xref: /openbmc/linux/net/bluetooth/hci_core.c (revision 6c8c1406)
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4    Copyright (C) 2011 ProFUSION Embedded Systems
5 
6    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License version 2 as
10    published by the Free Software Foundation;
11 
12    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 
21    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23    SOFTWARE IS DISCLAIMED.
24 */
25 
26 /* Bluetooth HCI core. */
27 
28 #include <linux/export.h>
29 #include <linux/rfkill.h>
30 #include <linux/debugfs.h>
31 #include <linux/crypto.h>
32 #include <linux/kcov.h>
33 #include <linux/property.h>
34 #include <linux/suspend.h>
35 #include <linux/wait.h>
36 #include <asm/unaligned.h>
37 
38 #include <net/bluetooth/bluetooth.h>
39 #include <net/bluetooth/hci_core.h>
40 #include <net/bluetooth/l2cap.h>
41 #include <net/bluetooth/mgmt.h>
42 
43 #include "hci_request.h"
44 #include "hci_debugfs.h"
45 #include "smp.h"
46 #include "leds.h"
47 #include "msft.h"
48 #include "aosp.h"
49 #include "hci_codec.h"
50 
51 static void hci_rx_work(struct work_struct *work);
52 static void hci_cmd_work(struct work_struct *work);
53 static void hci_tx_work(struct work_struct *work);
54 
55 /* HCI device list */
56 LIST_HEAD(hci_dev_list);
57 DEFINE_RWLOCK(hci_dev_list_lock);
58 
59 /* HCI callback list */
60 LIST_HEAD(hci_cb_list);
61 DEFINE_MUTEX(hci_cb_list_lock);
62 
63 /* HCI ID Numbering */
64 static DEFINE_IDA(hci_index_ida);
65 
66 static int hci_scan_req(struct hci_request *req, unsigned long opt)
67 {
68 	__u8 scan = opt;
69 
70 	BT_DBG("%s %x", req->hdev->name, scan);
71 
72 	/* Inquiry and Page scans */
73 	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
74 	return 0;
75 }
76 
77 static int hci_auth_req(struct hci_request *req, unsigned long opt)
78 {
79 	__u8 auth = opt;
80 
81 	BT_DBG("%s %x", req->hdev->name, auth);
82 
83 	/* Authentication */
84 	hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
85 	return 0;
86 }
87 
88 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
89 {
90 	__u8 encrypt = opt;
91 
92 	BT_DBG("%s %x", req->hdev->name, encrypt);
93 
94 	/* Encryption */
95 	hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
96 	return 0;
97 }
98 
99 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
100 {
101 	__le16 policy = cpu_to_le16(opt);
102 
103 	BT_DBG("%s %x", req->hdev->name, policy);
104 
105 	/* Default link policy */
106 	hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
107 	return 0;
108 }
109 
110 /* Get HCI device by index.
111  * Device is held on return. */
112 struct hci_dev *hci_dev_get(int index)
113 {
114 	struct hci_dev *hdev = NULL, *d;
115 
116 	BT_DBG("%d", index);
117 
118 	if (index < 0)
119 		return NULL;
120 
121 	read_lock(&hci_dev_list_lock);
122 	list_for_each_entry(d, &hci_dev_list, list) {
123 		if (d->id == index) {
124 			hdev = hci_dev_hold(d);
125 			break;
126 		}
127 	}
128 	read_unlock(&hci_dev_list_lock);
129 	return hdev;
130 }
131 
132 /* ---- Inquiry support ---- */
133 
134 bool hci_discovery_active(struct hci_dev *hdev)
135 {
136 	struct discovery_state *discov = &hdev->discovery;
137 
138 	switch (discov->state) {
139 	case DISCOVERY_FINDING:
140 	case DISCOVERY_RESOLVING:
141 		return true;
142 
143 	default:
144 		return false;
145 	}
146 }
147 
148 void hci_discovery_set_state(struct hci_dev *hdev, int state)
149 {
150 	int old_state = hdev->discovery.state;
151 
152 	BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
153 
154 	if (old_state == state)
155 		return;
156 
157 	hdev->discovery.state = state;
158 
159 	switch (state) {
160 	case DISCOVERY_STOPPED:
161 		hci_update_passive_scan(hdev);
162 
163 		if (old_state != DISCOVERY_STARTING)
164 			mgmt_discovering(hdev, 0);
165 		break;
166 	case DISCOVERY_STARTING:
167 		break;
168 	case DISCOVERY_FINDING:
169 		mgmt_discovering(hdev, 1);
170 		break;
171 	case DISCOVERY_RESOLVING:
172 		break;
173 	case DISCOVERY_STOPPING:
174 		break;
175 	}
176 }
177 
178 void hci_inquiry_cache_flush(struct hci_dev *hdev)
179 {
180 	struct discovery_state *cache = &hdev->discovery;
181 	struct inquiry_entry *p, *n;
182 
183 	list_for_each_entry_safe(p, n, &cache->all, all) {
184 		list_del(&p->all);
185 		kfree(p);
186 	}
187 
188 	INIT_LIST_HEAD(&cache->unknown);
189 	INIT_LIST_HEAD(&cache->resolve);
190 }
191 
192 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
193 					       bdaddr_t *bdaddr)
194 {
195 	struct discovery_state *cache = &hdev->discovery;
196 	struct inquiry_entry *e;
197 
198 	BT_DBG("cache %p, %pMR", cache, bdaddr);
199 
200 	list_for_each_entry(e, &cache->all, all) {
201 		if (!bacmp(&e->data.bdaddr, bdaddr))
202 			return e;
203 	}
204 
205 	return NULL;
206 }
207 
208 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
209 						       bdaddr_t *bdaddr)
210 {
211 	struct discovery_state *cache = &hdev->discovery;
212 	struct inquiry_entry *e;
213 
214 	BT_DBG("cache %p, %pMR", cache, bdaddr);
215 
216 	list_for_each_entry(e, &cache->unknown, list) {
217 		if (!bacmp(&e->data.bdaddr, bdaddr))
218 			return e;
219 	}
220 
221 	return NULL;
222 }
223 
224 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
225 						       bdaddr_t *bdaddr,
226 						       int state)
227 {
228 	struct discovery_state *cache = &hdev->discovery;
229 	struct inquiry_entry *e;
230 
231 	BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
232 
233 	list_for_each_entry(e, &cache->resolve, list) {
234 		if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
235 			return e;
236 		if (!bacmp(&e->data.bdaddr, bdaddr))
237 			return e;
238 	}
239 
240 	return NULL;
241 }
242 
243 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
244 				      struct inquiry_entry *ie)
245 {
246 	struct discovery_state *cache = &hdev->discovery;
247 	struct list_head *pos = &cache->resolve;
248 	struct inquiry_entry *p;
249 
250 	list_del(&ie->list);
251 
252 	list_for_each_entry(p, &cache->resolve, list) {
253 		if (p->name_state != NAME_PENDING &&
254 		    abs(p->data.rssi) >= abs(ie->data.rssi))
255 			break;
256 		pos = &p->list;
257 	}
258 
259 	list_add(&ie->list, pos);
260 }
261 
262 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
263 			     bool name_known)
264 {
265 	struct discovery_state *cache = &hdev->discovery;
266 	struct inquiry_entry *ie;
267 	u32 flags = 0;
268 
269 	BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
270 
271 	hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
272 
273 	if (!data->ssp_mode)
274 		flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
275 
276 	ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
277 	if (ie) {
278 		if (!ie->data.ssp_mode)
279 			flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
280 
281 		if (ie->name_state == NAME_NEEDED &&
282 		    data->rssi != ie->data.rssi) {
283 			ie->data.rssi = data->rssi;
284 			hci_inquiry_cache_update_resolve(hdev, ie);
285 		}
286 
287 		goto update;
288 	}
289 
290 	/* Entry not in the cache. Add new one. */
291 	ie = kzalloc(sizeof(*ie), GFP_KERNEL);
292 	if (!ie) {
293 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
294 		goto done;
295 	}
296 
297 	list_add(&ie->all, &cache->all);
298 
299 	if (name_known) {
300 		ie->name_state = NAME_KNOWN;
301 	} else {
302 		ie->name_state = NAME_NOT_KNOWN;
303 		list_add(&ie->list, &cache->unknown);
304 	}
305 
306 update:
307 	if (name_known && ie->name_state != NAME_KNOWN &&
308 	    ie->name_state != NAME_PENDING) {
309 		ie->name_state = NAME_KNOWN;
310 		list_del(&ie->list);
311 	}
312 
313 	memcpy(&ie->data, data, sizeof(*data));
314 	ie->timestamp = jiffies;
315 	cache->timestamp = jiffies;
316 
317 	if (ie->name_state == NAME_NOT_KNOWN)
318 		flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
319 
320 done:
321 	return flags;
322 }
323 
324 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
325 {
326 	struct discovery_state *cache = &hdev->discovery;
327 	struct inquiry_info *info = (struct inquiry_info *) buf;
328 	struct inquiry_entry *e;
329 	int copied = 0;
330 
331 	list_for_each_entry(e, &cache->all, all) {
332 		struct inquiry_data *data = &e->data;
333 
334 		if (copied >= num)
335 			break;
336 
337 		bacpy(&info->bdaddr, &data->bdaddr);
338 		info->pscan_rep_mode	= data->pscan_rep_mode;
339 		info->pscan_period_mode	= data->pscan_period_mode;
340 		info->pscan_mode	= data->pscan_mode;
341 		memcpy(info->dev_class, data->dev_class, 3);
342 		info->clock_offset	= data->clock_offset;
343 
344 		info++;
345 		copied++;
346 	}
347 
348 	BT_DBG("cache %p, copied %d", cache, copied);
349 	return copied;
350 }
351 
352 static int hci_inq_req(struct hci_request *req, unsigned long opt)
353 {
354 	struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
355 	struct hci_dev *hdev = req->hdev;
356 	struct hci_cp_inquiry cp;
357 
358 	BT_DBG("%s", hdev->name);
359 
360 	if (test_bit(HCI_INQUIRY, &hdev->flags))
361 		return 0;
362 
363 	/* Start Inquiry */
364 	memcpy(&cp.lap, &ir->lap, 3);
365 	cp.length  = ir->length;
366 	cp.num_rsp = ir->num_rsp;
367 	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
368 
369 	return 0;
370 }
371 
372 int hci_inquiry(void __user *arg)
373 {
374 	__u8 __user *ptr = arg;
375 	struct hci_inquiry_req ir;
376 	struct hci_dev *hdev;
377 	int err = 0, do_inquiry = 0, max_rsp;
378 	long timeo;
379 	__u8 *buf;
380 
381 	if (copy_from_user(&ir, ptr, sizeof(ir)))
382 		return -EFAULT;
383 
384 	hdev = hci_dev_get(ir.dev_id);
385 	if (!hdev)
386 		return -ENODEV;
387 
388 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
389 		err = -EBUSY;
390 		goto done;
391 	}
392 
393 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
394 		err = -EOPNOTSUPP;
395 		goto done;
396 	}
397 
398 	if (hdev->dev_type != HCI_PRIMARY) {
399 		err = -EOPNOTSUPP;
400 		goto done;
401 	}
402 
403 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
404 		err = -EOPNOTSUPP;
405 		goto done;
406 	}
407 
408 	/* Restrict maximum inquiry length to 60 seconds */
409 	if (ir.length > 60) {
410 		err = -EINVAL;
411 		goto done;
412 	}
413 
414 	hci_dev_lock(hdev);
415 	if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
416 	    inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
417 		hci_inquiry_cache_flush(hdev);
418 		do_inquiry = 1;
419 	}
420 	hci_dev_unlock(hdev);
421 
422 	timeo = ir.length * msecs_to_jiffies(2000);
423 
424 	if (do_inquiry) {
425 		err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
426 				   timeo, NULL);
427 		if (err < 0)
428 			goto done;
429 
430 		/* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
431 		 * cleared). If it is interrupted by a signal, return -EINTR.
432 		 */
433 		if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
434 				TASK_INTERRUPTIBLE)) {
435 			err = -EINTR;
436 			goto done;
437 		}
438 	}
439 
440 	/* for unlimited number of responses we will use buffer with
441 	 * 255 entries
442 	 */
443 	max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
444 
445 	/* cache_dump can't sleep. Therefore we allocate temp buffer and then
446 	 * copy it to the user space.
447 	 */
448 	buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
449 	if (!buf) {
450 		err = -ENOMEM;
451 		goto done;
452 	}
453 
454 	hci_dev_lock(hdev);
455 	ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
456 	hci_dev_unlock(hdev);
457 
458 	BT_DBG("num_rsp %d", ir.num_rsp);
459 
460 	if (!copy_to_user(ptr, &ir, sizeof(ir))) {
461 		ptr += sizeof(ir);
462 		if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
463 				 ir.num_rsp))
464 			err = -EFAULT;
465 	} else
466 		err = -EFAULT;
467 
468 	kfree(buf);
469 
470 done:
471 	hci_dev_put(hdev);
472 	return err;
473 }
474 
475 static int hci_dev_do_open(struct hci_dev *hdev)
476 {
477 	int ret = 0;
478 
479 	BT_DBG("%s %p", hdev->name, hdev);
480 
481 	hci_req_sync_lock(hdev);
482 
483 	ret = hci_dev_open_sync(hdev);
484 
485 	hci_req_sync_unlock(hdev);
486 	return ret;
487 }
488 
489 /* ---- HCI ioctl helpers ---- */
490 
491 int hci_dev_open(__u16 dev)
492 {
493 	struct hci_dev *hdev;
494 	int err;
495 
496 	hdev = hci_dev_get(dev);
497 	if (!hdev)
498 		return -ENODEV;
499 
500 	/* Devices that are marked as unconfigured can only be powered
501 	 * up as user channel. Trying to bring them up as normal devices
502 	 * will result into a failure. Only user channel operation is
503 	 * possible.
504 	 *
505 	 * When this function is called for a user channel, the flag
506 	 * HCI_USER_CHANNEL will be set first before attempting to
507 	 * open the device.
508 	 */
509 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
510 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
511 		err = -EOPNOTSUPP;
512 		goto done;
513 	}
514 
515 	/* We need to ensure that no other power on/off work is pending
516 	 * before proceeding to call hci_dev_do_open. This is
517 	 * particularly important if the setup procedure has not yet
518 	 * completed.
519 	 */
520 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
521 		cancel_delayed_work(&hdev->power_off);
522 
523 	/* After this call it is guaranteed that the setup procedure
524 	 * has finished. This means that error conditions like RFKILL
525 	 * or no valid public or static random address apply.
526 	 */
527 	flush_workqueue(hdev->req_workqueue);
528 
529 	/* For controllers not using the management interface and that
530 	 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
531 	 * so that pairing works for them. Once the management interface
532 	 * is in use this bit will be cleared again and userspace has
533 	 * to explicitly enable it.
534 	 */
535 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
536 	    !hci_dev_test_flag(hdev, HCI_MGMT))
537 		hci_dev_set_flag(hdev, HCI_BONDABLE);
538 
539 	err = hci_dev_do_open(hdev);
540 
541 done:
542 	hci_dev_put(hdev);
543 	return err;
544 }
545 
546 int hci_dev_do_close(struct hci_dev *hdev)
547 {
548 	int err;
549 
550 	BT_DBG("%s %p", hdev->name, hdev);
551 
552 	hci_req_sync_lock(hdev);
553 
554 	err = hci_dev_close_sync(hdev);
555 
556 	hci_req_sync_unlock(hdev);
557 
558 	return err;
559 }
560 
561 int hci_dev_close(__u16 dev)
562 {
563 	struct hci_dev *hdev;
564 	int err;
565 
566 	hdev = hci_dev_get(dev);
567 	if (!hdev)
568 		return -ENODEV;
569 
570 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
571 		err = -EBUSY;
572 		goto done;
573 	}
574 
575 	cancel_work_sync(&hdev->power_on);
576 	if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
577 		cancel_delayed_work(&hdev->power_off);
578 
579 	err = hci_dev_do_close(hdev);
580 
581 done:
582 	hci_dev_put(hdev);
583 	return err;
584 }
585 
586 static int hci_dev_do_reset(struct hci_dev *hdev)
587 {
588 	int ret;
589 
590 	BT_DBG("%s %p", hdev->name, hdev);
591 
592 	hci_req_sync_lock(hdev);
593 
594 	/* Drop queues */
595 	skb_queue_purge(&hdev->rx_q);
596 	skb_queue_purge(&hdev->cmd_q);
597 
598 	/* Cancel these to avoid queueing non-chained pending work */
599 	hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
600 	/* Wait for
601 	 *
602 	 *    if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
603 	 *        queue_delayed_work(&hdev->{cmd,ncmd}_timer)
604 	 *
605 	 * inside RCU section to see the flag or complete scheduling.
606 	 */
607 	synchronize_rcu();
608 	/* Explicitly cancel works in case scheduled after setting the flag. */
609 	cancel_delayed_work(&hdev->cmd_timer);
610 	cancel_delayed_work(&hdev->ncmd_timer);
611 
612 	/* Avoid potential lockdep warnings from the *_flush() calls by
613 	 * ensuring the workqueue is empty up front.
614 	 */
615 	drain_workqueue(hdev->workqueue);
616 
617 	hci_dev_lock(hdev);
618 	hci_inquiry_cache_flush(hdev);
619 	hci_conn_hash_flush(hdev);
620 	hci_dev_unlock(hdev);
621 
622 	if (hdev->flush)
623 		hdev->flush(hdev);
624 
625 	hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE);
626 
627 	atomic_set(&hdev->cmd_cnt, 1);
628 	hdev->acl_cnt = 0;
629 	hdev->sco_cnt = 0;
630 	hdev->le_cnt = 0;
631 	hdev->iso_cnt = 0;
632 
633 	ret = hci_reset_sync(hdev);
634 
635 	hci_req_sync_unlock(hdev);
636 	return ret;
637 }
638 
639 int hci_dev_reset(__u16 dev)
640 {
641 	struct hci_dev *hdev;
642 	int err;
643 
644 	hdev = hci_dev_get(dev);
645 	if (!hdev)
646 		return -ENODEV;
647 
648 	if (!test_bit(HCI_UP, &hdev->flags)) {
649 		err = -ENETDOWN;
650 		goto done;
651 	}
652 
653 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
654 		err = -EBUSY;
655 		goto done;
656 	}
657 
658 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
659 		err = -EOPNOTSUPP;
660 		goto done;
661 	}
662 
663 	err = hci_dev_do_reset(hdev);
664 
665 done:
666 	hci_dev_put(hdev);
667 	return err;
668 }
669 
670 int hci_dev_reset_stat(__u16 dev)
671 {
672 	struct hci_dev *hdev;
673 	int ret = 0;
674 
675 	hdev = hci_dev_get(dev);
676 	if (!hdev)
677 		return -ENODEV;
678 
679 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
680 		ret = -EBUSY;
681 		goto done;
682 	}
683 
684 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
685 		ret = -EOPNOTSUPP;
686 		goto done;
687 	}
688 
689 	memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
690 
691 done:
692 	hci_dev_put(hdev);
693 	return ret;
694 }
695 
696 static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan)
697 {
698 	bool conn_changed, discov_changed;
699 
700 	BT_DBG("%s scan 0x%02x", hdev->name, scan);
701 
702 	if ((scan & SCAN_PAGE))
703 		conn_changed = !hci_dev_test_and_set_flag(hdev,
704 							  HCI_CONNECTABLE);
705 	else
706 		conn_changed = hci_dev_test_and_clear_flag(hdev,
707 							   HCI_CONNECTABLE);
708 
709 	if ((scan & SCAN_INQUIRY)) {
710 		discov_changed = !hci_dev_test_and_set_flag(hdev,
711 							    HCI_DISCOVERABLE);
712 	} else {
713 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
714 		discov_changed = hci_dev_test_and_clear_flag(hdev,
715 							     HCI_DISCOVERABLE);
716 	}
717 
718 	if (!hci_dev_test_flag(hdev, HCI_MGMT))
719 		return;
720 
721 	if (conn_changed || discov_changed) {
722 		/* In case this was disabled through mgmt */
723 		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
724 
725 		if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
726 			hci_update_adv_data(hdev, hdev->cur_adv_instance);
727 
728 		mgmt_new_settings(hdev);
729 	}
730 }
731 
732 int hci_dev_cmd(unsigned int cmd, void __user *arg)
733 {
734 	struct hci_dev *hdev;
735 	struct hci_dev_req dr;
736 	int err = 0;
737 
738 	if (copy_from_user(&dr, arg, sizeof(dr)))
739 		return -EFAULT;
740 
741 	hdev = hci_dev_get(dr.dev_id);
742 	if (!hdev)
743 		return -ENODEV;
744 
745 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
746 		err = -EBUSY;
747 		goto done;
748 	}
749 
750 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
751 		err = -EOPNOTSUPP;
752 		goto done;
753 	}
754 
755 	if (hdev->dev_type != HCI_PRIMARY) {
756 		err = -EOPNOTSUPP;
757 		goto done;
758 	}
759 
760 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
761 		err = -EOPNOTSUPP;
762 		goto done;
763 	}
764 
765 	switch (cmd) {
766 	case HCISETAUTH:
767 		err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
768 				   HCI_INIT_TIMEOUT, NULL);
769 		break;
770 
771 	case HCISETENCRYPT:
772 		if (!lmp_encrypt_capable(hdev)) {
773 			err = -EOPNOTSUPP;
774 			break;
775 		}
776 
777 		if (!test_bit(HCI_AUTH, &hdev->flags)) {
778 			/* Auth must be enabled first */
779 			err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
780 					   HCI_INIT_TIMEOUT, NULL);
781 			if (err)
782 				break;
783 		}
784 
785 		err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
786 				   HCI_INIT_TIMEOUT, NULL);
787 		break;
788 
789 	case HCISETSCAN:
790 		err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
791 				   HCI_INIT_TIMEOUT, NULL);
792 
793 		/* Ensure that the connectable and discoverable states
794 		 * get correctly modified as this was a non-mgmt change.
795 		 */
796 		if (!err)
797 			hci_update_passive_scan_state(hdev, dr.dev_opt);
798 		break;
799 
800 	case HCISETLINKPOL:
801 		err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
802 				   HCI_INIT_TIMEOUT, NULL);
803 		break;
804 
805 	case HCISETLINKMODE:
806 		hdev->link_mode = ((__u16) dr.dev_opt) &
807 					(HCI_LM_MASTER | HCI_LM_ACCEPT);
808 		break;
809 
810 	case HCISETPTYPE:
811 		if (hdev->pkt_type == (__u16) dr.dev_opt)
812 			break;
813 
814 		hdev->pkt_type = (__u16) dr.dev_opt;
815 		mgmt_phy_configuration_changed(hdev, NULL);
816 		break;
817 
818 	case HCISETACLMTU:
819 		hdev->acl_mtu  = *((__u16 *) &dr.dev_opt + 1);
820 		hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
821 		break;
822 
823 	case HCISETSCOMTU:
824 		hdev->sco_mtu  = *((__u16 *) &dr.dev_opt + 1);
825 		hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
826 		break;
827 
828 	default:
829 		err = -EINVAL;
830 		break;
831 	}
832 
833 done:
834 	hci_dev_put(hdev);
835 	return err;
836 }
837 
838 int hci_get_dev_list(void __user *arg)
839 {
840 	struct hci_dev *hdev;
841 	struct hci_dev_list_req *dl;
842 	struct hci_dev_req *dr;
843 	int n = 0, size, err;
844 	__u16 dev_num;
845 
846 	if (get_user(dev_num, (__u16 __user *) arg))
847 		return -EFAULT;
848 
849 	if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
850 		return -EINVAL;
851 
852 	size = sizeof(*dl) + dev_num * sizeof(*dr);
853 
854 	dl = kzalloc(size, GFP_KERNEL);
855 	if (!dl)
856 		return -ENOMEM;
857 
858 	dr = dl->dev_req;
859 
860 	read_lock(&hci_dev_list_lock);
861 	list_for_each_entry(hdev, &hci_dev_list, list) {
862 		unsigned long flags = hdev->flags;
863 
864 		/* When the auto-off is configured it means the transport
865 		 * is running, but in that case still indicate that the
866 		 * device is actually down.
867 		 */
868 		if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
869 			flags &= ~BIT(HCI_UP);
870 
871 		(dr + n)->dev_id  = hdev->id;
872 		(dr + n)->dev_opt = flags;
873 
874 		if (++n >= dev_num)
875 			break;
876 	}
877 	read_unlock(&hci_dev_list_lock);
878 
879 	dl->dev_num = n;
880 	size = sizeof(*dl) + n * sizeof(*dr);
881 
882 	err = copy_to_user(arg, dl, size);
883 	kfree(dl);
884 
885 	return err ? -EFAULT : 0;
886 }
887 
888 int hci_get_dev_info(void __user *arg)
889 {
890 	struct hci_dev *hdev;
891 	struct hci_dev_info di;
892 	unsigned long flags;
893 	int err = 0;
894 
895 	if (copy_from_user(&di, arg, sizeof(di)))
896 		return -EFAULT;
897 
898 	hdev = hci_dev_get(di.dev_id);
899 	if (!hdev)
900 		return -ENODEV;
901 
902 	/* When the auto-off is configured it means the transport
903 	 * is running, but in that case still indicate that the
904 	 * device is actually down.
905 	 */
906 	if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
907 		flags = hdev->flags & ~BIT(HCI_UP);
908 	else
909 		flags = hdev->flags;
910 
911 	strcpy(di.name, hdev->name);
912 	di.bdaddr   = hdev->bdaddr;
913 	di.type     = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
914 	di.flags    = flags;
915 	di.pkt_type = hdev->pkt_type;
916 	if (lmp_bredr_capable(hdev)) {
917 		di.acl_mtu  = hdev->acl_mtu;
918 		di.acl_pkts = hdev->acl_pkts;
919 		di.sco_mtu  = hdev->sco_mtu;
920 		di.sco_pkts = hdev->sco_pkts;
921 	} else {
922 		di.acl_mtu  = hdev->le_mtu;
923 		di.acl_pkts = hdev->le_pkts;
924 		di.sco_mtu  = 0;
925 		di.sco_pkts = 0;
926 	}
927 	di.link_policy = hdev->link_policy;
928 	di.link_mode   = hdev->link_mode;
929 
930 	memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
931 	memcpy(&di.features, &hdev->features, sizeof(di.features));
932 
933 	if (copy_to_user(arg, &di, sizeof(di)))
934 		err = -EFAULT;
935 
936 	hci_dev_put(hdev);
937 
938 	return err;
939 }
940 
941 /* ---- Interface to HCI drivers ---- */
942 
943 static int hci_rfkill_set_block(void *data, bool blocked)
944 {
945 	struct hci_dev *hdev = data;
946 
947 	BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
948 
949 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
950 		return -EBUSY;
951 
952 	if (blocked) {
953 		hci_dev_set_flag(hdev, HCI_RFKILLED);
954 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
955 		    !hci_dev_test_flag(hdev, HCI_CONFIG))
956 			hci_dev_do_close(hdev);
957 	} else {
958 		hci_dev_clear_flag(hdev, HCI_RFKILLED);
959 	}
960 
961 	return 0;
962 }
963 
964 static const struct rfkill_ops hci_rfkill_ops = {
965 	.set_block = hci_rfkill_set_block,
966 };
967 
968 static void hci_power_on(struct work_struct *work)
969 {
970 	struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
971 	int err;
972 
973 	BT_DBG("%s", hdev->name);
974 
975 	if (test_bit(HCI_UP, &hdev->flags) &&
976 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
977 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
978 		cancel_delayed_work(&hdev->power_off);
979 		err = hci_powered_update_sync(hdev);
980 		mgmt_power_on(hdev, err);
981 		return;
982 	}
983 
984 	err = hci_dev_do_open(hdev);
985 	if (err < 0) {
986 		hci_dev_lock(hdev);
987 		mgmt_set_powered_failed(hdev, err);
988 		hci_dev_unlock(hdev);
989 		return;
990 	}
991 
992 	/* During the HCI setup phase, a few error conditions are
993 	 * ignored and they need to be checked now. If they are still
994 	 * valid, it is important to turn the device back off.
995 	 */
996 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
997 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
998 	    (hdev->dev_type == HCI_PRIMARY &&
999 	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1000 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
1001 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
1002 		hci_dev_do_close(hdev);
1003 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
1004 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
1005 				   HCI_AUTO_OFF_TIMEOUT);
1006 	}
1007 
1008 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
1009 		/* For unconfigured devices, set the HCI_RAW flag
1010 		 * so that userspace can easily identify them.
1011 		 */
1012 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1013 			set_bit(HCI_RAW, &hdev->flags);
1014 
1015 		/* For fully configured devices, this will send
1016 		 * the Index Added event. For unconfigured devices,
1017 		 * it will send Unconfigued Index Added event.
1018 		 *
1019 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
1020 		 * and no event will be send.
1021 		 */
1022 		mgmt_index_added(hdev);
1023 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
1024 		/* When the controller is now configured, then it
1025 		 * is important to clear the HCI_RAW flag.
1026 		 */
1027 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1028 			clear_bit(HCI_RAW, &hdev->flags);
1029 
1030 		/* Powering on the controller with HCI_CONFIG set only
1031 		 * happens with the transition from unconfigured to
1032 		 * configured. This will send the Index Added event.
1033 		 */
1034 		mgmt_index_added(hdev);
1035 	}
1036 }
1037 
1038 static void hci_power_off(struct work_struct *work)
1039 {
1040 	struct hci_dev *hdev = container_of(work, struct hci_dev,
1041 					    power_off.work);
1042 
1043 	BT_DBG("%s", hdev->name);
1044 
1045 	hci_dev_do_close(hdev);
1046 }
1047 
1048 static void hci_error_reset(struct work_struct *work)
1049 {
1050 	struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
1051 
1052 	BT_DBG("%s", hdev->name);
1053 
1054 	if (hdev->hw_error)
1055 		hdev->hw_error(hdev, hdev->hw_error_code);
1056 	else
1057 		bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
1058 
1059 	if (hci_dev_do_close(hdev))
1060 		return;
1061 
1062 	hci_dev_do_open(hdev);
1063 }
1064 
1065 void hci_uuids_clear(struct hci_dev *hdev)
1066 {
1067 	struct bt_uuid *uuid, *tmp;
1068 
1069 	list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
1070 		list_del(&uuid->list);
1071 		kfree(uuid);
1072 	}
1073 }
1074 
1075 void hci_link_keys_clear(struct hci_dev *hdev)
1076 {
1077 	struct link_key *key;
1078 
1079 	list_for_each_entry(key, &hdev->link_keys, list) {
1080 		list_del_rcu(&key->list);
1081 		kfree_rcu(key, rcu);
1082 	}
1083 }
1084 
1085 void hci_smp_ltks_clear(struct hci_dev *hdev)
1086 {
1087 	struct smp_ltk *k;
1088 
1089 	list_for_each_entry(k, &hdev->long_term_keys, list) {
1090 		list_del_rcu(&k->list);
1091 		kfree_rcu(k, rcu);
1092 	}
1093 }
1094 
1095 void hci_smp_irks_clear(struct hci_dev *hdev)
1096 {
1097 	struct smp_irk *k;
1098 
1099 	list_for_each_entry(k, &hdev->identity_resolving_keys, list) {
1100 		list_del_rcu(&k->list);
1101 		kfree_rcu(k, rcu);
1102 	}
1103 }
1104 
1105 void hci_blocked_keys_clear(struct hci_dev *hdev)
1106 {
1107 	struct blocked_key *b;
1108 
1109 	list_for_each_entry(b, &hdev->blocked_keys, list) {
1110 		list_del_rcu(&b->list);
1111 		kfree_rcu(b, rcu);
1112 	}
1113 }
1114 
1115 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
1116 {
1117 	bool blocked = false;
1118 	struct blocked_key *b;
1119 
1120 	rcu_read_lock();
1121 	list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
1122 		if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
1123 			blocked = true;
1124 			break;
1125 		}
1126 	}
1127 
1128 	rcu_read_unlock();
1129 	return blocked;
1130 }
1131 
1132 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1133 {
1134 	struct link_key *k;
1135 
1136 	rcu_read_lock();
1137 	list_for_each_entry_rcu(k, &hdev->link_keys, list) {
1138 		if (bacmp(bdaddr, &k->bdaddr) == 0) {
1139 			rcu_read_unlock();
1140 
1141 			if (hci_is_blocked_key(hdev,
1142 					       HCI_BLOCKED_KEY_TYPE_LINKKEY,
1143 					       k->val)) {
1144 				bt_dev_warn_ratelimited(hdev,
1145 							"Link key blocked for %pMR",
1146 							&k->bdaddr);
1147 				return NULL;
1148 			}
1149 
1150 			return k;
1151 		}
1152 	}
1153 	rcu_read_unlock();
1154 
1155 	return NULL;
1156 }
1157 
1158 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
1159 			       u8 key_type, u8 old_key_type)
1160 {
1161 	/* Legacy key */
1162 	if (key_type < 0x03)
1163 		return true;
1164 
1165 	/* Debug keys are insecure so don't store them persistently */
1166 	if (key_type == HCI_LK_DEBUG_COMBINATION)
1167 		return false;
1168 
1169 	/* Changed combination key and there's no previous one */
1170 	if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
1171 		return false;
1172 
1173 	/* Security mode 3 case */
1174 	if (!conn)
1175 		return true;
1176 
1177 	/* BR/EDR key derived using SC from an LE link */
1178 	if (conn->type == LE_LINK)
1179 		return true;
1180 
1181 	/* Neither local nor remote side had no-bonding as requirement */
1182 	if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
1183 		return true;
1184 
1185 	/* Local side had dedicated bonding as requirement */
1186 	if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
1187 		return true;
1188 
1189 	/* Remote side had dedicated bonding as requirement */
1190 	if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
1191 		return true;
1192 
1193 	/* If none of the above criteria match, then don't store the key
1194 	 * persistently */
1195 	return false;
1196 }
1197 
1198 static u8 ltk_role(u8 type)
1199 {
1200 	if (type == SMP_LTK)
1201 		return HCI_ROLE_MASTER;
1202 
1203 	return HCI_ROLE_SLAVE;
1204 }
1205 
1206 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1207 			     u8 addr_type, u8 role)
1208 {
1209 	struct smp_ltk *k;
1210 
1211 	rcu_read_lock();
1212 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1213 		if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
1214 			continue;
1215 
1216 		if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
1217 			rcu_read_unlock();
1218 
1219 			if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
1220 					       k->val)) {
1221 				bt_dev_warn_ratelimited(hdev,
1222 							"LTK blocked for %pMR",
1223 							&k->bdaddr);
1224 				return NULL;
1225 			}
1226 
1227 			return k;
1228 		}
1229 	}
1230 	rcu_read_unlock();
1231 
1232 	return NULL;
1233 }
1234 
1235 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
1236 {
1237 	struct smp_irk *irk_to_return = NULL;
1238 	struct smp_irk *irk;
1239 
1240 	rcu_read_lock();
1241 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1242 		if (!bacmp(&irk->rpa, rpa)) {
1243 			irk_to_return = irk;
1244 			goto done;
1245 		}
1246 	}
1247 
1248 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1249 		if (smp_irk_matches(hdev, irk->val, rpa)) {
1250 			bacpy(&irk->rpa, rpa);
1251 			irk_to_return = irk;
1252 			goto done;
1253 		}
1254 	}
1255 
1256 done:
1257 	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1258 						irk_to_return->val)) {
1259 		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1260 					&irk_to_return->bdaddr);
1261 		irk_to_return = NULL;
1262 	}
1263 
1264 	rcu_read_unlock();
1265 
1266 	return irk_to_return;
1267 }
1268 
1269 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1270 				     u8 addr_type)
1271 {
1272 	struct smp_irk *irk_to_return = NULL;
1273 	struct smp_irk *irk;
1274 
1275 	/* Identity Address must be public or static random */
1276 	if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
1277 		return NULL;
1278 
1279 	rcu_read_lock();
1280 	list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
1281 		if (addr_type == irk->addr_type &&
1282 		    bacmp(bdaddr, &irk->bdaddr) == 0) {
1283 			irk_to_return = irk;
1284 			goto done;
1285 		}
1286 	}
1287 
1288 done:
1289 
1290 	if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
1291 						irk_to_return->val)) {
1292 		bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
1293 					&irk_to_return->bdaddr);
1294 		irk_to_return = NULL;
1295 	}
1296 
1297 	rcu_read_unlock();
1298 
1299 	return irk_to_return;
1300 }
1301 
1302 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1303 				  bdaddr_t *bdaddr, u8 *val, u8 type,
1304 				  u8 pin_len, bool *persistent)
1305 {
1306 	struct link_key *key, *old_key;
1307 	u8 old_key_type;
1308 
1309 	old_key = hci_find_link_key(hdev, bdaddr);
1310 	if (old_key) {
1311 		old_key_type = old_key->type;
1312 		key = old_key;
1313 	} else {
1314 		old_key_type = conn ? conn->key_type : 0xff;
1315 		key = kzalloc(sizeof(*key), GFP_KERNEL);
1316 		if (!key)
1317 			return NULL;
1318 		list_add_rcu(&key->list, &hdev->link_keys);
1319 	}
1320 
1321 	BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
1322 
1323 	/* Some buggy controller combinations generate a changed
1324 	 * combination key for legacy pairing even when there's no
1325 	 * previous key */
1326 	if (type == HCI_LK_CHANGED_COMBINATION &&
1327 	    (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
1328 		type = HCI_LK_COMBINATION;
1329 		if (conn)
1330 			conn->key_type = type;
1331 	}
1332 
1333 	bacpy(&key->bdaddr, bdaddr);
1334 	memcpy(key->val, val, HCI_LINK_KEY_SIZE);
1335 	key->pin_len = pin_len;
1336 
1337 	if (type == HCI_LK_CHANGED_COMBINATION)
1338 		key->type = old_key_type;
1339 	else
1340 		key->type = type;
1341 
1342 	if (persistent)
1343 		*persistent = hci_persistent_key(hdev, conn, type,
1344 						 old_key_type);
1345 
1346 	return key;
1347 }
1348 
1349 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1350 			    u8 addr_type, u8 type, u8 authenticated,
1351 			    u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
1352 {
1353 	struct smp_ltk *key, *old_key;
1354 	u8 role = ltk_role(type);
1355 
1356 	old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
1357 	if (old_key)
1358 		key = old_key;
1359 	else {
1360 		key = kzalloc(sizeof(*key), GFP_KERNEL);
1361 		if (!key)
1362 			return NULL;
1363 		list_add_rcu(&key->list, &hdev->long_term_keys);
1364 	}
1365 
1366 	bacpy(&key->bdaddr, bdaddr);
1367 	key->bdaddr_type = addr_type;
1368 	memcpy(key->val, tk, sizeof(key->val));
1369 	key->authenticated = authenticated;
1370 	key->ediv = ediv;
1371 	key->rand = rand;
1372 	key->enc_size = enc_size;
1373 	key->type = type;
1374 
1375 	return key;
1376 }
1377 
1378 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1379 			    u8 addr_type, u8 val[16], bdaddr_t *rpa)
1380 {
1381 	struct smp_irk *irk;
1382 
1383 	irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
1384 	if (!irk) {
1385 		irk = kzalloc(sizeof(*irk), GFP_KERNEL);
1386 		if (!irk)
1387 			return NULL;
1388 
1389 		bacpy(&irk->bdaddr, bdaddr);
1390 		irk->addr_type = addr_type;
1391 
1392 		list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
1393 	}
1394 
1395 	memcpy(irk->val, val, 16);
1396 	bacpy(&irk->rpa, rpa);
1397 
1398 	return irk;
1399 }
1400 
1401 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1402 {
1403 	struct link_key *key;
1404 
1405 	key = hci_find_link_key(hdev, bdaddr);
1406 	if (!key)
1407 		return -ENOENT;
1408 
1409 	BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1410 
1411 	list_del_rcu(&key->list);
1412 	kfree_rcu(key, rcu);
1413 
1414 	return 0;
1415 }
1416 
1417 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
1418 {
1419 	struct smp_ltk *k;
1420 	int removed = 0;
1421 
1422 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1423 		if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
1424 			continue;
1425 
1426 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1427 
1428 		list_del_rcu(&k->list);
1429 		kfree_rcu(k, rcu);
1430 		removed++;
1431 	}
1432 
1433 	return removed ? 0 : -ENOENT;
1434 }
1435 
1436 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
1437 {
1438 	struct smp_irk *k;
1439 
1440 	list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
1441 		if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
1442 			continue;
1443 
1444 		BT_DBG("%s removing %pMR", hdev->name, bdaddr);
1445 
1446 		list_del_rcu(&k->list);
1447 		kfree_rcu(k, rcu);
1448 	}
1449 }
1450 
1451 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
1452 {
1453 	struct smp_ltk *k;
1454 	struct smp_irk *irk;
1455 	u8 addr_type;
1456 
1457 	if (type == BDADDR_BREDR) {
1458 		if (hci_find_link_key(hdev, bdaddr))
1459 			return true;
1460 		return false;
1461 	}
1462 
1463 	/* Convert to HCI addr type which struct smp_ltk uses */
1464 	if (type == BDADDR_LE_PUBLIC)
1465 		addr_type = ADDR_LE_DEV_PUBLIC;
1466 	else
1467 		addr_type = ADDR_LE_DEV_RANDOM;
1468 
1469 	irk = hci_get_irk(hdev, bdaddr, addr_type);
1470 	if (irk) {
1471 		bdaddr = &irk->bdaddr;
1472 		addr_type = irk->addr_type;
1473 	}
1474 
1475 	rcu_read_lock();
1476 	list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
1477 		if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
1478 			rcu_read_unlock();
1479 			return true;
1480 		}
1481 	}
1482 	rcu_read_unlock();
1483 
1484 	return false;
1485 }
1486 
1487 /* HCI command timer function */
1488 static void hci_cmd_timeout(struct work_struct *work)
1489 {
1490 	struct hci_dev *hdev = container_of(work, struct hci_dev,
1491 					    cmd_timer.work);
1492 
1493 	if (hdev->sent_cmd) {
1494 		struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
1495 		u16 opcode = __le16_to_cpu(sent->opcode);
1496 
1497 		bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
1498 	} else {
1499 		bt_dev_err(hdev, "command tx timeout");
1500 	}
1501 
1502 	if (hdev->cmd_timeout)
1503 		hdev->cmd_timeout(hdev);
1504 
1505 	atomic_set(&hdev->cmd_cnt, 1);
1506 	queue_work(hdev->workqueue, &hdev->cmd_work);
1507 }
1508 
1509 /* HCI ncmd timer function */
1510 static void hci_ncmd_timeout(struct work_struct *work)
1511 {
1512 	struct hci_dev *hdev = container_of(work, struct hci_dev,
1513 					    ncmd_timer.work);
1514 
1515 	bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0");
1516 
1517 	/* During HCI_INIT phase no events can be injected if the ncmd timer
1518 	 * triggers since the procedure has its own timeout handling.
1519 	 */
1520 	if (test_bit(HCI_INIT, &hdev->flags))
1521 		return;
1522 
1523 	/* This is an irrecoverable state, inject hardware error event */
1524 	hci_reset_dev(hdev);
1525 }
1526 
1527 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1528 					  bdaddr_t *bdaddr, u8 bdaddr_type)
1529 {
1530 	struct oob_data *data;
1531 
1532 	list_for_each_entry(data, &hdev->remote_oob_data, list) {
1533 		if (bacmp(bdaddr, &data->bdaddr) != 0)
1534 			continue;
1535 		if (data->bdaddr_type != bdaddr_type)
1536 			continue;
1537 		return data;
1538 	}
1539 
1540 	return NULL;
1541 }
1542 
1543 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1544 			       u8 bdaddr_type)
1545 {
1546 	struct oob_data *data;
1547 
1548 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1549 	if (!data)
1550 		return -ENOENT;
1551 
1552 	BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
1553 
1554 	list_del(&data->list);
1555 	kfree(data);
1556 
1557 	return 0;
1558 }
1559 
1560 void hci_remote_oob_data_clear(struct hci_dev *hdev)
1561 {
1562 	struct oob_data *data, *n;
1563 
1564 	list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
1565 		list_del(&data->list);
1566 		kfree(data);
1567 	}
1568 }
1569 
1570 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1571 			    u8 bdaddr_type, u8 *hash192, u8 *rand192,
1572 			    u8 *hash256, u8 *rand256)
1573 {
1574 	struct oob_data *data;
1575 
1576 	data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
1577 	if (!data) {
1578 		data = kmalloc(sizeof(*data), GFP_KERNEL);
1579 		if (!data)
1580 			return -ENOMEM;
1581 
1582 		bacpy(&data->bdaddr, bdaddr);
1583 		data->bdaddr_type = bdaddr_type;
1584 		list_add(&data->list, &hdev->remote_oob_data);
1585 	}
1586 
1587 	if (hash192 && rand192) {
1588 		memcpy(data->hash192, hash192, sizeof(data->hash192));
1589 		memcpy(data->rand192, rand192, sizeof(data->rand192));
1590 		if (hash256 && rand256)
1591 			data->present = 0x03;
1592 	} else {
1593 		memset(data->hash192, 0, sizeof(data->hash192));
1594 		memset(data->rand192, 0, sizeof(data->rand192));
1595 		if (hash256 && rand256)
1596 			data->present = 0x02;
1597 		else
1598 			data->present = 0x00;
1599 	}
1600 
1601 	if (hash256 && rand256) {
1602 		memcpy(data->hash256, hash256, sizeof(data->hash256));
1603 		memcpy(data->rand256, rand256, sizeof(data->rand256));
1604 	} else {
1605 		memset(data->hash256, 0, sizeof(data->hash256));
1606 		memset(data->rand256, 0, sizeof(data->rand256));
1607 		if (hash192 && rand192)
1608 			data->present = 0x01;
1609 	}
1610 
1611 	BT_DBG("%s for %pMR", hdev->name, bdaddr);
1612 
1613 	return 0;
1614 }
1615 
1616 /* This function requires the caller holds hdev->lock */
1617 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
1618 {
1619 	struct adv_info *adv_instance;
1620 
1621 	list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
1622 		if (adv_instance->instance == instance)
1623 			return adv_instance;
1624 	}
1625 
1626 	return NULL;
1627 }
1628 
1629 /* This function requires the caller holds hdev->lock */
1630 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
1631 {
1632 	struct adv_info *cur_instance;
1633 
1634 	cur_instance = hci_find_adv_instance(hdev, instance);
1635 	if (!cur_instance)
1636 		return NULL;
1637 
1638 	if (cur_instance == list_last_entry(&hdev->adv_instances,
1639 					    struct adv_info, list))
1640 		return list_first_entry(&hdev->adv_instances,
1641 						 struct adv_info, list);
1642 	else
1643 		return list_next_entry(cur_instance, list);
1644 }
1645 
1646 /* This function requires the caller holds hdev->lock */
1647 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
1648 {
1649 	struct adv_info *adv_instance;
1650 
1651 	adv_instance = hci_find_adv_instance(hdev, instance);
1652 	if (!adv_instance)
1653 		return -ENOENT;
1654 
1655 	BT_DBG("%s removing %dMR", hdev->name, instance);
1656 
1657 	if (hdev->cur_adv_instance == instance) {
1658 		if (hdev->adv_instance_timeout) {
1659 			cancel_delayed_work(&hdev->adv_instance_expire);
1660 			hdev->adv_instance_timeout = 0;
1661 		}
1662 		hdev->cur_adv_instance = 0x00;
1663 	}
1664 
1665 	cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1666 
1667 	list_del(&adv_instance->list);
1668 	kfree(adv_instance);
1669 
1670 	hdev->adv_instance_cnt--;
1671 
1672 	return 0;
1673 }
1674 
1675 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
1676 {
1677 	struct adv_info *adv_instance, *n;
1678 
1679 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
1680 		adv_instance->rpa_expired = rpa_expired;
1681 }
1682 
1683 /* This function requires the caller holds hdev->lock */
1684 void hci_adv_instances_clear(struct hci_dev *hdev)
1685 {
1686 	struct adv_info *adv_instance, *n;
1687 
1688 	if (hdev->adv_instance_timeout) {
1689 		cancel_delayed_work(&hdev->adv_instance_expire);
1690 		hdev->adv_instance_timeout = 0;
1691 	}
1692 
1693 	list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
1694 		cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1695 		list_del(&adv_instance->list);
1696 		kfree(adv_instance);
1697 	}
1698 
1699 	hdev->adv_instance_cnt = 0;
1700 	hdev->cur_adv_instance = 0x00;
1701 }
1702 
1703 static void adv_instance_rpa_expired(struct work_struct *work)
1704 {
1705 	struct adv_info *adv_instance = container_of(work, struct adv_info,
1706 						     rpa_expired_cb.work);
1707 
1708 	BT_DBG("");
1709 
1710 	adv_instance->rpa_expired = true;
1711 }
1712 
1713 /* This function requires the caller holds hdev->lock */
1714 struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance,
1715 				      u32 flags, u16 adv_data_len, u8 *adv_data,
1716 				      u16 scan_rsp_len, u8 *scan_rsp_data,
1717 				      u16 timeout, u16 duration, s8 tx_power,
1718 				      u32 min_interval, u32 max_interval,
1719 				      u8 mesh_handle)
1720 {
1721 	struct adv_info *adv;
1722 
1723 	adv = hci_find_adv_instance(hdev, instance);
1724 	if (adv) {
1725 		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1726 		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1727 		memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data));
1728 	} else {
1729 		if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
1730 		    instance < 1 || instance > hdev->le_num_of_adv_sets + 1)
1731 			return ERR_PTR(-EOVERFLOW);
1732 
1733 		adv = kzalloc(sizeof(*adv), GFP_KERNEL);
1734 		if (!adv)
1735 			return ERR_PTR(-ENOMEM);
1736 
1737 		adv->pending = true;
1738 		adv->instance = instance;
1739 		list_add(&adv->list, &hdev->adv_instances);
1740 		hdev->adv_instance_cnt++;
1741 	}
1742 
1743 	adv->flags = flags;
1744 	adv->min_interval = min_interval;
1745 	adv->max_interval = max_interval;
1746 	adv->tx_power = tx_power;
1747 	/* Defining a mesh_handle changes the timing units to ms,
1748 	 * rather than seconds, and ties the instance to the requested
1749 	 * mesh_tx queue.
1750 	 */
1751 	adv->mesh = mesh_handle;
1752 
1753 	hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data,
1754 				  scan_rsp_len, scan_rsp_data);
1755 
1756 	adv->timeout = timeout;
1757 	adv->remaining_time = timeout;
1758 
1759 	if (duration == 0)
1760 		adv->duration = hdev->def_multi_adv_rotation_duration;
1761 	else
1762 		adv->duration = duration;
1763 
1764 	INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired);
1765 
1766 	BT_DBG("%s for %dMR", hdev->name, instance);
1767 
1768 	return adv;
1769 }
1770 
1771 /* This function requires the caller holds hdev->lock */
1772 struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance,
1773 				      u32 flags, u8 data_len, u8 *data,
1774 				      u32 min_interval, u32 max_interval)
1775 {
1776 	struct adv_info *adv;
1777 
1778 	adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL,
1779 				   0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE,
1780 				   min_interval, max_interval, 0);
1781 	if (IS_ERR(adv))
1782 		return adv;
1783 
1784 	adv->periodic = true;
1785 	adv->per_adv_data_len = data_len;
1786 
1787 	if (data)
1788 		memcpy(adv->per_adv_data, data, data_len);
1789 
1790 	return adv;
1791 }
1792 
1793 /* This function requires the caller holds hdev->lock */
1794 int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance,
1795 			      u16 adv_data_len, u8 *adv_data,
1796 			      u16 scan_rsp_len, u8 *scan_rsp_data)
1797 {
1798 	struct adv_info *adv;
1799 
1800 	adv = hci_find_adv_instance(hdev, instance);
1801 
1802 	/* If advertisement doesn't exist, we can't modify its data */
1803 	if (!adv)
1804 		return -ENOENT;
1805 
1806 	if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) {
1807 		memset(adv->adv_data, 0, sizeof(adv->adv_data));
1808 		memcpy(adv->adv_data, adv_data, adv_data_len);
1809 		adv->adv_data_len = adv_data_len;
1810 		adv->adv_data_changed = true;
1811 	}
1812 
1813 	if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) {
1814 		memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data));
1815 		memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len);
1816 		adv->scan_rsp_len = scan_rsp_len;
1817 		adv->scan_rsp_changed = true;
1818 	}
1819 
1820 	/* Mark as changed if there are flags which would affect it */
1821 	if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) ||
1822 	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1823 		adv->scan_rsp_changed = true;
1824 
1825 	return 0;
1826 }
1827 
1828 /* This function requires the caller holds hdev->lock */
1829 u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance)
1830 {
1831 	u32 flags;
1832 	struct adv_info *adv;
1833 
1834 	if (instance == 0x00) {
1835 		/* Instance 0 always manages the "Tx Power" and "Flags"
1836 		 * fields
1837 		 */
1838 		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
1839 
1840 		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
1841 		 * corresponds to the "connectable" instance flag.
1842 		 */
1843 		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
1844 			flags |= MGMT_ADV_FLAG_CONNECTABLE;
1845 
1846 		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
1847 			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
1848 		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1849 			flags |= MGMT_ADV_FLAG_DISCOV;
1850 
1851 		return flags;
1852 	}
1853 
1854 	adv = hci_find_adv_instance(hdev, instance);
1855 
1856 	/* Return 0 when we got an invalid instance identifier. */
1857 	if (!adv)
1858 		return 0;
1859 
1860 	return adv->flags;
1861 }
1862 
1863 bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1864 {
1865 	struct adv_info *adv;
1866 
1867 	/* Instance 0x00 always set local name */
1868 	if (instance == 0x00)
1869 		return true;
1870 
1871 	adv = hci_find_adv_instance(hdev, instance);
1872 	if (!adv)
1873 		return false;
1874 
1875 	if (adv->flags & MGMT_ADV_FLAG_APPEARANCE ||
1876 	    adv->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1877 		return true;
1878 
1879 	return adv->scan_rsp_len ? true : false;
1880 }
1881 
1882 /* This function requires the caller holds hdev->lock */
1883 void hci_adv_monitors_clear(struct hci_dev *hdev)
1884 {
1885 	struct adv_monitor *monitor;
1886 	int handle;
1887 
1888 	idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
1889 		hci_free_adv_monitor(hdev, monitor);
1890 
1891 	idr_destroy(&hdev->adv_monitors_idr);
1892 }
1893 
1894 /* Frees the monitor structure and do some bookkeepings.
1895  * This function requires the caller holds hdev->lock.
1896  */
1897 void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1898 {
1899 	struct adv_pattern *pattern;
1900 	struct adv_pattern *tmp;
1901 
1902 	if (!monitor)
1903 		return;
1904 
1905 	list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) {
1906 		list_del(&pattern->list);
1907 		kfree(pattern);
1908 	}
1909 
1910 	if (monitor->handle)
1911 		idr_remove(&hdev->adv_monitors_idr, monitor->handle);
1912 
1913 	if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) {
1914 		hdev->adv_monitors_cnt--;
1915 		mgmt_adv_monitor_removed(hdev, monitor->handle);
1916 	}
1917 
1918 	kfree(monitor);
1919 }
1920 
1921 /* Assigns handle to a monitor, and if offloading is supported and power is on,
1922  * also attempts to forward the request to the controller.
1923  * This function requires the caller holds hci_req_sync_lock.
1924  */
1925 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
1926 {
1927 	int min, max, handle;
1928 	int status = 0;
1929 
1930 	if (!monitor)
1931 		return -EINVAL;
1932 
1933 	hci_dev_lock(hdev);
1934 
1935 	min = HCI_MIN_ADV_MONITOR_HANDLE;
1936 	max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
1937 	handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
1938 			   GFP_KERNEL);
1939 
1940 	hci_dev_unlock(hdev);
1941 
1942 	if (handle < 0)
1943 		return handle;
1944 
1945 	monitor->handle = handle;
1946 
1947 	if (!hdev_is_powered(hdev))
1948 		return status;
1949 
1950 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1951 	case HCI_ADV_MONITOR_EXT_NONE:
1952 		bt_dev_dbg(hdev, "%s add monitor %d status %d", hdev->name,
1953 			   monitor->handle, status);
1954 		/* Message was not forwarded to controller - not an error */
1955 		break;
1956 
1957 	case HCI_ADV_MONITOR_EXT_MSFT:
1958 		status = msft_add_monitor_pattern(hdev, monitor);
1959 		bt_dev_dbg(hdev, "%s add monitor %d msft status %d", hdev->name,
1960 			   monitor->handle, status);
1961 		break;
1962 	}
1963 
1964 	return status;
1965 }
1966 
1967 /* Attempts to tell the controller and free the monitor. If somehow the
1968  * controller doesn't have a corresponding handle, remove anyway.
1969  * This function requires the caller holds hci_req_sync_lock.
1970  */
1971 static int hci_remove_adv_monitor(struct hci_dev *hdev,
1972 				  struct adv_monitor *monitor)
1973 {
1974 	int status = 0;
1975 
1976 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
1977 	case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */
1978 		bt_dev_dbg(hdev, "%s remove monitor %d status %d", hdev->name,
1979 			   monitor->handle, status);
1980 		goto free_monitor;
1981 
1982 	case HCI_ADV_MONITOR_EXT_MSFT:
1983 		status = msft_remove_monitor(hdev, monitor);
1984 		bt_dev_dbg(hdev, "%s remove monitor %d msft status %d",
1985 			   hdev->name, monitor->handle, status);
1986 		break;
1987 	}
1988 
1989 	/* In case no matching handle registered, just free the monitor */
1990 	if (status == -ENOENT)
1991 		goto free_monitor;
1992 
1993 	return status;
1994 
1995 free_monitor:
1996 	if (status == -ENOENT)
1997 		bt_dev_warn(hdev, "Removing monitor with no matching handle %d",
1998 			    monitor->handle);
1999 	hci_free_adv_monitor(hdev, monitor);
2000 
2001 	return status;
2002 }
2003 
2004 /* This function requires the caller holds hci_req_sync_lock */
2005 int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle)
2006 {
2007 	struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle);
2008 
2009 	if (!monitor)
2010 		return -EINVAL;
2011 
2012 	return hci_remove_adv_monitor(hdev, monitor);
2013 }
2014 
2015 /* This function requires the caller holds hci_req_sync_lock */
2016 int hci_remove_all_adv_monitor(struct hci_dev *hdev)
2017 {
2018 	struct adv_monitor *monitor;
2019 	int idr_next_id = 0;
2020 	int status = 0;
2021 
2022 	while (1) {
2023 		monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id);
2024 		if (!monitor)
2025 			break;
2026 
2027 		status = hci_remove_adv_monitor(hdev, monitor);
2028 		if (status)
2029 			return status;
2030 
2031 		idr_next_id++;
2032 	}
2033 
2034 	return status;
2035 }
2036 
2037 /* This function requires the caller holds hdev->lock */
2038 bool hci_is_adv_monitoring(struct hci_dev *hdev)
2039 {
2040 	return !idr_is_empty(&hdev->adv_monitors_idr);
2041 }
2042 
2043 int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev)
2044 {
2045 	if (msft_monitor_supported(hdev))
2046 		return HCI_ADV_MONITOR_EXT_MSFT;
2047 
2048 	return HCI_ADV_MONITOR_EXT_NONE;
2049 }
2050 
2051 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
2052 					 bdaddr_t *bdaddr, u8 type)
2053 {
2054 	struct bdaddr_list *b;
2055 
2056 	list_for_each_entry(b, bdaddr_list, list) {
2057 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2058 			return b;
2059 	}
2060 
2061 	return NULL;
2062 }
2063 
2064 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
2065 				struct list_head *bdaddr_list, bdaddr_t *bdaddr,
2066 				u8 type)
2067 {
2068 	struct bdaddr_list_with_irk *b;
2069 
2070 	list_for_each_entry(b, bdaddr_list, list) {
2071 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2072 			return b;
2073 	}
2074 
2075 	return NULL;
2076 }
2077 
2078 struct bdaddr_list_with_flags *
2079 hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
2080 				  bdaddr_t *bdaddr, u8 type)
2081 {
2082 	struct bdaddr_list_with_flags *b;
2083 
2084 	list_for_each_entry(b, bdaddr_list, list) {
2085 		if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
2086 			return b;
2087 	}
2088 
2089 	return NULL;
2090 }
2091 
2092 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
2093 {
2094 	struct bdaddr_list *b, *n;
2095 
2096 	list_for_each_entry_safe(b, n, bdaddr_list, list) {
2097 		list_del(&b->list);
2098 		kfree(b);
2099 	}
2100 }
2101 
2102 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2103 {
2104 	struct bdaddr_list *entry;
2105 
2106 	if (!bacmp(bdaddr, BDADDR_ANY))
2107 		return -EBADF;
2108 
2109 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2110 		return -EEXIST;
2111 
2112 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2113 	if (!entry)
2114 		return -ENOMEM;
2115 
2116 	bacpy(&entry->bdaddr, bdaddr);
2117 	entry->bdaddr_type = type;
2118 
2119 	list_add(&entry->list, list);
2120 
2121 	return 0;
2122 }
2123 
2124 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2125 					u8 type, u8 *peer_irk, u8 *local_irk)
2126 {
2127 	struct bdaddr_list_with_irk *entry;
2128 
2129 	if (!bacmp(bdaddr, BDADDR_ANY))
2130 		return -EBADF;
2131 
2132 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2133 		return -EEXIST;
2134 
2135 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2136 	if (!entry)
2137 		return -ENOMEM;
2138 
2139 	bacpy(&entry->bdaddr, bdaddr);
2140 	entry->bdaddr_type = type;
2141 
2142 	if (peer_irk)
2143 		memcpy(entry->peer_irk, peer_irk, 16);
2144 
2145 	if (local_irk)
2146 		memcpy(entry->local_irk, local_irk, 16);
2147 
2148 	list_add(&entry->list, list);
2149 
2150 	return 0;
2151 }
2152 
2153 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2154 				   u8 type, u32 flags)
2155 {
2156 	struct bdaddr_list_with_flags *entry;
2157 
2158 	if (!bacmp(bdaddr, BDADDR_ANY))
2159 		return -EBADF;
2160 
2161 	if (hci_bdaddr_list_lookup(list, bdaddr, type))
2162 		return -EEXIST;
2163 
2164 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
2165 	if (!entry)
2166 		return -ENOMEM;
2167 
2168 	bacpy(&entry->bdaddr, bdaddr);
2169 	entry->bdaddr_type = type;
2170 	entry->flags = flags;
2171 
2172 	list_add(&entry->list, list);
2173 
2174 	return 0;
2175 }
2176 
2177 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
2178 {
2179 	struct bdaddr_list *entry;
2180 
2181 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2182 		hci_bdaddr_list_clear(list);
2183 		return 0;
2184 	}
2185 
2186 	entry = hci_bdaddr_list_lookup(list, bdaddr, type);
2187 	if (!entry)
2188 		return -ENOENT;
2189 
2190 	list_del(&entry->list);
2191 	kfree(entry);
2192 
2193 	return 0;
2194 }
2195 
2196 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
2197 							u8 type)
2198 {
2199 	struct bdaddr_list_with_irk *entry;
2200 
2201 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2202 		hci_bdaddr_list_clear(list);
2203 		return 0;
2204 	}
2205 
2206 	entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
2207 	if (!entry)
2208 		return -ENOENT;
2209 
2210 	list_del(&entry->list);
2211 	kfree(entry);
2212 
2213 	return 0;
2214 }
2215 
2216 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
2217 				   u8 type)
2218 {
2219 	struct bdaddr_list_with_flags *entry;
2220 
2221 	if (!bacmp(bdaddr, BDADDR_ANY)) {
2222 		hci_bdaddr_list_clear(list);
2223 		return 0;
2224 	}
2225 
2226 	entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
2227 	if (!entry)
2228 		return -ENOENT;
2229 
2230 	list_del(&entry->list);
2231 	kfree(entry);
2232 
2233 	return 0;
2234 }
2235 
2236 /* This function requires the caller holds hdev->lock */
2237 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
2238 					       bdaddr_t *addr, u8 addr_type)
2239 {
2240 	struct hci_conn_params *params;
2241 
2242 	list_for_each_entry(params, &hdev->le_conn_params, list) {
2243 		if (bacmp(&params->addr, addr) == 0 &&
2244 		    params->addr_type == addr_type) {
2245 			return params;
2246 		}
2247 	}
2248 
2249 	return NULL;
2250 }
2251 
2252 /* This function requires the caller holds hdev->lock */
2253 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
2254 						  bdaddr_t *addr, u8 addr_type)
2255 {
2256 	struct hci_conn_params *param;
2257 
2258 	list_for_each_entry(param, list, action) {
2259 		if (bacmp(&param->addr, addr) == 0 &&
2260 		    param->addr_type == addr_type)
2261 			return param;
2262 	}
2263 
2264 	return NULL;
2265 }
2266 
2267 /* This function requires the caller holds hdev->lock */
2268 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
2269 					    bdaddr_t *addr, u8 addr_type)
2270 {
2271 	struct hci_conn_params *params;
2272 
2273 	params = hci_conn_params_lookup(hdev, addr, addr_type);
2274 	if (params)
2275 		return params;
2276 
2277 	params = kzalloc(sizeof(*params), GFP_KERNEL);
2278 	if (!params) {
2279 		bt_dev_err(hdev, "out of memory");
2280 		return NULL;
2281 	}
2282 
2283 	bacpy(&params->addr, addr);
2284 	params->addr_type = addr_type;
2285 
2286 	list_add(&params->list, &hdev->le_conn_params);
2287 	INIT_LIST_HEAD(&params->action);
2288 
2289 	params->conn_min_interval = hdev->le_conn_min_interval;
2290 	params->conn_max_interval = hdev->le_conn_max_interval;
2291 	params->conn_latency = hdev->le_conn_latency;
2292 	params->supervision_timeout = hdev->le_supv_timeout;
2293 	params->auto_connect = HCI_AUTO_CONN_DISABLED;
2294 
2295 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2296 
2297 	return params;
2298 }
2299 
2300 static void hci_conn_params_free(struct hci_conn_params *params)
2301 {
2302 	if (params->conn) {
2303 		hci_conn_drop(params->conn);
2304 		hci_conn_put(params->conn);
2305 	}
2306 
2307 	list_del(&params->action);
2308 	list_del(&params->list);
2309 	kfree(params);
2310 }
2311 
2312 /* This function requires the caller holds hdev->lock */
2313 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
2314 {
2315 	struct hci_conn_params *params;
2316 
2317 	params = hci_conn_params_lookup(hdev, addr, addr_type);
2318 	if (!params)
2319 		return;
2320 
2321 	hci_conn_params_free(params);
2322 
2323 	hci_update_passive_scan(hdev);
2324 
2325 	BT_DBG("addr %pMR (type %u)", addr, addr_type);
2326 }
2327 
2328 /* This function requires the caller holds hdev->lock */
2329 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
2330 {
2331 	struct hci_conn_params *params, *tmp;
2332 
2333 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
2334 		if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
2335 			continue;
2336 
2337 		/* If trying to establish one time connection to disabled
2338 		 * device, leave the params, but mark them as just once.
2339 		 */
2340 		if (params->explicit_connect) {
2341 			params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
2342 			continue;
2343 		}
2344 
2345 		list_del(&params->list);
2346 		kfree(params);
2347 	}
2348 
2349 	BT_DBG("All LE disabled connection parameters were removed");
2350 }
2351 
2352 /* This function requires the caller holds hdev->lock */
2353 static void hci_conn_params_clear_all(struct hci_dev *hdev)
2354 {
2355 	struct hci_conn_params *params, *tmp;
2356 
2357 	list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
2358 		hci_conn_params_free(params);
2359 
2360 	BT_DBG("All LE connection parameters were removed");
2361 }
2362 
2363 /* Copy the Identity Address of the controller.
2364  *
2365  * If the controller has a public BD_ADDR, then by default use that one.
2366  * If this is a LE only controller without a public address, default to
2367  * the static random address.
2368  *
2369  * For debugging purposes it is possible to force controllers with a
2370  * public address to use the static random address instead.
2371  *
2372  * In case BR/EDR has been disabled on a dual-mode controller and
2373  * userspace has configured a static address, then that address
2374  * becomes the identity address instead of the public BR/EDR address.
2375  */
2376 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
2377 			       u8 *bdaddr_type)
2378 {
2379 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2380 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2381 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2382 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2383 		bacpy(bdaddr, &hdev->static_addr);
2384 		*bdaddr_type = ADDR_LE_DEV_RANDOM;
2385 	} else {
2386 		bacpy(bdaddr, &hdev->bdaddr);
2387 		*bdaddr_type = ADDR_LE_DEV_PUBLIC;
2388 	}
2389 }
2390 
2391 static void hci_clear_wake_reason(struct hci_dev *hdev)
2392 {
2393 	hci_dev_lock(hdev);
2394 
2395 	hdev->wake_reason = 0;
2396 	bacpy(&hdev->wake_addr, BDADDR_ANY);
2397 	hdev->wake_addr_type = 0;
2398 
2399 	hci_dev_unlock(hdev);
2400 }
2401 
2402 static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
2403 				void *data)
2404 {
2405 	struct hci_dev *hdev =
2406 		container_of(nb, struct hci_dev, suspend_notifier);
2407 	int ret = 0;
2408 
2409 	/* Userspace has full control of this device. Do nothing. */
2410 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2411 		return NOTIFY_DONE;
2412 
2413 	if (action == PM_SUSPEND_PREPARE)
2414 		ret = hci_suspend_dev(hdev);
2415 	else if (action == PM_POST_SUSPEND)
2416 		ret = hci_resume_dev(hdev);
2417 
2418 	if (ret)
2419 		bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
2420 			   action, ret);
2421 
2422 	return NOTIFY_DONE;
2423 }
2424 
2425 /* Alloc HCI device */
2426 struct hci_dev *hci_alloc_dev_priv(int sizeof_priv)
2427 {
2428 	struct hci_dev *hdev;
2429 	unsigned int alloc_size;
2430 
2431 	alloc_size = sizeof(*hdev);
2432 	if (sizeof_priv) {
2433 		/* Fixme: May need ALIGN-ment? */
2434 		alloc_size += sizeof_priv;
2435 	}
2436 
2437 	hdev = kzalloc(alloc_size, GFP_KERNEL);
2438 	if (!hdev)
2439 		return NULL;
2440 
2441 	hdev->pkt_type  = (HCI_DM1 | HCI_DH1 | HCI_HV1);
2442 	hdev->esco_type = (ESCO_HV1);
2443 	hdev->link_mode = (HCI_LM_ACCEPT);
2444 	hdev->num_iac = 0x01;		/* One IAC support is mandatory */
2445 	hdev->io_capability = 0x03;	/* No Input No Output */
2446 	hdev->manufacturer = 0xffff;	/* Default to internal use */
2447 	hdev->inq_tx_power = HCI_TX_POWER_INVALID;
2448 	hdev->adv_tx_power = HCI_TX_POWER_INVALID;
2449 	hdev->adv_instance_cnt = 0;
2450 	hdev->cur_adv_instance = 0x00;
2451 	hdev->adv_instance_timeout = 0;
2452 
2453 	hdev->advmon_allowlist_duration = 300;
2454 	hdev->advmon_no_filter_duration = 500;
2455 	hdev->enable_advmon_interleave_scan = 0x00;	/* Default to disable */
2456 
2457 	hdev->sniff_max_interval = 800;
2458 	hdev->sniff_min_interval = 80;
2459 
2460 	hdev->le_adv_channel_map = 0x07;
2461 	hdev->le_adv_min_interval = 0x0800;
2462 	hdev->le_adv_max_interval = 0x0800;
2463 	hdev->le_scan_interval = 0x0060;
2464 	hdev->le_scan_window = 0x0030;
2465 	hdev->le_scan_int_suspend = 0x0400;
2466 	hdev->le_scan_window_suspend = 0x0012;
2467 	hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
2468 	hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
2469 	hdev->le_scan_int_adv_monitor = 0x0060;
2470 	hdev->le_scan_window_adv_monitor = 0x0030;
2471 	hdev->le_scan_int_connect = 0x0060;
2472 	hdev->le_scan_window_connect = 0x0060;
2473 	hdev->le_conn_min_interval = 0x0018;
2474 	hdev->le_conn_max_interval = 0x0028;
2475 	hdev->le_conn_latency = 0x0000;
2476 	hdev->le_supv_timeout = 0x002a;
2477 	hdev->le_def_tx_len = 0x001b;
2478 	hdev->le_def_tx_time = 0x0148;
2479 	hdev->le_max_tx_len = 0x001b;
2480 	hdev->le_max_tx_time = 0x0148;
2481 	hdev->le_max_rx_len = 0x001b;
2482 	hdev->le_max_rx_time = 0x0148;
2483 	hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
2484 	hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
2485 	hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
2486 	hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
2487 	hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
2488 	hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
2489 	hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
2490 	hdev->min_le_tx_power = HCI_TX_POWER_INVALID;
2491 	hdev->max_le_tx_power = HCI_TX_POWER_INVALID;
2492 
2493 	hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
2494 	hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
2495 	hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
2496 	hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
2497 	hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
2498 	hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
2499 
2500 	/* default 1.28 sec page scan */
2501 	hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
2502 	hdev->def_page_scan_int = 0x0800;
2503 	hdev->def_page_scan_window = 0x0012;
2504 
2505 	mutex_init(&hdev->lock);
2506 	mutex_init(&hdev->req_lock);
2507 
2508 	INIT_LIST_HEAD(&hdev->mesh_pending);
2509 	INIT_LIST_HEAD(&hdev->mgmt_pending);
2510 	INIT_LIST_HEAD(&hdev->reject_list);
2511 	INIT_LIST_HEAD(&hdev->accept_list);
2512 	INIT_LIST_HEAD(&hdev->uuids);
2513 	INIT_LIST_HEAD(&hdev->link_keys);
2514 	INIT_LIST_HEAD(&hdev->long_term_keys);
2515 	INIT_LIST_HEAD(&hdev->identity_resolving_keys);
2516 	INIT_LIST_HEAD(&hdev->remote_oob_data);
2517 	INIT_LIST_HEAD(&hdev->le_accept_list);
2518 	INIT_LIST_HEAD(&hdev->le_resolv_list);
2519 	INIT_LIST_HEAD(&hdev->le_conn_params);
2520 	INIT_LIST_HEAD(&hdev->pend_le_conns);
2521 	INIT_LIST_HEAD(&hdev->pend_le_reports);
2522 	INIT_LIST_HEAD(&hdev->conn_hash.list);
2523 	INIT_LIST_HEAD(&hdev->adv_instances);
2524 	INIT_LIST_HEAD(&hdev->blocked_keys);
2525 	INIT_LIST_HEAD(&hdev->monitored_devices);
2526 
2527 	INIT_LIST_HEAD(&hdev->local_codecs);
2528 	INIT_WORK(&hdev->rx_work, hci_rx_work);
2529 	INIT_WORK(&hdev->cmd_work, hci_cmd_work);
2530 	INIT_WORK(&hdev->tx_work, hci_tx_work);
2531 	INIT_WORK(&hdev->power_on, hci_power_on);
2532 	INIT_WORK(&hdev->error_reset, hci_error_reset);
2533 
2534 	hci_cmd_sync_init(hdev);
2535 
2536 	INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
2537 
2538 	skb_queue_head_init(&hdev->rx_q);
2539 	skb_queue_head_init(&hdev->cmd_q);
2540 	skb_queue_head_init(&hdev->raw_q);
2541 
2542 	init_waitqueue_head(&hdev->req_wait_q);
2543 
2544 	INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
2545 	INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout);
2546 
2547 	hci_request_setup(hdev);
2548 
2549 	hci_init_sysfs(hdev);
2550 	discovery_init(hdev);
2551 
2552 	return hdev;
2553 }
2554 EXPORT_SYMBOL(hci_alloc_dev_priv);
2555 
2556 /* Free HCI device */
2557 void hci_free_dev(struct hci_dev *hdev)
2558 {
2559 	/* will free via device release */
2560 	put_device(&hdev->dev);
2561 }
2562 EXPORT_SYMBOL(hci_free_dev);
2563 
2564 /* Register HCI device */
2565 int hci_register_dev(struct hci_dev *hdev)
2566 {
2567 	int id, error;
2568 
2569 	if (!hdev->open || !hdev->close || !hdev->send)
2570 		return -EINVAL;
2571 
2572 	/* Do not allow HCI_AMP devices to register at index 0,
2573 	 * so the index can be used as the AMP controller ID.
2574 	 */
2575 	switch (hdev->dev_type) {
2576 	case HCI_PRIMARY:
2577 		id = ida_simple_get(&hci_index_ida, 0, HCI_MAX_ID, GFP_KERNEL);
2578 		break;
2579 	case HCI_AMP:
2580 		id = ida_simple_get(&hci_index_ida, 1, HCI_MAX_ID, GFP_KERNEL);
2581 		break;
2582 	default:
2583 		return -EINVAL;
2584 	}
2585 
2586 	if (id < 0)
2587 		return id;
2588 
2589 	snprintf(hdev->name, sizeof(hdev->name), "hci%d", id);
2590 	hdev->id = id;
2591 
2592 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2593 
2594 	hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
2595 	if (!hdev->workqueue) {
2596 		error = -ENOMEM;
2597 		goto err;
2598 	}
2599 
2600 	hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
2601 						      hdev->name);
2602 	if (!hdev->req_workqueue) {
2603 		destroy_workqueue(hdev->workqueue);
2604 		error = -ENOMEM;
2605 		goto err;
2606 	}
2607 
2608 	if (!IS_ERR_OR_NULL(bt_debugfs))
2609 		hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
2610 
2611 	dev_set_name(&hdev->dev, "%s", hdev->name);
2612 
2613 	error = device_add(&hdev->dev);
2614 	if (error < 0)
2615 		goto err_wqueue;
2616 
2617 	hci_leds_init(hdev);
2618 
2619 	hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
2620 				    RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
2621 				    hdev);
2622 	if (hdev->rfkill) {
2623 		if (rfkill_register(hdev->rfkill) < 0) {
2624 			rfkill_destroy(hdev->rfkill);
2625 			hdev->rfkill = NULL;
2626 		}
2627 	}
2628 
2629 	if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
2630 		hci_dev_set_flag(hdev, HCI_RFKILLED);
2631 
2632 	hci_dev_set_flag(hdev, HCI_SETUP);
2633 	hci_dev_set_flag(hdev, HCI_AUTO_OFF);
2634 
2635 	if (hdev->dev_type == HCI_PRIMARY) {
2636 		/* Assume BR/EDR support until proven otherwise (such as
2637 		 * through reading supported features during init.
2638 		 */
2639 		hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
2640 	}
2641 
2642 	write_lock(&hci_dev_list_lock);
2643 	list_add(&hdev->list, &hci_dev_list);
2644 	write_unlock(&hci_dev_list_lock);
2645 
2646 	/* Devices that are marked for raw-only usage are unconfigured
2647 	 * and should not be included in normal operation.
2648 	 */
2649 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
2650 		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
2651 
2652 	/* Mark Remote Wakeup connection flag as supported if driver has wakeup
2653 	 * callback.
2654 	 */
2655 	if (hdev->wakeup)
2656 		hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP;
2657 
2658 	hci_sock_dev_event(hdev, HCI_DEV_REG);
2659 	hci_dev_hold(hdev);
2660 
2661 	error = hci_register_suspend_notifier(hdev);
2662 	if (error)
2663 		goto err_wqueue;
2664 
2665 	queue_work(hdev->req_workqueue, &hdev->power_on);
2666 
2667 	idr_init(&hdev->adv_monitors_idr);
2668 	msft_register(hdev);
2669 
2670 	return id;
2671 
2672 err_wqueue:
2673 	debugfs_remove_recursive(hdev->debugfs);
2674 	destroy_workqueue(hdev->workqueue);
2675 	destroy_workqueue(hdev->req_workqueue);
2676 err:
2677 	ida_simple_remove(&hci_index_ida, hdev->id);
2678 
2679 	return error;
2680 }
2681 EXPORT_SYMBOL(hci_register_dev);
2682 
2683 /* Unregister HCI device */
2684 void hci_unregister_dev(struct hci_dev *hdev)
2685 {
2686 	BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
2687 
2688 	hci_dev_set_flag(hdev, HCI_UNREGISTER);
2689 
2690 	write_lock(&hci_dev_list_lock);
2691 	list_del(&hdev->list);
2692 	write_unlock(&hci_dev_list_lock);
2693 
2694 	cancel_work_sync(&hdev->power_on);
2695 
2696 	hci_cmd_sync_clear(hdev);
2697 
2698 	hci_unregister_suspend_notifier(hdev);
2699 
2700 	msft_unregister(hdev);
2701 
2702 	hci_dev_do_close(hdev);
2703 
2704 	if (!test_bit(HCI_INIT, &hdev->flags) &&
2705 	    !hci_dev_test_flag(hdev, HCI_SETUP) &&
2706 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
2707 		hci_dev_lock(hdev);
2708 		mgmt_index_removed(hdev);
2709 		hci_dev_unlock(hdev);
2710 	}
2711 
2712 	/* mgmt_index_removed should take care of emptying the
2713 	 * pending list */
2714 	BUG_ON(!list_empty(&hdev->mgmt_pending));
2715 
2716 	hci_sock_dev_event(hdev, HCI_DEV_UNREG);
2717 
2718 	if (hdev->rfkill) {
2719 		rfkill_unregister(hdev->rfkill);
2720 		rfkill_destroy(hdev->rfkill);
2721 	}
2722 
2723 	device_del(&hdev->dev);
2724 	/* Actual cleanup is deferred until hci_release_dev(). */
2725 	hci_dev_put(hdev);
2726 }
2727 EXPORT_SYMBOL(hci_unregister_dev);
2728 
2729 /* Release HCI device */
2730 void hci_release_dev(struct hci_dev *hdev)
2731 {
2732 	debugfs_remove_recursive(hdev->debugfs);
2733 	kfree_const(hdev->hw_info);
2734 	kfree_const(hdev->fw_info);
2735 
2736 	destroy_workqueue(hdev->workqueue);
2737 	destroy_workqueue(hdev->req_workqueue);
2738 
2739 	hci_dev_lock(hdev);
2740 	hci_bdaddr_list_clear(&hdev->reject_list);
2741 	hci_bdaddr_list_clear(&hdev->accept_list);
2742 	hci_uuids_clear(hdev);
2743 	hci_link_keys_clear(hdev);
2744 	hci_smp_ltks_clear(hdev);
2745 	hci_smp_irks_clear(hdev);
2746 	hci_remote_oob_data_clear(hdev);
2747 	hci_adv_instances_clear(hdev);
2748 	hci_adv_monitors_clear(hdev);
2749 	hci_bdaddr_list_clear(&hdev->le_accept_list);
2750 	hci_bdaddr_list_clear(&hdev->le_resolv_list);
2751 	hci_conn_params_clear_all(hdev);
2752 	hci_discovery_filter_clear(hdev);
2753 	hci_blocked_keys_clear(hdev);
2754 	hci_dev_unlock(hdev);
2755 
2756 	ida_simple_remove(&hci_index_ida, hdev->id);
2757 	kfree_skb(hdev->sent_cmd);
2758 	kfree_skb(hdev->recv_event);
2759 	kfree(hdev);
2760 }
2761 EXPORT_SYMBOL(hci_release_dev);
2762 
2763 int hci_register_suspend_notifier(struct hci_dev *hdev)
2764 {
2765 	int ret = 0;
2766 
2767 	if (!test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) {
2768 		hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
2769 		ret = register_pm_notifier(&hdev->suspend_notifier);
2770 	}
2771 
2772 	return ret;
2773 }
2774 
2775 int hci_unregister_suspend_notifier(struct hci_dev *hdev)
2776 {
2777 	int ret = 0;
2778 
2779 	if (!test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks))
2780 		ret = unregister_pm_notifier(&hdev->suspend_notifier);
2781 
2782 	return ret;
2783 }
2784 
2785 /* Suspend HCI device */
2786 int hci_suspend_dev(struct hci_dev *hdev)
2787 {
2788 	int ret;
2789 
2790 	bt_dev_dbg(hdev, "");
2791 
2792 	/* Suspend should only act on when powered. */
2793 	if (!hdev_is_powered(hdev) ||
2794 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2795 		return 0;
2796 
2797 	/* If powering down don't attempt to suspend */
2798 	if (mgmt_powering_down(hdev))
2799 		return 0;
2800 
2801 	hci_req_sync_lock(hdev);
2802 	ret = hci_suspend_sync(hdev);
2803 	hci_req_sync_unlock(hdev);
2804 
2805 	hci_clear_wake_reason(hdev);
2806 	mgmt_suspending(hdev, hdev->suspend_state);
2807 
2808 	hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
2809 	return ret;
2810 }
2811 EXPORT_SYMBOL(hci_suspend_dev);
2812 
2813 /* Resume HCI device */
2814 int hci_resume_dev(struct hci_dev *hdev)
2815 {
2816 	int ret;
2817 
2818 	bt_dev_dbg(hdev, "");
2819 
2820 	/* Resume should only act on when powered. */
2821 	if (!hdev_is_powered(hdev) ||
2822 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2823 		return 0;
2824 
2825 	/* If powering down don't attempt to resume */
2826 	if (mgmt_powering_down(hdev))
2827 		return 0;
2828 
2829 	hci_req_sync_lock(hdev);
2830 	ret = hci_resume_sync(hdev);
2831 	hci_req_sync_unlock(hdev);
2832 
2833 	mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
2834 		      hdev->wake_addr_type);
2835 
2836 	hci_sock_dev_event(hdev, HCI_DEV_RESUME);
2837 	return ret;
2838 }
2839 EXPORT_SYMBOL(hci_resume_dev);
2840 
2841 /* Reset HCI device */
2842 int hci_reset_dev(struct hci_dev *hdev)
2843 {
2844 	static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
2845 	struct sk_buff *skb;
2846 
2847 	skb = bt_skb_alloc(3, GFP_ATOMIC);
2848 	if (!skb)
2849 		return -ENOMEM;
2850 
2851 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
2852 	skb_put_data(skb, hw_err, 3);
2853 
2854 	bt_dev_err(hdev, "Injecting HCI hardware error event");
2855 
2856 	/* Send Hardware Error to upper stack */
2857 	return hci_recv_frame(hdev, skb);
2858 }
2859 EXPORT_SYMBOL(hci_reset_dev);
2860 
2861 /* Receive frame from HCI drivers */
2862 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
2863 {
2864 	if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
2865 		      && !test_bit(HCI_INIT, &hdev->flags))) {
2866 		kfree_skb(skb);
2867 		return -ENXIO;
2868 	}
2869 
2870 	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
2871 	    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
2872 	    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
2873 	    hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
2874 		kfree_skb(skb);
2875 		return -EINVAL;
2876 	}
2877 
2878 	/* Incoming skb */
2879 	bt_cb(skb)->incoming = 1;
2880 
2881 	/* Time stamp */
2882 	__net_timestamp(skb);
2883 
2884 	skb_queue_tail(&hdev->rx_q, skb);
2885 	queue_work(hdev->workqueue, &hdev->rx_work);
2886 
2887 	return 0;
2888 }
2889 EXPORT_SYMBOL(hci_recv_frame);
2890 
2891 /* Receive diagnostic message from HCI drivers */
2892 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
2893 {
2894 	/* Mark as diagnostic packet */
2895 	hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
2896 
2897 	/* Time stamp */
2898 	__net_timestamp(skb);
2899 
2900 	skb_queue_tail(&hdev->rx_q, skb);
2901 	queue_work(hdev->workqueue, &hdev->rx_work);
2902 
2903 	return 0;
2904 }
2905 EXPORT_SYMBOL(hci_recv_diag);
2906 
2907 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
2908 {
2909 	va_list vargs;
2910 
2911 	va_start(vargs, fmt);
2912 	kfree_const(hdev->hw_info);
2913 	hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2914 	va_end(vargs);
2915 }
2916 EXPORT_SYMBOL(hci_set_hw_info);
2917 
2918 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
2919 {
2920 	va_list vargs;
2921 
2922 	va_start(vargs, fmt);
2923 	kfree_const(hdev->fw_info);
2924 	hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
2925 	va_end(vargs);
2926 }
2927 EXPORT_SYMBOL(hci_set_fw_info);
2928 
2929 /* ---- Interface to upper protocols ---- */
2930 
2931 int hci_register_cb(struct hci_cb *cb)
2932 {
2933 	BT_DBG("%p name %s", cb, cb->name);
2934 
2935 	mutex_lock(&hci_cb_list_lock);
2936 	list_add_tail(&cb->list, &hci_cb_list);
2937 	mutex_unlock(&hci_cb_list_lock);
2938 
2939 	return 0;
2940 }
2941 EXPORT_SYMBOL(hci_register_cb);
2942 
2943 int hci_unregister_cb(struct hci_cb *cb)
2944 {
2945 	BT_DBG("%p name %s", cb, cb->name);
2946 
2947 	mutex_lock(&hci_cb_list_lock);
2948 	list_del(&cb->list);
2949 	mutex_unlock(&hci_cb_list_lock);
2950 
2951 	return 0;
2952 }
2953 EXPORT_SYMBOL(hci_unregister_cb);
2954 
2955 static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
2956 {
2957 	int err;
2958 
2959 	BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
2960 	       skb->len);
2961 
2962 	/* Time stamp */
2963 	__net_timestamp(skb);
2964 
2965 	/* Send copy to monitor */
2966 	hci_send_to_monitor(hdev, skb);
2967 
2968 	if (atomic_read(&hdev->promisc)) {
2969 		/* Send copy to the sockets */
2970 		hci_send_to_sock(hdev, skb);
2971 	}
2972 
2973 	/* Get rid of skb owner, prior to sending to the driver. */
2974 	skb_orphan(skb);
2975 
2976 	if (!test_bit(HCI_RUNNING, &hdev->flags)) {
2977 		kfree_skb(skb);
2978 		return -EINVAL;
2979 	}
2980 
2981 	err = hdev->send(hdev, skb);
2982 	if (err < 0) {
2983 		bt_dev_err(hdev, "sending frame failed (%d)", err);
2984 		kfree_skb(skb);
2985 		return err;
2986 	}
2987 
2988 	return 0;
2989 }
2990 
2991 /* Send HCI command */
2992 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
2993 		 const void *param)
2994 {
2995 	struct sk_buff *skb;
2996 
2997 	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
2998 
2999 	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3000 	if (!skb) {
3001 		bt_dev_err(hdev, "no memory for command");
3002 		return -ENOMEM;
3003 	}
3004 
3005 	/* Stand-alone HCI commands must be flagged as
3006 	 * single-command requests.
3007 	 */
3008 	bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
3009 
3010 	skb_queue_tail(&hdev->cmd_q, skb);
3011 	queue_work(hdev->workqueue, &hdev->cmd_work);
3012 
3013 	return 0;
3014 }
3015 
3016 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
3017 		   const void *param)
3018 {
3019 	struct sk_buff *skb;
3020 
3021 	if (hci_opcode_ogf(opcode) != 0x3f) {
3022 		/* A controller receiving a command shall respond with either
3023 		 * a Command Status Event or a Command Complete Event.
3024 		 * Therefore, all standard HCI commands must be sent via the
3025 		 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
3026 		 * Some vendors do not comply with this rule for vendor-specific
3027 		 * commands and do not return any event. We want to support
3028 		 * unresponded commands for such cases only.
3029 		 */
3030 		bt_dev_err(hdev, "unresponded command not supported");
3031 		return -EINVAL;
3032 	}
3033 
3034 	skb = hci_prepare_cmd(hdev, opcode, plen, param);
3035 	if (!skb) {
3036 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
3037 			   opcode);
3038 		return -ENOMEM;
3039 	}
3040 
3041 	hci_send_frame(hdev, skb);
3042 
3043 	return 0;
3044 }
3045 EXPORT_SYMBOL(__hci_cmd_send);
3046 
3047 /* Get data from the previously sent command */
3048 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
3049 {
3050 	struct hci_command_hdr *hdr;
3051 
3052 	if (!hdev->sent_cmd)
3053 		return NULL;
3054 
3055 	hdr = (void *) hdev->sent_cmd->data;
3056 
3057 	if (hdr->opcode != cpu_to_le16(opcode))
3058 		return NULL;
3059 
3060 	BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
3061 
3062 	return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
3063 }
3064 
3065 /* Get data from last received event */
3066 void *hci_recv_event_data(struct hci_dev *hdev, __u8 event)
3067 {
3068 	struct hci_event_hdr *hdr;
3069 	int offset;
3070 
3071 	if (!hdev->recv_event)
3072 		return NULL;
3073 
3074 	hdr = (void *)hdev->recv_event->data;
3075 	offset = sizeof(*hdr);
3076 
3077 	if (hdr->evt != event) {
3078 		/* In case of LE metaevent check the subevent match */
3079 		if (hdr->evt == HCI_EV_LE_META) {
3080 			struct hci_ev_le_meta *ev;
3081 
3082 			ev = (void *)hdev->recv_event->data + offset;
3083 			offset += sizeof(*ev);
3084 			if (ev->subevent == event)
3085 				goto found;
3086 		}
3087 		return NULL;
3088 	}
3089 
3090 found:
3091 	bt_dev_dbg(hdev, "event 0x%2.2x", event);
3092 
3093 	return hdev->recv_event->data + offset;
3094 }
3095 
3096 /* Send ACL data */
3097 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
3098 {
3099 	struct hci_acl_hdr *hdr;
3100 	int len = skb->len;
3101 
3102 	skb_push(skb, HCI_ACL_HDR_SIZE);
3103 	skb_reset_transport_header(skb);
3104 	hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
3105 	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3106 	hdr->dlen   = cpu_to_le16(len);
3107 }
3108 
3109 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
3110 			  struct sk_buff *skb, __u16 flags)
3111 {
3112 	struct hci_conn *conn = chan->conn;
3113 	struct hci_dev *hdev = conn->hdev;
3114 	struct sk_buff *list;
3115 
3116 	skb->len = skb_headlen(skb);
3117 	skb->data_len = 0;
3118 
3119 	hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3120 
3121 	switch (hdev->dev_type) {
3122 	case HCI_PRIMARY:
3123 		hci_add_acl_hdr(skb, conn->handle, flags);
3124 		break;
3125 	case HCI_AMP:
3126 		hci_add_acl_hdr(skb, chan->handle, flags);
3127 		break;
3128 	default:
3129 		bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
3130 		return;
3131 	}
3132 
3133 	list = skb_shinfo(skb)->frag_list;
3134 	if (!list) {
3135 		/* Non fragmented */
3136 		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3137 
3138 		skb_queue_tail(queue, skb);
3139 	} else {
3140 		/* Fragmented */
3141 		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3142 
3143 		skb_shinfo(skb)->frag_list = NULL;
3144 
3145 		/* Queue all fragments atomically. We need to use spin_lock_bh
3146 		 * here because of 6LoWPAN links, as there this function is
3147 		 * called from softirq and using normal spin lock could cause
3148 		 * deadlocks.
3149 		 */
3150 		spin_lock_bh(&queue->lock);
3151 
3152 		__skb_queue_tail(queue, skb);
3153 
3154 		flags &= ~ACL_START;
3155 		flags |= ACL_CONT;
3156 		do {
3157 			skb = list; list = list->next;
3158 
3159 			hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
3160 			hci_add_acl_hdr(skb, conn->handle, flags);
3161 
3162 			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3163 
3164 			__skb_queue_tail(queue, skb);
3165 		} while (list);
3166 
3167 		spin_unlock_bh(&queue->lock);
3168 	}
3169 }
3170 
3171 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
3172 {
3173 	struct hci_dev *hdev = chan->conn->hdev;
3174 
3175 	BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
3176 
3177 	hci_queue_acl(chan, &chan->data_q, skb, flags);
3178 
3179 	queue_work(hdev->workqueue, &hdev->tx_work);
3180 }
3181 
3182 /* Send SCO data */
3183 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
3184 {
3185 	struct hci_dev *hdev = conn->hdev;
3186 	struct hci_sco_hdr hdr;
3187 
3188 	BT_DBG("%s len %d", hdev->name, skb->len);
3189 
3190 	hdr.handle = cpu_to_le16(conn->handle);
3191 	hdr.dlen   = skb->len;
3192 
3193 	skb_push(skb, HCI_SCO_HDR_SIZE);
3194 	skb_reset_transport_header(skb);
3195 	memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
3196 
3197 	hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
3198 
3199 	skb_queue_tail(&conn->data_q, skb);
3200 	queue_work(hdev->workqueue, &hdev->tx_work);
3201 }
3202 
3203 /* Send ISO data */
3204 static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags)
3205 {
3206 	struct hci_iso_hdr *hdr;
3207 	int len = skb->len;
3208 
3209 	skb_push(skb, HCI_ISO_HDR_SIZE);
3210 	skb_reset_transport_header(skb);
3211 	hdr = (struct hci_iso_hdr *)skb_transport_header(skb);
3212 	hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
3213 	hdr->dlen   = cpu_to_le16(len);
3214 }
3215 
3216 static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue,
3217 			  struct sk_buff *skb)
3218 {
3219 	struct hci_dev *hdev = conn->hdev;
3220 	struct sk_buff *list;
3221 	__u16 flags;
3222 
3223 	skb->len = skb_headlen(skb);
3224 	skb->data_len = 0;
3225 
3226 	hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3227 
3228 	list = skb_shinfo(skb)->frag_list;
3229 
3230 	flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00);
3231 	hci_add_iso_hdr(skb, conn->handle, flags);
3232 
3233 	if (!list) {
3234 		/* Non fragmented */
3235 		BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
3236 
3237 		skb_queue_tail(queue, skb);
3238 	} else {
3239 		/* Fragmented */
3240 		BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3241 
3242 		skb_shinfo(skb)->frag_list = NULL;
3243 
3244 		__skb_queue_tail(queue, skb);
3245 
3246 		do {
3247 			skb = list; list = list->next;
3248 
3249 			hci_skb_pkt_type(skb) = HCI_ISODATA_PKT;
3250 			flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END,
3251 						   0x00);
3252 			hci_add_iso_hdr(skb, conn->handle, flags);
3253 
3254 			BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
3255 
3256 			__skb_queue_tail(queue, skb);
3257 		} while (list);
3258 	}
3259 }
3260 
3261 void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb)
3262 {
3263 	struct hci_dev *hdev = conn->hdev;
3264 
3265 	BT_DBG("%s len %d", hdev->name, skb->len);
3266 
3267 	hci_queue_iso(conn, &conn->data_q, skb);
3268 
3269 	queue_work(hdev->workqueue, &hdev->tx_work);
3270 }
3271 
3272 /* ---- HCI TX task (outgoing data) ---- */
3273 
3274 /* HCI Connection scheduler */
3275 static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote)
3276 {
3277 	struct hci_dev *hdev;
3278 	int cnt, q;
3279 
3280 	if (!conn) {
3281 		*quote = 0;
3282 		return;
3283 	}
3284 
3285 	hdev = conn->hdev;
3286 
3287 	switch (conn->type) {
3288 	case ACL_LINK:
3289 		cnt = hdev->acl_cnt;
3290 		break;
3291 	case AMP_LINK:
3292 		cnt = hdev->block_cnt;
3293 		break;
3294 	case SCO_LINK:
3295 	case ESCO_LINK:
3296 		cnt = hdev->sco_cnt;
3297 		break;
3298 	case LE_LINK:
3299 		cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3300 		break;
3301 	case ISO_LINK:
3302 		cnt = hdev->iso_mtu ? hdev->iso_cnt :
3303 			hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
3304 		break;
3305 	default:
3306 		cnt = 0;
3307 		bt_dev_err(hdev, "unknown link type %d", conn->type);
3308 	}
3309 
3310 	q = cnt / num;
3311 	*quote = q ? q : 1;
3312 }
3313 
3314 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
3315 				     int *quote)
3316 {
3317 	struct hci_conn_hash *h = &hdev->conn_hash;
3318 	struct hci_conn *conn = NULL, *c;
3319 	unsigned int num = 0, min = ~0;
3320 
3321 	/* We don't have to lock device here. Connections are always
3322 	 * added and removed with TX task disabled. */
3323 
3324 	rcu_read_lock();
3325 
3326 	list_for_each_entry_rcu(c, &h->list, list) {
3327 		if (c->type != type || skb_queue_empty(&c->data_q))
3328 			continue;
3329 
3330 		if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
3331 			continue;
3332 
3333 		num++;
3334 
3335 		if (c->sent < min) {
3336 			min  = c->sent;
3337 			conn = c;
3338 		}
3339 
3340 		if (hci_conn_num(hdev, type) == num)
3341 			break;
3342 	}
3343 
3344 	rcu_read_unlock();
3345 
3346 	hci_quote_sent(conn, num, quote);
3347 
3348 	BT_DBG("conn %p quote %d", conn, *quote);
3349 	return conn;
3350 }
3351 
3352 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
3353 {
3354 	struct hci_conn_hash *h = &hdev->conn_hash;
3355 	struct hci_conn *c;
3356 
3357 	bt_dev_err(hdev, "link tx timeout");
3358 
3359 	rcu_read_lock();
3360 
3361 	/* Kill stalled connections */
3362 	list_for_each_entry_rcu(c, &h->list, list) {
3363 		if (c->type == type && c->sent) {
3364 			bt_dev_err(hdev, "killing stalled connection %pMR",
3365 				   &c->dst);
3366 			hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
3367 		}
3368 	}
3369 
3370 	rcu_read_unlock();
3371 }
3372 
3373 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
3374 				      int *quote)
3375 {
3376 	struct hci_conn_hash *h = &hdev->conn_hash;
3377 	struct hci_chan *chan = NULL;
3378 	unsigned int num = 0, min = ~0, cur_prio = 0;
3379 	struct hci_conn *conn;
3380 	int conn_num = 0;
3381 
3382 	BT_DBG("%s", hdev->name);
3383 
3384 	rcu_read_lock();
3385 
3386 	list_for_each_entry_rcu(conn, &h->list, list) {
3387 		struct hci_chan *tmp;
3388 
3389 		if (conn->type != type)
3390 			continue;
3391 
3392 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3393 			continue;
3394 
3395 		conn_num++;
3396 
3397 		list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
3398 			struct sk_buff *skb;
3399 
3400 			if (skb_queue_empty(&tmp->data_q))
3401 				continue;
3402 
3403 			skb = skb_peek(&tmp->data_q);
3404 			if (skb->priority < cur_prio)
3405 				continue;
3406 
3407 			if (skb->priority > cur_prio) {
3408 				num = 0;
3409 				min = ~0;
3410 				cur_prio = skb->priority;
3411 			}
3412 
3413 			num++;
3414 
3415 			if (conn->sent < min) {
3416 				min  = conn->sent;
3417 				chan = tmp;
3418 			}
3419 		}
3420 
3421 		if (hci_conn_num(hdev, type) == conn_num)
3422 			break;
3423 	}
3424 
3425 	rcu_read_unlock();
3426 
3427 	if (!chan)
3428 		return NULL;
3429 
3430 	hci_quote_sent(chan->conn, num, quote);
3431 
3432 	BT_DBG("chan %p quote %d", chan, *quote);
3433 	return chan;
3434 }
3435 
3436 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
3437 {
3438 	struct hci_conn_hash *h = &hdev->conn_hash;
3439 	struct hci_conn *conn;
3440 	int num = 0;
3441 
3442 	BT_DBG("%s", hdev->name);
3443 
3444 	rcu_read_lock();
3445 
3446 	list_for_each_entry_rcu(conn, &h->list, list) {
3447 		struct hci_chan *chan;
3448 
3449 		if (conn->type != type)
3450 			continue;
3451 
3452 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3453 			continue;
3454 
3455 		num++;
3456 
3457 		list_for_each_entry_rcu(chan, &conn->chan_list, list) {
3458 			struct sk_buff *skb;
3459 
3460 			if (chan->sent) {
3461 				chan->sent = 0;
3462 				continue;
3463 			}
3464 
3465 			if (skb_queue_empty(&chan->data_q))
3466 				continue;
3467 
3468 			skb = skb_peek(&chan->data_q);
3469 			if (skb->priority >= HCI_PRIO_MAX - 1)
3470 				continue;
3471 
3472 			skb->priority = HCI_PRIO_MAX - 1;
3473 
3474 			BT_DBG("chan %p skb %p promoted to %d", chan, skb,
3475 			       skb->priority);
3476 		}
3477 
3478 		if (hci_conn_num(hdev, type) == num)
3479 			break;
3480 	}
3481 
3482 	rcu_read_unlock();
3483 
3484 }
3485 
3486 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
3487 {
3488 	/* Calculate count of blocks used by this packet */
3489 	return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
3490 }
3491 
3492 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type)
3493 {
3494 	unsigned long last_tx;
3495 
3496 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
3497 		return;
3498 
3499 	switch (type) {
3500 	case LE_LINK:
3501 		last_tx = hdev->le_last_tx;
3502 		break;
3503 	default:
3504 		last_tx = hdev->acl_last_tx;
3505 		break;
3506 	}
3507 
3508 	/* tx timeout must be longer than maximum link supervision timeout
3509 	 * (40.9 seconds)
3510 	 */
3511 	if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT))
3512 		hci_link_tx_to(hdev, type);
3513 }
3514 
3515 /* Schedule SCO */
3516 static void hci_sched_sco(struct hci_dev *hdev)
3517 {
3518 	struct hci_conn *conn;
3519 	struct sk_buff *skb;
3520 	int quote;
3521 
3522 	BT_DBG("%s", hdev->name);
3523 
3524 	if (!hci_conn_num(hdev, SCO_LINK))
3525 		return;
3526 
3527 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
3528 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3529 			BT_DBG("skb %p len %d", skb, skb->len);
3530 			hci_send_frame(hdev, skb);
3531 
3532 			conn->sent++;
3533 			if (conn->sent == ~0)
3534 				conn->sent = 0;
3535 		}
3536 	}
3537 }
3538 
3539 static void hci_sched_esco(struct hci_dev *hdev)
3540 {
3541 	struct hci_conn *conn;
3542 	struct sk_buff *skb;
3543 	int quote;
3544 
3545 	BT_DBG("%s", hdev->name);
3546 
3547 	if (!hci_conn_num(hdev, ESCO_LINK))
3548 		return;
3549 
3550 	while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
3551 						     &quote))) {
3552 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3553 			BT_DBG("skb %p len %d", skb, skb->len);
3554 			hci_send_frame(hdev, skb);
3555 
3556 			conn->sent++;
3557 			if (conn->sent == ~0)
3558 				conn->sent = 0;
3559 		}
3560 	}
3561 }
3562 
3563 static void hci_sched_acl_pkt(struct hci_dev *hdev)
3564 {
3565 	unsigned int cnt = hdev->acl_cnt;
3566 	struct hci_chan *chan;
3567 	struct sk_buff *skb;
3568 	int quote;
3569 
3570 	__check_timeout(hdev, cnt, ACL_LINK);
3571 
3572 	while (hdev->acl_cnt &&
3573 	       (chan = hci_chan_sent(hdev, ACL_LINK, &quote))) {
3574 		u32 priority = (skb_peek(&chan->data_q))->priority;
3575 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3576 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3577 			       skb->len, skb->priority);
3578 
3579 			/* Stop if priority has changed */
3580 			if (skb->priority < priority)
3581 				break;
3582 
3583 			skb = skb_dequeue(&chan->data_q);
3584 
3585 			hci_conn_enter_active_mode(chan->conn,
3586 						   bt_cb(skb)->force_active);
3587 
3588 			hci_send_frame(hdev, skb);
3589 			hdev->acl_last_tx = jiffies;
3590 
3591 			hdev->acl_cnt--;
3592 			chan->sent++;
3593 			chan->conn->sent++;
3594 
3595 			/* Send pending SCO packets right away */
3596 			hci_sched_sco(hdev);
3597 			hci_sched_esco(hdev);
3598 		}
3599 	}
3600 
3601 	if (cnt != hdev->acl_cnt)
3602 		hci_prio_recalculate(hdev, ACL_LINK);
3603 }
3604 
3605 static void hci_sched_acl_blk(struct hci_dev *hdev)
3606 {
3607 	unsigned int cnt = hdev->block_cnt;
3608 	struct hci_chan *chan;
3609 	struct sk_buff *skb;
3610 	int quote;
3611 	u8 type;
3612 
3613 	BT_DBG("%s", hdev->name);
3614 
3615 	if (hdev->dev_type == HCI_AMP)
3616 		type = AMP_LINK;
3617 	else
3618 		type = ACL_LINK;
3619 
3620 	__check_timeout(hdev, cnt, type);
3621 
3622 	while (hdev->block_cnt > 0 &&
3623 	       (chan = hci_chan_sent(hdev, type, &quote))) {
3624 		u32 priority = (skb_peek(&chan->data_q))->priority;
3625 		while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
3626 			int blocks;
3627 
3628 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3629 			       skb->len, skb->priority);
3630 
3631 			/* Stop if priority has changed */
3632 			if (skb->priority < priority)
3633 				break;
3634 
3635 			skb = skb_dequeue(&chan->data_q);
3636 
3637 			blocks = __get_blocks(hdev, skb);
3638 			if (blocks > hdev->block_cnt)
3639 				return;
3640 
3641 			hci_conn_enter_active_mode(chan->conn,
3642 						   bt_cb(skb)->force_active);
3643 
3644 			hci_send_frame(hdev, skb);
3645 			hdev->acl_last_tx = jiffies;
3646 
3647 			hdev->block_cnt -= blocks;
3648 			quote -= blocks;
3649 
3650 			chan->sent += blocks;
3651 			chan->conn->sent += blocks;
3652 		}
3653 	}
3654 
3655 	if (cnt != hdev->block_cnt)
3656 		hci_prio_recalculate(hdev, type);
3657 }
3658 
3659 static void hci_sched_acl(struct hci_dev *hdev)
3660 {
3661 	BT_DBG("%s", hdev->name);
3662 
3663 	/* No ACL link over BR/EDR controller */
3664 	if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
3665 		return;
3666 
3667 	/* No AMP link over AMP controller */
3668 	if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
3669 		return;
3670 
3671 	switch (hdev->flow_ctl_mode) {
3672 	case HCI_FLOW_CTL_MODE_PACKET_BASED:
3673 		hci_sched_acl_pkt(hdev);
3674 		break;
3675 
3676 	case HCI_FLOW_CTL_MODE_BLOCK_BASED:
3677 		hci_sched_acl_blk(hdev);
3678 		break;
3679 	}
3680 }
3681 
3682 static void hci_sched_le(struct hci_dev *hdev)
3683 {
3684 	struct hci_chan *chan;
3685 	struct sk_buff *skb;
3686 	int quote, cnt, tmp;
3687 
3688 	BT_DBG("%s", hdev->name);
3689 
3690 	if (!hci_conn_num(hdev, LE_LINK))
3691 		return;
3692 
3693 	cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
3694 
3695 	__check_timeout(hdev, cnt, LE_LINK);
3696 
3697 	tmp = cnt;
3698 	while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, &quote))) {
3699 		u32 priority = (skb_peek(&chan->data_q))->priority;
3700 		while (quote-- && (skb = skb_peek(&chan->data_q))) {
3701 			BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
3702 			       skb->len, skb->priority);
3703 
3704 			/* Stop if priority has changed */
3705 			if (skb->priority < priority)
3706 				break;
3707 
3708 			skb = skb_dequeue(&chan->data_q);
3709 
3710 			hci_send_frame(hdev, skb);
3711 			hdev->le_last_tx = jiffies;
3712 
3713 			cnt--;
3714 			chan->sent++;
3715 			chan->conn->sent++;
3716 
3717 			/* Send pending SCO packets right away */
3718 			hci_sched_sco(hdev);
3719 			hci_sched_esco(hdev);
3720 		}
3721 	}
3722 
3723 	if (hdev->le_pkts)
3724 		hdev->le_cnt = cnt;
3725 	else
3726 		hdev->acl_cnt = cnt;
3727 
3728 	if (cnt != tmp)
3729 		hci_prio_recalculate(hdev, LE_LINK);
3730 }
3731 
3732 /* Schedule CIS */
3733 static void hci_sched_iso(struct hci_dev *hdev)
3734 {
3735 	struct hci_conn *conn;
3736 	struct sk_buff *skb;
3737 	int quote, *cnt;
3738 
3739 	BT_DBG("%s", hdev->name);
3740 
3741 	if (!hci_conn_num(hdev, ISO_LINK))
3742 		return;
3743 
3744 	cnt = hdev->iso_pkts ? &hdev->iso_cnt :
3745 		hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt;
3746 	while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, &quote))) {
3747 		while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
3748 			BT_DBG("skb %p len %d", skb, skb->len);
3749 			hci_send_frame(hdev, skb);
3750 
3751 			conn->sent++;
3752 			if (conn->sent == ~0)
3753 				conn->sent = 0;
3754 			(*cnt)--;
3755 		}
3756 	}
3757 }
3758 
3759 static void hci_tx_work(struct work_struct *work)
3760 {
3761 	struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
3762 	struct sk_buff *skb;
3763 
3764 	BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt,
3765 	       hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt);
3766 
3767 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
3768 		/* Schedule queues and send stuff to HCI driver */
3769 		hci_sched_sco(hdev);
3770 		hci_sched_esco(hdev);
3771 		hci_sched_iso(hdev);
3772 		hci_sched_acl(hdev);
3773 		hci_sched_le(hdev);
3774 	}
3775 
3776 	/* Send next queued raw (unknown type) packet */
3777 	while ((skb = skb_dequeue(&hdev->raw_q)))
3778 		hci_send_frame(hdev, skb);
3779 }
3780 
3781 /* ----- HCI RX task (incoming data processing) ----- */
3782 
3783 /* ACL data packet */
3784 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3785 {
3786 	struct hci_acl_hdr *hdr = (void *) skb->data;
3787 	struct hci_conn *conn;
3788 	__u16 handle, flags;
3789 
3790 	skb_pull(skb, HCI_ACL_HDR_SIZE);
3791 
3792 	handle = __le16_to_cpu(hdr->handle);
3793 	flags  = hci_flags(handle);
3794 	handle = hci_handle(handle);
3795 
3796 	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3797 	       handle, flags);
3798 
3799 	hdev->stat.acl_rx++;
3800 
3801 	hci_dev_lock(hdev);
3802 	conn = hci_conn_hash_lookup_handle(hdev, handle);
3803 	hci_dev_unlock(hdev);
3804 
3805 	if (conn) {
3806 		hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
3807 
3808 		/* Send to upper protocol */
3809 		l2cap_recv_acldata(conn, skb, flags);
3810 		return;
3811 	} else {
3812 		bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
3813 			   handle);
3814 	}
3815 
3816 	kfree_skb(skb);
3817 }
3818 
3819 /* SCO data packet */
3820 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3821 {
3822 	struct hci_sco_hdr *hdr = (void *) skb->data;
3823 	struct hci_conn *conn;
3824 	__u16 handle, flags;
3825 
3826 	skb_pull(skb, HCI_SCO_HDR_SIZE);
3827 
3828 	handle = __le16_to_cpu(hdr->handle);
3829 	flags  = hci_flags(handle);
3830 	handle = hci_handle(handle);
3831 
3832 	BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
3833 	       handle, flags);
3834 
3835 	hdev->stat.sco_rx++;
3836 
3837 	hci_dev_lock(hdev);
3838 	conn = hci_conn_hash_lookup_handle(hdev, handle);
3839 	hci_dev_unlock(hdev);
3840 
3841 	if (conn) {
3842 		/* Send to upper protocol */
3843 		bt_cb(skb)->sco.pkt_status = flags & 0x03;
3844 		sco_recv_scodata(conn, skb);
3845 		return;
3846 	} else {
3847 		bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d",
3848 				       handle);
3849 	}
3850 
3851 	kfree_skb(skb);
3852 }
3853 
3854 static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
3855 {
3856 	struct hci_iso_hdr *hdr;
3857 	struct hci_conn *conn;
3858 	__u16 handle, flags;
3859 
3860 	hdr = skb_pull_data(skb, sizeof(*hdr));
3861 	if (!hdr) {
3862 		bt_dev_err(hdev, "ISO packet too small");
3863 		goto drop;
3864 	}
3865 
3866 	handle = __le16_to_cpu(hdr->handle);
3867 	flags  = hci_flags(handle);
3868 	handle = hci_handle(handle);
3869 
3870 	bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len,
3871 		   handle, flags);
3872 
3873 	hci_dev_lock(hdev);
3874 	conn = hci_conn_hash_lookup_handle(hdev, handle);
3875 	hci_dev_unlock(hdev);
3876 
3877 	if (!conn) {
3878 		bt_dev_err(hdev, "ISO packet for unknown connection handle %d",
3879 			   handle);
3880 		goto drop;
3881 	}
3882 
3883 	/* Send to upper protocol */
3884 	iso_recv(conn, skb, flags);
3885 	return;
3886 
3887 drop:
3888 	kfree_skb(skb);
3889 }
3890 
3891 static bool hci_req_is_complete(struct hci_dev *hdev)
3892 {
3893 	struct sk_buff *skb;
3894 
3895 	skb = skb_peek(&hdev->cmd_q);
3896 	if (!skb)
3897 		return true;
3898 
3899 	return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
3900 }
3901 
3902 static void hci_resend_last(struct hci_dev *hdev)
3903 {
3904 	struct hci_command_hdr *sent;
3905 	struct sk_buff *skb;
3906 	u16 opcode;
3907 
3908 	if (!hdev->sent_cmd)
3909 		return;
3910 
3911 	sent = (void *) hdev->sent_cmd->data;
3912 	opcode = __le16_to_cpu(sent->opcode);
3913 	if (opcode == HCI_OP_RESET)
3914 		return;
3915 
3916 	skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
3917 	if (!skb)
3918 		return;
3919 
3920 	skb_queue_head(&hdev->cmd_q, skb);
3921 	queue_work(hdev->workqueue, &hdev->cmd_work);
3922 }
3923 
3924 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
3925 			  hci_req_complete_t *req_complete,
3926 			  hci_req_complete_skb_t *req_complete_skb)
3927 {
3928 	struct sk_buff *skb;
3929 	unsigned long flags;
3930 
3931 	BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
3932 
3933 	/* If the completed command doesn't match the last one that was
3934 	 * sent we need to do special handling of it.
3935 	 */
3936 	if (!hci_sent_cmd_data(hdev, opcode)) {
3937 		/* Some CSR based controllers generate a spontaneous
3938 		 * reset complete event during init and any pending
3939 		 * command will never be completed. In such a case we
3940 		 * need to resend whatever was the last sent
3941 		 * command.
3942 		 */
3943 		if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
3944 			hci_resend_last(hdev);
3945 
3946 		return;
3947 	}
3948 
3949 	/* If we reach this point this event matches the last command sent */
3950 	hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
3951 
3952 	/* If the command succeeded and there's still more commands in
3953 	 * this request the request is not yet complete.
3954 	 */
3955 	if (!status && !hci_req_is_complete(hdev))
3956 		return;
3957 
3958 	/* If this was the last command in a request the complete
3959 	 * callback would be found in hdev->sent_cmd instead of the
3960 	 * command queue (hdev->cmd_q).
3961 	 */
3962 	if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
3963 		*req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
3964 		return;
3965 	}
3966 
3967 	if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
3968 		*req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
3969 		return;
3970 	}
3971 
3972 	/* Remove all pending commands belonging to this request */
3973 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
3974 	while ((skb = __skb_dequeue(&hdev->cmd_q))) {
3975 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
3976 			__skb_queue_head(&hdev->cmd_q, skb);
3977 			break;
3978 		}
3979 
3980 		if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
3981 			*req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
3982 		else
3983 			*req_complete = bt_cb(skb)->hci.req_complete;
3984 		kfree_skb(skb);
3985 	}
3986 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
3987 }
3988 
3989 static void hci_rx_work(struct work_struct *work)
3990 {
3991 	struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
3992 	struct sk_buff *skb;
3993 
3994 	BT_DBG("%s", hdev->name);
3995 
3996 	/* The kcov_remote functions used for collecting packet parsing
3997 	 * coverage information from this background thread and associate
3998 	 * the coverage with the syscall's thread which originally injected
3999 	 * the packet. This helps fuzzing the kernel.
4000 	 */
4001 	for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) {
4002 		kcov_remote_start_common(skb_get_kcov_handle(skb));
4003 
4004 		/* Send copy to monitor */
4005 		hci_send_to_monitor(hdev, skb);
4006 
4007 		if (atomic_read(&hdev->promisc)) {
4008 			/* Send copy to the sockets */
4009 			hci_send_to_sock(hdev, skb);
4010 		}
4011 
4012 		/* If the device has been opened in HCI_USER_CHANNEL,
4013 		 * the userspace has exclusive access to device.
4014 		 * When device is HCI_INIT, we still need to process
4015 		 * the data packets to the driver in order
4016 		 * to complete its setup().
4017 		 */
4018 		if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4019 		    !test_bit(HCI_INIT, &hdev->flags)) {
4020 			kfree_skb(skb);
4021 			continue;
4022 		}
4023 
4024 		if (test_bit(HCI_INIT, &hdev->flags)) {
4025 			/* Don't process data packets in this states. */
4026 			switch (hci_skb_pkt_type(skb)) {
4027 			case HCI_ACLDATA_PKT:
4028 			case HCI_SCODATA_PKT:
4029 			case HCI_ISODATA_PKT:
4030 				kfree_skb(skb);
4031 				continue;
4032 			}
4033 		}
4034 
4035 		/* Process frame */
4036 		switch (hci_skb_pkt_type(skb)) {
4037 		case HCI_EVENT_PKT:
4038 			BT_DBG("%s Event packet", hdev->name);
4039 			hci_event_packet(hdev, skb);
4040 			break;
4041 
4042 		case HCI_ACLDATA_PKT:
4043 			BT_DBG("%s ACL data packet", hdev->name);
4044 			hci_acldata_packet(hdev, skb);
4045 			break;
4046 
4047 		case HCI_SCODATA_PKT:
4048 			BT_DBG("%s SCO data packet", hdev->name);
4049 			hci_scodata_packet(hdev, skb);
4050 			break;
4051 
4052 		case HCI_ISODATA_PKT:
4053 			BT_DBG("%s ISO data packet", hdev->name);
4054 			hci_isodata_packet(hdev, skb);
4055 			break;
4056 
4057 		default:
4058 			kfree_skb(skb);
4059 			break;
4060 		}
4061 	}
4062 }
4063 
4064 static void hci_cmd_work(struct work_struct *work)
4065 {
4066 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4067 	struct sk_buff *skb;
4068 
4069 	BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4070 	       atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4071 
4072 	/* Send queued commands */
4073 	if (atomic_read(&hdev->cmd_cnt)) {
4074 		skb = skb_dequeue(&hdev->cmd_q);
4075 		if (!skb)
4076 			return;
4077 
4078 		kfree_skb(hdev->sent_cmd);
4079 
4080 		hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4081 		if (hdev->sent_cmd) {
4082 			int res;
4083 			if (hci_req_status_pend(hdev))
4084 				hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4085 			atomic_dec(&hdev->cmd_cnt);
4086 
4087 			res = hci_send_frame(hdev, skb);
4088 			if (res < 0)
4089 				__hci_cmd_sync_cancel(hdev, -res);
4090 
4091 			rcu_read_lock();
4092 			if (test_bit(HCI_RESET, &hdev->flags) ||
4093 			    hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE))
4094 				cancel_delayed_work(&hdev->cmd_timer);
4095 			else
4096 				queue_delayed_work(hdev->workqueue, &hdev->cmd_timer,
4097 						   HCI_CMD_TIMEOUT);
4098 			rcu_read_unlock();
4099 		} else {
4100 			skb_queue_head(&hdev->cmd_q, skb);
4101 			queue_work(hdev->workqueue, &hdev->cmd_work);
4102 		}
4103 	}
4104 }
4105