1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (C) 2000-2001 Qualcomm Incorporated 4 Copyright (C) 2011 ProFUSION Embedded Systems 5 6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License version 2 as 10 published by the Free Software Foundation; 11 12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 23 SOFTWARE IS DISCLAIMED. 24 */ 25 26 /* Bluetooth HCI core. */ 27 28 #include <linux/export.h> 29 #include <linux/rfkill.h> 30 #include <linux/debugfs.h> 31 #include <linux/crypto.h> 32 #include <linux/kcov.h> 33 #include <linux/property.h> 34 #include <linux/suspend.h> 35 #include <linux/wait.h> 36 #include <asm/unaligned.h> 37 38 #include <net/bluetooth/bluetooth.h> 39 #include <net/bluetooth/hci_core.h> 40 #include <net/bluetooth/l2cap.h> 41 #include <net/bluetooth/mgmt.h> 42 43 #include "hci_request.h" 44 #include "hci_debugfs.h" 45 #include "smp.h" 46 #include "leds.h" 47 #include "msft.h" 48 #include "aosp.h" 49 #include "hci_codec.h" 50 51 static void hci_rx_work(struct work_struct *work); 52 static void hci_cmd_work(struct work_struct *work); 53 static void hci_tx_work(struct work_struct *work); 54 55 /* HCI device list */ 56 LIST_HEAD(hci_dev_list); 57 DEFINE_RWLOCK(hci_dev_list_lock); 58 59 /* HCI callback list */ 60 LIST_HEAD(hci_cb_list); 61 DEFINE_MUTEX(hci_cb_list_lock); 62 63 /* HCI ID Numbering */ 64 static DEFINE_IDA(hci_index_ida); 65 66 static int hci_scan_req(struct hci_request *req, unsigned long opt) 67 { 68 __u8 scan = opt; 69 70 BT_DBG("%s %x", req->hdev->name, scan); 71 72 /* Inquiry and Page scans */ 73 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); 74 return 0; 75 } 76 77 static int hci_auth_req(struct hci_request *req, unsigned long opt) 78 { 79 __u8 auth = opt; 80 81 BT_DBG("%s %x", req->hdev->name, auth); 82 83 /* Authentication */ 84 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth); 85 return 0; 86 } 87 88 static int hci_encrypt_req(struct hci_request *req, unsigned long opt) 89 { 90 __u8 encrypt = opt; 91 92 BT_DBG("%s %x", req->hdev->name, encrypt); 93 94 /* Encryption */ 95 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt); 96 return 0; 97 } 98 99 static int hci_linkpol_req(struct hci_request *req, unsigned long opt) 100 { 101 __le16 policy = cpu_to_le16(opt); 102 103 BT_DBG("%s %x", req->hdev->name, policy); 104 105 /* Default link policy */ 106 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy); 107 return 0; 108 } 109 110 /* Get HCI device by index. 111 * Device is held on return. */ 112 struct hci_dev *hci_dev_get(int index) 113 { 114 struct hci_dev *hdev = NULL, *d; 115 116 BT_DBG("%d", index); 117 118 if (index < 0) 119 return NULL; 120 121 read_lock(&hci_dev_list_lock); 122 list_for_each_entry(d, &hci_dev_list, list) { 123 if (d->id == index) { 124 hdev = hci_dev_hold(d); 125 break; 126 } 127 } 128 read_unlock(&hci_dev_list_lock); 129 return hdev; 130 } 131 132 /* ---- Inquiry support ---- */ 133 134 bool hci_discovery_active(struct hci_dev *hdev) 135 { 136 struct discovery_state *discov = &hdev->discovery; 137 138 switch (discov->state) { 139 case DISCOVERY_FINDING: 140 case DISCOVERY_RESOLVING: 141 return true; 142 143 default: 144 return false; 145 } 146 } 147 148 void hci_discovery_set_state(struct hci_dev *hdev, int state) 149 { 150 int old_state = hdev->discovery.state; 151 152 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state); 153 154 if (old_state == state) 155 return; 156 157 hdev->discovery.state = state; 158 159 switch (state) { 160 case DISCOVERY_STOPPED: 161 hci_update_passive_scan(hdev); 162 163 if (old_state != DISCOVERY_STARTING) 164 mgmt_discovering(hdev, 0); 165 break; 166 case DISCOVERY_STARTING: 167 break; 168 case DISCOVERY_FINDING: 169 mgmt_discovering(hdev, 1); 170 break; 171 case DISCOVERY_RESOLVING: 172 break; 173 case DISCOVERY_STOPPING: 174 break; 175 } 176 } 177 178 void hci_inquiry_cache_flush(struct hci_dev *hdev) 179 { 180 struct discovery_state *cache = &hdev->discovery; 181 struct inquiry_entry *p, *n; 182 183 list_for_each_entry_safe(p, n, &cache->all, all) { 184 list_del(&p->all); 185 kfree(p); 186 } 187 188 INIT_LIST_HEAD(&cache->unknown); 189 INIT_LIST_HEAD(&cache->resolve); 190 } 191 192 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, 193 bdaddr_t *bdaddr) 194 { 195 struct discovery_state *cache = &hdev->discovery; 196 struct inquiry_entry *e; 197 198 BT_DBG("cache %p, %pMR", cache, bdaddr); 199 200 list_for_each_entry(e, &cache->all, all) { 201 if (!bacmp(&e->data.bdaddr, bdaddr)) 202 return e; 203 } 204 205 return NULL; 206 } 207 208 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, 209 bdaddr_t *bdaddr) 210 { 211 struct discovery_state *cache = &hdev->discovery; 212 struct inquiry_entry *e; 213 214 BT_DBG("cache %p, %pMR", cache, bdaddr); 215 216 list_for_each_entry(e, &cache->unknown, list) { 217 if (!bacmp(&e->data.bdaddr, bdaddr)) 218 return e; 219 } 220 221 return NULL; 222 } 223 224 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, 225 bdaddr_t *bdaddr, 226 int state) 227 { 228 struct discovery_state *cache = &hdev->discovery; 229 struct inquiry_entry *e; 230 231 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state); 232 233 list_for_each_entry(e, &cache->resolve, list) { 234 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state) 235 return e; 236 if (!bacmp(&e->data.bdaddr, bdaddr)) 237 return e; 238 } 239 240 return NULL; 241 } 242 243 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, 244 struct inquiry_entry *ie) 245 { 246 struct discovery_state *cache = &hdev->discovery; 247 struct list_head *pos = &cache->resolve; 248 struct inquiry_entry *p; 249 250 list_del(&ie->list); 251 252 list_for_each_entry(p, &cache->resolve, list) { 253 if (p->name_state != NAME_PENDING && 254 abs(p->data.rssi) >= abs(ie->data.rssi)) 255 break; 256 pos = &p->list; 257 } 258 259 list_add(&ie->list, pos); 260 } 261 262 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, 263 bool name_known) 264 { 265 struct discovery_state *cache = &hdev->discovery; 266 struct inquiry_entry *ie; 267 u32 flags = 0; 268 269 BT_DBG("cache %p, %pMR", cache, &data->bdaddr); 270 271 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR); 272 273 if (!data->ssp_mode) 274 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 275 276 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr); 277 if (ie) { 278 if (!ie->data.ssp_mode) 279 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 280 281 if (ie->name_state == NAME_NEEDED && 282 data->rssi != ie->data.rssi) { 283 ie->data.rssi = data->rssi; 284 hci_inquiry_cache_update_resolve(hdev, ie); 285 } 286 287 goto update; 288 } 289 290 /* Entry not in the cache. Add new one. */ 291 ie = kzalloc(sizeof(*ie), GFP_KERNEL); 292 if (!ie) { 293 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 294 goto done; 295 } 296 297 list_add(&ie->all, &cache->all); 298 299 if (name_known) { 300 ie->name_state = NAME_KNOWN; 301 } else { 302 ie->name_state = NAME_NOT_KNOWN; 303 list_add(&ie->list, &cache->unknown); 304 } 305 306 update: 307 if (name_known && ie->name_state != NAME_KNOWN && 308 ie->name_state != NAME_PENDING) { 309 ie->name_state = NAME_KNOWN; 310 list_del(&ie->list); 311 } 312 313 memcpy(&ie->data, data, sizeof(*data)); 314 ie->timestamp = jiffies; 315 cache->timestamp = jiffies; 316 317 if (ie->name_state == NAME_NOT_KNOWN) 318 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 319 320 done: 321 return flags; 322 } 323 324 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf) 325 { 326 struct discovery_state *cache = &hdev->discovery; 327 struct inquiry_info *info = (struct inquiry_info *) buf; 328 struct inquiry_entry *e; 329 int copied = 0; 330 331 list_for_each_entry(e, &cache->all, all) { 332 struct inquiry_data *data = &e->data; 333 334 if (copied >= num) 335 break; 336 337 bacpy(&info->bdaddr, &data->bdaddr); 338 info->pscan_rep_mode = data->pscan_rep_mode; 339 info->pscan_period_mode = data->pscan_period_mode; 340 info->pscan_mode = data->pscan_mode; 341 memcpy(info->dev_class, data->dev_class, 3); 342 info->clock_offset = data->clock_offset; 343 344 info++; 345 copied++; 346 } 347 348 BT_DBG("cache %p, copied %d", cache, copied); 349 return copied; 350 } 351 352 static int hci_inq_req(struct hci_request *req, unsigned long opt) 353 { 354 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt; 355 struct hci_dev *hdev = req->hdev; 356 struct hci_cp_inquiry cp; 357 358 BT_DBG("%s", hdev->name); 359 360 if (test_bit(HCI_INQUIRY, &hdev->flags)) 361 return 0; 362 363 /* Start Inquiry */ 364 memcpy(&cp.lap, &ir->lap, 3); 365 cp.length = ir->length; 366 cp.num_rsp = ir->num_rsp; 367 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp); 368 369 return 0; 370 } 371 372 int hci_inquiry(void __user *arg) 373 { 374 __u8 __user *ptr = arg; 375 struct hci_inquiry_req ir; 376 struct hci_dev *hdev; 377 int err = 0, do_inquiry = 0, max_rsp; 378 long timeo; 379 __u8 *buf; 380 381 if (copy_from_user(&ir, ptr, sizeof(ir))) 382 return -EFAULT; 383 384 hdev = hci_dev_get(ir.dev_id); 385 if (!hdev) 386 return -ENODEV; 387 388 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 389 err = -EBUSY; 390 goto done; 391 } 392 393 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 394 err = -EOPNOTSUPP; 395 goto done; 396 } 397 398 if (hdev->dev_type != HCI_PRIMARY) { 399 err = -EOPNOTSUPP; 400 goto done; 401 } 402 403 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 404 err = -EOPNOTSUPP; 405 goto done; 406 } 407 408 /* Restrict maximum inquiry length to 60 seconds */ 409 if (ir.length > 60) { 410 err = -EINVAL; 411 goto done; 412 } 413 414 hci_dev_lock(hdev); 415 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX || 416 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) { 417 hci_inquiry_cache_flush(hdev); 418 do_inquiry = 1; 419 } 420 hci_dev_unlock(hdev); 421 422 timeo = ir.length * msecs_to_jiffies(2000); 423 424 if (do_inquiry) { 425 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir, 426 timeo, NULL); 427 if (err < 0) 428 goto done; 429 430 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is 431 * cleared). If it is interrupted by a signal, return -EINTR. 432 */ 433 if (wait_on_bit(&hdev->flags, HCI_INQUIRY, 434 TASK_INTERRUPTIBLE)) { 435 err = -EINTR; 436 goto done; 437 } 438 } 439 440 /* for unlimited number of responses we will use buffer with 441 * 255 entries 442 */ 443 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp; 444 445 /* cache_dump can't sleep. Therefore we allocate temp buffer and then 446 * copy it to the user space. 447 */ 448 buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL); 449 if (!buf) { 450 err = -ENOMEM; 451 goto done; 452 } 453 454 hci_dev_lock(hdev); 455 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf); 456 hci_dev_unlock(hdev); 457 458 BT_DBG("num_rsp %d", ir.num_rsp); 459 460 if (!copy_to_user(ptr, &ir, sizeof(ir))) { 461 ptr += sizeof(ir); 462 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) * 463 ir.num_rsp)) 464 err = -EFAULT; 465 } else 466 err = -EFAULT; 467 468 kfree(buf); 469 470 done: 471 hci_dev_put(hdev); 472 return err; 473 } 474 475 static int hci_dev_do_open(struct hci_dev *hdev) 476 { 477 int ret = 0; 478 479 BT_DBG("%s %p", hdev->name, hdev); 480 481 hci_req_sync_lock(hdev); 482 483 ret = hci_dev_open_sync(hdev); 484 485 hci_req_sync_unlock(hdev); 486 return ret; 487 } 488 489 /* ---- HCI ioctl helpers ---- */ 490 491 int hci_dev_open(__u16 dev) 492 { 493 struct hci_dev *hdev; 494 int err; 495 496 hdev = hci_dev_get(dev); 497 if (!hdev) 498 return -ENODEV; 499 500 /* Devices that are marked as unconfigured can only be powered 501 * up as user channel. Trying to bring them up as normal devices 502 * will result into a failure. Only user channel operation is 503 * possible. 504 * 505 * When this function is called for a user channel, the flag 506 * HCI_USER_CHANNEL will be set first before attempting to 507 * open the device. 508 */ 509 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 510 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 511 err = -EOPNOTSUPP; 512 goto done; 513 } 514 515 /* We need to ensure that no other power on/off work is pending 516 * before proceeding to call hci_dev_do_open. This is 517 * particularly important if the setup procedure has not yet 518 * completed. 519 */ 520 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) 521 cancel_delayed_work(&hdev->power_off); 522 523 /* After this call it is guaranteed that the setup procedure 524 * has finished. This means that error conditions like RFKILL 525 * or no valid public or static random address apply. 526 */ 527 flush_workqueue(hdev->req_workqueue); 528 529 /* For controllers not using the management interface and that 530 * are brought up using legacy ioctl, set the HCI_BONDABLE bit 531 * so that pairing works for them. Once the management interface 532 * is in use this bit will be cleared again and userspace has 533 * to explicitly enable it. 534 */ 535 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 536 !hci_dev_test_flag(hdev, HCI_MGMT)) 537 hci_dev_set_flag(hdev, HCI_BONDABLE); 538 539 err = hci_dev_do_open(hdev); 540 541 done: 542 hci_dev_put(hdev); 543 return err; 544 } 545 546 int hci_dev_do_close(struct hci_dev *hdev) 547 { 548 int err; 549 550 BT_DBG("%s %p", hdev->name, hdev); 551 552 hci_req_sync_lock(hdev); 553 554 err = hci_dev_close_sync(hdev); 555 556 hci_req_sync_unlock(hdev); 557 558 return err; 559 } 560 561 int hci_dev_close(__u16 dev) 562 { 563 struct hci_dev *hdev; 564 int err; 565 566 hdev = hci_dev_get(dev); 567 if (!hdev) 568 return -ENODEV; 569 570 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 571 err = -EBUSY; 572 goto done; 573 } 574 575 cancel_work_sync(&hdev->power_on); 576 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) 577 cancel_delayed_work(&hdev->power_off); 578 579 err = hci_dev_do_close(hdev); 580 581 done: 582 hci_dev_put(hdev); 583 return err; 584 } 585 586 static int hci_dev_do_reset(struct hci_dev *hdev) 587 { 588 int ret; 589 590 BT_DBG("%s %p", hdev->name, hdev); 591 592 hci_req_sync_lock(hdev); 593 594 /* Drop queues */ 595 skb_queue_purge(&hdev->rx_q); 596 skb_queue_purge(&hdev->cmd_q); 597 598 /* Cancel these to avoid queueing non-chained pending work */ 599 hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE); 600 /* Wait for 601 * 602 * if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE)) 603 * queue_delayed_work(&hdev->{cmd,ncmd}_timer) 604 * 605 * inside RCU section to see the flag or complete scheduling. 606 */ 607 synchronize_rcu(); 608 /* Explicitly cancel works in case scheduled after setting the flag. */ 609 cancel_delayed_work(&hdev->cmd_timer); 610 cancel_delayed_work(&hdev->ncmd_timer); 611 612 /* Avoid potential lockdep warnings from the *_flush() calls by 613 * ensuring the workqueue is empty up front. 614 */ 615 drain_workqueue(hdev->workqueue); 616 617 hci_dev_lock(hdev); 618 hci_inquiry_cache_flush(hdev); 619 hci_conn_hash_flush(hdev); 620 hci_dev_unlock(hdev); 621 622 if (hdev->flush) 623 hdev->flush(hdev); 624 625 hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE); 626 627 atomic_set(&hdev->cmd_cnt, 1); 628 hdev->acl_cnt = 0; 629 hdev->sco_cnt = 0; 630 hdev->le_cnt = 0; 631 hdev->iso_cnt = 0; 632 633 ret = hci_reset_sync(hdev); 634 635 hci_req_sync_unlock(hdev); 636 return ret; 637 } 638 639 int hci_dev_reset(__u16 dev) 640 { 641 struct hci_dev *hdev; 642 int err; 643 644 hdev = hci_dev_get(dev); 645 if (!hdev) 646 return -ENODEV; 647 648 if (!test_bit(HCI_UP, &hdev->flags)) { 649 err = -ENETDOWN; 650 goto done; 651 } 652 653 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 654 err = -EBUSY; 655 goto done; 656 } 657 658 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 659 err = -EOPNOTSUPP; 660 goto done; 661 } 662 663 err = hci_dev_do_reset(hdev); 664 665 done: 666 hci_dev_put(hdev); 667 return err; 668 } 669 670 int hci_dev_reset_stat(__u16 dev) 671 { 672 struct hci_dev *hdev; 673 int ret = 0; 674 675 hdev = hci_dev_get(dev); 676 if (!hdev) 677 return -ENODEV; 678 679 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 680 ret = -EBUSY; 681 goto done; 682 } 683 684 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 685 ret = -EOPNOTSUPP; 686 goto done; 687 } 688 689 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats)); 690 691 done: 692 hci_dev_put(hdev); 693 return ret; 694 } 695 696 static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan) 697 { 698 bool conn_changed, discov_changed; 699 700 BT_DBG("%s scan 0x%02x", hdev->name, scan); 701 702 if ((scan & SCAN_PAGE)) 703 conn_changed = !hci_dev_test_and_set_flag(hdev, 704 HCI_CONNECTABLE); 705 else 706 conn_changed = hci_dev_test_and_clear_flag(hdev, 707 HCI_CONNECTABLE); 708 709 if ((scan & SCAN_INQUIRY)) { 710 discov_changed = !hci_dev_test_and_set_flag(hdev, 711 HCI_DISCOVERABLE); 712 } else { 713 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 714 discov_changed = hci_dev_test_and_clear_flag(hdev, 715 HCI_DISCOVERABLE); 716 } 717 718 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 719 return; 720 721 if (conn_changed || discov_changed) { 722 /* In case this was disabled through mgmt */ 723 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); 724 725 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 726 hci_update_adv_data(hdev, hdev->cur_adv_instance); 727 728 mgmt_new_settings(hdev); 729 } 730 } 731 732 int hci_dev_cmd(unsigned int cmd, void __user *arg) 733 { 734 struct hci_dev *hdev; 735 struct hci_dev_req dr; 736 int err = 0; 737 738 if (copy_from_user(&dr, arg, sizeof(dr))) 739 return -EFAULT; 740 741 hdev = hci_dev_get(dr.dev_id); 742 if (!hdev) 743 return -ENODEV; 744 745 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 746 err = -EBUSY; 747 goto done; 748 } 749 750 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 751 err = -EOPNOTSUPP; 752 goto done; 753 } 754 755 if (hdev->dev_type != HCI_PRIMARY) { 756 err = -EOPNOTSUPP; 757 goto done; 758 } 759 760 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 761 err = -EOPNOTSUPP; 762 goto done; 763 } 764 765 switch (cmd) { 766 case HCISETAUTH: 767 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt, 768 HCI_INIT_TIMEOUT, NULL); 769 break; 770 771 case HCISETENCRYPT: 772 if (!lmp_encrypt_capable(hdev)) { 773 err = -EOPNOTSUPP; 774 break; 775 } 776 777 if (!test_bit(HCI_AUTH, &hdev->flags)) { 778 /* Auth must be enabled first */ 779 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt, 780 HCI_INIT_TIMEOUT, NULL); 781 if (err) 782 break; 783 } 784 785 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt, 786 HCI_INIT_TIMEOUT, NULL); 787 break; 788 789 case HCISETSCAN: 790 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt, 791 HCI_INIT_TIMEOUT, NULL); 792 793 /* Ensure that the connectable and discoverable states 794 * get correctly modified as this was a non-mgmt change. 795 */ 796 if (!err) 797 hci_update_passive_scan_state(hdev, dr.dev_opt); 798 break; 799 800 case HCISETLINKPOL: 801 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt, 802 HCI_INIT_TIMEOUT, NULL); 803 break; 804 805 case HCISETLINKMODE: 806 hdev->link_mode = ((__u16) dr.dev_opt) & 807 (HCI_LM_MASTER | HCI_LM_ACCEPT); 808 break; 809 810 case HCISETPTYPE: 811 if (hdev->pkt_type == (__u16) dr.dev_opt) 812 break; 813 814 hdev->pkt_type = (__u16) dr.dev_opt; 815 mgmt_phy_configuration_changed(hdev, NULL); 816 break; 817 818 case HCISETACLMTU: 819 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1); 820 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0); 821 break; 822 823 case HCISETSCOMTU: 824 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1); 825 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0); 826 break; 827 828 default: 829 err = -EINVAL; 830 break; 831 } 832 833 done: 834 hci_dev_put(hdev); 835 return err; 836 } 837 838 int hci_get_dev_list(void __user *arg) 839 { 840 struct hci_dev *hdev; 841 struct hci_dev_list_req *dl; 842 struct hci_dev_req *dr; 843 int n = 0, size, err; 844 __u16 dev_num; 845 846 if (get_user(dev_num, (__u16 __user *) arg)) 847 return -EFAULT; 848 849 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr)) 850 return -EINVAL; 851 852 size = sizeof(*dl) + dev_num * sizeof(*dr); 853 854 dl = kzalloc(size, GFP_KERNEL); 855 if (!dl) 856 return -ENOMEM; 857 858 dr = dl->dev_req; 859 860 read_lock(&hci_dev_list_lock); 861 list_for_each_entry(hdev, &hci_dev_list, list) { 862 unsigned long flags = hdev->flags; 863 864 /* When the auto-off is configured it means the transport 865 * is running, but in that case still indicate that the 866 * device is actually down. 867 */ 868 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) 869 flags &= ~BIT(HCI_UP); 870 871 (dr + n)->dev_id = hdev->id; 872 (dr + n)->dev_opt = flags; 873 874 if (++n >= dev_num) 875 break; 876 } 877 read_unlock(&hci_dev_list_lock); 878 879 dl->dev_num = n; 880 size = sizeof(*dl) + n * sizeof(*dr); 881 882 err = copy_to_user(arg, dl, size); 883 kfree(dl); 884 885 return err ? -EFAULT : 0; 886 } 887 888 int hci_get_dev_info(void __user *arg) 889 { 890 struct hci_dev *hdev; 891 struct hci_dev_info di; 892 unsigned long flags; 893 int err = 0; 894 895 if (copy_from_user(&di, arg, sizeof(di))) 896 return -EFAULT; 897 898 hdev = hci_dev_get(di.dev_id); 899 if (!hdev) 900 return -ENODEV; 901 902 /* When the auto-off is configured it means the transport 903 * is running, but in that case still indicate that the 904 * device is actually down. 905 */ 906 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) 907 flags = hdev->flags & ~BIT(HCI_UP); 908 else 909 flags = hdev->flags; 910 911 strcpy(di.name, hdev->name); 912 di.bdaddr = hdev->bdaddr; 913 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4); 914 di.flags = flags; 915 di.pkt_type = hdev->pkt_type; 916 if (lmp_bredr_capable(hdev)) { 917 di.acl_mtu = hdev->acl_mtu; 918 di.acl_pkts = hdev->acl_pkts; 919 di.sco_mtu = hdev->sco_mtu; 920 di.sco_pkts = hdev->sco_pkts; 921 } else { 922 di.acl_mtu = hdev->le_mtu; 923 di.acl_pkts = hdev->le_pkts; 924 di.sco_mtu = 0; 925 di.sco_pkts = 0; 926 } 927 di.link_policy = hdev->link_policy; 928 di.link_mode = hdev->link_mode; 929 930 memcpy(&di.stat, &hdev->stat, sizeof(di.stat)); 931 memcpy(&di.features, &hdev->features, sizeof(di.features)); 932 933 if (copy_to_user(arg, &di, sizeof(di))) 934 err = -EFAULT; 935 936 hci_dev_put(hdev); 937 938 return err; 939 } 940 941 /* ---- Interface to HCI drivers ---- */ 942 943 static int hci_rfkill_set_block(void *data, bool blocked) 944 { 945 struct hci_dev *hdev = data; 946 947 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked); 948 949 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) 950 return -EBUSY; 951 952 if (blocked) { 953 hci_dev_set_flag(hdev, HCI_RFKILLED); 954 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 955 !hci_dev_test_flag(hdev, HCI_CONFIG)) 956 hci_dev_do_close(hdev); 957 } else { 958 hci_dev_clear_flag(hdev, HCI_RFKILLED); 959 } 960 961 return 0; 962 } 963 964 static const struct rfkill_ops hci_rfkill_ops = { 965 .set_block = hci_rfkill_set_block, 966 }; 967 968 static void hci_power_on(struct work_struct *work) 969 { 970 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on); 971 int err; 972 973 BT_DBG("%s", hdev->name); 974 975 if (test_bit(HCI_UP, &hdev->flags) && 976 hci_dev_test_flag(hdev, HCI_MGMT) && 977 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 978 cancel_delayed_work(&hdev->power_off); 979 err = hci_powered_update_sync(hdev); 980 mgmt_power_on(hdev, err); 981 return; 982 } 983 984 err = hci_dev_do_open(hdev); 985 if (err < 0) { 986 hci_dev_lock(hdev); 987 mgmt_set_powered_failed(hdev, err); 988 hci_dev_unlock(hdev); 989 return; 990 } 991 992 /* During the HCI setup phase, a few error conditions are 993 * ignored and they need to be checked now. If they are still 994 * valid, it is important to turn the device back off. 995 */ 996 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 997 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 998 (hdev->dev_type == HCI_PRIMARY && 999 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 1000 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 1001 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 1002 hci_dev_do_close(hdev); 1003 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 1004 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 1005 HCI_AUTO_OFF_TIMEOUT); 1006 } 1007 1008 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 1009 /* For unconfigured devices, set the HCI_RAW flag 1010 * so that userspace can easily identify them. 1011 */ 1012 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 1013 set_bit(HCI_RAW, &hdev->flags); 1014 1015 /* For fully configured devices, this will send 1016 * the Index Added event. For unconfigured devices, 1017 * it will send Unconfigued Index Added event. 1018 * 1019 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 1020 * and no event will be send. 1021 */ 1022 mgmt_index_added(hdev); 1023 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 1024 /* When the controller is now configured, then it 1025 * is important to clear the HCI_RAW flag. 1026 */ 1027 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 1028 clear_bit(HCI_RAW, &hdev->flags); 1029 1030 /* Powering on the controller with HCI_CONFIG set only 1031 * happens with the transition from unconfigured to 1032 * configured. This will send the Index Added event. 1033 */ 1034 mgmt_index_added(hdev); 1035 } 1036 } 1037 1038 static void hci_power_off(struct work_struct *work) 1039 { 1040 struct hci_dev *hdev = container_of(work, struct hci_dev, 1041 power_off.work); 1042 1043 BT_DBG("%s", hdev->name); 1044 1045 hci_dev_do_close(hdev); 1046 } 1047 1048 static void hci_error_reset(struct work_struct *work) 1049 { 1050 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset); 1051 1052 BT_DBG("%s", hdev->name); 1053 1054 if (hdev->hw_error) 1055 hdev->hw_error(hdev, hdev->hw_error_code); 1056 else 1057 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code); 1058 1059 if (hci_dev_do_close(hdev)) 1060 return; 1061 1062 hci_dev_do_open(hdev); 1063 } 1064 1065 void hci_uuids_clear(struct hci_dev *hdev) 1066 { 1067 struct bt_uuid *uuid, *tmp; 1068 1069 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) { 1070 list_del(&uuid->list); 1071 kfree(uuid); 1072 } 1073 } 1074 1075 void hci_link_keys_clear(struct hci_dev *hdev) 1076 { 1077 struct link_key *key; 1078 1079 list_for_each_entry(key, &hdev->link_keys, list) { 1080 list_del_rcu(&key->list); 1081 kfree_rcu(key, rcu); 1082 } 1083 } 1084 1085 void hci_smp_ltks_clear(struct hci_dev *hdev) 1086 { 1087 struct smp_ltk *k; 1088 1089 list_for_each_entry(k, &hdev->long_term_keys, list) { 1090 list_del_rcu(&k->list); 1091 kfree_rcu(k, rcu); 1092 } 1093 } 1094 1095 void hci_smp_irks_clear(struct hci_dev *hdev) 1096 { 1097 struct smp_irk *k; 1098 1099 list_for_each_entry(k, &hdev->identity_resolving_keys, list) { 1100 list_del_rcu(&k->list); 1101 kfree_rcu(k, rcu); 1102 } 1103 } 1104 1105 void hci_blocked_keys_clear(struct hci_dev *hdev) 1106 { 1107 struct blocked_key *b; 1108 1109 list_for_each_entry(b, &hdev->blocked_keys, list) { 1110 list_del_rcu(&b->list); 1111 kfree_rcu(b, rcu); 1112 } 1113 } 1114 1115 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16]) 1116 { 1117 bool blocked = false; 1118 struct blocked_key *b; 1119 1120 rcu_read_lock(); 1121 list_for_each_entry_rcu(b, &hdev->blocked_keys, list) { 1122 if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) { 1123 blocked = true; 1124 break; 1125 } 1126 } 1127 1128 rcu_read_unlock(); 1129 return blocked; 1130 } 1131 1132 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 1133 { 1134 struct link_key *k; 1135 1136 rcu_read_lock(); 1137 list_for_each_entry_rcu(k, &hdev->link_keys, list) { 1138 if (bacmp(bdaddr, &k->bdaddr) == 0) { 1139 rcu_read_unlock(); 1140 1141 if (hci_is_blocked_key(hdev, 1142 HCI_BLOCKED_KEY_TYPE_LINKKEY, 1143 k->val)) { 1144 bt_dev_warn_ratelimited(hdev, 1145 "Link key blocked for %pMR", 1146 &k->bdaddr); 1147 return NULL; 1148 } 1149 1150 return k; 1151 } 1152 } 1153 rcu_read_unlock(); 1154 1155 return NULL; 1156 } 1157 1158 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn, 1159 u8 key_type, u8 old_key_type) 1160 { 1161 /* Legacy key */ 1162 if (key_type < 0x03) 1163 return true; 1164 1165 /* Debug keys are insecure so don't store them persistently */ 1166 if (key_type == HCI_LK_DEBUG_COMBINATION) 1167 return false; 1168 1169 /* Changed combination key and there's no previous one */ 1170 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff) 1171 return false; 1172 1173 /* Security mode 3 case */ 1174 if (!conn) 1175 return true; 1176 1177 /* BR/EDR key derived using SC from an LE link */ 1178 if (conn->type == LE_LINK) 1179 return true; 1180 1181 /* Neither local nor remote side had no-bonding as requirement */ 1182 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01) 1183 return true; 1184 1185 /* Local side had dedicated bonding as requirement */ 1186 if (conn->auth_type == 0x02 || conn->auth_type == 0x03) 1187 return true; 1188 1189 /* Remote side had dedicated bonding as requirement */ 1190 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03) 1191 return true; 1192 1193 /* If none of the above criteria match, then don't store the key 1194 * persistently */ 1195 return false; 1196 } 1197 1198 static u8 ltk_role(u8 type) 1199 { 1200 if (type == SMP_LTK) 1201 return HCI_ROLE_MASTER; 1202 1203 return HCI_ROLE_SLAVE; 1204 } 1205 1206 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1207 u8 addr_type, u8 role) 1208 { 1209 struct smp_ltk *k; 1210 1211 rcu_read_lock(); 1212 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 1213 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr)) 1214 continue; 1215 1216 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) { 1217 rcu_read_unlock(); 1218 1219 if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK, 1220 k->val)) { 1221 bt_dev_warn_ratelimited(hdev, 1222 "LTK blocked for %pMR", 1223 &k->bdaddr); 1224 return NULL; 1225 } 1226 1227 return k; 1228 } 1229 } 1230 rcu_read_unlock(); 1231 1232 return NULL; 1233 } 1234 1235 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa) 1236 { 1237 struct smp_irk *irk_to_return = NULL; 1238 struct smp_irk *irk; 1239 1240 rcu_read_lock(); 1241 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 1242 if (!bacmp(&irk->rpa, rpa)) { 1243 irk_to_return = irk; 1244 goto done; 1245 } 1246 } 1247 1248 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 1249 if (smp_irk_matches(hdev, irk->val, rpa)) { 1250 bacpy(&irk->rpa, rpa); 1251 irk_to_return = irk; 1252 goto done; 1253 } 1254 } 1255 1256 done: 1257 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK, 1258 irk_to_return->val)) { 1259 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR", 1260 &irk_to_return->bdaddr); 1261 irk_to_return = NULL; 1262 } 1263 1264 rcu_read_unlock(); 1265 1266 return irk_to_return; 1267 } 1268 1269 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, 1270 u8 addr_type) 1271 { 1272 struct smp_irk *irk_to_return = NULL; 1273 struct smp_irk *irk; 1274 1275 /* Identity Address must be public or static random */ 1276 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0) 1277 return NULL; 1278 1279 rcu_read_lock(); 1280 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 1281 if (addr_type == irk->addr_type && 1282 bacmp(bdaddr, &irk->bdaddr) == 0) { 1283 irk_to_return = irk; 1284 goto done; 1285 } 1286 } 1287 1288 done: 1289 1290 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK, 1291 irk_to_return->val)) { 1292 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR", 1293 &irk_to_return->bdaddr); 1294 irk_to_return = NULL; 1295 } 1296 1297 rcu_read_unlock(); 1298 1299 return irk_to_return; 1300 } 1301 1302 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, 1303 bdaddr_t *bdaddr, u8 *val, u8 type, 1304 u8 pin_len, bool *persistent) 1305 { 1306 struct link_key *key, *old_key; 1307 u8 old_key_type; 1308 1309 old_key = hci_find_link_key(hdev, bdaddr); 1310 if (old_key) { 1311 old_key_type = old_key->type; 1312 key = old_key; 1313 } else { 1314 old_key_type = conn ? conn->key_type : 0xff; 1315 key = kzalloc(sizeof(*key), GFP_KERNEL); 1316 if (!key) 1317 return NULL; 1318 list_add_rcu(&key->list, &hdev->link_keys); 1319 } 1320 1321 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type); 1322 1323 /* Some buggy controller combinations generate a changed 1324 * combination key for legacy pairing even when there's no 1325 * previous key */ 1326 if (type == HCI_LK_CHANGED_COMBINATION && 1327 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) { 1328 type = HCI_LK_COMBINATION; 1329 if (conn) 1330 conn->key_type = type; 1331 } 1332 1333 bacpy(&key->bdaddr, bdaddr); 1334 memcpy(key->val, val, HCI_LINK_KEY_SIZE); 1335 key->pin_len = pin_len; 1336 1337 if (type == HCI_LK_CHANGED_COMBINATION) 1338 key->type = old_key_type; 1339 else 1340 key->type = type; 1341 1342 if (persistent) 1343 *persistent = hci_persistent_key(hdev, conn, type, 1344 old_key_type); 1345 1346 return key; 1347 } 1348 1349 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1350 u8 addr_type, u8 type, u8 authenticated, 1351 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand) 1352 { 1353 struct smp_ltk *key, *old_key; 1354 u8 role = ltk_role(type); 1355 1356 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role); 1357 if (old_key) 1358 key = old_key; 1359 else { 1360 key = kzalloc(sizeof(*key), GFP_KERNEL); 1361 if (!key) 1362 return NULL; 1363 list_add_rcu(&key->list, &hdev->long_term_keys); 1364 } 1365 1366 bacpy(&key->bdaddr, bdaddr); 1367 key->bdaddr_type = addr_type; 1368 memcpy(key->val, tk, sizeof(key->val)); 1369 key->authenticated = authenticated; 1370 key->ediv = ediv; 1371 key->rand = rand; 1372 key->enc_size = enc_size; 1373 key->type = type; 1374 1375 return key; 1376 } 1377 1378 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1379 u8 addr_type, u8 val[16], bdaddr_t *rpa) 1380 { 1381 struct smp_irk *irk; 1382 1383 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type); 1384 if (!irk) { 1385 irk = kzalloc(sizeof(*irk), GFP_KERNEL); 1386 if (!irk) 1387 return NULL; 1388 1389 bacpy(&irk->bdaddr, bdaddr); 1390 irk->addr_type = addr_type; 1391 1392 list_add_rcu(&irk->list, &hdev->identity_resolving_keys); 1393 } 1394 1395 memcpy(irk->val, val, 16); 1396 bacpy(&irk->rpa, rpa); 1397 1398 return irk; 1399 } 1400 1401 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 1402 { 1403 struct link_key *key; 1404 1405 key = hci_find_link_key(hdev, bdaddr); 1406 if (!key) 1407 return -ENOENT; 1408 1409 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 1410 1411 list_del_rcu(&key->list); 1412 kfree_rcu(key, rcu); 1413 1414 return 0; 1415 } 1416 1417 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type) 1418 { 1419 struct smp_ltk *k; 1420 int removed = 0; 1421 1422 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 1423 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type) 1424 continue; 1425 1426 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 1427 1428 list_del_rcu(&k->list); 1429 kfree_rcu(k, rcu); 1430 removed++; 1431 } 1432 1433 return removed ? 0 : -ENOENT; 1434 } 1435 1436 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type) 1437 { 1438 struct smp_irk *k; 1439 1440 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) { 1441 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type) 1442 continue; 1443 1444 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 1445 1446 list_del_rcu(&k->list); 1447 kfree_rcu(k, rcu); 1448 } 1449 } 1450 1451 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type) 1452 { 1453 struct smp_ltk *k; 1454 struct smp_irk *irk; 1455 u8 addr_type; 1456 1457 if (type == BDADDR_BREDR) { 1458 if (hci_find_link_key(hdev, bdaddr)) 1459 return true; 1460 return false; 1461 } 1462 1463 /* Convert to HCI addr type which struct smp_ltk uses */ 1464 if (type == BDADDR_LE_PUBLIC) 1465 addr_type = ADDR_LE_DEV_PUBLIC; 1466 else 1467 addr_type = ADDR_LE_DEV_RANDOM; 1468 1469 irk = hci_get_irk(hdev, bdaddr, addr_type); 1470 if (irk) { 1471 bdaddr = &irk->bdaddr; 1472 addr_type = irk->addr_type; 1473 } 1474 1475 rcu_read_lock(); 1476 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 1477 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) { 1478 rcu_read_unlock(); 1479 return true; 1480 } 1481 } 1482 rcu_read_unlock(); 1483 1484 return false; 1485 } 1486 1487 /* HCI command timer function */ 1488 static void hci_cmd_timeout(struct work_struct *work) 1489 { 1490 struct hci_dev *hdev = container_of(work, struct hci_dev, 1491 cmd_timer.work); 1492 1493 if (hdev->sent_cmd) { 1494 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data; 1495 u16 opcode = __le16_to_cpu(sent->opcode); 1496 1497 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode); 1498 } else { 1499 bt_dev_err(hdev, "command tx timeout"); 1500 } 1501 1502 if (hdev->cmd_timeout) 1503 hdev->cmd_timeout(hdev); 1504 1505 atomic_set(&hdev->cmd_cnt, 1); 1506 queue_work(hdev->workqueue, &hdev->cmd_work); 1507 } 1508 1509 /* HCI ncmd timer function */ 1510 static void hci_ncmd_timeout(struct work_struct *work) 1511 { 1512 struct hci_dev *hdev = container_of(work, struct hci_dev, 1513 ncmd_timer.work); 1514 1515 bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0"); 1516 1517 /* During HCI_INIT phase no events can be injected if the ncmd timer 1518 * triggers since the procedure has its own timeout handling. 1519 */ 1520 if (test_bit(HCI_INIT, &hdev->flags)) 1521 return; 1522 1523 /* This is an irrecoverable state, inject hardware error event */ 1524 hci_reset_dev(hdev); 1525 } 1526 1527 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, 1528 bdaddr_t *bdaddr, u8 bdaddr_type) 1529 { 1530 struct oob_data *data; 1531 1532 list_for_each_entry(data, &hdev->remote_oob_data, list) { 1533 if (bacmp(bdaddr, &data->bdaddr) != 0) 1534 continue; 1535 if (data->bdaddr_type != bdaddr_type) 1536 continue; 1537 return data; 1538 } 1539 1540 return NULL; 1541 } 1542 1543 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1544 u8 bdaddr_type) 1545 { 1546 struct oob_data *data; 1547 1548 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); 1549 if (!data) 1550 return -ENOENT; 1551 1552 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type); 1553 1554 list_del(&data->list); 1555 kfree(data); 1556 1557 return 0; 1558 } 1559 1560 void hci_remote_oob_data_clear(struct hci_dev *hdev) 1561 { 1562 struct oob_data *data, *n; 1563 1564 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) { 1565 list_del(&data->list); 1566 kfree(data); 1567 } 1568 } 1569 1570 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1571 u8 bdaddr_type, u8 *hash192, u8 *rand192, 1572 u8 *hash256, u8 *rand256) 1573 { 1574 struct oob_data *data; 1575 1576 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); 1577 if (!data) { 1578 data = kmalloc(sizeof(*data), GFP_KERNEL); 1579 if (!data) 1580 return -ENOMEM; 1581 1582 bacpy(&data->bdaddr, bdaddr); 1583 data->bdaddr_type = bdaddr_type; 1584 list_add(&data->list, &hdev->remote_oob_data); 1585 } 1586 1587 if (hash192 && rand192) { 1588 memcpy(data->hash192, hash192, sizeof(data->hash192)); 1589 memcpy(data->rand192, rand192, sizeof(data->rand192)); 1590 if (hash256 && rand256) 1591 data->present = 0x03; 1592 } else { 1593 memset(data->hash192, 0, sizeof(data->hash192)); 1594 memset(data->rand192, 0, sizeof(data->rand192)); 1595 if (hash256 && rand256) 1596 data->present = 0x02; 1597 else 1598 data->present = 0x00; 1599 } 1600 1601 if (hash256 && rand256) { 1602 memcpy(data->hash256, hash256, sizeof(data->hash256)); 1603 memcpy(data->rand256, rand256, sizeof(data->rand256)); 1604 } else { 1605 memset(data->hash256, 0, sizeof(data->hash256)); 1606 memset(data->rand256, 0, sizeof(data->rand256)); 1607 if (hash192 && rand192) 1608 data->present = 0x01; 1609 } 1610 1611 BT_DBG("%s for %pMR", hdev->name, bdaddr); 1612 1613 return 0; 1614 } 1615 1616 /* This function requires the caller holds hdev->lock */ 1617 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance) 1618 { 1619 struct adv_info *adv_instance; 1620 1621 list_for_each_entry(adv_instance, &hdev->adv_instances, list) { 1622 if (adv_instance->instance == instance) 1623 return adv_instance; 1624 } 1625 1626 return NULL; 1627 } 1628 1629 /* This function requires the caller holds hdev->lock */ 1630 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance) 1631 { 1632 struct adv_info *cur_instance; 1633 1634 cur_instance = hci_find_adv_instance(hdev, instance); 1635 if (!cur_instance) 1636 return NULL; 1637 1638 if (cur_instance == list_last_entry(&hdev->adv_instances, 1639 struct adv_info, list)) 1640 return list_first_entry(&hdev->adv_instances, 1641 struct adv_info, list); 1642 else 1643 return list_next_entry(cur_instance, list); 1644 } 1645 1646 /* This function requires the caller holds hdev->lock */ 1647 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance) 1648 { 1649 struct adv_info *adv_instance; 1650 1651 adv_instance = hci_find_adv_instance(hdev, instance); 1652 if (!adv_instance) 1653 return -ENOENT; 1654 1655 BT_DBG("%s removing %dMR", hdev->name, instance); 1656 1657 if (hdev->cur_adv_instance == instance) { 1658 if (hdev->adv_instance_timeout) { 1659 cancel_delayed_work(&hdev->adv_instance_expire); 1660 hdev->adv_instance_timeout = 0; 1661 } 1662 hdev->cur_adv_instance = 0x00; 1663 } 1664 1665 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 1666 1667 list_del(&adv_instance->list); 1668 kfree(adv_instance); 1669 1670 hdev->adv_instance_cnt--; 1671 1672 return 0; 1673 } 1674 1675 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired) 1676 { 1677 struct adv_info *adv_instance, *n; 1678 1679 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) 1680 adv_instance->rpa_expired = rpa_expired; 1681 } 1682 1683 /* This function requires the caller holds hdev->lock */ 1684 void hci_adv_instances_clear(struct hci_dev *hdev) 1685 { 1686 struct adv_info *adv_instance, *n; 1687 1688 if (hdev->adv_instance_timeout) { 1689 cancel_delayed_work(&hdev->adv_instance_expire); 1690 hdev->adv_instance_timeout = 0; 1691 } 1692 1693 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) { 1694 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 1695 list_del(&adv_instance->list); 1696 kfree(adv_instance); 1697 } 1698 1699 hdev->adv_instance_cnt = 0; 1700 hdev->cur_adv_instance = 0x00; 1701 } 1702 1703 static void adv_instance_rpa_expired(struct work_struct *work) 1704 { 1705 struct adv_info *adv_instance = container_of(work, struct adv_info, 1706 rpa_expired_cb.work); 1707 1708 BT_DBG(""); 1709 1710 adv_instance->rpa_expired = true; 1711 } 1712 1713 /* This function requires the caller holds hdev->lock */ 1714 struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance, 1715 u32 flags, u16 adv_data_len, u8 *adv_data, 1716 u16 scan_rsp_len, u8 *scan_rsp_data, 1717 u16 timeout, u16 duration, s8 tx_power, 1718 u32 min_interval, u32 max_interval, 1719 u8 mesh_handle) 1720 { 1721 struct adv_info *adv; 1722 1723 adv = hci_find_adv_instance(hdev, instance); 1724 if (adv) { 1725 memset(adv->adv_data, 0, sizeof(adv->adv_data)); 1726 memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data)); 1727 memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data)); 1728 } else { 1729 if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets || 1730 instance < 1 || instance > hdev->le_num_of_adv_sets + 1) 1731 return ERR_PTR(-EOVERFLOW); 1732 1733 adv = kzalloc(sizeof(*adv), GFP_KERNEL); 1734 if (!adv) 1735 return ERR_PTR(-ENOMEM); 1736 1737 adv->pending = true; 1738 adv->instance = instance; 1739 list_add(&adv->list, &hdev->adv_instances); 1740 hdev->adv_instance_cnt++; 1741 } 1742 1743 adv->flags = flags; 1744 adv->min_interval = min_interval; 1745 adv->max_interval = max_interval; 1746 adv->tx_power = tx_power; 1747 /* Defining a mesh_handle changes the timing units to ms, 1748 * rather than seconds, and ties the instance to the requested 1749 * mesh_tx queue. 1750 */ 1751 adv->mesh = mesh_handle; 1752 1753 hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data, 1754 scan_rsp_len, scan_rsp_data); 1755 1756 adv->timeout = timeout; 1757 adv->remaining_time = timeout; 1758 1759 if (duration == 0) 1760 adv->duration = hdev->def_multi_adv_rotation_duration; 1761 else 1762 adv->duration = duration; 1763 1764 INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired); 1765 1766 BT_DBG("%s for %dMR", hdev->name, instance); 1767 1768 return adv; 1769 } 1770 1771 /* This function requires the caller holds hdev->lock */ 1772 struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance, 1773 u32 flags, u8 data_len, u8 *data, 1774 u32 min_interval, u32 max_interval) 1775 { 1776 struct adv_info *adv; 1777 1778 adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL, 1779 0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE, 1780 min_interval, max_interval, 0); 1781 if (IS_ERR(adv)) 1782 return adv; 1783 1784 adv->periodic = true; 1785 adv->per_adv_data_len = data_len; 1786 1787 if (data) 1788 memcpy(adv->per_adv_data, data, data_len); 1789 1790 return adv; 1791 } 1792 1793 /* This function requires the caller holds hdev->lock */ 1794 int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance, 1795 u16 adv_data_len, u8 *adv_data, 1796 u16 scan_rsp_len, u8 *scan_rsp_data) 1797 { 1798 struct adv_info *adv; 1799 1800 adv = hci_find_adv_instance(hdev, instance); 1801 1802 /* If advertisement doesn't exist, we can't modify its data */ 1803 if (!adv) 1804 return -ENOENT; 1805 1806 if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) { 1807 memset(adv->adv_data, 0, sizeof(adv->adv_data)); 1808 memcpy(adv->adv_data, adv_data, adv_data_len); 1809 adv->adv_data_len = adv_data_len; 1810 adv->adv_data_changed = true; 1811 } 1812 1813 if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) { 1814 memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data)); 1815 memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len); 1816 adv->scan_rsp_len = scan_rsp_len; 1817 adv->scan_rsp_changed = true; 1818 } 1819 1820 /* Mark as changed if there are flags which would affect it */ 1821 if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) || 1822 adv->flags & MGMT_ADV_FLAG_LOCAL_NAME) 1823 adv->scan_rsp_changed = true; 1824 1825 return 0; 1826 } 1827 1828 /* This function requires the caller holds hdev->lock */ 1829 u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance) 1830 { 1831 u32 flags; 1832 struct adv_info *adv; 1833 1834 if (instance == 0x00) { 1835 /* Instance 0 always manages the "Tx Power" and "Flags" 1836 * fields 1837 */ 1838 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS; 1839 1840 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting 1841 * corresponds to the "connectable" instance flag. 1842 */ 1843 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE)) 1844 flags |= MGMT_ADV_FLAG_CONNECTABLE; 1845 1846 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 1847 flags |= MGMT_ADV_FLAG_LIMITED_DISCOV; 1848 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 1849 flags |= MGMT_ADV_FLAG_DISCOV; 1850 1851 return flags; 1852 } 1853 1854 adv = hci_find_adv_instance(hdev, instance); 1855 1856 /* Return 0 when we got an invalid instance identifier. */ 1857 if (!adv) 1858 return 0; 1859 1860 return adv->flags; 1861 } 1862 1863 bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance) 1864 { 1865 struct adv_info *adv; 1866 1867 /* Instance 0x00 always set local name */ 1868 if (instance == 0x00) 1869 return true; 1870 1871 adv = hci_find_adv_instance(hdev, instance); 1872 if (!adv) 1873 return false; 1874 1875 if (adv->flags & MGMT_ADV_FLAG_APPEARANCE || 1876 adv->flags & MGMT_ADV_FLAG_LOCAL_NAME) 1877 return true; 1878 1879 return adv->scan_rsp_len ? true : false; 1880 } 1881 1882 /* This function requires the caller holds hdev->lock */ 1883 void hci_adv_monitors_clear(struct hci_dev *hdev) 1884 { 1885 struct adv_monitor *monitor; 1886 int handle; 1887 1888 idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle) 1889 hci_free_adv_monitor(hdev, monitor); 1890 1891 idr_destroy(&hdev->adv_monitors_idr); 1892 } 1893 1894 /* Frees the monitor structure and do some bookkeepings. 1895 * This function requires the caller holds hdev->lock. 1896 */ 1897 void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor) 1898 { 1899 struct adv_pattern *pattern; 1900 struct adv_pattern *tmp; 1901 1902 if (!monitor) 1903 return; 1904 1905 list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) { 1906 list_del(&pattern->list); 1907 kfree(pattern); 1908 } 1909 1910 if (monitor->handle) 1911 idr_remove(&hdev->adv_monitors_idr, monitor->handle); 1912 1913 if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) { 1914 hdev->adv_monitors_cnt--; 1915 mgmt_adv_monitor_removed(hdev, monitor->handle); 1916 } 1917 1918 kfree(monitor); 1919 } 1920 1921 /* Assigns handle to a monitor, and if offloading is supported and power is on, 1922 * also attempts to forward the request to the controller. 1923 * This function requires the caller holds hci_req_sync_lock. 1924 */ 1925 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor) 1926 { 1927 int min, max, handle; 1928 int status = 0; 1929 1930 if (!monitor) 1931 return -EINVAL; 1932 1933 hci_dev_lock(hdev); 1934 1935 min = HCI_MIN_ADV_MONITOR_HANDLE; 1936 max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES; 1937 handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max, 1938 GFP_KERNEL); 1939 1940 hci_dev_unlock(hdev); 1941 1942 if (handle < 0) 1943 return handle; 1944 1945 monitor->handle = handle; 1946 1947 if (!hdev_is_powered(hdev)) 1948 return status; 1949 1950 switch (hci_get_adv_monitor_offload_ext(hdev)) { 1951 case HCI_ADV_MONITOR_EXT_NONE: 1952 bt_dev_dbg(hdev, "%s add monitor %d status %d", hdev->name, 1953 monitor->handle, status); 1954 /* Message was not forwarded to controller - not an error */ 1955 break; 1956 1957 case HCI_ADV_MONITOR_EXT_MSFT: 1958 status = msft_add_monitor_pattern(hdev, monitor); 1959 bt_dev_dbg(hdev, "%s add monitor %d msft status %d", hdev->name, 1960 monitor->handle, status); 1961 break; 1962 } 1963 1964 return status; 1965 } 1966 1967 /* Attempts to tell the controller and free the monitor. If somehow the 1968 * controller doesn't have a corresponding handle, remove anyway. 1969 * This function requires the caller holds hci_req_sync_lock. 1970 */ 1971 static int hci_remove_adv_monitor(struct hci_dev *hdev, 1972 struct adv_monitor *monitor) 1973 { 1974 int status = 0; 1975 1976 switch (hci_get_adv_monitor_offload_ext(hdev)) { 1977 case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */ 1978 bt_dev_dbg(hdev, "%s remove monitor %d status %d", hdev->name, 1979 monitor->handle, status); 1980 goto free_monitor; 1981 1982 case HCI_ADV_MONITOR_EXT_MSFT: 1983 status = msft_remove_monitor(hdev, monitor); 1984 bt_dev_dbg(hdev, "%s remove monitor %d msft status %d", 1985 hdev->name, monitor->handle, status); 1986 break; 1987 } 1988 1989 /* In case no matching handle registered, just free the monitor */ 1990 if (status == -ENOENT) 1991 goto free_monitor; 1992 1993 return status; 1994 1995 free_monitor: 1996 if (status == -ENOENT) 1997 bt_dev_warn(hdev, "Removing monitor with no matching handle %d", 1998 monitor->handle); 1999 hci_free_adv_monitor(hdev, monitor); 2000 2001 return status; 2002 } 2003 2004 /* This function requires the caller holds hci_req_sync_lock */ 2005 int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle) 2006 { 2007 struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle); 2008 2009 if (!monitor) 2010 return -EINVAL; 2011 2012 return hci_remove_adv_monitor(hdev, monitor); 2013 } 2014 2015 /* This function requires the caller holds hci_req_sync_lock */ 2016 int hci_remove_all_adv_monitor(struct hci_dev *hdev) 2017 { 2018 struct adv_monitor *monitor; 2019 int idr_next_id = 0; 2020 int status = 0; 2021 2022 while (1) { 2023 monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id); 2024 if (!monitor) 2025 break; 2026 2027 status = hci_remove_adv_monitor(hdev, monitor); 2028 if (status) 2029 return status; 2030 2031 idr_next_id++; 2032 } 2033 2034 return status; 2035 } 2036 2037 /* This function requires the caller holds hdev->lock */ 2038 bool hci_is_adv_monitoring(struct hci_dev *hdev) 2039 { 2040 return !idr_is_empty(&hdev->adv_monitors_idr); 2041 } 2042 2043 int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev) 2044 { 2045 if (msft_monitor_supported(hdev)) 2046 return HCI_ADV_MONITOR_EXT_MSFT; 2047 2048 return HCI_ADV_MONITOR_EXT_NONE; 2049 } 2050 2051 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list, 2052 bdaddr_t *bdaddr, u8 type) 2053 { 2054 struct bdaddr_list *b; 2055 2056 list_for_each_entry(b, bdaddr_list, list) { 2057 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 2058 return b; 2059 } 2060 2061 return NULL; 2062 } 2063 2064 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk( 2065 struct list_head *bdaddr_list, bdaddr_t *bdaddr, 2066 u8 type) 2067 { 2068 struct bdaddr_list_with_irk *b; 2069 2070 list_for_each_entry(b, bdaddr_list, list) { 2071 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 2072 return b; 2073 } 2074 2075 return NULL; 2076 } 2077 2078 struct bdaddr_list_with_flags * 2079 hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list, 2080 bdaddr_t *bdaddr, u8 type) 2081 { 2082 struct bdaddr_list_with_flags *b; 2083 2084 list_for_each_entry(b, bdaddr_list, list) { 2085 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 2086 return b; 2087 } 2088 2089 return NULL; 2090 } 2091 2092 void hci_bdaddr_list_clear(struct list_head *bdaddr_list) 2093 { 2094 struct bdaddr_list *b, *n; 2095 2096 list_for_each_entry_safe(b, n, bdaddr_list, list) { 2097 list_del(&b->list); 2098 kfree(b); 2099 } 2100 } 2101 2102 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type) 2103 { 2104 struct bdaddr_list *entry; 2105 2106 if (!bacmp(bdaddr, BDADDR_ANY)) 2107 return -EBADF; 2108 2109 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 2110 return -EEXIST; 2111 2112 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 2113 if (!entry) 2114 return -ENOMEM; 2115 2116 bacpy(&entry->bdaddr, bdaddr); 2117 entry->bdaddr_type = type; 2118 2119 list_add(&entry->list, list); 2120 2121 return 0; 2122 } 2123 2124 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr, 2125 u8 type, u8 *peer_irk, u8 *local_irk) 2126 { 2127 struct bdaddr_list_with_irk *entry; 2128 2129 if (!bacmp(bdaddr, BDADDR_ANY)) 2130 return -EBADF; 2131 2132 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 2133 return -EEXIST; 2134 2135 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 2136 if (!entry) 2137 return -ENOMEM; 2138 2139 bacpy(&entry->bdaddr, bdaddr); 2140 entry->bdaddr_type = type; 2141 2142 if (peer_irk) 2143 memcpy(entry->peer_irk, peer_irk, 16); 2144 2145 if (local_irk) 2146 memcpy(entry->local_irk, local_irk, 16); 2147 2148 list_add(&entry->list, list); 2149 2150 return 0; 2151 } 2152 2153 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr, 2154 u8 type, u32 flags) 2155 { 2156 struct bdaddr_list_with_flags *entry; 2157 2158 if (!bacmp(bdaddr, BDADDR_ANY)) 2159 return -EBADF; 2160 2161 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 2162 return -EEXIST; 2163 2164 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 2165 if (!entry) 2166 return -ENOMEM; 2167 2168 bacpy(&entry->bdaddr, bdaddr); 2169 entry->bdaddr_type = type; 2170 entry->flags = flags; 2171 2172 list_add(&entry->list, list); 2173 2174 return 0; 2175 } 2176 2177 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type) 2178 { 2179 struct bdaddr_list *entry; 2180 2181 if (!bacmp(bdaddr, BDADDR_ANY)) { 2182 hci_bdaddr_list_clear(list); 2183 return 0; 2184 } 2185 2186 entry = hci_bdaddr_list_lookup(list, bdaddr, type); 2187 if (!entry) 2188 return -ENOENT; 2189 2190 list_del(&entry->list); 2191 kfree(entry); 2192 2193 return 0; 2194 } 2195 2196 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr, 2197 u8 type) 2198 { 2199 struct bdaddr_list_with_irk *entry; 2200 2201 if (!bacmp(bdaddr, BDADDR_ANY)) { 2202 hci_bdaddr_list_clear(list); 2203 return 0; 2204 } 2205 2206 entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type); 2207 if (!entry) 2208 return -ENOENT; 2209 2210 list_del(&entry->list); 2211 kfree(entry); 2212 2213 return 0; 2214 } 2215 2216 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr, 2217 u8 type) 2218 { 2219 struct bdaddr_list_with_flags *entry; 2220 2221 if (!bacmp(bdaddr, BDADDR_ANY)) { 2222 hci_bdaddr_list_clear(list); 2223 return 0; 2224 } 2225 2226 entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type); 2227 if (!entry) 2228 return -ENOENT; 2229 2230 list_del(&entry->list); 2231 kfree(entry); 2232 2233 return 0; 2234 } 2235 2236 /* This function requires the caller holds hdev->lock */ 2237 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev, 2238 bdaddr_t *addr, u8 addr_type) 2239 { 2240 struct hci_conn_params *params; 2241 2242 list_for_each_entry(params, &hdev->le_conn_params, list) { 2243 if (bacmp(¶ms->addr, addr) == 0 && 2244 params->addr_type == addr_type) { 2245 return params; 2246 } 2247 } 2248 2249 return NULL; 2250 } 2251 2252 /* This function requires the caller holds hdev->lock */ 2253 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list, 2254 bdaddr_t *addr, u8 addr_type) 2255 { 2256 struct hci_conn_params *param; 2257 2258 list_for_each_entry(param, list, action) { 2259 if (bacmp(¶m->addr, addr) == 0 && 2260 param->addr_type == addr_type) 2261 return param; 2262 } 2263 2264 return NULL; 2265 } 2266 2267 /* This function requires the caller holds hdev->lock */ 2268 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev, 2269 bdaddr_t *addr, u8 addr_type) 2270 { 2271 struct hci_conn_params *params; 2272 2273 params = hci_conn_params_lookup(hdev, addr, addr_type); 2274 if (params) 2275 return params; 2276 2277 params = kzalloc(sizeof(*params), GFP_KERNEL); 2278 if (!params) { 2279 bt_dev_err(hdev, "out of memory"); 2280 return NULL; 2281 } 2282 2283 bacpy(¶ms->addr, addr); 2284 params->addr_type = addr_type; 2285 2286 list_add(¶ms->list, &hdev->le_conn_params); 2287 INIT_LIST_HEAD(¶ms->action); 2288 2289 params->conn_min_interval = hdev->le_conn_min_interval; 2290 params->conn_max_interval = hdev->le_conn_max_interval; 2291 params->conn_latency = hdev->le_conn_latency; 2292 params->supervision_timeout = hdev->le_supv_timeout; 2293 params->auto_connect = HCI_AUTO_CONN_DISABLED; 2294 2295 BT_DBG("addr %pMR (type %u)", addr, addr_type); 2296 2297 return params; 2298 } 2299 2300 static void hci_conn_params_free(struct hci_conn_params *params) 2301 { 2302 if (params->conn) { 2303 hci_conn_drop(params->conn); 2304 hci_conn_put(params->conn); 2305 } 2306 2307 list_del(¶ms->action); 2308 list_del(¶ms->list); 2309 kfree(params); 2310 } 2311 2312 /* This function requires the caller holds hdev->lock */ 2313 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type) 2314 { 2315 struct hci_conn_params *params; 2316 2317 params = hci_conn_params_lookup(hdev, addr, addr_type); 2318 if (!params) 2319 return; 2320 2321 hci_conn_params_free(params); 2322 2323 hci_update_passive_scan(hdev); 2324 2325 BT_DBG("addr %pMR (type %u)", addr, addr_type); 2326 } 2327 2328 /* This function requires the caller holds hdev->lock */ 2329 void hci_conn_params_clear_disabled(struct hci_dev *hdev) 2330 { 2331 struct hci_conn_params *params, *tmp; 2332 2333 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) { 2334 if (params->auto_connect != HCI_AUTO_CONN_DISABLED) 2335 continue; 2336 2337 /* If trying to establish one time connection to disabled 2338 * device, leave the params, but mark them as just once. 2339 */ 2340 if (params->explicit_connect) { 2341 params->auto_connect = HCI_AUTO_CONN_EXPLICIT; 2342 continue; 2343 } 2344 2345 list_del(¶ms->list); 2346 kfree(params); 2347 } 2348 2349 BT_DBG("All LE disabled connection parameters were removed"); 2350 } 2351 2352 /* This function requires the caller holds hdev->lock */ 2353 static void hci_conn_params_clear_all(struct hci_dev *hdev) 2354 { 2355 struct hci_conn_params *params, *tmp; 2356 2357 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) 2358 hci_conn_params_free(params); 2359 2360 BT_DBG("All LE connection parameters were removed"); 2361 } 2362 2363 /* Copy the Identity Address of the controller. 2364 * 2365 * If the controller has a public BD_ADDR, then by default use that one. 2366 * If this is a LE only controller without a public address, default to 2367 * the static random address. 2368 * 2369 * For debugging purposes it is possible to force controllers with a 2370 * public address to use the static random address instead. 2371 * 2372 * In case BR/EDR has been disabled on a dual-mode controller and 2373 * userspace has configured a static address, then that address 2374 * becomes the identity address instead of the public BR/EDR address. 2375 */ 2376 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr, 2377 u8 *bdaddr_type) 2378 { 2379 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 2380 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 2381 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 2382 bacmp(&hdev->static_addr, BDADDR_ANY))) { 2383 bacpy(bdaddr, &hdev->static_addr); 2384 *bdaddr_type = ADDR_LE_DEV_RANDOM; 2385 } else { 2386 bacpy(bdaddr, &hdev->bdaddr); 2387 *bdaddr_type = ADDR_LE_DEV_PUBLIC; 2388 } 2389 } 2390 2391 static void hci_clear_wake_reason(struct hci_dev *hdev) 2392 { 2393 hci_dev_lock(hdev); 2394 2395 hdev->wake_reason = 0; 2396 bacpy(&hdev->wake_addr, BDADDR_ANY); 2397 hdev->wake_addr_type = 0; 2398 2399 hci_dev_unlock(hdev); 2400 } 2401 2402 static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action, 2403 void *data) 2404 { 2405 struct hci_dev *hdev = 2406 container_of(nb, struct hci_dev, suspend_notifier); 2407 int ret = 0; 2408 2409 /* Userspace has full control of this device. Do nothing. */ 2410 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) 2411 return NOTIFY_DONE; 2412 2413 if (action == PM_SUSPEND_PREPARE) 2414 ret = hci_suspend_dev(hdev); 2415 else if (action == PM_POST_SUSPEND) 2416 ret = hci_resume_dev(hdev); 2417 2418 if (ret) 2419 bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d", 2420 action, ret); 2421 2422 return NOTIFY_DONE; 2423 } 2424 2425 /* Alloc HCI device */ 2426 struct hci_dev *hci_alloc_dev_priv(int sizeof_priv) 2427 { 2428 struct hci_dev *hdev; 2429 unsigned int alloc_size; 2430 2431 alloc_size = sizeof(*hdev); 2432 if (sizeof_priv) { 2433 /* Fixme: May need ALIGN-ment? */ 2434 alloc_size += sizeof_priv; 2435 } 2436 2437 hdev = kzalloc(alloc_size, GFP_KERNEL); 2438 if (!hdev) 2439 return NULL; 2440 2441 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1); 2442 hdev->esco_type = (ESCO_HV1); 2443 hdev->link_mode = (HCI_LM_ACCEPT); 2444 hdev->num_iac = 0x01; /* One IAC support is mandatory */ 2445 hdev->io_capability = 0x03; /* No Input No Output */ 2446 hdev->manufacturer = 0xffff; /* Default to internal use */ 2447 hdev->inq_tx_power = HCI_TX_POWER_INVALID; 2448 hdev->adv_tx_power = HCI_TX_POWER_INVALID; 2449 hdev->adv_instance_cnt = 0; 2450 hdev->cur_adv_instance = 0x00; 2451 hdev->adv_instance_timeout = 0; 2452 2453 hdev->advmon_allowlist_duration = 300; 2454 hdev->advmon_no_filter_duration = 500; 2455 hdev->enable_advmon_interleave_scan = 0x00; /* Default to disable */ 2456 2457 hdev->sniff_max_interval = 800; 2458 hdev->sniff_min_interval = 80; 2459 2460 hdev->le_adv_channel_map = 0x07; 2461 hdev->le_adv_min_interval = 0x0800; 2462 hdev->le_adv_max_interval = 0x0800; 2463 hdev->le_scan_interval = 0x0060; 2464 hdev->le_scan_window = 0x0030; 2465 hdev->le_scan_int_suspend = 0x0400; 2466 hdev->le_scan_window_suspend = 0x0012; 2467 hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT; 2468 hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN; 2469 hdev->le_scan_int_adv_monitor = 0x0060; 2470 hdev->le_scan_window_adv_monitor = 0x0030; 2471 hdev->le_scan_int_connect = 0x0060; 2472 hdev->le_scan_window_connect = 0x0060; 2473 hdev->le_conn_min_interval = 0x0018; 2474 hdev->le_conn_max_interval = 0x0028; 2475 hdev->le_conn_latency = 0x0000; 2476 hdev->le_supv_timeout = 0x002a; 2477 hdev->le_def_tx_len = 0x001b; 2478 hdev->le_def_tx_time = 0x0148; 2479 hdev->le_max_tx_len = 0x001b; 2480 hdev->le_max_tx_time = 0x0148; 2481 hdev->le_max_rx_len = 0x001b; 2482 hdev->le_max_rx_time = 0x0148; 2483 hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE; 2484 hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE; 2485 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M; 2486 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M; 2487 hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES; 2488 hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION; 2489 hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT; 2490 hdev->min_le_tx_power = HCI_TX_POWER_INVALID; 2491 hdev->max_le_tx_power = HCI_TX_POWER_INVALID; 2492 2493 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT; 2494 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT; 2495 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE; 2496 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE; 2497 hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT; 2498 hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE; 2499 2500 /* default 1.28 sec page scan */ 2501 hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD; 2502 hdev->def_page_scan_int = 0x0800; 2503 hdev->def_page_scan_window = 0x0012; 2504 2505 mutex_init(&hdev->lock); 2506 mutex_init(&hdev->req_lock); 2507 2508 INIT_LIST_HEAD(&hdev->mesh_pending); 2509 INIT_LIST_HEAD(&hdev->mgmt_pending); 2510 INIT_LIST_HEAD(&hdev->reject_list); 2511 INIT_LIST_HEAD(&hdev->accept_list); 2512 INIT_LIST_HEAD(&hdev->uuids); 2513 INIT_LIST_HEAD(&hdev->link_keys); 2514 INIT_LIST_HEAD(&hdev->long_term_keys); 2515 INIT_LIST_HEAD(&hdev->identity_resolving_keys); 2516 INIT_LIST_HEAD(&hdev->remote_oob_data); 2517 INIT_LIST_HEAD(&hdev->le_accept_list); 2518 INIT_LIST_HEAD(&hdev->le_resolv_list); 2519 INIT_LIST_HEAD(&hdev->le_conn_params); 2520 INIT_LIST_HEAD(&hdev->pend_le_conns); 2521 INIT_LIST_HEAD(&hdev->pend_le_reports); 2522 INIT_LIST_HEAD(&hdev->conn_hash.list); 2523 INIT_LIST_HEAD(&hdev->adv_instances); 2524 INIT_LIST_HEAD(&hdev->blocked_keys); 2525 INIT_LIST_HEAD(&hdev->monitored_devices); 2526 2527 INIT_LIST_HEAD(&hdev->local_codecs); 2528 INIT_WORK(&hdev->rx_work, hci_rx_work); 2529 INIT_WORK(&hdev->cmd_work, hci_cmd_work); 2530 INIT_WORK(&hdev->tx_work, hci_tx_work); 2531 INIT_WORK(&hdev->power_on, hci_power_on); 2532 INIT_WORK(&hdev->error_reset, hci_error_reset); 2533 2534 hci_cmd_sync_init(hdev); 2535 2536 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off); 2537 2538 skb_queue_head_init(&hdev->rx_q); 2539 skb_queue_head_init(&hdev->cmd_q); 2540 skb_queue_head_init(&hdev->raw_q); 2541 2542 init_waitqueue_head(&hdev->req_wait_q); 2543 2544 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout); 2545 INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout); 2546 2547 hci_devcd_setup(hdev); 2548 hci_request_setup(hdev); 2549 2550 hci_init_sysfs(hdev); 2551 discovery_init(hdev); 2552 2553 return hdev; 2554 } 2555 EXPORT_SYMBOL(hci_alloc_dev_priv); 2556 2557 /* Free HCI device */ 2558 void hci_free_dev(struct hci_dev *hdev) 2559 { 2560 /* will free via device release */ 2561 put_device(&hdev->dev); 2562 } 2563 EXPORT_SYMBOL(hci_free_dev); 2564 2565 /* Register HCI device */ 2566 int hci_register_dev(struct hci_dev *hdev) 2567 { 2568 int id, error; 2569 2570 if (!hdev->open || !hdev->close || !hdev->send) 2571 return -EINVAL; 2572 2573 /* Do not allow HCI_AMP devices to register at index 0, 2574 * so the index can be used as the AMP controller ID. 2575 */ 2576 switch (hdev->dev_type) { 2577 case HCI_PRIMARY: 2578 id = ida_simple_get(&hci_index_ida, 0, HCI_MAX_ID, GFP_KERNEL); 2579 break; 2580 case HCI_AMP: 2581 id = ida_simple_get(&hci_index_ida, 1, HCI_MAX_ID, GFP_KERNEL); 2582 break; 2583 default: 2584 return -EINVAL; 2585 } 2586 2587 if (id < 0) 2588 return id; 2589 2590 snprintf(hdev->name, sizeof(hdev->name), "hci%d", id); 2591 hdev->id = id; 2592 2593 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 2594 2595 hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name); 2596 if (!hdev->workqueue) { 2597 error = -ENOMEM; 2598 goto err; 2599 } 2600 2601 hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, 2602 hdev->name); 2603 if (!hdev->req_workqueue) { 2604 destroy_workqueue(hdev->workqueue); 2605 error = -ENOMEM; 2606 goto err; 2607 } 2608 2609 if (!IS_ERR_OR_NULL(bt_debugfs)) 2610 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs); 2611 2612 dev_set_name(&hdev->dev, "%s", hdev->name); 2613 2614 error = device_add(&hdev->dev); 2615 if (error < 0) 2616 goto err_wqueue; 2617 2618 hci_leds_init(hdev); 2619 2620 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev, 2621 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, 2622 hdev); 2623 if (hdev->rfkill) { 2624 if (rfkill_register(hdev->rfkill) < 0) { 2625 rfkill_destroy(hdev->rfkill); 2626 hdev->rfkill = NULL; 2627 } 2628 } 2629 2630 if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) 2631 hci_dev_set_flag(hdev, HCI_RFKILLED); 2632 2633 hci_dev_set_flag(hdev, HCI_SETUP); 2634 hci_dev_set_flag(hdev, HCI_AUTO_OFF); 2635 2636 if (hdev->dev_type == HCI_PRIMARY) { 2637 /* Assume BR/EDR support until proven otherwise (such as 2638 * through reading supported features during init. 2639 */ 2640 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); 2641 } 2642 2643 write_lock(&hci_dev_list_lock); 2644 list_add(&hdev->list, &hci_dev_list); 2645 write_unlock(&hci_dev_list_lock); 2646 2647 /* Devices that are marked for raw-only usage are unconfigured 2648 * and should not be included in normal operation. 2649 */ 2650 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 2651 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 2652 2653 /* Mark Remote Wakeup connection flag as supported if driver has wakeup 2654 * callback. 2655 */ 2656 if (hdev->wakeup) 2657 hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP; 2658 2659 hci_sock_dev_event(hdev, HCI_DEV_REG); 2660 hci_dev_hold(hdev); 2661 2662 error = hci_register_suspend_notifier(hdev); 2663 if (error) 2664 BT_WARN("register suspend notifier failed error:%d\n", error); 2665 2666 queue_work(hdev->req_workqueue, &hdev->power_on); 2667 2668 idr_init(&hdev->adv_monitors_idr); 2669 msft_register(hdev); 2670 2671 return id; 2672 2673 err_wqueue: 2674 debugfs_remove_recursive(hdev->debugfs); 2675 destroy_workqueue(hdev->workqueue); 2676 destroy_workqueue(hdev->req_workqueue); 2677 err: 2678 ida_simple_remove(&hci_index_ida, hdev->id); 2679 2680 return error; 2681 } 2682 EXPORT_SYMBOL(hci_register_dev); 2683 2684 /* Unregister HCI device */ 2685 void hci_unregister_dev(struct hci_dev *hdev) 2686 { 2687 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 2688 2689 hci_dev_set_flag(hdev, HCI_UNREGISTER); 2690 2691 write_lock(&hci_dev_list_lock); 2692 list_del(&hdev->list); 2693 write_unlock(&hci_dev_list_lock); 2694 2695 cancel_work_sync(&hdev->power_on); 2696 2697 hci_cmd_sync_clear(hdev); 2698 2699 hci_unregister_suspend_notifier(hdev); 2700 2701 msft_unregister(hdev); 2702 2703 hci_dev_do_close(hdev); 2704 2705 if (!test_bit(HCI_INIT, &hdev->flags) && 2706 !hci_dev_test_flag(hdev, HCI_SETUP) && 2707 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 2708 hci_dev_lock(hdev); 2709 mgmt_index_removed(hdev); 2710 hci_dev_unlock(hdev); 2711 } 2712 2713 /* mgmt_index_removed should take care of emptying the 2714 * pending list */ 2715 BUG_ON(!list_empty(&hdev->mgmt_pending)); 2716 2717 hci_sock_dev_event(hdev, HCI_DEV_UNREG); 2718 2719 if (hdev->rfkill) { 2720 rfkill_unregister(hdev->rfkill); 2721 rfkill_destroy(hdev->rfkill); 2722 } 2723 2724 device_del(&hdev->dev); 2725 /* Actual cleanup is deferred until hci_release_dev(). */ 2726 hci_dev_put(hdev); 2727 } 2728 EXPORT_SYMBOL(hci_unregister_dev); 2729 2730 /* Release HCI device */ 2731 void hci_release_dev(struct hci_dev *hdev) 2732 { 2733 debugfs_remove_recursive(hdev->debugfs); 2734 kfree_const(hdev->hw_info); 2735 kfree_const(hdev->fw_info); 2736 2737 destroy_workqueue(hdev->workqueue); 2738 destroy_workqueue(hdev->req_workqueue); 2739 2740 hci_dev_lock(hdev); 2741 hci_bdaddr_list_clear(&hdev->reject_list); 2742 hci_bdaddr_list_clear(&hdev->accept_list); 2743 hci_uuids_clear(hdev); 2744 hci_link_keys_clear(hdev); 2745 hci_smp_ltks_clear(hdev); 2746 hci_smp_irks_clear(hdev); 2747 hci_remote_oob_data_clear(hdev); 2748 hci_adv_instances_clear(hdev); 2749 hci_adv_monitors_clear(hdev); 2750 hci_bdaddr_list_clear(&hdev->le_accept_list); 2751 hci_bdaddr_list_clear(&hdev->le_resolv_list); 2752 hci_conn_params_clear_all(hdev); 2753 hci_discovery_filter_clear(hdev); 2754 hci_blocked_keys_clear(hdev); 2755 hci_dev_unlock(hdev); 2756 2757 ida_simple_remove(&hci_index_ida, hdev->id); 2758 kfree_skb(hdev->sent_cmd); 2759 kfree_skb(hdev->recv_event); 2760 kfree(hdev); 2761 } 2762 EXPORT_SYMBOL(hci_release_dev); 2763 2764 int hci_register_suspend_notifier(struct hci_dev *hdev) 2765 { 2766 int ret = 0; 2767 2768 if (!hdev->suspend_notifier.notifier_call && 2769 !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) { 2770 hdev->suspend_notifier.notifier_call = hci_suspend_notifier; 2771 ret = register_pm_notifier(&hdev->suspend_notifier); 2772 } 2773 2774 return ret; 2775 } 2776 2777 int hci_unregister_suspend_notifier(struct hci_dev *hdev) 2778 { 2779 int ret = 0; 2780 2781 if (hdev->suspend_notifier.notifier_call) { 2782 ret = unregister_pm_notifier(&hdev->suspend_notifier); 2783 if (!ret) 2784 hdev->suspend_notifier.notifier_call = NULL; 2785 } 2786 2787 return ret; 2788 } 2789 2790 /* Suspend HCI device */ 2791 int hci_suspend_dev(struct hci_dev *hdev) 2792 { 2793 int ret; 2794 2795 bt_dev_dbg(hdev, ""); 2796 2797 /* Suspend should only act on when powered. */ 2798 if (!hdev_is_powered(hdev) || 2799 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2800 return 0; 2801 2802 /* If powering down don't attempt to suspend */ 2803 if (mgmt_powering_down(hdev)) 2804 return 0; 2805 2806 /* Cancel potentially blocking sync operation before suspend */ 2807 __hci_cmd_sync_cancel(hdev, -EHOSTDOWN); 2808 2809 hci_req_sync_lock(hdev); 2810 ret = hci_suspend_sync(hdev); 2811 hci_req_sync_unlock(hdev); 2812 2813 hci_clear_wake_reason(hdev); 2814 mgmt_suspending(hdev, hdev->suspend_state); 2815 2816 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND); 2817 return ret; 2818 } 2819 EXPORT_SYMBOL(hci_suspend_dev); 2820 2821 /* Resume HCI device */ 2822 int hci_resume_dev(struct hci_dev *hdev) 2823 { 2824 int ret; 2825 2826 bt_dev_dbg(hdev, ""); 2827 2828 /* Resume should only act on when powered. */ 2829 if (!hdev_is_powered(hdev) || 2830 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2831 return 0; 2832 2833 /* If powering down don't attempt to resume */ 2834 if (mgmt_powering_down(hdev)) 2835 return 0; 2836 2837 hci_req_sync_lock(hdev); 2838 ret = hci_resume_sync(hdev); 2839 hci_req_sync_unlock(hdev); 2840 2841 mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr, 2842 hdev->wake_addr_type); 2843 2844 hci_sock_dev_event(hdev, HCI_DEV_RESUME); 2845 return ret; 2846 } 2847 EXPORT_SYMBOL(hci_resume_dev); 2848 2849 /* Reset HCI device */ 2850 int hci_reset_dev(struct hci_dev *hdev) 2851 { 2852 static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 }; 2853 struct sk_buff *skb; 2854 2855 skb = bt_skb_alloc(3, GFP_ATOMIC); 2856 if (!skb) 2857 return -ENOMEM; 2858 2859 hci_skb_pkt_type(skb) = HCI_EVENT_PKT; 2860 skb_put_data(skb, hw_err, 3); 2861 2862 bt_dev_err(hdev, "Injecting HCI hardware error event"); 2863 2864 /* Send Hardware Error to upper stack */ 2865 return hci_recv_frame(hdev, skb); 2866 } 2867 EXPORT_SYMBOL(hci_reset_dev); 2868 2869 /* Receive frame from HCI drivers */ 2870 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb) 2871 { 2872 if (!hdev || (!test_bit(HCI_UP, &hdev->flags) 2873 && !test_bit(HCI_INIT, &hdev->flags))) { 2874 kfree_skb(skb); 2875 return -ENXIO; 2876 } 2877 2878 switch (hci_skb_pkt_type(skb)) { 2879 case HCI_EVENT_PKT: 2880 break; 2881 case HCI_ACLDATA_PKT: 2882 /* Detect if ISO packet has been sent as ACL */ 2883 if (hci_conn_num(hdev, ISO_LINK)) { 2884 __u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle); 2885 __u8 type; 2886 2887 type = hci_conn_lookup_type(hdev, hci_handle(handle)); 2888 if (type == ISO_LINK) 2889 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT; 2890 } 2891 break; 2892 case HCI_SCODATA_PKT: 2893 break; 2894 case HCI_ISODATA_PKT: 2895 break; 2896 default: 2897 kfree_skb(skb); 2898 return -EINVAL; 2899 } 2900 2901 /* Incoming skb */ 2902 bt_cb(skb)->incoming = 1; 2903 2904 /* Time stamp */ 2905 __net_timestamp(skb); 2906 2907 skb_queue_tail(&hdev->rx_q, skb); 2908 queue_work(hdev->workqueue, &hdev->rx_work); 2909 2910 return 0; 2911 } 2912 EXPORT_SYMBOL(hci_recv_frame); 2913 2914 /* Receive diagnostic message from HCI drivers */ 2915 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb) 2916 { 2917 /* Mark as diagnostic packet */ 2918 hci_skb_pkt_type(skb) = HCI_DIAG_PKT; 2919 2920 /* Time stamp */ 2921 __net_timestamp(skb); 2922 2923 skb_queue_tail(&hdev->rx_q, skb); 2924 queue_work(hdev->workqueue, &hdev->rx_work); 2925 2926 return 0; 2927 } 2928 EXPORT_SYMBOL(hci_recv_diag); 2929 2930 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...) 2931 { 2932 va_list vargs; 2933 2934 va_start(vargs, fmt); 2935 kfree_const(hdev->hw_info); 2936 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs); 2937 va_end(vargs); 2938 } 2939 EXPORT_SYMBOL(hci_set_hw_info); 2940 2941 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...) 2942 { 2943 va_list vargs; 2944 2945 va_start(vargs, fmt); 2946 kfree_const(hdev->fw_info); 2947 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs); 2948 va_end(vargs); 2949 } 2950 EXPORT_SYMBOL(hci_set_fw_info); 2951 2952 /* ---- Interface to upper protocols ---- */ 2953 2954 int hci_register_cb(struct hci_cb *cb) 2955 { 2956 BT_DBG("%p name %s", cb, cb->name); 2957 2958 mutex_lock(&hci_cb_list_lock); 2959 list_add_tail(&cb->list, &hci_cb_list); 2960 mutex_unlock(&hci_cb_list_lock); 2961 2962 return 0; 2963 } 2964 EXPORT_SYMBOL(hci_register_cb); 2965 2966 int hci_unregister_cb(struct hci_cb *cb) 2967 { 2968 BT_DBG("%p name %s", cb, cb->name); 2969 2970 mutex_lock(&hci_cb_list_lock); 2971 list_del(&cb->list); 2972 mutex_unlock(&hci_cb_list_lock); 2973 2974 return 0; 2975 } 2976 EXPORT_SYMBOL(hci_unregister_cb); 2977 2978 static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb) 2979 { 2980 int err; 2981 2982 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb), 2983 skb->len); 2984 2985 /* Time stamp */ 2986 __net_timestamp(skb); 2987 2988 /* Send copy to monitor */ 2989 hci_send_to_monitor(hdev, skb); 2990 2991 if (atomic_read(&hdev->promisc)) { 2992 /* Send copy to the sockets */ 2993 hci_send_to_sock(hdev, skb); 2994 } 2995 2996 /* Get rid of skb owner, prior to sending to the driver. */ 2997 skb_orphan(skb); 2998 2999 if (!test_bit(HCI_RUNNING, &hdev->flags)) { 3000 kfree_skb(skb); 3001 return -EINVAL; 3002 } 3003 3004 err = hdev->send(hdev, skb); 3005 if (err < 0) { 3006 bt_dev_err(hdev, "sending frame failed (%d)", err); 3007 kfree_skb(skb); 3008 return err; 3009 } 3010 3011 return 0; 3012 } 3013 3014 /* Send HCI command */ 3015 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, 3016 const void *param) 3017 { 3018 struct sk_buff *skb; 3019 3020 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen); 3021 3022 skb = hci_prepare_cmd(hdev, opcode, plen, param); 3023 if (!skb) { 3024 bt_dev_err(hdev, "no memory for command"); 3025 return -ENOMEM; 3026 } 3027 3028 /* Stand-alone HCI commands must be flagged as 3029 * single-command requests. 3030 */ 3031 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 3032 3033 skb_queue_tail(&hdev->cmd_q, skb); 3034 queue_work(hdev->workqueue, &hdev->cmd_work); 3035 3036 return 0; 3037 } 3038 3039 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen, 3040 const void *param) 3041 { 3042 struct sk_buff *skb; 3043 3044 if (hci_opcode_ogf(opcode) != 0x3f) { 3045 /* A controller receiving a command shall respond with either 3046 * a Command Status Event or a Command Complete Event. 3047 * Therefore, all standard HCI commands must be sent via the 3048 * standard API, using hci_send_cmd or hci_cmd_sync helpers. 3049 * Some vendors do not comply with this rule for vendor-specific 3050 * commands and do not return any event. We want to support 3051 * unresponded commands for such cases only. 3052 */ 3053 bt_dev_err(hdev, "unresponded command not supported"); 3054 return -EINVAL; 3055 } 3056 3057 skb = hci_prepare_cmd(hdev, opcode, plen, param); 3058 if (!skb) { 3059 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 3060 opcode); 3061 return -ENOMEM; 3062 } 3063 3064 hci_send_frame(hdev, skb); 3065 3066 return 0; 3067 } 3068 EXPORT_SYMBOL(__hci_cmd_send); 3069 3070 /* Get data from the previously sent command */ 3071 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode) 3072 { 3073 struct hci_command_hdr *hdr; 3074 3075 if (!hdev->sent_cmd) 3076 return NULL; 3077 3078 hdr = (void *) hdev->sent_cmd->data; 3079 3080 if (hdr->opcode != cpu_to_le16(opcode)) 3081 return NULL; 3082 3083 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode); 3084 3085 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE; 3086 } 3087 3088 /* Get data from last received event */ 3089 void *hci_recv_event_data(struct hci_dev *hdev, __u8 event) 3090 { 3091 struct hci_event_hdr *hdr; 3092 int offset; 3093 3094 if (!hdev->recv_event) 3095 return NULL; 3096 3097 hdr = (void *)hdev->recv_event->data; 3098 offset = sizeof(*hdr); 3099 3100 if (hdr->evt != event) { 3101 /* In case of LE metaevent check the subevent match */ 3102 if (hdr->evt == HCI_EV_LE_META) { 3103 struct hci_ev_le_meta *ev; 3104 3105 ev = (void *)hdev->recv_event->data + offset; 3106 offset += sizeof(*ev); 3107 if (ev->subevent == event) 3108 goto found; 3109 } 3110 return NULL; 3111 } 3112 3113 found: 3114 bt_dev_dbg(hdev, "event 0x%2.2x", event); 3115 3116 return hdev->recv_event->data + offset; 3117 } 3118 3119 /* Send ACL data */ 3120 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags) 3121 { 3122 struct hci_acl_hdr *hdr; 3123 int len = skb->len; 3124 3125 skb_push(skb, HCI_ACL_HDR_SIZE); 3126 skb_reset_transport_header(skb); 3127 hdr = (struct hci_acl_hdr *)skb_transport_header(skb); 3128 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags)); 3129 hdr->dlen = cpu_to_le16(len); 3130 } 3131 3132 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue, 3133 struct sk_buff *skb, __u16 flags) 3134 { 3135 struct hci_conn *conn = chan->conn; 3136 struct hci_dev *hdev = conn->hdev; 3137 struct sk_buff *list; 3138 3139 skb->len = skb_headlen(skb); 3140 skb->data_len = 0; 3141 3142 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT; 3143 3144 switch (hdev->dev_type) { 3145 case HCI_PRIMARY: 3146 hci_add_acl_hdr(skb, conn->handle, flags); 3147 break; 3148 case HCI_AMP: 3149 hci_add_acl_hdr(skb, chan->handle, flags); 3150 break; 3151 default: 3152 bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type); 3153 return; 3154 } 3155 3156 list = skb_shinfo(skb)->frag_list; 3157 if (!list) { 3158 /* Non fragmented */ 3159 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len); 3160 3161 skb_queue_tail(queue, skb); 3162 } else { 3163 /* Fragmented */ 3164 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3165 3166 skb_shinfo(skb)->frag_list = NULL; 3167 3168 /* Queue all fragments atomically. We need to use spin_lock_bh 3169 * here because of 6LoWPAN links, as there this function is 3170 * called from softirq and using normal spin lock could cause 3171 * deadlocks. 3172 */ 3173 spin_lock_bh(&queue->lock); 3174 3175 __skb_queue_tail(queue, skb); 3176 3177 flags &= ~ACL_START; 3178 flags |= ACL_CONT; 3179 do { 3180 skb = list; list = list->next; 3181 3182 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT; 3183 hci_add_acl_hdr(skb, conn->handle, flags); 3184 3185 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3186 3187 __skb_queue_tail(queue, skb); 3188 } while (list); 3189 3190 spin_unlock_bh(&queue->lock); 3191 } 3192 } 3193 3194 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags) 3195 { 3196 struct hci_dev *hdev = chan->conn->hdev; 3197 3198 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags); 3199 3200 hci_queue_acl(chan, &chan->data_q, skb, flags); 3201 3202 queue_work(hdev->workqueue, &hdev->tx_work); 3203 } 3204 3205 /* Send SCO data */ 3206 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb) 3207 { 3208 struct hci_dev *hdev = conn->hdev; 3209 struct hci_sco_hdr hdr; 3210 3211 BT_DBG("%s len %d", hdev->name, skb->len); 3212 3213 hdr.handle = cpu_to_le16(conn->handle); 3214 hdr.dlen = skb->len; 3215 3216 skb_push(skb, HCI_SCO_HDR_SIZE); 3217 skb_reset_transport_header(skb); 3218 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE); 3219 3220 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT; 3221 3222 skb_queue_tail(&conn->data_q, skb); 3223 queue_work(hdev->workqueue, &hdev->tx_work); 3224 } 3225 3226 /* Send ISO data */ 3227 static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags) 3228 { 3229 struct hci_iso_hdr *hdr; 3230 int len = skb->len; 3231 3232 skb_push(skb, HCI_ISO_HDR_SIZE); 3233 skb_reset_transport_header(skb); 3234 hdr = (struct hci_iso_hdr *)skb_transport_header(skb); 3235 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags)); 3236 hdr->dlen = cpu_to_le16(len); 3237 } 3238 3239 static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue, 3240 struct sk_buff *skb) 3241 { 3242 struct hci_dev *hdev = conn->hdev; 3243 struct sk_buff *list; 3244 __u16 flags; 3245 3246 skb->len = skb_headlen(skb); 3247 skb->data_len = 0; 3248 3249 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT; 3250 3251 list = skb_shinfo(skb)->frag_list; 3252 3253 flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00); 3254 hci_add_iso_hdr(skb, conn->handle, flags); 3255 3256 if (!list) { 3257 /* Non fragmented */ 3258 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len); 3259 3260 skb_queue_tail(queue, skb); 3261 } else { 3262 /* Fragmented */ 3263 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3264 3265 skb_shinfo(skb)->frag_list = NULL; 3266 3267 __skb_queue_tail(queue, skb); 3268 3269 do { 3270 skb = list; list = list->next; 3271 3272 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT; 3273 flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END, 3274 0x00); 3275 hci_add_iso_hdr(skb, conn->handle, flags); 3276 3277 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3278 3279 __skb_queue_tail(queue, skb); 3280 } while (list); 3281 } 3282 } 3283 3284 void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb) 3285 { 3286 struct hci_dev *hdev = conn->hdev; 3287 3288 BT_DBG("%s len %d", hdev->name, skb->len); 3289 3290 hci_queue_iso(conn, &conn->data_q, skb); 3291 3292 queue_work(hdev->workqueue, &hdev->tx_work); 3293 } 3294 3295 /* ---- HCI TX task (outgoing data) ---- */ 3296 3297 /* HCI Connection scheduler */ 3298 static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote) 3299 { 3300 struct hci_dev *hdev; 3301 int cnt, q; 3302 3303 if (!conn) { 3304 *quote = 0; 3305 return; 3306 } 3307 3308 hdev = conn->hdev; 3309 3310 switch (conn->type) { 3311 case ACL_LINK: 3312 cnt = hdev->acl_cnt; 3313 break; 3314 case AMP_LINK: 3315 cnt = hdev->block_cnt; 3316 break; 3317 case SCO_LINK: 3318 case ESCO_LINK: 3319 cnt = hdev->sco_cnt; 3320 break; 3321 case LE_LINK: 3322 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 3323 break; 3324 case ISO_LINK: 3325 cnt = hdev->iso_mtu ? hdev->iso_cnt : 3326 hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 3327 break; 3328 default: 3329 cnt = 0; 3330 bt_dev_err(hdev, "unknown link type %d", conn->type); 3331 } 3332 3333 q = cnt / num; 3334 *quote = q ? q : 1; 3335 } 3336 3337 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, 3338 int *quote) 3339 { 3340 struct hci_conn_hash *h = &hdev->conn_hash; 3341 struct hci_conn *conn = NULL, *c; 3342 unsigned int num = 0, min = ~0; 3343 3344 /* We don't have to lock device here. Connections are always 3345 * added and removed with TX task disabled. */ 3346 3347 rcu_read_lock(); 3348 3349 list_for_each_entry_rcu(c, &h->list, list) { 3350 if (c->type != type || skb_queue_empty(&c->data_q)) 3351 continue; 3352 3353 if (c->state != BT_CONNECTED && c->state != BT_CONFIG) 3354 continue; 3355 3356 num++; 3357 3358 if (c->sent < min) { 3359 min = c->sent; 3360 conn = c; 3361 } 3362 3363 if (hci_conn_num(hdev, type) == num) 3364 break; 3365 } 3366 3367 rcu_read_unlock(); 3368 3369 hci_quote_sent(conn, num, quote); 3370 3371 BT_DBG("conn %p quote %d", conn, *quote); 3372 return conn; 3373 } 3374 3375 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type) 3376 { 3377 struct hci_conn_hash *h = &hdev->conn_hash; 3378 struct hci_conn *c; 3379 3380 bt_dev_err(hdev, "link tx timeout"); 3381 3382 rcu_read_lock(); 3383 3384 /* Kill stalled connections */ 3385 list_for_each_entry_rcu(c, &h->list, list) { 3386 if (c->type == type && c->sent) { 3387 bt_dev_err(hdev, "killing stalled connection %pMR", 3388 &c->dst); 3389 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM); 3390 } 3391 } 3392 3393 rcu_read_unlock(); 3394 } 3395 3396 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type, 3397 int *quote) 3398 { 3399 struct hci_conn_hash *h = &hdev->conn_hash; 3400 struct hci_chan *chan = NULL; 3401 unsigned int num = 0, min = ~0, cur_prio = 0; 3402 struct hci_conn *conn; 3403 int conn_num = 0; 3404 3405 BT_DBG("%s", hdev->name); 3406 3407 rcu_read_lock(); 3408 3409 list_for_each_entry_rcu(conn, &h->list, list) { 3410 struct hci_chan *tmp; 3411 3412 if (conn->type != type) 3413 continue; 3414 3415 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3416 continue; 3417 3418 conn_num++; 3419 3420 list_for_each_entry_rcu(tmp, &conn->chan_list, list) { 3421 struct sk_buff *skb; 3422 3423 if (skb_queue_empty(&tmp->data_q)) 3424 continue; 3425 3426 skb = skb_peek(&tmp->data_q); 3427 if (skb->priority < cur_prio) 3428 continue; 3429 3430 if (skb->priority > cur_prio) { 3431 num = 0; 3432 min = ~0; 3433 cur_prio = skb->priority; 3434 } 3435 3436 num++; 3437 3438 if (conn->sent < min) { 3439 min = conn->sent; 3440 chan = tmp; 3441 } 3442 } 3443 3444 if (hci_conn_num(hdev, type) == conn_num) 3445 break; 3446 } 3447 3448 rcu_read_unlock(); 3449 3450 if (!chan) 3451 return NULL; 3452 3453 hci_quote_sent(chan->conn, num, quote); 3454 3455 BT_DBG("chan %p quote %d", chan, *quote); 3456 return chan; 3457 } 3458 3459 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type) 3460 { 3461 struct hci_conn_hash *h = &hdev->conn_hash; 3462 struct hci_conn *conn; 3463 int num = 0; 3464 3465 BT_DBG("%s", hdev->name); 3466 3467 rcu_read_lock(); 3468 3469 list_for_each_entry_rcu(conn, &h->list, list) { 3470 struct hci_chan *chan; 3471 3472 if (conn->type != type) 3473 continue; 3474 3475 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3476 continue; 3477 3478 num++; 3479 3480 list_for_each_entry_rcu(chan, &conn->chan_list, list) { 3481 struct sk_buff *skb; 3482 3483 if (chan->sent) { 3484 chan->sent = 0; 3485 continue; 3486 } 3487 3488 if (skb_queue_empty(&chan->data_q)) 3489 continue; 3490 3491 skb = skb_peek(&chan->data_q); 3492 if (skb->priority >= HCI_PRIO_MAX - 1) 3493 continue; 3494 3495 skb->priority = HCI_PRIO_MAX - 1; 3496 3497 BT_DBG("chan %p skb %p promoted to %d", chan, skb, 3498 skb->priority); 3499 } 3500 3501 if (hci_conn_num(hdev, type) == num) 3502 break; 3503 } 3504 3505 rcu_read_unlock(); 3506 3507 } 3508 3509 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb) 3510 { 3511 /* Calculate count of blocks used by this packet */ 3512 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len); 3513 } 3514 3515 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type) 3516 { 3517 unsigned long last_tx; 3518 3519 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 3520 return; 3521 3522 switch (type) { 3523 case LE_LINK: 3524 last_tx = hdev->le_last_tx; 3525 break; 3526 default: 3527 last_tx = hdev->acl_last_tx; 3528 break; 3529 } 3530 3531 /* tx timeout must be longer than maximum link supervision timeout 3532 * (40.9 seconds) 3533 */ 3534 if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT)) 3535 hci_link_tx_to(hdev, type); 3536 } 3537 3538 /* Schedule SCO */ 3539 static void hci_sched_sco(struct hci_dev *hdev) 3540 { 3541 struct hci_conn *conn; 3542 struct sk_buff *skb; 3543 int quote; 3544 3545 BT_DBG("%s", hdev->name); 3546 3547 if (!hci_conn_num(hdev, SCO_LINK)) 3548 return; 3549 3550 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) { 3551 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 3552 BT_DBG("skb %p len %d", skb, skb->len); 3553 hci_send_frame(hdev, skb); 3554 3555 conn->sent++; 3556 if (conn->sent == ~0) 3557 conn->sent = 0; 3558 } 3559 } 3560 } 3561 3562 static void hci_sched_esco(struct hci_dev *hdev) 3563 { 3564 struct hci_conn *conn; 3565 struct sk_buff *skb; 3566 int quote; 3567 3568 BT_DBG("%s", hdev->name); 3569 3570 if (!hci_conn_num(hdev, ESCO_LINK)) 3571 return; 3572 3573 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, 3574 "e))) { 3575 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 3576 BT_DBG("skb %p len %d", skb, skb->len); 3577 hci_send_frame(hdev, skb); 3578 3579 conn->sent++; 3580 if (conn->sent == ~0) 3581 conn->sent = 0; 3582 } 3583 } 3584 } 3585 3586 static void hci_sched_acl_pkt(struct hci_dev *hdev) 3587 { 3588 unsigned int cnt = hdev->acl_cnt; 3589 struct hci_chan *chan; 3590 struct sk_buff *skb; 3591 int quote; 3592 3593 __check_timeout(hdev, cnt, ACL_LINK); 3594 3595 while (hdev->acl_cnt && 3596 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) { 3597 u32 priority = (skb_peek(&chan->data_q))->priority; 3598 while (quote-- && (skb = skb_peek(&chan->data_q))) { 3599 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 3600 skb->len, skb->priority); 3601 3602 /* Stop if priority has changed */ 3603 if (skb->priority < priority) 3604 break; 3605 3606 skb = skb_dequeue(&chan->data_q); 3607 3608 hci_conn_enter_active_mode(chan->conn, 3609 bt_cb(skb)->force_active); 3610 3611 hci_send_frame(hdev, skb); 3612 hdev->acl_last_tx = jiffies; 3613 3614 hdev->acl_cnt--; 3615 chan->sent++; 3616 chan->conn->sent++; 3617 3618 /* Send pending SCO packets right away */ 3619 hci_sched_sco(hdev); 3620 hci_sched_esco(hdev); 3621 } 3622 } 3623 3624 if (cnt != hdev->acl_cnt) 3625 hci_prio_recalculate(hdev, ACL_LINK); 3626 } 3627 3628 static void hci_sched_acl_blk(struct hci_dev *hdev) 3629 { 3630 unsigned int cnt = hdev->block_cnt; 3631 struct hci_chan *chan; 3632 struct sk_buff *skb; 3633 int quote; 3634 u8 type; 3635 3636 BT_DBG("%s", hdev->name); 3637 3638 if (hdev->dev_type == HCI_AMP) 3639 type = AMP_LINK; 3640 else 3641 type = ACL_LINK; 3642 3643 __check_timeout(hdev, cnt, type); 3644 3645 while (hdev->block_cnt > 0 && 3646 (chan = hci_chan_sent(hdev, type, "e))) { 3647 u32 priority = (skb_peek(&chan->data_q))->priority; 3648 while (quote > 0 && (skb = skb_peek(&chan->data_q))) { 3649 int blocks; 3650 3651 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 3652 skb->len, skb->priority); 3653 3654 /* Stop if priority has changed */ 3655 if (skb->priority < priority) 3656 break; 3657 3658 skb = skb_dequeue(&chan->data_q); 3659 3660 blocks = __get_blocks(hdev, skb); 3661 if (blocks > hdev->block_cnt) 3662 return; 3663 3664 hci_conn_enter_active_mode(chan->conn, 3665 bt_cb(skb)->force_active); 3666 3667 hci_send_frame(hdev, skb); 3668 hdev->acl_last_tx = jiffies; 3669 3670 hdev->block_cnt -= blocks; 3671 quote -= blocks; 3672 3673 chan->sent += blocks; 3674 chan->conn->sent += blocks; 3675 } 3676 } 3677 3678 if (cnt != hdev->block_cnt) 3679 hci_prio_recalculate(hdev, type); 3680 } 3681 3682 static void hci_sched_acl(struct hci_dev *hdev) 3683 { 3684 BT_DBG("%s", hdev->name); 3685 3686 /* No ACL link over BR/EDR controller */ 3687 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY) 3688 return; 3689 3690 /* No AMP link over AMP controller */ 3691 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP) 3692 return; 3693 3694 switch (hdev->flow_ctl_mode) { 3695 case HCI_FLOW_CTL_MODE_PACKET_BASED: 3696 hci_sched_acl_pkt(hdev); 3697 break; 3698 3699 case HCI_FLOW_CTL_MODE_BLOCK_BASED: 3700 hci_sched_acl_blk(hdev); 3701 break; 3702 } 3703 } 3704 3705 static void hci_sched_le(struct hci_dev *hdev) 3706 { 3707 struct hci_chan *chan; 3708 struct sk_buff *skb; 3709 int quote, cnt, tmp; 3710 3711 BT_DBG("%s", hdev->name); 3712 3713 if (!hci_conn_num(hdev, LE_LINK)) 3714 return; 3715 3716 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt; 3717 3718 __check_timeout(hdev, cnt, LE_LINK); 3719 3720 tmp = cnt; 3721 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) { 3722 u32 priority = (skb_peek(&chan->data_q))->priority; 3723 while (quote-- && (skb = skb_peek(&chan->data_q))) { 3724 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 3725 skb->len, skb->priority); 3726 3727 /* Stop if priority has changed */ 3728 if (skb->priority < priority) 3729 break; 3730 3731 skb = skb_dequeue(&chan->data_q); 3732 3733 hci_send_frame(hdev, skb); 3734 hdev->le_last_tx = jiffies; 3735 3736 cnt--; 3737 chan->sent++; 3738 chan->conn->sent++; 3739 3740 /* Send pending SCO packets right away */ 3741 hci_sched_sco(hdev); 3742 hci_sched_esco(hdev); 3743 } 3744 } 3745 3746 if (hdev->le_pkts) 3747 hdev->le_cnt = cnt; 3748 else 3749 hdev->acl_cnt = cnt; 3750 3751 if (cnt != tmp) 3752 hci_prio_recalculate(hdev, LE_LINK); 3753 } 3754 3755 /* Schedule CIS */ 3756 static void hci_sched_iso(struct hci_dev *hdev) 3757 { 3758 struct hci_conn *conn; 3759 struct sk_buff *skb; 3760 int quote, *cnt; 3761 3762 BT_DBG("%s", hdev->name); 3763 3764 if (!hci_conn_num(hdev, ISO_LINK)) 3765 return; 3766 3767 cnt = hdev->iso_pkts ? &hdev->iso_cnt : 3768 hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt; 3769 while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, "e))) { 3770 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 3771 BT_DBG("skb %p len %d", skb, skb->len); 3772 hci_send_frame(hdev, skb); 3773 3774 conn->sent++; 3775 if (conn->sent == ~0) 3776 conn->sent = 0; 3777 (*cnt)--; 3778 } 3779 } 3780 } 3781 3782 static void hci_tx_work(struct work_struct *work) 3783 { 3784 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work); 3785 struct sk_buff *skb; 3786 3787 BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt, 3788 hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt); 3789 3790 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 3791 /* Schedule queues and send stuff to HCI driver */ 3792 hci_sched_sco(hdev); 3793 hci_sched_esco(hdev); 3794 hci_sched_iso(hdev); 3795 hci_sched_acl(hdev); 3796 hci_sched_le(hdev); 3797 } 3798 3799 /* Send next queued raw (unknown type) packet */ 3800 while ((skb = skb_dequeue(&hdev->raw_q))) 3801 hci_send_frame(hdev, skb); 3802 } 3803 3804 /* ----- HCI RX task (incoming data processing) ----- */ 3805 3806 /* ACL data packet */ 3807 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb) 3808 { 3809 struct hci_acl_hdr *hdr = (void *) skb->data; 3810 struct hci_conn *conn; 3811 __u16 handle, flags; 3812 3813 skb_pull(skb, HCI_ACL_HDR_SIZE); 3814 3815 handle = __le16_to_cpu(hdr->handle); 3816 flags = hci_flags(handle); 3817 handle = hci_handle(handle); 3818 3819 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len, 3820 handle, flags); 3821 3822 hdev->stat.acl_rx++; 3823 3824 hci_dev_lock(hdev); 3825 conn = hci_conn_hash_lookup_handle(hdev, handle); 3826 hci_dev_unlock(hdev); 3827 3828 if (conn) { 3829 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF); 3830 3831 /* Send to upper protocol */ 3832 l2cap_recv_acldata(conn, skb, flags); 3833 return; 3834 } else { 3835 bt_dev_err(hdev, "ACL packet for unknown connection handle %d", 3836 handle); 3837 } 3838 3839 kfree_skb(skb); 3840 } 3841 3842 /* SCO data packet */ 3843 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb) 3844 { 3845 struct hci_sco_hdr *hdr = (void *) skb->data; 3846 struct hci_conn *conn; 3847 __u16 handle, flags; 3848 3849 skb_pull(skb, HCI_SCO_HDR_SIZE); 3850 3851 handle = __le16_to_cpu(hdr->handle); 3852 flags = hci_flags(handle); 3853 handle = hci_handle(handle); 3854 3855 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len, 3856 handle, flags); 3857 3858 hdev->stat.sco_rx++; 3859 3860 hci_dev_lock(hdev); 3861 conn = hci_conn_hash_lookup_handle(hdev, handle); 3862 hci_dev_unlock(hdev); 3863 3864 if (conn) { 3865 /* Send to upper protocol */ 3866 bt_cb(skb)->sco.pkt_status = flags & 0x03; 3867 sco_recv_scodata(conn, skb); 3868 return; 3869 } else { 3870 bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d", 3871 handle); 3872 } 3873 3874 kfree_skb(skb); 3875 } 3876 3877 static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb) 3878 { 3879 struct hci_iso_hdr *hdr; 3880 struct hci_conn *conn; 3881 __u16 handle, flags; 3882 3883 hdr = skb_pull_data(skb, sizeof(*hdr)); 3884 if (!hdr) { 3885 bt_dev_err(hdev, "ISO packet too small"); 3886 goto drop; 3887 } 3888 3889 handle = __le16_to_cpu(hdr->handle); 3890 flags = hci_flags(handle); 3891 handle = hci_handle(handle); 3892 3893 bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len, 3894 handle, flags); 3895 3896 hci_dev_lock(hdev); 3897 conn = hci_conn_hash_lookup_handle(hdev, handle); 3898 hci_dev_unlock(hdev); 3899 3900 if (!conn) { 3901 bt_dev_err(hdev, "ISO packet for unknown connection handle %d", 3902 handle); 3903 goto drop; 3904 } 3905 3906 /* Send to upper protocol */ 3907 iso_recv(conn, skb, flags); 3908 return; 3909 3910 drop: 3911 kfree_skb(skb); 3912 } 3913 3914 static bool hci_req_is_complete(struct hci_dev *hdev) 3915 { 3916 struct sk_buff *skb; 3917 3918 skb = skb_peek(&hdev->cmd_q); 3919 if (!skb) 3920 return true; 3921 3922 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START); 3923 } 3924 3925 static void hci_resend_last(struct hci_dev *hdev) 3926 { 3927 struct hci_command_hdr *sent; 3928 struct sk_buff *skb; 3929 u16 opcode; 3930 3931 if (!hdev->sent_cmd) 3932 return; 3933 3934 sent = (void *) hdev->sent_cmd->data; 3935 opcode = __le16_to_cpu(sent->opcode); 3936 if (opcode == HCI_OP_RESET) 3937 return; 3938 3939 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL); 3940 if (!skb) 3941 return; 3942 3943 skb_queue_head(&hdev->cmd_q, skb); 3944 queue_work(hdev->workqueue, &hdev->cmd_work); 3945 } 3946 3947 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status, 3948 hci_req_complete_t *req_complete, 3949 hci_req_complete_skb_t *req_complete_skb) 3950 { 3951 struct sk_buff *skb; 3952 unsigned long flags; 3953 3954 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status); 3955 3956 /* If the completed command doesn't match the last one that was 3957 * sent we need to do special handling of it. 3958 */ 3959 if (!hci_sent_cmd_data(hdev, opcode)) { 3960 /* Some CSR based controllers generate a spontaneous 3961 * reset complete event during init and any pending 3962 * command will never be completed. In such a case we 3963 * need to resend whatever was the last sent 3964 * command. 3965 */ 3966 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET) 3967 hci_resend_last(hdev); 3968 3969 return; 3970 } 3971 3972 /* If we reach this point this event matches the last command sent */ 3973 hci_dev_clear_flag(hdev, HCI_CMD_PENDING); 3974 3975 /* If the command succeeded and there's still more commands in 3976 * this request the request is not yet complete. 3977 */ 3978 if (!status && !hci_req_is_complete(hdev)) 3979 return; 3980 3981 /* If this was the last command in a request the complete 3982 * callback would be found in hdev->sent_cmd instead of the 3983 * command queue (hdev->cmd_q). 3984 */ 3985 if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) { 3986 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb; 3987 return; 3988 } 3989 3990 if (bt_cb(hdev->sent_cmd)->hci.req_complete) { 3991 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete; 3992 return; 3993 } 3994 3995 /* Remove all pending commands belonging to this request */ 3996 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 3997 while ((skb = __skb_dequeue(&hdev->cmd_q))) { 3998 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) { 3999 __skb_queue_head(&hdev->cmd_q, skb); 4000 break; 4001 } 4002 4003 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) 4004 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb; 4005 else 4006 *req_complete = bt_cb(skb)->hci.req_complete; 4007 dev_kfree_skb_irq(skb); 4008 } 4009 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 4010 } 4011 4012 static void hci_rx_work(struct work_struct *work) 4013 { 4014 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work); 4015 struct sk_buff *skb; 4016 4017 BT_DBG("%s", hdev->name); 4018 4019 /* The kcov_remote functions used for collecting packet parsing 4020 * coverage information from this background thread and associate 4021 * the coverage with the syscall's thread which originally injected 4022 * the packet. This helps fuzzing the kernel. 4023 */ 4024 for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) { 4025 kcov_remote_start_common(skb_get_kcov_handle(skb)); 4026 4027 /* Send copy to monitor */ 4028 hci_send_to_monitor(hdev, skb); 4029 4030 if (atomic_read(&hdev->promisc)) { 4031 /* Send copy to the sockets */ 4032 hci_send_to_sock(hdev, skb); 4033 } 4034 4035 /* If the device has been opened in HCI_USER_CHANNEL, 4036 * the userspace has exclusive access to device. 4037 * When device is HCI_INIT, we still need to process 4038 * the data packets to the driver in order 4039 * to complete its setup(). 4040 */ 4041 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4042 !test_bit(HCI_INIT, &hdev->flags)) { 4043 kfree_skb(skb); 4044 continue; 4045 } 4046 4047 if (test_bit(HCI_INIT, &hdev->flags)) { 4048 /* Don't process data packets in this states. */ 4049 switch (hci_skb_pkt_type(skb)) { 4050 case HCI_ACLDATA_PKT: 4051 case HCI_SCODATA_PKT: 4052 case HCI_ISODATA_PKT: 4053 kfree_skb(skb); 4054 continue; 4055 } 4056 } 4057 4058 /* Process frame */ 4059 switch (hci_skb_pkt_type(skb)) { 4060 case HCI_EVENT_PKT: 4061 BT_DBG("%s Event packet", hdev->name); 4062 hci_event_packet(hdev, skb); 4063 break; 4064 4065 case HCI_ACLDATA_PKT: 4066 BT_DBG("%s ACL data packet", hdev->name); 4067 hci_acldata_packet(hdev, skb); 4068 break; 4069 4070 case HCI_SCODATA_PKT: 4071 BT_DBG("%s SCO data packet", hdev->name); 4072 hci_scodata_packet(hdev, skb); 4073 break; 4074 4075 case HCI_ISODATA_PKT: 4076 BT_DBG("%s ISO data packet", hdev->name); 4077 hci_isodata_packet(hdev, skb); 4078 break; 4079 4080 default: 4081 kfree_skb(skb); 4082 break; 4083 } 4084 } 4085 } 4086 4087 static void hci_cmd_work(struct work_struct *work) 4088 { 4089 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work); 4090 struct sk_buff *skb; 4091 4092 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name, 4093 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q)); 4094 4095 /* Send queued commands */ 4096 if (atomic_read(&hdev->cmd_cnt)) { 4097 skb = skb_dequeue(&hdev->cmd_q); 4098 if (!skb) 4099 return; 4100 4101 kfree_skb(hdev->sent_cmd); 4102 4103 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL); 4104 if (hdev->sent_cmd) { 4105 int res; 4106 if (hci_req_status_pend(hdev)) 4107 hci_dev_set_flag(hdev, HCI_CMD_PENDING); 4108 atomic_dec(&hdev->cmd_cnt); 4109 4110 res = hci_send_frame(hdev, skb); 4111 if (res < 0) 4112 __hci_cmd_sync_cancel(hdev, -res); 4113 4114 rcu_read_lock(); 4115 if (test_bit(HCI_RESET, &hdev->flags) || 4116 hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE)) 4117 cancel_delayed_work(&hdev->cmd_timer); 4118 else 4119 queue_delayed_work(hdev->workqueue, &hdev->cmd_timer, 4120 HCI_CMD_TIMEOUT); 4121 rcu_read_unlock(); 4122 } else { 4123 skb_queue_head(&hdev->cmd_q, skb); 4124 queue_work(hdev->workqueue, &hdev->cmd_work); 4125 } 4126 } 4127 } 4128