1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (C) 2000-2001 Qualcomm Incorporated 4 Copyright (C) 2011 ProFUSION Embedded Systems 5 6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License version 2 as 10 published by the Free Software Foundation; 11 12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 23 SOFTWARE IS DISCLAIMED. 24 */ 25 26 /* Bluetooth HCI core. */ 27 28 #include <linux/export.h> 29 #include <linux/rfkill.h> 30 #include <linux/debugfs.h> 31 #include <linux/crypto.h> 32 #include <linux/kcov.h> 33 #include <linux/property.h> 34 #include <linux/suspend.h> 35 #include <linux/wait.h> 36 #include <asm/unaligned.h> 37 38 #include <net/bluetooth/bluetooth.h> 39 #include <net/bluetooth/hci_core.h> 40 #include <net/bluetooth/l2cap.h> 41 #include <net/bluetooth/mgmt.h> 42 43 #include "hci_request.h" 44 #include "hci_debugfs.h" 45 #include "smp.h" 46 #include "leds.h" 47 #include "msft.h" 48 #include "aosp.h" 49 #include "hci_codec.h" 50 51 static void hci_rx_work(struct work_struct *work); 52 static void hci_cmd_work(struct work_struct *work); 53 static void hci_tx_work(struct work_struct *work); 54 55 /* HCI device list */ 56 LIST_HEAD(hci_dev_list); 57 DEFINE_RWLOCK(hci_dev_list_lock); 58 59 /* HCI callback list */ 60 LIST_HEAD(hci_cb_list); 61 DEFINE_MUTEX(hci_cb_list_lock); 62 63 /* HCI ID Numbering */ 64 static DEFINE_IDA(hci_index_ida); 65 66 static int hci_scan_req(struct hci_request *req, unsigned long opt) 67 { 68 __u8 scan = opt; 69 70 BT_DBG("%s %x", req->hdev->name, scan); 71 72 /* Inquiry and Page scans */ 73 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); 74 return 0; 75 } 76 77 static int hci_auth_req(struct hci_request *req, unsigned long opt) 78 { 79 __u8 auth = opt; 80 81 BT_DBG("%s %x", req->hdev->name, auth); 82 83 /* Authentication */ 84 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth); 85 return 0; 86 } 87 88 static int hci_encrypt_req(struct hci_request *req, unsigned long opt) 89 { 90 __u8 encrypt = opt; 91 92 BT_DBG("%s %x", req->hdev->name, encrypt); 93 94 /* Encryption */ 95 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt); 96 return 0; 97 } 98 99 static int hci_linkpol_req(struct hci_request *req, unsigned long opt) 100 { 101 __le16 policy = cpu_to_le16(opt); 102 103 BT_DBG("%s %x", req->hdev->name, policy); 104 105 /* Default link policy */ 106 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy); 107 return 0; 108 } 109 110 /* Get HCI device by index. 111 * Device is held on return. */ 112 struct hci_dev *hci_dev_get(int index) 113 { 114 struct hci_dev *hdev = NULL, *d; 115 116 BT_DBG("%d", index); 117 118 if (index < 0) 119 return NULL; 120 121 read_lock(&hci_dev_list_lock); 122 list_for_each_entry(d, &hci_dev_list, list) { 123 if (d->id == index) { 124 hdev = hci_dev_hold(d); 125 break; 126 } 127 } 128 read_unlock(&hci_dev_list_lock); 129 return hdev; 130 } 131 132 /* ---- Inquiry support ---- */ 133 134 bool hci_discovery_active(struct hci_dev *hdev) 135 { 136 struct discovery_state *discov = &hdev->discovery; 137 138 switch (discov->state) { 139 case DISCOVERY_FINDING: 140 case DISCOVERY_RESOLVING: 141 return true; 142 143 default: 144 return false; 145 } 146 } 147 148 void hci_discovery_set_state(struct hci_dev *hdev, int state) 149 { 150 int old_state = hdev->discovery.state; 151 152 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state); 153 154 if (old_state == state) 155 return; 156 157 hdev->discovery.state = state; 158 159 switch (state) { 160 case DISCOVERY_STOPPED: 161 hci_update_passive_scan(hdev); 162 163 if (old_state != DISCOVERY_STARTING) 164 mgmt_discovering(hdev, 0); 165 break; 166 case DISCOVERY_STARTING: 167 break; 168 case DISCOVERY_FINDING: 169 mgmt_discovering(hdev, 1); 170 break; 171 case DISCOVERY_RESOLVING: 172 break; 173 case DISCOVERY_STOPPING: 174 break; 175 } 176 } 177 178 void hci_inquiry_cache_flush(struct hci_dev *hdev) 179 { 180 struct discovery_state *cache = &hdev->discovery; 181 struct inquiry_entry *p, *n; 182 183 list_for_each_entry_safe(p, n, &cache->all, all) { 184 list_del(&p->all); 185 kfree(p); 186 } 187 188 INIT_LIST_HEAD(&cache->unknown); 189 INIT_LIST_HEAD(&cache->resolve); 190 } 191 192 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, 193 bdaddr_t *bdaddr) 194 { 195 struct discovery_state *cache = &hdev->discovery; 196 struct inquiry_entry *e; 197 198 BT_DBG("cache %p, %pMR", cache, bdaddr); 199 200 list_for_each_entry(e, &cache->all, all) { 201 if (!bacmp(&e->data.bdaddr, bdaddr)) 202 return e; 203 } 204 205 return NULL; 206 } 207 208 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, 209 bdaddr_t *bdaddr) 210 { 211 struct discovery_state *cache = &hdev->discovery; 212 struct inquiry_entry *e; 213 214 BT_DBG("cache %p, %pMR", cache, bdaddr); 215 216 list_for_each_entry(e, &cache->unknown, list) { 217 if (!bacmp(&e->data.bdaddr, bdaddr)) 218 return e; 219 } 220 221 return NULL; 222 } 223 224 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, 225 bdaddr_t *bdaddr, 226 int state) 227 { 228 struct discovery_state *cache = &hdev->discovery; 229 struct inquiry_entry *e; 230 231 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state); 232 233 list_for_each_entry(e, &cache->resolve, list) { 234 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state) 235 return e; 236 if (!bacmp(&e->data.bdaddr, bdaddr)) 237 return e; 238 } 239 240 return NULL; 241 } 242 243 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, 244 struct inquiry_entry *ie) 245 { 246 struct discovery_state *cache = &hdev->discovery; 247 struct list_head *pos = &cache->resolve; 248 struct inquiry_entry *p; 249 250 list_del(&ie->list); 251 252 list_for_each_entry(p, &cache->resolve, list) { 253 if (p->name_state != NAME_PENDING && 254 abs(p->data.rssi) >= abs(ie->data.rssi)) 255 break; 256 pos = &p->list; 257 } 258 259 list_add(&ie->list, pos); 260 } 261 262 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, 263 bool name_known) 264 { 265 struct discovery_state *cache = &hdev->discovery; 266 struct inquiry_entry *ie; 267 u32 flags = 0; 268 269 BT_DBG("cache %p, %pMR", cache, &data->bdaddr); 270 271 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR); 272 273 if (!data->ssp_mode) 274 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 275 276 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr); 277 if (ie) { 278 if (!ie->data.ssp_mode) 279 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 280 281 if (ie->name_state == NAME_NEEDED && 282 data->rssi != ie->data.rssi) { 283 ie->data.rssi = data->rssi; 284 hci_inquiry_cache_update_resolve(hdev, ie); 285 } 286 287 goto update; 288 } 289 290 /* Entry not in the cache. Add new one. */ 291 ie = kzalloc(sizeof(*ie), GFP_KERNEL); 292 if (!ie) { 293 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 294 goto done; 295 } 296 297 list_add(&ie->all, &cache->all); 298 299 if (name_known) { 300 ie->name_state = NAME_KNOWN; 301 } else { 302 ie->name_state = NAME_NOT_KNOWN; 303 list_add(&ie->list, &cache->unknown); 304 } 305 306 update: 307 if (name_known && ie->name_state != NAME_KNOWN && 308 ie->name_state != NAME_PENDING) { 309 ie->name_state = NAME_KNOWN; 310 list_del(&ie->list); 311 } 312 313 memcpy(&ie->data, data, sizeof(*data)); 314 ie->timestamp = jiffies; 315 cache->timestamp = jiffies; 316 317 if (ie->name_state == NAME_NOT_KNOWN) 318 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 319 320 done: 321 return flags; 322 } 323 324 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf) 325 { 326 struct discovery_state *cache = &hdev->discovery; 327 struct inquiry_info *info = (struct inquiry_info *) buf; 328 struct inquiry_entry *e; 329 int copied = 0; 330 331 list_for_each_entry(e, &cache->all, all) { 332 struct inquiry_data *data = &e->data; 333 334 if (copied >= num) 335 break; 336 337 bacpy(&info->bdaddr, &data->bdaddr); 338 info->pscan_rep_mode = data->pscan_rep_mode; 339 info->pscan_period_mode = data->pscan_period_mode; 340 info->pscan_mode = data->pscan_mode; 341 memcpy(info->dev_class, data->dev_class, 3); 342 info->clock_offset = data->clock_offset; 343 344 info++; 345 copied++; 346 } 347 348 BT_DBG("cache %p, copied %d", cache, copied); 349 return copied; 350 } 351 352 static int hci_inq_req(struct hci_request *req, unsigned long opt) 353 { 354 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt; 355 struct hci_dev *hdev = req->hdev; 356 struct hci_cp_inquiry cp; 357 358 BT_DBG("%s", hdev->name); 359 360 if (test_bit(HCI_INQUIRY, &hdev->flags)) 361 return 0; 362 363 /* Start Inquiry */ 364 memcpy(&cp.lap, &ir->lap, 3); 365 cp.length = ir->length; 366 cp.num_rsp = ir->num_rsp; 367 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp); 368 369 return 0; 370 } 371 372 int hci_inquiry(void __user *arg) 373 { 374 __u8 __user *ptr = arg; 375 struct hci_inquiry_req ir; 376 struct hci_dev *hdev; 377 int err = 0, do_inquiry = 0, max_rsp; 378 long timeo; 379 __u8 *buf; 380 381 if (copy_from_user(&ir, ptr, sizeof(ir))) 382 return -EFAULT; 383 384 hdev = hci_dev_get(ir.dev_id); 385 if (!hdev) 386 return -ENODEV; 387 388 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 389 err = -EBUSY; 390 goto done; 391 } 392 393 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 394 err = -EOPNOTSUPP; 395 goto done; 396 } 397 398 if (hdev->dev_type != HCI_PRIMARY) { 399 err = -EOPNOTSUPP; 400 goto done; 401 } 402 403 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 404 err = -EOPNOTSUPP; 405 goto done; 406 } 407 408 /* Restrict maximum inquiry length to 60 seconds */ 409 if (ir.length > 60) { 410 err = -EINVAL; 411 goto done; 412 } 413 414 hci_dev_lock(hdev); 415 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX || 416 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) { 417 hci_inquiry_cache_flush(hdev); 418 do_inquiry = 1; 419 } 420 hci_dev_unlock(hdev); 421 422 timeo = ir.length * msecs_to_jiffies(2000); 423 424 if (do_inquiry) { 425 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir, 426 timeo, NULL); 427 if (err < 0) 428 goto done; 429 430 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is 431 * cleared). If it is interrupted by a signal, return -EINTR. 432 */ 433 if (wait_on_bit(&hdev->flags, HCI_INQUIRY, 434 TASK_INTERRUPTIBLE)) { 435 err = -EINTR; 436 goto done; 437 } 438 } 439 440 /* for unlimited number of responses we will use buffer with 441 * 255 entries 442 */ 443 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp; 444 445 /* cache_dump can't sleep. Therefore we allocate temp buffer and then 446 * copy it to the user space. 447 */ 448 buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL); 449 if (!buf) { 450 err = -ENOMEM; 451 goto done; 452 } 453 454 hci_dev_lock(hdev); 455 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf); 456 hci_dev_unlock(hdev); 457 458 BT_DBG("num_rsp %d", ir.num_rsp); 459 460 if (!copy_to_user(ptr, &ir, sizeof(ir))) { 461 ptr += sizeof(ir); 462 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) * 463 ir.num_rsp)) 464 err = -EFAULT; 465 } else 466 err = -EFAULT; 467 468 kfree(buf); 469 470 done: 471 hci_dev_put(hdev); 472 return err; 473 } 474 475 static int hci_dev_do_open(struct hci_dev *hdev) 476 { 477 int ret = 0; 478 479 BT_DBG("%s %p", hdev->name, hdev); 480 481 hci_req_sync_lock(hdev); 482 483 ret = hci_dev_open_sync(hdev); 484 485 hci_req_sync_unlock(hdev); 486 return ret; 487 } 488 489 /* ---- HCI ioctl helpers ---- */ 490 491 int hci_dev_open(__u16 dev) 492 { 493 struct hci_dev *hdev; 494 int err; 495 496 hdev = hci_dev_get(dev); 497 if (!hdev) 498 return -ENODEV; 499 500 /* Devices that are marked as unconfigured can only be powered 501 * up as user channel. Trying to bring them up as normal devices 502 * will result into a failure. Only user channel operation is 503 * possible. 504 * 505 * When this function is called for a user channel, the flag 506 * HCI_USER_CHANNEL will be set first before attempting to 507 * open the device. 508 */ 509 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 510 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 511 err = -EOPNOTSUPP; 512 goto done; 513 } 514 515 /* We need to ensure that no other power on/off work is pending 516 * before proceeding to call hci_dev_do_open. This is 517 * particularly important if the setup procedure has not yet 518 * completed. 519 */ 520 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) 521 cancel_delayed_work(&hdev->power_off); 522 523 /* After this call it is guaranteed that the setup procedure 524 * has finished. This means that error conditions like RFKILL 525 * or no valid public or static random address apply. 526 */ 527 flush_workqueue(hdev->req_workqueue); 528 529 /* For controllers not using the management interface and that 530 * are brought up using legacy ioctl, set the HCI_BONDABLE bit 531 * so that pairing works for them. Once the management interface 532 * is in use this bit will be cleared again and userspace has 533 * to explicitly enable it. 534 */ 535 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 536 !hci_dev_test_flag(hdev, HCI_MGMT)) 537 hci_dev_set_flag(hdev, HCI_BONDABLE); 538 539 err = hci_dev_do_open(hdev); 540 541 done: 542 hci_dev_put(hdev); 543 return err; 544 } 545 546 int hci_dev_do_close(struct hci_dev *hdev) 547 { 548 int err; 549 550 BT_DBG("%s %p", hdev->name, hdev); 551 552 hci_req_sync_lock(hdev); 553 554 err = hci_dev_close_sync(hdev); 555 556 hci_req_sync_unlock(hdev); 557 558 return err; 559 } 560 561 int hci_dev_close(__u16 dev) 562 { 563 struct hci_dev *hdev; 564 int err; 565 566 hdev = hci_dev_get(dev); 567 if (!hdev) 568 return -ENODEV; 569 570 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 571 err = -EBUSY; 572 goto done; 573 } 574 575 cancel_work_sync(&hdev->power_on); 576 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) 577 cancel_delayed_work(&hdev->power_off); 578 579 err = hci_dev_do_close(hdev); 580 581 done: 582 hci_dev_put(hdev); 583 return err; 584 } 585 586 static int hci_dev_do_reset(struct hci_dev *hdev) 587 { 588 int ret; 589 590 BT_DBG("%s %p", hdev->name, hdev); 591 592 hci_req_sync_lock(hdev); 593 594 /* Drop queues */ 595 skb_queue_purge(&hdev->rx_q); 596 skb_queue_purge(&hdev->cmd_q); 597 598 /* Cancel these to avoid queueing non-chained pending work */ 599 hci_dev_set_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE); 600 /* Wait for 601 * 602 * if (!hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE)) 603 * queue_delayed_work(&hdev->{cmd,ncmd}_timer) 604 * 605 * inside RCU section to see the flag or complete scheduling. 606 */ 607 synchronize_rcu(); 608 /* Explicitly cancel works in case scheduled after setting the flag. */ 609 cancel_delayed_work(&hdev->cmd_timer); 610 cancel_delayed_work(&hdev->ncmd_timer); 611 612 /* Avoid potential lockdep warnings from the *_flush() calls by 613 * ensuring the workqueue is empty up front. 614 */ 615 drain_workqueue(hdev->workqueue); 616 617 hci_dev_lock(hdev); 618 hci_inquiry_cache_flush(hdev); 619 hci_conn_hash_flush(hdev); 620 hci_dev_unlock(hdev); 621 622 if (hdev->flush) 623 hdev->flush(hdev); 624 625 hci_dev_clear_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE); 626 627 atomic_set(&hdev->cmd_cnt, 1); 628 hdev->acl_cnt = 0; 629 hdev->sco_cnt = 0; 630 hdev->le_cnt = 0; 631 hdev->iso_cnt = 0; 632 633 ret = hci_reset_sync(hdev); 634 635 hci_req_sync_unlock(hdev); 636 return ret; 637 } 638 639 int hci_dev_reset(__u16 dev) 640 { 641 struct hci_dev *hdev; 642 int err; 643 644 hdev = hci_dev_get(dev); 645 if (!hdev) 646 return -ENODEV; 647 648 if (!test_bit(HCI_UP, &hdev->flags)) { 649 err = -ENETDOWN; 650 goto done; 651 } 652 653 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 654 err = -EBUSY; 655 goto done; 656 } 657 658 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 659 err = -EOPNOTSUPP; 660 goto done; 661 } 662 663 err = hci_dev_do_reset(hdev); 664 665 done: 666 hci_dev_put(hdev); 667 return err; 668 } 669 670 int hci_dev_reset_stat(__u16 dev) 671 { 672 struct hci_dev *hdev; 673 int ret = 0; 674 675 hdev = hci_dev_get(dev); 676 if (!hdev) 677 return -ENODEV; 678 679 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 680 ret = -EBUSY; 681 goto done; 682 } 683 684 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 685 ret = -EOPNOTSUPP; 686 goto done; 687 } 688 689 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats)); 690 691 done: 692 hci_dev_put(hdev); 693 return ret; 694 } 695 696 static void hci_update_passive_scan_state(struct hci_dev *hdev, u8 scan) 697 { 698 bool conn_changed, discov_changed; 699 700 BT_DBG("%s scan 0x%02x", hdev->name, scan); 701 702 if ((scan & SCAN_PAGE)) 703 conn_changed = !hci_dev_test_and_set_flag(hdev, 704 HCI_CONNECTABLE); 705 else 706 conn_changed = hci_dev_test_and_clear_flag(hdev, 707 HCI_CONNECTABLE); 708 709 if ((scan & SCAN_INQUIRY)) { 710 discov_changed = !hci_dev_test_and_set_flag(hdev, 711 HCI_DISCOVERABLE); 712 } else { 713 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 714 discov_changed = hci_dev_test_and_clear_flag(hdev, 715 HCI_DISCOVERABLE); 716 } 717 718 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 719 return; 720 721 if (conn_changed || discov_changed) { 722 /* In case this was disabled through mgmt */ 723 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); 724 725 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 726 hci_update_adv_data(hdev, hdev->cur_adv_instance); 727 728 mgmt_new_settings(hdev); 729 } 730 } 731 732 int hci_dev_cmd(unsigned int cmd, void __user *arg) 733 { 734 struct hci_dev *hdev; 735 struct hci_dev_req dr; 736 int err = 0; 737 738 if (copy_from_user(&dr, arg, sizeof(dr))) 739 return -EFAULT; 740 741 hdev = hci_dev_get(dr.dev_id); 742 if (!hdev) 743 return -ENODEV; 744 745 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 746 err = -EBUSY; 747 goto done; 748 } 749 750 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 751 err = -EOPNOTSUPP; 752 goto done; 753 } 754 755 if (hdev->dev_type != HCI_PRIMARY) { 756 err = -EOPNOTSUPP; 757 goto done; 758 } 759 760 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 761 err = -EOPNOTSUPP; 762 goto done; 763 } 764 765 switch (cmd) { 766 case HCISETAUTH: 767 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt, 768 HCI_INIT_TIMEOUT, NULL); 769 break; 770 771 case HCISETENCRYPT: 772 if (!lmp_encrypt_capable(hdev)) { 773 err = -EOPNOTSUPP; 774 break; 775 } 776 777 if (!test_bit(HCI_AUTH, &hdev->flags)) { 778 /* Auth must be enabled first */ 779 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt, 780 HCI_INIT_TIMEOUT, NULL); 781 if (err) 782 break; 783 } 784 785 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt, 786 HCI_INIT_TIMEOUT, NULL); 787 break; 788 789 case HCISETSCAN: 790 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt, 791 HCI_INIT_TIMEOUT, NULL); 792 793 /* Ensure that the connectable and discoverable states 794 * get correctly modified as this was a non-mgmt change. 795 */ 796 if (!err) 797 hci_update_passive_scan_state(hdev, dr.dev_opt); 798 break; 799 800 case HCISETLINKPOL: 801 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt, 802 HCI_INIT_TIMEOUT, NULL); 803 break; 804 805 case HCISETLINKMODE: 806 hdev->link_mode = ((__u16) dr.dev_opt) & 807 (HCI_LM_MASTER | HCI_LM_ACCEPT); 808 break; 809 810 case HCISETPTYPE: 811 if (hdev->pkt_type == (__u16) dr.dev_opt) 812 break; 813 814 hdev->pkt_type = (__u16) dr.dev_opt; 815 mgmt_phy_configuration_changed(hdev, NULL); 816 break; 817 818 case HCISETACLMTU: 819 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1); 820 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0); 821 break; 822 823 case HCISETSCOMTU: 824 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1); 825 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0); 826 break; 827 828 default: 829 err = -EINVAL; 830 break; 831 } 832 833 done: 834 hci_dev_put(hdev); 835 return err; 836 } 837 838 int hci_get_dev_list(void __user *arg) 839 { 840 struct hci_dev *hdev; 841 struct hci_dev_list_req *dl; 842 struct hci_dev_req *dr; 843 int n = 0, size, err; 844 __u16 dev_num; 845 846 if (get_user(dev_num, (__u16 __user *) arg)) 847 return -EFAULT; 848 849 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr)) 850 return -EINVAL; 851 852 size = sizeof(*dl) + dev_num * sizeof(*dr); 853 854 dl = kzalloc(size, GFP_KERNEL); 855 if (!dl) 856 return -ENOMEM; 857 858 dr = dl->dev_req; 859 860 read_lock(&hci_dev_list_lock); 861 list_for_each_entry(hdev, &hci_dev_list, list) { 862 unsigned long flags = hdev->flags; 863 864 /* When the auto-off is configured it means the transport 865 * is running, but in that case still indicate that the 866 * device is actually down. 867 */ 868 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) 869 flags &= ~BIT(HCI_UP); 870 871 (dr + n)->dev_id = hdev->id; 872 (dr + n)->dev_opt = flags; 873 874 if (++n >= dev_num) 875 break; 876 } 877 read_unlock(&hci_dev_list_lock); 878 879 dl->dev_num = n; 880 size = sizeof(*dl) + n * sizeof(*dr); 881 882 err = copy_to_user(arg, dl, size); 883 kfree(dl); 884 885 return err ? -EFAULT : 0; 886 } 887 888 int hci_get_dev_info(void __user *arg) 889 { 890 struct hci_dev *hdev; 891 struct hci_dev_info di; 892 unsigned long flags; 893 int err = 0; 894 895 if (copy_from_user(&di, arg, sizeof(di))) 896 return -EFAULT; 897 898 hdev = hci_dev_get(di.dev_id); 899 if (!hdev) 900 return -ENODEV; 901 902 /* When the auto-off is configured it means the transport 903 * is running, but in that case still indicate that the 904 * device is actually down. 905 */ 906 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) 907 flags = hdev->flags & ~BIT(HCI_UP); 908 else 909 flags = hdev->flags; 910 911 strscpy(di.name, hdev->name, sizeof(di.name)); 912 di.bdaddr = hdev->bdaddr; 913 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4); 914 di.flags = flags; 915 di.pkt_type = hdev->pkt_type; 916 if (lmp_bredr_capable(hdev)) { 917 di.acl_mtu = hdev->acl_mtu; 918 di.acl_pkts = hdev->acl_pkts; 919 di.sco_mtu = hdev->sco_mtu; 920 di.sco_pkts = hdev->sco_pkts; 921 } else { 922 di.acl_mtu = hdev->le_mtu; 923 di.acl_pkts = hdev->le_pkts; 924 di.sco_mtu = 0; 925 di.sco_pkts = 0; 926 } 927 di.link_policy = hdev->link_policy; 928 di.link_mode = hdev->link_mode; 929 930 memcpy(&di.stat, &hdev->stat, sizeof(di.stat)); 931 memcpy(&di.features, &hdev->features, sizeof(di.features)); 932 933 if (copy_to_user(arg, &di, sizeof(di))) 934 err = -EFAULT; 935 936 hci_dev_put(hdev); 937 938 return err; 939 } 940 941 /* ---- Interface to HCI drivers ---- */ 942 943 static int hci_rfkill_set_block(void *data, bool blocked) 944 { 945 struct hci_dev *hdev = data; 946 947 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked); 948 949 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) 950 return -EBUSY; 951 952 if (blocked) { 953 hci_dev_set_flag(hdev, HCI_RFKILLED); 954 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 955 !hci_dev_test_flag(hdev, HCI_CONFIG)) 956 hci_dev_do_close(hdev); 957 } else { 958 hci_dev_clear_flag(hdev, HCI_RFKILLED); 959 } 960 961 return 0; 962 } 963 964 static const struct rfkill_ops hci_rfkill_ops = { 965 .set_block = hci_rfkill_set_block, 966 }; 967 968 static void hci_power_on(struct work_struct *work) 969 { 970 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on); 971 int err; 972 973 BT_DBG("%s", hdev->name); 974 975 if (test_bit(HCI_UP, &hdev->flags) && 976 hci_dev_test_flag(hdev, HCI_MGMT) && 977 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 978 cancel_delayed_work(&hdev->power_off); 979 err = hci_powered_update_sync(hdev); 980 mgmt_power_on(hdev, err); 981 return; 982 } 983 984 err = hci_dev_do_open(hdev); 985 if (err < 0) { 986 hci_dev_lock(hdev); 987 mgmt_set_powered_failed(hdev, err); 988 hci_dev_unlock(hdev); 989 return; 990 } 991 992 /* During the HCI setup phase, a few error conditions are 993 * ignored and they need to be checked now. If they are still 994 * valid, it is important to turn the device back off. 995 */ 996 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 997 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 998 (hdev->dev_type == HCI_PRIMARY && 999 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 1000 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 1001 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 1002 hci_dev_do_close(hdev); 1003 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 1004 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 1005 HCI_AUTO_OFF_TIMEOUT); 1006 } 1007 1008 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 1009 /* For unconfigured devices, set the HCI_RAW flag 1010 * so that userspace can easily identify them. 1011 */ 1012 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 1013 set_bit(HCI_RAW, &hdev->flags); 1014 1015 /* For fully configured devices, this will send 1016 * the Index Added event. For unconfigured devices, 1017 * it will send Unconfigued Index Added event. 1018 * 1019 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 1020 * and no event will be send. 1021 */ 1022 mgmt_index_added(hdev); 1023 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 1024 /* When the controller is now configured, then it 1025 * is important to clear the HCI_RAW flag. 1026 */ 1027 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 1028 clear_bit(HCI_RAW, &hdev->flags); 1029 1030 /* Powering on the controller with HCI_CONFIG set only 1031 * happens with the transition from unconfigured to 1032 * configured. This will send the Index Added event. 1033 */ 1034 mgmt_index_added(hdev); 1035 } 1036 } 1037 1038 static void hci_power_off(struct work_struct *work) 1039 { 1040 struct hci_dev *hdev = container_of(work, struct hci_dev, 1041 power_off.work); 1042 1043 BT_DBG("%s", hdev->name); 1044 1045 hci_dev_do_close(hdev); 1046 } 1047 1048 static void hci_error_reset(struct work_struct *work) 1049 { 1050 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset); 1051 1052 hci_dev_hold(hdev); 1053 BT_DBG("%s", hdev->name); 1054 1055 if (hdev->hw_error) 1056 hdev->hw_error(hdev, hdev->hw_error_code); 1057 else 1058 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code); 1059 1060 if (!hci_dev_do_close(hdev)) 1061 hci_dev_do_open(hdev); 1062 1063 hci_dev_put(hdev); 1064 } 1065 1066 void hci_uuids_clear(struct hci_dev *hdev) 1067 { 1068 struct bt_uuid *uuid, *tmp; 1069 1070 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) { 1071 list_del(&uuid->list); 1072 kfree(uuid); 1073 } 1074 } 1075 1076 void hci_link_keys_clear(struct hci_dev *hdev) 1077 { 1078 struct link_key *key, *tmp; 1079 1080 list_for_each_entry_safe(key, tmp, &hdev->link_keys, list) { 1081 list_del_rcu(&key->list); 1082 kfree_rcu(key, rcu); 1083 } 1084 } 1085 1086 void hci_smp_ltks_clear(struct hci_dev *hdev) 1087 { 1088 struct smp_ltk *k, *tmp; 1089 1090 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) { 1091 list_del_rcu(&k->list); 1092 kfree_rcu(k, rcu); 1093 } 1094 } 1095 1096 void hci_smp_irks_clear(struct hci_dev *hdev) 1097 { 1098 struct smp_irk *k, *tmp; 1099 1100 list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) { 1101 list_del_rcu(&k->list); 1102 kfree_rcu(k, rcu); 1103 } 1104 } 1105 1106 void hci_blocked_keys_clear(struct hci_dev *hdev) 1107 { 1108 struct blocked_key *b, *tmp; 1109 1110 list_for_each_entry_safe(b, tmp, &hdev->blocked_keys, list) { 1111 list_del_rcu(&b->list); 1112 kfree_rcu(b, rcu); 1113 } 1114 } 1115 1116 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16]) 1117 { 1118 bool blocked = false; 1119 struct blocked_key *b; 1120 1121 rcu_read_lock(); 1122 list_for_each_entry_rcu(b, &hdev->blocked_keys, list) { 1123 if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) { 1124 blocked = true; 1125 break; 1126 } 1127 } 1128 1129 rcu_read_unlock(); 1130 return blocked; 1131 } 1132 1133 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 1134 { 1135 struct link_key *k; 1136 1137 rcu_read_lock(); 1138 list_for_each_entry_rcu(k, &hdev->link_keys, list) { 1139 if (bacmp(bdaddr, &k->bdaddr) == 0) { 1140 rcu_read_unlock(); 1141 1142 if (hci_is_blocked_key(hdev, 1143 HCI_BLOCKED_KEY_TYPE_LINKKEY, 1144 k->val)) { 1145 bt_dev_warn_ratelimited(hdev, 1146 "Link key blocked for %pMR", 1147 &k->bdaddr); 1148 return NULL; 1149 } 1150 1151 return k; 1152 } 1153 } 1154 rcu_read_unlock(); 1155 1156 return NULL; 1157 } 1158 1159 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn, 1160 u8 key_type, u8 old_key_type) 1161 { 1162 /* Legacy key */ 1163 if (key_type < 0x03) 1164 return true; 1165 1166 /* Debug keys are insecure so don't store them persistently */ 1167 if (key_type == HCI_LK_DEBUG_COMBINATION) 1168 return false; 1169 1170 /* Changed combination key and there's no previous one */ 1171 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff) 1172 return false; 1173 1174 /* Security mode 3 case */ 1175 if (!conn) 1176 return true; 1177 1178 /* BR/EDR key derived using SC from an LE link */ 1179 if (conn->type == LE_LINK) 1180 return true; 1181 1182 /* Neither local nor remote side had no-bonding as requirement */ 1183 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01) 1184 return true; 1185 1186 /* Local side had dedicated bonding as requirement */ 1187 if (conn->auth_type == 0x02 || conn->auth_type == 0x03) 1188 return true; 1189 1190 /* Remote side had dedicated bonding as requirement */ 1191 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03) 1192 return true; 1193 1194 /* If none of the above criteria match, then don't store the key 1195 * persistently */ 1196 return false; 1197 } 1198 1199 static u8 ltk_role(u8 type) 1200 { 1201 if (type == SMP_LTK) 1202 return HCI_ROLE_MASTER; 1203 1204 return HCI_ROLE_SLAVE; 1205 } 1206 1207 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1208 u8 addr_type, u8 role) 1209 { 1210 struct smp_ltk *k; 1211 1212 rcu_read_lock(); 1213 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 1214 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr)) 1215 continue; 1216 1217 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) { 1218 rcu_read_unlock(); 1219 1220 if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK, 1221 k->val)) { 1222 bt_dev_warn_ratelimited(hdev, 1223 "LTK blocked for %pMR", 1224 &k->bdaddr); 1225 return NULL; 1226 } 1227 1228 return k; 1229 } 1230 } 1231 rcu_read_unlock(); 1232 1233 return NULL; 1234 } 1235 1236 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa) 1237 { 1238 struct smp_irk *irk_to_return = NULL; 1239 struct smp_irk *irk; 1240 1241 rcu_read_lock(); 1242 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 1243 if (!bacmp(&irk->rpa, rpa)) { 1244 irk_to_return = irk; 1245 goto done; 1246 } 1247 } 1248 1249 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 1250 if (smp_irk_matches(hdev, irk->val, rpa)) { 1251 bacpy(&irk->rpa, rpa); 1252 irk_to_return = irk; 1253 goto done; 1254 } 1255 } 1256 1257 done: 1258 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK, 1259 irk_to_return->val)) { 1260 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR", 1261 &irk_to_return->bdaddr); 1262 irk_to_return = NULL; 1263 } 1264 1265 rcu_read_unlock(); 1266 1267 return irk_to_return; 1268 } 1269 1270 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, 1271 u8 addr_type) 1272 { 1273 struct smp_irk *irk_to_return = NULL; 1274 struct smp_irk *irk; 1275 1276 /* Identity Address must be public or static random */ 1277 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0) 1278 return NULL; 1279 1280 rcu_read_lock(); 1281 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 1282 if (addr_type == irk->addr_type && 1283 bacmp(bdaddr, &irk->bdaddr) == 0) { 1284 irk_to_return = irk; 1285 goto done; 1286 } 1287 } 1288 1289 done: 1290 1291 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK, 1292 irk_to_return->val)) { 1293 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR", 1294 &irk_to_return->bdaddr); 1295 irk_to_return = NULL; 1296 } 1297 1298 rcu_read_unlock(); 1299 1300 return irk_to_return; 1301 } 1302 1303 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, 1304 bdaddr_t *bdaddr, u8 *val, u8 type, 1305 u8 pin_len, bool *persistent) 1306 { 1307 struct link_key *key, *old_key; 1308 u8 old_key_type; 1309 1310 old_key = hci_find_link_key(hdev, bdaddr); 1311 if (old_key) { 1312 old_key_type = old_key->type; 1313 key = old_key; 1314 } else { 1315 old_key_type = conn ? conn->key_type : 0xff; 1316 key = kzalloc(sizeof(*key), GFP_KERNEL); 1317 if (!key) 1318 return NULL; 1319 list_add_rcu(&key->list, &hdev->link_keys); 1320 } 1321 1322 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type); 1323 1324 /* Some buggy controller combinations generate a changed 1325 * combination key for legacy pairing even when there's no 1326 * previous key */ 1327 if (type == HCI_LK_CHANGED_COMBINATION && 1328 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) { 1329 type = HCI_LK_COMBINATION; 1330 if (conn) 1331 conn->key_type = type; 1332 } 1333 1334 bacpy(&key->bdaddr, bdaddr); 1335 memcpy(key->val, val, HCI_LINK_KEY_SIZE); 1336 key->pin_len = pin_len; 1337 1338 if (type == HCI_LK_CHANGED_COMBINATION) 1339 key->type = old_key_type; 1340 else 1341 key->type = type; 1342 1343 if (persistent) 1344 *persistent = hci_persistent_key(hdev, conn, type, 1345 old_key_type); 1346 1347 return key; 1348 } 1349 1350 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1351 u8 addr_type, u8 type, u8 authenticated, 1352 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand) 1353 { 1354 struct smp_ltk *key, *old_key; 1355 u8 role = ltk_role(type); 1356 1357 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role); 1358 if (old_key) 1359 key = old_key; 1360 else { 1361 key = kzalloc(sizeof(*key), GFP_KERNEL); 1362 if (!key) 1363 return NULL; 1364 list_add_rcu(&key->list, &hdev->long_term_keys); 1365 } 1366 1367 bacpy(&key->bdaddr, bdaddr); 1368 key->bdaddr_type = addr_type; 1369 memcpy(key->val, tk, sizeof(key->val)); 1370 key->authenticated = authenticated; 1371 key->ediv = ediv; 1372 key->rand = rand; 1373 key->enc_size = enc_size; 1374 key->type = type; 1375 1376 return key; 1377 } 1378 1379 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, 1380 u8 addr_type, u8 val[16], bdaddr_t *rpa) 1381 { 1382 struct smp_irk *irk; 1383 1384 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type); 1385 if (!irk) { 1386 irk = kzalloc(sizeof(*irk), GFP_KERNEL); 1387 if (!irk) 1388 return NULL; 1389 1390 bacpy(&irk->bdaddr, bdaddr); 1391 irk->addr_type = addr_type; 1392 1393 list_add_rcu(&irk->list, &hdev->identity_resolving_keys); 1394 } 1395 1396 memcpy(irk->val, val, 16); 1397 bacpy(&irk->rpa, rpa); 1398 1399 return irk; 1400 } 1401 1402 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 1403 { 1404 struct link_key *key; 1405 1406 key = hci_find_link_key(hdev, bdaddr); 1407 if (!key) 1408 return -ENOENT; 1409 1410 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 1411 1412 list_del_rcu(&key->list); 1413 kfree_rcu(key, rcu); 1414 1415 return 0; 1416 } 1417 1418 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type) 1419 { 1420 struct smp_ltk *k, *tmp; 1421 int removed = 0; 1422 1423 list_for_each_entry_safe(k, tmp, &hdev->long_term_keys, list) { 1424 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type) 1425 continue; 1426 1427 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 1428 1429 list_del_rcu(&k->list); 1430 kfree_rcu(k, rcu); 1431 removed++; 1432 } 1433 1434 return removed ? 0 : -ENOENT; 1435 } 1436 1437 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type) 1438 { 1439 struct smp_irk *k, *tmp; 1440 1441 list_for_each_entry_safe(k, tmp, &hdev->identity_resolving_keys, list) { 1442 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type) 1443 continue; 1444 1445 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 1446 1447 list_del_rcu(&k->list); 1448 kfree_rcu(k, rcu); 1449 } 1450 } 1451 1452 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type) 1453 { 1454 struct smp_ltk *k; 1455 struct smp_irk *irk; 1456 u8 addr_type; 1457 1458 if (type == BDADDR_BREDR) { 1459 if (hci_find_link_key(hdev, bdaddr)) 1460 return true; 1461 return false; 1462 } 1463 1464 /* Convert to HCI addr type which struct smp_ltk uses */ 1465 if (type == BDADDR_LE_PUBLIC) 1466 addr_type = ADDR_LE_DEV_PUBLIC; 1467 else 1468 addr_type = ADDR_LE_DEV_RANDOM; 1469 1470 irk = hci_get_irk(hdev, bdaddr, addr_type); 1471 if (irk) { 1472 bdaddr = &irk->bdaddr; 1473 addr_type = irk->addr_type; 1474 } 1475 1476 rcu_read_lock(); 1477 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 1478 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) { 1479 rcu_read_unlock(); 1480 return true; 1481 } 1482 } 1483 rcu_read_unlock(); 1484 1485 return false; 1486 } 1487 1488 /* HCI command timer function */ 1489 static void hci_cmd_timeout(struct work_struct *work) 1490 { 1491 struct hci_dev *hdev = container_of(work, struct hci_dev, 1492 cmd_timer.work); 1493 1494 if (hdev->req_skb) { 1495 u16 opcode = hci_skb_opcode(hdev->req_skb); 1496 1497 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode); 1498 1499 hci_cmd_sync_cancel_sync(hdev, ETIMEDOUT); 1500 } else { 1501 bt_dev_err(hdev, "command tx timeout"); 1502 } 1503 1504 if (hdev->cmd_timeout) 1505 hdev->cmd_timeout(hdev); 1506 1507 atomic_set(&hdev->cmd_cnt, 1); 1508 queue_work(hdev->workqueue, &hdev->cmd_work); 1509 } 1510 1511 /* HCI ncmd timer function */ 1512 static void hci_ncmd_timeout(struct work_struct *work) 1513 { 1514 struct hci_dev *hdev = container_of(work, struct hci_dev, 1515 ncmd_timer.work); 1516 1517 bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0"); 1518 1519 /* During HCI_INIT phase no events can be injected if the ncmd timer 1520 * triggers since the procedure has its own timeout handling. 1521 */ 1522 if (test_bit(HCI_INIT, &hdev->flags)) 1523 return; 1524 1525 /* This is an irrecoverable state, inject hardware error event */ 1526 hci_reset_dev(hdev); 1527 } 1528 1529 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, 1530 bdaddr_t *bdaddr, u8 bdaddr_type) 1531 { 1532 struct oob_data *data; 1533 1534 list_for_each_entry(data, &hdev->remote_oob_data, list) { 1535 if (bacmp(bdaddr, &data->bdaddr) != 0) 1536 continue; 1537 if (data->bdaddr_type != bdaddr_type) 1538 continue; 1539 return data; 1540 } 1541 1542 return NULL; 1543 } 1544 1545 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1546 u8 bdaddr_type) 1547 { 1548 struct oob_data *data; 1549 1550 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); 1551 if (!data) 1552 return -ENOENT; 1553 1554 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type); 1555 1556 list_del(&data->list); 1557 kfree(data); 1558 1559 return 0; 1560 } 1561 1562 void hci_remote_oob_data_clear(struct hci_dev *hdev) 1563 { 1564 struct oob_data *data, *n; 1565 1566 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) { 1567 list_del(&data->list); 1568 kfree(data); 1569 } 1570 } 1571 1572 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 1573 u8 bdaddr_type, u8 *hash192, u8 *rand192, 1574 u8 *hash256, u8 *rand256) 1575 { 1576 struct oob_data *data; 1577 1578 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); 1579 if (!data) { 1580 data = kmalloc(sizeof(*data), GFP_KERNEL); 1581 if (!data) 1582 return -ENOMEM; 1583 1584 bacpy(&data->bdaddr, bdaddr); 1585 data->bdaddr_type = bdaddr_type; 1586 list_add(&data->list, &hdev->remote_oob_data); 1587 } 1588 1589 if (hash192 && rand192) { 1590 memcpy(data->hash192, hash192, sizeof(data->hash192)); 1591 memcpy(data->rand192, rand192, sizeof(data->rand192)); 1592 if (hash256 && rand256) 1593 data->present = 0x03; 1594 } else { 1595 memset(data->hash192, 0, sizeof(data->hash192)); 1596 memset(data->rand192, 0, sizeof(data->rand192)); 1597 if (hash256 && rand256) 1598 data->present = 0x02; 1599 else 1600 data->present = 0x00; 1601 } 1602 1603 if (hash256 && rand256) { 1604 memcpy(data->hash256, hash256, sizeof(data->hash256)); 1605 memcpy(data->rand256, rand256, sizeof(data->rand256)); 1606 } else { 1607 memset(data->hash256, 0, sizeof(data->hash256)); 1608 memset(data->rand256, 0, sizeof(data->rand256)); 1609 if (hash192 && rand192) 1610 data->present = 0x01; 1611 } 1612 1613 BT_DBG("%s for %pMR", hdev->name, bdaddr); 1614 1615 return 0; 1616 } 1617 1618 /* This function requires the caller holds hdev->lock */ 1619 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance) 1620 { 1621 struct adv_info *adv_instance; 1622 1623 list_for_each_entry(adv_instance, &hdev->adv_instances, list) { 1624 if (adv_instance->instance == instance) 1625 return adv_instance; 1626 } 1627 1628 return NULL; 1629 } 1630 1631 /* This function requires the caller holds hdev->lock */ 1632 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance) 1633 { 1634 struct adv_info *cur_instance; 1635 1636 cur_instance = hci_find_adv_instance(hdev, instance); 1637 if (!cur_instance) 1638 return NULL; 1639 1640 if (cur_instance == list_last_entry(&hdev->adv_instances, 1641 struct adv_info, list)) 1642 return list_first_entry(&hdev->adv_instances, 1643 struct adv_info, list); 1644 else 1645 return list_next_entry(cur_instance, list); 1646 } 1647 1648 /* This function requires the caller holds hdev->lock */ 1649 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance) 1650 { 1651 struct adv_info *adv_instance; 1652 1653 adv_instance = hci_find_adv_instance(hdev, instance); 1654 if (!adv_instance) 1655 return -ENOENT; 1656 1657 BT_DBG("%s removing %dMR", hdev->name, instance); 1658 1659 if (hdev->cur_adv_instance == instance) { 1660 if (hdev->adv_instance_timeout) { 1661 cancel_delayed_work(&hdev->adv_instance_expire); 1662 hdev->adv_instance_timeout = 0; 1663 } 1664 hdev->cur_adv_instance = 0x00; 1665 } 1666 1667 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 1668 1669 list_del(&adv_instance->list); 1670 kfree(adv_instance); 1671 1672 hdev->adv_instance_cnt--; 1673 1674 return 0; 1675 } 1676 1677 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired) 1678 { 1679 struct adv_info *adv_instance, *n; 1680 1681 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) 1682 adv_instance->rpa_expired = rpa_expired; 1683 } 1684 1685 /* This function requires the caller holds hdev->lock */ 1686 void hci_adv_instances_clear(struct hci_dev *hdev) 1687 { 1688 struct adv_info *adv_instance, *n; 1689 1690 if (hdev->adv_instance_timeout) { 1691 cancel_delayed_work(&hdev->adv_instance_expire); 1692 hdev->adv_instance_timeout = 0; 1693 } 1694 1695 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) { 1696 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 1697 list_del(&adv_instance->list); 1698 kfree(adv_instance); 1699 } 1700 1701 hdev->adv_instance_cnt = 0; 1702 hdev->cur_adv_instance = 0x00; 1703 } 1704 1705 static void adv_instance_rpa_expired(struct work_struct *work) 1706 { 1707 struct adv_info *adv_instance = container_of(work, struct adv_info, 1708 rpa_expired_cb.work); 1709 1710 BT_DBG(""); 1711 1712 adv_instance->rpa_expired = true; 1713 } 1714 1715 /* This function requires the caller holds hdev->lock */ 1716 struct adv_info *hci_add_adv_instance(struct hci_dev *hdev, u8 instance, 1717 u32 flags, u16 adv_data_len, u8 *adv_data, 1718 u16 scan_rsp_len, u8 *scan_rsp_data, 1719 u16 timeout, u16 duration, s8 tx_power, 1720 u32 min_interval, u32 max_interval, 1721 u8 mesh_handle) 1722 { 1723 struct adv_info *adv; 1724 1725 adv = hci_find_adv_instance(hdev, instance); 1726 if (adv) { 1727 memset(adv->adv_data, 0, sizeof(adv->adv_data)); 1728 memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data)); 1729 memset(adv->per_adv_data, 0, sizeof(adv->per_adv_data)); 1730 } else { 1731 if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets || 1732 instance < 1 || instance > hdev->le_num_of_adv_sets + 1) 1733 return ERR_PTR(-EOVERFLOW); 1734 1735 adv = kzalloc(sizeof(*adv), GFP_KERNEL); 1736 if (!adv) 1737 return ERR_PTR(-ENOMEM); 1738 1739 adv->pending = true; 1740 adv->instance = instance; 1741 list_add(&adv->list, &hdev->adv_instances); 1742 hdev->adv_instance_cnt++; 1743 } 1744 1745 adv->flags = flags; 1746 adv->min_interval = min_interval; 1747 adv->max_interval = max_interval; 1748 adv->tx_power = tx_power; 1749 /* Defining a mesh_handle changes the timing units to ms, 1750 * rather than seconds, and ties the instance to the requested 1751 * mesh_tx queue. 1752 */ 1753 adv->mesh = mesh_handle; 1754 1755 hci_set_adv_instance_data(hdev, instance, adv_data_len, adv_data, 1756 scan_rsp_len, scan_rsp_data); 1757 1758 adv->timeout = timeout; 1759 adv->remaining_time = timeout; 1760 1761 if (duration == 0) 1762 adv->duration = hdev->def_multi_adv_rotation_duration; 1763 else 1764 adv->duration = duration; 1765 1766 INIT_DELAYED_WORK(&adv->rpa_expired_cb, adv_instance_rpa_expired); 1767 1768 BT_DBG("%s for %dMR", hdev->name, instance); 1769 1770 return adv; 1771 } 1772 1773 /* This function requires the caller holds hdev->lock */ 1774 struct adv_info *hci_add_per_instance(struct hci_dev *hdev, u8 instance, 1775 u32 flags, u8 data_len, u8 *data, 1776 u32 min_interval, u32 max_interval) 1777 { 1778 struct adv_info *adv; 1779 1780 adv = hci_add_adv_instance(hdev, instance, flags, 0, NULL, 0, NULL, 1781 0, 0, HCI_ADV_TX_POWER_NO_PREFERENCE, 1782 min_interval, max_interval, 0); 1783 if (IS_ERR(adv)) 1784 return adv; 1785 1786 adv->periodic = true; 1787 adv->per_adv_data_len = data_len; 1788 1789 if (data) 1790 memcpy(adv->per_adv_data, data, data_len); 1791 1792 return adv; 1793 } 1794 1795 /* This function requires the caller holds hdev->lock */ 1796 int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance, 1797 u16 adv_data_len, u8 *adv_data, 1798 u16 scan_rsp_len, u8 *scan_rsp_data) 1799 { 1800 struct adv_info *adv; 1801 1802 adv = hci_find_adv_instance(hdev, instance); 1803 1804 /* If advertisement doesn't exist, we can't modify its data */ 1805 if (!adv) 1806 return -ENOENT; 1807 1808 if (adv_data_len && ADV_DATA_CMP(adv, adv_data, adv_data_len)) { 1809 memset(adv->adv_data, 0, sizeof(adv->adv_data)); 1810 memcpy(adv->adv_data, adv_data, adv_data_len); 1811 adv->adv_data_len = adv_data_len; 1812 adv->adv_data_changed = true; 1813 } 1814 1815 if (scan_rsp_len && SCAN_RSP_CMP(adv, scan_rsp_data, scan_rsp_len)) { 1816 memset(adv->scan_rsp_data, 0, sizeof(adv->scan_rsp_data)); 1817 memcpy(adv->scan_rsp_data, scan_rsp_data, scan_rsp_len); 1818 adv->scan_rsp_len = scan_rsp_len; 1819 adv->scan_rsp_changed = true; 1820 } 1821 1822 /* Mark as changed if there are flags which would affect it */ 1823 if (((adv->flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) || 1824 adv->flags & MGMT_ADV_FLAG_LOCAL_NAME) 1825 adv->scan_rsp_changed = true; 1826 1827 return 0; 1828 } 1829 1830 /* This function requires the caller holds hdev->lock */ 1831 u32 hci_adv_instance_flags(struct hci_dev *hdev, u8 instance) 1832 { 1833 u32 flags; 1834 struct adv_info *adv; 1835 1836 if (instance == 0x00) { 1837 /* Instance 0 always manages the "Tx Power" and "Flags" 1838 * fields 1839 */ 1840 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS; 1841 1842 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting 1843 * corresponds to the "connectable" instance flag. 1844 */ 1845 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE)) 1846 flags |= MGMT_ADV_FLAG_CONNECTABLE; 1847 1848 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) 1849 flags |= MGMT_ADV_FLAG_LIMITED_DISCOV; 1850 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) 1851 flags |= MGMT_ADV_FLAG_DISCOV; 1852 1853 return flags; 1854 } 1855 1856 adv = hci_find_adv_instance(hdev, instance); 1857 1858 /* Return 0 when we got an invalid instance identifier. */ 1859 if (!adv) 1860 return 0; 1861 1862 return adv->flags; 1863 } 1864 1865 bool hci_adv_instance_is_scannable(struct hci_dev *hdev, u8 instance) 1866 { 1867 struct adv_info *adv; 1868 1869 /* Instance 0x00 always set local name */ 1870 if (instance == 0x00) 1871 return true; 1872 1873 adv = hci_find_adv_instance(hdev, instance); 1874 if (!adv) 1875 return false; 1876 1877 if (adv->flags & MGMT_ADV_FLAG_APPEARANCE || 1878 adv->flags & MGMT_ADV_FLAG_LOCAL_NAME) 1879 return true; 1880 1881 return adv->scan_rsp_len ? true : false; 1882 } 1883 1884 /* This function requires the caller holds hdev->lock */ 1885 void hci_adv_monitors_clear(struct hci_dev *hdev) 1886 { 1887 struct adv_monitor *monitor; 1888 int handle; 1889 1890 idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle) 1891 hci_free_adv_monitor(hdev, monitor); 1892 1893 idr_destroy(&hdev->adv_monitors_idr); 1894 } 1895 1896 /* Frees the monitor structure and do some bookkeepings. 1897 * This function requires the caller holds hdev->lock. 1898 */ 1899 void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor) 1900 { 1901 struct adv_pattern *pattern; 1902 struct adv_pattern *tmp; 1903 1904 if (!monitor) 1905 return; 1906 1907 list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) { 1908 list_del(&pattern->list); 1909 kfree(pattern); 1910 } 1911 1912 if (monitor->handle) 1913 idr_remove(&hdev->adv_monitors_idr, monitor->handle); 1914 1915 if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) { 1916 hdev->adv_monitors_cnt--; 1917 mgmt_adv_monitor_removed(hdev, monitor->handle); 1918 } 1919 1920 kfree(monitor); 1921 } 1922 1923 /* Assigns handle to a monitor, and if offloading is supported and power is on, 1924 * also attempts to forward the request to the controller. 1925 * This function requires the caller holds hci_req_sync_lock. 1926 */ 1927 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor) 1928 { 1929 int min, max, handle; 1930 int status = 0; 1931 1932 if (!monitor) 1933 return -EINVAL; 1934 1935 hci_dev_lock(hdev); 1936 1937 min = HCI_MIN_ADV_MONITOR_HANDLE; 1938 max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES; 1939 handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max, 1940 GFP_KERNEL); 1941 1942 hci_dev_unlock(hdev); 1943 1944 if (handle < 0) 1945 return handle; 1946 1947 monitor->handle = handle; 1948 1949 if (!hdev_is_powered(hdev)) 1950 return status; 1951 1952 switch (hci_get_adv_monitor_offload_ext(hdev)) { 1953 case HCI_ADV_MONITOR_EXT_NONE: 1954 bt_dev_dbg(hdev, "add monitor %d status %d", 1955 monitor->handle, status); 1956 /* Message was not forwarded to controller - not an error */ 1957 break; 1958 1959 case HCI_ADV_MONITOR_EXT_MSFT: 1960 status = msft_add_monitor_pattern(hdev, monitor); 1961 bt_dev_dbg(hdev, "add monitor %d msft status %d", 1962 handle, status); 1963 break; 1964 } 1965 1966 return status; 1967 } 1968 1969 /* Attempts to tell the controller and free the monitor. If somehow the 1970 * controller doesn't have a corresponding handle, remove anyway. 1971 * This function requires the caller holds hci_req_sync_lock. 1972 */ 1973 static int hci_remove_adv_monitor(struct hci_dev *hdev, 1974 struct adv_monitor *monitor) 1975 { 1976 int status = 0; 1977 int handle; 1978 1979 switch (hci_get_adv_monitor_offload_ext(hdev)) { 1980 case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */ 1981 bt_dev_dbg(hdev, "remove monitor %d status %d", 1982 monitor->handle, status); 1983 goto free_monitor; 1984 1985 case HCI_ADV_MONITOR_EXT_MSFT: 1986 handle = monitor->handle; 1987 status = msft_remove_monitor(hdev, monitor); 1988 bt_dev_dbg(hdev, "remove monitor %d msft status %d", 1989 handle, status); 1990 break; 1991 } 1992 1993 /* In case no matching handle registered, just free the monitor */ 1994 if (status == -ENOENT) 1995 goto free_monitor; 1996 1997 return status; 1998 1999 free_monitor: 2000 if (status == -ENOENT) 2001 bt_dev_warn(hdev, "Removing monitor with no matching handle %d", 2002 monitor->handle); 2003 hci_free_adv_monitor(hdev, monitor); 2004 2005 return status; 2006 } 2007 2008 /* This function requires the caller holds hci_req_sync_lock */ 2009 int hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle) 2010 { 2011 struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle); 2012 2013 if (!monitor) 2014 return -EINVAL; 2015 2016 return hci_remove_adv_monitor(hdev, monitor); 2017 } 2018 2019 /* This function requires the caller holds hci_req_sync_lock */ 2020 int hci_remove_all_adv_monitor(struct hci_dev *hdev) 2021 { 2022 struct adv_monitor *monitor; 2023 int idr_next_id = 0; 2024 int status = 0; 2025 2026 while (1) { 2027 monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id); 2028 if (!monitor) 2029 break; 2030 2031 status = hci_remove_adv_monitor(hdev, monitor); 2032 if (status) 2033 return status; 2034 2035 idr_next_id++; 2036 } 2037 2038 return status; 2039 } 2040 2041 /* This function requires the caller holds hdev->lock */ 2042 bool hci_is_adv_monitoring(struct hci_dev *hdev) 2043 { 2044 return !idr_is_empty(&hdev->adv_monitors_idr); 2045 } 2046 2047 int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev) 2048 { 2049 if (msft_monitor_supported(hdev)) 2050 return HCI_ADV_MONITOR_EXT_MSFT; 2051 2052 return HCI_ADV_MONITOR_EXT_NONE; 2053 } 2054 2055 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list, 2056 bdaddr_t *bdaddr, u8 type) 2057 { 2058 struct bdaddr_list *b; 2059 2060 list_for_each_entry(b, bdaddr_list, list) { 2061 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 2062 return b; 2063 } 2064 2065 return NULL; 2066 } 2067 2068 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk( 2069 struct list_head *bdaddr_list, bdaddr_t *bdaddr, 2070 u8 type) 2071 { 2072 struct bdaddr_list_with_irk *b; 2073 2074 list_for_each_entry(b, bdaddr_list, list) { 2075 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 2076 return b; 2077 } 2078 2079 return NULL; 2080 } 2081 2082 struct bdaddr_list_with_flags * 2083 hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list, 2084 bdaddr_t *bdaddr, u8 type) 2085 { 2086 struct bdaddr_list_with_flags *b; 2087 2088 list_for_each_entry(b, bdaddr_list, list) { 2089 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 2090 return b; 2091 } 2092 2093 return NULL; 2094 } 2095 2096 void hci_bdaddr_list_clear(struct list_head *bdaddr_list) 2097 { 2098 struct bdaddr_list *b, *n; 2099 2100 list_for_each_entry_safe(b, n, bdaddr_list, list) { 2101 list_del(&b->list); 2102 kfree(b); 2103 } 2104 } 2105 2106 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type) 2107 { 2108 struct bdaddr_list *entry; 2109 2110 if (!bacmp(bdaddr, BDADDR_ANY)) 2111 return -EBADF; 2112 2113 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 2114 return -EEXIST; 2115 2116 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 2117 if (!entry) 2118 return -ENOMEM; 2119 2120 bacpy(&entry->bdaddr, bdaddr); 2121 entry->bdaddr_type = type; 2122 2123 list_add(&entry->list, list); 2124 2125 return 0; 2126 } 2127 2128 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr, 2129 u8 type, u8 *peer_irk, u8 *local_irk) 2130 { 2131 struct bdaddr_list_with_irk *entry; 2132 2133 if (!bacmp(bdaddr, BDADDR_ANY)) 2134 return -EBADF; 2135 2136 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 2137 return -EEXIST; 2138 2139 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 2140 if (!entry) 2141 return -ENOMEM; 2142 2143 bacpy(&entry->bdaddr, bdaddr); 2144 entry->bdaddr_type = type; 2145 2146 if (peer_irk) 2147 memcpy(entry->peer_irk, peer_irk, 16); 2148 2149 if (local_irk) 2150 memcpy(entry->local_irk, local_irk, 16); 2151 2152 list_add(&entry->list, list); 2153 2154 return 0; 2155 } 2156 2157 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr, 2158 u8 type, u32 flags) 2159 { 2160 struct bdaddr_list_with_flags *entry; 2161 2162 if (!bacmp(bdaddr, BDADDR_ANY)) 2163 return -EBADF; 2164 2165 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 2166 return -EEXIST; 2167 2168 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 2169 if (!entry) 2170 return -ENOMEM; 2171 2172 bacpy(&entry->bdaddr, bdaddr); 2173 entry->bdaddr_type = type; 2174 entry->flags = flags; 2175 2176 list_add(&entry->list, list); 2177 2178 return 0; 2179 } 2180 2181 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type) 2182 { 2183 struct bdaddr_list *entry; 2184 2185 if (!bacmp(bdaddr, BDADDR_ANY)) { 2186 hci_bdaddr_list_clear(list); 2187 return 0; 2188 } 2189 2190 entry = hci_bdaddr_list_lookup(list, bdaddr, type); 2191 if (!entry) 2192 return -ENOENT; 2193 2194 list_del(&entry->list); 2195 kfree(entry); 2196 2197 return 0; 2198 } 2199 2200 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr, 2201 u8 type) 2202 { 2203 struct bdaddr_list_with_irk *entry; 2204 2205 if (!bacmp(bdaddr, BDADDR_ANY)) { 2206 hci_bdaddr_list_clear(list); 2207 return 0; 2208 } 2209 2210 entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type); 2211 if (!entry) 2212 return -ENOENT; 2213 2214 list_del(&entry->list); 2215 kfree(entry); 2216 2217 return 0; 2218 } 2219 2220 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr, 2221 u8 type) 2222 { 2223 struct bdaddr_list_with_flags *entry; 2224 2225 if (!bacmp(bdaddr, BDADDR_ANY)) { 2226 hci_bdaddr_list_clear(list); 2227 return 0; 2228 } 2229 2230 entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type); 2231 if (!entry) 2232 return -ENOENT; 2233 2234 list_del(&entry->list); 2235 kfree(entry); 2236 2237 return 0; 2238 } 2239 2240 /* This function requires the caller holds hdev->lock */ 2241 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev, 2242 bdaddr_t *addr, u8 addr_type) 2243 { 2244 struct hci_conn_params *params; 2245 2246 list_for_each_entry(params, &hdev->le_conn_params, list) { 2247 if (bacmp(¶ms->addr, addr) == 0 && 2248 params->addr_type == addr_type) { 2249 return params; 2250 } 2251 } 2252 2253 return NULL; 2254 } 2255 2256 /* This function requires the caller holds hdev->lock or rcu_read_lock */ 2257 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list, 2258 bdaddr_t *addr, u8 addr_type) 2259 { 2260 struct hci_conn_params *param; 2261 2262 rcu_read_lock(); 2263 2264 list_for_each_entry_rcu(param, list, action) { 2265 if (bacmp(¶m->addr, addr) == 0 && 2266 param->addr_type == addr_type) { 2267 rcu_read_unlock(); 2268 return param; 2269 } 2270 } 2271 2272 rcu_read_unlock(); 2273 2274 return NULL; 2275 } 2276 2277 /* This function requires the caller holds hdev->lock */ 2278 void hci_pend_le_list_del_init(struct hci_conn_params *param) 2279 { 2280 if (list_empty(¶m->action)) 2281 return; 2282 2283 list_del_rcu(¶m->action); 2284 synchronize_rcu(); 2285 INIT_LIST_HEAD(¶m->action); 2286 } 2287 2288 /* This function requires the caller holds hdev->lock */ 2289 void hci_pend_le_list_add(struct hci_conn_params *param, 2290 struct list_head *list) 2291 { 2292 list_add_rcu(¶m->action, list); 2293 } 2294 2295 /* This function requires the caller holds hdev->lock */ 2296 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev, 2297 bdaddr_t *addr, u8 addr_type) 2298 { 2299 struct hci_conn_params *params; 2300 2301 params = hci_conn_params_lookup(hdev, addr, addr_type); 2302 if (params) 2303 return params; 2304 2305 params = kzalloc(sizeof(*params), GFP_KERNEL); 2306 if (!params) { 2307 bt_dev_err(hdev, "out of memory"); 2308 return NULL; 2309 } 2310 2311 bacpy(¶ms->addr, addr); 2312 params->addr_type = addr_type; 2313 2314 list_add(¶ms->list, &hdev->le_conn_params); 2315 INIT_LIST_HEAD(¶ms->action); 2316 2317 params->conn_min_interval = hdev->le_conn_min_interval; 2318 params->conn_max_interval = hdev->le_conn_max_interval; 2319 params->conn_latency = hdev->le_conn_latency; 2320 params->supervision_timeout = hdev->le_supv_timeout; 2321 params->auto_connect = HCI_AUTO_CONN_DISABLED; 2322 2323 BT_DBG("addr %pMR (type %u)", addr, addr_type); 2324 2325 return params; 2326 } 2327 2328 void hci_conn_params_free(struct hci_conn_params *params) 2329 { 2330 hci_pend_le_list_del_init(params); 2331 2332 if (params->conn) { 2333 hci_conn_drop(params->conn); 2334 hci_conn_put(params->conn); 2335 } 2336 2337 list_del(¶ms->list); 2338 kfree(params); 2339 } 2340 2341 /* This function requires the caller holds hdev->lock */ 2342 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type) 2343 { 2344 struct hci_conn_params *params; 2345 2346 params = hci_conn_params_lookup(hdev, addr, addr_type); 2347 if (!params) 2348 return; 2349 2350 hci_conn_params_free(params); 2351 2352 hci_update_passive_scan(hdev); 2353 2354 BT_DBG("addr %pMR (type %u)", addr, addr_type); 2355 } 2356 2357 /* This function requires the caller holds hdev->lock */ 2358 void hci_conn_params_clear_disabled(struct hci_dev *hdev) 2359 { 2360 struct hci_conn_params *params, *tmp; 2361 2362 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) { 2363 if (params->auto_connect != HCI_AUTO_CONN_DISABLED) 2364 continue; 2365 2366 /* If trying to establish one time connection to disabled 2367 * device, leave the params, but mark them as just once. 2368 */ 2369 if (params->explicit_connect) { 2370 params->auto_connect = HCI_AUTO_CONN_EXPLICIT; 2371 continue; 2372 } 2373 2374 hci_conn_params_free(params); 2375 } 2376 2377 BT_DBG("All LE disabled connection parameters were removed"); 2378 } 2379 2380 /* This function requires the caller holds hdev->lock */ 2381 static void hci_conn_params_clear_all(struct hci_dev *hdev) 2382 { 2383 struct hci_conn_params *params, *tmp; 2384 2385 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) 2386 hci_conn_params_free(params); 2387 2388 BT_DBG("All LE connection parameters were removed"); 2389 } 2390 2391 /* Copy the Identity Address of the controller. 2392 * 2393 * If the controller has a public BD_ADDR, then by default use that one. 2394 * If this is a LE only controller without a public address, default to 2395 * the static random address. 2396 * 2397 * For debugging purposes it is possible to force controllers with a 2398 * public address to use the static random address instead. 2399 * 2400 * In case BR/EDR has been disabled on a dual-mode controller and 2401 * userspace has configured a static address, then that address 2402 * becomes the identity address instead of the public BR/EDR address. 2403 */ 2404 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr, 2405 u8 *bdaddr_type) 2406 { 2407 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 2408 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 2409 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 2410 bacmp(&hdev->static_addr, BDADDR_ANY))) { 2411 bacpy(bdaddr, &hdev->static_addr); 2412 *bdaddr_type = ADDR_LE_DEV_RANDOM; 2413 } else { 2414 bacpy(bdaddr, &hdev->bdaddr); 2415 *bdaddr_type = ADDR_LE_DEV_PUBLIC; 2416 } 2417 } 2418 2419 static void hci_clear_wake_reason(struct hci_dev *hdev) 2420 { 2421 hci_dev_lock(hdev); 2422 2423 hdev->wake_reason = 0; 2424 bacpy(&hdev->wake_addr, BDADDR_ANY); 2425 hdev->wake_addr_type = 0; 2426 2427 hci_dev_unlock(hdev); 2428 } 2429 2430 static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action, 2431 void *data) 2432 { 2433 struct hci_dev *hdev = 2434 container_of(nb, struct hci_dev, suspend_notifier); 2435 int ret = 0; 2436 2437 /* Userspace has full control of this device. Do nothing. */ 2438 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) 2439 return NOTIFY_DONE; 2440 2441 /* To avoid a potential race with hci_unregister_dev. */ 2442 hci_dev_hold(hdev); 2443 2444 if (action == PM_SUSPEND_PREPARE) 2445 ret = hci_suspend_dev(hdev); 2446 else if (action == PM_POST_SUSPEND) 2447 ret = hci_resume_dev(hdev); 2448 2449 if (ret) 2450 bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d", 2451 action, ret); 2452 2453 hci_dev_put(hdev); 2454 return NOTIFY_DONE; 2455 } 2456 2457 /* Alloc HCI device */ 2458 struct hci_dev *hci_alloc_dev_priv(int sizeof_priv) 2459 { 2460 struct hci_dev *hdev; 2461 unsigned int alloc_size; 2462 2463 alloc_size = sizeof(*hdev); 2464 if (sizeof_priv) { 2465 /* Fixme: May need ALIGN-ment? */ 2466 alloc_size += sizeof_priv; 2467 } 2468 2469 hdev = kzalloc(alloc_size, GFP_KERNEL); 2470 if (!hdev) 2471 return NULL; 2472 2473 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1); 2474 hdev->esco_type = (ESCO_HV1); 2475 hdev->link_mode = (HCI_LM_ACCEPT); 2476 hdev->num_iac = 0x01; /* One IAC support is mandatory */ 2477 hdev->io_capability = 0x03; /* No Input No Output */ 2478 hdev->manufacturer = 0xffff; /* Default to internal use */ 2479 hdev->inq_tx_power = HCI_TX_POWER_INVALID; 2480 hdev->adv_tx_power = HCI_TX_POWER_INVALID; 2481 hdev->adv_instance_cnt = 0; 2482 hdev->cur_adv_instance = 0x00; 2483 hdev->adv_instance_timeout = 0; 2484 2485 hdev->advmon_allowlist_duration = 300; 2486 hdev->advmon_no_filter_duration = 500; 2487 hdev->enable_advmon_interleave_scan = 0x00; /* Default to disable */ 2488 2489 hdev->sniff_max_interval = 800; 2490 hdev->sniff_min_interval = 80; 2491 2492 hdev->le_adv_channel_map = 0x07; 2493 hdev->le_adv_min_interval = 0x0800; 2494 hdev->le_adv_max_interval = 0x0800; 2495 hdev->le_scan_interval = 0x0060; 2496 hdev->le_scan_window = 0x0030; 2497 hdev->le_scan_int_suspend = 0x0400; 2498 hdev->le_scan_window_suspend = 0x0012; 2499 hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT; 2500 hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN; 2501 hdev->le_scan_int_adv_monitor = 0x0060; 2502 hdev->le_scan_window_adv_monitor = 0x0030; 2503 hdev->le_scan_int_connect = 0x0060; 2504 hdev->le_scan_window_connect = 0x0060; 2505 hdev->le_conn_min_interval = 0x0018; 2506 hdev->le_conn_max_interval = 0x0028; 2507 hdev->le_conn_latency = 0x0000; 2508 hdev->le_supv_timeout = 0x002a; 2509 hdev->le_def_tx_len = 0x001b; 2510 hdev->le_def_tx_time = 0x0148; 2511 hdev->le_max_tx_len = 0x001b; 2512 hdev->le_max_tx_time = 0x0148; 2513 hdev->le_max_rx_len = 0x001b; 2514 hdev->le_max_rx_time = 0x0148; 2515 hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE; 2516 hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE; 2517 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M; 2518 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M; 2519 hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES; 2520 hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION; 2521 hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT; 2522 hdev->min_le_tx_power = HCI_TX_POWER_INVALID; 2523 hdev->max_le_tx_power = HCI_TX_POWER_INVALID; 2524 2525 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT; 2526 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT; 2527 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE; 2528 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE; 2529 hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT; 2530 hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE; 2531 2532 /* default 1.28 sec page scan */ 2533 hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD; 2534 hdev->def_page_scan_int = 0x0800; 2535 hdev->def_page_scan_window = 0x0012; 2536 2537 mutex_init(&hdev->lock); 2538 mutex_init(&hdev->req_lock); 2539 2540 ida_init(&hdev->unset_handle_ida); 2541 2542 INIT_LIST_HEAD(&hdev->mesh_pending); 2543 INIT_LIST_HEAD(&hdev->mgmt_pending); 2544 INIT_LIST_HEAD(&hdev->reject_list); 2545 INIT_LIST_HEAD(&hdev->accept_list); 2546 INIT_LIST_HEAD(&hdev->uuids); 2547 INIT_LIST_HEAD(&hdev->link_keys); 2548 INIT_LIST_HEAD(&hdev->long_term_keys); 2549 INIT_LIST_HEAD(&hdev->identity_resolving_keys); 2550 INIT_LIST_HEAD(&hdev->remote_oob_data); 2551 INIT_LIST_HEAD(&hdev->le_accept_list); 2552 INIT_LIST_HEAD(&hdev->le_resolv_list); 2553 INIT_LIST_HEAD(&hdev->le_conn_params); 2554 INIT_LIST_HEAD(&hdev->pend_le_conns); 2555 INIT_LIST_HEAD(&hdev->pend_le_reports); 2556 INIT_LIST_HEAD(&hdev->conn_hash.list); 2557 INIT_LIST_HEAD(&hdev->adv_instances); 2558 INIT_LIST_HEAD(&hdev->blocked_keys); 2559 INIT_LIST_HEAD(&hdev->monitored_devices); 2560 2561 INIT_LIST_HEAD(&hdev->local_codecs); 2562 INIT_WORK(&hdev->rx_work, hci_rx_work); 2563 INIT_WORK(&hdev->cmd_work, hci_cmd_work); 2564 INIT_WORK(&hdev->tx_work, hci_tx_work); 2565 INIT_WORK(&hdev->power_on, hci_power_on); 2566 INIT_WORK(&hdev->error_reset, hci_error_reset); 2567 2568 hci_cmd_sync_init(hdev); 2569 2570 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off); 2571 2572 skb_queue_head_init(&hdev->rx_q); 2573 skb_queue_head_init(&hdev->cmd_q); 2574 skb_queue_head_init(&hdev->raw_q); 2575 2576 init_waitqueue_head(&hdev->req_wait_q); 2577 2578 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout); 2579 INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout); 2580 2581 hci_devcd_setup(hdev); 2582 hci_request_setup(hdev); 2583 2584 hci_init_sysfs(hdev); 2585 discovery_init(hdev); 2586 2587 return hdev; 2588 } 2589 EXPORT_SYMBOL(hci_alloc_dev_priv); 2590 2591 /* Free HCI device */ 2592 void hci_free_dev(struct hci_dev *hdev) 2593 { 2594 /* will free via device release */ 2595 put_device(&hdev->dev); 2596 } 2597 EXPORT_SYMBOL(hci_free_dev); 2598 2599 /* Register HCI device */ 2600 int hci_register_dev(struct hci_dev *hdev) 2601 { 2602 int id, error; 2603 2604 if (!hdev->open || !hdev->close || !hdev->send) 2605 return -EINVAL; 2606 2607 /* Do not allow HCI_AMP devices to register at index 0, 2608 * so the index can be used as the AMP controller ID. 2609 */ 2610 switch (hdev->dev_type) { 2611 case HCI_PRIMARY: 2612 id = ida_simple_get(&hci_index_ida, 0, HCI_MAX_ID, GFP_KERNEL); 2613 break; 2614 case HCI_AMP: 2615 id = ida_simple_get(&hci_index_ida, 1, HCI_MAX_ID, GFP_KERNEL); 2616 break; 2617 default: 2618 return -EINVAL; 2619 } 2620 2621 if (id < 0) 2622 return id; 2623 2624 error = dev_set_name(&hdev->dev, "hci%u", id); 2625 if (error) 2626 return error; 2627 2628 hdev->name = dev_name(&hdev->dev); 2629 hdev->id = id; 2630 2631 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 2632 2633 hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name); 2634 if (!hdev->workqueue) { 2635 error = -ENOMEM; 2636 goto err; 2637 } 2638 2639 hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, 2640 hdev->name); 2641 if (!hdev->req_workqueue) { 2642 destroy_workqueue(hdev->workqueue); 2643 error = -ENOMEM; 2644 goto err; 2645 } 2646 2647 if (!IS_ERR_OR_NULL(bt_debugfs)) 2648 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs); 2649 2650 error = device_add(&hdev->dev); 2651 if (error < 0) 2652 goto err_wqueue; 2653 2654 hci_leds_init(hdev); 2655 2656 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev, 2657 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, 2658 hdev); 2659 if (hdev->rfkill) { 2660 if (rfkill_register(hdev->rfkill) < 0) { 2661 rfkill_destroy(hdev->rfkill); 2662 hdev->rfkill = NULL; 2663 } 2664 } 2665 2666 if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) 2667 hci_dev_set_flag(hdev, HCI_RFKILLED); 2668 2669 hci_dev_set_flag(hdev, HCI_SETUP); 2670 hci_dev_set_flag(hdev, HCI_AUTO_OFF); 2671 2672 if (hdev->dev_type == HCI_PRIMARY) { 2673 /* Assume BR/EDR support until proven otherwise (such as 2674 * through reading supported features during init. 2675 */ 2676 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); 2677 } 2678 2679 write_lock(&hci_dev_list_lock); 2680 list_add(&hdev->list, &hci_dev_list); 2681 write_unlock(&hci_dev_list_lock); 2682 2683 /* Devices that are marked for raw-only usage are unconfigured 2684 * and should not be included in normal operation. 2685 */ 2686 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 2687 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 2688 2689 /* Mark Remote Wakeup connection flag as supported if driver has wakeup 2690 * callback. 2691 */ 2692 if (hdev->wakeup) 2693 hdev->conn_flags |= HCI_CONN_FLAG_REMOTE_WAKEUP; 2694 2695 hci_sock_dev_event(hdev, HCI_DEV_REG); 2696 hci_dev_hold(hdev); 2697 2698 error = hci_register_suspend_notifier(hdev); 2699 if (error) 2700 BT_WARN("register suspend notifier failed error:%d\n", error); 2701 2702 queue_work(hdev->req_workqueue, &hdev->power_on); 2703 2704 idr_init(&hdev->adv_monitors_idr); 2705 msft_register(hdev); 2706 2707 return id; 2708 2709 err_wqueue: 2710 debugfs_remove_recursive(hdev->debugfs); 2711 destroy_workqueue(hdev->workqueue); 2712 destroy_workqueue(hdev->req_workqueue); 2713 err: 2714 ida_simple_remove(&hci_index_ida, hdev->id); 2715 2716 return error; 2717 } 2718 EXPORT_SYMBOL(hci_register_dev); 2719 2720 /* Unregister HCI device */ 2721 void hci_unregister_dev(struct hci_dev *hdev) 2722 { 2723 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 2724 2725 mutex_lock(&hdev->unregister_lock); 2726 hci_dev_set_flag(hdev, HCI_UNREGISTER); 2727 mutex_unlock(&hdev->unregister_lock); 2728 2729 write_lock(&hci_dev_list_lock); 2730 list_del(&hdev->list); 2731 write_unlock(&hci_dev_list_lock); 2732 2733 cancel_work_sync(&hdev->power_on); 2734 2735 hci_cmd_sync_clear(hdev); 2736 2737 hci_unregister_suspend_notifier(hdev); 2738 2739 hci_dev_do_close(hdev); 2740 2741 if (!test_bit(HCI_INIT, &hdev->flags) && 2742 !hci_dev_test_flag(hdev, HCI_SETUP) && 2743 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 2744 hci_dev_lock(hdev); 2745 mgmt_index_removed(hdev); 2746 hci_dev_unlock(hdev); 2747 } 2748 2749 /* mgmt_index_removed should take care of emptying the 2750 * pending list */ 2751 BUG_ON(!list_empty(&hdev->mgmt_pending)); 2752 2753 hci_sock_dev_event(hdev, HCI_DEV_UNREG); 2754 2755 if (hdev->rfkill) { 2756 rfkill_unregister(hdev->rfkill); 2757 rfkill_destroy(hdev->rfkill); 2758 } 2759 2760 device_del(&hdev->dev); 2761 /* Actual cleanup is deferred until hci_release_dev(). */ 2762 hci_dev_put(hdev); 2763 } 2764 EXPORT_SYMBOL(hci_unregister_dev); 2765 2766 /* Release HCI device */ 2767 void hci_release_dev(struct hci_dev *hdev) 2768 { 2769 debugfs_remove_recursive(hdev->debugfs); 2770 kfree_const(hdev->hw_info); 2771 kfree_const(hdev->fw_info); 2772 2773 destroy_workqueue(hdev->workqueue); 2774 destroy_workqueue(hdev->req_workqueue); 2775 2776 hci_dev_lock(hdev); 2777 hci_bdaddr_list_clear(&hdev->reject_list); 2778 hci_bdaddr_list_clear(&hdev->accept_list); 2779 hci_uuids_clear(hdev); 2780 hci_link_keys_clear(hdev); 2781 hci_smp_ltks_clear(hdev); 2782 hci_smp_irks_clear(hdev); 2783 hci_remote_oob_data_clear(hdev); 2784 hci_adv_instances_clear(hdev); 2785 hci_adv_monitors_clear(hdev); 2786 hci_bdaddr_list_clear(&hdev->le_accept_list); 2787 hci_bdaddr_list_clear(&hdev->le_resolv_list); 2788 hci_conn_params_clear_all(hdev); 2789 hci_discovery_filter_clear(hdev); 2790 hci_blocked_keys_clear(hdev); 2791 hci_codec_list_clear(&hdev->local_codecs); 2792 msft_release(hdev); 2793 hci_dev_unlock(hdev); 2794 2795 ida_destroy(&hdev->unset_handle_ida); 2796 ida_simple_remove(&hci_index_ida, hdev->id); 2797 kfree_skb(hdev->sent_cmd); 2798 kfree_skb(hdev->req_skb); 2799 kfree_skb(hdev->recv_event); 2800 kfree(hdev); 2801 } 2802 EXPORT_SYMBOL(hci_release_dev); 2803 2804 int hci_register_suspend_notifier(struct hci_dev *hdev) 2805 { 2806 int ret = 0; 2807 2808 if (!hdev->suspend_notifier.notifier_call && 2809 !test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) { 2810 hdev->suspend_notifier.notifier_call = hci_suspend_notifier; 2811 ret = register_pm_notifier(&hdev->suspend_notifier); 2812 } 2813 2814 return ret; 2815 } 2816 2817 int hci_unregister_suspend_notifier(struct hci_dev *hdev) 2818 { 2819 int ret = 0; 2820 2821 if (hdev->suspend_notifier.notifier_call) { 2822 ret = unregister_pm_notifier(&hdev->suspend_notifier); 2823 if (!ret) 2824 hdev->suspend_notifier.notifier_call = NULL; 2825 } 2826 2827 return ret; 2828 } 2829 2830 /* Cancel ongoing command synchronously: 2831 * 2832 * - Cancel command timer 2833 * - Reset command counter 2834 * - Cancel command request 2835 */ 2836 static void hci_cancel_cmd_sync(struct hci_dev *hdev, int err) 2837 { 2838 bt_dev_dbg(hdev, "err 0x%2.2x", err); 2839 2840 cancel_delayed_work_sync(&hdev->cmd_timer); 2841 cancel_delayed_work_sync(&hdev->ncmd_timer); 2842 atomic_set(&hdev->cmd_cnt, 1); 2843 2844 hci_cmd_sync_cancel_sync(hdev, err); 2845 } 2846 2847 /* Suspend HCI device */ 2848 int hci_suspend_dev(struct hci_dev *hdev) 2849 { 2850 int ret; 2851 2852 bt_dev_dbg(hdev, ""); 2853 2854 /* Suspend should only act on when powered. */ 2855 if (!hdev_is_powered(hdev) || 2856 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2857 return 0; 2858 2859 /* If powering down don't attempt to suspend */ 2860 if (mgmt_powering_down(hdev)) 2861 return 0; 2862 2863 /* Cancel potentially blocking sync operation before suspend */ 2864 hci_cancel_cmd_sync(hdev, EHOSTDOWN); 2865 2866 hci_req_sync_lock(hdev); 2867 ret = hci_suspend_sync(hdev); 2868 hci_req_sync_unlock(hdev); 2869 2870 hci_clear_wake_reason(hdev); 2871 mgmt_suspending(hdev, hdev->suspend_state); 2872 2873 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND); 2874 return ret; 2875 } 2876 EXPORT_SYMBOL(hci_suspend_dev); 2877 2878 /* Resume HCI device */ 2879 int hci_resume_dev(struct hci_dev *hdev) 2880 { 2881 int ret; 2882 2883 bt_dev_dbg(hdev, ""); 2884 2885 /* Resume should only act on when powered. */ 2886 if (!hdev_is_powered(hdev) || 2887 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 2888 return 0; 2889 2890 /* If powering down don't attempt to resume */ 2891 if (mgmt_powering_down(hdev)) 2892 return 0; 2893 2894 hci_req_sync_lock(hdev); 2895 ret = hci_resume_sync(hdev); 2896 hci_req_sync_unlock(hdev); 2897 2898 mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr, 2899 hdev->wake_addr_type); 2900 2901 hci_sock_dev_event(hdev, HCI_DEV_RESUME); 2902 return ret; 2903 } 2904 EXPORT_SYMBOL(hci_resume_dev); 2905 2906 /* Reset HCI device */ 2907 int hci_reset_dev(struct hci_dev *hdev) 2908 { 2909 static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 }; 2910 struct sk_buff *skb; 2911 2912 skb = bt_skb_alloc(3, GFP_ATOMIC); 2913 if (!skb) 2914 return -ENOMEM; 2915 2916 hci_skb_pkt_type(skb) = HCI_EVENT_PKT; 2917 skb_put_data(skb, hw_err, 3); 2918 2919 bt_dev_err(hdev, "Injecting HCI hardware error event"); 2920 2921 /* Send Hardware Error to upper stack */ 2922 return hci_recv_frame(hdev, skb); 2923 } 2924 EXPORT_SYMBOL(hci_reset_dev); 2925 2926 /* Receive frame from HCI drivers */ 2927 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb) 2928 { 2929 if (!hdev || (!test_bit(HCI_UP, &hdev->flags) 2930 && !test_bit(HCI_INIT, &hdev->flags))) { 2931 kfree_skb(skb); 2932 return -ENXIO; 2933 } 2934 2935 switch (hci_skb_pkt_type(skb)) { 2936 case HCI_EVENT_PKT: 2937 break; 2938 case HCI_ACLDATA_PKT: 2939 /* Detect if ISO packet has been sent as ACL */ 2940 if (hci_conn_num(hdev, ISO_LINK)) { 2941 __u16 handle = __le16_to_cpu(hci_acl_hdr(skb)->handle); 2942 __u8 type; 2943 2944 type = hci_conn_lookup_type(hdev, hci_handle(handle)); 2945 if (type == ISO_LINK) 2946 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT; 2947 } 2948 break; 2949 case HCI_SCODATA_PKT: 2950 break; 2951 case HCI_ISODATA_PKT: 2952 break; 2953 default: 2954 kfree_skb(skb); 2955 return -EINVAL; 2956 } 2957 2958 /* Incoming skb */ 2959 bt_cb(skb)->incoming = 1; 2960 2961 /* Time stamp */ 2962 __net_timestamp(skb); 2963 2964 skb_queue_tail(&hdev->rx_q, skb); 2965 queue_work(hdev->workqueue, &hdev->rx_work); 2966 2967 return 0; 2968 } 2969 EXPORT_SYMBOL(hci_recv_frame); 2970 2971 /* Receive diagnostic message from HCI drivers */ 2972 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb) 2973 { 2974 /* Mark as diagnostic packet */ 2975 hci_skb_pkt_type(skb) = HCI_DIAG_PKT; 2976 2977 /* Time stamp */ 2978 __net_timestamp(skb); 2979 2980 skb_queue_tail(&hdev->rx_q, skb); 2981 queue_work(hdev->workqueue, &hdev->rx_work); 2982 2983 return 0; 2984 } 2985 EXPORT_SYMBOL(hci_recv_diag); 2986 2987 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...) 2988 { 2989 va_list vargs; 2990 2991 va_start(vargs, fmt); 2992 kfree_const(hdev->hw_info); 2993 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs); 2994 va_end(vargs); 2995 } 2996 EXPORT_SYMBOL(hci_set_hw_info); 2997 2998 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...) 2999 { 3000 va_list vargs; 3001 3002 va_start(vargs, fmt); 3003 kfree_const(hdev->fw_info); 3004 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs); 3005 va_end(vargs); 3006 } 3007 EXPORT_SYMBOL(hci_set_fw_info); 3008 3009 /* ---- Interface to upper protocols ---- */ 3010 3011 int hci_register_cb(struct hci_cb *cb) 3012 { 3013 BT_DBG("%p name %s", cb, cb->name); 3014 3015 mutex_lock(&hci_cb_list_lock); 3016 list_add_tail(&cb->list, &hci_cb_list); 3017 mutex_unlock(&hci_cb_list_lock); 3018 3019 return 0; 3020 } 3021 EXPORT_SYMBOL(hci_register_cb); 3022 3023 int hci_unregister_cb(struct hci_cb *cb) 3024 { 3025 BT_DBG("%p name %s", cb, cb->name); 3026 3027 mutex_lock(&hci_cb_list_lock); 3028 list_del(&cb->list); 3029 mutex_unlock(&hci_cb_list_lock); 3030 3031 return 0; 3032 } 3033 EXPORT_SYMBOL(hci_unregister_cb); 3034 3035 static int hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb) 3036 { 3037 int err; 3038 3039 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb), 3040 skb->len); 3041 3042 /* Time stamp */ 3043 __net_timestamp(skb); 3044 3045 /* Send copy to monitor */ 3046 hci_send_to_monitor(hdev, skb); 3047 3048 if (atomic_read(&hdev->promisc)) { 3049 /* Send copy to the sockets */ 3050 hci_send_to_sock(hdev, skb); 3051 } 3052 3053 /* Get rid of skb owner, prior to sending to the driver. */ 3054 skb_orphan(skb); 3055 3056 if (!test_bit(HCI_RUNNING, &hdev->flags)) { 3057 kfree_skb(skb); 3058 return -EINVAL; 3059 } 3060 3061 err = hdev->send(hdev, skb); 3062 if (err < 0) { 3063 bt_dev_err(hdev, "sending frame failed (%d)", err); 3064 kfree_skb(skb); 3065 return err; 3066 } 3067 3068 return 0; 3069 } 3070 3071 /* Send HCI command */ 3072 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, 3073 const void *param) 3074 { 3075 struct sk_buff *skb; 3076 3077 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen); 3078 3079 skb = hci_prepare_cmd(hdev, opcode, plen, param); 3080 if (!skb) { 3081 bt_dev_err(hdev, "no memory for command"); 3082 return -ENOMEM; 3083 } 3084 3085 /* Stand-alone HCI commands must be flagged as 3086 * single-command requests. 3087 */ 3088 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 3089 3090 skb_queue_tail(&hdev->cmd_q, skb); 3091 queue_work(hdev->workqueue, &hdev->cmd_work); 3092 3093 return 0; 3094 } 3095 3096 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen, 3097 const void *param) 3098 { 3099 struct sk_buff *skb; 3100 3101 if (hci_opcode_ogf(opcode) != 0x3f) { 3102 /* A controller receiving a command shall respond with either 3103 * a Command Status Event or a Command Complete Event. 3104 * Therefore, all standard HCI commands must be sent via the 3105 * standard API, using hci_send_cmd or hci_cmd_sync helpers. 3106 * Some vendors do not comply with this rule for vendor-specific 3107 * commands and do not return any event. We want to support 3108 * unresponded commands for such cases only. 3109 */ 3110 bt_dev_err(hdev, "unresponded command not supported"); 3111 return -EINVAL; 3112 } 3113 3114 skb = hci_prepare_cmd(hdev, opcode, plen, param); 3115 if (!skb) { 3116 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 3117 opcode); 3118 return -ENOMEM; 3119 } 3120 3121 hci_send_frame(hdev, skb); 3122 3123 return 0; 3124 } 3125 EXPORT_SYMBOL(__hci_cmd_send); 3126 3127 /* Get data from the previously sent command */ 3128 static void *hci_cmd_data(struct sk_buff *skb, __u16 opcode) 3129 { 3130 struct hci_command_hdr *hdr; 3131 3132 if (!skb || skb->len < HCI_COMMAND_HDR_SIZE) 3133 return NULL; 3134 3135 hdr = (void *)skb->data; 3136 3137 if (hdr->opcode != cpu_to_le16(opcode)) 3138 return NULL; 3139 3140 return skb->data + HCI_COMMAND_HDR_SIZE; 3141 } 3142 3143 /* Get data from the previously sent command */ 3144 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode) 3145 { 3146 void *data; 3147 3148 /* Check if opcode matches last sent command */ 3149 data = hci_cmd_data(hdev->sent_cmd, opcode); 3150 if (!data) 3151 /* Check if opcode matches last request */ 3152 data = hci_cmd_data(hdev->req_skb, opcode); 3153 3154 return data; 3155 } 3156 3157 /* Get data from last received event */ 3158 void *hci_recv_event_data(struct hci_dev *hdev, __u8 event) 3159 { 3160 struct hci_event_hdr *hdr; 3161 int offset; 3162 3163 if (!hdev->recv_event) 3164 return NULL; 3165 3166 hdr = (void *)hdev->recv_event->data; 3167 offset = sizeof(*hdr); 3168 3169 if (hdr->evt != event) { 3170 /* In case of LE metaevent check the subevent match */ 3171 if (hdr->evt == HCI_EV_LE_META) { 3172 struct hci_ev_le_meta *ev; 3173 3174 ev = (void *)hdev->recv_event->data + offset; 3175 offset += sizeof(*ev); 3176 if (ev->subevent == event) 3177 goto found; 3178 } 3179 return NULL; 3180 } 3181 3182 found: 3183 bt_dev_dbg(hdev, "event 0x%2.2x", event); 3184 3185 return hdev->recv_event->data + offset; 3186 } 3187 3188 /* Send ACL data */ 3189 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags) 3190 { 3191 struct hci_acl_hdr *hdr; 3192 int len = skb->len; 3193 3194 skb_push(skb, HCI_ACL_HDR_SIZE); 3195 skb_reset_transport_header(skb); 3196 hdr = (struct hci_acl_hdr *)skb_transport_header(skb); 3197 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags)); 3198 hdr->dlen = cpu_to_le16(len); 3199 } 3200 3201 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue, 3202 struct sk_buff *skb, __u16 flags) 3203 { 3204 struct hci_conn *conn = chan->conn; 3205 struct hci_dev *hdev = conn->hdev; 3206 struct sk_buff *list; 3207 3208 skb->len = skb_headlen(skb); 3209 skb->data_len = 0; 3210 3211 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT; 3212 3213 switch (hdev->dev_type) { 3214 case HCI_PRIMARY: 3215 hci_add_acl_hdr(skb, conn->handle, flags); 3216 break; 3217 case HCI_AMP: 3218 hci_add_acl_hdr(skb, chan->handle, flags); 3219 break; 3220 default: 3221 bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type); 3222 return; 3223 } 3224 3225 list = skb_shinfo(skb)->frag_list; 3226 if (!list) { 3227 /* Non fragmented */ 3228 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len); 3229 3230 skb_queue_tail(queue, skb); 3231 } else { 3232 /* Fragmented */ 3233 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3234 3235 skb_shinfo(skb)->frag_list = NULL; 3236 3237 /* Queue all fragments atomically. We need to use spin_lock_bh 3238 * here because of 6LoWPAN links, as there this function is 3239 * called from softirq and using normal spin lock could cause 3240 * deadlocks. 3241 */ 3242 spin_lock_bh(&queue->lock); 3243 3244 __skb_queue_tail(queue, skb); 3245 3246 flags &= ~ACL_START; 3247 flags |= ACL_CONT; 3248 do { 3249 skb = list; list = list->next; 3250 3251 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT; 3252 hci_add_acl_hdr(skb, conn->handle, flags); 3253 3254 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3255 3256 __skb_queue_tail(queue, skb); 3257 } while (list); 3258 3259 spin_unlock_bh(&queue->lock); 3260 } 3261 } 3262 3263 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags) 3264 { 3265 struct hci_dev *hdev = chan->conn->hdev; 3266 3267 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags); 3268 3269 hci_queue_acl(chan, &chan->data_q, skb, flags); 3270 3271 queue_work(hdev->workqueue, &hdev->tx_work); 3272 } 3273 3274 /* Send SCO data */ 3275 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb) 3276 { 3277 struct hci_dev *hdev = conn->hdev; 3278 struct hci_sco_hdr hdr; 3279 3280 BT_DBG("%s len %d", hdev->name, skb->len); 3281 3282 hdr.handle = cpu_to_le16(conn->handle); 3283 hdr.dlen = skb->len; 3284 3285 skb_push(skb, HCI_SCO_HDR_SIZE); 3286 skb_reset_transport_header(skb); 3287 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE); 3288 3289 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT; 3290 3291 skb_queue_tail(&conn->data_q, skb); 3292 queue_work(hdev->workqueue, &hdev->tx_work); 3293 } 3294 3295 /* Send ISO data */ 3296 static void hci_add_iso_hdr(struct sk_buff *skb, __u16 handle, __u8 flags) 3297 { 3298 struct hci_iso_hdr *hdr; 3299 int len = skb->len; 3300 3301 skb_push(skb, HCI_ISO_HDR_SIZE); 3302 skb_reset_transport_header(skb); 3303 hdr = (struct hci_iso_hdr *)skb_transport_header(skb); 3304 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags)); 3305 hdr->dlen = cpu_to_le16(len); 3306 } 3307 3308 static void hci_queue_iso(struct hci_conn *conn, struct sk_buff_head *queue, 3309 struct sk_buff *skb) 3310 { 3311 struct hci_dev *hdev = conn->hdev; 3312 struct sk_buff *list; 3313 __u16 flags; 3314 3315 skb->len = skb_headlen(skb); 3316 skb->data_len = 0; 3317 3318 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT; 3319 3320 list = skb_shinfo(skb)->frag_list; 3321 3322 flags = hci_iso_flags_pack(list ? ISO_START : ISO_SINGLE, 0x00); 3323 hci_add_iso_hdr(skb, conn->handle, flags); 3324 3325 if (!list) { 3326 /* Non fragmented */ 3327 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len); 3328 3329 skb_queue_tail(queue, skb); 3330 } else { 3331 /* Fragmented */ 3332 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3333 3334 skb_shinfo(skb)->frag_list = NULL; 3335 3336 __skb_queue_tail(queue, skb); 3337 3338 do { 3339 skb = list; list = list->next; 3340 3341 hci_skb_pkt_type(skb) = HCI_ISODATA_PKT; 3342 flags = hci_iso_flags_pack(list ? ISO_CONT : ISO_END, 3343 0x00); 3344 hci_add_iso_hdr(skb, conn->handle, flags); 3345 3346 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 3347 3348 __skb_queue_tail(queue, skb); 3349 } while (list); 3350 } 3351 } 3352 3353 void hci_send_iso(struct hci_conn *conn, struct sk_buff *skb) 3354 { 3355 struct hci_dev *hdev = conn->hdev; 3356 3357 BT_DBG("%s len %d", hdev->name, skb->len); 3358 3359 hci_queue_iso(conn, &conn->data_q, skb); 3360 3361 queue_work(hdev->workqueue, &hdev->tx_work); 3362 } 3363 3364 /* ---- HCI TX task (outgoing data) ---- */ 3365 3366 /* HCI Connection scheduler */ 3367 static inline void hci_quote_sent(struct hci_conn *conn, int num, int *quote) 3368 { 3369 struct hci_dev *hdev; 3370 int cnt, q; 3371 3372 if (!conn) { 3373 *quote = 0; 3374 return; 3375 } 3376 3377 hdev = conn->hdev; 3378 3379 switch (conn->type) { 3380 case ACL_LINK: 3381 cnt = hdev->acl_cnt; 3382 break; 3383 case AMP_LINK: 3384 cnt = hdev->block_cnt; 3385 break; 3386 case SCO_LINK: 3387 case ESCO_LINK: 3388 cnt = hdev->sco_cnt; 3389 break; 3390 case LE_LINK: 3391 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 3392 break; 3393 case ISO_LINK: 3394 cnt = hdev->iso_mtu ? hdev->iso_cnt : 3395 hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 3396 break; 3397 default: 3398 cnt = 0; 3399 bt_dev_err(hdev, "unknown link type %d", conn->type); 3400 } 3401 3402 q = cnt / num; 3403 *quote = q ? q : 1; 3404 } 3405 3406 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, 3407 int *quote) 3408 { 3409 struct hci_conn_hash *h = &hdev->conn_hash; 3410 struct hci_conn *conn = NULL, *c; 3411 unsigned int num = 0, min = ~0; 3412 3413 /* We don't have to lock device here. Connections are always 3414 * added and removed with TX task disabled. */ 3415 3416 rcu_read_lock(); 3417 3418 list_for_each_entry_rcu(c, &h->list, list) { 3419 if (c->type != type || skb_queue_empty(&c->data_q)) 3420 continue; 3421 3422 if (c->state != BT_CONNECTED && c->state != BT_CONFIG) 3423 continue; 3424 3425 num++; 3426 3427 if (c->sent < min) { 3428 min = c->sent; 3429 conn = c; 3430 } 3431 3432 if (hci_conn_num(hdev, type) == num) 3433 break; 3434 } 3435 3436 rcu_read_unlock(); 3437 3438 hci_quote_sent(conn, num, quote); 3439 3440 BT_DBG("conn %p quote %d", conn, *quote); 3441 return conn; 3442 } 3443 3444 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type) 3445 { 3446 struct hci_conn_hash *h = &hdev->conn_hash; 3447 struct hci_conn *c; 3448 3449 bt_dev_err(hdev, "link tx timeout"); 3450 3451 rcu_read_lock(); 3452 3453 /* Kill stalled connections */ 3454 list_for_each_entry_rcu(c, &h->list, list) { 3455 if (c->type == type && c->sent) { 3456 bt_dev_err(hdev, "killing stalled connection %pMR", 3457 &c->dst); 3458 /* hci_disconnect might sleep, so, we have to release 3459 * the RCU read lock before calling it. 3460 */ 3461 rcu_read_unlock(); 3462 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM); 3463 rcu_read_lock(); 3464 } 3465 } 3466 3467 rcu_read_unlock(); 3468 } 3469 3470 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type, 3471 int *quote) 3472 { 3473 struct hci_conn_hash *h = &hdev->conn_hash; 3474 struct hci_chan *chan = NULL; 3475 unsigned int num = 0, min = ~0, cur_prio = 0; 3476 struct hci_conn *conn; 3477 int conn_num = 0; 3478 3479 BT_DBG("%s", hdev->name); 3480 3481 rcu_read_lock(); 3482 3483 list_for_each_entry_rcu(conn, &h->list, list) { 3484 struct hci_chan *tmp; 3485 3486 if (conn->type != type) 3487 continue; 3488 3489 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3490 continue; 3491 3492 conn_num++; 3493 3494 list_for_each_entry_rcu(tmp, &conn->chan_list, list) { 3495 struct sk_buff *skb; 3496 3497 if (skb_queue_empty(&tmp->data_q)) 3498 continue; 3499 3500 skb = skb_peek(&tmp->data_q); 3501 if (skb->priority < cur_prio) 3502 continue; 3503 3504 if (skb->priority > cur_prio) { 3505 num = 0; 3506 min = ~0; 3507 cur_prio = skb->priority; 3508 } 3509 3510 num++; 3511 3512 if (conn->sent < min) { 3513 min = conn->sent; 3514 chan = tmp; 3515 } 3516 } 3517 3518 if (hci_conn_num(hdev, type) == conn_num) 3519 break; 3520 } 3521 3522 rcu_read_unlock(); 3523 3524 if (!chan) 3525 return NULL; 3526 3527 hci_quote_sent(chan->conn, num, quote); 3528 3529 BT_DBG("chan %p quote %d", chan, *quote); 3530 return chan; 3531 } 3532 3533 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type) 3534 { 3535 struct hci_conn_hash *h = &hdev->conn_hash; 3536 struct hci_conn *conn; 3537 int num = 0; 3538 3539 BT_DBG("%s", hdev->name); 3540 3541 rcu_read_lock(); 3542 3543 list_for_each_entry_rcu(conn, &h->list, list) { 3544 struct hci_chan *chan; 3545 3546 if (conn->type != type) 3547 continue; 3548 3549 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 3550 continue; 3551 3552 num++; 3553 3554 list_for_each_entry_rcu(chan, &conn->chan_list, list) { 3555 struct sk_buff *skb; 3556 3557 if (chan->sent) { 3558 chan->sent = 0; 3559 continue; 3560 } 3561 3562 if (skb_queue_empty(&chan->data_q)) 3563 continue; 3564 3565 skb = skb_peek(&chan->data_q); 3566 if (skb->priority >= HCI_PRIO_MAX - 1) 3567 continue; 3568 3569 skb->priority = HCI_PRIO_MAX - 1; 3570 3571 BT_DBG("chan %p skb %p promoted to %d", chan, skb, 3572 skb->priority); 3573 } 3574 3575 if (hci_conn_num(hdev, type) == num) 3576 break; 3577 } 3578 3579 rcu_read_unlock(); 3580 3581 } 3582 3583 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb) 3584 { 3585 /* Calculate count of blocks used by this packet */ 3586 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len); 3587 } 3588 3589 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt, u8 type) 3590 { 3591 unsigned long last_tx; 3592 3593 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 3594 return; 3595 3596 switch (type) { 3597 case LE_LINK: 3598 last_tx = hdev->le_last_tx; 3599 break; 3600 default: 3601 last_tx = hdev->acl_last_tx; 3602 break; 3603 } 3604 3605 /* tx timeout must be longer than maximum link supervision timeout 3606 * (40.9 seconds) 3607 */ 3608 if (!cnt && time_after(jiffies, last_tx + HCI_ACL_TX_TIMEOUT)) 3609 hci_link_tx_to(hdev, type); 3610 } 3611 3612 /* Schedule SCO */ 3613 static void hci_sched_sco(struct hci_dev *hdev) 3614 { 3615 struct hci_conn *conn; 3616 struct sk_buff *skb; 3617 int quote; 3618 3619 BT_DBG("%s", hdev->name); 3620 3621 if (!hci_conn_num(hdev, SCO_LINK)) 3622 return; 3623 3624 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) { 3625 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 3626 BT_DBG("skb %p len %d", skb, skb->len); 3627 hci_send_frame(hdev, skb); 3628 3629 conn->sent++; 3630 if (conn->sent == ~0) 3631 conn->sent = 0; 3632 } 3633 } 3634 } 3635 3636 static void hci_sched_esco(struct hci_dev *hdev) 3637 { 3638 struct hci_conn *conn; 3639 struct sk_buff *skb; 3640 int quote; 3641 3642 BT_DBG("%s", hdev->name); 3643 3644 if (!hci_conn_num(hdev, ESCO_LINK)) 3645 return; 3646 3647 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, 3648 "e))) { 3649 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 3650 BT_DBG("skb %p len %d", skb, skb->len); 3651 hci_send_frame(hdev, skb); 3652 3653 conn->sent++; 3654 if (conn->sent == ~0) 3655 conn->sent = 0; 3656 } 3657 } 3658 } 3659 3660 static void hci_sched_acl_pkt(struct hci_dev *hdev) 3661 { 3662 unsigned int cnt = hdev->acl_cnt; 3663 struct hci_chan *chan; 3664 struct sk_buff *skb; 3665 int quote; 3666 3667 __check_timeout(hdev, cnt, ACL_LINK); 3668 3669 while (hdev->acl_cnt && 3670 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) { 3671 u32 priority = (skb_peek(&chan->data_q))->priority; 3672 while (quote-- && (skb = skb_peek(&chan->data_q))) { 3673 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 3674 skb->len, skb->priority); 3675 3676 /* Stop if priority has changed */ 3677 if (skb->priority < priority) 3678 break; 3679 3680 skb = skb_dequeue(&chan->data_q); 3681 3682 hci_conn_enter_active_mode(chan->conn, 3683 bt_cb(skb)->force_active); 3684 3685 hci_send_frame(hdev, skb); 3686 hdev->acl_last_tx = jiffies; 3687 3688 hdev->acl_cnt--; 3689 chan->sent++; 3690 chan->conn->sent++; 3691 3692 /* Send pending SCO packets right away */ 3693 hci_sched_sco(hdev); 3694 hci_sched_esco(hdev); 3695 } 3696 } 3697 3698 if (cnt != hdev->acl_cnt) 3699 hci_prio_recalculate(hdev, ACL_LINK); 3700 } 3701 3702 static void hci_sched_acl_blk(struct hci_dev *hdev) 3703 { 3704 unsigned int cnt = hdev->block_cnt; 3705 struct hci_chan *chan; 3706 struct sk_buff *skb; 3707 int quote; 3708 u8 type; 3709 3710 BT_DBG("%s", hdev->name); 3711 3712 if (hdev->dev_type == HCI_AMP) 3713 type = AMP_LINK; 3714 else 3715 type = ACL_LINK; 3716 3717 __check_timeout(hdev, cnt, type); 3718 3719 while (hdev->block_cnt > 0 && 3720 (chan = hci_chan_sent(hdev, type, "e))) { 3721 u32 priority = (skb_peek(&chan->data_q))->priority; 3722 while (quote > 0 && (skb = skb_peek(&chan->data_q))) { 3723 int blocks; 3724 3725 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 3726 skb->len, skb->priority); 3727 3728 /* Stop if priority has changed */ 3729 if (skb->priority < priority) 3730 break; 3731 3732 skb = skb_dequeue(&chan->data_q); 3733 3734 blocks = __get_blocks(hdev, skb); 3735 if (blocks > hdev->block_cnt) 3736 return; 3737 3738 hci_conn_enter_active_mode(chan->conn, 3739 bt_cb(skb)->force_active); 3740 3741 hci_send_frame(hdev, skb); 3742 hdev->acl_last_tx = jiffies; 3743 3744 hdev->block_cnt -= blocks; 3745 quote -= blocks; 3746 3747 chan->sent += blocks; 3748 chan->conn->sent += blocks; 3749 } 3750 } 3751 3752 if (cnt != hdev->block_cnt) 3753 hci_prio_recalculate(hdev, type); 3754 } 3755 3756 static void hci_sched_acl(struct hci_dev *hdev) 3757 { 3758 BT_DBG("%s", hdev->name); 3759 3760 /* No ACL link over BR/EDR controller */ 3761 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY) 3762 return; 3763 3764 /* No AMP link over AMP controller */ 3765 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP) 3766 return; 3767 3768 switch (hdev->flow_ctl_mode) { 3769 case HCI_FLOW_CTL_MODE_PACKET_BASED: 3770 hci_sched_acl_pkt(hdev); 3771 break; 3772 3773 case HCI_FLOW_CTL_MODE_BLOCK_BASED: 3774 hci_sched_acl_blk(hdev); 3775 break; 3776 } 3777 } 3778 3779 static void hci_sched_le(struct hci_dev *hdev) 3780 { 3781 struct hci_chan *chan; 3782 struct sk_buff *skb; 3783 int quote, cnt, tmp; 3784 3785 BT_DBG("%s", hdev->name); 3786 3787 if (!hci_conn_num(hdev, LE_LINK)) 3788 return; 3789 3790 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt; 3791 3792 __check_timeout(hdev, cnt, LE_LINK); 3793 3794 tmp = cnt; 3795 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) { 3796 u32 priority = (skb_peek(&chan->data_q))->priority; 3797 while (quote-- && (skb = skb_peek(&chan->data_q))) { 3798 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 3799 skb->len, skb->priority); 3800 3801 /* Stop if priority has changed */ 3802 if (skb->priority < priority) 3803 break; 3804 3805 skb = skb_dequeue(&chan->data_q); 3806 3807 hci_send_frame(hdev, skb); 3808 hdev->le_last_tx = jiffies; 3809 3810 cnt--; 3811 chan->sent++; 3812 chan->conn->sent++; 3813 3814 /* Send pending SCO packets right away */ 3815 hci_sched_sco(hdev); 3816 hci_sched_esco(hdev); 3817 } 3818 } 3819 3820 if (hdev->le_pkts) 3821 hdev->le_cnt = cnt; 3822 else 3823 hdev->acl_cnt = cnt; 3824 3825 if (cnt != tmp) 3826 hci_prio_recalculate(hdev, LE_LINK); 3827 } 3828 3829 /* Schedule CIS */ 3830 static void hci_sched_iso(struct hci_dev *hdev) 3831 { 3832 struct hci_conn *conn; 3833 struct sk_buff *skb; 3834 int quote, *cnt; 3835 3836 BT_DBG("%s", hdev->name); 3837 3838 if (!hci_conn_num(hdev, ISO_LINK)) 3839 return; 3840 3841 cnt = hdev->iso_pkts ? &hdev->iso_cnt : 3842 hdev->le_pkts ? &hdev->le_cnt : &hdev->acl_cnt; 3843 while (*cnt && (conn = hci_low_sent(hdev, ISO_LINK, "e))) { 3844 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 3845 BT_DBG("skb %p len %d", skb, skb->len); 3846 hci_send_frame(hdev, skb); 3847 3848 conn->sent++; 3849 if (conn->sent == ~0) 3850 conn->sent = 0; 3851 (*cnt)--; 3852 } 3853 } 3854 } 3855 3856 static void hci_tx_work(struct work_struct *work) 3857 { 3858 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work); 3859 struct sk_buff *skb; 3860 3861 BT_DBG("%s acl %d sco %d le %d iso %d", hdev->name, hdev->acl_cnt, 3862 hdev->sco_cnt, hdev->le_cnt, hdev->iso_cnt); 3863 3864 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 3865 /* Schedule queues and send stuff to HCI driver */ 3866 hci_sched_sco(hdev); 3867 hci_sched_esco(hdev); 3868 hci_sched_iso(hdev); 3869 hci_sched_acl(hdev); 3870 hci_sched_le(hdev); 3871 } 3872 3873 /* Send next queued raw (unknown type) packet */ 3874 while ((skb = skb_dequeue(&hdev->raw_q))) 3875 hci_send_frame(hdev, skb); 3876 } 3877 3878 /* ----- HCI RX task (incoming data processing) ----- */ 3879 3880 /* ACL data packet */ 3881 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb) 3882 { 3883 struct hci_acl_hdr *hdr = (void *) skb->data; 3884 struct hci_conn *conn; 3885 __u16 handle, flags; 3886 3887 skb_pull(skb, HCI_ACL_HDR_SIZE); 3888 3889 handle = __le16_to_cpu(hdr->handle); 3890 flags = hci_flags(handle); 3891 handle = hci_handle(handle); 3892 3893 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len, 3894 handle, flags); 3895 3896 hdev->stat.acl_rx++; 3897 3898 hci_dev_lock(hdev); 3899 conn = hci_conn_hash_lookup_handle(hdev, handle); 3900 hci_dev_unlock(hdev); 3901 3902 if (conn) { 3903 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF); 3904 3905 /* Send to upper protocol */ 3906 l2cap_recv_acldata(conn, skb, flags); 3907 return; 3908 } else { 3909 bt_dev_err(hdev, "ACL packet for unknown connection handle %d", 3910 handle); 3911 } 3912 3913 kfree_skb(skb); 3914 } 3915 3916 /* SCO data packet */ 3917 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb) 3918 { 3919 struct hci_sco_hdr *hdr = (void *) skb->data; 3920 struct hci_conn *conn; 3921 __u16 handle, flags; 3922 3923 skb_pull(skb, HCI_SCO_HDR_SIZE); 3924 3925 handle = __le16_to_cpu(hdr->handle); 3926 flags = hci_flags(handle); 3927 handle = hci_handle(handle); 3928 3929 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len, 3930 handle, flags); 3931 3932 hdev->stat.sco_rx++; 3933 3934 hci_dev_lock(hdev); 3935 conn = hci_conn_hash_lookup_handle(hdev, handle); 3936 hci_dev_unlock(hdev); 3937 3938 if (conn) { 3939 /* Send to upper protocol */ 3940 hci_skb_pkt_status(skb) = flags & 0x03; 3941 sco_recv_scodata(conn, skb); 3942 return; 3943 } else { 3944 bt_dev_err_ratelimited(hdev, "SCO packet for unknown connection handle %d", 3945 handle); 3946 } 3947 3948 kfree_skb(skb); 3949 } 3950 3951 static void hci_isodata_packet(struct hci_dev *hdev, struct sk_buff *skb) 3952 { 3953 struct hci_iso_hdr *hdr; 3954 struct hci_conn *conn; 3955 __u16 handle, flags; 3956 3957 hdr = skb_pull_data(skb, sizeof(*hdr)); 3958 if (!hdr) { 3959 bt_dev_err(hdev, "ISO packet too small"); 3960 goto drop; 3961 } 3962 3963 handle = __le16_to_cpu(hdr->handle); 3964 flags = hci_flags(handle); 3965 handle = hci_handle(handle); 3966 3967 bt_dev_dbg(hdev, "len %d handle 0x%4.4x flags 0x%4.4x", skb->len, 3968 handle, flags); 3969 3970 hci_dev_lock(hdev); 3971 conn = hci_conn_hash_lookup_handle(hdev, handle); 3972 hci_dev_unlock(hdev); 3973 3974 if (!conn) { 3975 bt_dev_err(hdev, "ISO packet for unknown connection handle %d", 3976 handle); 3977 goto drop; 3978 } 3979 3980 /* Send to upper protocol */ 3981 iso_recv(conn, skb, flags); 3982 return; 3983 3984 drop: 3985 kfree_skb(skb); 3986 } 3987 3988 static bool hci_req_is_complete(struct hci_dev *hdev) 3989 { 3990 struct sk_buff *skb; 3991 3992 skb = skb_peek(&hdev->cmd_q); 3993 if (!skb) 3994 return true; 3995 3996 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START); 3997 } 3998 3999 static void hci_resend_last(struct hci_dev *hdev) 4000 { 4001 struct hci_command_hdr *sent; 4002 struct sk_buff *skb; 4003 u16 opcode; 4004 4005 if (!hdev->sent_cmd) 4006 return; 4007 4008 sent = (void *) hdev->sent_cmd->data; 4009 opcode = __le16_to_cpu(sent->opcode); 4010 if (opcode == HCI_OP_RESET) 4011 return; 4012 4013 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL); 4014 if (!skb) 4015 return; 4016 4017 skb_queue_head(&hdev->cmd_q, skb); 4018 queue_work(hdev->workqueue, &hdev->cmd_work); 4019 } 4020 4021 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status, 4022 hci_req_complete_t *req_complete, 4023 hci_req_complete_skb_t *req_complete_skb) 4024 { 4025 struct sk_buff *skb; 4026 unsigned long flags; 4027 4028 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status); 4029 4030 /* If the completed command doesn't match the last one that was 4031 * sent we need to do special handling of it. 4032 */ 4033 if (!hci_sent_cmd_data(hdev, opcode)) { 4034 /* Some CSR based controllers generate a spontaneous 4035 * reset complete event during init and any pending 4036 * command will never be completed. In such a case we 4037 * need to resend whatever was the last sent 4038 * command. 4039 */ 4040 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET) 4041 hci_resend_last(hdev); 4042 4043 return; 4044 } 4045 4046 /* If we reach this point this event matches the last command sent */ 4047 hci_dev_clear_flag(hdev, HCI_CMD_PENDING); 4048 4049 /* If the command succeeded and there's still more commands in 4050 * this request the request is not yet complete. 4051 */ 4052 if (!status && !hci_req_is_complete(hdev)) 4053 return; 4054 4055 skb = hdev->req_skb; 4056 4057 /* If this was the last command in a request the complete 4058 * callback would be found in hdev->req_skb instead of the 4059 * command queue (hdev->cmd_q). 4060 */ 4061 if (skb && bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) { 4062 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb; 4063 return; 4064 } 4065 4066 if (skb && bt_cb(skb)->hci.req_complete) { 4067 *req_complete = bt_cb(skb)->hci.req_complete; 4068 return; 4069 } 4070 4071 /* Remove all pending commands belonging to this request */ 4072 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 4073 while ((skb = __skb_dequeue(&hdev->cmd_q))) { 4074 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) { 4075 __skb_queue_head(&hdev->cmd_q, skb); 4076 break; 4077 } 4078 4079 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) 4080 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb; 4081 else 4082 *req_complete = bt_cb(skb)->hci.req_complete; 4083 dev_kfree_skb_irq(skb); 4084 } 4085 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 4086 } 4087 4088 static void hci_rx_work(struct work_struct *work) 4089 { 4090 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work); 4091 struct sk_buff *skb; 4092 4093 BT_DBG("%s", hdev->name); 4094 4095 /* The kcov_remote functions used for collecting packet parsing 4096 * coverage information from this background thread and associate 4097 * the coverage with the syscall's thread which originally injected 4098 * the packet. This helps fuzzing the kernel. 4099 */ 4100 for (; (skb = skb_dequeue(&hdev->rx_q)); kcov_remote_stop()) { 4101 kcov_remote_start_common(skb_get_kcov_handle(skb)); 4102 4103 /* Send copy to monitor */ 4104 hci_send_to_monitor(hdev, skb); 4105 4106 if (atomic_read(&hdev->promisc)) { 4107 /* Send copy to the sockets */ 4108 hci_send_to_sock(hdev, skb); 4109 } 4110 4111 /* If the device has been opened in HCI_USER_CHANNEL, 4112 * the userspace has exclusive access to device. 4113 * When device is HCI_INIT, we still need to process 4114 * the data packets to the driver in order 4115 * to complete its setup(). 4116 */ 4117 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 4118 !test_bit(HCI_INIT, &hdev->flags)) { 4119 kfree_skb(skb); 4120 continue; 4121 } 4122 4123 if (test_bit(HCI_INIT, &hdev->flags)) { 4124 /* Don't process data packets in this states. */ 4125 switch (hci_skb_pkt_type(skb)) { 4126 case HCI_ACLDATA_PKT: 4127 case HCI_SCODATA_PKT: 4128 case HCI_ISODATA_PKT: 4129 kfree_skb(skb); 4130 continue; 4131 } 4132 } 4133 4134 /* Process frame */ 4135 switch (hci_skb_pkt_type(skb)) { 4136 case HCI_EVENT_PKT: 4137 BT_DBG("%s Event packet", hdev->name); 4138 hci_event_packet(hdev, skb); 4139 break; 4140 4141 case HCI_ACLDATA_PKT: 4142 BT_DBG("%s ACL data packet", hdev->name); 4143 hci_acldata_packet(hdev, skb); 4144 break; 4145 4146 case HCI_SCODATA_PKT: 4147 BT_DBG("%s SCO data packet", hdev->name); 4148 hci_scodata_packet(hdev, skb); 4149 break; 4150 4151 case HCI_ISODATA_PKT: 4152 BT_DBG("%s ISO data packet", hdev->name); 4153 hci_isodata_packet(hdev, skb); 4154 break; 4155 4156 default: 4157 kfree_skb(skb); 4158 break; 4159 } 4160 } 4161 } 4162 4163 static void hci_send_cmd_sync(struct hci_dev *hdev, struct sk_buff *skb) 4164 { 4165 int err; 4166 4167 bt_dev_dbg(hdev, "skb %p", skb); 4168 4169 kfree_skb(hdev->sent_cmd); 4170 4171 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL); 4172 if (!hdev->sent_cmd) { 4173 skb_queue_head(&hdev->cmd_q, skb); 4174 queue_work(hdev->workqueue, &hdev->cmd_work); 4175 return; 4176 } 4177 4178 err = hci_send_frame(hdev, skb); 4179 if (err < 0) { 4180 hci_cmd_sync_cancel_sync(hdev, -err); 4181 return; 4182 } 4183 4184 if (hci_req_status_pend(hdev) && 4185 !hci_dev_test_and_set_flag(hdev, HCI_CMD_PENDING)) { 4186 kfree_skb(hdev->req_skb); 4187 hdev->req_skb = skb_clone(hdev->sent_cmd, GFP_KERNEL); 4188 } 4189 4190 atomic_dec(&hdev->cmd_cnt); 4191 } 4192 4193 static void hci_cmd_work(struct work_struct *work) 4194 { 4195 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work); 4196 struct sk_buff *skb; 4197 4198 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name, 4199 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q)); 4200 4201 /* Send queued commands */ 4202 if (atomic_read(&hdev->cmd_cnt)) { 4203 skb = skb_dequeue(&hdev->cmd_q); 4204 if (!skb) 4205 return; 4206 4207 hci_send_cmd_sync(hdev, skb); 4208 4209 rcu_read_lock(); 4210 if (test_bit(HCI_RESET, &hdev->flags) || 4211 hci_dev_test_flag(hdev, HCI_CMD_DRAIN_WORKQUEUE)) 4212 cancel_delayed_work(&hdev->cmd_timer); 4213 else 4214 queue_delayed_work(hdev->workqueue, &hdev->cmd_timer, 4215 HCI_CMD_TIMEOUT); 4216 rcu_read_unlock(); 4217 } 4218 } 4219