1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (C) 2000-2001 Qualcomm Incorporated 4 Copyright (C) 2011 ProFUSION Embedded Systems 5 6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License version 2 as 10 published by the Free Software Foundation; 11 12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 23 SOFTWARE IS DISCLAIMED. 24 */ 25 26 /* Bluetooth HCI core. */ 27 28 #include <linux/export.h> 29 #include <linux/rfkill.h> 30 #include <linux/debugfs.h> 31 #include <linux/crypto.h> 32 #include <linux/property.h> 33 #include <linux/suspend.h> 34 #include <linux/wait.h> 35 #include <asm/unaligned.h> 36 37 #include <net/bluetooth/bluetooth.h> 38 #include <net/bluetooth/hci_core.h> 39 #include <net/bluetooth/l2cap.h> 40 #include <net/bluetooth/mgmt.h> 41 42 #include "hci_request.h" 43 #include "hci_debugfs.h" 44 #include "smp.h" 45 #include "leds.h" 46 #include "msft.h" 47 #include "aosp.h" 48 49 static void hci_rx_work(struct work_struct *work); 50 static void hci_cmd_work(struct work_struct *work); 51 static void hci_tx_work(struct work_struct *work); 52 53 /* HCI device list */ 54 LIST_HEAD(hci_dev_list); 55 DEFINE_RWLOCK(hci_dev_list_lock); 56 57 /* HCI callback list */ 58 LIST_HEAD(hci_cb_list); 59 DEFINE_MUTEX(hci_cb_list_lock); 60 61 /* HCI ID Numbering */ 62 static DEFINE_IDA(hci_index_ida); 63 64 /* ---- HCI debugfs entries ---- */ 65 66 static ssize_t dut_mode_read(struct file *file, char __user *user_buf, 67 size_t count, loff_t *ppos) 68 { 69 struct hci_dev *hdev = file->private_data; 70 char buf[3]; 71 72 buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N'; 73 buf[1] = '\n'; 74 buf[2] = '\0'; 75 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 76 } 77 78 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf, 79 size_t count, loff_t *ppos) 80 { 81 struct hci_dev *hdev = file->private_data; 82 struct sk_buff *skb; 83 bool enable; 84 int err; 85 86 if (!test_bit(HCI_UP, &hdev->flags)) 87 return -ENETDOWN; 88 89 err = kstrtobool_from_user(user_buf, count, &enable); 90 if (err) 91 return err; 92 93 if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE)) 94 return -EALREADY; 95 96 hci_req_sync_lock(hdev); 97 if (enable) 98 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL, 99 HCI_CMD_TIMEOUT); 100 else 101 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, 102 HCI_CMD_TIMEOUT); 103 hci_req_sync_unlock(hdev); 104 105 if (IS_ERR(skb)) 106 return PTR_ERR(skb); 107 108 kfree_skb(skb); 109 110 hci_dev_change_flag(hdev, HCI_DUT_MODE); 111 112 return count; 113 } 114 115 static const struct file_operations dut_mode_fops = { 116 .open = simple_open, 117 .read = dut_mode_read, 118 .write = dut_mode_write, 119 .llseek = default_llseek, 120 }; 121 122 static ssize_t vendor_diag_read(struct file *file, char __user *user_buf, 123 size_t count, loff_t *ppos) 124 { 125 struct hci_dev *hdev = file->private_data; 126 char buf[3]; 127 128 buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N'; 129 buf[1] = '\n'; 130 buf[2] = '\0'; 131 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 132 } 133 134 static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf, 135 size_t count, loff_t *ppos) 136 { 137 struct hci_dev *hdev = file->private_data; 138 bool enable; 139 int err; 140 141 err = kstrtobool_from_user(user_buf, count, &enable); 142 if (err) 143 return err; 144 145 /* When the diagnostic flags are not persistent and the transport 146 * is not active or in user channel operation, then there is no need 147 * for the vendor callback. Instead just store the desired value and 148 * the setting will be programmed when the controller gets powered on. 149 */ 150 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 151 (!test_bit(HCI_RUNNING, &hdev->flags) || 152 hci_dev_test_flag(hdev, HCI_USER_CHANNEL))) 153 goto done; 154 155 hci_req_sync_lock(hdev); 156 err = hdev->set_diag(hdev, enable); 157 hci_req_sync_unlock(hdev); 158 159 if (err < 0) 160 return err; 161 162 done: 163 if (enable) 164 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG); 165 else 166 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG); 167 168 return count; 169 } 170 171 static const struct file_operations vendor_diag_fops = { 172 .open = simple_open, 173 .read = vendor_diag_read, 174 .write = vendor_diag_write, 175 .llseek = default_llseek, 176 }; 177 178 static void hci_debugfs_create_basic(struct hci_dev *hdev) 179 { 180 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev, 181 &dut_mode_fops); 182 183 if (hdev->set_diag) 184 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev, 185 &vendor_diag_fops); 186 } 187 188 static int hci_reset_req(struct hci_request *req, unsigned long opt) 189 { 190 BT_DBG("%s %ld", req->hdev->name, opt); 191 192 /* Reset device */ 193 set_bit(HCI_RESET, &req->hdev->flags); 194 hci_req_add(req, HCI_OP_RESET, 0, NULL); 195 return 0; 196 } 197 198 static void bredr_init(struct hci_request *req) 199 { 200 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED; 201 202 /* Read Local Supported Features */ 203 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL); 204 205 /* Read Local Version */ 206 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL); 207 208 /* Read BD Address */ 209 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL); 210 } 211 212 static void amp_init1(struct hci_request *req) 213 { 214 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED; 215 216 /* Read Local Version */ 217 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL); 218 219 /* Read Local Supported Commands */ 220 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL); 221 222 /* Read Local AMP Info */ 223 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL); 224 225 /* Read Data Blk size */ 226 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL); 227 228 /* Read Flow Control Mode */ 229 hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL); 230 231 /* Read Location Data */ 232 hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL); 233 } 234 235 static int amp_init2(struct hci_request *req) 236 { 237 /* Read Local Supported Features. Not all AMP controllers 238 * support this so it's placed conditionally in the second 239 * stage init. 240 */ 241 if (req->hdev->commands[14] & 0x20) 242 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL); 243 244 return 0; 245 } 246 247 static int hci_init1_req(struct hci_request *req, unsigned long opt) 248 { 249 struct hci_dev *hdev = req->hdev; 250 251 BT_DBG("%s %ld", hdev->name, opt); 252 253 /* Reset */ 254 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) 255 hci_reset_req(req, 0); 256 257 switch (hdev->dev_type) { 258 case HCI_PRIMARY: 259 bredr_init(req); 260 break; 261 case HCI_AMP: 262 amp_init1(req); 263 break; 264 default: 265 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type); 266 break; 267 } 268 269 return 0; 270 } 271 272 static void bredr_setup(struct hci_request *req) 273 { 274 __le16 param; 275 __u8 flt_type; 276 277 /* Read Buffer Size (ACL mtu, max pkt, etc.) */ 278 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL); 279 280 /* Read Class of Device */ 281 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL); 282 283 /* Read Local Name */ 284 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL); 285 286 /* Read Voice Setting */ 287 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL); 288 289 /* Read Number of Supported IAC */ 290 hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL); 291 292 /* Read Current IAC LAP */ 293 hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL); 294 295 /* Clear Event Filters */ 296 flt_type = HCI_FLT_CLEAR_ALL; 297 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type); 298 299 /* Connection accept timeout ~20 secs */ 300 param = cpu_to_le16(0x7d00); 301 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, ¶m); 302 } 303 304 static void le_setup(struct hci_request *req) 305 { 306 struct hci_dev *hdev = req->hdev; 307 308 /* Read LE Buffer Size */ 309 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL); 310 311 /* Read LE Local Supported Features */ 312 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL); 313 314 /* Read LE Supported States */ 315 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL); 316 317 /* LE-only controllers have LE implicitly enabled */ 318 if (!lmp_bredr_capable(hdev)) 319 hci_dev_set_flag(hdev, HCI_LE_ENABLED); 320 } 321 322 static void hci_setup_event_mask(struct hci_request *req) 323 { 324 struct hci_dev *hdev = req->hdev; 325 326 /* The second byte is 0xff instead of 0x9f (two reserved bits 327 * disabled) since a Broadcom 1.2 dongle doesn't respond to the 328 * command otherwise. 329 */ 330 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 }; 331 332 /* CSR 1.1 dongles does not accept any bitfield so don't try to set 333 * any event mask for pre 1.2 devices. 334 */ 335 if (hdev->hci_ver < BLUETOOTH_VER_1_2) 336 return; 337 338 if (lmp_bredr_capable(hdev)) { 339 events[4] |= 0x01; /* Flow Specification Complete */ 340 } else { 341 /* Use a different default for LE-only devices */ 342 memset(events, 0, sizeof(events)); 343 events[1] |= 0x20; /* Command Complete */ 344 events[1] |= 0x40; /* Command Status */ 345 events[1] |= 0x80; /* Hardware Error */ 346 347 /* If the controller supports the Disconnect command, enable 348 * the corresponding event. In addition enable packet flow 349 * control related events. 350 */ 351 if (hdev->commands[0] & 0x20) { 352 events[0] |= 0x10; /* Disconnection Complete */ 353 events[2] |= 0x04; /* Number of Completed Packets */ 354 events[3] |= 0x02; /* Data Buffer Overflow */ 355 } 356 357 /* If the controller supports the Read Remote Version 358 * Information command, enable the corresponding event. 359 */ 360 if (hdev->commands[2] & 0x80) 361 events[1] |= 0x08; /* Read Remote Version Information 362 * Complete 363 */ 364 365 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) { 366 events[0] |= 0x80; /* Encryption Change */ 367 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 368 } 369 } 370 371 if (lmp_inq_rssi_capable(hdev) || 372 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) 373 events[4] |= 0x02; /* Inquiry Result with RSSI */ 374 375 if (lmp_ext_feat_capable(hdev)) 376 events[4] |= 0x04; /* Read Remote Extended Features Complete */ 377 378 if (lmp_esco_capable(hdev)) { 379 events[5] |= 0x08; /* Synchronous Connection Complete */ 380 events[5] |= 0x10; /* Synchronous Connection Changed */ 381 } 382 383 if (lmp_sniffsubr_capable(hdev)) 384 events[5] |= 0x20; /* Sniff Subrating */ 385 386 if (lmp_pause_enc_capable(hdev)) 387 events[5] |= 0x80; /* Encryption Key Refresh Complete */ 388 389 if (lmp_ext_inq_capable(hdev)) 390 events[5] |= 0x40; /* Extended Inquiry Result */ 391 392 if (lmp_no_flush_capable(hdev)) 393 events[7] |= 0x01; /* Enhanced Flush Complete */ 394 395 if (lmp_lsto_capable(hdev)) 396 events[6] |= 0x80; /* Link Supervision Timeout Changed */ 397 398 if (lmp_ssp_capable(hdev)) { 399 events[6] |= 0x01; /* IO Capability Request */ 400 events[6] |= 0x02; /* IO Capability Response */ 401 events[6] |= 0x04; /* User Confirmation Request */ 402 events[6] |= 0x08; /* User Passkey Request */ 403 events[6] |= 0x10; /* Remote OOB Data Request */ 404 events[6] |= 0x20; /* Simple Pairing Complete */ 405 events[7] |= 0x04; /* User Passkey Notification */ 406 events[7] |= 0x08; /* Keypress Notification */ 407 events[7] |= 0x10; /* Remote Host Supported 408 * Features Notification 409 */ 410 } 411 412 if (lmp_le_capable(hdev)) 413 events[7] |= 0x20; /* LE Meta-Event */ 414 415 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events); 416 } 417 418 static int hci_init2_req(struct hci_request *req, unsigned long opt) 419 { 420 struct hci_dev *hdev = req->hdev; 421 422 if (hdev->dev_type == HCI_AMP) 423 return amp_init2(req); 424 425 if (lmp_bredr_capable(hdev)) 426 bredr_setup(req); 427 else 428 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED); 429 430 if (lmp_le_capable(hdev)) 431 le_setup(req); 432 433 /* All Bluetooth 1.2 and later controllers should support the 434 * HCI command for reading the local supported commands. 435 * 436 * Unfortunately some controllers indicate Bluetooth 1.2 support, 437 * but do not have support for this command. If that is the case, 438 * the driver can quirk the behavior and skip reading the local 439 * supported commands. 440 */ 441 if (hdev->hci_ver > BLUETOOTH_VER_1_1 && 442 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks)) 443 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL); 444 445 if (lmp_ssp_capable(hdev)) { 446 /* When SSP is available, then the host features page 447 * should also be available as well. However some 448 * controllers list the max_page as 0 as long as SSP 449 * has not been enabled. To achieve proper debugging 450 * output, force the minimum max_page to 1 at least. 451 */ 452 hdev->max_page = 0x01; 453 454 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) { 455 u8 mode = 0x01; 456 457 hci_req_add(req, HCI_OP_WRITE_SSP_MODE, 458 sizeof(mode), &mode); 459 } else { 460 struct hci_cp_write_eir cp; 461 462 memset(hdev->eir, 0, sizeof(hdev->eir)); 463 memset(&cp, 0, sizeof(cp)); 464 465 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp); 466 } 467 } 468 469 if (lmp_inq_rssi_capable(hdev) || 470 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) { 471 u8 mode; 472 473 /* If Extended Inquiry Result events are supported, then 474 * they are clearly preferred over Inquiry Result with RSSI 475 * events. 476 */ 477 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01; 478 479 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode); 480 } 481 482 if (lmp_inq_tx_pwr_capable(hdev)) 483 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL); 484 485 if (lmp_ext_feat_capable(hdev)) { 486 struct hci_cp_read_local_ext_features cp; 487 488 cp.page = 0x01; 489 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES, 490 sizeof(cp), &cp); 491 } 492 493 if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) { 494 u8 enable = 1; 495 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable), 496 &enable); 497 } 498 499 return 0; 500 } 501 502 static void hci_setup_link_policy(struct hci_request *req) 503 { 504 struct hci_dev *hdev = req->hdev; 505 struct hci_cp_write_def_link_policy cp; 506 u16 link_policy = 0; 507 508 if (lmp_rswitch_capable(hdev)) 509 link_policy |= HCI_LP_RSWITCH; 510 if (lmp_hold_capable(hdev)) 511 link_policy |= HCI_LP_HOLD; 512 if (lmp_sniff_capable(hdev)) 513 link_policy |= HCI_LP_SNIFF; 514 if (lmp_park_capable(hdev)) 515 link_policy |= HCI_LP_PARK; 516 517 cp.policy = cpu_to_le16(link_policy); 518 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp); 519 } 520 521 static void hci_set_le_support(struct hci_request *req) 522 { 523 struct hci_dev *hdev = req->hdev; 524 struct hci_cp_write_le_host_supported cp; 525 526 /* LE-only devices do not support explicit enablement */ 527 if (!lmp_bredr_capable(hdev)) 528 return; 529 530 memset(&cp, 0, sizeof(cp)); 531 532 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 533 cp.le = 0x01; 534 cp.simul = 0x00; 535 } 536 537 if (cp.le != lmp_host_le_capable(hdev)) 538 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp), 539 &cp); 540 } 541 542 static void hci_set_event_mask_page_2(struct hci_request *req) 543 { 544 struct hci_dev *hdev = req->hdev; 545 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; 546 bool changed = false; 547 548 /* If Connectionless Peripheral Broadcast central role is supported 549 * enable all necessary events for it. 550 */ 551 if (lmp_cpb_central_capable(hdev)) { 552 events[1] |= 0x40; /* Triggered Clock Capture */ 553 events[1] |= 0x80; /* Synchronization Train Complete */ 554 events[2] |= 0x10; /* Peripheral Page Response Timeout */ 555 events[2] |= 0x20; /* CPB Channel Map Change */ 556 changed = true; 557 } 558 559 /* If Connectionless Peripheral Broadcast peripheral role is supported 560 * enable all necessary events for it. 561 */ 562 if (lmp_cpb_peripheral_capable(hdev)) { 563 events[2] |= 0x01; /* Synchronization Train Received */ 564 events[2] |= 0x02; /* CPB Receive */ 565 events[2] |= 0x04; /* CPB Timeout */ 566 events[2] |= 0x08; /* Truncated Page Complete */ 567 changed = true; 568 } 569 570 /* Enable Authenticated Payload Timeout Expired event if supported */ 571 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) { 572 events[2] |= 0x80; 573 changed = true; 574 } 575 576 /* Some Broadcom based controllers indicate support for Set Event 577 * Mask Page 2 command, but then actually do not support it. Since 578 * the default value is all bits set to zero, the command is only 579 * required if the event mask has to be changed. In case no change 580 * to the event mask is needed, skip this command. 581 */ 582 if (changed) 583 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2, 584 sizeof(events), events); 585 } 586 587 static int hci_init3_req(struct hci_request *req, unsigned long opt) 588 { 589 struct hci_dev *hdev = req->hdev; 590 u8 p; 591 592 hci_setup_event_mask(req); 593 594 if (hdev->commands[6] & 0x20 && 595 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) { 596 struct hci_cp_read_stored_link_key cp; 597 598 bacpy(&cp.bdaddr, BDADDR_ANY); 599 cp.read_all = 0x01; 600 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp); 601 } 602 603 if (hdev->commands[5] & 0x10) 604 hci_setup_link_policy(req); 605 606 if (hdev->commands[8] & 0x01) 607 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL); 608 609 if (hdev->commands[18] & 0x04 && 610 !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) 611 hci_req_add(req, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 0, NULL); 612 613 /* Some older Broadcom based Bluetooth 1.2 controllers do not 614 * support the Read Page Scan Type command. Check support for 615 * this command in the bit mask of supported commands. 616 */ 617 if (hdev->commands[13] & 0x01) 618 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL); 619 620 if (lmp_le_capable(hdev)) { 621 u8 events[8]; 622 623 memset(events, 0, sizeof(events)); 624 625 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) 626 events[0] |= 0x10; /* LE Long Term Key Request */ 627 628 /* If controller supports the Connection Parameters Request 629 * Link Layer Procedure, enable the corresponding event. 630 */ 631 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC) 632 events[0] |= 0x20; /* LE Remote Connection 633 * Parameter Request 634 */ 635 636 /* If the controller supports the Data Length Extension 637 * feature, enable the corresponding event. 638 */ 639 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) 640 events[0] |= 0x40; /* LE Data Length Change */ 641 642 /* If the controller supports LL Privacy feature, enable 643 * the corresponding event. 644 */ 645 if (hdev->le_features[0] & HCI_LE_LL_PRIVACY) 646 events[1] |= 0x02; /* LE Enhanced Connection 647 * Complete 648 */ 649 650 /* If the controller supports Extended Scanner Filter 651 * Policies, enable the corresponding event. 652 */ 653 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY) 654 events[1] |= 0x04; /* LE Direct Advertising 655 * Report 656 */ 657 658 /* If the controller supports Channel Selection Algorithm #2 659 * feature, enable the corresponding event. 660 */ 661 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2) 662 events[2] |= 0x08; /* LE Channel Selection 663 * Algorithm 664 */ 665 666 /* If the controller supports the LE Set Scan Enable command, 667 * enable the corresponding advertising report event. 668 */ 669 if (hdev->commands[26] & 0x08) 670 events[0] |= 0x02; /* LE Advertising Report */ 671 672 /* If the controller supports the LE Create Connection 673 * command, enable the corresponding event. 674 */ 675 if (hdev->commands[26] & 0x10) 676 events[0] |= 0x01; /* LE Connection Complete */ 677 678 /* If the controller supports the LE Connection Update 679 * command, enable the corresponding event. 680 */ 681 if (hdev->commands[27] & 0x04) 682 events[0] |= 0x04; /* LE Connection Update 683 * Complete 684 */ 685 686 /* If the controller supports the LE Read Remote Used Features 687 * command, enable the corresponding event. 688 */ 689 if (hdev->commands[27] & 0x20) 690 events[0] |= 0x08; /* LE Read Remote Used 691 * Features Complete 692 */ 693 694 /* If the controller supports the LE Read Local P-256 695 * Public Key command, enable the corresponding event. 696 */ 697 if (hdev->commands[34] & 0x02) 698 events[0] |= 0x80; /* LE Read Local P-256 699 * Public Key Complete 700 */ 701 702 /* If the controller supports the LE Generate DHKey 703 * command, enable the corresponding event. 704 */ 705 if (hdev->commands[34] & 0x04) 706 events[1] |= 0x01; /* LE Generate DHKey Complete */ 707 708 /* If the controller supports the LE Set Default PHY or 709 * LE Set PHY commands, enable the corresponding event. 710 */ 711 if (hdev->commands[35] & (0x20 | 0x40)) 712 events[1] |= 0x08; /* LE PHY Update Complete */ 713 714 /* If the controller supports LE Set Extended Scan Parameters 715 * and LE Set Extended Scan Enable commands, enable the 716 * corresponding event. 717 */ 718 if (use_ext_scan(hdev)) 719 events[1] |= 0x10; /* LE Extended Advertising 720 * Report 721 */ 722 723 /* If the controller supports the LE Extended Advertising 724 * command, enable the corresponding event. 725 */ 726 if (ext_adv_capable(hdev)) 727 events[2] |= 0x02; /* LE Advertising Set 728 * Terminated 729 */ 730 731 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events), 732 events); 733 734 /* Read LE Advertising Channel TX Power */ 735 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) { 736 /* HCI TS spec forbids mixing of legacy and extended 737 * advertising commands wherein READ_ADV_TX_POWER is 738 * also included. So do not call it if extended adv 739 * is supported otherwise controller will return 740 * COMMAND_DISALLOWED for extended commands. 741 */ 742 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL); 743 } 744 745 if (hdev->commands[38] & 0x80) { 746 /* Read LE Min/Max Tx Power*/ 747 hci_req_add(req, HCI_OP_LE_READ_TRANSMIT_POWER, 748 0, NULL); 749 } 750 751 if (hdev->commands[26] & 0x40) { 752 /* Read LE Accept List Size */ 753 hci_req_add(req, HCI_OP_LE_READ_ACCEPT_LIST_SIZE, 754 0, NULL); 755 } 756 757 if (hdev->commands[26] & 0x80) { 758 /* Clear LE Accept List */ 759 hci_req_add(req, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL); 760 } 761 762 if (hdev->commands[34] & 0x40) { 763 /* Read LE Resolving List Size */ 764 hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE, 765 0, NULL); 766 } 767 768 if (hdev->commands[34] & 0x20) { 769 /* Clear LE Resolving List */ 770 hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL); 771 } 772 773 if (hdev->commands[35] & 0x04) { 774 __le16 rpa_timeout = cpu_to_le16(hdev->rpa_timeout); 775 776 /* Set RPA timeout */ 777 hci_req_add(req, HCI_OP_LE_SET_RPA_TIMEOUT, 2, 778 &rpa_timeout); 779 } 780 781 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) { 782 /* Read LE Maximum Data Length */ 783 hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL); 784 785 /* Read LE Suggested Default Data Length */ 786 hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL); 787 } 788 789 if (ext_adv_capable(hdev)) { 790 /* Read LE Number of Supported Advertising Sets */ 791 hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS, 792 0, NULL); 793 } 794 795 hci_set_le_support(req); 796 } 797 798 /* Read features beyond page 1 if available */ 799 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) { 800 struct hci_cp_read_local_ext_features cp; 801 802 cp.page = p; 803 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES, 804 sizeof(cp), &cp); 805 } 806 807 return 0; 808 } 809 810 static int hci_init4_req(struct hci_request *req, unsigned long opt) 811 { 812 struct hci_dev *hdev = req->hdev; 813 814 /* Some Broadcom based Bluetooth controllers do not support the 815 * Delete Stored Link Key command. They are clearly indicating its 816 * absence in the bit mask of supported commands. 817 * 818 * Check the supported commands and only if the command is marked 819 * as supported send it. If not supported assume that the controller 820 * does not have actual support for stored link keys which makes this 821 * command redundant anyway. 822 * 823 * Some controllers indicate that they support handling deleting 824 * stored link keys, but they don't. The quirk lets a driver 825 * just disable this command. 826 */ 827 if (hdev->commands[6] & 0x80 && 828 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) { 829 struct hci_cp_delete_stored_link_key cp; 830 831 bacpy(&cp.bdaddr, BDADDR_ANY); 832 cp.delete_all = 0x01; 833 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY, 834 sizeof(cp), &cp); 835 } 836 837 /* Set event mask page 2 if the HCI command for it is supported */ 838 if (hdev->commands[22] & 0x04) 839 hci_set_event_mask_page_2(req); 840 841 /* Read local codec list if the HCI command is supported */ 842 if (hdev->commands[29] & 0x20) 843 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL); 844 845 /* Read local pairing options if the HCI command is supported */ 846 if (hdev->commands[41] & 0x08) 847 hci_req_add(req, HCI_OP_READ_LOCAL_PAIRING_OPTS, 0, NULL); 848 849 /* Get MWS transport configuration if the HCI command is supported */ 850 if (hdev->commands[30] & 0x08) 851 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL); 852 853 /* Check for Synchronization Train support */ 854 if (lmp_sync_train_capable(hdev)) 855 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL); 856 857 /* Enable Secure Connections if supported and configured */ 858 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) && 859 bredr_sc_enabled(hdev)) { 860 u8 support = 0x01; 861 862 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT, 863 sizeof(support), &support); 864 } 865 866 /* Set erroneous data reporting if supported to the wideband speech 867 * setting value 868 */ 869 if (hdev->commands[18] & 0x08 && 870 !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) { 871 bool enabled = hci_dev_test_flag(hdev, 872 HCI_WIDEBAND_SPEECH_ENABLED); 873 874 if (enabled != 875 (hdev->err_data_reporting == ERR_DATA_REPORTING_ENABLED)) { 876 struct hci_cp_write_def_err_data_reporting cp; 877 878 cp.err_data_reporting = enabled ? 879 ERR_DATA_REPORTING_ENABLED : 880 ERR_DATA_REPORTING_DISABLED; 881 882 hci_req_add(req, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING, 883 sizeof(cp), &cp); 884 } 885 } 886 887 /* Set Suggested Default Data Length to maximum if supported */ 888 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) { 889 struct hci_cp_le_write_def_data_len cp; 890 891 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len); 892 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time); 893 hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp); 894 } 895 896 /* Set Default PHY parameters if command is supported */ 897 if (hdev->commands[35] & 0x20) { 898 struct hci_cp_le_set_default_phy cp; 899 900 cp.all_phys = 0x00; 901 cp.tx_phys = hdev->le_tx_def_phys; 902 cp.rx_phys = hdev->le_rx_def_phys; 903 904 hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp); 905 } 906 907 return 0; 908 } 909 910 static int __hci_init(struct hci_dev *hdev) 911 { 912 int err; 913 914 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL); 915 if (err < 0) 916 return err; 917 918 if (hci_dev_test_flag(hdev, HCI_SETUP)) 919 hci_debugfs_create_basic(hdev); 920 921 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL); 922 if (err < 0) 923 return err; 924 925 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode 926 * BR/EDR/LE type controllers. AMP controllers only need the 927 * first two stages of init. 928 */ 929 if (hdev->dev_type != HCI_PRIMARY) 930 return 0; 931 932 err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL); 933 if (err < 0) 934 return err; 935 936 err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL); 937 if (err < 0) 938 return err; 939 940 /* This function is only called when the controller is actually in 941 * configured state. When the controller is marked as unconfigured, 942 * this initialization procedure is not run. 943 * 944 * It means that it is possible that a controller runs through its 945 * setup phase and then discovers missing settings. If that is the 946 * case, then this function will not be called. It then will only 947 * be called during the config phase. 948 * 949 * So only when in setup phase or config phase, create the debugfs 950 * entries and register the SMP channels. 951 */ 952 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 953 !hci_dev_test_flag(hdev, HCI_CONFIG)) 954 return 0; 955 956 hci_debugfs_create_common(hdev); 957 958 if (lmp_bredr_capable(hdev)) 959 hci_debugfs_create_bredr(hdev); 960 961 if (lmp_le_capable(hdev)) 962 hci_debugfs_create_le(hdev); 963 964 return 0; 965 } 966 967 static int hci_init0_req(struct hci_request *req, unsigned long opt) 968 { 969 struct hci_dev *hdev = req->hdev; 970 971 BT_DBG("%s %ld", hdev->name, opt); 972 973 /* Reset */ 974 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) 975 hci_reset_req(req, 0); 976 977 /* Read Local Version */ 978 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL); 979 980 /* Read BD Address */ 981 if (hdev->set_bdaddr) 982 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL); 983 984 return 0; 985 } 986 987 static int __hci_unconf_init(struct hci_dev *hdev) 988 { 989 int err; 990 991 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 992 return 0; 993 994 err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL); 995 if (err < 0) 996 return err; 997 998 if (hci_dev_test_flag(hdev, HCI_SETUP)) 999 hci_debugfs_create_basic(hdev); 1000 1001 return 0; 1002 } 1003 1004 static int hci_scan_req(struct hci_request *req, unsigned long opt) 1005 { 1006 __u8 scan = opt; 1007 1008 BT_DBG("%s %x", req->hdev->name, scan); 1009 1010 /* Inquiry and Page scans */ 1011 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); 1012 return 0; 1013 } 1014 1015 static int hci_auth_req(struct hci_request *req, unsigned long opt) 1016 { 1017 __u8 auth = opt; 1018 1019 BT_DBG("%s %x", req->hdev->name, auth); 1020 1021 /* Authentication */ 1022 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth); 1023 return 0; 1024 } 1025 1026 static int hci_encrypt_req(struct hci_request *req, unsigned long opt) 1027 { 1028 __u8 encrypt = opt; 1029 1030 BT_DBG("%s %x", req->hdev->name, encrypt); 1031 1032 /* Encryption */ 1033 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt); 1034 return 0; 1035 } 1036 1037 static int hci_linkpol_req(struct hci_request *req, unsigned long opt) 1038 { 1039 __le16 policy = cpu_to_le16(opt); 1040 1041 BT_DBG("%s %x", req->hdev->name, policy); 1042 1043 /* Default link policy */ 1044 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy); 1045 return 0; 1046 } 1047 1048 /* Get HCI device by index. 1049 * Device is held on return. */ 1050 struct hci_dev *hci_dev_get(int index) 1051 { 1052 struct hci_dev *hdev = NULL, *d; 1053 1054 BT_DBG("%d", index); 1055 1056 if (index < 0) 1057 return NULL; 1058 1059 read_lock(&hci_dev_list_lock); 1060 list_for_each_entry(d, &hci_dev_list, list) { 1061 if (d->id == index) { 1062 hdev = hci_dev_hold(d); 1063 break; 1064 } 1065 } 1066 read_unlock(&hci_dev_list_lock); 1067 return hdev; 1068 } 1069 1070 /* ---- Inquiry support ---- */ 1071 1072 bool hci_discovery_active(struct hci_dev *hdev) 1073 { 1074 struct discovery_state *discov = &hdev->discovery; 1075 1076 switch (discov->state) { 1077 case DISCOVERY_FINDING: 1078 case DISCOVERY_RESOLVING: 1079 return true; 1080 1081 default: 1082 return false; 1083 } 1084 } 1085 1086 void hci_discovery_set_state(struct hci_dev *hdev, int state) 1087 { 1088 int old_state = hdev->discovery.state; 1089 1090 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state); 1091 1092 if (old_state == state) 1093 return; 1094 1095 hdev->discovery.state = state; 1096 1097 switch (state) { 1098 case DISCOVERY_STOPPED: 1099 hci_update_background_scan(hdev); 1100 1101 if (old_state != DISCOVERY_STARTING) 1102 mgmt_discovering(hdev, 0); 1103 break; 1104 case DISCOVERY_STARTING: 1105 break; 1106 case DISCOVERY_FINDING: 1107 mgmt_discovering(hdev, 1); 1108 break; 1109 case DISCOVERY_RESOLVING: 1110 break; 1111 case DISCOVERY_STOPPING: 1112 break; 1113 } 1114 } 1115 1116 void hci_inquiry_cache_flush(struct hci_dev *hdev) 1117 { 1118 struct discovery_state *cache = &hdev->discovery; 1119 struct inquiry_entry *p, *n; 1120 1121 list_for_each_entry_safe(p, n, &cache->all, all) { 1122 list_del(&p->all); 1123 kfree(p); 1124 } 1125 1126 INIT_LIST_HEAD(&cache->unknown); 1127 INIT_LIST_HEAD(&cache->resolve); 1128 } 1129 1130 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, 1131 bdaddr_t *bdaddr) 1132 { 1133 struct discovery_state *cache = &hdev->discovery; 1134 struct inquiry_entry *e; 1135 1136 BT_DBG("cache %p, %pMR", cache, bdaddr); 1137 1138 list_for_each_entry(e, &cache->all, all) { 1139 if (!bacmp(&e->data.bdaddr, bdaddr)) 1140 return e; 1141 } 1142 1143 return NULL; 1144 } 1145 1146 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev, 1147 bdaddr_t *bdaddr) 1148 { 1149 struct discovery_state *cache = &hdev->discovery; 1150 struct inquiry_entry *e; 1151 1152 BT_DBG("cache %p, %pMR", cache, bdaddr); 1153 1154 list_for_each_entry(e, &cache->unknown, list) { 1155 if (!bacmp(&e->data.bdaddr, bdaddr)) 1156 return e; 1157 } 1158 1159 return NULL; 1160 } 1161 1162 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev, 1163 bdaddr_t *bdaddr, 1164 int state) 1165 { 1166 struct discovery_state *cache = &hdev->discovery; 1167 struct inquiry_entry *e; 1168 1169 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state); 1170 1171 list_for_each_entry(e, &cache->resolve, list) { 1172 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state) 1173 return e; 1174 if (!bacmp(&e->data.bdaddr, bdaddr)) 1175 return e; 1176 } 1177 1178 return NULL; 1179 } 1180 1181 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev, 1182 struct inquiry_entry *ie) 1183 { 1184 struct discovery_state *cache = &hdev->discovery; 1185 struct list_head *pos = &cache->resolve; 1186 struct inquiry_entry *p; 1187 1188 list_del(&ie->list); 1189 1190 list_for_each_entry(p, &cache->resolve, list) { 1191 if (p->name_state != NAME_PENDING && 1192 abs(p->data.rssi) >= abs(ie->data.rssi)) 1193 break; 1194 pos = &p->list; 1195 } 1196 1197 list_add(&ie->list, pos); 1198 } 1199 1200 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data, 1201 bool name_known) 1202 { 1203 struct discovery_state *cache = &hdev->discovery; 1204 struct inquiry_entry *ie; 1205 u32 flags = 0; 1206 1207 BT_DBG("cache %p, %pMR", cache, &data->bdaddr); 1208 1209 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR); 1210 1211 if (!data->ssp_mode) 1212 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 1213 1214 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr); 1215 if (ie) { 1216 if (!ie->data.ssp_mode) 1217 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING; 1218 1219 if (ie->name_state == NAME_NEEDED && 1220 data->rssi != ie->data.rssi) { 1221 ie->data.rssi = data->rssi; 1222 hci_inquiry_cache_update_resolve(hdev, ie); 1223 } 1224 1225 goto update; 1226 } 1227 1228 /* Entry not in the cache. Add new one. */ 1229 ie = kzalloc(sizeof(*ie), GFP_KERNEL); 1230 if (!ie) { 1231 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 1232 goto done; 1233 } 1234 1235 list_add(&ie->all, &cache->all); 1236 1237 if (name_known) { 1238 ie->name_state = NAME_KNOWN; 1239 } else { 1240 ie->name_state = NAME_NOT_KNOWN; 1241 list_add(&ie->list, &cache->unknown); 1242 } 1243 1244 update: 1245 if (name_known && ie->name_state != NAME_KNOWN && 1246 ie->name_state != NAME_PENDING) { 1247 ie->name_state = NAME_KNOWN; 1248 list_del(&ie->list); 1249 } 1250 1251 memcpy(&ie->data, data, sizeof(*data)); 1252 ie->timestamp = jiffies; 1253 cache->timestamp = jiffies; 1254 1255 if (ie->name_state == NAME_NOT_KNOWN) 1256 flags |= MGMT_DEV_FOUND_CONFIRM_NAME; 1257 1258 done: 1259 return flags; 1260 } 1261 1262 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf) 1263 { 1264 struct discovery_state *cache = &hdev->discovery; 1265 struct inquiry_info *info = (struct inquiry_info *) buf; 1266 struct inquiry_entry *e; 1267 int copied = 0; 1268 1269 list_for_each_entry(e, &cache->all, all) { 1270 struct inquiry_data *data = &e->data; 1271 1272 if (copied >= num) 1273 break; 1274 1275 bacpy(&info->bdaddr, &data->bdaddr); 1276 info->pscan_rep_mode = data->pscan_rep_mode; 1277 info->pscan_period_mode = data->pscan_period_mode; 1278 info->pscan_mode = data->pscan_mode; 1279 memcpy(info->dev_class, data->dev_class, 3); 1280 info->clock_offset = data->clock_offset; 1281 1282 info++; 1283 copied++; 1284 } 1285 1286 BT_DBG("cache %p, copied %d", cache, copied); 1287 return copied; 1288 } 1289 1290 static int hci_inq_req(struct hci_request *req, unsigned long opt) 1291 { 1292 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt; 1293 struct hci_dev *hdev = req->hdev; 1294 struct hci_cp_inquiry cp; 1295 1296 BT_DBG("%s", hdev->name); 1297 1298 if (test_bit(HCI_INQUIRY, &hdev->flags)) 1299 return 0; 1300 1301 /* Start Inquiry */ 1302 memcpy(&cp.lap, &ir->lap, 3); 1303 cp.length = ir->length; 1304 cp.num_rsp = ir->num_rsp; 1305 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp); 1306 1307 return 0; 1308 } 1309 1310 int hci_inquiry(void __user *arg) 1311 { 1312 __u8 __user *ptr = arg; 1313 struct hci_inquiry_req ir; 1314 struct hci_dev *hdev; 1315 int err = 0, do_inquiry = 0, max_rsp; 1316 long timeo; 1317 __u8 *buf; 1318 1319 if (copy_from_user(&ir, ptr, sizeof(ir))) 1320 return -EFAULT; 1321 1322 hdev = hci_dev_get(ir.dev_id); 1323 if (!hdev) 1324 return -ENODEV; 1325 1326 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1327 err = -EBUSY; 1328 goto done; 1329 } 1330 1331 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1332 err = -EOPNOTSUPP; 1333 goto done; 1334 } 1335 1336 if (hdev->dev_type != HCI_PRIMARY) { 1337 err = -EOPNOTSUPP; 1338 goto done; 1339 } 1340 1341 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 1342 err = -EOPNOTSUPP; 1343 goto done; 1344 } 1345 1346 /* Restrict maximum inquiry length to 60 seconds */ 1347 if (ir.length > 60) { 1348 err = -EINVAL; 1349 goto done; 1350 } 1351 1352 hci_dev_lock(hdev); 1353 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX || 1354 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) { 1355 hci_inquiry_cache_flush(hdev); 1356 do_inquiry = 1; 1357 } 1358 hci_dev_unlock(hdev); 1359 1360 timeo = ir.length * msecs_to_jiffies(2000); 1361 1362 if (do_inquiry) { 1363 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir, 1364 timeo, NULL); 1365 if (err < 0) 1366 goto done; 1367 1368 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is 1369 * cleared). If it is interrupted by a signal, return -EINTR. 1370 */ 1371 if (wait_on_bit(&hdev->flags, HCI_INQUIRY, 1372 TASK_INTERRUPTIBLE)) { 1373 err = -EINTR; 1374 goto done; 1375 } 1376 } 1377 1378 /* for unlimited number of responses we will use buffer with 1379 * 255 entries 1380 */ 1381 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp; 1382 1383 /* cache_dump can't sleep. Therefore we allocate temp buffer and then 1384 * copy it to the user space. 1385 */ 1386 buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL); 1387 if (!buf) { 1388 err = -ENOMEM; 1389 goto done; 1390 } 1391 1392 hci_dev_lock(hdev); 1393 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf); 1394 hci_dev_unlock(hdev); 1395 1396 BT_DBG("num_rsp %d", ir.num_rsp); 1397 1398 if (!copy_to_user(ptr, &ir, sizeof(ir))) { 1399 ptr += sizeof(ir); 1400 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) * 1401 ir.num_rsp)) 1402 err = -EFAULT; 1403 } else 1404 err = -EFAULT; 1405 1406 kfree(buf); 1407 1408 done: 1409 hci_dev_put(hdev); 1410 return err; 1411 } 1412 1413 /** 1414 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address 1415 * (BD_ADDR) for a HCI device from 1416 * a firmware node property. 1417 * @hdev: The HCI device 1418 * 1419 * Search the firmware node for 'local-bd-address'. 1420 * 1421 * All-zero BD addresses are rejected, because those could be properties 1422 * that exist in the firmware tables, but were not updated by the firmware. For 1423 * example, the DTS could define 'local-bd-address', with zero BD addresses. 1424 */ 1425 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev) 1426 { 1427 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent); 1428 bdaddr_t ba; 1429 int ret; 1430 1431 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address", 1432 (u8 *)&ba, sizeof(ba)); 1433 if (ret < 0 || !bacmp(&ba, BDADDR_ANY)) 1434 return; 1435 1436 bacpy(&hdev->public_addr, &ba); 1437 } 1438 1439 static int hci_dev_do_open(struct hci_dev *hdev) 1440 { 1441 int ret = 0; 1442 1443 BT_DBG("%s %p", hdev->name, hdev); 1444 1445 hci_req_sync_lock(hdev); 1446 1447 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) { 1448 ret = -ENODEV; 1449 goto done; 1450 } 1451 1452 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 1453 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 1454 /* Check for rfkill but allow the HCI setup stage to 1455 * proceed (which in itself doesn't cause any RF activity). 1456 */ 1457 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) { 1458 ret = -ERFKILL; 1459 goto done; 1460 } 1461 1462 /* Check for valid public address or a configured static 1463 * random address, but let the HCI setup proceed to 1464 * be able to determine if there is a public address 1465 * or not. 1466 * 1467 * In case of user channel usage, it is not important 1468 * if a public address or static random address is 1469 * available. 1470 * 1471 * This check is only valid for BR/EDR controllers 1472 * since AMP controllers do not have an address. 1473 */ 1474 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1475 hdev->dev_type == HCI_PRIMARY && 1476 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 1477 !bacmp(&hdev->static_addr, BDADDR_ANY)) { 1478 ret = -EADDRNOTAVAIL; 1479 goto done; 1480 } 1481 } 1482 1483 if (test_bit(HCI_UP, &hdev->flags)) { 1484 ret = -EALREADY; 1485 goto done; 1486 } 1487 1488 if (hdev->open(hdev)) { 1489 ret = -EIO; 1490 goto done; 1491 } 1492 1493 set_bit(HCI_RUNNING, &hdev->flags); 1494 hci_sock_dev_event(hdev, HCI_DEV_OPEN); 1495 1496 atomic_set(&hdev->cmd_cnt, 1); 1497 set_bit(HCI_INIT, &hdev->flags); 1498 1499 if (hci_dev_test_flag(hdev, HCI_SETUP) || 1500 test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) { 1501 bool invalid_bdaddr; 1502 1503 hci_sock_dev_event(hdev, HCI_DEV_SETUP); 1504 1505 if (hdev->setup) 1506 ret = hdev->setup(hdev); 1507 1508 /* The transport driver can set the quirk to mark the 1509 * BD_ADDR invalid before creating the HCI device or in 1510 * its setup callback. 1511 */ 1512 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, 1513 &hdev->quirks); 1514 1515 if (ret) 1516 goto setup_failed; 1517 1518 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) { 1519 if (!bacmp(&hdev->public_addr, BDADDR_ANY)) 1520 hci_dev_get_bd_addr_from_property(hdev); 1521 1522 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 1523 hdev->set_bdaddr) { 1524 ret = hdev->set_bdaddr(hdev, 1525 &hdev->public_addr); 1526 1527 /* If setting of the BD_ADDR from the device 1528 * property succeeds, then treat the address 1529 * as valid even if the invalid BD_ADDR 1530 * quirk indicates otherwise. 1531 */ 1532 if (!ret) 1533 invalid_bdaddr = false; 1534 } 1535 } 1536 1537 setup_failed: 1538 /* The transport driver can set these quirks before 1539 * creating the HCI device or in its setup callback. 1540 * 1541 * For the invalid BD_ADDR quirk it is possible that 1542 * it becomes a valid address if the bootloader does 1543 * provide it (see above). 1544 * 1545 * In case any of them is set, the controller has to 1546 * start up as unconfigured. 1547 */ 1548 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) || 1549 invalid_bdaddr) 1550 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 1551 1552 /* For an unconfigured controller it is required to 1553 * read at least the version information provided by 1554 * the Read Local Version Information command. 1555 * 1556 * If the set_bdaddr driver callback is provided, then 1557 * also the original Bluetooth public device address 1558 * will be read using the Read BD Address command. 1559 */ 1560 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 1561 ret = __hci_unconf_init(hdev); 1562 } 1563 1564 if (hci_dev_test_flag(hdev, HCI_CONFIG)) { 1565 /* If public address change is configured, ensure that 1566 * the address gets programmed. If the driver does not 1567 * support changing the public address, fail the power 1568 * on procedure. 1569 */ 1570 if (bacmp(&hdev->public_addr, BDADDR_ANY) && 1571 hdev->set_bdaddr) 1572 ret = hdev->set_bdaddr(hdev, &hdev->public_addr); 1573 else 1574 ret = -EADDRNOTAVAIL; 1575 } 1576 1577 if (!ret) { 1578 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 1579 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1580 ret = __hci_init(hdev); 1581 if (!ret && hdev->post_init) 1582 ret = hdev->post_init(hdev); 1583 } 1584 } 1585 1586 /* If the HCI Reset command is clearing all diagnostic settings, 1587 * then they need to be reprogrammed after the init procedure 1588 * completed. 1589 */ 1590 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) && 1591 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1592 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag) 1593 ret = hdev->set_diag(hdev, true); 1594 1595 msft_do_open(hdev); 1596 aosp_do_open(hdev); 1597 1598 clear_bit(HCI_INIT, &hdev->flags); 1599 1600 if (!ret) { 1601 hci_dev_hold(hdev); 1602 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); 1603 hci_adv_instances_set_rpa_expired(hdev, true); 1604 set_bit(HCI_UP, &hdev->flags); 1605 hci_sock_dev_event(hdev, HCI_DEV_UP); 1606 hci_leds_update_powered(hdev, true); 1607 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 1608 !hci_dev_test_flag(hdev, HCI_CONFIG) && 1609 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 1610 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1611 hci_dev_test_flag(hdev, HCI_MGMT) && 1612 hdev->dev_type == HCI_PRIMARY) { 1613 ret = __hci_req_hci_power_on(hdev); 1614 mgmt_power_on(hdev, ret); 1615 } 1616 } else { 1617 /* Init failed, cleanup */ 1618 flush_work(&hdev->tx_work); 1619 1620 /* Since hci_rx_work() is possible to awake new cmd_work 1621 * it should be flushed first to avoid unexpected call of 1622 * hci_cmd_work() 1623 */ 1624 flush_work(&hdev->rx_work); 1625 flush_work(&hdev->cmd_work); 1626 1627 skb_queue_purge(&hdev->cmd_q); 1628 skb_queue_purge(&hdev->rx_q); 1629 1630 if (hdev->flush) 1631 hdev->flush(hdev); 1632 1633 if (hdev->sent_cmd) { 1634 kfree_skb(hdev->sent_cmd); 1635 hdev->sent_cmd = NULL; 1636 } 1637 1638 clear_bit(HCI_RUNNING, &hdev->flags); 1639 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 1640 1641 hdev->close(hdev); 1642 hdev->flags &= BIT(HCI_RAW); 1643 } 1644 1645 done: 1646 hci_req_sync_unlock(hdev); 1647 return ret; 1648 } 1649 1650 /* ---- HCI ioctl helpers ---- */ 1651 1652 int hci_dev_open(__u16 dev) 1653 { 1654 struct hci_dev *hdev; 1655 int err; 1656 1657 hdev = hci_dev_get(dev); 1658 if (!hdev) 1659 return -ENODEV; 1660 1661 /* Devices that are marked as unconfigured can only be powered 1662 * up as user channel. Trying to bring them up as normal devices 1663 * will result into a failure. Only user channel operation is 1664 * possible. 1665 * 1666 * When this function is called for a user channel, the flag 1667 * HCI_USER_CHANNEL will be set first before attempting to 1668 * open the device. 1669 */ 1670 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) && 1671 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1672 err = -EOPNOTSUPP; 1673 goto done; 1674 } 1675 1676 /* We need to ensure that no other power on/off work is pending 1677 * before proceeding to call hci_dev_do_open. This is 1678 * particularly important if the setup procedure has not yet 1679 * completed. 1680 */ 1681 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) 1682 cancel_delayed_work(&hdev->power_off); 1683 1684 /* After this call it is guaranteed that the setup procedure 1685 * has finished. This means that error conditions like RFKILL 1686 * or no valid public or static random address apply. 1687 */ 1688 flush_workqueue(hdev->req_workqueue); 1689 1690 /* For controllers not using the management interface and that 1691 * are brought up using legacy ioctl, set the HCI_BONDABLE bit 1692 * so that pairing works for them. Once the management interface 1693 * is in use this bit will be cleared again and userspace has 1694 * to explicitly enable it. 1695 */ 1696 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1697 !hci_dev_test_flag(hdev, HCI_MGMT)) 1698 hci_dev_set_flag(hdev, HCI_BONDABLE); 1699 1700 err = hci_dev_do_open(hdev); 1701 1702 done: 1703 hci_dev_put(hdev); 1704 return err; 1705 } 1706 1707 /* This function requires the caller holds hdev->lock */ 1708 static void hci_pend_le_actions_clear(struct hci_dev *hdev) 1709 { 1710 struct hci_conn_params *p; 1711 1712 list_for_each_entry(p, &hdev->le_conn_params, list) { 1713 if (p->conn) { 1714 hci_conn_drop(p->conn); 1715 hci_conn_put(p->conn); 1716 p->conn = NULL; 1717 } 1718 list_del_init(&p->action); 1719 } 1720 1721 BT_DBG("All LE pending actions cleared"); 1722 } 1723 1724 int hci_dev_do_close(struct hci_dev *hdev) 1725 { 1726 bool auto_off; 1727 int err = 0; 1728 1729 BT_DBG("%s %p", hdev->name, hdev); 1730 1731 cancel_delayed_work(&hdev->power_off); 1732 cancel_delayed_work(&hdev->ncmd_timer); 1733 1734 hci_request_cancel_all(hdev); 1735 hci_req_sync_lock(hdev); 1736 1737 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) && 1738 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1739 test_bit(HCI_UP, &hdev->flags)) { 1740 /* Execute vendor specific shutdown routine */ 1741 if (hdev->shutdown) 1742 err = hdev->shutdown(hdev); 1743 } 1744 1745 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) { 1746 cancel_delayed_work_sync(&hdev->cmd_timer); 1747 hci_req_sync_unlock(hdev); 1748 return err; 1749 } 1750 1751 hci_leds_update_powered(hdev, false); 1752 1753 /* Flush RX and TX works */ 1754 flush_work(&hdev->tx_work); 1755 flush_work(&hdev->rx_work); 1756 1757 if (hdev->discov_timeout > 0) { 1758 hdev->discov_timeout = 0; 1759 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); 1760 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 1761 } 1762 1763 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE)) 1764 cancel_delayed_work(&hdev->service_cache); 1765 1766 if (hci_dev_test_flag(hdev, HCI_MGMT)) { 1767 struct adv_info *adv_instance; 1768 1769 cancel_delayed_work_sync(&hdev->rpa_expired); 1770 1771 list_for_each_entry(adv_instance, &hdev->adv_instances, list) 1772 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 1773 } 1774 1775 /* Avoid potential lockdep warnings from the *_flush() calls by 1776 * ensuring the workqueue is empty up front. 1777 */ 1778 drain_workqueue(hdev->workqueue); 1779 1780 hci_dev_lock(hdev); 1781 1782 hci_discovery_set_state(hdev, DISCOVERY_STOPPED); 1783 1784 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF); 1785 1786 if (!auto_off && hdev->dev_type == HCI_PRIMARY && 1787 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 1788 hci_dev_test_flag(hdev, HCI_MGMT)) 1789 __mgmt_power_off(hdev); 1790 1791 hci_inquiry_cache_flush(hdev); 1792 hci_pend_le_actions_clear(hdev); 1793 hci_conn_hash_flush(hdev); 1794 hci_dev_unlock(hdev); 1795 1796 smp_unregister(hdev); 1797 1798 hci_sock_dev_event(hdev, HCI_DEV_DOWN); 1799 1800 aosp_do_close(hdev); 1801 msft_do_close(hdev); 1802 1803 if (hdev->flush) 1804 hdev->flush(hdev); 1805 1806 /* Reset device */ 1807 skb_queue_purge(&hdev->cmd_q); 1808 atomic_set(&hdev->cmd_cnt, 1); 1809 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) && 1810 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1811 set_bit(HCI_INIT, &hdev->flags); 1812 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL); 1813 clear_bit(HCI_INIT, &hdev->flags); 1814 } 1815 1816 /* flush cmd work */ 1817 flush_work(&hdev->cmd_work); 1818 1819 /* Drop queues */ 1820 skb_queue_purge(&hdev->rx_q); 1821 skb_queue_purge(&hdev->cmd_q); 1822 skb_queue_purge(&hdev->raw_q); 1823 1824 /* Drop last sent command */ 1825 if (hdev->sent_cmd) { 1826 cancel_delayed_work_sync(&hdev->cmd_timer); 1827 kfree_skb(hdev->sent_cmd); 1828 hdev->sent_cmd = NULL; 1829 } 1830 1831 clear_bit(HCI_RUNNING, &hdev->flags); 1832 hci_sock_dev_event(hdev, HCI_DEV_CLOSE); 1833 1834 if (test_and_clear_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks)) 1835 wake_up(&hdev->suspend_wait_q); 1836 1837 /* After this point our queues are empty 1838 * and no tasks are scheduled. */ 1839 hdev->close(hdev); 1840 1841 /* Clear flags */ 1842 hdev->flags &= BIT(HCI_RAW); 1843 hci_dev_clear_volatile_flags(hdev); 1844 1845 /* Controller radio is available but is currently powered down */ 1846 hdev->amp_status = AMP_STATUS_POWERED_DOWN; 1847 1848 memset(hdev->eir, 0, sizeof(hdev->eir)); 1849 memset(hdev->dev_class, 0, sizeof(hdev->dev_class)); 1850 bacpy(&hdev->random_addr, BDADDR_ANY); 1851 1852 hci_req_sync_unlock(hdev); 1853 1854 hci_dev_put(hdev); 1855 return err; 1856 } 1857 1858 int hci_dev_close(__u16 dev) 1859 { 1860 struct hci_dev *hdev; 1861 int err; 1862 1863 hdev = hci_dev_get(dev); 1864 if (!hdev) 1865 return -ENODEV; 1866 1867 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1868 err = -EBUSY; 1869 goto done; 1870 } 1871 1872 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) 1873 cancel_delayed_work(&hdev->power_off); 1874 1875 err = hci_dev_do_close(hdev); 1876 1877 done: 1878 hci_dev_put(hdev); 1879 return err; 1880 } 1881 1882 static int hci_dev_do_reset(struct hci_dev *hdev) 1883 { 1884 int ret; 1885 1886 BT_DBG("%s %p", hdev->name, hdev); 1887 1888 hci_req_sync_lock(hdev); 1889 1890 /* Drop queues */ 1891 skb_queue_purge(&hdev->rx_q); 1892 skb_queue_purge(&hdev->cmd_q); 1893 1894 /* Avoid potential lockdep warnings from the *_flush() calls by 1895 * ensuring the workqueue is empty up front. 1896 */ 1897 drain_workqueue(hdev->workqueue); 1898 1899 hci_dev_lock(hdev); 1900 hci_inquiry_cache_flush(hdev); 1901 hci_conn_hash_flush(hdev); 1902 hci_dev_unlock(hdev); 1903 1904 if (hdev->flush) 1905 hdev->flush(hdev); 1906 1907 atomic_set(&hdev->cmd_cnt, 1); 1908 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0; 1909 1910 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL); 1911 1912 hci_req_sync_unlock(hdev); 1913 return ret; 1914 } 1915 1916 int hci_dev_reset(__u16 dev) 1917 { 1918 struct hci_dev *hdev; 1919 int err; 1920 1921 hdev = hci_dev_get(dev); 1922 if (!hdev) 1923 return -ENODEV; 1924 1925 if (!test_bit(HCI_UP, &hdev->flags)) { 1926 err = -ENETDOWN; 1927 goto done; 1928 } 1929 1930 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1931 err = -EBUSY; 1932 goto done; 1933 } 1934 1935 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1936 err = -EOPNOTSUPP; 1937 goto done; 1938 } 1939 1940 err = hci_dev_do_reset(hdev); 1941 1942 done: 1943 hci_dev_put(hdev); 1944 return err; 1945 } 1946 1947 int hci_dev_reset_stat(__u16 dev) 1948 { 1949 struct hci_dev *hdev; 1950 int ret = 0; 1951 1952 hdev = hci_dev_get(dev); 1953 if (!hdev) 1954 return -ENODEV; 1955 1956 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 1957 ret = -EBUSY; 1958 goto done; 1959 } 1960 1961 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 1962 ret = -EOPNOTSUPP; 1963 goto done; 1964 } 1965 1966 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats)); 1967 1968 done: 1969 hci_dev_put(hdev); 1970 return ret; 1971 } 1972 1973 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan) 1974 { 1975 bool conn_changed, discov_changed; 1976 1977 BT_DBG("%s scan 0x%02x", hdev->name, scan); 1978 1979 if ((scan & SCAN_PAGE)) 1980 conn_changed = !hci_dev_test_and_set_flag(hdev, 1981 HCI_CONNECTABLE); 1982 else 1983 conn_changed = hci_dev_test_and_clear_flag(hdev, 1984 HCI_CONNECTABLE); 1985 1986 if ((scan & SCAN_INQUIRY)) { 1987 discov_changed = !hci_dev_test_and_set_flag(hdev, 1988 HCI_DISCOVERABLE); 1989 } else { 1990 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); 1991 discov_changed = hci_dev_test_and_clear_flag(hdev, 1992 HCI_DISCOVERABLE); 1993 } 1994 1995 if (!hci_dev_test_flag(hdev, HCI_MGMT)) 1996 return; 1997 1998 if (conn_changed || discov_changed) { 1999 /* In case this was disabled through mgmt */ 2000 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); 2001 2002 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) 2003 hci_req_update_adv_data(hdev, hdev->cur_adv_instance); 2004 2005 mgmt_new_settings(hdev); 2006 } 2007 } 2008 2009 int hci_dev_cmd(unsigned int cmd, void __user *arg) 2010 { 2011 struct hci_dev *hdev; 2012 struct hci_dev_req dr; 2013 int err = 0; 2014 2015 if (copy_from_user(&dr, arg, sizeof(dr))) 2016 return -EFAULT; 2017 2018 hdev = hci_dev_get(dr.dev_id); 2019 if (!hdev) 2020 return -ENODEV; 2021 2022 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 2023 err = -EBUSY; 2024 goto done; 2025 } 2026 2027 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 2028 err = -EOPNOTSUPP; 2029 goto done; 2030 } 2031 2032 if (hdev->dev_type != HCI_PRIMARY) { 2033 err = -EOPNOTSUPP; 2034 goto done; 2035 } 2036 2037 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 2038 err = -EOPNOTSUPP; 2039 goto done; 2040 } 2041 2042 switch (cmd) { 2043 case HCISETAUTH: 2044 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt, 2045 HCI_INIT_TIMEOUT, NULL); 2046 break; 2047 2048 case HCISETENCRYPT: 2049 if (!lmp_encrypt_capable(hdev)) { 2050 err = -EOPNOTSUPP; 2051 break; 2052 } 2053 2054 if (!test_bit(HCI_AUTH, &hdev->flags)) { 2055 /* Auth must be enabled first */ 2056 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt, 2057 HCI_INIT_TIMEOUT, NULL); 2058 if (err) 2059 break; 2060 } 2061 2062 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt, 2063 HCI_INIT_TIMEOUT, NULL); 2064 break; 2065 2066 case HCISETSCAN: 2067 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt, 2068 HCI_INIT_TIMEOUT, NULL); 2069 2070 /* Ensure that the connectable and discoverable states 2071 * get correctly modified as this was a non-mgmt change. 2072 */ 2073 if (!err) 2074 hci_update_scan_state(hdev, dr.dev_opt); 2075 break; 2076 2077 case HCISETLINKPOL: 2078 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt, 2079 HCI_INIT_TIMEOUT, NULL); 2080 break; 2081 2082 case HCISETLINKMODE: 2083 hdev->link_mode = ((__u16) dr.dev_opt) & 2084 (HCI_LM_MASTER | HCI_LM_ACCEPT); 2085 break; 2086 2087 case HCISETPTYPE: 2088 if (hdev->pkt_type == (__u16) dr.dev_opt) 2089 break; 2090 2091 hdev->pkt_type = (__u16) dr.dev_opt; 2092 mgmt_phy_configuration_changed(hdev, NULL); 2093 break; 2094 2095 case HCISETACLMTU: 2096 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1); 2097 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0); 2098 break; 2099 2100 case HCISETSCOMTU: 2101 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1); 2102 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0); 2103 break; 2104 2105 default: 2106 err = -EINVAL; 2107 break; 2108 } 2109 2110 done: 2111 hci_dev_put(hdev); 2112 return err; 2113 } 2114 2115 int hci_get_dev_list(void __user *arg) 2116 { 2117 struct hci_dev *hdev; 2118 struct hci_dev_list_req *dl; 2119 struct hci_dev_req *dr; 2120 int n = 0, size, err; 2121 __u16 dev_num; 2122 2123 if (get_user(dev_num, (__u16 __user *) arg)) 2124 return -EFAULT; 2125 2126 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr)) 2127 return -EINVAL; 2128 2129 size = sizeof(*dl) + dev_num * sizeof(*dr); 2130 2131 dl = kzalloc(size, GFP_KERNEL); 2132 if (!dl) 2133 return -ENOMEM; 2134 2135 dr = dl->dev_req; 2136 2137 read_lock(&hci_dev_list_lock); 2138 list_for_each_entry(hdev, &hci_dev_list, list) { 2139 unsigned long flags = hdev->flags; 2140 2141 /* When the auto-off is configured it means the transport 2142 * is running, but in that case still indicate that the 2143 * device is actually down. 2144 */ 2145 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) 2146 flags &= ~BIT(HCI_UP); 2147 2148 (dr + n)->dev_id = hdev->id; 2149 (dr + n)->dev_opt = flags; 2150 2151 if (++n >= dev_num) 2152 break; 2153 } 2154 read_unlock(&hci_dev_list_lock); 2155 2156 dl->dev_num = n; 2157 size = sizeof(*dl) + n * sizeof(*dr); 2158 2159 err = copy_to_user(arg, dl, size); 2160 kfree(dl); 2161 2162 return err ? -EFAULT : 0; 2163 } 2164 2165 int hci_get_dev_info(void __user *arg) 2166 { 2167 struct hci_dev *hdev; 2168 struct hci_dev_info di; 2169 unsigned long flags; 2170 int err = 0; 2171 2172 if (copy_from_user(&di, arg, sizeof(di))) 2173 return -EFAULT; 2174 2175 hdev = hci_dev_get(di.dev_id); 2176 if (!hdev) 2177 return -ENODEV; 2178 2179 /* When the auto-off is configured it means the transport 2180 * is running, but in that case still indicate that the 2181 * device is actually down. 2182 */ 2183 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) 2184 flags = hdev->flags & ~BIT(HCI_UP); 2185 else 2186 flags = hdev->flags; 2187 2188 strcpy(di.name, hdev->name); 2189 di.bdaddr = hdev->bdaddr; 2190 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4); 2191 di.flags = flags; 2192 di.pkt_type = hdev->pkt_type; 2193 if (lmp_bredr_capable(hdev)) { 2194 di.acl_mtu = hdev->acl_mtu; 2195 di.acl_pkts = hdev->acl_pkts; 2196 di.sco_mtu = hdev->sco_mtu; 2197 di.sco_pkts = hdev->sco_pkts; 2198 } else { 2199 di.acl_mtu = hdev->le_mtu; 2200 di.acl_pkts = hdev->le_pkts; 2201 di.sco_mtu = 0; 2202 di.sco_pkts = 0; 2203 } 2204 di.link_policy = hdev->link_policy; 2205 di.link_mode = hdev->link_mode; 2206 2207 memcpy(&di.stat, &hdev->stat, sizeof(di.stat)); 2208 memcpy(&di.features, &hdev->features, sizeof(di.features)); 2209 2210 if (copy_to_user(arg, &di, sizeof(di))) 2211 err = -EFAULT; 2212 2213 hci_dev_put(hdev); 2214 2215 return err; 2216 } 2217 2218 /* ---- Interface to HCI drivers ---- */ 2219 2220 static int hci_rfkill_set_block(void *data, bool blocked) 2221 { 2222 struct hci_dev *hdev = data; 2223 2224 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked); 2225 2226 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) 2227 return -EBUSY; 2228 2229 if (blocked) { 2230 hci_dev_set_flag(hdev, HCI_RFKILLED); 2231 if (!hci_dev_test_flag(hdev, HCI_SETUP) && 2232 !hci_dev_test_flag(hdev, HCI_CONFIG)) 2233 hci_dev_do_close(hdev); 2234 } else { 2235 hci_dev_clear_flag(hdev, HCI_RFKILLED); 2236 } 2237 2238 return 0; 2239 } 2240 2241 static const struct rfkill_ops hci_rfkill_ops = { 2242 .set_block = hci_rfkill_set_block, 2243 }; 2244 2245 static void hci_power_on(struct work_struct *work) 2246 { 2247 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on); 2248 int err; 2249 2250 BT_DBG("%s", hdev->name); 2251 2252 if (test_bit(HCI_UP, &hdev->flags) && 2253 hci_dev_test_flag(hdev, HCI_MGMT) && 2254 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) { 2255 cancel_delayed_work(&hdev->power_off); 2256 hci_req_sync_lock(hdev); 2257 err = __hci_req_hci_power_on(hdev); 2258 hci_req_sync_unlock(hdev); 2259 mgmt_power_on(hdev, err); 2260 return; 2261 } 2262 2263 err = hci_dev_do_open(hdev); 2264 if (err < 0) { 2265 hci_dev_lock(hdev); 2266 mgmt_set_powered_failed(hdev, err); 2267 hci_dev_unlock(hdev); 2268 return; 2269 } 2270 2271 /* During the HCI setup phase, a few error conditions are 2272 * ignored and they need to be checked now. If they are still 2273 * valid, it is important to turn the device back off. 2274 */ 2275 if (hci_dev_test_flag(hdev, HCI_RFKILLED) || 2276 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) || 2277 (hdev->dev_type == HCI_PRIMARY && 2278 !bacmp(&hdev->bdaddr, BDADDR_ANY) && 2279 !bacmp(&hdev->static_addr, BDADDR_ANY))) { 2280 hci_dev_clear_flag(hdev, HCI_AUTO_OFF); 2281 hci_dev_do_close(hdev); 2282 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) { 2283 queue_delayed_work(hdev->req_workqueue, &hdev->power_off, 2284 HCI_AUTO_OFF_TIMEOUT); 2285 } 2286 2287 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) { 2288 /* For unconfigured devices, set the HCI_RAW flag 2289 * so that userspace can easily identify them. 2290 */ 2291 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 2292 set_bit(HCI_RAW, &hdev->flags); 2293 2294 /* For fully configured devices, this will send 2295 * the Index Added event. For unconfigured devices, 2296 * it will send Unconfigued Index Added event. 2297 * 2298 * Devices with HCI_QUIRK_RAW_DEVICE are ignored 2299 * and no event will be send. 2300 */ 2301 mgmt_index_added(hdev); 2302 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) { 2303 /* When the controller is now configured, then it 2304 * is important to clear the HCI_RAW flag. 2305 */ 2306 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) 2307 clear_bit(HCI_RAW, &hdev->flags); 2308 2309 /* Powering on the controller with HCI_CONFIG set only 2310 * happens with the transition from unconfigured to 2311 * configured. This will send the Index Added event. 2312 */ 2313 mgmt_index_added(hdev); 2314 } 2315 } 2316 2317 static void hci_power_off(struct work_struct *work) 2318 { 2319 struct hci_dev *hdev = container_of(work, struct hci_dev, 2320 power_off.work); 2321 2322 BT_DBG("%s", hdev->name); 2323 2324 hci_dev_do_close(hdev); 2325 } 2326 2327 static void hci_error_reset(struct work_struct *work) 2328 { 2329 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset); 2330 2331 BT_DBG("%s", hdev->name); 2332 2333 if (hdev->hw_error) 2334 hdev->hw_error(hdev, hdev->hw_error_code); 2335 else 2336 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code); 2337 2338 if (hci_dev_do_close(hdev)) 2339 return; 2340 2341 hci_dev_do_open(hdev); 2342 } 2343 2344 void hci_uuids_clear(struct hci_dev *hdev) 2345 { 2346 struct bt_uuid *uuid, *tmp; 2347 2348 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) { 2349 list_del(&uuid->list); 2350 kfree(uuid); 2351 } 2352 } 2353 2354 void hci_link_keys_clear(struct hci_dev *hdev) 2355 { 2356 struct link_key *key; 2357 2358 list_for_each_entry(key, &hdev->link_keys, list) { 2359 list_del_rcu(&key->list); 2360 kfree_rcu(key, rcu); 2361 } 2362 } 2363 2364 void hci_smp_ltks_clear(struct hci_dev *hdev) 2365 { 2366 struct smp_ltk *k; 2367 2368 list_for_each_entry(k, &hdev->long_term_keys, list) { 2369 list_del_rcu(&k->list); 2370 kfree_rcu(k, rcu); 2371 } 2372 } 2373 2374 void hci_smp_irks_clear(struct hci_dev *hdev) 2375 { 2376 struct smp_irk *k; 2377 2378 list_for_each_entry(k, &hdev->identity_resolving_keys, list) { 2379 list_del_rcu(&k->list); 2380 kfree_rcu(k, rcu); 2381 } 2382 } 2383 2384 void hci_blocked_keys_clear(struct hci_dev *hdev) 2385 { 2386 struct blocked_key *b; 2387 2388 list_for_each_entry(b, &hdev->blocked_keys, list) { 2389 list_del_rcu(&b->list); 2390 kfree_rcu(b, rcu); 2391 } 2392 } 2393 2394 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16]) 2395 { 2396 bool blocked = false; 2397 struct blocked_key *b; 2398 2399 rcu_read_lock(); 2400 list_for_each_entry_rcu(b, &hdev->blocked_keys, list) { 2401 if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) { 2402 blocked = true; 2403 break; 2404 } 2405 } 2406 2407 rcu_read_unlock(); 2408 return blocked; 2409 } 2410 2411 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 2412 { 2413 struct link_key *k; 2414 2415 rcu_read_lock(); 2416 list_for_each_entry_rcu(k, &hdev->link_keys, list) { 2417 if (bacmp(bdaddr, &k->bdaddr) == 0) { 2418 rcu_read_unlock(); 2419 2420 if (hci_is_blocked_key(hdev, 2421 HCI_BLOCKED_KEY_TYPE_LINKKEY, 2422 k->val)) { 2423 bt_dev_warn_ratelimited(hdev, 2424 "Link key blocked for %pMR", 2425 &k->bdaddr); 2426 return NULL; 2427 } 2428 2429 return k; 2430 } 2431 } 2432 rcu_read_unlock(); 2433 2434 return NULL; 2435 } 2436 2437 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn, 2438 u8 key_type, u8 old_key_type) 2439 { 2440 /* Legacy key */ 2441 if (key_type < 0x03) 2442 return true; 2443 2444 /* Debug keys are insecure so don't store them persistently */ 2445 if (key_type == HCI_LK_DEBUG_COMBINATION) 2446 return false; 2447 2448 /* Changed combination key and there's no previous one */ 2449 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff) 2450 return false; 2451 2452 /* Security mode 3 case */ 2453 if (!conn) 2454 return true; 2455 2456 /* BR/EDR key derived using SC from an LE link */ 2457 if (conn->type == LE_LINK) 2458 return true; 2459 2460 /* Neither local nor remote side had no-bonding as requirement */ 2461 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01) 2462 return true; 2463 2464 /* Local side had dedicated bonding as requirement */ 2465 if (conn->auth_type == 0x02 || conn->auth_type == 0x03) 2466 return true; 2467 2468 /* Remote side had dedicated bonding as requirement */ 2469 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03) 2470 return true; 2471 2472 /* If none of the above criteria match, then don't store the key 2473 * persistently */ 2474 return false; 2475 } 2476 2477 static u8 ltk_role(u8 type) 2478 { 2479 if (type == SMP_LTK) 2480 return HCI_ROLE_MASTER; 2481 2482 return HCI_ROLE_SLAVE; 2483 } 2484 2485 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 2486 u8 addr_type, u8 role) 2487 { 2488 struct smp_ltk *k; 2489 2490 rcu_read_lock(); 2491 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 2492 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr)) 2493 continue; 2494 2495 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) { 2496 rcu_read_unlock(); 2497 2498 if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK, 2499 k->val)) { 2500 bt_dev_warn_ratelimited(hdev, 2501 "LTK blocked for %pMR", 2502 &k->bdaddr); 2503 return NULL; 2504 } 2505 2506 return k; 2507 } 2508 } 2509 rcu_read_unlock(); 2510 2511 return NULL; 2512 } 2513 2514 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa) 2515 { 2516 struct smp_irk *irk_to_return = NULL; 2517 struct smp_irk *irk; 2518 2519 rcu_read_lock(); 2520 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 2521 if (!bacmp(&irk->rpa, rpa)) { 2522 irk_to_return = irk; 2523 goto done; 2524 } 2525 } 2526 2527 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 2528 if (smp_irk_matches(hdev, irk->val, rpa)) { 2529 bacpy(&irk->rpa, rpa); 2530 irk_to_return = irk; 2531 goto done; 2532 } 2533 } 2534 2535 done: 2536 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK, 2537 irk_to_return->val)) { 2538 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR", 2539 &irk_to_return->bdaddr); 2540 irk_to_return = NULL; 2541 } 2542 2543 rcu_read_unlock(); 2544 2545 return irk_to_return; 2546 } 2547 2548 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr, 2549 u8 addr_type) 2550 { 2551 struct smp_irk *irk_to_return = NULL; 2552 struct smp_irk *irk; 2553 2554 /* Identity Address must be public or static random */ 2555 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0) 2556 return NULL; 2557 2558 rcu_read_lock(); 2559 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) { 2560 if (addr_type == irk->addr_type && 2561 bacmp(bdaddr, &irk->bdaddr) == 0) { 2562 irk_to_return = irk; 2563 goto done; 2564 } 2565 } 2566 2567 done: 2568 2569 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK, 2570 irk_to_return->val)) { 2571 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR", 2572 &irk_to_return->bdaddr); 2573 irk_to_return = NULL; 2574 } 2575 2576 rcu_read_unlock(); 2577 2578 return irk_to_return; 2579 } 2580 2581 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn, 2582 bdaddr_t *bdaddr, u8 *val, u8 type, 2583 u8 pin_len, bool *persistent) 2584 { 2585 struct link_key *key, *old_key; 2586 u8 old_key_type; 2587 2588 old_key = hci_find_link_key(hdev, bdaddr); 2589 if (old_key) { 2590 old_key_type = old_key->type; 2591 key = old_key; 2592 } else { 2593 old_key_type = conn ? conn->key_type : 0xff; 2594 key = kzalloc(sizeof(*key), GFP_KERNEL); 2595 if (!key) 2596 return NULL; 2597 list_add_rcu(&key->list, &hdev->link_keys); 2598 } 2599 2600 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type); 2601 2602 /* Some buggy controller combinations generate a changed 2603 * combination key for legacy pairing even when there's no 2604 * previous key */ 2605 if (type == HCI_LK_CHANGED_COMBINATION && 2606 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) { 2607 type = HCI_LK_COMBINATION; 2608 if (conn) 2609 conn->key_type = type; 2610 } 2611 2612 bacpy(&key->bdaddr, bdaddr); 2613 memcpy(key->val, val, HCI_LINK_KEY_SIZE); 2614 key->pin_len = pin_len; 2615 2616 if (type == HCI_LK_CHANGED_COMBINATION) 2617 key->type = old_key_type; 2618 else 2619 key->type = type; 2620 2621 if (persistent) 2622 *persistent = hci_persistent_key(hdev, conn, type, 2623 old_key_type); 2624 2625 return key; 2626 } 2627 2628 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, 2629 u8 addr_type, u8 type, u8 authenticated, 2630 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand) 2631 { 2632 struct smp_ltk *key, *old_key; 2633 u8 role = ltk_role(type); 2634 2635 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role); 2636 if (old_key) 2637 key = old_key; 2638 else { 2639 key = kzalloc(sizeof(*key), GFP_KERNEL); 2640 if (!key) 2641 return NULL; 2642 list_add_rcu(&key->list, &hdev->long_term_keys); 2643 } 2644 2645 bacpy(&key->bdaddr, bdaddr); 2646 key->bdaddr_type = addr_type; 2647 memcpy(key->val, tk, sizeof(key->val)); 2648 key->authenticated = authenticated; 2649 key->ediv = ediv; 2650 key->rand = rand; 2651 key->enc_size = enc_size; 2652 key->type = type; 2653 2654 return key; 2655 } 2656 2657 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, 2658 u8 addr_type, u8 val[16], bdaddr_t *rpa) 2659 { 2660 struct smp_irk *irk; 2661 2662 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type); 2663 if (!irk) { 2664 irk = kzalloc(sizeof(*irk), GFP_KERNEL); 2665 if (!irk) 2666 return NULL; 2667 2668 bacpy(&irk->bdaddr, bdaddr); 2669 irk->addr_type = addr_type; 2670 2671 list_add_rcu(&irk->list, &hdev->identity_resolving_keys); 2672 } 2673 2674 memcpy(irk->val, val, 16); 2675 bacpy(&irk->rpa, rpa); 2676 2677 return irk; 2678 } 2679 2680 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr) 2681 { 2682 struct link_key *key; 2683 2684 key = hci_find_link_key(hdev, bdaddr); 2685 if (!key) 2686 return -ENOENT; 2687 2688 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 2689 2690 list_del_rcu(&key->list); 2691 kfree_rcu(key, rcu); 2692 2693 return 0; 2694 } 2695 2696 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type) 2697 { 2698 struct smp_ltk *k; 2699 int removed = 0; 2700 2701 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 2702 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type) 2703 continue; 2704 2705 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 2706 2707 list_del_rcu(&k->list); 2708 kfree_rcu(k, rcu); 2709 removed++; 2710 } 2711 2712 return removed ? 0 : -ENOENT; 2713 } 2714 2715 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type) 2716 { 2717 struct smp_irk *k; 2718 2719 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) { 2720 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type) 2721 continue; 2722 2723 BT_DBG("%s removing %pMR", hdev->name, bdaddr); 2724 2725 list_del_rcu(&k->list); 2726 kfree_rcu(k, rcu); 2727 } 2728 } 2729 2730 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type) 2731 { 2732 struct smp_ltk *k; 2733 struct smp_irk *irk; 2734 u8 addr_type; 2735 2736 if (type == BDADDR_BREDR) { 2737 if (hci_find_link_key(hdev, bdaddr)) 2738 return true; 2739 return false; 2740 } 2741 2742 /* Convert to HCI addr type which struct smp_ltk uses */ 2743 if (type == BDADDR_LE_PUBLIC) 2744 addr_type = ADDR_LE_DEV_PUBLIC; 2745 else 2746 addr_type = ADDR_LE_DEV_RANDOM; 2747 2748 irk = hci_get_irk(hdev, bdaddr, addr_type); 2749 if (irk) { 2750 bdaddr = &irk->bdaddr; 2751 addr_type = irk->addr_type; 2752 } 2753 2754 rcu_read_lock(); 2755 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) { 2756 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) { 2757 rcu_read_unlock(); 2758 return true; 2759 } 2760 } 2761 rcu_read_unlock(); 2762 2763 return false; 2764 } 2765 2766 /* HCI command timer function */ 2767 static void hci_cmd_timeout(struct work_struct *work) 2768 { 2769 struct hci_dev *hdev = container_of(work, struct hci_dev, 2770 cmd_timer.work); 2771 2772 if (hdev->sent_cmd) { 2773 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data; 2774 u16 opcode = __le16_to_cpu(sent->opcode); 2775 2776 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode); 2777 } else { 2778 bt_dev_err(hdev, "command tx timeout"); 2779 } 2780 2781 if (hdev->cmd_timeout) 2782 hdev->cmd_timeout(hdev); 2783 2784 atomic_set(&hdev->cmd_cnt, 1); 2785 queue_work(hdev->workqueue, &hdev->cmd_work); 2786 } 2787 2788 /* HCI ncmd timer function */ 2789 static void hci_ncmd_timeout(struct work_struct *work) 2790 { 2791 struct hci_dev *hdev = container_of(work, struct hci_dev, 2792 ncmd_timer.work); 2793 2794 bt_dev_err(hdev, "Controller not accepting commands anymore: ncmd = 0"); 2795 2796 /* During HCI_INIT phase no events can be injected if the ncmd timer 2797 * triggers since the procedure has its own timeout handling. 2798 */ 2799 if (test_bit(HCI_INIT, &hdev->flags)) 2800 return; 2801 2802 /* This is an irrecoverable state, inject hardware error event */ 2803 hci_reset_dev(hdev); 2804 } 2805 2806 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev, 2807 bdaddr_t *bdaddr, u8 bdaddr_type) 2808 { 2809 struct oob_data *data; 2810 2811 list_for_each_entry(data, &hdev->remote_oob_data, list) { 2812 if (bacmp(bdaddr, &data->bdaddr) != 0) 2813 continue; 2814 if (data->bdaddr_type != bdaddr_type) 2815 continue; 2816 return data; 2817 } 2818 2819 return NULL; 2820 } 2821 2822 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 2823 u8 bdaddr_type) 2824 { 2825 struct oob_data *data; 2826 2827 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); 2828 if (!data) 2829 return -ENOENT; 2830 2831 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type); 2832 2833 list_del(&data->list); 2834 kfree(data); 2835 2836 return 0; 2837 } 2838 2839 void hci_remote_oob_data_clear(struct hci_dev *hdev) 2840 { 2841 struct oob_data *data, *n; 2842 2843 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) { 2844 list_del(&data->list); 2845 kfree(data); 2846 } 2847 } 2848 2849 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr, 2850 u8 bdaddr_type, u8 *hash192, u8 *rand192, 2851 u8 *hash256, u8 *rand256) 2852 { 2853 struct oob_data *data; 2854 2855 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type); 2856 if (!data) { 2857 data = kmalloc(sizeof(*data), GFP_KERNEL); 2858 if (!data) 2859 return -ENOMEM; 2860 2861 bacpy(&data->bdaddr, bdaddr); 2862 data->bdaddr_type = bdaddr_type; 2863 list_add(&data->list, &hdev->remote_oob_data); 2864 } 2865 2866 if (hash192 && rand192) { 2867 memcpy(data->hash192, hash192, sizeof(data->hash192)); 2868 memcpy(data->rand192, rand192, sizeof(data->rand192)); 2869 if (hash256 && rand256) 2870 data->present = 0x03; 2871 } else { 2872 memset(data->hash192, 0, sizeof(data->hash192)); 2873 memset(data->rand192, 0, sizeof(data->rand192)); 2874 if (hash256 && rand256) 2875 data->present = 0x02; 2876 else 2877 data->present = 0x00; 2878 } 2879 2880 if (hash256 && rand256) { 2881 memcpy(data->hash256, hash256, sizeof(data->hash256)); 2882 memcpy(data->rand256, rand256, sizeof(data->rand256)); 2883 } else { 2884 memset(data->hash256, 0, sizeof(data->hash256)); 2885 memset(data->rand256, 0, sizeof(data->rand256)); 2886 if (hash192 && rand192) 2887 data->present = 0x01; 2888 } 2889 2890 BT_DBG("%s for %pMR", hdev->name, bdaddr); 2891 2892 return 0; 2893 } 2894 2895 /* This function requires the caller holds hdev->lock */ 2896 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance) 2897 { 2898 struct adv_info *adv_instance; 2899 2900 list_for_each_entry(adv_instance, &hdev->adv_instances, list) { 2901 if (adv_instance->instance == instance) 2902 return adv_instance; 2903 } 2904 2905 return NULL; 2906 } 2907 2908 /* This function requires the caller holds hdev->lock */ 2909 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance) 2910 { 2911 struct adv_info *cur_instance; 2912 2913 cur_instance = hci_find_adv_instance(hdev, instance); 2914 if (!cur_instance) 2915 return NULL; 2916 2917 if (cur_instance == list_last_entry(&hdev->adv_instances, 2918 struct adv_info, list)) 2919 return list_first_entry(&hdev->adv_instances, 2920 struct adv_info, list); 2921 else 2922 return list_next_entry(cur_instance, list); 2923 } 2924 2925 /* This function requires the caller holds hdev->lock */ 2926 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance) 2927 { 2928 struct adv_info *adv_instance; 2929 2930 adv_instance = hci_find_adv_instance(hdev, instance); 2931 if (!adv_instance) 2932 return -ENOENT; 2933 2934 BT_DBG("%s removing %dMR", hdev->name, instance); 2935 2936 if (hdev->cur_adv_instance == instance) { 2937 if (hdev->adv_instance_timeout) { 2938 cancel_delayed_work(&hdev->adv_instance_expire); 2939 hdev->adv_instance_timeout = 0; 2940 } 2941 hdev->cur_adv_instance = 0x00; 2942 } 2943 2944 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 2945 2946 list_del(&adv_instance->list); 2947 kfree(adv_instance); 2948 2949 hdev->adv_instance_cnt--; 2950 2951 return 0; 2952 } 2953 2954 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired) 2955 { 2956 struct adv_info *adv_instance, *n; 2957 2958 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) 2959 adv_instance->rpa_expired = rpa_expired; 2960 } 2961 2962 /* This function requires the caller holds hdev->lock */ 2963 void hci_adv_instances_clear(struct hci_dev *hdev) 2964 { 2965 struct adv_info *adv_instance, *n; 2966 2967 if (hdev->adv_instance_timeout) { 2968 cancel_delayed_work(&hdev->adv_instance_expire); 2969 hdev->adv_instance_timeout = 0; 2970 } 2971 2972 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) { 2973 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb); 2974 list_del(&adv_instance->list); 2975 kfree(adv_instance); 2976 } 2977 2978 hdev->adv_instance_cnt = 0; 2979 hdev->cur_adv_instance = 0x00; 2980 } 2981 2982 static void adv_instance_rpa_expired(struct work_struct *work) 2983 { 2984 struct adv_info *adv_instance = container_of(work, struct adv_info, 2985 rpa_expired_cb.work); 2986 2987 BT_DBG(""); 2988 2989 adv_instance->rpa_expired = true; 2990 } 2991 2992 /* This function requires the caller holds hdev->lock */ 2993 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags, 2994 u16 adv_data_len, u8 *adv_data, 2995 u16 scan_rsp_len, u8 *scan_rsp_data, 2996 u16 timeout, u16 duration, s8 tx_power, 2997 u32 min_interval, u32 max_interval) 2998 { 2999 struct adv_info *adv_instance; 3000 3001 adv_instance = hci_find_adv_instance(hdev, instance); 3002 if (adv_instance) { 3003 memset(adv_instance->adv_data, 0, 3004 sizeof(adv_instance->adv_data)); 3005 memset(adv_instance->scan_rsp_data, 0, 3006 sizeof(adv_instance->scan_rsp_data)); 3007 } else { 3008 if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets || 3009 instance < 1 || instance > hdev->le_num_of_adv_sets) 3010 return -EOVERFLOW; 3011 3012 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL); 3013 if (!adv_instance) 3014 return -ENOMEM; 3015 3016 adv_instance->pending = true; 3017 adv_instance->instance = instance; 3018 list_add(&adv_instance->list, &hdev->adv_instances); 3019 hdev->adv_instance_cnt++; 3020 } 3021 3022 adv_instance->flags = flags; 3023 adv_instance->adv_data_len = adv_data_len; 3024 adv_instance->scan_rsp_len = scan_rsp_len; 3025 adv_instance->min_interval = min_interval; 3026 adv_instance->max_interval = max_interval; 3027 adv_instance->tx_power = tx_power; 3028 3029 if (adv_data_len) 3030 memcpy(adv_instance->adv_data, adv_data, adv_data_len); 3031 3032 if (scan_rsp_len) 3033 memcpy(adv_instance->scan_rsp_data, 3034 scan_rsp_data, scan_rsp_len); 3035 3036 adv_instance->timeout = timeout; 3037 adv_instance->remaining_time = timeout; 3038 3039 if (duration == 0) 3040 adv_instance->duration = hdev->def_multi_adv_rotation_duration; 3041 else 3042 adv_instance->duration = duration; 3043 3044 INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb, 3045 adv_instance_rpa_expired); 3046 3047 BT_DBG("%s for %dMR", hdev->name, instance); 3048 3049 return 0; 3050 } 3051 3052 /* This function requires the caller holds hdev->lock */ 3053 int hci_set_adv_instance_data(struct hci_dev *hdev, u8 instance, 3054 u16 adv_data_len, u8 *adv_data, 3055 u16 scan_rsp_len, u8 *scan_rsp_data) 3056 { 3057 struct adv_info *adv_instance; 3058 3059 adv_instance = hci_find_adv_instance(hdev, instance); 3060 3061 /* If advertisement doesn't exist, we can't modify its data */ 3062 if (!adv_instance) 3063 return -ENOENT; 3064 3065 if (adv_data_len) { 3066 memset(adv_instance->adv_data, 0, 3067 sizeof(adv_instance->adv_data)); 3068 memcpy(adv_instance->adv_data, adv_data, adv_data_len); 3069 adv_instance->adv_data_len = adv_data_len; 3070 } 3071 3072 if (scan_rsp_len) { 3073 memset(adv_instance->scan_rsp_data, 0, 3074 sizeof(adv_instance->scan_rsp_data)); 3075 memcpy(adv_instance->scan_rsp_data, 3076 scan_rsp_data, scan_rsp_len); 3077 adv_instance->scan_rsp_len = scan_rsp_len; 3078 } 3079 3080 return 0; 3081 } 3082 3083 /* This function requires the caller holds hdev->lock */ 3084 void hci_adv_monitors_clear(struct hci_dev *hdev) 3085 { 3086 struct adv_monitor *monitor; 3087 int handle; 3088 3089 idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle) 3090 hci_free_adv_monitor(hdev, monitor); 3091 3092 idr_destroy(&hdev->adv_monitors_idr); 3093 } 3094 3095 /* Frees the monitor structure and do some bookkeepings. 3096 * This function requires the caller holds hdev->lock. 3097 */ 3098 void hci_free_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor) 3099 { 3100 struct adv_pattern *pattern; 3101 struct adv_pattern *tmp; 3102 3103 if (!monitor) 3104 return; 3105 3106 list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list) { 3107 list_del(&pattern->list); 3108 kfree(pattern); 3109 } 3110 3111 if (monitor->handle) 3112 idr_remove(&hdev->adv_monitors_idr, monitor->handle); 3113 3114 if (monitor->state != ADV_MONITOR_STATE_NOT_REGISTERED) { 3115 hdev->adv_monitors_cnt--; 3116 mgmt_adv_monitor_removed(hdev, monitor->handle); 3117 } 3118 3119 kfree(monitor); 3120 } 3121 3122 int hci_add_adv_patterns_monitor_complete(struct hci_dev *hdev, u8 status) 3123 { 3124 return mgmt_add_adv_patterns_monitor_complete(hdev, status); 3125 } 3126 3127 int hci_remove_adv_monitor_complete(struct hci_dev *hdev, u8 status) 3128 { 3129 return mgmt_remove_adv_monitor_complete(hdev, status); 3130 } 3131 3132 /* Assigns handle to a monitor, and if offloading is supported and power is on, 3133 * also attempts to forward the request to the controller. 3134 * Returns true if request is forwarded (result is pending), false otherwise. 3135 * This function requires the caller holds hdev->lock. 3136 */ 3137 bool hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor, 3138 int *err) 3139 { 3140 int min, max, handle; 3141 3142 *err = 0; 3143 3144 if (!monitor) { 3145 *err = -EINVAL; 3146 return false; 3147 } 3148 3149 min = HCI_MIN_ADV_MONITOR_HANDLE; 3150 max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES; 3151 handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max, 3152 GFP_KERNEL); 3153 if (handle < 0) { 3154 *err = handle; 3155 return false; 3156 } 3157 3158 monitor->handle = handle; 3159 3160 if (!hdev_is_powered(hdev)) 3161 return false; 3162 3163 switch (hci_get_adv_monitor_offload_ext(hdev)) { 3164 case HCI_ADV_MONITOR_EXT_NONE: 3165 hci_update_background_scan(hdev); 3166 bt_dev_dbg(hdev, "%s add monitor status %d", hdev->name, *err); 3167 /* Message was not forwarded to controller - not an error */ 3168 return false; 3169 case HCI_ADV_MONITOR_EXT_MSFT: 3170 *err = msft_add_monitor_pattern(hdev, monitor); 3171 bt_dev_dbg(hdev, "%s add monitor msft status %d", hdev->name, 3172 *err); 3173 break; 3174 } 3175 3176 return (*err == 0); 3177 } 3178 3179 /* Attempts to tell the controller and free the monitor. If somehow the 3180 * controller doesn't have a corresponding handle, remove anyway. 3181 * Returns true if request is forwarded (result is pending), false otherwise. 3182 * This function requires the caller holds hdev->lock. 3183 */ 3184 static bool hci_remove_adv_monitor(struct hci_dev *hdev, 3185 struct adv_monitor *monitor, 3186 u16 handle, int *err) 3187 { 3188 *err = 0; 3189 3190 switch (hci_get_adv_monitor_offload_ext(hdev)) { 3191 case HCI_ADV_MONITOR_EXT_NONE: /* also goes here when powered off */ 3192 goto free_monitor; 3193 case HCI_ADV_MONITOR_EXT_MSFT: 3194 *err = msft_remove_monitor(hdev, monitor, handle); 3195 break; 3196 } 3197 3198 /* In case no matching handle registered, just free the monitor */ 3199 if (*err == -ENOENT) 3200 goto free_monitor; 3201 3202 return (*err == 0); 3203 3204 free_monitor: 3205 if (*err == -ENOENT) 3206 bt_dev_warn(hdev, "Removing monitor with no matching handle %d", 3207 monitor->handle); 3208 hci_free_adv_monitor(hdev, monitor); 3209 3210 *err = 0; 3211 return false; 3212 } 3213 3214 /* Returns true if request is forwarded (result is pending), false otherwise. 3215 * This function requires the caller holds hdev->lock. 3216 */ 3217 bool hci_remove_single_adv_monitor(struct hci_dev *hdev, u16 handle, int *err) 3218 { 3219 struct adv_monitor *monitor = idr_find(&hdev->adv_monitors_idr, handle); 3220 bool pending; 3221 3222 if (!monitor) { 3223 *err = -EINVAL; 3224 return false; 3225 } 3226 3227 pending = hci_remove_adv_monitor(hdev, monitor, handle, err); 3228 if (!*err && !pending) 3229 hci_update_background_scan(hdev); 3230 3231 bt_dev_dbg(hdev, "%s remove monitor handle %d, status %d, %spending", 3232 hdev->name, handle, *err, pending ? "" : "not "); 3233 3234 return pending; 3235 } 3236 3237 /* Returns true if request is forwarded (result is pending), false otherwise. 3238 * This function requires the caller holds hdev->lock. 3239 */ 3240 bool hci_remove_all_adv_monitor(struct hci_dev *hdev, int *err) 3241 { 3242 struct adv_monitor *monitor; 3243 int idr_next_id = 0; 3244 bool pending = false; 3245 bool update = false; 3246 3247 *err = 0; 3248 3249 while (!*err && !pending) { 3250 monitor = idr_get_next(&hdev->adv_monitors_idr, &idr_next_id); 3251 if (!monitor) 3252 break; 3253 3254 pending = hci_remove_adv_monitor(hdev, monitor, 0, err); 3255 3256 if (!*err && !pending) 3257 update = true; 3258 } 3259 3260 if (update) 3261 hci_update_background_scan(hdev); 3262 3263 bt_dev_dbg(hdev, "%s remove all monitors status %d, %spending", 3264 hdev->name, *err, pending ? "" : "not "); 3265 3266 return pending; 3267 } 3268 3269 /* This function requires the caller holds hdev->lock */ 3270 bool hci_is_adv_monitoring(struct hci_dev *hdev) 3271 { 3272 return !idr_is_empty(&hdev->adv_monitors_idr); 3273 } 3274 3275 int hci_get_adv_monitor_offload_ext(struct hci_dev *hdev) 3276 { 3277 if (msft_monitor_supported(hdev)) 3278 return HCI_ADV_MONITOR_EXT_MSFT; 3279 3280 return HCI_ADV_MONITOR_EXT_NONE; 3281 } 3282 3283 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list, 3284 bdaddr_t *bdaddr, u8 type) 3285 { 3286 struct bdaddr_list *b; 3287 3288 list_for_each_entry(b, bdaddr_list, list) { 3289 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 3290 return b; 3291 } 3292 3293 return NULL; 3294 } 3295 3296 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk( 3297 struct list_head *bdaddr_list, bdaddr_t *bdaddr, 3298 u8 type) 3299 { 3300 struct bdaddr_list_with_irk *b; 3301 3302 list_for_each_entry(b, bdaddr_list, list) { 3303 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 3304 return b; 3305 } 3306 3307 return NULL; 3308 } 3309 3310 struct bdaddr_list_with_flags * 3311 hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list, 3312 bdaddr_t *bdaddr, u8 type) 3313 { 3314 struct bdaddr_list_with_flags *b; 3315 3316 list_for_each_entry(b, bdaddr_list, list) { 3317 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type) 3318 return b; 3319 } 3320 3321 return NULL; 3322 } 3323 3324 void hci_bdaddr_list_clear(struct list_head *bdaddr_list) 3325 { 3326 struct bdaddr_list *b, *n; 3327 3328 list_for_each_entry_safe(b, n, bdaddr_list, list) { 3329 list_del(&b->list); 3330 kfree(b); 3331 } 3332 } 3333 3334 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type) 3335 { 3336 struct bdaddr_list *entry; 3337 3338 if (!bacmp(bdaddr, BDADDR_ANY)) 3339 return -EBADF; 3340 3341 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 3342 return -EEXIST; 3343 3344 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 3345 if (!entry) 3346 return -ENOMEM; 3347 3348 bacpy(&entry->bdaddr, bdaddr); 3349 entry->bdaddr_type = type; 3350 3351 list_add(&entry->list, list); 3352 3353 return 0; 3354 } 3355 3356 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr, 3357 u8 type, u8 *peer_irk, u8 *local_irk) 3358 { 3359 struct bdaddr_list_with_irk *entry; 3360 3361 if (!bacmp(bdaddr, BDADDR_ANY)) 3362 return -EBADF; 3363 3364 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 3365 return -EEXIST; 3366 3367 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 3368 if (!entry) 3369 return -ENOMEM; 3370 3371 bacpy(&entry->bdaddr, bdaddr); 3372 entry->bdaddr_type = type; 3373 3374 if (peer_irk) 3375 memcpy(entry->peer_irk, peer_irk, 16); 3376 3377 if (local_irk) 3378 memcpy(entry->local_irk, local_irk, 16); 3379 3380 list_add(&entry->list, list); 3381 3382 return 0; 3383 } 3384 3385 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr, 3386 u8 type, u32 flags) 3387 { 3388 struct bdaddr_list_with_flags *entry; 3389 3390 if (!bacmp(bdaddr, BDADDR_ANY)) 3391 return -EBADF; 3392 3393 if (hci_bdaddr_list_lookup(list, bdaddr, type)) 3394 return -EEXIST; 3395 3396 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 3397 if (!entry) 3398 return -ENOMEM; 3399 3400 bacpy(&entry->bdaddr, bdaddr); 3401 entry->bdaddr_type = type; 3402 entry->current_flags = flags; 3403 3404 list_add(&entry->list, list); 3405 3406 return 0; 3407 } 3408 3409 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type) 3410 { 3411 struct bdaddr_list *entry; 3412 3413 if (!bacmp(bdaddr, BDADDR_ANY)) { 3414 hci_bdaddr_list_clear(list); 3415 return 0; 3416 } 3417 3418 entry = hci_bdaddr_list_lookup(list, bdaddr, type); 3419 if (!entry) 3420 return -ENOENT; 3421 3422 list_del(&entry->list); 3423 kfree(entry); 3424 3425 return 0; 3426 } 3427 3428 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr, 3429 u8 type) 3430 { 3431 struct bdaddr_list_with_irk *entry; 3432 3433 if (!bacmp(bdaddr, BDADDR_ANY)) { 3434 hci_bdaddr_list_clear(list); 3435 return 0; 3436 } 3437 3438 entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type); 3439 if (!entry) 3440 return -ENOENT; 3441 3442 list_del(&entry->list); 3443 kfree(entry); 3444 3445 return 0; 3446 } 3447 3448 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr, 3449 u8 type) 3450 { 3451 struct bdaddr_list_with_flags *entry; 3452 3453 if (!bacmp(bdaddr, BDADDR_ANY)) { 3454 hci_bdaddr_list_clear(list); 3455 return 0; 3456 } 3457 3458 entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type); 3459 if (!entry) 3460 return -ENOENT; 3461 3462 list_del(&entry->list); 3463 kfree(entry); 3464 3465 return 0; 3466 } 3467 3468 /* This function requires the caller holds hdev->lock */ 3469 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev, 3470 bdaddr_t *addr, u8 addr_type) 3471 { 3472 struct hci_conn_params *params; 3473 3474 list_for_each_entry(params, &hdev->le_conn_params, list) { 3475 if (bacmp(¶ms->addr, addr) == 0 && 3476 params->addr_type == addr_type) { 3477 return params; 3478 } 3479 } 3480 3481 return NULL; 3482 } 3483 3484 /* This function requires the caller holds hdev->lock */ 3485 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list, 3486 bdaddr_t *addr, u8 addr_type) 3487 { 3488 struct hci_conn_params *param; 3489 3490 switch (addr_type) { 3491 case ADDR_LE_DEV_PUBLIC_RESOLVED: 3492 addr_type = ADDR_LE_DEV_PUBLIC; 3493 break; 3494 case ADDR_LE_DEV_RANDOM_RESOLVED: 3495 addr_type = ADDR_LE_DEV_RANDOM; 3496 break; 3497 } 3498 3499 list_for_each_entry(param, list, action) { 3500 if (bacmp(¶m->addr, addr) == 0 && 3501 param->addr_type == addr_type) 3502 return param; 3503 } 3504 3505 return NULL; 3506 } 3507 3508 /* This function requires the caller holds hdev->lock */ 3509 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev, 3510 bdaddr_t *addr, u8 addr_type) 3511 { 3512 struct hci_conn_params *params; 3513 3514 params = hci_conn_params_lookup(hdev, addr, addr_type); 3515 if (params) 3516 return params; 3517 3518 params = kzalloc(sizeof(*params), GFP_KERNEL); 3519 if (!params) { 3520 bt_dev_err(hdev, "out of memory"); 3521 return NULL; 3522 } 3523 3524 bacpy(¶ms->addr, addr); 3525 params->addr_type = addr_type; 3526 3527 list_add(¶ms->list, &hdev->le_conn_params); 3528 INIT_LIST_HEAD(¶ms->action); 3529 3530 params->conn_min_interval = hdev->le_conn_min_interval; 3531 params->conn_max_interval = hdev->le_conn_max_interval; 3532 params->conn_latency = hdev->le_conn_latency; 3533 params->supervision_timeout = hdev->le_supv_timeout; 3534 params->auto_connect = HCI_AUTO_CONN_DISABLED; 3535 3536 BT_DBG("addr %pMR (type %u)", addr, addr_type); 3537 3538 return params; 3539 } 3540 3541 static void hci_conn_params_free(struct hci_conn_params *params) 3542 { 3543 if (params->conn) { 3544 hci_conn_drop(params->conn); 3545 hci_conn_put(params->conn); 3546 } 3547 3548 list_del(¶ms->action); 3549 list_del(¶ms->list); 3550 kfree(params); 3551 } 3552 3553 /* This function requires the caller holds hdev->lock */ 3554 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type) 3555 { 3556 struct hci_conn_params *params; 3557 3558 params = hci_conn_params_lookup(hdev, addr, addr_type); 3559 if (!params) 3560 return; 3561 3562 hci_conn_params_free(params); 3563 3564 hci_update_background_scan(hdev); 3565 3566 BT_DBG("addr %pMR (type %u)", addr, addr_type); 3567 } 3568 3569 /* This function requires the caller holds hdev->lock */ 3570 void hci_conn_params_clear_disabled(struct hci_dev *hdev) 3571 { 3572 struct hci_conn_params *params, *tmp; 3573 3574 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) { 3575 if (params->auto_connect != HCI_AUTO_CONN_DISABLED) 3576 continue; 3577 3578 /* If trying to establish one time connection to disabled 3579 * device, leave the params, but mark them as just once. 3580 */ 3581 if (params->explicit_connect) { 3582 params->auto_connect = HCI_AUTO_CONN_EXPLICIT; 3583 continue; 3584 } 3585 3586 list_del(¶ms->list); 3587 kfree(params); 3588 } 3589 3590 BT_DBG("All LE disabled connection parameters were removed"); 3591 } 3592 3593 /* This function requires the caller holds hdev->lock */ 3594 static void hci_conn_params_clear_all(struct hci_dev *hdev) 3595 { 3596 struct hci_conn_params *params, *tmp; 3597 3598 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) 3599 hci_conn_params_free(params); 3600 3601 BT_DBG("All LE connection parameters were removed"); 3602 } 3603 3604 /* Copy the Identity Address of the controller. 3605 * 3606 * If the controller has a public BD_ADDR, then by default use that one. 3607 * If this is a LE only controller without a public address, default to 3608 * the static random address. 3609 * 3610 * For debugging purposes it is possible to force controllers with a 3611 * public address to use the static random address instead. 3612 * 3613 * In case BR/EDR has been disabled on a dual-mode controller and 3614 * userspace has configured a static address, then that address 3615 * becomes the identity address instead of the public BR/EDR address. 3616 */ 3617 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr, 3618 u8 *bdaddr_type) 3619 { 3620 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || 3621 !bacmp(&hdev->bdaddr, BDADDR_ANY) || 3622 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && 3623 bacmp(&hdev->static_addr, BDADDR_ANY))) { 3624 bacpy(bdaddr, &hdev->static_addr); 3625 *bdaddr_type = ADDR_LE_DEV_RANDOM; 3626 } else { 3627 bacpy(bdaddr, &hdev->bdaddr); 3628 *bdaddr_type = ADDR_LE_DEV_PUBLIC; 3629 } 3630 } 3631 3632 static void hci_suspend_clear_tasks(struct hci_dev *hdev) 3633 { 3634 int i; 3635 3636 for (i = 0; i < __SUSPEND_NUM_TASKS; i++) 3637 clear_bit(i, hdev->suspend_tasks); 3638 3639 wake_up(&hdev->suspend_wait_q); 3640 } 3641 3642 static int hci_suspend_wait_event(struct hci_dev *hdev) 3643 { 3644 #define WAKE_COND \ 3645 (find_first_bit(hdev->suspend_tasks, __SUSPEND_NUM_TASKS) == \ 3646 __SUSPEND_NUM_TASKS) 3647 3648 int i; 3649 int ret = wait_event_timeout(hdev->suspend_wait_q, 3650 WAKE_COND, SUSPEND_NOTIFIER_TIMEOUT); 3651 3652 if (ret == 0) { 3653 bt_dev_err(hdev, "Timed out waiting for suspend events"); 3654 for (i = 0; i < __SUSPEND_NUM_TASKS; ++i) { 3655 if (test_bit(i, hdev->suspend_tasks)) 3656 bt_dev_err(hdev, "Suspend timeout bit: %d", i); 3657 clear_bit(i, hdev->suspend_tasks); 3658 } 3659 3660 ret = -ETIMEDOUT; 3661 } else { 3662 ret = 0; 3663 } 3664 3665 return ret; 3666 } 3667 3668 static void hci_prepare_suspend(struct work_struct *work) 3669 { 3670 struct hci_dev *hdev = 3671 container_of(work, struct hci_dev, suspend_prepare); 3672 3673 hci_dev_lock(hdev); 3674 hci_req_prepare_suspend(hdev, hdev->suspend_state_next); 3675 hci_dev_unlock(hdev); 3676 } 3677 3678 static int hci_change_suspend_state(struct hci_dev *hdev, 3679 enum suspended_state next) 3680 { 3681 hdev->suspend_state_next = next; 3682 set_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks); 3683 queue_work(hdev->req_workqueue, &hdev->suspend_prepare); 3684 return hci_suspend_wait_event(hdev); 3685 } 3686 3687 static void hci_clear_wake_reason(struct hci_dev *hdev) 3688 { 3689 hci_dev_lock(hdev); 3690 3691 hdev->wake_reason = 0; 3692 bacpy(&hdev->wake_addr, BDADDR_ANY); 3693 hdev->wake_addr_type = 0; 3694 3695 hci_dev_unlock(hdev); 3696 } 3697 3698 static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action, 3699 void *data) 3700 { 3701 struct hci_dev *hdev = 3702 container_of(nb, struct hci_dev, suspend_notifier); 3703 int ret = 0; 3704 u8 state = BT_RUNNING; 3705 3706 /* If powering down, wait for completion. */ 3707 if (mgmt_powering_down(hdev)) { 3708 set_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks); 3709 ret = hci_suspend_wait_event(hdev); 3710 if (ret) 3711 goto done; 3712 } 3713 3714 /* Suspend notifier should only act on events when powered. */ 3715 if (!hdev_is_powered(hdev) || 3716 hci_dev_test_flag(hdev, HCI_UNREGISTER)) 3717 goto done; 3718 3719 if (action == PM_SUSPEND_PREPARE) { 3720 /* Suspend consists of two actions: 3721 * - First, disconnect everything and make the controller not 3722 * connectable (disabling scanning) 3723 * - Second, program event filter/accept list and enable scan 3724 */ 3725 ret = hci_change_suspend_state(hdev, BT_SUSPEND_DISCONNECT); 3726 if (!ret) 3727 state = BT_SUSPEND_DISCONNECT; 3728 3729 /* Only configure accept list if disconnect succeeded and wake 3730 * isn't being prevented. 3731 */ 3732 if (!ret && !(hdev->prevent_wake && hdev->prevent_wake(hdev))) { 3733 ret = hci_change_suspend_state(hdev, 3734 BT_SUSPEND_CONFIGURE_WAKE); 3735 if (!ret) 3736 state = BT_SUSPEND_CONFIGURE_WAKE; 3737 } 3738 3739 hci_clear_wake_reason(hdev); 3740 mgmt_suspending(hdev, state); 3741 3742 } else if (action == PM_POST_SUSPEND) { 3743 ret = hci_change_suspend_state(hdev, BT_RUNNING); 3744 3745 mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr, 3746 hdev->wake_addr_type); 3747 } 3748 3749 done: 3750 /* We always allow suspend even if suspend preparation failed and 3751 * attempt to recover in resume. 3752 */ 3753 if (ret) 3754 bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d", 3755 action, ret); 3756 3757 return NOTIFY_DONE; 3758 } 3759 3760 /* Alloc HCI device */ 3761 struct hci_dev *hci_alloc_dev_priv(int sizeof_priv) 3762 { 3763 struct hci_dev *hdev; 3764 unsigned int alloc_size; 3765 3766 alloc_size = sizeof(*hdev); 3767 if (sizeof_priv) { 3768 /* Fixme: May need ALIGN-ment? */ 3769 alloc_size += sizeof_priv; 3770 } 3771 3772 hdev = kzalloc(alloc_size, GFP_KERNEL); 3773 if (!hdev) 3774 return NULL; 3775 3776 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1); 3777 hdev->esco_type = (ESCO_HV1); 3778 hdev->link_mode = (HCI_LM_ACCEPT); 3779 hdev->num_iac = 0x01; /* One IAC support is mandatory */ 3780 hdev->io_capability = 0x03; /* No Input No Output */ 3781 hdev->manufacturer = 0xffff; /* Default to internal use */ 3782 hdev->inq_tx_power = HCI_TX_POWER_INVALID; 3783 hdev->adv_tx_power = HCI_TX_POWER_INVALID; 3784 hdev->adv_instance_cnt = 0; 3785 hdev->cur_adv_instance = 0x00; 3786 hdev->adv_instance_timeout = 0; 3787 3788 hdev->advmon_allowlist_duration = 300; 3789 hdev->advmon_no_filter_duration = 500; 3790 hdev->enable_advmon_interleave_scan = 0x00; /* Default to disable */ 3791 3792 hdev->sniff_max_interval = 800; 3793 hdev->sniff_min_interval = 80; 3794 3795 hdev->le_adv_channel_map = 0x07; 3796 hdev->le_adv_min_interval = 0x0800; 3797 hdev->le_adv_max_interval = 0x0800; 3798 hdev->le_scan_interval = 0x0060; 3799 hdev->le_scan_window = 0x0030; 3800 hdev->le_scan_int_suspend = 0x0400; 3801 hdev->le_scan_window_suspend = 0x0012; 3802 hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT; 3803 hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN; 3804 hdev->le_scan_int_adv_monitor = 0x0060; 3805 hdev->le_scan_window_adv_monitor = 0x0030; 3806 hdev->le_scan_int_connect = 0x0060; 3807 hdev->le_scan_window_connect = 0x0060; 3808 hdev->le_conn_min_interval = 0x0018; 3809 hdev->le_conn_max_interval = 0x0028; 3810 hdev->le_conn_latency = 0x0000; 3811 hdev->le_supv_timeout = 0x002a; 3812 hdev->le_def_tx_len = 0x001b; 3813 hdev->le_def_tx_time = 0x0148; 3814 hdev->le_max_tx_len = 0x001b; 3815 hdev->le_max_tx_time = 0x0148; 3816 hdev->le_max_rx_len = 0x001b; 3817 hdev->le_max_rx_time = 0x0148; 3818 hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE; 3819 hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE; 3820 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M; 3821 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M; 3822 hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES; 3823 hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION; 3824 hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT; 3825 hdev->min_le_tx_power = HCI_TX_POWER_INVALID; 3826 hdev->max_le_tx_power = HCI_TX_POWER_INVALID; 3827 3828 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT; 3829 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT; 3830 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE; 3831 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE; 3832 hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT; 3833 hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE; 3834 3835 /* default 1.28 sec page scan */ 3836 hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD; 3837 hdev->def_page_scan_int = 0x0800; 3838 hdev->def_page_scan_window = 0x0012; 3839 3840 mutex_init(&hdev->lock); 3841 mutex_init(&hdev->req_lock); 3842 3843 INIT_LIST_HEAD(&hdev->mgmt_pending); 3844 INIT_LIST_HEAD(&hdev->reject_list); 3845 INIT_LIST_HEAD(&hdev->accept_list); 3846 INIT_LIST_HEAD(&hdev->uuids); 3847 INIT_LIST_HEAD(&hdev->link_keys); 3848 INIT_LIST_HEAD(&hdev->long_term_keys); 3849 INIT_LIST_HEAD(&hdev->identity_resolving_keys); 3850 INIT_LIST_HEAD(&hdev->remote_oob_data); 3851 INIT_LIST_HEAD(&hdev->le_accept_list); 3852 INIT_LIST_HEAD(&hdev->le_resolv_list); 3853 INIT_LIST_HEAD(&hdev->le_conn_params); 3854 INIT_LIST_HEAD(&hdev->pend_le_conns); 3855 INIT_LIST_HEAD(&hdev->pend_le_reports); 3856 INIT_LIST_HEAD(&hdev->conn_hash.list); 3857 INIT_LIST_HEAD(&hdev->adv_instances); 3858 INIT_LIST_HEAD(&hdev->blocked_keys); 3859 3860 INIT_WORK(&hdev->rx_work, hci_rx_work); 3861 INIT_WORK(&hdev->cmd_work, hci_cmd_work); 3862 INIT_WORK(&hdev->tx_work, hci_tx_work); 3863 INIT_WORK(&hdev->power_on, hci_power_on); 3864 INIT_WORK(&hdev->error_reset, hci_error_reset); 3865 INIT_WORK(&hdev->suspend_prepare, hci_prepare_suspend); 3866 3867 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off); 3868 3869 skb_queue_head_init(&hdev->rx_q); 3870 skb_queue_head_init(&hdev->cmd_q); 3871 skb_queue_head_init(&hdev->raw_q); 3872 3873 init_waitqueue_head(&hdev->req_wait_q); 3874 init_waitqueue_head(&hdev->suspend_wait_q); 3875 3876 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout); 3877 INIT_DELAYED_WORK(&hdev->ncmd_timer, hci_ncmd_timeout); 3878 3879 hci_request_setup(hdev); 3880 3881 hci_init_sysfs(hdev); 3882 discovery_init(hdev); 3883 3884 return hdev; 3885 } 3886 EXPORT_SYMBOL(hci_alloc_dev_priv); 3887 3888 /* Free HCI device */ 3889 void hci_free_dev(struct hci_dev *hdev) 3890 { 3891 /* will free via device release */ 3892 put_device(&hdev->dev); 3893 } 3894 EXPORT_SYMBOL(hci_free_dev); 3895 3896 /* Register HCI device */ 3897 int hci_register_dev(struct hci_dev *hdev) 3898 { 3899 int id, error; 3900 3901 if (!hdev->open || !hdev->close || !hdev->send) 3902 return -EINVAL; 3903 3904 /* Do not allow HCI_AMP devices to register at index 0, 3905 * so the index can be used as the AMP controller ID. 3906 */ 3907 switch (hdev->dev_type) { 3908 case HCI_PRIMARY: 3909 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL); 3910 break; 3911 case HCI_AMP: 3912 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL); 3913 break; 3914 default: 3915 return -EINVAL; 3916 } 3917 3918 if (id < 0) 3919 return id; 3920 3921 sprintf(hdev->name, "hci%d", id); 3922 hdev->id = id; 3923 3924 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 3925 3926 hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name); 3927 if (!hdev->workqueue) { 3928 error = -ENOMEM; 3929 goto err; 3930 } 3931 3932 hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, 3933 hdev->name); 3934 if (!hdev->req_workqueue) { 3935 destroy_workqueue(hdev->workqueue); 3936 error = -ENOMEM; 3937 goto err; 3938 } 3939 3940 if (!IS_ERR_OR_NULL(bt_debugfs)) 3941 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs); 3942 3943 dev_set_name(&hdev->dev, "%s", hdev->name); 3944 3945 error = device_add(&hdev->dev); 3946 if (error < 0) 3947 goto err_wqueue; 3948 3949 hci_leds_init(hdev); 3950 3951 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev, 3952 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, 3953 hdev); 3954 if (hdev->rfkill) { 3955 if (rfkill_register(hdev->rfkill) < 0) { 3956 rfkill_destroy(hdev->rfkill); 3957 hdev->rfkill = NULL; 3958 } 3959 } 3960 3961 if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) 3962 hci_dev_set_flag(hdev, HCI_RFKILLED); 3963 3964 hci_dev_set_flag(hdev, HCI_SETUP); 3965 hci_dev_set_flag(hdev, HCI_AUTO_OFF); 3966 3967 if (hdev->dev_type == HCI_PRIMARY) { 3968 /* Assume BR/EDR support until proven otherwise (such as 3969 * through reading supported features during init. 3970 */ 3971 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED); 3972 } 3973 3974 write_lock(&hci_dev_list_lock); 3975 list_add(&hdev->list, &hci_dev_list); 3976 write_unlock(&hci_dev_list_lock); 3977 3978 /* Devices that are marked for raw-only usage are unconfigured 3979 * and should not be included in normal operation. 3980 */ 3981 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks)) 3982 hci_dev_set_flag(hdev, HCI_UNCONFIGURED); 3983 3984 hci_sock_dev_event(hdev, HCI_DEV_REG); 3985 hci_dev_hold(hdev); 3986 3987 if (!test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) { 3988 hdev->suspend_notifier.notifier_call = hci_suspend_notifier; 3989 error = register_pm_notifier(&hdev->suspend_notifier); 3990 if (error) 3991 goto err_wqueue; 3992 } 3993 3994 queue_work(hdev->req_workqueue, &hdev->power_on); 3995 3996 idr_init(&hdev->adv_monitors_idr); 3997 3998 return id; 3999 4000 err_wqueue: 4001 destroy_workqueue(hdev->workqueue); 4002 destroy_workqueue(hdev->req_workqueue); 4003 err: 4004 ida_simple_remove(&hci_index_ida, hdev->id); 4005 4006 return error; 4007 } 4008 EXPORT_SYMBOL(hci_register_dev); 4009 4010 /* Unregister HCI device */ 4011 void hci_unregister_dev(struct hci_dev *hdev) 4012 { 4013 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus); 4014 4015 hci_dev_set_flag(hdev, HCI_UNREGISTER); 4016 4017 write_lock(&hci_dev_list_lock); 4018 list_del(&hdev->list); 4019 write_unlock(&hci_dev_list_lock); 4020 4021 cancel_work_sync(&hdev->power_on); 4022 4023 if (!test_bit(HCI_QUIRK_NO_SUSPEND_NOTIFIER, &hdev->quirks)) { 4024 hci_suspend_clear_tasks(hdev); 4025 unregister_pm_notifier(&hdev->suspend_notifier); 4026 cancel_work_sync(&hdev->suspend_prepare); 4027 } 4028 4029 hci_dev_do_close(hdev); 4030 4031 if (!test_bit(HCI_INIT, &hdev->flags) && 4032 !hci_dev_test_flag(hdev, HCI_SETUP) && 4033 !hci_dev_test_flag(hdev, HCI_CONFIG)) { 4034 hci_dev_lock(hdev); 4035 mgmt_index_removed(hdev); 4036 hci_dev_unlock(hdev); 4037 } 4038 4039 /* mgmt_index_removed should take care of emptying the 4040 * pending list */ 4041 BUG_ON(!list_empty(&hdev->mgmt_pending)); 4042 4043 hci_sock_dev_event(hdev, HCI_DEV_UNREG); 4044 4045 if (hdev->rfkill) { 4046 rfkill_unregister(hdev->rfkill); 4047 rfkill_destroy(hdev->rfkill); 4048 } 4049 4050 device_del(&hdev->dev); 4051 /* Actual cleanup is deferred until hci_release_dev(). */ 4052 hci_dev_put(hdev); 4053 } 4054 EXPORT_SYMBOL(hci_unregister_dev); 4055 4056 /* Release HCI device */ 4057 void hci_release_dev(struct hci_dev *hdev) 4058 { 4059 debugfs_remove_recursive(hdev->debugfs); 4060 kfree_const(hdev->hw_info); 4061 kfree_const(hdev->fw_info); 4062 4063 destroy_workqueue(hdev->workqueue); 4064 destroy_workqueue(hdev->req_workqueue); 4065 4066 hci_dev_lock(hdev); 4067 hci_bdaddr_list_clear(&hdev->reject_list); 4068 hci_bdaddr_list_clear(&hdev->accept_list); 4069 hci_uuids_clear(hdev); 4070 hci_link_keys_clear(hdev); 4071 hci_smp_ltks_clear(hdev); 4072 hci_smp_irks_clear(hdev); 4073 hci_remote_oob_data_clear(hdev); 4074 hci_adv_instances_clear(hdev); 4075 hci_adv_monitors_clear(hdev); 4076 hci_bdaddr_list_clear(&hdev->le_accept_list); 4077 hci_bdaddr_list_clear(&hdev->le_resolv_list); 4078 hci_conn_params_clear_all(hdev); 4079 hci_discovery_filter_clear(hdev); 4080 hci_blocked_keys_clear(hdev); 4081 hci_dev_unlock(hdev); 4082 4083 ida_simple_remove(&hci_index_ida, hdev->id); 4084 kfree(hdev); 4085 } 4086 EXPORT_SYMBOL(hci_release_dev); 4087 4088 /* Suspend HCI device */ 4089 int hci_suspend_dev(struct hci_dev *hdev) 4090 { 4091 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND); 4092 return 0; 4093 } 4094 EXPORT_SYMBOL(hci_suspend_dev); 4095 4096 /* Resume HCI device */ 4097 int hci_resume_dev(struct hci_dev *hdev) 4098 { 4099 hci_sock_dev_event(hdev, HCI_DEV_RESUME); 4100 return 0; 4101 } 4102 EXPORT_SYMBOL(hci_resume_dev); 4103 4104 /* Reset HCI device */ 4105 int hci_reset_dev(struct hci_dev *hdev) 4106 { 4107 static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 }; 4108 struct sk_buff *skb; 4109 4110 skb = bt_skb_alloc(3, GFP_ATOMIC); 4111 if (!skb) 4112 return -ENOMEM; 4113 4114 hci_skb_pkt_type(skb) = HCI_EVENT_PKT; 4115 skb_put_data(skb, hw_err, 3); 4116 4117 bt_dev_err(hdev, "Injecting HCI hardware error event"); 4118 4119 /* Send Hardware Error to upper stack */ 4120 return hci_recv_frame(hdev, skb); 4121 } 4122 EXPORT_SYMBOL(hci_reset_dev); 4123 4124 /* Receive frame from HCI drivers */ 4125 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb) 4126 { 4127 if (!hdev || (!test_bit(HCI_UP, &hdev->flags) 4128 && !test_bit(HCI_INIT, &hdev->flags))) { 4129 kfree_skb(skb); 4130 return -ENXIO; 4131 } 4132 4133 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT && 4134 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT && 4135 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT && 4136 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) { 4137 kfree_skb(skb); 4138 return -EINVAL; 4139 } 4140 4141 /* Incoming skb */ 4142 bt_cb(skb)->incoming = 1; 4143 4144 /* Time stamp */ 4145 __net_timestamp(skb); 4146 4147 skb_queue_tail(&hdev->rx_q, skb); 4148 queue_work(hdev->workqueue, &hdev->rx_work); 4149 4150 return 0; 4151 } 4152 EXPORT_SYMBOL(hci_recv_frame); 4153 4154 /* Receive diagnostic message from HCI drivers */ 4155 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb) 4156 { 4157 /* Mark as diagnostic packet */ 4158 hci_skb_pkt_type(skb) = HCI_DIAG_PKT; 4159 4160 /* Time stamp */ 4161 __net_timestamp(skb); 4162 4163 skb_queue_tail(&hdev->rx_q, skb); 4164 queue_work(hdev->workqueue, &hdev->rx_work); 4165 4166 return 0; 4167 } 4168 EXPORT_SYMBOL(hci_recv_diag); 4169 4170 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...) 4171 { 4172 va_list vargs; 4173 4174 va_start(vargs, fmt); 4175 kfree_const(hdev->hw_info); 4176 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs); 4177 va_end(vargs); 4178 } 4179 EXPORT_SYMBOL(hci_set_hw_info); 4180 4181 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...) 4182 { 4183 va_list vargs; 4184 4185 va_start(vargs, fmt); 4186 kfree_const(hdev->fw_info); 4187 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs); 4188 va_end(vargs); 4189 } 4190 EXPORT_SYMBOL(hci_set_fw_info); 4191 4192 /* ---- Interface to upper protocols ---- */ 4193 4194 int hci_register_cb(struct hci_cb *cb) 4195 { 4196 BT_DBG("%p name %s", cb, cb->name); 4197 4198 mutex_lock(&hci_cb_list_lock); 4199 list_add_tail(&cb->list, &hci_cb_list); 4200 mutex_unlock(&hci_cb_list_lock); 4201 4202 return 0; 4203 } 4204 EXPORT_SYMBOL(hci_register_cb); 4205 4206 int hci_unregister_cb(struct hci_cb *cb) 4207 { 4208 BT_DBG("%p name %s", cb, cb->name); 4209 4210 mutex_lock(&hci_cb_list_lock); 4211 list_del(&cb->list); 4212 mutex_unlock(&hci_cb_list_lock); 4213 4214 return 0; 4215 } 4216 EXPORT_SYMBOL(hci_unregister_cb); 4217 4218 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb) 4219 { 4220 int err; 4221 4222 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb), 4223 skb->len); 4224 4225 /* Time stamp */ 4226 __net_timestamp(skb); 4227 4228 /* Send copy to monitor */ 4229 hci_send_to_monitor(hdev, skb); 4230 4231 if (atomic_read(&hdev->promisc)) { 4232 /* Send copy to the sockets */ 4233 hci_send_to_sock(hdev, skb); 4234 } 4235 4236 /* Get rid of skb owner, prior to sending to the driver. */ 4237 skb_orphan(skb); 4238 4239 if (!test_bit(HCI_RUNNING, &hdev->flags)) { 4240 kfree_skb(skb); 4241 return; 4242 } 4243 4244 err = hdev->send(hdev, skb); 4245 if (err < 0) { 4246 bt_dev_err(hdev, "sending frame failed (%d)", err); 4247 kfree_skb(skb); 4248 } 4249 } 4250 4251 /* Send HCI command */ 4252 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, 4253 const void *param) 4254 { 4255 struct sk_buff *skb; 4256 4257 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen); 4258 4259 skb = hci_prepare_cmd(hdev, opcode, plen, param); 4260 if (!skb) { 4261 bt_dev_err(hdev, "no memory for command"); 4262 return -ENOMEM; 4263 } 4264 4265 /* Stand-alone HCI commands must be flagged as 4266 * single-command requests. 4267 */ 4268 bt_cb(skb)->hci.req_flags |= HCI_REQ_START; 4269 4270 skb_queue_tail(&hdev->cmd_q, skb); 4271 queue_work(hdev->workqueue, &hdev->cmd_work); 4272 4273 return 0; 4274 } 4275 4276 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen, 4277 const void *param) 4278 { 4279 struct sk_buff *skb; 4280 4281 if (hci_opcode_ogf(opcode) != 0x3f) { 4282 /* A controller receiving a command shall respond with either 4283 * a Command Status Event or a Command Complete Event. 4284 * Therefore, all standard HCI commands must be sent via the 4285 * standard API, using hci_send_cmd or hci_cmd_sync helpers. 4286 * Some vendors do not comply with this rule for vendor-specific 4287 * commands and do not return any event. We want to support 4288 * unresponded commands for such cases only. 4289 */ 4290 bt_dev_err(hdev, "unresponded command not supported"); 4291 return -EINVAL; 4292 } 4293 4294 skb = hci_prepare_cmd(hdev, opcode, plen, param); 4295 if (!skb) { 4296 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", 4297 opcode); 4298 return -ENOMEM; 4299 } 4300 4301 hci_send_frame(hdev, skb); 4302 4303 return 0; 4304 } 4305 EXPORT_SYMBOL(__hci_cmd_send); 4306 4307 /* Get data from the previously sent command */ 4308 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode) 4309 { 4310 struct hci_command_hdr *hdr; 4311 4312 if (!hdev->sent_cmd) 4313 return NULL; 4314 4315 hdr = (void *) hdev->sent_cmd->data; 4316 4317 if (hdr->opcode != cpu_to_le16(opcode)) 4318 return NULL; 4319 4320 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode); 4321 4322 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE; 4323 } 4324 4325 /* Send HCI command and wait for command complete event */ 4326 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, 4327 const void *param, u32 timeout) 4328 { 4329 struct sk_buff *skb; 4330 4331 if (!test_bit(HCI_UP, &hdev->flags)) 4332 return ERR_PTR(-ENETDOWN); 4333 4334 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen); 4335 4336 hci_req_sync_lock(hdev); 4337 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout); 4338 hci_req_sync_unlock(hdev); 4339 4340 return skb; 4341 } 4342 EXPORT_SYMBOL(hci_cmd_sync); 4343 4344 /* Send ACL data */ 4345 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags) 4346 { 4347 struct hci_acl_hdr *hdr; 4348 int len = skb->len; 4349 4350 skb_push(skb, HCI_ACL_HDR_SIZE); 4351 skb_reset_transport_header(skb); 4352 hdr = (struct hci_acl_hdr *)skb_transport_header(skb); 4353 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags)); 4354 hdr->dlen = cpu_to_le16(len); 4355 } 4356 4357 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue, 4358 struct sk_buff *skb, __u16 flags) 4359 { 4360 struct hci_conn *conn = chan->conn; 4361 struct hci_dev *hdev = conn->hdev; 4362 struct sk_buff *list; 4363 4364 skb->len = skb_headlen(skb); 4365 skb->data_len = 0; 4366 4367 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT; 4368 4369 switch (hdev->dev_type) { 4370 case HCI_PRIMARY: 4371 hci_add_acl_hdr(skb, conn->handle, flags); 4372 break; 4373 case HCI_AMP: 4374 hci_add_acl_hdr(skb, chan->handle, flags); 4375 break; 4376 default: 4377 bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type); 4378 return; 4379 } 4380 4381 list = skb_shinfo(skb)->frag_list; 4382 if (!list) { 4383 /* Non fragmented */ 4384 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len); 4385 4386 skb_queue_tail(queue, skb); 4387 } else { 4388 /* Fragmented */ 4389 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 4390 4391 skb_shinfo(skb)->frag_list = NULL; 4392 4393 /* Queue all fragments atomically. We need to use spin_lock_bh 4394 * here because of 6LoWPAN links, as there this function is 4395 * called from softirq and using normal spin lock could cause 4396 * deadlocks. 4397 */ 4398 spin_lock_bh(&queue->lock); 4399 4400 __skb_queue_tail(queue, skb); 4401 4402 flags &= ~ACL_START; 4403 flags |= ACL_CONT; 4404 do { 4405 skb = list; list = list->next; 4406 4407 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT; 4408 hci_add_acl_hdr(skb, conn->handle, flags); 4409 4410 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len); 4411 4412 __skb_queue_tail(queue, skb); 4413 } while (list); 4414 4415 spin_unlock_bh(&queue->lock); 4416 } 4417 } 4418 4419 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags) 4420 { 4421 struct hci_dev *hdev = chan->conn->hdev; 4422 4423 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags); 4424 4425 hci_queue_acl(chan, &chan->data_q, skb, flags); 4426 4427 queue_work(hdev->workqueue, &hdev->tx_work); 4428 } 4429 4430 /* Send SCO data */ 4431 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb) 4432 { 4433 struct hci_dev *hdev = conn->hdev; 4434 struct hci_sco_hdr hdr; 4435 4436 BT_DBG("%s len %d", hdev->name, skb->len); 4437 4438 hdr.handle = cpu_to_le16(conn->handle); 4439 hdr.dlen = skb->len; 4440 4441 skb_push(skb, HCI_SCO_HDR_SIZE); 4442 skb_reset_transport_header(skb); 4443 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE); 4444 4445 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT; 4446 4447 skb_queue_tail(&conn->data_q, skb); 4448 queue_work(hdev->workqueue, &hdev->tx_work); 4449 } 4450 4451 /* ---- HCI TX task (outgoing data) ---- */ 4452 4453 /* HCI Connection scheduler */ 4454 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, 4455 int *quote) 4456 { 4457 struct hci_conn_hash *h = &hdev->conn_hash; 4458 struct hci_conn *conn = NULL, *c; 4459 unsigned int num = 0, min = ~0; 4460 4461 /* We don't have to lock device here. Connections are always 4462 * added and removed with TX task disabled. */ 4463 4464 rcu_read_lock(); 4465 4466 list_for_each_entry_rcu(c, &h->list, list) { 4467 if (c->type != type || skb_queue_empty(&c->data_q)) 4468 continue; 4469 4470 if (c->state != BT_CONNECTED && c->state != BT_CONFIG) 4471 continue; 4472 4473 num++; 4474 4475 if (c->sent < min) { 4476 min = c->sent; 4477 conn = c; 4478 } 4479 4480 if (hci_conn_num(hdev, type) == num) 4481 break; 4482 } 4483 4484 rcu_read_unlock(); 4485 4486 if (conn) { 4487 int cnt, q; 4488 4489 switch (conn->type) { 4490 case ACL_LINK: 4491 cnt = hdev->acl_cnt; 4492 break; 4493 case SCO_LINK: 4494 case ESCO_LINK: 4495 cnt = hdev->sco_cnt; 4496 break; 4497 case LE_LINK: 4498 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 4499 break; 4500 default: 4501 cnt = 0; 4502 bt_dev_err(hdev, "unknown link type %d", conn->type); 4503 } 4504 4505 q = cnt / num; 4506 *quote = q ? q : 1; 4507 } else 4508 *quote = 0; 4509 4510 BT_DBG("conn %p quote %d", conn, *quote); 4511 return conn; 4512 } 4513 4514 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type) 4515 { 4516 struct hci_conn_hash *h = &hdev->conn_hash; 4517 struct hci_conn *c; 4518 4519 bt_dev_err(hdev, "link tx timeout"); 4520 4521 rcu_read_lock(); 4522 4523 /* Kill stalled connections */ 4524 list_for_each_entry_rcu(c, &h->list, list) { 4525 if (c->type == type && c->sent) { 4526 bt_dev_err(hdev, "killing stalled connection %pMR", 4527 &c->dst); 4528 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM); 4529 } 4530 } 4531 4532 rcu_read_unlock(); 4533 } 4534 4535 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type, 4536 int *quote) 4537 { 4538 struct hci_conn_hash *h = &hdev->conn_hash; 4539 struct hci_chan *chan = NULL; 4540 unsigned int num = 0, min = ~0, cur_prio = 0; 4541 struct hci_conn *conn; 4542 int cnt, q, conn_num = 0; 4543 4544 BT_DBG("%s", hdev->name); 4545 4546 rcu_read_lock(); 4547 4548 list_for_each_entry_rcu(conn, &h->list, list) { 4549 struct hci_chan *tmp; 4550 4551 if (conn->type != type) 4552 continue; 4553 4554 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 4555 continue; 4556 4557 conn_num++; 4558 4559 list_for_each_entry_rcu(tmp, &conn->chan_list, list) { 4560 struct sk_buff *skb; 4561 4562 if (skb_queue_empty(&tmp->data_q)) 4563 continue; 4564 4565 skb = skb_peek(&tmp->data_q); 4566 if (skb->priority < cur_prio) 4567 continue; 4568 4569 if (skb->priority > cur_prio) { 4570 num = 0; 4571 min = ~0; 4572 cur_prio = skb->priority; 4573 } 4574 4575 num++; 4576 4577 if (conn->sent < min) { 4578 min = conn->sent; 4579 chan = tmp; 4580 } 4581 } 4582 4583 if (hci_conn_num(hdev, type) == conn_num) 4584 break; 4585 } 4586 4587 rcu_read_unlock(); 4588 4589 if (!chan) 4590 return NULL; 4591 4592 switch (chan->conn->type) { 4593 case ACL_LINK: 4594 cnt = hdev->acl_cnt; 4595 break; 4596 case AMP_LINK: 4597 cnt = hdev->block_cnt; 4598 break; 4599 case SCO_LINK: 4600 case ESCO_LINK: 4601 cnt = hdev->sco_cnt; 4602 break; 4603 case LE_LINK: 4604 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt; 4605 break; 4606 default: 4607 cnt = 0; 4608 bt_dev_err(hdev, "unknown link type %d", chan->conn->type); 4609 } 4610 4611 q = cnt / num; 4612 *quote = q ? q : 1; 4613 BT_DBG("chan %p quote %d", chan, *quote); 4614 return chan; 4615 } 4616 4617 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type) 4618 { 4619 struct hci_conn_hash *h = &hdev->conn_hash; 4620 struct hci_conn *conn; 4621 int num = 0; 4622 4623 BT_DBG("%s", hdev->name); 4624 4625 rcu_read_lock(); 4626 4627 list_for_each_entry_rcu(conn, &h->list, list) { 4628 struct hci_chan *chan; 4629 4630 if (conn->type != type) 4631 continue; 4632 4633 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) 4634 continue; 4635 4636 num++; 4637 4638 list_for_each_entry_rcu(chan, &conn->chan_list, list) { 4639 struct sk_buff *skb; 4640 4641 if (chan->sent) { 4642 chan->sent = 0; 4643 continue; 4644 } 4645 4646 if (skb_queue_empty(&chan->data_q)) 4647 continue; 4648 4649 skb = skb_peek(&chan->data_q); 4650 if (skb->priority >= HCI_PRIO_MAX - 1) 4651 continue; 4652 4653 skb->priority = HCI_PRIO_MAX - 1; 4654 4655 BT_DBG("chan %p skb %p promoted to %d", chan, skb, 4656 skb->priority); 4657 } 4658 4659 if (hci_conn_num(hdev, type) == num) 4660 break; 4661 } 4662 4663 rcu_read_unlock(); 4664 4665 } 4666 4667 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb) 4668 { 4669 /* Calculate count of blocks used by this packet */ 4670 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len); 4671 } 4672 4673 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt) 4674 { 4675 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) { 4676 /* ACL tx timeout must be longer than maximum 4677 * link supervision timeout (40.9 seconds) */ 4678 if (!cnt && time_after(jiffies, hdev->acl_last_tx + 4679 HCI_ACL_TX_TIMEOUT)) 4680 hci_link_tx_to(hdev, ACL_LINK); 4681 } 4682 } 4683 4684 /* Schedule SCO */ 4685 static void hci_sched_sco(struct hci_dev *hdev) 4686 { 4687 struct hci_conn *conn; 4688 struct sk_buff *skb; 4689 int quote; 4690 4691 BT_DBG("%s", hdev->name); 4692 4693 if (!hci_conn_num(hdev, SCO_LINK)) 4694 return; 4695 4696 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) { 4697 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 4698 BT_DBG("skb %p len %d", skb, skb->len); 4699 hci_send_frame(hdev, skb); 4700 4701 conn->sent++; 4702 if (conn->sent == ~0) 4703 conn->sent = 0; 4704 } 4705 } 4706 } 4707 4708 static void hci_sched_esco(struct hci_dev *hdev) 4709 { 4710 struct hci_conn *conn; 4711 struct sk_buff *skb; 4712 int quote; 4713 4714 BT_DBG("%s", hdev->name); 4715 4716 if (!hci_conn_num(hdev, ESCO_LINK)) 4717 return; 4718 4719 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, 4720 "e))) { 4721 while (quote-- && (skb = skb_dequeue(&conn->data_q))) { 4722 BT_DBG("skb %p len %d", skb, skb->len); 4723 hci_send_frame(hdev, skb); 4724 4725 conn->sent++; 4726 if (conn->sent == ~0) 4727 conn->sent = 0; 4728 } 4729 } 4730 } 4731 4732 static void hci_sched_acl_pkt(struct hci_dev *hdev) 4733 { 4734 unsigned int cnt = hdev->acl_cnt; 4735 struct hci_chan *chan; 4736 struct sk_buff *skb; 4737 int quote; 4738 4739 __check_timeout(hdev, cnt); 4740 4741 while (hdev->acl_cnt && 4742 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) { 4743 u32 priority = (skb_peek(&chan->data_q))->priority; 4744 while (quote-- && (skb = skb_peek(&chan->data_q))) { 4745 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 4746 skb->len, skb->priority); 4747 4748 /* Stop if priority has changed */ 4749 if (skb->priority < priority) 4750 break; 4751 4752 skb = skb_dequeue(&chan->data_q); 4753 4754 hci_conn_enter_active_mode(chan->conn, 4755 bt_cb(skb)->force_active); 4756 4757 hci_send_frame(hdev, skb); 4758 hdev->acl_last_tx = jiffies; 4759 4760 hdev->acl_cnt--; 4761 chan->sent++; 4762 chan->conn->sent++; 4763 4764 /* Send pending SCO packets right away */ 4765 hci_sched_sco(hdev); 4766 hci_sched_esco(hdev); 4767 } 4768 } 4769 4770 if (cnt != hdev->acl_cnt) 4771 hci_prio_recalculate(hdev, ACL_LINK); 4772 } 4773 4774 static void hci_sched_acl_blk(struct hci_dev *hdev) 4775 { 4776 unsigned int cnt = hdev->block_cnt; 4777 struct hci_chan *chan; 4778 struct sk_buff *skb; 4779 int quote; 4780 u8 type; 4781 4782 __check_timeout(hdev, cnt); 4783 4784 BT_DBG("%s", hdev->name); 4785 4786 if (hdev->dev_type == HCI_AMP) 4787 type = AMP_LINK; 4788 else 4789 type = ACL_LINK; 4790 4791 while (hdev->block_cnt > 0 && 4792 (chan = hci_chan_sent(hdev, type, "e))) { 4793 u32 priority = (skb_peek(&chan->data_q))->priority; 4794 while (quote > 0 && (skb = skb_peek(&chan->data_q))) { 4795 int blocks; 4796 4797 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 4798 skb->len, skb->priority); 4799 4800 /* Stop if priority has changed */ 4801 if (skb->priority < priority) 4802 break; 4803 4804 skb = skb_dequeue(&chan->data_q); 4805 4806 blocks = __get_blocks(hdev, skb); 4807 if (blocks > hdev->block_cnt) 4808 return; 4809 4810 hci_conn_enter_active_mode(chan->conn, 4811 bt_cb(skb)->force_active); 4812 4813 hci_send_frame(hdev, skb); 4814 hdev->acl_last_tx = jiffies; 4815 4816 hdev->block_cnt -= blocks; 4817 quote -= blocks; 4818 4819 chan->sent += blocks; 4820 chan->conn->sent += blocks; 4821 } 4822 } 4823 4824 if (cnt != hdev->block_cnt) 4825 hci_prio_recalculate(hdev, type); 4826 } 4827 4828 static void hci_sched_acl(struct hci_dev *hdev) 4829 { 4830 BT_DBG("%s", hdev->name); 4831 4832 /* No ACL link over BR/EDR controller */ 4833 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY) 4834 return; 4835 4836 /* No AMP link over AMP controller */ 4837 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP) 4838 return; 4839 4840 switch (hdev->flow_ctl_mode) { 4841 case HCI_FLOW_CTL_MODE_PACKET_BASED: 4842 hci_sched_acl_pkt(hdev); 4843 break; 4844 4845 case HCI_FLOW_CTL_MODE_BLOCK_BASED: 4846 hci_sched_acl_blk(hdev); 4847 break; 4848 } 4849 } 4850 4851 static void hci_sched_le(struct hci_dev *hdev) 4852 { 4853 struct hci_chan *chan; 4854 struct sk_buff *skb; 4855 int quote, cnt, tmp; 4856 4857 BT_DBG("%s", hdev->name); 4858 4859 if (!hci_conn_num(hdev, LE_LINK)) 4860 return; 4861 4862 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt; 4863 4864 __check_timeout(hdev, cnt); 4865 4866 tmp = cnt; 4867 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) { 4868 u32 priority = (skb_peek(&chan->data_q))->priority; 4869 while (quote-- && (skb = skb_peek(&chan->data_q))) { 4870 BT_DBG("chan %p skb %p len %d priority %u", chan, skb, 4871 skb->len, skb->priority); 4872 4873 /* Stop if priority has changed */ 4874 if (skb->priority < priority) 4875 break; 4876 4877 skb = skb_dequeue(&chan->data_q); 4878 4879 hci_send_frame(hdev, skb); 4880 hdev->le_last_tx = jiffies; 4881 4882 cnt--; 4883 chan->sent++; 4884 chan->conn->sent++; 4885 4886 /* Send pending SCO packets right away */ 4887 hci_sched_sco(hdev); 4888 hci_sched_esco(hdev); 4889 } 4890 } 4891 4892 if (hdev->le_pkts) 4893 hdev->le_cnt = cnt; 4894 else 4895 hdev->acl_cnt = cnt; 4896 4897 if (cnt != tmp) 4898 hci_prio_recalculate(hdev, LE_LINK); 4899 } 4900 4901 static void hci_tx_work(struct work_struct *work) 4902 { 4903 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work); 4904 struct sk_buff *skb; 4905 4906 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt, 4907 hdev->sco_cnt, hdev->le_cnt); 4908 4909 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) { 4910 /* Schedule queues and send stuff to HCI driver */ 4911 hci_sched_sco(hdev); 4912 hci_sched_esco(hdev); 4913 hci_sched_acl(hdev); 4914 hci_sched_le(hdev); 4915 } 4916 4917 /* Send next queued raw (unknown type) packet */ 4918 while ((skb = skb_dequeue(&hdev->raw_q))) 4919 hci_send_frame(hdev, skb); 4920 } 4921 4922 /* ----- HCI RX task (incoming data processing) ----- */ 4923 4924 /* ACL data packet */ 4925 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb) 4926 { 4927 struct hci_acl_hdr *hdr = (void *) skb->data; 4928 struct hci_conn *conn; 4929 __u16 handle, flags; 4930 4931 skb_pull(skb, HCI_ACL_HDR_SIZE); 4932 4933 handle = __le16_to_cpu(hdr->handle); 4934 flags = hci_flags(handle); 4935 handle = hci_handle(handle); 4936 4937 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len, 4938 handle, flags); 4939 4940 hdev->stat.acl_rx++; 4941 4942 hci_dev_lock(hdev); 4943 conn = hci_conn_hash_lookup_handle(hdev, handle); 4944 hci_dev_unlock(hdev); 4945 4946 if (conn) { 4947 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF); 4948 4949 /* Send to upper protocol */ 4950 l2cap_recv_acldata(conn, skb, flags); 4951 return; 4952 } else { 4953 bt_dev_err(hdev, "ACL packet for unknown connection handle %d", 4954 handle); 4955 } 4956 4957 kfree_skb(skb); 4958 } 4959 4960 /* SCO data packet */ 4961 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb) 4962 { 4963 struct hci_sco_hdr *hdr = (void *) skb->data; 4964 struct hci_conn *conn; 4965 __u16 handle, flags; 4966 4967 skb_pull(skb, HCI_SCO_HDR_SIZE); 4968 4969 handle = __le16_to_cpu(hdr->handle); 4970 flags = hci_flags(handle); 4971 handle = hci_handle(handle); 4972 4973 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len, 4974 handle, flags); 4975 4976 hdev->stat.sco_rx++; 4977 4978 hci_dev_lock(hdev); 4979 conn = hci_conn_hash_lookup_handle(hdev, handle); 4980 hci_dev_unlock(hdev); 4981 4982 if (conn) { 4983 /* Send to upper protocol */ 4984 bt_cb(skb)->sco.pkt_status = flags & 0x03; 4985 sco_recv_scodata(conn, skb); 4986 return; 4987 } else { 4988 bt_dev_err(hdev, "SCO packet for unknown connection handle %d", 4989 handle); 4990 } 4991 4992 kfree_skb(skb); 4993 } 4994 4995 static bool hci_req_is_complete(struct hci_dev *hdev) 4996 { 4997 struct sk_buff *skb; 4998 4999 skb = skb_peek(&hdev->cmd_q); 5000 if (!skb) 5001 return true; 5002 5003 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START); 5004 } 5005 5006 static void hci_resend_last(struct hci_dev *hdev) 5007 { 5008 struct hci_command_hdr *sent; 5009 struct sk_buff *skb; 5010 u16 opcode; 5011 5012 if (!hdev->sent_cmd) 5013 return; 5014 5015 sent = (void *) hdev->sent_cmd->data; 5016 opcode = __le16_to_cpu(sent->opcode); 5017 if (opcode == HCI_OP_RESET) 5018 return; 5019 5020 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL); 5021 if (!skb) 5022 return; 5023 5024 skb_queue_head(&hdev->cmd_q, skb); 5025 queue_work(hdev->workqueue, &hdev->cmd_work); 5026 } 5027 5028 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status, 5029 hci_req_complete_t *req_complete, 5030 hci_req_complete_skb_t *req_complete_skb) 5031 { 5032 struct sk_buff *skb; 5033 unsigned long flags; 5034 5035 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status); 5036 5037 /* If the completed command doesn't match the last one that was 5038 * sent we need to do special handling of it. 5039 */ 5040 if (!hci_sent_cmd_data(hdev, opcode)) { 5041 /* Some CSR based controllers generate a spontaneous 5042 * reset complete event during init and any pending 5043 * command will never be completed. In such a case we 5044 * need to resend whatever was the last sent 5045 * command. 5046 */ 5047 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET) 5048 hci_resend_last(hdev); 5049 5050 return; 5051 } 5052 5053 /* If we reach this point this event matches the last command sent */ 5054 hci_dev_clear_flag(hdev, HCI_CMD_PENDING); 5055 5056 /* If the command succeeded and there's still more commands in 5057 * this request the request is not yet complete. 5058 */ 5059 if (!status && !hci_req_is_complete(hdev)) 5060 return; 5061 5062 /* If this was the last command in a request the complete 5063 * callback would be found in hdev->sent_cmd instead of the 5064 * command queue (hdev->cmd_q). 5065 */ 5066 if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) { 5067 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb; 5068 return; 5069 } 5070 5071 if (bt_cb(hdev->sent_cmd)->hci.req_complete) { 5072 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete; 5073 return; 5074 } 5075 5076 /* Remove all pending commands belonging to this request */ 5077 spin_lock_irqsave(&hdev->cmd_q.lock, flags); 5078 while ((skb = __skb_dequeue(&hdev->cmd_q))) { 5079 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) { 5080 __skb_queue_head(&hdev->cmd_q, skb); 5081 break; 5082 } 5083 5084 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB) 5085 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb; 5086 else 5087 *req_complete = bt_cb(skb)->hci.req_complete; 5088 kfree_skb(skb); 5089 } 5090 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); 5091 } 5092 5093 static void hci_rx_work(struct work_struct *work) 5094 { 5095 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work); 5096 struct sk_buff *skb; 5097 5098 BT_DBG("%s", hdev->name); 5099 5100 while ((skb = skb_dequeue(&hdev->rx_q))) { 5101 /* Send copy to monitor */ 5102 hci_send_to_monitor(hdev, skb); 5103 5104 if (atomic_read(&hdev->promisc)) { 5105 /* Send copy to the sockets */ 5106 hci_send_to_sock(hdev, skb); 5107 } 5108 5109 /* If the device has been opened in HCI_USER_CHANNEL, 5110 * the userspace has exclusive access to device. 5111 * When device is HCI_INIT, we still need to process 5112 * the data packets to the driver in order 5113 * to complete its setup(). 5114 */ 5115 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) && 5116 !test_bit(HCI_INIT, &hdev->flags)) { 5117 kfree_skb(skb); 5118 continue; 5119 } 5120 5121 if (test_bit(HCI_INIT, &hdev->flags)) { 5122 /* Don't process data packets in this states. */ 5123 switch (hci_skb_pkt_type(skb)) { 5124 case HCI_ACLDATA_PKT: 5125 case HCI_SCODATA_PKT: 5126 case HCI_ISODATA_PKT: 5127 kfree_skb(skb); 5128 continue; 5129 } 5130 } 5131 5132 /* Process frame */ 5133 switch (hci_skb_pkt_type(skb)) { 5134 case HCI_EVENT_PKT: 5135 BT_DBG("%s Event packet", hdev->name); 5136 hci_event_packet(hdev, skb); 5137 break; 5138 5139 case HCI_ACLDATA_PKT: 5140 BT_DBG("%s ACL data packet", hdev->name); 5141 hci_acldata_packet(hdev, skb); 5142 break; 5143 5144 case HCI_SCODATA_PKT: 5145 BT_DBG("%s SCO data packet", hdev->name); 5146 hci_scodata_packet(hdev, skb); 5147 break; 5148 5149 default: 5150 kfree_skb(skb); 5151 break; 5152 } 5153 } 5154 } 5155 5156 static void hci_cmd_work(struct work_struct *work) 5157 { 5158 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work); 5159 struct sk_buff *skb; 5160 5161 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name, 5162 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q)); 5163 5164 /* Send queued commands */ 5165 if (atomic_read(&hdev->cmd_cnt)) { 5166 skb = skb_dequeue(&hdev->cmd_q); 5167 if (!skb) 5168 return; 5169 5170 kfree_skb(hdev->sent_cmd); 5171 5172 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL); 5173 if (hdev->sent_cmd) { 5174 if (hci_req_status_pend(hdev)) 5175 hci_dev_set_flag(hdev, HCI_CMD_PENDING); 5176 atomic_dec(&hdev->cmd_cnt); 5177 hci_send_frame(hdev, skb); 5178 if (test_bit(HCI_RESET, &hdev->flags)) 5179 cancel_delayed_work(&hdev->cmd_timer); 5180 else 5181 schedule_delayed_work(&hdev->cmd_timer, 5182 HCI_CMD_TIMEOUT); 5183 } else { 5184 skb_queue_head(&hdev->cmd_q, skb); 5185 queue_work(hdev->workqueue, &hdev->cmd_work); 5186 } 5187 } 5188 } 5189