hdev); 2037 return; 2038 } 2039 2040 /* During the HCI setup phase, a few error conditions are 2041 * ignored and they need to be checked now. If they are still 2042 * valid, it is important to turn the device back off. 2043 */ 2044 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 2045 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 2046 (hdev->dev_type == HCI_BREDR && 2047 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 2048 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 2049 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 2050 hci_dev_do_close(hdev); 2051 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 2052 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 2053 HCI_AUTO_OFF_TIMEOUT); 2054 } 2055 2056 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 2057 /* For unconfigured devices, set the HCI_RAW flag 2058 * so that userspace can easily identify them. 2059 */ 2060 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 2061 set_bit(HCI_RAW, &hdev->flags); 2062 2063 /* For fully configured devices, this will send 2064 * the Index Added event. For unconfigured devices, 2065 * it will send Unconfigued Index Added event. 2066 * 2067 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 2068 * and no event will be send. 2069 */ 2070 mgmt_index_added(hdev); 2071 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 2072 /* When the controller is now configured, then it 2073 * is important to clear the HCI_RAW flag. 2074 */ 2075 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 2076 clear_bit(HCI_RAW, &hdev->flags); 2077 2078 /* Powering on the controller with HCI_CONFIG set only 2079 * happens with the transition from unconfigured to 2080 * configured. This will send the Index Added event. 2081 */ 2082 mgmt_index_added(hdev); 2083 } 2084 } 2085 2086 static void hci_power_off(struct work_struct *work) 2087 { 2088 struct hci_dev *hdev = container_of(work, struct hci_dev, 2089 power_off.work); 2090 2091 BT_DBG("%s", hdev->name); 2092 2093 hci_dev_do_close(hdev); 2094 } 2095 2096 static void hci_error_reset(struct work_struct *work) 2097 { 2098 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset); 2099 2100 BT_DBG("%s", hdev->name); 2101 2102 if (hdev->hw_error) 2103 hdev->hw_error(hdev, hdev->hw_error_code); 2104 else 2105 BT_ERR("%s hardware error 0x%2.2x", hdev->name, 2106 hdev->hw_error_code); 2107 2108 if (hci_dev_do_close(hdev)) 2109 return; 2110 2111 hci_dev_do_open(hdev); 2112 } 2113 2114 void hci_uuids_clear(struct hci_dev *hdev) 2115 { 2116 struct bt_uuid *uuid, *tmp; 2117 2118 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) { 2119 list_del(&uuid->list); 2120 kfree(uuid); 2121 } 2122 } 2123 2124 void hci_link_keys_clear(struct hci_dev *hdev) 2125 { 2126 struct link_key *key; 2127 2128 list_for_each_entry_rcu(key, &hdev->link_keys, list) { 2129 list_del_rcu(&key->list); 2130 kfree_rcu(key, rcu); 2131 } 2132 } 2133 2134 void hci_smp_ltks_clear(struct hci_dev *hdev) 2135 { 2136 struct smp_ltk *k; 2137 2138 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 2139 list_del_rcu(&k->list); 2140 kfree_rcu(k, rcu); 2141 } 2142 } 2143 2144 void hci_smp_irks_clear(struct hci_dev *hdev) 2145 { 2146 struct smp_irk *k; 2147 2148 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) { 2149 list_del_rcu(&k->list); 2150 kfree_rcu(k, rcu); 2151 } 2152 } 2153 2154 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 2155 { 2156 struct link_key *k; 2157 2158 rcu_read_lock(); 2159 list_for_each_entry_rcu(k, &hdev->link_keys, list) { 2160 if (bacmp(bdaddr, &k->bdaddr) == 0) { 2161 rcu_read_unlock(); 2162 return k; 2163 } 2164 } 2165 rcu_read_unlock(); 2166 2167 return NULL; 2168 } 2169 2170 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn, 2171 u8 key_type, u8 old_key_type) 2172 { 2173 /* Legacy key */ 2174 if (key_type < 0x03) 2175 return true; 2176 2177 /* Debug keys are insecure so don't store them persistently */ 2178 if (key_type == HCI_LK_DEBUG_COMBINATION) 2179 return false; 2180 2181 /* Changed combination key and there's no previous one */ 2182 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff) 2183 return false; 2184 2185 /* Security mode 3 case */ 2186 if (!conn) 2187 return true; 2188 2189 /* BR/EDR key derived using SC from an LE link */ 2190 if (conn->type == LE_LINK) 2191 return true; 2192 2193 /* Neither local nor remote side had no-bonding as requirement */ 2194 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01) 2195 return true; 2196 2197 /* Local side had dedicated bonding as requirement */ 2198 if (conn->auth_type == 0x02 || conn->auth_type == 0x03) 2199 return true; 2200 2201 /* Remote side had dedicated bonding as requirement */ 2202 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03) 2203 return true; 2204 2205 /* If none of the above criteria match, then don't store the key 2206 * persistently */ 2207 return false; 2208 } 2209 2210 static u8 ltk_role(u8 type) 2211 { 2212 if (type == SMP_LTK) 2213 return HCI_ROLE_MASTER; 2214 2215 return HCI_ROLE_SLAVE; 2216 } 2217 2218 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 2219 u8 addr_type, u8 role) 2220 { 2221 struct smp_ltk *k; 2222 2223 rcu_read_lock(); 2224 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 2225 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr)) 2226 continue; 2227 2228 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) { 2229 rcu_read_unlock(); 2230 return k; 2231 } 2232 } 2233 rcu_read_unlock(); 2234 2235 return NULL; 2236 } 2237 2238 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa) 2239 { 2240 struct smp_irk *irk; 2241 2242 rcu_read_lock(); 2243 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 2244 if (!bacmp(&irk->rpa, rpa)) { 2245 rcu_read_unlock(); 2246 return irk; 2247 } 2248 } 2249 2250 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 2251 if (smp_irk_matches(hdev, irk->val, rpa)) { 2252 bacpy(&irk->rpa, rpa); 2253 rcu_read_unlock(); 2254 return irk; 2255 } 2256 } 2257 rcu_read_unlock(); 2258 2259 return NULL; 2260 } 2261 2262 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, 2263 u8 addr_type) 2264 { 2265 struct smp_irk *irk; 2266 2267 /* Identity Address must be public or static random */ 2268 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0) 2269 return NULL; 2270 2271 rcu_read_lock(); 2272 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 2273 if (addr_type == irk->addr_type && 2274 bacmp(bdaddr, &irk->bdaddr) == 0) { 2275 rcu_read_unlock(); 2276 return irk; 2277 } 2278 } 2279 rcu_read_unlock(); 2280 2281 return NULL; 2282 } 2283 2284 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, 2285 bdaddr_t *bdaddr, u8 *val, u8 type, 2286 u8 pin_len, bool *persistent) 2287 { 2288 struct link_key *key, *old_key; 2289 u8 old_key_type; 2290 2291 old_key = hci_find_link_key(hdev, bdaddr); 2292 if (old_key) { 2293 old_key_type = old_key->type; 2294 key = old_key; 2295 } else { 2296 old_key_type = conn ? conn->key_type : 0xff; 2297 key = kzalloc(sizeof(*key), GFP_KERNEL); 2298 if (!key) 2299 return NULL; 2300 list_add_rcu(&key->list, &hdev->link_keys); 2301 } 2302 2303 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type); 2304 2305 /* Some buggy controller combinations generate a changed 2306 * combination key for legacy pairing even when there's no 2307 * previous key */ 2308 if (type == HCI_LK_CHANGED_COMBINATION && 2309 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) { 2310 type = HCI_LK_COMBINATION; 2311 if (conn) 2312 conn->key_type = type; 2313 } 2314 2315 bacpy(&key->bdaddr, bdaddr); 2316 memcpy(key->val, val, HCI_LINK_KEY_SIZE); 2317 key->pin_len = pin_len; 2318 2319 if (type == HCI_LK_CHANGED_COMBINATION) 2320 key->type = old_key_type; 2321 else 2322 key->type = type; 2323 2324 if (persistent) 2325 *persistent = hci_persistent_key(hdev, conn, type, 2326 old_key_type); 2327 2328 return key; 2329 } 2330 2331 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 2332 u8 addr_type, u8 type, u8 authenticated, 2333 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand) 2334 { 2335 struct smp_ltk *key, *old_key; 2336 u8 role = ltk_role(type); 2337 2338 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role); 2339 if (old_key) 2340 key = old_key; 2341 else { 2342 key = kzalloc(sizeof(*key), GFP_KERNEL); 2343 if (!key) 2344 return NULL; 2345 list_add_rcu(&key->list, &hdev->long_term_keys); 2346 } 2347 2348 bacpy(&key->bdaddr, bdaddr); 2349 key->bdaddr_type = addr_type; 2350 memcpy(key->val, tk, sizeof(key->val)); 2351 key->authenticated = authenticated; 2352 key->ediv = ediv; 2353 key->rand = rand; 2354 key->enc_size = enc_size; 2355 key->type = type; 2356 2357 return key; 2358 } 2359 2360 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, 2361 u8 addr_type, u8 val[16], bdaddr_t *rpa) 2362 { 2363 struct smp_irk *irk; 2364 2365 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type); 2366 if (!irk) { 2367 irk = kzalloc(sizeof(*irk), GFP_KERNEL); 2368 if (!irk) 2369 return NULL; 2370 2371 bacpy(&irk->bdaddr, bdaddr); 2372 irk->addr_type = addr_type; 2373 2374 list_add_rcu(&irk->list, &hdev->identity_resolving_keys); 2375 } 2376 2377 memcpy(irk->val, val, 16); 2378 bacpy(&irk->rpa, rpa); 2379 2380 return irk; 2381 } 2382 2383 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 2384 { 2385 struct link_key *key; 2386 2387 key = hci_find_link_key(hdev, bdaddr); 2388 if (!key) 2389 return -ENOENT; 2390 2391 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 2392 2393 list_del_rcu(&key->list); 2394 kfree_rcu(key, rcu); 2395 2396 return 0; 2397 } 2398 2399 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type) 2400 { 2401 struct smp_ltk *k; 2402 int removed = 0; 2403 2404 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 2405 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type) 2406 continue; 2407 2408 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 2409 2410 list_del_rcu(&k->list); 2411 kfree_rcu(k, rcu); 2412 removed++; 2413 } 2414 2415 return removed ? 0 : -ENOENT; 2416 } 2417 2418 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type) 2419 { 2420 struct smp_irk *k; 2421 2422 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) { 2423 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type) 2424 continue; 2425 2426 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 2427 2428 list_del_rcu(&k->list); 2429 kfree_rcu(k, rcu); 2430 } 2431 } 2432 2433 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type) 2434 { 2435 struct smp_ltk *k; 2436 struct smp_irk *irk; 2437 u8 addr_type; 2438 2439 if (type == BDADDR_BREDR) { 2440 if (hci_find_link_key(hdev, bdaddr)) 2441 return true; 2442 return false; 2443 } 2444 2445 /* Convert to HCI addr type which struct smp_ltk uses */ 2446 if (type == BDADDR_LE_PUBLIC) 2447 addr_type = ADDR_LE_DEV_PUBLIC; 2448 else 2449 addr_type = ADDR_LE_DEV_RANDOM; 2450 2451 irk = hci_get_irk(hdev, bdaddr, addr_type); 2452 if (irk) { 2453 bdaddr = &irk->bdaddr; 2454 addr_type = irk->addr_type; 2455 } 2456 2457 rcu_read_lock(); 2458 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 2459 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) { 2460 rcu_read_unlock(); 2461 return true; 2462 } 2463 } 2464 rcu_read_unlock(); 2465 2466 return false; 2467 } 2468 2469 /* HCI command timer function */ 2470 static void hci_cmd_timeout(struct work_struct *work) 2471 { 2472 struct hci_dev *hdev = container_of(work, struct hci_dev, 2473 cmd_timer.work); 2474 2475 if (hdev->sent_cmd) { 2476 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data; 2477 u16 opcode = __le16_to_cpu(sent->opcode); 2478 2479 BT_ERR("%s command 0x%4.4x tx timeout", hdev->name, opcode); 2480 } else { 2481 BT_ERR("%s command tx timeout", hdev->name); 2482 } 2483 2484 atomic_set(&hdev->cmd_cnt, 1); 2485 queue_work(hdev->workqueue, &hdev->cmd_work); 2486 } 2487 2488 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, 2489 bdaddr_t *bdaddr, u8 bdaddr_type) 2490 { 2491 struct oob_data *data; 2492 2493 list_for_each_entry(data, &hdev->remote_oob_data, list) { 2494 if (bacmp(bdaddr, &data->bdaddr) != 0) 2495 continue; 2496 if (data->bdaddr_type != bdaddr_type) 2497 continue; 2498 return data; 2499 } 2500 2501 return NULL; 2502 } 2503 2504 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 2505 u8 bdaddr_type) 2506 { 2507 struct oob_data *data; 2508 2509 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); 2510 if (!data) 2511 return -ENOENT; 2512 2513 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type); 2514 2515 list_del(&data->list); 2516 kfree(data); 2517 2518 return 0; 2519 } 2520 2521 void hci_remote_oob_data_clear(struct hci_dev *hdev) 2522 { 2523 struct oob_data *data, *n; 2524 2525 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) { 2526 list_del(&data->list); 2527 kfree(data); 2528 } 2529 } 2530 2531 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 2532 u8 bdaddr_type, u8 *hash192, u8 *rand192, 2533 u8 *hash256, u8 *rand256) 2534 { 2535 struct oob_data *data; 2536 2537 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); 2538 if (!data) { 2539 data = kmalloc(sizeof(*data), GFP_KERNEL); 2540 if (!data) 2541 return -ENOMEM; 2542 2543 bacpy(&data->bdaddr, bdaddr); 2544 data->bdaddr_type = bdaddr_type; 2545 list_add(&data->list, &hdev->remote_oob_data); 2546 } 2547 2548 if (hash192 && rand192) { 2549 memcpy(data->hash192, hash192, sizeof(data->hash192)); 2550 memcpy(data->rand192, rand192, sizeof(data->rand192)); 2551 if (hash256 && rand256) 2552 data->present = 0x03; 2553 } else { 2554 memset(data->hash192, 0, sizeof(data->hash192)); 2555 memset(data->rand192, 0, sizeof(data->rand192)); 2556 if (hash256 && rand256) 2557 data->present = 0x02; 2558 else 2559 data->present = 0x00; 2560 } 2561 2562 if (hash256 && rand256) { 2563 memcpy(data->hash256, hash256, sizeof(data->hash256)); 2564 memcpy(data->rand256, rand256, sizeof(data->rand256)); 2565 } else { 2566 memset(data->hash256, 0, sizeof(data->hash256)); 2567 memset(data->rand256, 0, sizeof(data->rand256)); 2568 if (hash192 && rand192) 2569 data->present = 0x01; 2570 } 2571 2572 BT_DBG("%s for %pMR", hdev->name, bdaddr); 2573 2574 return 0; 2575 } 2576 2577 /* This function requires the caller holds hdev->lock */ 2578 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance) 2579 { 2580 struct adv_info *adv_instance; 2581 2582 list_for_each_entry(adv_instance, &hdev->adv_instances, list) { 2583 if (adv_instance->instance == instance) 2584 return adv_instance; 2585 } 2586 2587 return NULL; 2588 } 2589 2590 /* This function requires the caller holds hdev->lock */ 2591 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance) 2592 { 2593 struct adv_info *cur_instance; 2594 2595 cur_instance = hci_find_adv_instance(hdev, instance); 2596 if (!cur_instance) 2597 return NULL; 2598 2599 if (cur_instance == list_last_entry(&hdev->adv_instances, 2600 struct adv_info, list)) 2601 return list_first_entry(&hdev->adv_instances, 2602 struct adv_info, list); 2603 else 2604 return list_next_entry(cur_instance, list); 2605 } 2606 2607 /* This function requires the caller holds hdev->lock */ 2608 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance) 2609 { 2610 struct adv_info *adv_instance; 2611 2612 adv_instance = hci_find_adv_instance(hdev, instance); 2613 if (!adv_instance) 2614 return -ENOENT; 2615 2616 BT_DBG("%s removing %dMR", hdev->name, instance); 2617 2618 if (hdev->cur_adv_instance == instance) { 2619 if (hdev->adv_instance_timeout) { 2620 cancel_delayed_work(&hdev->adv_instance_expire); 2621 hdev->adv_instance_timeout = 0; 2622 } 2623 hdev->cur_adv_instance = 0x00; 2624 } 2625 2626 list_del(&adv_instance->list); 2627 kfree(adv_instance); 2628 2629 hdev->adv_instance_cnt--; 2630 2631 return 0; 2632 } 2633 2634 /* This function requires the caller holds hdev->lock */ 2635 void hci_adv_instances_clear(struct hci_dev *hdev) 2636 { 2637 struct adv_info *adv_instance, *n; 2638 2639 if (hdev->adv_instance_timeout) { 2640 cancel_delayed_work(&hdev->adv_instance_expire); 2641 hdev->adv_instance_timeout = 0; 2642 } 2643 2644 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) { 2645 list_del(&adv_instance->list); 2646 kfree(adv_instance); 2647 } 2648 2649 hdev->adv_instance_cnt = 0; 2650 hdev->cur_adv_instance = 0x00; 2651 } 2652 2653 /* This function requires the caller holds hdev->lock */ 2654 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags, 2655 u16 adv_data_len, u8 *adv_data, 2656 u16 scan_rsp_len, u8 *scan_rsp_data, 2657 u16 timeout, u16 duration) 2658 { 2659 struct adv_info *adv_instance; 2660 2661 adv_instance = hci_find_adv_instance(hdev, instance); 2662 if (adv_instance) { 2663 memset(adv_instance->adv_data, 0, 2664 sizeof(adv_instance->adv_data)); 2665 memset(adv_instance->scan_rsp_data, 0, 2666 sizeof(adv_instance->scan_rsp_data)); 2667 } else { 2668 if (hdev->adv_instance_cnt >= HCI_MAX_ADV_INSTANCES || 2669 instance < 1 || instance > HCI_MAX_ADV_INSTANCES) 2670 return -EOVERFLOW; 2671 2672 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL); 2673 if (!adv_instance) 2674 return -ENOMEM; 2675 2676 adv_instance->pending = true; 2677 adv_instance->instance = instance; 2678 list_add(&adv_instance->list, &hdev->adv_instances); 2679 hdev->adv_instance_cnt++; 2680 } 2681 2682 adv_instance->flags = flags; 2683 adv_instance->adv_data_len = adv_data_len; 2684 adv_instance->scan_rsp_len = scan_rsp_len; 2685 2686 if (adv_data_len) 2687 memcpy(adv_instance->adv_data, adv_data, adv_data_len); 2688 2689 if (scan_rsp_len) 2690 memcpy(adv_instance->scan_rsp_data, 2691 scan_rsp_data, scan_rsp_len); 2692 2693 adv_instance->timeout = timeout; 2694 adv_instance->remaining_time = timeout; 2695 2696 if (duration == 0) 2697 adv_instance->duration = HCI_DEFAULT_ADV_DURATION; 2698 else 2699 adv_instance->duration = duration; 2700 2701 BT_DBG("%s for %dMR", hdev->name, instance); 2702 2703 return 0; 2704 } 2705 2706 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list, 2707 bdaddr_t *bdaddr, u8 type) 2708 { 2709 struct bdaddr_list *b; 2710 2711 list_for_each_entry(b, bdaddr_list, list) { 2712 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 2713 return b; 2714 } 2715 2716 return NULL; 2717 } 2718 2719 void hci_bdaddr_list_clear(struct list_head *bdaddr_list) 2720 { 2721 struct bdaddr_list *b, *n; 2722 2723 list_for_each_entry_safe(b, n, bdaddr_list, list) { 2724 list_del(&b->list); 2725 kfree(b); 2726 } 2727 } 2728 2729 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type) 2730 { 2731 struct bdaddr_list *entry; 2732 2733 if (!bacmp(bdaddr, BDADDR_ANY)) 2734 return -EBADF; 2735 2736 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 2737 return -EEXIST; 2738 2739 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 2740 if (!entry) 2741 return -ENOMEM; 2742 2743 bacpy(&entry->bdaddr, bdaddr); 2744 entry->bdaddr_type = type; 2745 2746 list_add(&entry->list, list); 2747 2748 return 0; 2749 } 2750 2751 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type) 2752 { 2753 struct bdaddr_list *entry; 2754 2755 if (!bacmp(bdaddr, BDADDR_ANY)) { 2756 hci_bdaddr_list_clear(list); 2757 return 0; 2758 } 2759 2760 entry = hci_bdaddr_list_lookup(list, bdaddr, type); 2761 if (!entry) 2762 return -ENOENT; 2763 2764 list_del(&entry->list); 2765 kfree(entry); 2766 2767 return 0; 2768 } 2769 2770 /* This function requires the caller holds hdev->lock */ 2771 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev, 2772 bdaddr_t *addr, u8 addr_type) 2773 { 2774 struct hci_conn_params *params; 2775 2776 list_for_each_entry(params, &hdev->le_conn_params, list) { 2777 if (bacmp(¶ms->addr, addr) == 0 && 2778 params->addr_type == addr_type) { 2779 return params; 2780 } 2781 } 2782 2783 return NULL; 2784 } 2785 2786 /* This function requires the caller holds hdev->lock */ 2787 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list, 2788 bdaddr_t *addr, u8 addr_type) 2789 { 2790 struct hci_conn_params *param; 2791 2792 list_for_each_entry(param, list, action) { 2793 if (bacmp(¶m->addr, addr) == 0 && 2794 param->addr_type == addr_type) 2795 return param; 2796 } 2797 2798 return NULL; 2799 } 2800 2801 /* This function requires the caller holds hdev->lock */ 2802 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev, 2803 bdaddr_t *addr, u8 addr_type) 2804 { 2805 struct hci_conn_params *params; 2806 2807 params = hci_conn_params_lookup(hdev, addr, addr_type); 2808 if (params) 2809 return params; 2810 2811 params = kzalloc(sizeof(*params), GFP_KERNEL); 2812 if (!params) { 2813 BT_ERR("Out of memory"); 2814 return NULL; 2815 } 2816 2817 bacpy(¶ms->addr, addr); 2818 params->addr_type = addr_type; 2819 2820 list_add(¶ms->list, &hdev->le_conn_params); 2821 INIT_LIST_HEAD(¶ms->action); 2822 2823 params->conn_min_interval = hdev->le_conn_min_interval; 2824 params->conn_max_interval = hdev->le_conn_max_interval; 2825 params->conn_latency = hdev->le_conn_latency; 2826 params->supervision_timeout = hdev->le_supv_timeout; 2827 params->auto_connect = HCI_AUTO_CONN_DISABLED; 2828 2829 BT_DBG("addr %pMR (type %u)", addr, addr_type); 2830 2831 return params; 2832 } 2833 2834 static void hci_conn_params_free(struct hci_conn_params *params) 2835 { 2836 if (params->conn) { 2837 hci_conn_drop(params->conn); 2838 hci_conn_put(params->conn); 2839 } 2840 2841 list_del(¶ms->action); 2842 list_del(¶ms->list); 2843 kfree(params); 2844 } 2845 2846 /* This function requires the caller holds hdev->lock */ 2847 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type) 2848 { 2849 struct hci_conn_params *params; 2850 2851 params = hci_conn_params_lookup(hdev, addr, addr_type); 2852 if (!params) 2853 return; 2854 2855 hci_conn_params_free(params); 2856 2857 hci_update_background_scan(hdev); 2858 2859 BT_DBG("addr %pMR (type %u)", addr, addr_type); 2860 } 2861 2862 /* This function requires the caller holds hdev->lock */ 2863 void hci_conn_params_clear_disabled(struct hci_dev *hdev) 2864 { 2865 struct hci_conn_params *params, *tmp; 2866 2867 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) { 2868 if (params->auto_connect != HCI_AUTO_CONN_DISABLED) 2869 continue; 2870 2871 /* If trying to estabilish one time connection to disabled 2872 * device, leave the params, but mark them as just once. 2873 */ 2874 if (params->explicit_connect) { 2875 params->auto_connect = HCI_AUTO_CONN_EXPLICIT; 2876 continue; 2877 } 2878 2879 list_del(¶ms->list); 2880 kfree(params); 2881 } 2882 2883 BT_DBG("All LE disabled connection parameters were removed"); 2884 } 2885 2886 /* This function requires the caller holds hdev->lock */ 2887 static void hci_conn_params_clear_all(struct hci_dev *hdev) 2888 { 2889 struct hci_conn_params *params, *tmp; 2890 2891 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) 2892 hci_conn_params_free(params); 2893 2894 BT_DBG("All LE connection parameters were removed"); 2895 } 2896 2897 /* Copy the Identity Address of the controller. 2898 * 2899 * If the controller has a public BD_ADDR, then by default use that one. 2900 * If this is a LE only controller without a public address, default to 2901 * the static random address. 2902 * 2903 * For debugging purposes it is possible to force controllers with a 2904 * public address to use the static random address instead. 2905 * 2906 * In case BR/EDR has been disabled on a dual-mode controller and 2907 * userspace has configured a static address, then that address 2908 * becomes the identity address instead of the public BR/EDR address. 2909 */ 2910 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr, 2911 u8 *bdaddr_type) 2912 { 2913 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 2914 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 2915 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 2916 bacmp(&hdev->static_addr, BDADDR_ANY))) { 2917 bacpy(bdaddr, &hdev->static_addr); 2918 *bdaddr_type = ADDR_LE_DEV_RANDOM; 2919 } else { 2920 bacpy(bdaddr, &hdev->bdaddr); 2921 *bdaddr_type = ADDR_LE_DEV_PUBLIC; 2922 } 2923 } 2924 2925 /* Alloc HCI device */ 2926 struct hci_dev *hci_alloc_dev(void) 2927 { 2928 struct hci_dev *hdev; 2929 2930 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL); 2931 if (!hdev) 2932 return NULL; 2933 2934 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1); 2935 hdev->esco_type = (ESCO_HV1); 2936 hdev->link_mode = (HCI_LM_ACCEPT); 2937 hdev->num_iac = 0x01; /* One IAC support is mandatory */ 2938 hdev->io_capability = 0x03; /* No Input No Output */ 2939 hdev->manufacturer = 0xffff; /* Default to internal use */ 2940 hdev->inq_tx_power = HCI_TX_POWER_INVALID; 2941 hdev->adv_tx_power = HCI_TX_POWER_INVALID; 2942 hdev->adv_instance_cnt = 0; 2943 hdev->cur_adv_instance = 0x00; 2944 hdev->adv_instance_timeout = 0; 2945 2946 hdev->sniff_max_interval = 800; 2947 hdev->sniff_min_interval = 80; 2948 2949 hdev->le_adv_channel_map = 0x07; 2950 hdev->le_adv_min_interval = 0x0800; 2951 hdev->le_adv_max_interval = 0x0800; 2952 hdev->le_scan_interval = 0x0060; 2953 hdev->le_scan_window = 0x0030; 2954 hdev->le_conn_min_interval = 0x0028; 2955 hdev->le_conn_max_interval = 0x0038; 2956 hdev->le_conn_latency = 0x0000; 2957 hdev->le_supv_timeout = 0x002a; 2958 hdev->le_def_tx_len = 0x001b; 2959 hdev->le_def_tx_time = 0x0148; 2960 hdev->le_max_tx_len = 0x001b; 2961 hdev->le_max_tx_time = 0x0148; 2962 hdev->le_max_rx_len = 0x001b; 2963 hdev->le_max_rx_time = 0x0148; 2964 2965 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT; 2966 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT; 2967 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE; 2968 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE; 2969 2970 mutex_init(&hdev->lock); 2971 mutex_init(&hdev->req_lock); 2972 2973 INIT_LIST_HEAD(&hdev->mgmt_pending); 2974 INIT_LIST_HEAD(&hdev->blacklist); 2975 INIT_LIST_HEAD(&hdev->whitelist); 2976 INIT_LIST_HEAD(&hdev->uuids); 2977 INIT_LIST_HEAD(&hdev->link_keys); 2978 INIT_LIST_HEAD(&hdev->long_term_keys); 2979 INIT_LIST_HEAD(&hdev->identity_resolving_keys); 2980 INIT_LIST_HEAD(&hdev->remote_oob_data); 2981 INIT_LIST_HEAD(&hdev->le_white_list); 2982 INIT_LIST_HEAD(&hdev->le_conn_params); 2983 INIT_LIST_HEAD(&hdev->pend_le_conns); 2984 INIT_LIST_HEAD(&hdev->pend_le_reports); 2985 INIT_LIST_HEAD(&hdev->conn_hash.list); 2986 INIT_LIST_HEAD(&hdev->adv_instances); 2987 2988 INIT_WORK(&hdev->rx_work, hci_rx_work); 2989 INIT_WORK(&hdev->cmd_work, hci_cmd_work); 2990 INIT_WORK(&hdev->tx_work, hci_tx_work); 2991 INIT_WORK(&hdev->power_on, hci_power_on); 2992 INIT_WORK(&hdev->error_reset, hci_error_reset); 2993 2994 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off); 2995 2996 skb_queue_head_init(&hdev->rx_q); 2997 skb_queue_head_init(&hdev->cmd_q); 2998 skb_queue_head_init(&hdev->raw_q); 2999 3000 init_waitqueue_head(&hdev->req_wait_q); 3001 3002 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout); 3003 3004 hci_request_setup(hdev); 3005 3006 hci_init_sysfs(hdev); 3007 discovery_init(hdev); 3008 3009 return hdev; 3010 } 3011 EXPORT_SYMBOL(hci_alloc_dev); 3012 3013 /* Free HCI device */ 3014 void hci_free_dev(struct hci_dev *hdev) 3015 { 3016 /* will free via device release */ 3017 put_device(&hdev->dev); 3018 } 3019 EXPORT_SYMBOL(hci_free_dev); 3020 3021 /* Register HCI device */ 3022 int hci_register_dev(struct hci_dev *hdev) 3023 { 3024 int id, error; 3025 3026 if (!hdev->open || !hdev->close || !hdev->send) 3027 return -EINVAL; 3028 3029 /* Do not allow HCI_AMP devices to register at index 0, 3030 * so the index can be used as the AMP controller ID. 3031 */ 3032 switch (hdev->dev_type) { 3033 case HCI_BREDR: 3034 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL); 3035 break; 3036 case HCI_AMP: 3037 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL); 3038 break; 3039 default: 3040 return -EINVAL; 3041 } 3042 3043 if (id < 0) 3044 return id; 3045 3046 sprintf(hdev->name, "hci%d", id); 3047 hdev->id = id; 3048 3049 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 3050 3051 hdev->workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND | 3052 WQ_MEM_RECLAIM, 1, hdev->name); 3053 if (!hdev->workqueue) { 3054 error = -ENOMEM; 3055 goto err; 3056 } 3057 3058 hdev->req_workqueue = alloc_workqueue("%s", WQ_HIGHPRI | WQ_UNBOUND | 3059 WQ_MEM_RECLAIM, 1, hdev->name); 3060 if (!hdev->req_workqueue) { 3061 destroy_workqueue(hdev->workqueue); 3062 error = -ENOMEM; 3063 goto err; 3064 } 3065 3066 if (!IS_ERR_OR_NULL(bt_debugfs)) 3067 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs); 3068 3069 dev_set_name(&hdev->dev, "%s", hdev->name); 3070 3071 error = device_add(&hdev->dev); 3072 if (error < 0) 3073 goto err_wqueue; 3074 3075 hci_leds_init(hdev); 3076 3077 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev, 3078 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, 3079 hdev); 3080 if (hdev->rfkill) { 3081 if (rfkill_register(hdev->rfkill) < 0) { 3082 rfkill_destroy(hdev->rfkill); 3083 hdev->rfkill = NULL; 3084 } 3085 } 3086 3087 if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) 3088 hci_dev_set_flag(hdev, HCI_RFKILLED); 3089 3090 hci_dev_set_flag(hdev, HCI_SETUP); 3091 hci_dev_set_flag(hdev, HCI_AUTO_OFF); 3092 3093 if (hdev->dev_type == HCI_BREDR) { 3094 /* Assume BR/EDR support until proven otherwise (such as 3095 * through reading supported features during init. 3096 */ 3097 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); 3098 } 3099 3100 write_lock(&hci_dev_list_lock); 3101 list_add(&hdev->list, &hci_dev_list); 3102 write_unlock(&hci_dev_list_lock); 3103 3104 /* Devices that are marked for raw-only usage are unconfigured 3105 * and should not be included in normal operation. 3106 */ 3107 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 3108 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 3109 3110 hci_sock_dev_event(hdev, HCI_DEV_REG); 3111 hci_dev_hold(hdev); 3112 3113 queue_work(hdev->req_workqueue, &hdev->power_on); 3114 3115 return id; 3116 3117 err_wqueue: 3118 destroy_workqueue(hdev->workqueue); 3119 destroy_workqueue(hdev->req_workqueue); 3120 err: 3121 ida_simple_remove(&hci_index_ida, hdev->id); 3122 3123 return error; 3124 } 3125 EXPORT_SYMBOL(hci_register_dev); 3126 3127 /* Unregister HCI device */ 3128 void hci_unregister_dev(struct hci_dev *hdev) 3129 { 3130 int id; 3131 3132 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 3133 3134 hci_dev_set_flag(hdev, HCI_UNREGISTER); 3135 3136 id = hdev->id; 3137 3138 write_lock(&hci_dev_list_lock); 3139 list_del(&hdev->list); 3140 write_unlock(&hci_dev_list_lock); 3141 3142 cancel_work_sync(&hdev->power_on); 3143 3144 hci_dev_do_close(hdev); 3145 3146 if (!test_bit(HCI_INIT, &hdev->flags) && 3147 !hci_dev_test_flag(hdev, HCI_SETUP) && 3148 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 3149 hci_dev_lock(hdev); 3150 mgmt_index_removed(hdev); 3151 hci_dev_unlock(hdev); 3152 } 3153 3154 /* mgmt_index_removed should take care of emptying the 3155 * pending list */ 3156 BUG_ON(!list_empty(&hdev->mgmt_pending)); 3157 3158 hci_sock_dev_event(hdev, HCI_DEV_UNREG); 3159 3160 if (hdev->rfkill) { 3161 rfkill_unregister(hdev->rfkill); 3162 rfkill_destroy(hdev->rfkill); 3163 } 3164 3165 device_del(&hdev->dev); 3166 3167 debugfs_remove_recursive(hdev->debugfs); 3168 3169 destroy_workqueue(hdev->workqueue); 3170 destroy_workqueue(hdev->req_workqueue); 3171 3172 hci_dev_lock(hdev); 3173 hci_bdaddr_list_clear(&hdev->blacklist); 3174 hci_bdaddr_list_clear(&hdev->whitelist); 3175 hci_uuids_clear(hdev); 3176 hci_link_keys_clear(hdev); 3177 hci_smp_ltks_clear(hdev); 3178 hci_smp_irks_clear(hdev); 3179 hci_remote_oob_data_clear(hdev); 3180 hci_adv_instances_clear(hdev); 3181 hci_bdaddr_list_clear(&hdev->le_white_list); 3182 hci_conn_params_clear_all(hdev); 3183 hci_discovery_filter_clear(hdev); 3184 hci_dev_unlock(hdev); 3185 3186 hci_dev_put(hdev); 3187 3188 ida_simple_remove(&hci_index_ida, id); 3189 } 3190 EXPORT_SYMBOL(hci_unregister_dev); 3191 3192 /* Suspend HCI device */ 3193 int hci_suspend_dev(struct hci_dev *hdev) 3194 { 3195 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND); 3196 return 0; 3197 } 3198 EXPORT_SYMBOL(hci_suspend_dev); 3199 3200 /* Resume HCI device */ 3201 int hci_resume_dev(struct hci_dev *hdev) 3202 { 3203 hci_sock_dev_event(hdev, HCI_DEV_RESUME); 3204 return 0; 3205 } 3206 EXPORT_SYMBOL(hci_resume_dev); 3207 3208 /* Reset HCI device */ 3209 int hci_reset_dev(struct hci_dev *hdev) 3210 { 3211 const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 }; 3212 struct sk_buff *skb; 3213 3214 skb = bt_skb_alloc(3, GFP_ATOMIC); 3215 if (!skb) 3216 return -ENOMEM; 3217 3218 hci_skb_pkt_type(skb) = HCI_EVENT_PKT; 3219 memcpy(skb_put(skb, 3), hw_err, 3); 3220 3221 /* Send Hardware Error to upper stack */ 3222 return hci_recv_frame(hdev, skb); 3223 } 3224 EXPORT_SYMBOL(hci_reset_dev); 3225 3226 /* Receive frame from HCI drivers */ 3227 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb) 3228 { 3229 if (!hdev || (!test_bit(HCI_UP, &hdev->flags) 3230 && !test_bit(HCI_INIT, &hdev->flags))) { 3231 kfree_skb(skb); 3232 return -ENXIO; 3233 } 3234 3235 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT && 3236 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 3237 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT) { 3238 kfree_skb(skb); 3239 return -EINVAL; 3240 } 3241 3242 /* Incoming skb */ 3243 bt_cb(skb)->incoming = 1; 3244 3245 /* Time stamp */ 3246 __net_timestamp(skb); 3247 3248 skb_queue_tail(&hdev->rx_q, skb); 3249 queue_work(hdev->workqueue, &hdev->rx_work); 3250 3251 return 0; 3252 } 3253 EXPORT_SYMBOL(hci_recv_frame); 3254 3255 /* Receive diagnostic message from HCI drivers */ 3256 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb) 3257 { 3258 /* Mark as diagnostic packet */ 3259 hci_skb_pkt_type(skb) = HCI_DIAG_PKT; 3260 3261 /* Time stamp */ 3262 __net_timestamp(skb); 3263 3264 skb_queue_tail(&hdev->rx_q, skb); 3265 queue_work(hdev->workqueue, &hdev->rx_work); 3266 3267 return 0; 3268 } 3269 EXPORT_SYMBOL(hci_recv_diag); 3270 3271 /* ---- Interface to upper protocols ---- */ 3272 3273 int hci_register_cb(struct hci_cb *cb) 3274 { 3275 BT_DBG("%p name %s", cb, cb->name); 3276 3277 mutex_lock(&hci_cb_list_lock); 3278 list_add_tail(&cb->list, &hci_cb_list); 3279 mutex_unlock(&hci_cb_list_lock); 3280 3281 return 0; 3282 } 3283 EXPORT_SYMBOL(hci_register_cb); 3284 3285 int hci_unregister_cb(struct hci_cb *cb) 3286 { 3287 BT_DBG("%p name %s", cb, cb->name); 3288 3289 mutex_lock(&hci_cb_list_lock); 3290 list_del(&cb->list); 3291 mutex_unlock(&hci_cb_list_lock); 3292 3293 return 0; 3294 } 3295 EXPORT_SYMBOL(hci_unregister_cb); 3296 3297 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb) 3298 { 3299 int err; 3300 3301 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb), 3302 skb->len); 3303 3304 /* Time stamp */ 3305 __net_timestamp(skb); 3306 3307 /* Send copy to monitor */ 3308 hci_send_to_monitor(hdev, skb); 3309 3310 if (atomic_read(&hdev->promisc)) { 3311 /* Send copy to the sockets */ 3312 hci_send_to_sock(hdev, skb); 3313 } 3314 3315 /* Get rid of skb owner, prior to sending to the driver. */ 3316 skb_orphan(skb); 3317 3318 if (!test_bit(HCI_RUNNING, &hdev->flags)) { 3319 kfree_skb(skb); 3320 return; 3321 } 3322 3323 err = hdev->send(hdev, skb); 3324 if (err < 0) { 3325 BT_ERR("%s sending frame failed (%d)", hdev->name, err); 3326 kfree_skb(skb); 3327 } 3328 } 3329 3330 /* Send HCI command */ 3331 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, 3332 const void *param) 3333 { 3334 struct sk_buff *skb; 3335 3336 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen); 3337 3338 skb = hci_prepare_cmd(hdev, opcode, plen, param); 3339 if (!skb) { 3340 BT_ERR("%s no memory for command", hdev->name); 3341 return -ENOMEM; 3342 } 3343 3344 /* Stand-alone HCI commands must be flagged as 3345 * single-command requests. 3346 */ 3347 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 3348 3349 skb_queue_tail(&hdev->cmd_q, skb); 3350 queue_work(hdev->workqueue, &hdev->cmd_work); 3351 3352 return 0; 3353 } 3354 3355 /* Get data from the previously sent command */ 3356 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode) 3357 { 3358 struct hci_command_hdr *hdr; 3359 3360 if (!hdev->sent_cmd) 3361 return NULL; 3362 3363 hdr = (void *) hdev->sent_cmd->data; 3364 3365 if (hdr->opcode != cpu_to_le16(opcode)) 3366 return NULL; 3367 3368 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode); 3369 3370 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE; 3371 } 3372 3373 /* Send HCI command and wait for command commplete event */ 3374 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 3375 const void *param, u32 timeout) 3376 { 3377 struct sk_buff *skb; 3378 3379 if (!test_bit(HCI_UP, &hdev->flags)) 3380 return ERR_PTR(-ENETDOWN); 3381 3382 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 3383 3384 hci_req_sync_lock(hdev); 3385 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); 3386 hci_req_sync_unlock(hdev); 3387 3388 return skb; 3389 } 3390 EXPORT_SYMBOL(hci_cmd_sync); 3391 3392 /* Send ACL data */ 3393 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags) 3394 { 3395 struct hci_acl_hdr *hdr; 3396 int len = skb->len; 3397 3398 skb_push(skb, HCI_ACL_HDR_SIZE); 3399 skb_reset_transport_header(skb); 3400 hdr = (struct hci_acl_hdr *)skb_transport_header(skb); 3401 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags)); 3402 hdr->dlen = cpu_to_le16(len); 3403 } 3404 3405 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue, 3406 struct sk_buff *skb, __u16 flags) 3407 { 3408 struct hci_conn *conn = chan->conn; 3409 struct hci_dev *hdev = conn->hdev; 3410 struct sk_buff *list; 3411 3412 skb->len = skb_headlen(skb); 3413 skb->data_len = 0; 3414 3415 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT; 3416 3417 switch (hdev->dev_type) { 3418 case HCI_BREDR: 3419 hci_add_acl_hdr(skb, conn->handle, flags); 3420 break; 3421 case HCI_AMP: 3422 hci_add_acl_hdr(skb, chan->handle, flags); 3423 break; 3424 default: 3425 BT_ERR("%s unknown dev_type %d", hdev->name, hdev->dev_type); 3426 return; 3427 } 3428 3429 list = skb_shinfo(skb)->frag_list; 3430 if (!list) { 3431 /* Non fragmented */ 3432 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len); 3433 3434 skb_queue_tail(queue, skb); 3435 } else { 3436 /* Fragmented */ 3437 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3438 3439 skb_shinfo(skb)->frag_list = NULL; 3440 3441 /* Queue all fragments atomically. We need to use spin_lock_bh 3442 * here because of 6LoWPAN links, as there this function is 3443 * called from softirq and using normal spin lock could cause 3444 * deadlocks. 3445 */ 3446 spin_lock_bh(&queue->lock); 3447 3448 __skb_queue_tail(queue, skb); 3449 3450 flags &= ~ACL_START; 3451 flags |= ACL_CONT; 3452 do { 3453 skb = list; list = list->next; 3454 3455 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT; 3456 hci_add_acl_hdr(skb, conn->handle, flags); 3457 3458 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3459 3460 __skb_queue_tail(queue, skb); 3461 } while (list); 3462 3463 spin_unlock_bh(&queue->lock); 3464 } 3465 } 3466 3467 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags) 3468 { 3469 struct hci_dev *hdev = chan->conn->hdev; 3470 3471 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags); 3472 3473 hci_queue_acl(chan, &chan->data_q, skb, flags); 3474 3475 queue_work(hdev->workqueue, &hdev->tx_work); 3476 } 3477 3478 /* Send SCO data */ 3479 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb) 3480 { 3481 struct hci_dev *hdev = conn->hdev; 3482 struct hci_sco_hdr hdr; 3483 3484 BT_DBG("%s len %d", hdev->name, skb->len); 3485 3486 hdr.handle = cpu_to_le16(conn->handle); 3487 hdr.dlen = skb->len; 3488 3489 skb_push(skb, HCI_SCO_HDR_SIZE); 3490 skb_reset_transport_header(skb); 3491 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE); 3492 3493 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT; 3494 3495 skb_queue_tail(&conn->data_q, skb); 3496 queue_work(hdev->workqueue, &hdev->tx_work); 3497 } 3498 3499 /* ---- HCI TX task (outgoing data) ---- */ 3500 3501 /* HCI Connection scheduler */ 3502 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, 3503 int *quote) 3504 { 3505 struct hci_conn_hash *h = &hdev->conn_hash; 3506 struct hci_conn *conn = NULL, *c; 3507 unsigned int num = 0, min = ~0; 3508 3509 /* We don't have to lock device here. Connections are always 3510 * added and removed with TX task disabled. */ 3511 3512 rcu_read_lock(); 3513 3514 list_for_each_entry_rcu(c, &h->list, list) { 3515 if (c->type != type || skb_queue_empty(&c->data_q)) 3516 continue; 3517 3518 if (c->state != BT_CONNECTED && c->state != BT_CONFIG) 3519 continue; 3520 3521 num++; 3522 3523 if (c->sent < min) { 3524 min = c->sent; 3525 conn = c; 3526 } 3527 3528 if (hci_conn_num(hdev, type) == num) 3529 break; 3530 } 3531 3532 rcu_read_unlock(); 3533 3534 if (conn) { 3535 int cnt, q; 3536 3537 switch (conn->type) { 3538 case ACL_LINK: 3539 cnt = hdev->acl_cnt; 3540 break; 3541 case SCO_LINK: 3542 case ESCO_LINK: 3543 cnt = hdev->sco_cnt; 3544 break; 3545 case LE_LINK: 3546 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 3547 break; 3548 default: 3549 cnt = 0; 3550 BT_ERR("Unknown link type"); 3551 } 3552 3553 q = cnt / num; 3554 *quote = q ? q : 1; 3555 } else 3556 *quote = 0; 3557 3558 BT_DBG("conn %p quote %d", conn, *quote); 3559 return conn; 3560 } 3561 3562 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type) 3563 { 3564 struct hci_conn_hash *h = &hdev->conn_hash; 3565 struct hci_conn *c; 3566 3567 BT_ERR("%s link tx timeout", hdev->name); 3568 3569 rcu_read_lock(); 3570 3571 /* Kill stalled connections */ 3572 list_for_each_entry_rcu(c, &h->list, list) { 3573 if (c->type == type && c->sent) { 3574 BT_ERR("%s killing stalled connection %pMR", 3575 hdev->name, &c->dst); 3576 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM); 3577 } 3578 } 3579 3580 rcu_read_unlock(); 3581 } 3582 3583 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type, 3584 int *quote) 3585 { 3586 struct hci_conn_hash *h = &hdev->conn_hash; 3587 struct hci_chan *chan = NULL; 3588 unsigned int num = 0, min = ~0, cur_prio = 0; 3589 struct hci_conn *conn; 3590 int cnt, q, conn_num = 0; 3591 3592 BT_DBG("%s", hdev->name); 3593 3594 rcu_read_lock(); 3595 3596 list_for_each_entry_rcu(conn, &h->list, list) { 3597 struct hci_chan *tmp; 3598 3599 if (conn->type != type) 3600 continue; 3601 3602 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3603 continue; 3604 3605 conn_num++; 3606 3607 list_for_each_entry_rcu(tmp, &conn->chan_list, list) { 3608 struct sk_buff *skb; 3609 3610 if (skb_queue_empty(&tmp->data_q)) 3611 continue; 3612 3613 skb = skb_peek(&tmp->data_q); 3614 if (skb->priority < cur_prio) 3615 continue; 3616 3617 if (skb->priority > cur_prio) { 3618 num = 0; 3619 min = ~0; 3620 cur_prio = skb->priority; 3621 } 3622 3623 num++; 3624 3625 if (conn->sent < min) { 3626 min = conn->sent; 3627 chan = tmp; 3628 } 3629 } 3630 3631 if (hci_conn_num(hdev, type) == conn_num) 3632 break; 3633 } 3634 3635 rcu_read_unlock(); 3636 3637 if (!chan) 3638 return NULL; 3639 3640 switch (chan->conn->type) { 3641 case ACL_LINK: 3642 cnt = hdev->acl_cnt; 3643 break; 3644 case AMP_LINK: 3645 cnt = hdev->block_cnt; 3646 break; 3647 case SCO_LINK: 3648 case ESCO_LINK: 3649 cnt = hdev->sco_cnt; 3650 break; 3651 case LE_LINK: 3652 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 3653 break; 3654 default: 3655 cnt = 0; 3656 BT_ERR("Unknown link type"); 3657 } 3658 3659 q = cnt / num; 3660 *quote = q ? q : 1; 3661 BT_DBG("chan %p quote %d", chan, *quote); 3662 return chan; 3663 } 3664 3665 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type) 3666 { 3667 struct hci_conn_hash *h = &hdev->conn_hash; 3668 struct hci_conn *conn; 3669 int num = 0; 3670 3671 BT_DBG("%s", hdev->name); 3672 3673 rcu_read_lock(); 3674 3675 list_for_each_entry_rcu(conn, &h->list, list) { 3676 struct hci_chan *chan; 3677 3678 if (conn->type != type) 3679 continue; 3680 3681 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3682 continue; 3683 3684 num++; 3685 3686 list_for_each_entry_rcu(chan, &conn->chan_list, list) { 3687 struct sk_buff *skb; 3688 3689 if (chan->sent) { 3690 chan->sent = 0; 3691 continue; 3692 } 3693 3694 if (skb_queue_empty(&chan->data_q)) 3695 continue; 3696 3697 skb = skb_peek(&chan->data_q); 3698 if (skb->priority >= HCI_PRIO_MAX - 1) 3699 continue; 3700 3701 skb->priority = HCI_PRIO_MAX - 1; 3702 3703 BT_DBG("chan %p skb %p promoted to %d", chan, skb, 3704 skb->priority); 3705 } 3706 3707 if (hci_conn_num(hdev, type) == num) 3708 break; 3709 } 3710 3711 rcu_read_unlock(); 3712 3713 } 3714 3715 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb) 3716 { 3717 /* Calculate count of blocks used by this packet */ 3718 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len); 3719 } 3720 3721 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt) 3722 { 3723 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 3724 /* ACL tx timeout must be longer than maximum 3725 * link supervision timeout (40.9 seconds) */ 3726 if (!cnt && time_after(jiffies, hdev->acl_last_tx + 3727 HCI_ACL_TX_TIMEOUT)) 3728 hci_link_tx_to(hdev, ACL_LINK); 3729 } 3730 } 3731 3732 static void hci_sched_acl_pkt(struct hci_dev *hdev) 3733 { 3734 unsigned int cnt = hdev->acl_cnt; 3735 struct hci_chan *chan; 3736 struct sk_buff *skb; 3737 int quote; 3738 3739 __check_timeout(hdev, cnt); 3740 3741 while (hdev->acl_cnt && 3742 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) { 3743 u32 priority = (skb_peek(&chan->data_q))->priority; 3744 while (quote-- && (skb = skb_peek(&chan->data_q))) { 3745 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 3746 skb->len, skb->priority); 3747 3748 /* Stop if priority has changed */ 3749 if (skb->priority < priority) 3750 break; 3751 3752 skb = skb_dequeue(&chan->data_q); 3753 3754 hci_conn_enter_active_mode(chan->conn, 3755 bt_cb(skb)->force_active); 3756 3757 hci_send_frame(hdev, skb); 3758 hdev->acl_last_tx = jiffies; 3759 3760 hdev->acl_cnt--; 3761 chan->sent++; 3762 chan->conn->sent++; 3763 } 3764 } 3765 3766 if (cnt != hdev->acl_cnt) 3767 hci_prio_recalculate(hdev, ACL_LINK); 3768 } 3769 3770 static void hci_sched_acl_blk(struct hci_dev *hdev) 3771 { 3772 unsigned int cnt = hdev->block_cnt; 3773 struct hci_chan *chan; 3774 struct sk_buff *skb; 3775 int quote; 3776 u8 type; 3777 3778 __check_timeout(hdev, cnt); 3779 3780 BT_DBG("%s", hdev->name); 3781 3782 if (hdev->dev_type == HCI_AMP) 3783 type = AMP_LINK; 3784 else 3785 type = ACL_LINK; 3786 3787 while (hdev->block_cnt > 0 && 3788 (chan = hci_chan_sent(hdev, type, "e))) { 3789 u32 priority = (skb_peek(&chan->data_q))->priority; 3790 while (quote > 0 && (skb = skb_peek(&chan->data_q))) { 3791 int blocks; 3792 3793 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 3794 skb->len, skb->priority); 3795 3796 /* Stop if priority has changed */ 3797 if (skb->priority < priority) 3798 break; 3799 3800 skb = skb_dequeue(&chan->data_q); 3801 3802 blocks = __get_blocks(hdev, skb); 3803 if (blocks > hdev->block_cnt) 3804 return; 3805 3806 hci_conn_enter_active_mode(chan->conn, 3807 bt_cb(skb)->force_active); 3808 3809 hci_send_frame(hdev, skb); 3810 hdev->acl_last_tx = jiffies; 3811 3812 hdev->block_cnt -= blocks; 3813 quote -= blocks; 3814 3815 chan->sent += blocks; 3816 chan->conn->sent += blocks; 3817 } 3818 } 3819 3820 if (cnt != hdev->block_cnt) 3821 hci_prio_recalculate(hdev, type); 3822 } 3823 3824 static void hci_sched_acl(struct hci_dev *hdev) 3825 { 3826 BT_DBG("%s", hdev->name); 3827 3828 /* No ACL link over BR/EDR controller */ 3829 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_BREDR) 3830 return; 3831 3832 /* No AMP link over AMP controller */ 3833 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP) 3834 return; 3835 3836 switch (hdev->flow_ctl_mode) { 3837 case HCI_FLOW_CTL_MODE_PACKET_BASED: 3838 hci_sched_acl_pkt(hdev); 3839 break; 3840 3841 case HCI_FLOW_CTL_MODE_BLOCK_BASED: 3842 hci_sched_acl_blk(hdev); 3843 break; 3844 } 3845 } 3846 3847 /* Schedule SCO */ 3848 static void hci_sched_sco(struct hci_dev *hdev) 3849 { 3850 struct hci_conn *conn; 3851 struct sk_buff *skb; 3852 int quote; 3853 3854 BT_DBG("%s", hdev->name); 3855 3856 if (!hci_conn_num(hdev, SCO_LINK)) 3857 return; 3858 3859 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) { 3860 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 3861 BT_DBG("skb %p len %d", skb, skb->len); 3862 hci_send_frame(hdev, skb); 3863 3864 conn->sent++; 3865 if (conn->sent == ~0) 3866 conn->sent = 0; 3867 } 3868 } 3869 } 3870 3871 static void hci_sched_esco(struct hci_dev *hdev) 3872 { 3873 struct hci_conn *conn; 3874 struct sk_buff *skb; 3875 int quote; 3876 3877 BT_DBG("%s", hdev->name); 3878 3879 if (!hci_conn_num(hdev, ESCO_LINK)) 3880 return; 3881 3882 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, 3883 "e))) { 3884 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 3885 BT_DBG("skb %p len %d", skb, skb->len); 3886 hci_send_frame(hdev, skb); 3887 3888 conn->sent++; 3889 if (conn->sent == ~0) 3890 conn->sent = 0; 3891 } 3892 } 3893 } 3894 3895 static void hci_sched_le(struct hci_dev *hdev) 3896 { 3897 struct hci_chan *chan; 3898 struct sk_buff *skb; 3899 int quote, cnt, tmp; 3900 3901 BT_DBG("%s", hdev->name); 3902 3903 if (!hci_conn_num(hdev, LE_LINK)) 3904 return; 3905 3906 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 3907 /* LE tx timeout must be longer than maximum 3908 * link supervision timeout (40.9 seconds) */ 3909 if (!hdev->le_cnt && hdev->le_pkts && 3910 time_after(jiffies, hdev->le_last_tx + HZ * 45)) 3911 hci_link_tx_to(hdev, LE_LINK); 3912 } 3913 3914 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt; 3915 tmp = cnt; 3916 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) { 3917 u32 priority = (skb_peek(&chan->data_q))->priority; 3918 while (quote-- && (skb = skb_peek(&chan->data_q))) { 3919 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 3920 skb->len, skb->priority); 3921 3922 /* Stop if priority has changed */ 3923 if (skb->priority < priority) 3924 break; 3925 3926 skb = skb_dequeue(&chan->data_q); 3927 3928 hci_send_frame(hdev, skb); 3929 hdev->le_last_tx = jiffies; 3930 3931 cnt--; 3932 chan->sent++; 3933 chan->conn->sent++; 3934 } 3935 } 3936 3937 if (hdev->le_pkts) 3938 hdev->le_cnt = cnt; 3939 else 3940 hdev->acl_cnt = cnt; 3941 3942 if (cnt != tmp) 3943 hci_prio_recalculate(hdev, LE_LINK); 3944 } 3945 3946 static void hci_tx_work(struct work_struct *work) 3947 { 3948 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work); 3949 struct sk_buff *skb; 3950 3951 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt, 3952 hdev->sco_cnt, hdev->le_cnt); 3953 3954 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 3955 /* Schedule queues and send stuff to HCI driver */ 3956 hci_sched_acl(hdev); 3957 hci_sched_sco(hdev); 3958 hci_sched_esco(hdev); 3959 hci_sched_le(hdev); 3960 } 3961 3962 /* Send next queued raw (unknown type) packet */ 3963 while ((skb = skb_dequeue(&hdev->raw_q))) 3964 hci_send_frame(hdev, skb); 3965 } 3966 3967 /* ----- HCI RX task (incoming data processing) ----- */ 3968 3969 /* ACL data packet */ 3970 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb) 3971 { 3972 struct hci_acl_hdr *hdr = (void *) skb->data; 3973 struct hci_conn *conn; 3974 __u16 handle, flags; 3975 3976 skb_pull(skb, HCI_ACL_HDR_SIZE); 3977 3978 handle = __le16_to_cpu(hdr->handle); 3979 flags = hci_flags(handle); 3980 handle = hci_handle(handle); 3981 3982 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len, 3983 handle, flags); 3984 3985 hdev->stat.acl_rx++; 3986 3987 hci_dev_lock(hdev); 3988 conn = hci_conn_hash_lookup_handle(hdev, handle); 3989 hci_dev_unlock(hdev); 3990 3991 if (conn) { 3992 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF); 3993 3994 /* Send to upper protocol */ 3995 l2cap_recv_acldata(conn, skb, flags); 3996 return; 3997 } else { 3998 BT_ERR("%s ACL packet for unknown connection handle %d", 3999 hdev->name, handle); 4000 } 4001 4002 kfree_skb(skb); 4003 } 4004 4005 /* SCO data packet */ 4006 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb) 4007 { 4008 struct hci_sco_hdr *hdr = (void *) skb->data; 4009 struct hci_conn *conn; 4010 __u16 handle; 4011 4012 skb_pull(skb, HCI_SCO_HDR_SIZE); 4013 4014 handle = __le16_to_cpu(hdr->handle); 4015 4016 BT_DBG("%s len %d handle 0x%4.4x", hdev->name, skb->len, handle); 4017 4018 hdev->stat.sco_rx++; 4019 4020 hci_dev_lock(hdev); 4021 conn = hci_conn_hash_lookup_handle(hdev, handle); 4022 hci_dev_unlock(hdev); 4023 4024 if (conn) { 4025 /* Send to upper protocol */ 4026 sco_recv_scodata(conn, skb); 4027 return; 4028 } else { 4029 BT_ERR("%s SCO packet for unknown connection handle %d", 4030 hdev->name, handle); 4031 } 4032 4033 kfree_skb(skb); 4034 } 4035 4036 static bool hci_req_is_complete(struct hci_dev *hdev) 4037 { 4038 struct sk_buff *skb; 4039 4040 skb = skb_peek(&hdev->cmd_q); 4041 if (!skb) 4042 return true; 4043 4044 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START); 4045 } 4046 4047 static void hci_resend_last(struct hci_dev *hdev) 4048 { 4049 struct hci_command_hdr *sent; 4050 struct sk_buff *skb; 4051 u16 opcode; 4052 4053 if (!hdev->sent_cmd) 4054 return; 4055 4056 sent = (void *) hdev->sent_cmd->data; 4057 opcode = __le16_to_cpu(sent->opcode); 4058 if (opcode == HCI_OP_RESET) 4059 return; 4060 4061 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL); 4062 if (!skb) 4063 return; 4064 4065 skb_queue_head(&hdev->cmd_q, skb); 4066 queue_work(hdev->workqueue, &hdev->cmd_work); 4067 } 4068 4069 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status, 4070 hci_req_complete_t *req_complete, 4071 hci_req_complete_skb_t *req_complete_skb) 4072 { 4073 struct sk_buff *skb; 4074 unsigned long flags; 4075 4076 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status); 4077 4078 /* If the completed command doesn't match the last one that was 4079 * sent we need to do special handling of it. 4080 */ 4081 if (!hci_sent_cmd_data(hdev, opcode)) { 4082 /* Some CSR based controllers generate a spontaneous 4083 * reset complete event during init and any pending 4084 * command will never be completed. In such a case we 4085 * need to resend whatever was the last sent 4086 * command. 4087 */ 4088 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET) 4089 hci_resend_last(hdev); 4090 4091 return; 4092 } 4093 4094 /* If the command succeeded and there's still more commands in 4095 * this request the request is not yet complete. 4096 */ 4097 if (!status && !hci_req_is_complete(hdev)) 4098 return; 4099 4100 /* If this was the last command in a request the complete 4101 * callback would be found in hdev->sent_cmd instead of the 4102 * command queue (hdev->cmd_q). 4103 */ 4104 if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) { 4105 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb; 4106 return; 4107 } 4108 4109 if (bt_cb(hdev->sent_cmd)->hci.req_complete) { 4110 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete; 4111 return; 4112 } 4113 4114 /* Remove all pending commands belonging to this request */ 4115 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 4116 while ((skb = __skb_dequeue(&hdev->cmd_q))) { 4117 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) { 4118 __skb_queue_head(&hdev->cmd_q, skb); 4119 break; 4120 } 4121 4122 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) 4123 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb; 4124 else 4125 *req_complete = bt_cb(skb)->hci.req_complete; 4126 kfree_skb(skb); 4127 } 4128 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 4129 } 4130 4131 static void hci_rx_work(struct work_struct *work) 4132 { 4133 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work); 4134 struct sk_buff *skb; 4135 4136 BT_DBG("%s", hdev->name); 4137 4138 while ((skb = skb_dequeue(&hdev->rx_q))) { 4139 /* Send copy to monitor */ 4140 hci_send_to_monitor(hdev, skb); 4141 4142 if (atomic_read(&hdev->promisc)) { 4143 /* Send copy to the sockets */ 4144 hci_send_to_sock(hdev, skb); 4145 } 4146 4147 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4148 kfree_skb(skb); 4149 continue; 4150 } 4151 4152 if (test_bit(HCI_INIT, &hdev->flags)) { 4153 /* Don't process data packets in this states. */ 4154 switch (hci_skb_pkt_type(skb)) { 4155 case HCI_ACLDATA_PKT: 4156 case HCI_SCODATA_PKT: 4157 kfree_skb(skb); 4158 continue; 4159 } 4160 } 4161 4162 /* Process frame */ 4163 switch (hci_skb_pkt_type(skb)) { 4164 case HCI_EVENT_PKT: 4165 BT_DBG("%s Event packet", hdev->name); 4166 hci_event_packet(hdev, skb); 4167 break; 4168 4169 case HCI_ACLDATA_PKT: 4170 BT_DBG("%s ACL data packet", hdev->name); 4171 hci_acldata_packet(hdev, skb); 4172 break; 4173 4174 case HCI_SCODATA_PKT: 4175 BT_DBG("%s SCO data packet", hdev->name); 4176 hci_scodata_packet(hdev, skb); 4177 break; 4178 4179 default: 4180 kfree_skb(skb); 4181 break; 4182 } 4183 } 4184 } 4185 4186 static void hci_cmd_work(struct work_struct *work) 4187 { 4188 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work); 4189 struct sk_buff *skb; 4190 4191 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name, 4192 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q)); 4193 4194 /* Send queued commands */ 4195 if (atomic_read(&hdev->cmd_cnt)) { 4196 skb = skb_dequeue(&hdev->cmd_q); 4197 if (!skb) 4198 return; 4199 4200 kfree_skb(hdev->sent_cmd); 4201 4202 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL); 4203 if (hdev->sent_cmd) { 4204 atomic_dec(&hdev->cmd_cnt); 4205 hci_send_frame(hdev, skb); 4206 if (test_bit(HCI_RESET, &hdev->flags)) 4207 cancel_delayed_work(&hdev->cmd_timer); 4208 else 4209 schedule_delayed_work(&hdev->cmd_timer, 4210 HCI_CMD_TIMEOUT); 4211 } else { 4212 skb_queue_head(&hdev->cmd_q, skb); 4213 queue_work(hdev->workqueue, &hdev->cmd_work); 4214 } 4215 } 4216 } 4217