1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (C) 2000-2001 Qualcomm Incorporated 4 Copyright (C) 2011 ProFUSION Embedded Systems 5 6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License version 2 as 10 published by the Free Software Foundation; 11 12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 23 SOFTWARE IS DISCLAIMED. 24 */ 25 26 /* Bluetooth HCI core. */ 27 28 #include <linux/export.h> 29 #include <linux/rfkill.h> 30 #include <linux/debugfs.h> 31 #include <linux/crypto.h> 32 #include <linux/kcov.h> 33 #include <linux/property.h> 34 #include <linux/suspend.h> 35 #include <linux/wait.h> 36 #include <asm/unaligned.h> 37 38 #include <net/bluetooth/bluetooth.h> 39 #include <net/bluetooth/hci_core.h> 40 #include <net/bluetooth/l2cap.h> 41 #include <net/bluetooth/mgmt.h> 42 43 #include "hci_request.h" 44 #include "hci_debugfs.h" 45 #include "smp.h" 46 #include "leds.h" 47 #include "msft.h" 48 #include "aosp.h" 49 #include "hci_codec.h" 50 51 static void hci_rx_work(struct work_struct *work); 52 static void hci_cmd_work(struct work_struct *work); 53 static void hci_tx_work(struct work_struct *work); 54 55 /* HCI device list */ 56 LIST_HEAD(hci_dev_list); 57 DEFINE_RWLOCK(hci_dev_list_lock); 58 59 /* HCI callback list */ 60 LIST_HEAD(hci_cb_list); 61 DEFINE_MUTEX(hci_cb_list_lock); 62 63 /* HCI ID Numbering */ 64 static DEFINE_IDA(hci_index_ida); 65 66 static int hci_scan_req(struct hci_request *req, unsigned long opt) 67 { 68 __u8 scan = opt; 69 70 BT_DBG("%s %x", req->hdev->name, scan); 71 72 /* Inquiry and Page scans */ 73 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); 74 return 0; 75 } 76 77 static int hci_auth_req(struct hci_request *req, unsigned long opt) 78 { 79 __u8 auth = opt; 80 81 BT_DBG("%s %x", req->hdev->name, auth); 82 83 /* Authentication */ 84 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth); 85 return 0; 86 } 87 88 static int hci_encrypt_req(struct hci_request *req, unsigned long opt) 89 { 90 __u8 encrypt = opt; 91 92 BT_DBG("%s %x", req->hdev->name, encrypt); 93 94 /* Encryption */ 95 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt); 96 return 0; 97 } 98 99 static int hci_linkpol_req(struct hci_request *req, unsigned long opt) 100 { 101 __le16 policy = cpu_to_le16(opt); 102 103 BT_DBG("%s %x", req->hdev->name, policy); 104 105 /* Default link policy */ 106 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy); 107 return 0; 108 } 109 110 /* Get HCI device by index. 111 * Device is held on return. */ 112 struct hci_dev *hci_dev_get(int index) 113 { 114 struct hci_dev *hdev = NULL, *d; 115 116 BT_DBG("%d", index); 117 118 if (index < 0) 119 return NULL; 120 121 read_lock(&hci_dev_list_lock); 122 list_for_each_entry(d, &hci_dev_list, list) { 123 if (d->id == index) { 124 hdev = hci_dev_hold(d); 125 break; 126 } 127 } 128 read_unlock(&hci_dev_list_lock); 129 return hdev; 130 } 131 132 /* ---- Inquiry support ---- */ 133 134 bool hci_discovery_active(struct hci_dev *hdev) 135 { 136 struct discovery_state *discov = &hdev->discovery; 137 138 switch (discov->state) { 139 case DISCOVERY_FINDING: 140 case DISCOVERY_RESOLVING: 141 return true; 142 143 default: 144 return false; 145 } 146 } 147 148 void hci_discovery_set_state(struct hci_dev *hdev, int state) 149 { 150 int old_state = hdev->discovery.state; 151 152 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state); 153 154 if (old_state == state) 155 return; 156 157 hdev->discovery.state = state; 158 159 switch (state) { 160 case DISCOVERY_STOPPED: 161 hci_update_passive_scan(hdev); 162 163 if (old_state != DISCOVERY_STARTING) 164 mgmt_discovering(hdev, 0); 165 break; 166 case DISCOVERY_STARTING: 167 break; 168 case DISCOVERY_FINDING: 169 mgmt_discovering(hdev, 1); 170 break; 171 case DISCOVERY_RESOLVING: 172 break; 173 case DISCOVERY_STOPPING: 174 break; 175 } 176 } 177 178 void hci_inquiry_cache_flush(struct hci_dev *hdev) 179 { 180 struct discovery_state *cache = &hdev->discovery; 181 struct inquiry_entry *p, *n; 182 183 list_for_each_entry_safe(p, n, &cache->all, all) { 184 list_del(&p->all); 185 kfree(p); 186 } 187 188 INIT_LIST_HEAD(&cache->unknown); 189 INIT_LIST_HEAD(&cache->resolve); 190 } 191 192 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, 193 bdaddr_t *bdaddr) 194 { 195 struct discovery_state *cache = &hdev->discovery; 196 struct inquiry_entry *e; 197 198 BT_DBG("cache %p, %pMR", cache, bdaddr); 199 200 list_for_each_entry(e, &cache->all, all) { 201 if (!bacmp(&e->data.bdaddr, bdaddr)) 202 return e; 203 } 204 205 return NULL; 206 } 207 208 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, 209 bdaddr_t *bdaddr) 210 { 211 struct discovery_state *cache = &hdev->discovery; 212 struct inquiry_entry *e; 213 214 BT_DBG("cache %p, %pMR", cache, bdaddr); 215 216 list_for_each_entry(e, &cache->unknown, list) { 217 if (!bacmp(&e->data.bdaddr, bdaddr)) 218 return e; 219 } 220 221 return NULL; 222 } 223 224 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, 225 bdaddr_t *bdaddr, 226 int state) 227 { 228 struct discovery_state *cache = &hdev->discovery; 229 struct inquiry_entry *e; 230 231 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state); 232 233 list_for_each_entry(e, &cache->resolve, list) { 234 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state) 235 return e; 236 if (!bacmp(&e->data.bdaddr, bdaddr)) 237 return e; 238 } 239 240 return NULL; 241 } 242 243 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, 244 struct inquiry_entry *ie) 245 { 246 struct discovery_state *cache = &hdev->discovery; 247 struct list_head *pos = &cache->resolve; 248 struct inquiry_entry *p; 249 250 list_del(&ie->list); 251 252 list_for_each_entry(p, &cache->resolve, list) { 253 if (p->name_state != NAME_PENDING && 254 abs(p->data.rssi) >= abs(ie->data.rssi)) 255 break; 256 pos = &p->list; 257 } 258 259 list_add(&ie->list, pos); 260 } 261 262 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, 263 bool name_known) 264 { 265 struct discovery_state *cache = &hdev->discovery; 266 struct inquiry_entry *ie; 267 u32 flags = 0; 268 269 BT_DBG("cache %p, %pMR", cache, &data->bdaddr); 270 271 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR); 272 273 if (!data->ssp_mode) 274 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 275 276 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr); 277 if (ie) { 278 if (!ie->data.ssp_mode) 279 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 280 281 if (ie->name_state == NAME_NEEDED && 282 data->rssi != ie->data.rssi) { 283 ie->data.rssi = data->rssi; 284 hci_inquiry_cache_update_resolve(hdev, ie); 285 } 286 287 goto update; 288 } 289 290 /* Entry not in the cache. Add new one. */ 291 ie = kzalloc(sizeof(*ie), GFP_KERNEL); 292 if (!ie) { 293 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 294 goto done; 295 } 296 297 list_add(&ie->all, &cache->all); 298 299 if (name_known) { 300 ie->name_state = NAME_KNOWN; 301 } else { 302 ie->name_state = NAME_NOT_KNOWN; 303 list_add(&ie->list, &cache->unknown); 304 } 305 306 update: 307 if (name_known && ie->name_state != NAME_KNOWN && 308 ie->name_state != NAME_PENDING) { 309 ie->name_state = NAME_KNOWN; 310 list_del(&ie->list); 311 } 312 313 memcpy(&ie->data, data, sizeof(*data)); 314 ie->timestamp = jiffies; 315 cache->timestamp = jiffies; 316 317 if (ie->name_state == NAME_NOT_KNOWN) 318 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 319 320 done: 321 return flags; 322 } 323 324 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf) 325 { 326 struct discovery_state *cache = &hdev->discovery; 327 struct inquiry_info *info = (struct inquiry_info *) buf; 328 struct inquiry_entry *e; 329 int copied = 0; 330 331 list_for_each_entry(e, &cache->all, all) { 332 struct inquiry_data *data = &e->data; 333 334 if (copied >= num) 335 break; 336 337 bacpy(&info->bdaddr, &data->bdaddr); 338 info->pscan_rep_mode = data->pscan_rep_mode; 339 info->pscan_period_mode = data->pscan_period_mode; 340 info->pscan_mode = data->pscan_mode; 341 memcpy(info->dev_class, data->dev_class, 3); 342 info->clock_offset = data->clock_offset; 343 344 info++; 345 copied++; 346 } 347 348 BT_DBG("cache %p, copied %d", cache, copied); 349 return copied; 350 } 351 352 static int hci_inq_req(struct hci_request *req, unsigned long opt) 353 { 354 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt; 355 struct hci_dev *hdev = req->hdev; 356 struct hci_cp_inquiry cp; 357 358 BT_DBG("%s", hdev->name); 359 360 if (test_bit(HCI_INQUIRY, &hdev->flags)) 361 return 0; 362 363 /* Start Inquiry */ 364 memcpy(&cp.lap, &ir->lap, 3); 365 cp.length = ir->length; 366 cp.num_rsp = ir->num_rsp; 367 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp); 368 369 return 0; 370 } 371 372 int hci_inquiry(void __user *arg) 373 { 374 __u8 __user *ptr = arg; 375 struct hci_inquiry_req ir; 376 struct hci_dev *hdev; 377 int err = 0, do_inquiry = 0, max_rsp; 378 long timeo; 379 __u8 *buf; 380 381 if (copy_from_user(&ir, ptr, sizeof(ir))) 382 return -EFAULT; 383 384 hdev = hci_dev_get(ir.dev_id); 385 if (!hdev) 386 return -ENODEV; 387 388 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 389 err = -EBUSY; 390 goto done; 391 } 392 393 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 394 err = -EOPNOTSUPP; 395 goto done; 396 } 397 398 if (hdev->dev_type != HCI_PRIMARY) { 399 err = -EOPNOTSUPP; 400 goto done; 401 } 402 403 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 404 err = -EOPNOTSUPP; 405 goto done; 406 } 407 408 /* Restrict maximum inquiry length to 60 seconds */ 409 if (ir.length > 60) { 410 err = -EINVAL; 411 goto done; 412 } 413 414 hci_dev_lock(hdev); 415 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX || 416 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) { 417 hci_inquiry_cache_flush(hdev); 418 do_inquiry = 1; 419 } 420 hci_dev_unlock(hdev); 421 422 timeo = ir.length * msecs_to_jiffies(2000); 423 424 if (do_inquiry) { 425 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir, 426 timeo, NULL); 427 if (err < 0) 428 goto done; 429 430 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is 431 * cleared). If it is interrupted by a signal, return -EINTR. 432 */ 433 if (wait_on_bit(&hdev->flags, HCI_INQUIRY, 434 TASK_INTERRUPTIBLE)) { 435 err = -EINTR; 436 goto done; 437 } 438 } 439 440 /* for unlimited number of responses we will use buffer with 441 * 255 entries 442 */ 443 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp; 444 445 /* cache_dump can't sleep. Therefore we allocate temp buffer and then 446 * copy it to the user space. 447 */ 448 buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL); 449 if (!buf) { 450 err = -ENOMEM; 451 goto done; 452 } 453 454 hci_dev_lock(hdev); 455 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf); 456 hci_dev_unlock(hdev); 457 458 BT_DBG("num_rsp %d", ir.num_rsp); 459 460 if (!copy_to_user(ptr, &ir, sizeof(ir))) { 461 ptr += sizeof(ir); 462 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) * 463 ir.num_rsp)) 464 err = -EFAULT; 465 } else 466 err = -EFAULT; 467 468 kfree(buf); 469 470 done: 471 hci_dev_put(hdev); 472 return err; 473 } 474 475 static int hci_dev_do_open(struct hci_dev *hdev) 476 { 477 int ret = 0; 478 479 BT_DBG("%s %p", hdev->name, hdev); 480 481 hci_req_sync_lock(hdev); 482 483 ret = hci_dev_open_sync(hdev); 484 485 hci_req_sync_unlock(hdev); 486 return ret; 487 } 488 489 /* ---- HCI ioctl helpers ---- */ 490 491 int hci_dev_open(__u16 dev) 492 { 493 struct hci_dev *hdev; 494 int err; 495 496 hdev = hci_dev_get(dev); 497 if (!hdev) 498 return -ENODEV; 499 500 /* Devices that are marked as unconfigured can only be powered 501 * up as user channel. Trying to bring them up as normal devices 502 * will result into a failure. Only user channel operation is 503 * possible. 504 * 505 * When this function is called for a user channel, the flag 506 * HCI_USER_CHANNEL will be set first before attempting to 507 * open the device. 508 */ 509 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 510 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 511 err = -EOPNOTSUPP; 512 goto done; 513 } 514 515 /* We need to ensure that no other power on/off work is pending 516 * before proceeding to call hci_dev_do_open. This is 517 * particularly important if the setup procedure has not yet 518 * completed. 519 */ 520 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) 521 cancel_delayed_work(&hdev->power_off); 522 523 /* After this call it is guaranteed that the setup procedure 524 * has finished. This means that error conditions like RFKILL 525 * or no valid public or static random address apply. 526 */ 527 flush_workqueue(hdev->req_workqueue); 528 529 /* For controllers not using the management interface and that 530 * are brought up using legacy ioctl, set the HCI_BONDABLE bit 531 * so that pairing works for them. Once the management interface 532 * is in use this bit will be cleared again and userspace has 533 * to explicitly enable it. 534 */ 535 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 536 !hci_dev_test_flag(hdev, HCI_MGMT)) 537 hci_dev_set_flag(hdev, HCI_BONDABLE); 538 539 err = hci_dev_do_open(hdev); 540 541 done: 542 hci_dev_put(hdev); 543 return err; 544 } 545 546 int hci_dev_do_close(struct hci_dev *hdev) 547 { 548 int err; 549 550 BT_DBG("%s %p", hdev->name, hdev); 551 552 hci_req_sync_lock(hdev); 553 554 err = hci_dev_close_sync(hdev); 555 556 hci_req_sync_unlock(hdev); 557 558 return err; 559 } 560 561 int hci_dev_close(__u16 dev) 562 { 563 struct hci_dev *hdev; 564 int err; 565 566 hdev = hci_dev_get(dev); 567 if (!hdev) 568 return -ENODEV; 569 570 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 571 err = -EBUSY; 572 goto done; 573 } 574 575 cancel_work_sync(&hdev->power_on); 576 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) 577 cancel_delayed_work(&hdev->power_off); 578 579 err = hci_dev_do_close(hdev); 580 581 done: 582 hci_dev_put(hdev); 583 return err; 584 } 585 586 static int hci_dev_do_reset(struct hci_dev *hdev) 587 { 588 int ret; 589 590 BT_DBG("%s %p", hdev->name, hdev); 591 592 hci_req_sync_lock(hdev); 593 594 /* Drop queues */ 595 skb_queue_purge(&hdev->rx_q); 596 skb_queue_purge(&hdev->cmd_q); 597 598 /* Cancel these to avoid queueing non-chained pending work */ 599 hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE); 600 /* Wait for 601 * 602 * if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE)) 603 * queue_delayed_work(&hdev->{cmd,ncmd}_timer) 604 * 605 * inside RCU section to see the flag or complete scheduling. 606 */ 607 synchronize_rcu(); 608 /* Explicitly cancel works in case scheduled after setting the flag. */ 609 cancel_delayed_work(&hdev->cmd_timer); 610 cancel_delayed_work(&hdev->ncmd_timer); 611 612 /* Avoid potential lockdep warnings from the *_flush() calls by 613 * ensuring the workqueue is empty up front. 614 */ 615 drain_workqueue(hdev->workqueue); 616 617 hci_dev_lock(hdev); 618 hci_inquiry_cache_flush(hdev); 619 hci_conn_hash_flush(hdev); 620 hci_dev_unlock(hdev); 621 622 if (hdev->flush) 623 hdev->flush(hdev); 624 625 hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE); 626 627 atomic_set(&hdev->cmd_cnt, 1); 628 hdev->acl_cnt = 0; 629 hdev->sco_cnt = 0; 630 hdev->le_cnt = 0; 631 hdev->iso_cnt = 0; 632 633 ret = hci_reset_sync(hdev); 634 635 hci_req_sync_unlock(hdev); 636 return ret; 637 } 638 639 int hci_dev_reset(__u16 dev) 640 { 641 struct hci_dev *hdev; 642 int err; 643 644 hdev = hci_dev_get(dev); 645 if (!hdev) 646 return -ENODEV; 647 648 if (!test_bit(HCI_UP, &hdev->flags)) { 649 err = -ENETDOWN; 650 goto done; 651 } 652 653 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 654 err = -EBUSY; 655 goto done; 656 } 657 658 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 659 err = -EOPNOTSUPP; 660 goto done; 661 } 662 663 err = hci_dev_do_reset(hdev); 664 665 done: 666 hci_dev_put(hdev); 667 return err; 668 } 669 670 int hci_dev_reset_stat(__u16 dev) 671 { 672 struct hci_dev *hdev; 673 int ret = 0; 674 675 hdev = hci_dev_get(dev); 676 if (!hdev) 677 return -ENODEV; 678 679 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 680 ret = -EBUSY; 681 goto done; 682 } 683 684 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 685 ret = -EOPNOTSUPP; 686 goto done; 687 } 688 689 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats)); 690 691 done: 692 hci_dev_put(hdev); 693 return ret; 694 } 695 696 static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan) 697 { 698 bool conn_changed, discov_changed; 699 700 BT_DBG("%s scan 0x%02x", hdev->name, scan); 701 702 if ((scan & SCAN_PAGE)) 703 conn_changed = !hci_dev_test_and_set_flag(hdev, 704 HCI_CONNECTABLE); 705 else 706 conn_changed = hci_dev_test_and_clear_flag(hdev, 707 HCI_CONNECTABLE); 708 709 if ((scan & SCAN_INQUIRY)) { 710 discov_changed = !hci_dev_test_and_set_flag(hdev, 711 HCI_DISCOVERABLE); 712 } else { 713 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 714 discov_changed = hci_dev_test_and_clear_flag(hdev, 715 HCI_DISCOVERABLE); 716 } 717 718 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 719 return; 720 721 if (conn_changed || discov_changed) { 722 /* In case this was disabled through mgmt */ 723 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); 724 725 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 726 hci_update_adv_data(hdev, hdev->cur_adv_instance); 727 728 mgmt_new_settings(hdev); 729 } 730 } 731 732 int hci_dev_cmd(unsigned int cmd, void __user *arg) 733 { 734 struct hci_dev *hdev; 735 struct hci_dev_req dr; 736 int err = 0; 737 738 if (copy_from_user(&dr, arg, sizeof(dr))) 739 return -EFAULT; 740 741 hdev = hci_dev_get(dr.dev_id); 742 if (!hdev) 743 return -ENODEV; 744 745 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 746 err = -EBUSY; 747 goto done; 748 } 749 750 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 751 err = -EOPNOTSUPP; 752 goto done; 753 } 754 755 if (hdev->dev_type != HCI_PRIMARY) { 756 err = -EOPNOTSUPP; 757 goto done; 758 } 759 760 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 761 err = -EOPNOTSUPP; 762 goto done; 763 } 764 765 switch (cmd) { 766 case HCISETAUTH: 767 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt, 768 HCI_INIT_TIMEOUT, NULL); 769 break; 770 771 case HCISETENCRYPT: 772 if (!lmp_encrypt_capable(hdev)) { 773 err = -EOPNOTSUPP; 774 break; 775 } 776 777 if (!test_bit(HCI_AUTH, &hdev->flags)) { 778 /* Auth must be enabled first */ 779 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt, 780 HCI_INIT_TIMEOUT, NULL); 781 if (err) 782 break; 783 } 784 785 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt, 786 HCI_INIT_TIMEOUT, NULL); 787 break; 788 789 case HCISETSCAN: 790 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt, 791 HCI_INIT_TIMEOUT, NULL); 792 793 /* Ensure that the connectable and discoverable states 794 * get correctly modified as this was a non-mgmt change. 795 */ 796 if (!err) 797 hci_update_passive_scan_state(hdev, dr.dev_opt); 798 break; 799 800 case HCISETLINKPOL: 801 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt, 802 HCI_INIT_TIMEOUT, NULL); 803 break; 804 805 case HCISETLINKMODE: 806 hdev->link_mode = ((__u16) dr.dev_opt) & 807 (HCI_LM_MASTER | HCI_LM_ACCEPT); 808 break; 809 810 case HCISETPTYPE: 811 if (hdev->pkt_type == (__u16) dr.dev_opt) 812 break; 813 814 hdev->pkt_type = (__u16) dr.dev_opt; 815 mgmt_phy_configuration_changed(hdev, NULL); 816 break; 817 818 case HCISETACLMTU: 819 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1); 820 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0); 821 break; 822 823 case HCISETSCOMTU: 824 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1); 825 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0); 826 break; 827 828 default: 829 err = -EINVAL; 830 break; 831 } 832 833 done: 834 hci_dev_put(hdev); 835 return err; 836 } 837 838 int hci_get_dev_list(void __user *arg) 839 { 840 struct hci_dev *hdev; 841 struct hci_dev_list_req *dl; 842 struct hci_dev_req *dr; 843 int n = 0, size, err; 844 __u16 dev_num; 845 846 if (get_user(dev_num, (__u16 __user *) arg)) 847 return -EFAULT; 848 849 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr)) 850 return -EINVAL; 851 852 size = sizeof(*dl) + dev_num * sizeof(*dr); 853 854 dl = kzalloc(size, GFP_KERNEL); 855 if (!dl) 856 return -ENOMEM; 857 858 dr = dl->dev_req; 859 860 read_lock(&hci_dev_list_lock); 861 list_for_each_entry(hdev, &hci_dev_list, list) { 862 unsigned long flags = hdev->flags; 863 864 /* When the auto-off is configured it means the transport 865 * is running, but in that case still indicate that the 866 * device is actually down. 867 */ 868 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) 869 flags &= ~BIT(HCI_UP); 870 871 (dr + n)->dev_id = hdev->id; 872 (dr + n)->dev_opt = flags; 873 874 if (++n >= dev_num) 875 break; 876 } 877 read_unlock(&hci_dev_list_lock); 878 879 dl->dev_num = n; 880 size = sizeof(*dl) + n * sizeof(*dr); 881 882 err = copy_to_user(arg, dl, size); 883 kfree(dl); 884 885 return err ? -EFAULT : 0; 886 } 887 888 int hci_get_dev_info(void __user *arg) 889 { 890 struct hci_dev *hdev; 891 struct hci_dev_info di; 892 unsigned long flags; 893 int err = 0; 894 895 if (copy_from_user(&di, arg, sizeof(di))) 896 return -EFAULT; 897 898 hdev = hci_dev_get(di.dev_id); 899 if (!hdev) 900 return -ENODEV; 901 902 /* When the auto-off is configured it means the transport 903 * is running, but in that case still indicate that the 904 * device is actually down. 905 */ 906 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) 907 flags = hdev->flags & ~BIT(HCI_UP); 908 else 909 flags = hdev->flags; 910 911 strcpy(di.name, hdev->name); 912 di.bdaddr = hdev->bdaddr; 913 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4); 914 di.flags = flags; 915 di.pkt_type = hdev->pkt_type; 916 if (lmp_bredr_capable(hdev)) { 917 di.acl_mtu = hdev->acl_mtu; 918 di.acl_pkts = hdev->acl_pkts; 919 di.sco_mtu = hdev->sco_mtu; 920 di.sco_pkts = hdev->sco_pkts; 921 } else { 922 di.acl_mtu = hdev->le_mtu; 923 di.acl_pkts = hdev->le_pkts; 924 di.sco_mtu = 0; 925 di.sco_pkts = 0; 926 } 927 di.link_policy = hdev->link_policy; 928 di.link_mode = hdev->link_mode; 929 930 memcpy(&di.stat, &hdev->stat, sizeof(di.stat)); 931 memcpy(&di.features, &hdev->features, sizeof(di.features)); 932 933 if (copy_to_user(arg, &di, sizeof(di))) 934 err = -EFAULT; 935 936 hci_dev_put(hdev); 937 938 return err; 939 } 940 941 /* ---- Interface to HCI drivers ---- */ 942 943 static int hci_rfkill_set_block(void *data, bool blocked) 944 { 945 struct hci_dev *hdev = data; 946 947 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked); 948 949 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) 950 return -EBUSY; 951 952 if (blocked) { 953 hci_dev_set_flag(hdev, HCI_RFKILLED); 954 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 955 !hci_dev_test_flag(hdev, HCI_CONFIG)) 956 hci_dev_do_close(hdev); 957 } else { 958 hci_dev_clear_flag(hdev, HCI_RFKILLED); 959 } 960 961 return 0; 962 } 963 964 static const struct rfkill_ops hci_rfkill_ops = { 965 .set_block = hci_rfkill_set_block, 966 }; 967 968 static void hci_power_on(struct work_struct *work) 969 { 970 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on); 971 int err; 972 973 BT_DBG("%s", hdev->name); 974 975 if (test_bit(HCI_UP, &hdev->flags) && 976 hci_dev_test_flag(hdev, HCI_MGMT) && 977 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 978 cancel_delayed_work(&hdev->power_off); 979 err = hci_powered_update_sync(hdev); 980 mgmt_power_on(hdev, err); 981 return; 982 } 983 984 err = hci_dev_do_open(hdev); 985 if (err < 0) { 986 hci_dev_lock(hdev); 987 mgmt_set_powered_failed(hdev, err); 988 hci_dev_unlock(hdev); 989 return; 990 } 991 992 /* During the HCI setup phase, a few error conditions are 993 * ignored and they need to be checked now. If they are still 994 * valid, it is important to turn the device back off. 995 */ 996 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 997 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 998 (hdev->dev_type == HCI_PRIMARY && 999 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 1000 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 1001 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 1002 hci_dev_do_close(hdev); 1003 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 1004 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 1005 HCI_AUTO_OFF_TIMEOUT); 1006 } 1007 1008 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 1009 /* For unconfigured devices, set the HCI_RAW flag 1010 * so that userspace can easily identify them. 1011 */ 1012 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 1013 set_bit(HCI_RAW, &hdev->flags); 1014 1015 /* For fully configured devices, this will send 1016 * the Index Added event. For unconfigured devices, 1017 * it will send Unconfigued Index Added event. 1018 * 1019 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 1020 * and no event will be send. 1021 */ 1022 mgmt_index_added(hdev); 1023 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 1024 /* When the controller is now configured, then it 1025 * is important to clear the HCI_RAW flag. 1026 */ 1027 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 1028 clear_bit(HCI_RAW, &hdev->flags); 1029 1030 /* Powering on the controller with HCI_CONFIG set only 1031 * happens with the transition from unconfigured to 1032 * configured. This will send the Index Added event. 1033 */ 1034 mgmt_index_added(hdev); 1035 } 1036 } 1037 1038 static void hci_power_off(struct work_struct *work) 1039 { 1040 struct hci_dev *hdev = container_of(work, struct hci_dev, 1041 power_off.work); 1042 1043 BT_DBG("%s", hdev->name); 1044 1045 hci_dev_do_close(hdev); 1046 } 1047 1048 static void hci_error_reset(struct work_struct *work) 1049 { 1050 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset); 1051 1052 BT_DBG("%s", hdev->name); 1053 1054 if (hdev->hw_error) 1055 hdev->hw_error(hdev, hdev->hw_error_code); 1056 else 1057 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code); 1058 1059 if (hci_dev_do_close(hdev)) 1060 return; 1061 1062 hci_dev_do_open(hdev); 1063 } 1064 1065 void hci_uuids_clear(struct hci_dev *hdev) 1066 { 1067 struct bt_uuid *uuid, *tmp; 1068 1069 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) { 1070 list_del(&uuid->list); 1071 kfree(uuid); 1072 } 1073 } 1074 1075 void hci_link_keys_clear(struct hci_dev *hdev) 1076 { 1077 struct link_key *key; 1078 1079 list_for_each_entry(key, &hdev->link_keys, list) { 1080 list_del_rcu(&key->list); 1081 kfree_rcu(key, rcu); 1082 } 1083 } 1084 1085 void hci_smp_ltks_clear(struct hci_dev *hdev) 1086 { 1087 struct smp_ltk *k; 1088 1089 list_for_each_entry(k, &hdev->long_term_keys, list) { 1090 list_del_rcu(&k->list); 1091 kfree_rcu(k, rcu); 1092 } 1093 } 1094 1095 void hci_smp_irks_clear(struct hci_dev *hdev) 1096 { 1097 struct smp_irk *k; 1098 1099 list_for_each_entry(k, &hdev->identity_resolving_keys, list) { 1100 list_del_rcu(&k->list); 1101 kfree_rcu(k, rcu); 1102 } 1103 } 1104 1105 void hci_blocked_keys_clear(struct hci_dev *hdev) 1106 { 1107 struct blocked_key *b; 1108 1109 list_for_each_entry(b, &hdev->blocked_keys, list) { 1110 list_del_rcu(&b->list); 1111 kfree_rcu(b, rcu); 1112 } 1113 } 1114 1115 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16]) 1116 { 1117 bool blocked = false; 1118 struct blocked_key *b; 1119 1120 rcu_read_lock(); 1121 list_for_each_entry_rcu(b, &hdev->blocked_keys, list) { 1122 if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) { 1123 blocked = true; 1124 break; 1125 } 1126 } 1127 1128 rcu_read_unlock(); 1129 return blocked; 1130 } 1131 1132 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 1133 { 1134 struct link_key *k; 1135 1136 rcu_read_lock(); 1137 list_for_each_entry_rcu(k, &hdev->link_keys, list) { 1138 if (bacmp(bdaddr, &k->bdaddr) == 0) { 1139 rcu_read_unlock(); 1140 1141 if (hci_is_blocked_key(hdev, 1142 HCI_BLOCKED_KEY_TYPE_LINKKEY, 1143 k->val)) { 1144 bt_dev_warn_ratelimited(hdev, 1145 "Link key blocked for %pMR", 1146 &k->bdaddr); 1147 return NULL; 1148 } 1149 1150 return k; 1151 } 1152 } 1153 rcu_read_unlock(); 1154 1155 return NULL; 1156 } 1157 1158 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn, 1159 u8 key_type, u8 old_key_type) 1160 { 1161 /* Legacy key */ 1162 if (key_type < 0x03) 1163 return true; 1164 1165 /* Debug keys are insecure so don't store them persistently */ 1166 if (key_type == HCI_LK_DEBUG_COMBINATION) 1167 return false; 1168 1169 /* Changed combination key and there's no previous one */ 1170 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff) 1171 return false; 1172 1173 /* Security mode 3 case */ 1174 if (!conn) 1175 return true; 1176 1177 /* BR/EDR key derived using SC from an LE link */ 1178 if (conn->type == LE_LINK) 1179 return true; 1180 1181 /* Neither local nor remote side had no-bonding as requirement */ 1182 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01) 1183 return true; 1184 1185 /* Local side had dedicated bonding as requirement */ 1186 if (conn->auth_type == 0x02 || conn->auth_type == 0x03) 1187 return true; 1188 1189 /* Remote side had dedicated bonding as requirement */ 1190 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03) 1191 return true; 1192 1193 /* If none of the above criteria match, then don't store the key 1194 * persistently */ 1195 return false; 1196 } 1197 1198 static u8 ltk_role(u8 type) 1199 { 1200 if (type == SMP_LTK) 1201 return HCI_ROLE_MASTER; 1202 1203 return HCI_ROLE_SLAVE; 1204 } 1205 1206 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1207 u8 addr_type, u8 role) 1208 { 1209 struct smp_ltk *k; 1210 1211 rcu_read_lock(); 1212 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 1213 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr)) 1214 continue; 1215 1216 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) { 1217 rcu_read_unlock(); 1218 1219 if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK, 1220 k->val)) { 1221 bt_dev_warn_ratelimited(hdev, 1222 "LTK blocked for %pMR", 1223 &k->bdaddr); 1224 return NULL; 1225 } 1226 1227 return k; 1228 } 1229 } 1230 rcu_read_unlock(); 1231 1232 return NULL; 1233 } 1234 1235 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa) 1236 { 1237 struct smp_irk *irk_to_return = NULL; 1238 struct smp_irk *irk; 1239 1240 rcu_read_lock(); 1241 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 1242 if (!bacmp(&irk->rpa, rpa)) { 1243 irk_to_return = irk; 1244 goto done; 1245 } 1246 } 1247 1248 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 1249 if (smp_irk_matches(hdev, irk->val, rpa)) { 1250 bacpy(&irk->rpa, rpa); 1251 irk_to_return = irk; 1252 goto done; 1253 } 1254 } 1255 1256 done: 1257 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK, 1258 irk_to_return->val)) { 1259 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR", 1260 &irk_to_return->bdaddr); 1261 irk_to_return = NULL; 1262 } 1263 1264 rcu_read_unlock(); 1265 1266 return irk_to_return; 1267 } 1268 1269 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, 1270 u8 addr_type) 1271 { 1272 struct smp_irk *irk_to_return = NULL; 1273 struct smp_irk *irk; 1274 1275 /* Identity Address must be public or static random */ 1276 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0) 1277 return NULL; 1278 1279 rcu_read_lock(); 1280 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 1281 if (addr_type == irk->addr_type && 1282 bacmp(bdaddr, &irk->bdaddr) == 0) { 1283 irk_to_return = irk; 1284 goto done; 1285 } 1286 } 1287 1288 done: 1289 1290 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK, 1291 irk_to_return->val)) { 1292 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR", 1293 &irk_to_return->bdaddr); 1294 irk_to_return = NULL; 1295 } 1296 1297 rcu_read_unlock(); 1298 1299 return irk_to_return; 1300 } 1301 1302 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, 1303 bdaddr_t *bdaddr, u8 *val, u8 type, 1304 u8 pin_len, bool *persistent) 1305 { 1306 struct link_key *key, *old_key; 1307 u8 old_key_type; 1308 1309 old_key = hci_find_link_key(hdev, bdaddr); 1310 if (old_key) { 1311 old_key_type = old_key->type; 1312 key = old_key; 1313 } else { 1314 old_key_type = conn ? conn->key_type : 0xff; 1315 key = kzalloc(sizeof(*key), GFP_KERNEL); 1316 if (!key) 1317 return NULL; 1318 list_add_rcu(&key->list, &hdev->link_keys); 1319 } 1320 1321 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type); 1322 1323 /* Some buggy controller combinations generate a changed 1324 * combination key for legacy pairing even when there's no 1325 * previous key */ 1326 if (type == HCI_LK_CHANGED_COMBINATION && 1327 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) { 1328 type = HCI_LK_COMBINATION; 1329 if (conn) 1330 conn->key_type = type; 1331 } 1332 1333 bacpy(&key->bdaddr, bdaddr); 1334 memcpy(key->val, val, HCI_LINK_KEY_SIZE); 1335 key->pin_len = pin_len; 1336 1337 if (type == HCI_LK_CHANGED_COMBINATION) 1338 key->type = old_key_type; 1339 else 1340 key->type = type; 1341 1342 if (persistent) 1343 *persistent = hci_persistent_key(hdev, conn, type, 1344 old_key_type); 1345 1346 return key; 1347 } 1348 1349 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1350 u8 addr_type, u8 type, u8 authenticated, 1351 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand) 1352 { 1353 struct smp_ltk *key, *old_key; 1354 u8 role = ltk_role(type); 1355 1356 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role); 1357 if (old_key) 1358 key = old_key; 1359 else { 1360 key = kzalloc(sizeof(*key), GFP_KERNEL); 1361 if (!key) 1362 return NULL; 1363 list_add_rcu(&key->list, &hdev->long_term_keys); 1364 } 1365 1366 bacpy(&key->bdaddr, bdaddr); 1367 key->bdaddr_type = addr_type; 1368 memcpy(key->val, tk, sizeof(key->val)); 1369 key->authenticated = authenticated; 1370 key->ediv = ediv; 1371 key->rand = rand; 1372 key->enc_size = enc_size; 1373 key->type = type; 1374 1375 return key; 1376 } 1377 1378 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1379 u8 addr_type, u8 val[16], bdaddr_t *rpa) 1380 { 1381 struct smp_irk *irk; 1382 1383 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type); 1384 if (!irk) { 1385 irk = kzalloc(sizeof(*irk), GFP_KERNEL); 1386 if (!irk) 1387 return NULL; 1388 1389 bacpy(&irk->bdaddr, bdaddr); 1390 irk->addr_type = addr_type; 1391 1392 list_add_rcu(&irk->list, &hdev->identity_resolving_keys); 1393 } 1394 1395 memcpy(irk->val, val, 16); 1396 bacpy(&irk->rpa, rpa); 1397 1398 return irk; 1399 } 1400 1401 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 1402 { 1403 struct link_key *key; 1404 1405 key = hci_find_link_key(hdev, bdaddr); 1406 if (!key) 1407 return -ENOENT; 1408 1409 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 1410 1411 list_del_rcu(&key->list); 1412 kfree_rcu(key, rcu); 1413 1414 return 0; 1415 } 1416 1417 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type) 1418 { 1419 struct smp_ltk *k; 1420 int removed = 0; 1421 1422 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 1423 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type) 1424 continue; 1425 1426 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 1427 1428 list_del_rcu(&k->list); 1429 kfree_rcu(k, rcu); 1430 removed++; 1431 } 1432 1433 return removed ? 0 : -ENOENT; 1434 } 1435 1436 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type) 1437 { 1438 struct smp_irk *k; 1439 1440 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) { 1441 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type) 1442 continue; 1443 1444 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 1445 1446 list_del_rcu(&k->list); 1447 kfree_rcu(k, rcu); 1448 } 1449 } 1450 1451 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type) 1452 { 1453 struct smp_ltk *k; 1454 struct smp_irk *irk; 1455 u8 addr_type; 1456 1457 if (type == BDADDR_BREDR) { 1458 if (hci_find_link_key(hdev, bdaddr)) 1459 return true; 1460 return false; 1461 } 1462 1463 /* Convert to HCI addr type which struct smp_ltk uses */ 1464 if (type == BDADDR_LE_PUBLIC) 1465 addr_type = ADDR_LE_DEV_PUBLIC; 1466 else 1467 addr_type = ADDR_LE_DEV_RANDOM; 1468 1469 irk = hci_get_irk(hdev, bdaddr, addr_type); 1470 if (irk) { 1471 bdaddr = &irk->bdaddr; 1472 addr_type = irk->addr_type; 1473 } 1474 1475 rcu_read_lock(); 1476 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 1477 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) { 1478 rcu_read_unlock(); 1479 return true; 1480 } 1481 } 1482 rcu_read_unlock(); 1483 1484 return false; 1485 } 1486 1487 /* HCI command timer function */ 1488 static void hci_cmd_timeout(struct work_struct *work) 1489 { 1490 struct hci_dev *hdev = container_of(work, struct hci_dev, 1491 cmd_timer.work); 1492 1493 if (hdev->sent_cmd) { 1494 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data; 1495 u16 opcode = __le16_to_cpu(sent->opcode); 1496 1497 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode); 1498 } else { 1499 bt_dev_err(hdev, "command tx timeout"); 1500 } 1501 1502 if (hdev->cmd_timeout) 1503 hdev->cmd_timeout(hdev); 1504 1505 atomic_set(&hdev->cmd_cnt, 1); 1506 queue_work(hdev->workqueue, &hdev->cmd_work); 1507 } 1508 1509 /* HCI ncmd timer function */ 1510 static void hci_ncmd_timeout(struct work_struct *work) 1511 { 1512 struct hci_dev *hdev = container_of(work, struct hci_dev, 1513 ncmd_timer.work); 1514 1515 bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0"); 1516 1517 /* During HCI_INIT phase no events can be injected if the ncmd timer 1518 * triggers since the procedure has its own timeout handling. 1519 */ 1520 if (test_bit(HCI_INIT, &hdev->flags)) 1521 return; 1522 1523 /* This is an irrecoverable state, inject hardware error event */ 1524 hci_reset_dev(hdev); 1525 } 1526 1527 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, 1528 bdaddr_t *bdaddr, u8 bdaddr_type) 1529 { 1530 struct oob_data *data; 1531 1532 list_for_each_entry(data, &hdev->remote_oob_data, list) { 1533 if (bacmp(bdaddr, &data->bdaddr) != 0) 1534 continue; 1535 if (data->bdaddr_type != bdaddr_type) 1536 continue; 1537 return data; 1538 } 1539 1540 return NULL; 1541 } 1542 1543 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1544 u8 bdaddr_type) 1545 { 1546 struct oob_data *data; 1547 1548 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); 1549 if (!data) 1550 return -ENOENT; 1551 1552 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type); 1553 1554 list_del(&data->list); 1555 kfree(data); 1556 1557 return 0; 1558 } 1559 1560 void hci_remote_oob_data_clear(struct hci_dev *hdev) 1561 { 1562 struct oob_data *data, *n; 1563 1564 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) { 1565 list_del(&data->list); 1566 kfree(data); 1567 } 1568 } 1569 1570 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1571 u8 bdaddr_type, u8 *hash192, u8 *rand192, 1572 u8 *hash256, u8 *rand256) 1573 { 1574 struct oob_data *data; 1575 1576 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); 1577 if (!data) { 1578 data = kmalloc(sizeof(*data), GFP_KERNEL); 1579 if (!data) 1580 return -ENOMEM; 1581 1582 bacpy(&data->bdaddr, bdaddr); 1583 data->bdaddr_type = bdaddr_type; 1584 list_add(&data->list, &hdev->remote_oob_data); 1585 } 1586 1587 if (hash192 && rand192) { 1588 memcpy(data->hash192, hash192, sizeof(data->hash192)); 1589 memcpy(data->rand192, rand192, sizeof(data->rand192)); 1590 if (hash256 && rand256) 1591 data->present = 0x03; 1592 } else { 1593 memset(data->hash192, 0, sizeof(data->hash192)); 1594 memset(data->rand192, 0, sizeof(data->rand192)); 1595 if (hash256 && rand256) 1596 data->present = 0x02; 1597 else 1598 data->present = 0x00; 1599 } 1600 1601 if (hash256 && rand256) { 1602 memcpy(data->hash256, hash256, sizeof(data->hash256)); 1603 memcpy(data->rand256, rand256, sizeof(data->rand256)); 1604 } else { 1605 memset(data->hash256, 0, sizeof(data->hash256)); 1606 memset(data->rand256, 0, sizeof(data->rand256)); 1607 if (hash192 && rand192) 1608 data->present = 0x01; 1609 } 1610 1611 BT_DBG("%s for %pMR", hdev->name, bdaddr); 1612 1613 return 0; 1614 } 1615 1616 /* This function requires the caller holds hdev->lock */ 1617 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance) 1618 { 1619 struct adv_info *adv_instance; 1620 1621 list_for_each_entry(adv_instance, &hdev->adv_instances, list) { 1622 if (adv_instance->instance == instance) 1623 return adv_instance; 1624 } 1625 1626 return NULL; 1627 } 1628 1629 /* This function requires the caller holds hdev->lock */ 1630 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance) 1631 { 1632 struct adv_info *cur_instance; 1633 1634 cur_instance = hci_find_adv_instance(hdev, instance); 1635 if (!cur_instance) 1636 return NULL; 1637 1638 if (cur_instance == list_last_entry(&hdev->adv_instances, 1639 struct adv_info, list)) 1640 return list_first_entry(&hdev->adv_instances, 1641 struct adv_info, list); 1642 else 1643 return list_next_entry(cur_instance, list); 1644 } 1645 1646 /* This function requires the caller holds hdev->lock */ 1647 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance) 1648 { 1649 struct adv_info *adv_instance; 1650 1651 adv_instance = hci_find_adv_instance(hdev, instance); 1652 if (!adv_instance) 1653 return -ENOENT; 1654 1655 BT_DBG("%s removing %dMR", hdev->name, instance); 1656 1657 if (hdev->cur_adv_instance == instance) { 1658 if (hdev->adv_instance_timeout) { 1659 cancel_delayed_work(&hdev->adv_instance_expire); 1660 hdev->adv_instance_timeout = 0; 1661 } 1662 hdev->cur_adv_instance = 0x00; 1663 } 1664 1665 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 1666 1667 list_del(&adv_instance->list); 1668 kfree(adv_instance); 1669 1670 hdev->adv_instance_cnt--; 1671 1672 return 0; 1673 } 1674 1675 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired) 1676 { 1677 struct adv_info *adv_instance, *n; 1678 1679 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) 1680 adv_instance->rpa_expired = rpa_expired; 1681 } 1682 1683 /* This function requires the caller holds hdev->lock */ 1684 void hci_adv_instances_clear(struct hci_dev *hdev) 1685 { 1686 struct adv_info *adv_instance, *n; 1687 1688 if (hdev->adv_instance_timeout) { 1689 cancel_delayed_work(&hdev->adv_instance_expire); 1690 hdev->adv_instance_timeout = 0; 1691 } 1692 1693 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) { 1694 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 1695 list_del(&adv_instance->list); 1696 kfree(adv_instance); 1697 } 1698 1699 hdev->adv_instance_cnt = 0; 1700 hdev->cur_adv_instance = 0x00; 1701 } 1702 1703 static void adv_instance_rpa_expired(struct work_struct *work) 1704 { 1705 struct adv_info *adv_instance = container_of(work, struct adv_info, 1706 rpa_expired_cb.work); 1707 1708 BT_DBG(""); 1709 1710 adv_instance->rpa_expired = true; 1711 } 1712 1713 /* This function requires the caller holds hdev->lock */ 1714 struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance, 1715 u32 flags, u16 adv_data_len, u8 *adv_data, 1716 u16 scan_rsp_len, u8 *scan_rsp_data, 1717 u16 timeout, u16 duration, s8 tx_power, 1718 u32 min_interval, u32 max_interval, 1719 u8 mesh_handle) 1720 { 1721 struct adv_info *adv; 1722 1723 adv = hci_find_adv_instance(hdev, instance); 1724 if (adv) { 1725 memset(adv->adv_data, 0, sizeof(adv->adv_data)); 1726 memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data)); 1727 memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data)); 1728 } else { 1729 if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets || 1730 instance < 1 || instance > hdev->le_num_of_adv_sets + 1) 1731 return ERR_PTR(-EOVERFLOW); 1732 1733 adv = kzalloc(sizeof(*adv), GFP_KERNEL); 1734 if (!adv) 1735 return ERR_PTR(-ENOMEM); 1736 1737 adv->pending = true; 1738 adv->instance = instance; 1739 list_add(&adv->list, &hdev->adv_instances); 1740 hdev->adv_instance_cnt++; 1741 } 1742 1743 adv->flags = flags; 1744 adv->min_interval = min_interval; 1745 adv->max_interval = max_interval; 1746 adv->tx_power = tx_power; 1747 /* Defining a mesh_handle changes the timing units to ms, 1748 * rather than seconds, and ties the instance to the requested 1749 * mesh_tx queue. 1750 */ 1751 adv->mesh = mesh_handle; 1752 1753 hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data, 1754 scan_rsp_len, scan_rsp_data); 1755 1756 adv->timeout = timeout; 1757 adv->remaining_time = timeout; 1758 1759 if (duration == 0) 1760 adv->duration = hdev->def_multi_adv_rotation_duration; 1761 else 1762 adv->duration = duration; 1763 1764 INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired); 1765 1766 BT_DBG("%s for %dMR", hdev->name, instance); 1767 1768 return adv; 1769 } 1770 1771 /* This function requires the caller holds hdev->lock */ 1772 struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance, 1773 u32 flags, u8 data_len, u8 *data, 1774 u32 min_interval, u32 max_interval) 1775 { 1776 struct adv_info *adv; 1777 1778 adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL, 1779 0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE, 1780 min_interval, max_interval, 0); 1781 if (IS_ERR(adv)) 1782 return adv; 1783 1784 adv->periodic = true; 1785 adv->per_adv_data_len = data_len; 1786 1787 if (data) 1788 memcpy(adv->per_adv_data, data, data_len); 1789 1790 return adv; 1791 } 1792 1793 /* This function requires the caller holds hdev->lock */ 1794 int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance, 1795 u16 adv_data_len, u8 *adv_data, 1796 u16 scan_rsp_len, u8 *scan_rsp_data) 1797 { 1798 struct adv_info *adv; 1799 1800 adv = hci_find_adv_instance(hdev, instance); 1801 1802 /* If advertisement doesn't exist, we can't modify its data */ 1803 if (!adv) 1804 return -ENOENT; 1805 1806 if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) { 1807 memset(adv->adv_data, 0, sizeof(adv->adv_data)); 1808 memcpy(adv->adv_data, adv_data, adv_data_len); 1809 adv->adv_data_len = adv_data_len; 1810 adv->adv_data_changed = true; 1811 } 1812 1813 if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) { 1814 memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data)); 1815 memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len); 1816 adv->scan_rsp_len = scan_rsp_len; 1817 adv->scan_rsp_changed = true; 1818 } 1819 1820 /* Mark as changed if there are flags which would affect it */ 1821 if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) || 1822 adv->flags & MGMT_ADV_FLAG_LOCAL_NAME) 1823 adv->scan_rsp_changed = true; 1824 1825 return 0; 1826 } 1827 1828 /* This function requires the caller holds hdev->lock */ 1829 u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance) 1830 { 1831 u32 flags; 1832 struct adv_info *adv; 1833 1834 if (instance == 0x00) { 1835 /* Instance 0 always manages the "Tx Power" and "Flags" 1836 * fields 1837 */ 1838 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS; 1839 1840 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting 1841 * corresponds to the "connectable" instance flag. 1842 */ 1843 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE)) 1844 flags |= MGMT_ADV_FLAG_CONNECTABLE; 1845 1846 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 1847 flags |= MGMT_ADV_FLAG_LIMITED_DISCOV; 1848 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 1849 flags |= MGMT_ADV_FLAG_DISCOV; 1850 1851 return flags; 1852 } 1853 1854 adv = hci_find_adv_instance(hdev, instance); 1855 1856 /* Return 0 when we got an invalid instance identifier. */ 1857 if (!adv) 1858 return 0; 1859 1860 return adv->flags; 1861 } 1862 1863 bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance) 1864 { 1865 struct adv_info *adv; 1866 1867 /* Instance 0x00 always set local name */ 1868 if (instance == 0x00) 1869 return true; 1870 1871 adv = hci_find_adv_instance(hdev, instance); 1872 if (!adv) 1873 return false; 1874 1875 if (adv->flags & MGMT_ADV_FLAG_APPEARANCE || 1876 adv->flags & MGMT_ADV_FLAG_LOCAL_NAME) 1877 return true; 1878 1879 return adv->scan_rsp_len ? true : false; 1880 } 1881 1882 /* This function requires the caller holds hdev->lock */ 1883 void hci_adv_monitors_clear(struct hci_dev *hdev) 1884 { 1885 struct adv_monitor *monitor; 1886 int handle; 1887 1888 idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle) 1889 hci_free_adv_monitor(hdev, monitor); 1890 1891 idr_destroy(&hdev->adv_monitors_idr); 1892 } 1893 1894 /* Frees the monitor structure and do some bookkeepings. 1895 * This function requires the caller holds hdev->lock. 1896 */ 1897 void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor) 1898 { 1899 struct adv_pattern *pattern; 1900 struct adv_pattern *tmp; 1901 1902 if (!monitor) 1903 return; 1904 1905 list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) { 1906 list_del(&pattern->list); 1907 kfree(pattern); 1908 } 1909 1910 if (monitor->handle) 1911 idr_remove(&hdev->adv_monitors_idr, monitor->handle); 1912 1913 if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) { 1914 hdev->adv_monitors_cnt--; 1915 mgmt_adv_monitor_removed(hdev, monitor->handle); 1916 } 1917 1918 kfree(monitor); 1919 } 1920 1921 /* Assigns handle to a monitor, and if offloading is supported and power is on, 1922 * also attempts to forward the request to the controller. 1923 * This function requires the caller holds hci_req_sync_lock. 1924 */ 1925 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor) 1926 { 1927 int min, max, handle; 1928 int status = 0; 1929 1930 if (!monitor) 1931 return -EINVAL; 1932 1933 hci_dev_lock(hdev); 1934 1935 min = HCI_MIN_ADV_MONITOR_HANDLE; 1936 max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES; 1937 handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max, 1938 GFP_KERNEL); 1939 1940 hci_dev_unlock(hdev); 1941 1942 if (handle < 0) 1943 return handle; 1944 1945 monitor->handle = handle; 1946 1947 if (!hdev_is_powered(hdev)) 1948 return status; 1949 1950 switch (hci_get_adv_monitor_offload_ext(hdev)) { 1951 case HCI_ADV_MONITOR_EXT_NONE: 1952 bt_dev_dbg(hdev, "%s add monitor %d status %d", hdev->name, 1953 monitor->handle, status); 1954 /* Message was not forwarded to controller - not an error */ 1955 break; 1956 1957 case HCI_ADV_MONITOR_EXT_MSFT: 1958 status = msft_add_monitor_pattern(hdev, monitor); 1959 bt_dev_dbg(hdev, "%s add monitor %d msft status %d", hdev->name, 1960 monitor->handle, status); 1961 break; 1962 } 1963 1964 return status; 1965 } 1966 1967 /* Attempts to tell the controller and free the monitor. If somehow the 1968 * controller doesn't have a corresponding handle, remove anyway. 1969 * This function requires the caller holds hci_req_sync_lock. 1970 */ 1971 static int hci_remove_adv_monitor(struct hci_dev *hdev, 1972 struct adv_monitor *monitor) 1973 { 1974 int status = 0; 1975 1976 switch (hci_get_adv_monitor_offload_ext(hdev)) { 1977 case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */ 1978 bt_dev_dbg(hdev, "%s remove monitor %d status %d", hdev->name, 1979 monitor->handle, status); 1980 goto free_monitor; 1981 1982 case HCI_ADV_MONITOR_EXT_MSFT: 1983 status = msft_remove_monitor(hdev, monitor); 1984 bt_dev_dbg(hdev, "%s remove monitor %d msft status %d", 1985 hdev->name, monitor->handle, status); 1986 break; 1987 } 1988 1989 /* In case no matching handle registered, just free the monitor */ 1990 if (status == -ENOENT) 1991 goto free_monitor; 1992 1993 return status; 1994 1995 free_monitor: 1996 if (status == -ENOENT) 1997 bt_dev_warn(hdev, "Removing monitor with no matching handle %d", 1998 monitor->handle); 1999 hci_free_adv_monitor(hdev, monitor); 2000 2001 return status; 2002 } 2003 2004 /* This function requires the caller holds hci_req_sync_lock */ 2005 int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle) 2006 { 2007 struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle); 2008 2009 if (!monitor) 2010 return -EINVAL; 2011 2012 return hci_remove_adv_monitor(hdev, monitor); 2013 } 2014 2015 /* This function requires the caller holds hci_req_sync_lock */ 2016 int hci_remove_all_adv_monitor(struct hci_dev *hdev) 2017 { 2018 struct adv_monitor *monitor; 2019 int idr_next_id = 0; 2020 int status = 0; 2021 2022 while (1) { 2023 monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id); 2024 if (!monitor) 2025 break; 2026 2027 status = hci_remove_adv_monitor(hdev, monitor); 2028 if (status) 2029 return status; 2030 2031 idr_next_id++; 2032 } 2033 2034 return status; 2035 } 2036 2037 /* This function requires the caller holds hdev->lock */ 2038 bool hci_is_adv_monitoring(struct hci_dev *hdev) 2039 { 2040 return !idr_is_empty(&hdev->adv_monitors_idr); 2041 } 2042 2043 int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev) 2044 { 2045 if (msft_monitor_supported(hdev)) 2046 return HCI_ADV_MONITOR_EXT_MSFT; 2047 2048 return HCI_ADV_MONITOR_EXT_NONE; 2049 } 2050 2051 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list, 2052 bdaddr_t *bdaddr, u8 type) 2053 { 2054 struct bdaddr_list *b; 2055 2056 list_for_each_entry(b, bdaddr_list, list) { 2057 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 2058 return b; 2059 } 2060 2061 return NULL; 2062 } 2063 2064 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk( 2065 struct list_head *bdaddr_list, bdaddr_t *bdaddr, 2066 u8 type) 2067 { 2068 struct bdaddr_list_with_irk *b; 2069 2070 list_for_each_entry(b, bdaddr_list, list) { 2071 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 2072 return b; 2073 } 2074 2075 return NULL; 2076 } 2077 2078 struct bdaddr_list_with_flags * 2079 hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list, 2080 bdaddr_t *bdaddr, u8 type) 2081 { 2082 struct bdaddr_list_with_flags *b; 2083 2084 list_for_each_entry(b, bdaddr_list, list) { 2085 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 2086 return b; 2087 } 2088 2089 return NULL; 2090 } 2091 2092 void hci_bdaddr_list_clear(struct list_head *bdaddr_list) 2093 { 2094 struct bdaddr_list *b, *n; 2095 2096 list_for_each_entry_safe(b, n, bdaddr_list, list) { 2097 list_del(&b->list); 2098 kfree(b); 2099 } 2100 } 2101 2102 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type) 2103 { 2104 struct bdaddr_list *entry; 2105 2106 if (!bacmp(bdaddr, BDADDR_ANY)) 2107 return -EBADF; 2108 2109 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 2110 return -EEXIST; 2111 2112 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 2113 if (!entry) 2114 return -ENOMEM; 2115 2116 bacpy(&entry->bdaddr, bdaddr); 2117 entry->bdaddr_type = type; 2118 2119 list_add(&entry->list, list); 2120 2121 return 0; 2122 } 2123 2124 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr, 2125 u8 type, u8 *peer_irk, u8 *local_irk) 2126 { 2127 struct bdaddr_list_with_irk *entry; 2128 2129 if (!bacmp(bdaddr, BDADDR_ANY)) 2130 return -EBADF; 2131 2132 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 2133 return -EEXIST; 2134 2135 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 2136 if (!entry) 2137 return -ENOMEM; 2138 2139 bacpy(&entry->bdaddr, bdaddr); 2140 entry->bdaddr_type = type; 2141 2142 if (peer_irk) 2143 memcpy(entry->peer_irk, peer_irk, 16); 2144 2145 if (local_irk) 2146 memcpy(entry->local_irk, local_irk, 16); 2147 2148 list_add(&entry->list, list); 2149 2150 return 0; 2151 } 2152 2153 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr, 2154 u8 type, u32 flags) 2155 { 2156 struct bdaddr_list_with_flags *entry; 2157 2158 if (!bacmp(bdaddr, BDADDR_ANY)) 2159 return -EBADF; 2160 2161 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 2162 return -EEXIST; 2163 2164 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 2165 if (!entry) 2166 return -ENOMEM; 2167 2168 bacpy(&entry->bdaddr, bdaddr); 2169 entry->bdaddr_type = type; 2170 entry->flags = flags; 2171 2172 list_add(&entry->list, list); 2173 2174 return 0; 2175 } 2176 2177 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type) 2178 { 2179 struct bdaddr_list *entry; 2180 2181 if (!bacmp(bdaddr, BDADDR_ANY)) { 2182 hci_bdaddr_list_clear(list); 2183 return 0; 2184 } 2185 2186 entry = hci_bdaddr_list_lookup(list, bdaddr, type); 2187 if (!entry) 2188 return -ENOENT; 2189 2190 list_del(&entry->list); 2191 kfree(entry); 2192 2193 return 0; 2194 } 2195 2196 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr, 2197 u8 type) 2198 { 2199 struct bdaddr_list_with_irk *entry; 2200 2201 if (!bacmp(bdaddr, BDADDR_ANY)) { 2202 hci_bdaddr_list_clear(list); 2203 return 0; 2204 } 2205 2206 entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type); 2207 if (!entry) 2208 return -ENOENT; 2209 2210 list_del(&entry->list); 2211 kfree(entry); 2212 2213 return 0; 2214 } 2215 2216 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr, 2217 u8 type) 2218 { 2219 struct bdaddr_list_with_flags *entry; 2220 2221 if (!bacmp(bdaddr, BDADDR_ANY)) { 2222 hci_bdaddr_list_clear(list); 2223 return 0; 2224 } 2225 2226 entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type); 2227 if (!entry) 2228 return -ENOENT; 2229 2230 list_del(&entry->list); 2231 kfree(entry); 2232 2233 return 0; 2234 } 2235 2236 /* This function requires the caller holds hdev->lock */ 2237 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev, 2238 bdaddr_t *addr, u8 addr_type) 2239 { 2240 struct hci_conn_params *params; 2241 2242 list_for_each_entry(params, &hdev->le_conn_params, list) { 2243 if (bacmp(¶ms->addr, addr) == 0 && 2244 params->addr_type == addr_type) { 2245 return params; 2246 } 2247 } 2248 2249 return NULL; 2250 } 2251 2252 /* This function requires the caller holds hdev->lock */ 2253 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list, 2254 bdaddr_t *addr, u8 addr_type) 2255 { 2256 struct hci_conn_params *param; 2257 2258 list_for_each_entry(param, list, action) { 2259 if (bacmp(¶m->addr, addr) == 0 && 2260 param->addr_type == addr_type) 2261 return param; 2262 } 2263 2264 return NULL; 2265 } 2266 2267 /* This function requires the caller holds hdev->lock */ 2268 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev, 2269 bdaddr_t *addr, u8 addr_type) 2270 { 2271 struct hci_conn_params *params; 2272 2273 params = hci_conn_params_lookup(hdev, addr, addr_type); 2274 if (params) 2275 return params; 2276 2277 params = kzalloc(sizeof(*params), GFP_KERNEL); 2278 if (!params) { 2279 bt_dev_err(hdev, "out of memory"); 2280 return NULL; 2281 } 2282 2283 bacpy(¶ms->addr, addr); 2284 params->addr_type = addr_type; 2285 2286 list_add(¶ms->list, &hdev->le_conn_params); 2287 INIT_LIST_HEAD(¶ms->action); 2288 2289 params->conn_min_interval = hdev->le_conn_min_interval; 2290 params->conn_max_interval = hdev->le_conn_max_interval; 2291 params->conn_latency = hdev->le_conn_latency; 2292 params->supervision_timeout = hdev->le_supv_timeout; 2293 params->auto_connect = HCI_AUTO_CONN_DISABLED; 2294 2295 BT_DBG("addr %pMR (type %u)", addr, addr_type); 2296 2297 return params; 2298 } 2299 2300 static void hci_conn_params_free(struct hci_conn_params *params) 2301 { 2302 if (params->conn) { 2303 hci_conn_drop(params->conn); 2304 hci_conn_put(params->conn); 2305 } 2306 2307 list_del(¶ms->action); 2308 list_del(¶ms->list); 2309 kfree(params); 2310 } 2311 2312 /* This function requires the caller holds hdev->lock */ 2313 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type) 2314 { 2315 struct hci_conn_params *params; 2316 2317 params = hci_conn_params_lookup(hdev, addr, addr_type); 2318 if (!params) 2319 return; 2320 2321 hci_conn_params_free(params); 2322 2323 hci_update_passive_scan(hdev); 2324 2325 BT_DBG("addr %pMR (type %u)", addr, addr_type); 2326 } 2327 2328 /* This function requires the caller holds hdev->lock */ 2329 void hci_conn_params_clear_disabled(struct hci_dev *hdev) 2330 { 2331 struct hci_conn_params *params, *tmp; 2332 2333 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) { 2334 if (params->auto_connect != HCI_AUTO_CONN_DISABLED) 2335 continue; 2336 2337 /* If trying to establish one time connection to disabled 2338 * device, leave the params, but mark them as just once. 2339 */ 2340 if (params->explicit_connect) { 2341 params->auto_connect = HCI_AUTO_CONN_EXPLICIT; 2342 continue; 2343 } 2344 2345 list_del(¶ms->list); 2346 kfree(params); 2347 } 2348 2349 BT_DBG("All LE disabled connection parameters were removed"); 2350 } 2351 2352 /* This function requires the caller holds hdev->lock */ 2353 static void hci_conn_params_clear_all(struct hci_dev *hdev) 2354 { 2355 struct hci_conn_params *params, *tmp; 2356 2357 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) 2358 hci_conn_params_free(params); 2359 2360 BT_DBG("All LE connection parameters were removed"); 2361 } 2362 2363 /* Copy the Identity Address of the controller. 2364 * 2365 * If the controller has a public BD_ADDR, then by default use that one. 2366 * If this is a LE only controller without a public address, default to 2367 * the static random address. 2368 * 2369 * For debugging purposes it is possible to force controllers with a 2370 * public address to use the static random address instead. 2371 * 2372 * In case BR/EDR has been disabled on a dual-mode controller and 2373 * userspace has configured a static address, then that address 2374 * becomes the identity address instead of the public BR/EDR address. 2375 */ 2376 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr, 2377 u8 *bdaddr_type) 2378 { 2379 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 2380 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 2381 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 2382 bacmp(&hdev->static_addr, BDADDR_ANY))) { 2383 bacpy(bdaddr, &hdev->static_addr); 2384 *bdaddr_type = ADDR_LE_DEV_RANDOM; 2385 } else { 2386 bacpy(bdaddr, &hdev->bdaddr); 2387 *bdaddr_type = ADDR_LE_DEV_PUBLIC; 2388 } 2389 } 2390 2391 static void hci_clear_wake_reason(struct hci_dev *hdev) 2392 { 2393 hci_dev_lock(hdev); 2394 2395 hdev->wake_reason = 0; 2396 bacpy(&hdev->wake_addr, BDADDR_ANY); 2397 hdev->wake_addr_type = 0; 2398 2399 hci_dev_unlock(hdev); 2400 } 2401 2402 static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action, 2403 void *data) 2404 { 2405 struct hci_dev *hdev = 2406 container_of(nb, struct hci_dev, suspend_notifier); 2407 int ret = 0; 2408 2409 /* Userspace has full control of this device. Do nothing. */ 2410 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) 2411 return NOTIFY_DONE; 2412 2413 if (action == PM_SUSPEND_PREPARE) 2414 ret = hci_suspend_dev(hdev); 2415 else if (action == PM_POST_SUSPEND) 2416 ret = hci_resume_dev(hdev); 2417 2418 if (ret) 2419 bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d", 2420 action, ret); 2421 2422 return NOTIFY_DONE; 2423 } 2424 2425 /* Alloc HCI device */ 2426 struct hci_dev *hci_alloc_dev_priv(int sizeof_priv) 2427 { 2428 struct hci_dev *hdev; 2429 unsigned int alloc_size; 2430 2431 alloc_size = sizeof(*hdev); 2432 if (sizeof_priv) { 2433 /* Fixme: May need ALIGN-ment? */ 2434 alloc_size += sizeof_priv; 2435 } 2436 2437 hdev = kzalloc(alloc_size, GFP_KERNEL); 2438 if (!hdev) 2439 return NULL; 2440 2441 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1); 2442 hdev->esco_type = (ESCO_HV1); 2443 hdev->link_mode = (HCI_LM_ACCEPT); 2444 hdev->num_iac = 0x01; /* One IAC support is mandatory */ 2445 hdev->io_capability = 0x03; /* No Input No Output */ 2446 hdev->manufacturer = 0xffff; /* Default to internal use */ 2447 hdev->inq_tx_power = HCI_TX_POWER_INVALID; 2448 hdev->adv_tx_power = HCI_TX_POWER_INVALID; 2449 hdev->adv_instance_cnt = 0; 2450 hdev->cur_adv_instance = 0x00; 2451 hdev->adv_instance_timeout = 0; 2452 2453 hdev->advmon_allowlist_duration = 300; 2454 hdev->advmon_no_filter_duration = 500; 2455 hdev->enable_advmon_interleave_scan = 0x00; /* Default to disable */ 2456 2457 hdev->sniff_max_interval = 800; 2458 hdev->sniff_min_interval = 80; 2459 2460 hdev->le_adv_channel_map = 0x07; 2461 hdev->le_adv_min_interval = 0x0800; 2462 hdev->le_adv_max_interval = 0x0800; 2463 hdev->le_scan_interval = 0x0060; 2464 hdev->le_scan_window = 0x0030; 2465 hdev->le_scan_int_suspend = 0x0400; 2466 hdev->le_scan_window_suspend = 0x0012; 2467 hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT; 2468 hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN; 2469 hdev->le_scan_int_adv_monitor = 0x0060; 2470 hdev->le_scan_window_adv_monitor = 0x0030; 2471 hdev->le_scan_int_connect = 0x0060; 2472 hdev->le_scan_window_connect = 0x0060; 2473 hdev->le_conn_min_interval = 0x0018; 2474 hdev->le_conn_max_interval = 0x0028; 2475 hdev->le_conn_latency = 0x0000; 2476 hdev->le_supv_timeout = 0x002a; 2477 hdev->le_def_tx_len = 0x001b; 2478 hdev->le_def_tx_time = 0x0148; 2479 hdev->le_max_tx_len = 0x001b; 2480 hdev->le_max_tx_time = 0x0148; 2481 hdev->le_max_rx_len = 0x001b; 2482 hdev->le_max_rx_time = 0x0148; 2483 hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE; 2484 hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE; 2485 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M; 2486 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M; 2487 hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES; 2488 hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION; 2489 hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT; 2490 hdev->min_le_tx_power = HCI_TX_POWER_INVALID; 2491 hdev->max_le_tx_power = HCI_TX_POWER_INVALID; 2492 2493 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT; 2494 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT; 2495 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE; 2496 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE; 2497 hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT; 2498 hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE; 2499 2500 /* default 1.28 sec page scan */ 2501 hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD; 2502 hdev->def_page_scan_int = 0x0800; 2503 hdev->def_page_scan_window = 0x0012; 2504 2505 mutex_init(&hdev->lock); 2506 mutex_init(&hdev->req_lock); 2507 2508 INIT_LIST_HEAD(&hdev->mesh_pending); 2509 INIT_LIST_HEAD(&hdev->mgmt_pending); 2510 INIT_LIST_HEAD(&hdev->reject_list); 2511 INIT_LIST_HEAD(&hdev->accept_list); 2512 INIT_LIST_HEAD(&hdev->uuids); 2513 INIT_LIST_HEAD(&hdev->link_keys); 2514 INIT_LIST_HEAD(&hdev->long_term_keys); 2515 INIT_LIST_HEAD(&hdev->identity_resolving_keys); 2516 INIT_LIST_HEAD(&hdev->remote_oob_data); 2517 INIT_LIST_HEAD(&hdev->le_accept_list); 2518 INIT_LIST_HEAD(&hdev->le_resolv_list); 2519 INIT_LIST_HEAD(&hdev->le_conn_params); 2520 INIT_LIST_HEAD(&hdev->pend_le_conns); 2521 INIT_LIST_HEAD(&hdev->pend_le_reports); 2522 INIT_LIST_HEAD(&hdev->conn_hash.list); 2523 INIT_LIST_HEAD(&hdev->adv_instances); 2524 INIT_LIST_HEAD(&hdev->blocked_keys); 2525 INIT_LIST_HEAD(&hdev->monitored_devices); 2526 2527 INIT_LIST_HEAD(&hdev->local_codecs); 2528 INIT_WORK(&hdev->rx_work, hci_rx_work); 2529 INIT_WORK(&hdev->cmd_work, hci_cmd_work); 2530 INIT_WORK(&hdev->tx_work, hci_tx_work); 2531 INIT_WORK(&hdev->power_on, hci_power_on); 2532 INIT_WORK(&hdev->error_reset, hci_error_reset); 2533 2534 hci_cmd_sync_init(hdev); 2535 2536 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off); 2537 2538 skb_queue_head_init(&hdev->rx_q); 2539 skb_queue_head_init(&hdev->cmd_q); 2540 skb_queue_head_init(&hdev->raw_q); 2541 2542 init_waitqueue_head(&hdev->req_wait_q); 2543 2544 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout); 2545 INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout); 2546 2547 hci_request_setup(hdev); 2548 2549 hci_init_sysfs(hdev); 2550 discovery_init(hdev); 2551 2552 return hdev; 2553 } 2554 EXPORT_SYMBOL(hci_alloc_dev_priv); 2555 2556 /* Free HCI device */ 2557 void hci_free_dev(struct hci_dev *hdev) 2558 { 2559 /* will free via device release */ 2560 put_device(&hdev->dev); 2561 } 2562 EXPORT_SYMBOL(hci_free_dev); 2563 2564 /* Register HCI device */ 2565 int hci_register_dev(struct hci_dev *hdev) 2566 { 2567 int id, error; 2568 2569 if (!hdev->open || !hdev->close || !hdev->send) 2570 return -EINVAL; 2571 2572 /* Do not allow HCI_AMP devices to register at index 0, 2573 * so the index can be used as the AMP controller ID. 2574 */ 2575 switch (hdev->dev_type) { 2576 case HCI_PRIMARY: 2577 id = ida_simple_get(&hci_index_ida, 0, HCI_MAX_ID, GFP_KERNEL); 2578 break; 2579 case HCI_AMP: 2580 id = ida_simple_get(&hci_index_ida, 1, HCI_MAX_ID, GFP_KERNEL); 2581 break; 2582 default: 2583 return -EINVAL; 2584 } 2585 2586 if (id < 0) 2587 return id; 2588 2589 snprintf(hdev->name, sizeof(hdev->name), "hci%d", id); 2590 hdev->id = id; 2591 2592 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 2593 2594 hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name); 2595 if (!hdev->workqueue) { 2596 error = -ENOMEM; 2597 goto err; 2598 } 2599 2600 hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, 2601 hdev->name); 2602 if (!hdev->req_workqueue) { 2603 destroy_workqueue(hdev->workqueue); 2604 error = -ENOMEM; 2605 goto err; 2606 } 2607 2608 if (!IS_ERR_OR_NULL(bt_debugfs)) 2609 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs); 2610 2611 dev_set_name(&hdev->dev, "%s", hdev->name); 2612 2613 error = device_add(&hdev->dev); 2614 if (error < 0) 2615 goto err_wqueue; 2616 2617 hci_leds_init(hdev); 2618 2619 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev, 2620 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, 2621 hdev); 2622 if (hdev->rfkill) { 2623 if (rfkill_register(hdev->rfkill) < 0) { 2624 rfkill_destroy(hdev->rfkill); 2625 hdev->rfkill = NULL; 2626 } 2627 } 2628 2629 if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) 2630 hci_dev_set_flag(hdev, HCI_RFKILLED); 2631 2632 hci_dev_set_flag(hdev, HCI_SETUP); 2633 hci_dev_set_flag(hdev, HCI_AUTO_OFF); 2634 2635 if (hdev->dev_type == HCI_PRIMARY) { 2636 /* Assume BR/EDR support until proven otherwise (such as 2637 * through reading supported features during init. 2638 */ 2639 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); 2640 } 2641 2642 write_lock(&hci_dev_list_lock); 2643 list_add(&hdev->list, &hci_dev_list); 2644 write_unlock(&hci_dev_list_lock); 2645 2646 /* Devices that are marked for raw-only usage are unconfigured 2647 * and should not be included in normal operation. 2648 */ 2649 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 2650 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 2651 2652 /* Mark Remote Wakeup connection flag as supported if driver has wakeup 2653 * callback. 2654 */ 2655 if (hdev->wakeup) 2656 hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP; 2657 2658 hci_sock_dev_event(hdev, HCI_DEV_REG); 2659 hci_dev_hold(hdev); 2660 2661 error = hci_register_suspend_notifier(hdev); 2662 if (error) 2663 BT_WARN("register suspend notifier failed error:%d\n", error); 2664 2665 queue_work(hdev->req_workqueue, &hdev->power_on); 2666 2667 idr_init(&hdev->adv_monitors_idr); 2668 msft_register(hdev); 2669 2670 return id; 2671 2672 err_wqueue: 2673 debugfs_remove_recursive(hdev->debugfs); 2674 destroy_workqueue(hdev->workqueue); 2675 destroy_workqueue(hdev->req_workqueue); 2676 err: 2677 ida_simple_remove(&hci_index_ida, hdev->id); 2678 2679 return error; 2680 } 2681 EXPORT_SYMBOL(hci_register_dev); 2682 2683 /* Unregister HCI device */ 2684 void hci_unregister_dev(struct hci_dev *hdev) 2685 { 2686 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 2687 2688 hci_dev_set_flag(hdev, HCI_UNREGISTER); 2689 2690 write_lock(&hci_dev_list_lock); 2691 list_del(&hdev->list); 2692 write_unlock(&hci_dev_list_lock); 2693 2694 cancel_work_sync(&hdev->power_on); 2695 2696 hci_cmd_sync_clear(hdev); 2697 2698 hci_unregister_suspend_notifier(hdev); 2699 2700 msft_unregister(hdev); 2701 2702 hci_dev_do_close(hdev); 2703 2704 if (!test_bit(HCI_INIT, &hdev->flags) && 2705 !hci_dev_test_flag(hdev, HCI_SETUP) && 2706 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 2707 hci_dev_lock(hdev); 2708 mgmt_index_removed(hdev); 2709 hci_dev_unlock(hdev); 2710 } 2711 2712 /* mgmt_index_removed should take care of emptying the 2713 * pending list */ 2714 BUG_ON(!list_empty(&hdev->mgmt_pending)); 2715 2716 hci_sock_dev_event(hdev, HCI_DEV_UNREG); 2717 2718 if (hdev->rfkill) { 2719 rfkill_unregister(hdev->rfkill); 2720 rfkill_destroy(hdev->rfkill); 2721 } 2722 2723 device_del(&hdev->dev); 2724 /* Actual cleanup is deferred until hci_release_dev(). */ 2725 hci_dev_put(hdev); 2726 } 2727 EXPORT_SYMBOL(hci_unregister_dev); 2728 2729 /* Release HCI device */ 2730 void hci_release_dev(struct hci_dev *hdev) 2731 { 2732 debugfs_remove_recursive(hdev->debugfs); 2733 kfree_const(hdev->hw_info); 2734 kfree_const(hdev->fw_info); 2735 2736 destroy_workqueue(hdev->workqueue); 2737 destroy_workqueue(hdev->req_workqueue); 2738 2739 hci_dev_lock(hdev); 2740 hci_bdaddr_list_clear(&hdev->reject_list); 2741 hci_bdaddr_list_clear(&hdev->accept_list); 2742 hci_uuids_clear(hdev); 2743 hci_link_keys_clear(hdev); 2744 hci_smp_ltks_clear(hdev); 2745 hci_smp_irks_clear(hdev); 2746 hci_remote_oob_data_clear(hdev); 2747 hci_adv_instances_clear(hdev); 2748 hci_adv_monitors_clear(hdev); 2749 hci_bdaddr_list_clear(&hdev->le_accept_list); 2750 hci_bdaddr_list_clear(&hdev->le_resolv_list); 2751 hci_conn_params_clear_all(hdev); 2752 hci_discovery_filter_clear(hdev); 2753 hci_blocked_keys_clear(hdev); 2754 hci_dev_unlock(hdev); 2755 2756 ida_simple_remove(&hci_index_ida, hdev->id); 2757 kfree_skb(hdev->sent_cmd); 2758 kfree_skb(hdev->recv_event); 2759 kfree(hdev); 2760 } 2761 EXPORT_SYMBOL(hci_release_dev); 2762 2763 int hci_register_suspend_notifier(struct hci_dev *hdev) 2764 { 2765 int ret = 0; 2766 2767 if (!hdev->suspend_notifier.notifier_call && 2768 !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) { 2769 hdev->suspend_notifier.notifier_call = hci_suspend_notifier; 2770 ret = register_pm_notifier(&hdev->suspend_notifier); 2771 } 2772 2773 return ret; 2774 } 2775 2776 int hci_unregister_suspend_notifier(struct hci_dev *hdev) 2777 { 2778 int ret = 0; 2779 2780 if (hdev->suspend_notifier.notifier_call) { 2781 ret = unregister_pm_notifier(&hdev->suspend_notifier); 2782 if (!ret) 2783 hdev->suspend_notifier.notifier_call = NULL; 2784 } 2785 2786 return ret; 2787 } 2788 2789 /* Suspend HCI device */ 2790 int hci_suspend_dev(struct hci_dev *hdev) 2791 { 2792 int ret; 2793 2794 bt_dev_dbg(hdev, ""); 2795 2796 /* Suspend should only act on when powered. */ 2797 if (!hdev_is_powered(hdev) || 2798 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2799 return 0; 2800 2801 /* If powering down don't attempt to suspend */ 2802 if (mgmt_powering_down(hdev)) 2803 return 0; 2804 2805 hci_req_sync_lock(hdev); 2806 ret = hci_suspend_sync(hdev); 2807 hci_req_sync_unlock(hdev); 2808 2809 hci_clear_wake_reason(hdev); 2810 mgmt_suspending(hdev, hdev->suspend_state); 2811 2812 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND); 2813 return ret; 2814 } 2815 EXPORT_SYMBOL(hci_suspend_dev); 2816 2817 /* Resume HCI device */ 2818 int hci_resume_dev(struct hci_dev *hdev) 2819 { 2820 int ret; 2821 2822 bt_dev_dbg(hdev, ""); 2823 2824 /* Resume should only act on when powered. */ 2825 if (!hdev_is_powered(hdev) || 2826 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2827 return 0; 2828 2829 /* If powering down don't attempt to resume */ 2830 if (mgmt_powering_down(hdev)) 2831 return 0; 2832 2833 hci_req_sync_lock(hdev); 2834 ret = hci_resume_sync(hdev); 2835 hci_req_sync_unlock(hdev); 2836 2837 mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr, 2838 hdev->wake_addr_type); 2839 2840 hci_sock_dev_event(hdev, HCI_DEV_RESUME); 2841 return ret; 2842 } 2843 EXPORT_SYMBOL(hci_resume_dev); 2844 2845 /* Reset HCI device */ 2846 int hci_reset_dev(struct hci_dev *hdev) 2847 { 2848 static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 }; 2849 struct sk_buff *skb; 2850 2851 skb = bt_skb_alloc(3, GFP_ATOMIC); 2852 if (!skb) 2853 return -ENOMEM; 2854 2855 hci_skb_pkt_type(skb) = HCI_EVENT_PKT; 2856 skb_put_data(skb, hw_err, 3); 2857 2858 bt_dev_err(hdev, "Injecting HCI hardware error event"); 2859 2860 /* Send Hardware Error to upper stack */ 2861 return hci_recv_frame(hdev, skb); 2862 } 2863 EXPORT_SYMBOL(hci_reset_dev); 2864 2865 /* Receive frame from HCI drivers */ 2866 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb) 2867 { 2868 if (!hdev || (!test_bit(HCI_UP, &hdev->flags) 2869 && !test_bit(HCI_INIT, &hdev->flags))) { 2870 kfree_skb(skb); 2871 return -ENXIO; 2872 } 2873 2874 switch (hci_skb_pkt_type(skb)) { 2875 case HCI_EVENT_PKT: 2876 break; 2877 case HCI_ACLDATA_PKT: 2878 /* Detect if ISO packet has been sent as ACL */ 2879 if (hci_conn_num(hdev, ISO_LINK)) { 2880 __u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle); 2881 __u8 type; 2882 2883 type = hci_conn_lookup_type(hdev, hci_handle(handle)); 2884 if (type == ISO_LINK) 2885 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT; 2886 } 2887 break; 2888 case HCI_SCODATA_PKT: 2889 break; 2890 case HCI_ISODATA_PKT: 2891 break; 2892 default: 2893 kfree_skb(skb); 2894 return -EINVAL; 2895 } 2896 2897 /* Incoming skb */ 2898 bt_cb(skb)->incoming = 1; 2899 2900 /* Time stamp */ 2901 __net_timestamp(skb); 2902 2903 skb_queue_tail(&hdev->rx_q, skb); 2904 queue_work(hdev->workqueue, &hdev->rx_work); 2905 2906 return 0; 2907 } 2908 EXPORT_SYMBOL(hci_recv_frame); 2909 2910 /* Receive diagnostic message from HCI drivers */ 2911 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb) 2912 { 2913 /* Mark as diagnostic packet */ 2914 hci_skb_pkt_type(skb) = HCI_DIAG_PKT; 2915 2916 /* Time stamp */ 2917 __net_timestamp(skb); 2918 2919 skb_queue_tail(&hdev->rx_q, skb); 2920 queue_work(hdev->workqueue, &hdev->rx_work); 2921 2922 return 0; 2923 } 2924 EXPORT_SYMBOL(hci_recv_diag); 2925 2926 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...) 2927 { 2928 va_list vargs; 2929 2930 va_start(vargs, fmt); 2931 kfree_const(hdev->hw_info); 2932 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs); 2933 va_end(vargs); 2934 } 2935 EXPORT_SYMBOL(hci_set_hw_info); 2936 2937 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...) 2938 { 2939 va_list vargs; 2940 2941 va_start(vargs, fmt); 2942 kfree_const(hdev->fw_info); 2943 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs); 2944 va_end(vargs); 2945 } 2946 EXPORT_SYMBOL(hci_set_fw_info); 2947 2948 /* ---- Interface to upper protocols ---- */ 2949 2950 int hci_register_cb(struct hci_cb *cb) 2951 { 2952 BT_DBG("%p name %s", cb, cb->name); 2953 2954 mutex_lock(&hci_cb_list_lock); 2955 list_add_tail(&cb->list, &hci_cb_list); 2956 mutex_unlock(&hci_cb_list_lock); 2957 2958 return 0; 2959 } 2960 EXPORT_SYMBOL(hci_register_cb); 2961 2962 int hci_unregister_cb(struct hci_cb *cb) 2963 { 2964 BT_DBG("%p name %s", cb, cb->name); 2965 2966 mutex_lock(&hci_cb_list_lock); 2967 list_del(&cb->list); 2968 mutex_unlock(&hci_cb_list_lock); 2969 2970 return 0; 2971 } 2972 EXPORT_SYMBOL(hci_unregister_cb); 2973 2974 static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb) 2975 { 2976 int err; 2977 2978 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb), 2979 skb->len); 2980 2981 /* Time stamp */ 2982 __net_timestamp(skb); 2983 2984 /* Send copy to monitor */ 2985 hci_send_to_monitor(hdev, skb); 2986 2987 if (atomic_read(&hdev->promisc)) { 2988 /* Send copy to the sockets */ 2989 hci_send_to_sock(hdev, skb); 2990 } 2991 2992 /* Get rid of skb owner, prior to sending to the driver. */ 2993 skb_orphan(skb); 2994 2995 if (!test_bit(HCI_RUNNING, &hdev->flags)) { 2996 kfree_skb(skb); 2997 return -EINVAL; 2998 } 2999 3000 err = hdev->send(hdev, skb); 3001 if (err < 0) { 3002 bt_dev_err(hdev, "sending frame failed (%d)", err); 3003 kfree_skb(skb); 3004 return err; 3005 } 3006 3007 return 0; 3008 } 3009 3010 /* Send HCI command */ 3011 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, 3012 const void *param) 3013 { 3014 struct sk_buff *skb; 3015 3016 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen); 3017 3018 skb = hci_prepare_cmd(hdev, opcode, plen, param); 3019 if (!skb) { 3020 bt_dev_err(hdev, "no memory for command"); 3021 return -ENOMEM; 3022 } 3023 3024 /* Stand-alone HCI commands must be flagged as 3025 * single-command requests. 3026 */ 3027 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 3028 3029 skb_queue_tail(&hdev->cmd_q, skb); 3030 queue_work(hdev->workqueue, &hdev->cmd_work); 3031 3032 return 0; 3033 } 3034 3035 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen, 3036 const void *param) 3037 { 3038 struct sk_buff *skb; 3039 3040 if (hci_opcode_ogf(opcode) != 0x3f) { 3041 /* A controller receiving a command shall respond with either 3042 * a Command Status Event or a Command Complete Event. 3043 * Therefore, all standard HCI commands must be sent via the 3044 * standard API, using hci_send_cmd or hci_cmd_sync helpers. 3045 * Some vendors do not comply with this rule for vendor-specific 3046 * commands and do not return any event. We want to support 3047 * unresponded commands for such cases only. 3048 */ 3049 bt_dev_err(hdev, "unresponded command not supported"); 3050 return -EINVAL; 3051 } 3052 3053 skb = hci_prepare_cmd(hdev, opcode, plen, param); 3054 if (!skb) { 3055 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 3056 opcode); 3057 return -ENOMEM; 3058 } 3059 3060 hci_send_frame(hdev, skb); 3061 3062 return 0; 3063 } 3064 EXPORT_SYMBOL(__hci_cmd_send); 3065 3066 /* Get data from the previously sent command */ 3067 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode) 3068 { 3069 struct hci_command_hdr *hdr; 3070 3071 if (!hdev->sent_cmd) 3072 return NULL; 3073 3074 hdr = (void *) hdev->sent_cmd->data; 3075 3076 if (hdr->opcode != cpu_to_le16(opcode)) 3077 return NULL; 3078 3079 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode); 3080 3081 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE; 3082 } 3083 3084 /* Get data from last received event */ 3085 void *hci_recv_event_data(struct hci_dev *hdev, __u8 event) 3086 { 3087 struct hci_event_hdr *hdr; 3088 int offset; 3089 3090 if (!hdev->recv_event) 3091 return NULL; 3092 3093 hdr = (void *)hdev->recv_event->data; 3094 offset = sizeof(*hdr); 3095 3096 if (hdr->evt != event) { 3097 /* In case of LE metaevent check the subevent match */ 3098 if (hdr->evt == HCI_EV_LE_META) { 3099 struct hci_ev_le_meta *ev; 3100 3101 ev = (void *)hdev->recv_event->data + offset; 3102 offset += sizeof(*ev); 3103 if (ev->subevent == event) 3104 goto found; 3105 } 3106 return NULL; 3107 } 3108 3109 found: 3110 bt_dev_dbg(hdev, "event 0x%2.2x", event); 3111 3112 return hdev->recv_event->data + offset; 3113 } 3114 3115 /* Send ACL data */ 3116 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags) 3117 { 3118 struct hci_acl_hdr *hdr; 3119 int len = skb->len; 3120 3121 skb_push(skb, HCI_ACL_HDR_SIZE); 3122 skb_reset_transport_header(skb); 3123 hdr = (struct hci_acl_hdr *)skb_transport_header(skb); 3124 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags)); 3125 hdr->dlen = cpu_to_le16(len); 3126 } 3127 3128 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue, 3129 struct sk_buff *skb, __u16 flags) 3130 { 3131 struct hci_conn *conn = chan->conn; 3132 struct hci_dev *hdev = conn->hdev; 3133 struct sk_buff *list; 3134 3135 skb->len = skb_headlen(skb); 3136 skb->data_len = 0; 3137 3138 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT; 3139 3140 switch (hdev->dev_type) { 3141 case HCI_PRIMARY: 3142 hci_add_acl_hdr(skb, conn->handle, flags); 3143 break; 3144 case HCI_AMP: 3145 hci_add_acl_hdr(skb, chan->handle, flags); 3146 break; 3147 default: 3148 bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type); 3149 return; 3150 } 3151 3152 list = skb_shinfo(skb)->frag_list; 3153 if (!list) { 3154 /* Non fragmented */ 3155 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len); 3156 3157 skb_queue_tail(queue, skb); 3158 } else { 3159 /* Fragmented */ 3160 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3161 3162 skb_shinfo(skb)->frag_list = NULL; 3163 3164 /* Queue all fragments atomically. We need to use spin_lock_bh 3165 * here because of 6LoWPAN links, as there this function is 3166 * called from softirq and using normal spin lock could cause 3167 * deadlocks. 3168 */ 3169 spin_lock_bh(&queue->lock); 3170 3171 __skb_queue_tail(queue, skb); 3172 3173 flags &= ~ACL_START; 3174 flags |= ACL_CONT; 3175 do { 3176 skb = list; list = list->next; 3177 3178 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT; 3179 hci_add_acl_hdr(skb, conn->handle, flags); 3180 3181 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3182 3183 __skb_queue_tail(queue, skb); 3184 } while (list); 3185 3186 spin_unlock_bh(&queue->lock); 3187 } 3188 } 3189 3190 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags) 3191 { 3192 struct hci_dev *hdev = chan->conn->hdev; 3193 3194 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags); 3195 3196 hci_queue_acl(chan, &chan->data_q, skb, flags); 3197 3198 queue_work(hdev->workqueue, &hdev->tx_work); 3199 } 3200 3201 /* Send SCO data */ 3202 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb) 3203 { 3204 struct hci_dev *hdev = conn->hdev; 3205 struct hci_sco_hdr hdr; 3206 3207 BT_DBG("%s len %d", hdev->name, skb->len); 3208 3209 hdr.handle = cpu_to_le16(conn->handle); 3210 hdr.dlen = skb->len; 3211 3212 skb_push(skb, HCI_SCO_HDR_SIZE); 3213 skb_reset_transport_header(skb); 3214 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE); 3215 3216 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT; 3217 3218 skb_queue_tail(&conn->data_q, skb); 3219 queue_work(hdev->workqueue, &hdev->tx_work); 3220 } 3221 3222 /* Send ISO data */ 3223 static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags) 3224 { 3225 struct hci_iso_hdr *hdr; 3226 int len = skb->len; 3227 3228 skb_push(skb, HCI_ISO_HDR_SIZE); 3229 skb_reset_transport_header(skb); 3230 hdr = (struct hci_iso_hdr *)skb_transport_header(skb); 3231 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags)); 3232 hdr->dlen = cpu_to_le16(len); 3233 } 3234 3235 static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue, 3236 struct sk_buff *skb) 3237 { 3238 struct hci_dev *hdev = conn->hdev; 3239 struct sk_buff *list; 3240 __u16 flags; 3241 3242 skb->len = skb_headlen(skb); 3243 skb->data_len = 0; 3244 3245 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT; 3246 3247 list = skb_shinfo(skb)->frag_list; 3248 3249 flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00); 3250 hci_add_iso_hdr(skb, conn->handle, flags); 3251 3252 if (!list) { 3253 /* Non fragmented */ 3254 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len); 3255 3256 skb_queue_tail(queue, skb); 3257 } else { 3258 /* Fragmented */ 3259 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3260 3261 skb_shinfo(skb)->frag_list = NULL; 3262 3263 __skb_queue_tail(queue, skb); 3264 3265 do { 3266 skb = list; list = list->next; 3267 3268 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT; 3269 flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END, 3270 0x00); 3271 hci_add_iso_hdr(skb, conn->handle, flags); 3272 3273 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3274 3275 __skb_queue_tail(queue, skb); 3276 } while (list); 3277 } 3278 } 3279 3280 void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb) 3281 { 3282 struct hci_dev *hdev = conn->hdev; 3283 3284 BT_DBG("%s len %d", hdev->name, skb->len); 3285 3286 hci_queue_iso(conn, &conn->data_q, skb); 3287 3288 queue_work(hdev->workqueue, &hdev->tx_work); 3289 } 3290 3291 /* ---- HCI TX task (outgoing data) ---- */ 3292 3293 /* HCI Connection scheduler */ 3294 static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote) 3295 { 3296 struct hci_dev *hdev; 3297 int cnt, q; 3298 3299 if (!conn) { 3300 *quote = 0; 3301 return; 3302 } 3303 3304 hdev = conn->hdev; 3305 3306 switch (conn->type) { 3307 case ACL_LINK: 3308 cnt = hdev->acl_cnt; 3309 break; 3310 case AMP_LINK: 3311 cnt = hdev->block_cnt; 3312 break; 3313 case SCO_LINK: 3314 case ESCO_LINK: 3315 cnt = hdev->sco_cnt; 3316 break; 3317 case LE_LINK: 3318 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 3319 break; 3320 case ISO_LINK: 3321 cnt = hdev->iso_mtu ? hdev->iso_cnt : 3322 hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 3323 break; 3324 default: 3325 cnt = 0; 3326 bt_dev_err(hdev, "unknown link type %d", conn->type); 3327 } 3328 3329 q = cnt / num; 3330 *quote = q ? q : 1; 3331 } 3332 3333 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, 3334 int *quote) 3335 { 3336 struct hci_conn_hash *h = &hdev->conn_hash; 3337 struct hci_conn *conn = NULL, *c; 3338 unsigned int num = 0, min = ~0; 3339 3340 /* We don't have to lock device here. Connections are always 3341 * added and removed with TX task disabled. */ 3342 3343 rcu_read_lock(); 3344 3345 list_for_each_entry_rcu(c, &h->list, list) { 3346 if (c->type != type || skb_queue_empty(&c->data_q)) 3347 continue; 3348 3349 if (c->state != BT_CONNECTED && c->state != BT_CONFIG) 3350 continue; 3351 3352 num++; 3353 3354 if (c->sent < min) { 3355 min = c->sent; 3356 conn = c; 3357 } 3358 3359 if (hci_conn_num(hdev, type) == num) 3360 break; 3361 } 3362 3363 rcu_read_unlock(); 3364 3365 hci_quote_sent(conn, num, quote); 3366 3367 BT_DBG("conn %p quote %d", conn, *quote); 3368 return conn; 3369 } 3370 3371 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type) 3372 { 3373 struct hci_conn_hash *h = &hdev->conn_hash; 3374 struct hci_conn *c; 3375 3376 bt_dev_err(hdev, "link tx timeout"); 3377 3378 rcu_read_lock(); 3379 3380 /* Kill stalled connections */ 3381 list_for_each_entry_rcu(c, &h->list, list) { 3382 if (c->type == type && c->sent) { 3383 bt_dev_err(hdev, "killing stalled connection %pMR", 3384 &c->dst); 3385 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM); 3386 } 3387 } 3388 3389 rcu_read_unlock(); 3390 } 3391 3392 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type, 3393 int *quote) 3394 { 3395 struct hci_conn_hash *h = &hdev->conn_hash; 3396 struct hci_chan *chan = NULL; 3397 unsigned int num = 0, min = ~0, cur_prio = 0; 3398 struct hci_conn *conn; 3399 int conn_num = 0; 3400 3401 BT_DBG("%s", hdev->name); 3402 3403 rcu_read_lock(); 3404 3405 list_for_each_entry_rcu(conn, &h->list, list) { 3406 struct hci_chan *tmp; 3407 3408 if (conn->type != type) 3409 continue; 3410 3411 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3412 continue; 3413 3414 conn_num++; 3415 3416 list_for_each_entry_rcu(tmp, &conn->chan_list, list) { 3417 struct sk_buff *skb; 3418 3419 if (skb_queue_empty(&tmp->data_q)) 3420 continue; 3421 3422 skb = skb_peek(&tmp->data_q); 3423 if (skb->priority < cur_prio) 3424 continue; 3425 3426 if (skb->priority > cur_prio) { 3427 num = 0; 3428 min = ~0; 3429 cur_prio = skb->priority; 3430 } 3431 3432 num++; 3433 3434 if (conn->sent < min) { 3435 min = conn->sent; 3436 chan = tmp; 3437 } 3438 } 3439 3440 if (hci_conn_num(hdev, type) == conn_num) 3441 break; 3442 } 3443 3444 rcu_read_unlock(); 3445 3446 if (!chan) 3447 return NULL; 3448 3449 hci_quote_sent(chan->conn, num, quote); 3450 3451 BT_DBG("chan %p quote %d", chan, *quote); 3452 return chan; 3453 } 3454 3455 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type) 3456 { 3457 struct hci_conn_hash *h = &hdev->conn_hash; 3458 struct hci_conn *conn; 3459 int num = 0; 3460 3461 BT_DBG("%s", hdev->name); 3462 3463 rcu_read_lock(); 3464 3465 list_for_each_entry_rcu(conn, &h->list, list) { 3466 struct hci_chan *chan; 3467 3468 if (conn->type != type) 3469 continue; 3470 3471 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3472 continue; 3473 3474 num++; 3475 3476 list_for_each_entry_rcu(chan, &conn->chan_list, list) { 3477 struct sk_buff *skb; 3478 3479 if (chan->sent) { 3480 chan->sent = 0; 3481 continue; 3482 } 3483 3484 if (skb_queue_empty(&chan->data_q)) 3485 continue; 3486 3487 skb = skb_peek(&chan->data_q); 3488 if (skb->priority >= HCI_PRIO_MAX - 1) 3489 continue; 3490 3491 skb->priority = HCI_PRIO_MAX - 1; 3492 3493 BT_DBG("chan %p skb %p promoted to %d", chan, skb, 3494 skb->priority); 3495 } 3496 3497 if (hci_conn_num(hdev, type) == num) 3498 break; 3499 } 3500 3501 rcu_read_unlock(); 3502 3503 } 3504 3505 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb) 3506 { 3507 /* Calculate count of blocks used by this packet */ 3508 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len); 3509 } 3510 3511 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type) 3512 { 3513 unsigned long last_tx; 3514 3515 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 3516 return; 3517 3518 switch (type) { 3519 case LE_LINK: 3520 last_tx = hdev->le_last_tx; 3521 break; 3522 default: 3523 last_tx = hdev->acl_last_tx; 3524 break; 3525 } 3526 3527 /* tx timeout must be longer than maximum link supervision timeout 3528 * (40.9 seconds) 3529 */ 3530 if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT)) 3531 hci_link_tx_to(hdev, type); 3532 } 3533 3534 /* Schedule SCO */ 3535 static void hci_sched_sco(struct hci_dev *hdev) 3536 { 3537 struct hci_conn *conn; 3538 struct sk_buff *skb; 3539 int quote; 3540 3541 BT_DBG("%s", hdev->name); 3542 3543 if (!hci_conn_num(hdev, SCO_LINK)) 3544 return; 3545 3546 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) { 3547 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 3548 BT_DBG("skb %p len %d", skb, skb->len); 3549 hci_send_frame(hdev, skb); 3550 3551 conn->sent++; 3552 if (conn->sent == ~0) 3553 conn->sent = 0; 3554 } 3555 } 3556 } 3557 3558 static void hci_sched_esco(struct hci_dev *hdev) 3559 { 3560 struct hci_conn *conn; 3561 struct sk_buff *skb; 3562 int quote; 3563 3564 BT_DBG("%s", hdev->name); 3565 3566 if (!hci_conn_num(hdev, ESCO_LINK)) 3567 return; 3568 3569 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, 3570 "e))) { 3571 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 3572 BT_DBG("skb %p len %d", skb, skb->len); 3573 hci_send_frame(hdev, skb); 3574 3575 conn->sent++; 3576 if (conn->sent == ~0) 3577 conn->sent = 0; 3578 } 3579 } 3580 } 3581 3582 static void hci_sched_acl_pkt(struct hci_dev *hdev) 3583 { 3584 unsigned int cnt = hdev->acl_cnt; 3585 struct hci_chan *chan; 3586 struct sk_buff *skb; 3587 int quote; 3588 3589 __check_timeout(hdev, cnt, ACL_LINK); 3590 3591 while (hdev->acl_cnt && 3592 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) { 3593 u32 priority = (skb_peek(&chan->data_q))->priority; 3594 while (quote-- && (skb = skb_peek(&chan->data_q))) { 3595 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 3596 skb->len, skb->priority); 3597 3598 /* Stop if priority has changed */ 3599 if (skb->priority < priority) 3600 break; 3601 3602 skb = skb_dequeue(&chan->data_q); 3603 3604 hci_conn_enter_active_mode(chan->conn, 3605 bt_cb(skb)->force_active); 3606 3607 hci_send_frame(hdev, skb); 3608 hdev->acl_last_tx = jiffies; 3609 3610 hdev->acl_cnt--; 3611 chan->sent++; 3612 chan->conn->sent++; 3613 3614 /* Send pending SCO packets right away */ 3615 hci_sched_sco(hdev); 3616 hci_sched_esco(hdev); 3617 } 3618 } 3619 3620 if (cnt != hdev->acl_cnt) 3621 hci_prio_recalculate(hdev, ACL_LINK); 3622 } 3623 3624 static void hci_sched_acl_blk(struct hci_dev *hdev) 3625 { 3626 unsigned int cnt = hdev->block_cnt; 3627 struct hci_chan *chan; 3628 struct sk_buff *skb; 3629 int quote; 3630 u8 type; 3631 3632 BT_DBG("%s", hdev->name); 3633 3634 if (hdev->dev_type == HCI_AMP) 3635 type = AMP_LINK; 3636 else 3637 type = ACL_LINK; 3638 3639 __check_timeout(hdev, cnt, type); 3640 3641 while (hdev->block_cnt > 0 && 3642 (chan = hci_chan_sent(hdev, type, "e))) { 3643 u32 priority = (skb_peek(&chan->data_q))->priority; 3644 while (quote > 0 && (skb = skb_peek(&chan->data_q))) { 3645 int blocks; 3646 3647 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 3648 skb->len, skb->priority); 3649 3650 /* Stop if priority has changed */ 3651 if (skb->priority < priority) 3652 break; 3653 3654 skb = skb_dequeue(&chan->data_q); 3655 3656 blocks = __get_blocks(hdev, skb); 3657 if (blocks > hdev->block_cnt) 3658 return; 3659 3660 hci_conn_enter_active_mode(chan->conn, 3661 bt_cb(skb)->force_active); 3662 3663 hci_send_frame(hdev, skb); 3664 hdev->acl_last_tx = jiffies; 3665 3666 hdev->block_cnt -= blocks; 3667 quote -= blocks; 3668 3669 chan->sent += blocks; 3670 chan->conn->sent += blocks; 3671 } 3672 } 3673 3674 if (cnt != hdev->block_cnt) 3675 hci_prio_recalculate(hdev, type); 3676 } 3677 3678 static void hci_sched_acl(struct hci_dev *hdev) 3679 { 3680 BT_DBG("%s", hdev->name); 3681 3682 /* No ACL link over BR/EDR controller */ 3683 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY) 3684 return; 3685 3686 /* No AMP link over AMP controller */ 3687 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP) 3688 return; 3689 3690 switch (hdev->flow_ctl_mode) { 3691 case HCI_FLOW_CTL_MODE_PACKET_BASED: 3692 hci_sched_acl_pkt(hdev); 3693 break; 3694 3695 case HCI_FLOW_CTL_MODE_BLOCK_BASED: 3696 hci_sched_acl_blk(hdev); 3697 break; 3698 } 3699 } 3700 3701 static void hci_sched_le(struct hci_dev *hdev) 3702 { 3703 struct hci_chan *chan; 3704 struct sk_buff *skb; 3705 int quote, cnt, tmp; 3706 3707 BT_DBG("%s", hdev->name); 3708 3709 if (!hci_conn_num(hdev, LE_LINK)) 3710 return; 3711 3712 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt; 3713 3714 __check_timeout(hdev, cnt, LE_LINK); 3715 3716 tmp = cnt; 3717 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) { 3718 u32 priority = (skb_peek(&chan->data_q))->priority; 3719 while (quote-- && (skb = skb_peek(&chan->data_q))) { 3720 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 3721 skb->len, skb->priority); 3722 3723 /* Stop if priority has changed */ 3724 if (skb->priority < priority) 3725 break; 3726 3727 skb = skb_dequeue(&chan->data_q); 3728 3729 hci_send_frame(hdev, skb); 3730 hdev->le_last_tx = jiffies; 3731 3732 cnt--; 3733 chan->sent++; 3734 chan->conn->sent++; 3735 3736 /* Send pending SCO packets right away */ 3737 hci_sched_sco(hdev); 3738 hci_sched_esco(hdev); 3739 } 3740 } 3741 3742 if (hdev->le_pkts) 3743 hdev->le_cnt = cnt; 3744 else 3745 hdev->acl_cnt = cnt; 3746 3747 if (cnt != tmp) 3748 hci_prio_recalculate(hdev, LE_LINK); 3749 } 3750 3751 /* Schedule CIS */ 3752 static void hci_sched_iso(struct hci_dev *hdev) 3753 { 3754 struct hci_conn *conn; 3755 struct sk_buff *skb; 3756 int quote, *cnt; 3757 3758 BT_DBG("%s", hdev->name); 3759 3760 if (!hci_conn_num(hdev, ISO_LINK)) 3761 return; 3762 3763 cnt = hdev->iso_pkts ? &hdev->iso_cnt : 3764 hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt; 3765 while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, "e))) { 3766 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 3767 BT_DBG("skb %p len %d", skb, skb->len); 3768 hci_send_frame(hdev, skb); 3769 3770 conn->sent++; 3771 if (conn->sent == ~0) 3772 conn->sent = 0; 3773 (*cnt)--; 3774 } 3775 } 3776 } 3777 3778 static void hci_tx_work(struct work_struct *work) 3779 { 3780 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work); 3781 struct sk_buff *skb; 3782 3783 BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt, 3784 hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt); 3785 3786 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 3787 /* Schedule queues and send stuff to HCI driver */ 3788 hci_sched_sco(hdev); 3789 hci_sched_esco(hdev); 3790 hci_sched_iso(hdev); 3791 hci_sched_acl(hdev); 3792 hci_sched_le(hdev); 3793 } 3794 3795 /* Send next queued raw (unknown type) packet */ 3796 while ((skb = skb_dequeue(&hdev->raw_q))) 3797 hci_send_frame(hdev, skb); 3798 } 3799 3800 /* ----- HCI RX task (incoming data processing) ----- */ 3801 3802 /* ACL data packet */ 3803 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb) 3804 { 3805 struct hci_acl_hdr *hdr = (void *) skb->data; 3806 struct hci_conn *conn; 3807 __u16 handle, flags; 3808 3809 skb_pull(skb, HCI_ACL_HDR_SIZE); 3810 3811 handle = __le16_to_cpu(hdr->handle); 3812 flags = hci_flags(handle); 3813 handle = hci_handle(handle); 3814 3815 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len, 3816 handle, flags); 3817 3818 hdev->stat.acl_rx++; 3819 3820 hci_dev_lock(hdev); 3821 conn = hci_conn_hash_lookup_handle(hdev, handle); 3822 hci_dev_unlock(hdev); 3823 3824 if (conn) { 3825 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF); 3826 3827 /* Send to upper protocol */ 3828 l2cap_recv_acldata(conn, skb, flags); 3829 return; 3830 } else { 3831 bt_dev_err(hdev, "ACL packet for unknown connection handle %d", 3832 handle); 3833 } 3834 3835 kfree_skb(skb); 3836 } 3837 3838 /* SCO data packet */ 3839 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb) 3840 { 3841 struct hci_sco_hdr *hdr = (void *) skb->data; 3842 struct hci_conn *conn; 3843 __u16 handle, flags; 3844 3845 skb_pull(skb, HCI_SCO_HDR_SIZE); 3846 3847 handle = __le16_to_cpu(hdr->handle); 3848 flags = hci_flags(handle); 3849 handle = hci_handle(handle); 3850 3851 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len, 3852 handle, flags); 3853 3854 hdev->stat.sco_rx++; 3855 3856 hci_dev_lock(hdev); 3857 conn = hci_conn_hash_lookup_handle(hdev, handle); 3858 hci_dev_unlock(hdev); 3859 3860 if (conn) { 3861 /* Send to upper protocol */ 3862 bt_cb(skb)->sco.pkt_status = flags & 0x03; 3863 sco_recv_scodata(conn, skb); 3864 return; 3865 } else { 3866 bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d", 3867 handle); 3868 } 3869 3870 kfree_skb(skb); 3871 } 3872 3873 static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb) 3874 { 3875 struct hci_iso_hdr *hdr; 3876 struct hci_conn *conn; 3877 __u16 handle, flags; 3878 3879 hdr = skb_pull_data(skb, sizeof(*hdr)); 3880 if (!hdr) { 3881 bt_dev_err(hdev, "ISO packet too small"); 3882 goto drop; 3883 } 3884 3885 handle = __le16_to_cpu(hdr->handle); 3886 flags = hci_flags(handle); 3887 handle = hci_handle(handle); 3888 3889 bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len, 3890 handle, flags); 3891 3892 hci_dev_lock(hdev); 3893 conn = hci_conn_hash_lookup_handle(hdev, handle); 3894 hci_dev_unlock(hdev); 3895 3896 if (!conn) { 3897 bt_dev_err(hdev, "ISO packet for unknown connection handle %d", 3898 handle); 3899 goto drop; 3900 } 3901 3902 /* Send to upper protocol */ 3903 iso_recv(conn, skb, flags); 3904 return; 3905 3906 drop: 3907 kfree_skb(skb); 3908 } 3909 3910 static bool hci_req_is_complete(struct hci_dev *hdev) 3911 { 3912 struct sk_buff *skb; 3913 3914 skb = skb_peek(&hdev->cmd_q); 3915 if (!skb) 3916 return true; 3917 3918 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START); 3919 } 3920 3921 static void hci_resend_last(struct hci_dev *hdev) 3922 { 3923 struct hci_command_hdr *sent; 3924 struct sk_buff *skb; 3925 u16 opcode; 3926 3927 if (!hdev->sent_cmd) 3928 return; 3929 3930 sent = (void *) hdev->sent_cmd->data; 3931 opcode = __le16_to_cpu(sent->opcode); 3932 if (opcode == HCI_OP_RESET) 3933 return; 3934 3935 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL); 3936 if (!skb) 3937 return; 3938 3939 skb_queue_head(&hdev->cmd_q, skb); 3940 queue_work(hdev->workqueue, &hdev->cmd_work); 3941 } 3942 3943 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status, 3944 hci_req_complete_t *req_complete, 3945 hci_req_complete_skb_t *req_complete_skb) 3946 { 3947 struct sk_buff *skb; 3948 unsigned long flags; 3949 3950 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status); 3951 3952 /* If the completed command doesn't match the last one that was 3953 * sent we need to do special handling of it. 3954 */ 3955 if (!hci_sent_cmd_data(hdev, opcode)) { 3956 /* Some CSR based controllers generate a spontaneous 3957 * reset complete event during init and any pending 3958 * command will never be completed. In such a case we 3959 * need to resend whatever was the last sent 3960 * command. 3961 */ 3962 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET) 3963 hci_resend_last(hdev); 3964 3965 return; 3966 } 3967 3968 /* If we reach this point this event matches the last command sent */ 3969 hci_dev_clear_flag(hdev, HCI_CMD_PENDING); 3970 3971 /* If the command succeeded and there's still more commands in 3972 * this request the request is not yet complete. 3973 */ 3974 if (!status && !hci_req_is_complete(hdev)) 3975 return; 3976 3977 /* If this was the last command in a request the complete 3978 * callback would be found in hdev->sent_cmd instead of the 3979 * command queue (hdev->cmd_q). 3980 */ 3981 if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) { 3982 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb; 3983 return; 3984 } 3985 3986 if (bt_cb(hdev->sent_cmd)->hci.req_complete) { 3987 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete; 3988 return; 3989 } 3990 3991 /* Remove all pending commands belonging to this request */ 3992 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 3993 while ((skb = __skb_dequeue(&hdev->cmd_q))) { 3994 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) { 3995 __skb_queue_head(&hdev->cmd_q, skb); 3996 break; 3997 } 3998 3999 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) 4000 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb; 4001 else 4002 *req_complete = bt_cb(skb)->hci.req_complete; 4003 dev_kfree_skb_irq(skb); 4004 } 4005 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 4006 } 4007 4008 static void hci_rx_work(struct work_struct *work) 4009 { 4010 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work); 4011 struct sk_buff *skb; 4012 4013 BT_DBG("%s", hdev->name); 4014 4015 /* The kcov_remote functions used for collecting packet parsing 4016 * coverage information from this background thread and associate 4017 * the coverage with the syscall's thread which originally injected 4018 * the packet. This helps fuzzing the kernel. 4019 */ 4020 for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) { 4021 kcov_remote_start_common(skb_get_kcov_handle(skb)); 4022 4023 /* Send copy to monitor */ 4024 hci_send_to_monitor(hdev, skb); 4025 4026 if (atomic_read(&hdev->promisc)) { 4027 /* Send copy to the sockets */ 4028 hci_send_to_sock(hdev, skb); 4029 } 4030 4031 /* If the device has been opened in HCI_USER_CHANNEL, 4032 * the userspace has exclusive access to device. 4033 * When device is HCI_INIT, we still need to process 4034 * the data packets to the driver in order 4035 * to complete its setup(). 4036 */ 4037 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4038 !test_bit(HCI_INIT, &hdev->flags)) { 4039 kfree_skb(skb); 4040 continue; 4041 } 4042 4043 if (test_bit(HCI_INIT, &hdev->flags)) { 4044 /* Don't process data packets in this states. */ 4045 switch (hci_skb_pkt_type(skb)) { 4046 case HCI_ACLDATA_PKT: 4047 case HCI_SCODATA_PKT: 4048 case HCI_ISODATA_PKT: 4049 kfree_skb(skb); 4050 continue; 4051 } 4052 } 4053 4054 /* Process frame */ 4055 switch (hci_skb_pkt_type(skb)) { 4056 case HCI_EVENT_PKT: 4057 BT_DBG("%s Event packet", hdev->name); 4058 hci_event_packet(hdev, skb); 4059 break; 4060 4061 case HCI_ACLDATA_PKT: 4062 BT_DBG("%s ACL data packet", hdev->name); 4063 hci_acldata_packet(hdev, skb); 4064 break; 4065 4066 case HCI_SCODATA_PKT: 4067 BT_DBG("%s SCO data packet", hdev->name); 4068 hci_scodata_packet(hdev, skb); 4069 break; 4070 4071 case HCI_ISODATA_PKT: 4072 BT_DBG("%s ISO data packet", hdev->name); 4073 hci_isodata_packet(hdev, skb); 4074 break; 4075 4076 default: 4077 kfree_skb(skb); 4078 break; 4079 } 4080 } 4081 } 4082 4083 static void hci_cmd_work(struct work_struct *work) 4084 { 4085 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work); 4086 struct sk_buff *skb; 4087 4088 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name, 4089 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q)); 4090 4091 /* Send queued commands */ 4092 if (atomic_read(&hdev->cmd_cnt)) { 4093 skb = skb_dequeue(&hdev->cmd_q); 4094 if (!skb) 4095 return; 4096 4097 kfree_skb(hdev->sent_cmd); 4098 4099 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL); 4100 if (hdev->sent_cmd) { 4101 int res; 4102 if (hci_req_status_pend(hdev)) 4103 hci_dev_set_flag(hdev, HCI_CMD_PENDING); 4104 atomic_dec(&hdev->cmd_cnt); 4105 4106 res = hci_send_frame(hdev, skb); 4107 if (res < 0) 4108 __hci_cmd_sync_cancel(hdev, -res); 4109 4110 rcu_read_lock(); 4111 if (test_bit(HCI_RESET, &hdev->flags) || 4112 hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE)) 4113 cancel_delayed_work(&hdev->cmd_timer); 4114 else 4115 queue_delayed_work(hdev->workqueue, &hdev->cmd_timer, 4116 HCI_CMD_TIMEOUT); 4117 rcu_read_unlock(); 4118 } else { 4119 skb_queue_head(&hdev->cmd_q, skb); 4120 queue_work(hdev->workqueue, &hdev->cmd_work); 4121 } 4122 } 4123 } 4124