1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 /* Bluetooth HCI connection handling. */ 26 27 #include <linux/export.h> 28 #include <linux/debugfs.h> 29 30 #include <net/bluetooth/bluetooth.h> 31 #include <net/bluetooth/hci_core.h> 32 #include <net/bluetooth/l2cap.h> 33 34 #include "hci_request.h" 35 #include "smp.h" 36 #include "a2mp.h" 37 38 struct sco_param { 39 u16 pkt_type; 40 u16 max_latency; 41 u8 retrans_effort; 42 }; 43 44 static const struct sco_param esco_param_cvsd[] = { 45 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a, 0x01 }, /* S3 */ 46 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007, 0x01 }, /* S2 */ 47 { EDR_ESCO_MASK | ESCO_EV3, 0x0007, 0x01 }, /* S1 */ 48 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0x01 }, /* D1 */ 49 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0x01 }, /* D0 */ 50 }; 51 52 static const struct sco_param sco_param_cvsd[] = { 53 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0xff }, /* D1 */ 54 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0xff }, /* D0 */ 55 }; 56 57 static const struct sco_param esco_param_msbc[] = { 58 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d, 0x02 }, /* T2 */ 59 { EDR_ESCO_MASK | ESCO_EV3, 0x0008, 0x02 }, /* T1 */ 60 }; 61 62 /* This function requires the caller holds hdev->lock */ 63 static void hci_connect_le_scan_cleanup(struct hci_conn *conn) 64 { 65 struct hci_conn_params *params; 66 struct hci_dev *hdev = conn->hdev; 67 struct smp_irk *irk; 68 bdaddr_t *bdaddr; 69 u8 bdaddr_type; 70 71 bdaddr = &conn->dst; 72 bdaddr_type = conn->dst_type; 73 74 /* Check if we need to convert to identity address */ 75 irk = hci_get_irk(hdev, bdaddr, bdaddr_type); 76 if (irk) { 77 bdaddr = &irk->bdaddr; 78 bdaddr_type = irk->addr_type; 79 } 80 81 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr, 82 bdaddr_type); 83 if (!params || !params->explicit_connect) 84 return; 85 86 /* The connection attempt was doing scan for new RPA, and is 87 * in scan phase. If params are not associated with any other 88 * autoconnect action, remove them completely. If they are, just unmark 89 * them as waiting for connection, by clearing explicit_connect field. 90 */ 91 params->explicit_connect = false; 92 93 list_del_init(¶ms->action); 94 95 switch (params->auto_connect) { 96 case HCI_AUTO_CONN_EXPLICIT: 97 hci_conn_params_del(hdev, bdaddr, bdaddr_type); 98 /* return instead of break to avoid duplicate scan update */ 99 return; 100 case HCI_AUTO_CONN_DIRECT: 101 case HCI_AUTO_CONN_ALWAYS: 102 list_add(¶ms->action, &hdev->pend_le_conns); 103 break; 104 case HCI_AUTO_CONN_REPORT: 105 list_add(¶ms->action, &hdev->pend_le_reports); 106 break; 107 default: 108 break; 109 } 110 111 hci_update_background_scan(hdev); 112 } 113 114 static void hci_conn_cleanup(struct hci_conn *conn) 115 { 116 struct hci_dev *hdev = conn->hdev; 117 118 if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags)) 119 hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type); 120 121 hci_chan_list_flush(conn); 122 123 hci_conn_hash_del(hdev, conn); 124 125 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) { 126 switch (conn->setting & SCO_AIRMODE_MASK) { 127 case SCO_AIRMODE_CVSD: 128 case SCO_AIRMODE_TRANSP: 129 if (hdev->notify) 130 hdev->notify(hdev, HCI_NOTIFY_DISABLE_SCO); 131 break; 132 } 133 } else { 134 if (hdev->notify) 135 hdev->notify(hdev, HCI_NOTIFY_CONN_DEL); 136 } 137 138 hci_conn_del_sysfs(conn); 139 140 debugfs_remove_recursive(conn->debugfs); 141 142 hci_dev_put(hdev); 143 144 hci_conn_put(conn); 145 } 146 147 static void le_scan_cleanup(struct work_struct *work) 148 { 149 struct hci_conn *conn = container_of(work, struct hci_conn, 150 le_scan_cleanup); 151 struct hci_dev *hdev = conn->hdev; 152 struct hci_conn *c = NULL; 153 154 BT_DBG("%s hcon %p", hdev->name, conn); 155 156 hci_dev_lock(hdev); 157 158 /* Check that the hci_conn is still around */ 159 rcu_read_lock(); 160 list_for_each_entry_rcu(c, &hdev->conn_hash.list, list) { 161 if (c == conn) 162 break; 163 } 164 rcu_read_unlock(); 165 166 if (c == conn) { 167 hci_connect_le_scan_cleanup(conn); 168 hci_conn_cleanup(conn); 169 } 170 171 hci_dev_unlock(hdev); 172 hci_dev_put(hdev); 173 hci_conn_put(conn); 174 } 175 176 static void hci_connect_le_scan_remove(struct hci_conn *conn) 177 { 178 BT_DBG("%s hcon %p", conn->hdev->name, conn); 179 180 /* We can't call hci_conn_del/hci_conn_cleanup here since that 181 * could deadlock with another hci_conn_del() call that's holding 182 * hci_dev_lock and doing cancel_delayed_work_sync(&conn->disc_work). 183 * Instead, grab temporary extra references to the hci_dev and 184 * hci_conn and perform the necessary cleanup in a separate work 185 * callback. 186 */ 187 188 hci_dev_hold(conn->hdev); 189 hci_conn_get(conn); 190 191 /* Even though we hold a reference to the hdev, many other 192 * things might get cleaned up meanwhile, including the hdev's 193 * own workqueue, so we can't use that for scheduling. 194 */ 195 schedule_work(&conn->le_scan_cleanup); 196 } 197 198 static void hci_acl_create_connection(struct hci_conn *conn) 199 { 200 struct hci_dev *hdev = conn->hdev; 201 struct inquiry_entry *ie; 202 struct hci_cp_create_conn cp; 203 204 BT_DBG("hcon %p", conn); 205 206 /* Many controllers disallow HCI Create Connection while it is doing 207 * HCI Inquiry. So we cancel the Inquiry first before issuing HCI Create 208 * Connection. This may cause the MGMT discovering state to become false 209 * without user space's request but it is okay since the MGMT Discovery 210 * APIs do not promise that discovery should be done forever. Instead, 211 * the user space monitors the status of MGMT discovering and it may 212 * request for discovery again when this flag becomes false. 213 */ 214 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 215 /* Put this connection to "pending" state so that it will be 216 * executed after the inquiry cancel command complete event. 217 */ 218 conn->state = BT_CONNECT2; 219 hci_send_cmd(hdev, HCI_OP_INQUIRY_CANCEL, 0, NULL); 220 return; 221 } 222 223 conn->state = BT_CONNECT; 224 conn->out = true; 225 conn->role = HCI_ROLE_MASTER; 226 227 conn->attempt++; 228 229 conn->link_policy = hdev->link_policy; 230 231 memset(&cp, 0, sizeof(cp)); 232 bacpy(&cp.bdaddr, &conn->dst); 233 cp.pscan_rep_mode = 0x02; 234 235 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 236 if (ie) { 237 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) { 238 cp.pscan_rep_mode = ie->data.pscan_rep_mode; 239 cp.pscan_mode = ie->data.pscan_mode; 240 cp.clock_offset = ie->data.clock_offset | 241 cpu_to_le16(0x8000); 242 } 243 244 memcpy(conn->dev_class, ie->data.dev_class, 3); 245 } 246 247 cp.pkt_type = cpu_to_le16(conn->pkt_type); 248 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER)) 249 cp.role_switch = 0x01; 250 else 251 cp.role_switch = 0x00; 252 253 hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp); 254 } 255 256 int hci_disconnect(struct hci_conn *conn, __u8 reason) 257 { 258 BT_DBG("hcon %p", conn); 259 260 /* When we are master of an established connection and it enters 261 * the disconnect timeout, then go ahead and try to read the 262 * current clock offset. Processing of the result is done 263 * within the event handling and hci_clock_offset_evt function. 264 */ 265 if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER && 266 (conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) { 267 struct hci_dev *hdev = conn->hdev; 268 struct hci_cp_read_clock_offset clkoff_cp; 269 270 clkoff_cp.handle = cpu_to_le16(conn->handle); 271 hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp), 272 &clkoff_cp); 273 } 274 275 return hci_abort_conn(conn, reason); 276 } 277 278 static void hci_add_sco(struct hci_conn *conn, __u16 handle) 279 { 280 struct hci_dev *hdev = conn->hdev; 281 struct hci_cp_add_sco cp; 282 283 BT_DBG("hcon %p", conn); 284 285 conn->state = BT_CONNECT; 286 conn->out = true; 287 288 conn->attempt++; 289 290 cp.handle = cpu_to_le16(handle); 291 cp.pkt_type = cpu_to_le16(conn->pkt_type); 292 293 hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp); 294 } 295 296 static bool find_next_esco_param(struct hci_conn *conn, 297 const struct sco_param *esco_param, int size) 298 { 299 for (; conn->attempt <= size; conn->attempt++) { 300 if (lmp_esco_2m_capable(conn->link) || 301 (esco_param[conn->attempt - 1].pkt_type & ESCO_2EV3)) 302 break; 303 BT_DBG("hcon %p skipped attempt %d, eSCO 2M not supported", 304 conn, conn->attempt); 305 } 306 307 return conn->attempt <= size; 308 } 309 310 bool hci_setup_sync(struct hci_conn *conn, __u16 handle) 311 { 312 struct hci_dev *hdev = conn->hdev; 313 struct hci_cp_setup_sync_conn cp; 314 const struct sco_param *param; 315 316 BT_DBG("hcon %p", conn); 317 318 conn->state = BT_CONNECT; 319 conn->out = true; 320 321 conn->attempt++; 322 323 cp.handle = cpu_to_le16(handle); 324 325 cp.tx_bandwidth = cpu_to_le32(0x00001f40); 326 cp.rx_bandwidth = cpu_to_le32(0x00001f40); 327 cp.voice_setting = cpu_to_le16(conn->setting); 328 329 switch (conn->setting & SCO_AIRMODE_MASK) { 330 case SCO_AIRMODE_TRANSP: 331 if (!find_next_esco_param(conn, esco_param_msbc, 332 ARRAY_SIZE(esco_param_msbc))) 333 return false; 334 param = &esco_param_msbc[conn->attempt - 1]; 335 break; 336 case SCO_AIRMODE_CVSD: 337 if (lmp_esco_capable(conn->link)) { 338 if (!find_next_esco_param(conn, esco_param_cvsd, 339 ARRAY_SIZE(esco_param_cvsd))) 340 return false; 341 param = &esco_param_cvsd[conn->attempt - 1]; 342 } else { 343 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd)) 344 return false; 345 param = &sco_param_cvsd[conn->attempt - 1]; 346 } 347 break; 348 default: 349 return false; 350 } 351 352 cp.retrans_effort = param->retrans_effort; 353 cp.pkt_type = __cpu_to_le16(param->pkt_type); 354 cp.max_latency = __cpu_to_le16(param->max_latency); 355 356 if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0) 357 return false; 358 359 return true; 360 } 361 362 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency, 363 u16 to_multiplier) 364 { 365 struct hci_dev *hdev = conn->hdev; 366 struct hci_conn_params *params; 367 struct hci_cp_le_conn_update cp; 368 369 hci_dev_lock(hdev); 370 371 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 372 if (params) { 373 params->conn_min_interval = min; 374 params->conn_max_interval = max; 375 params->conn_latency = latency; 376 params->supervision_timeout = to_multiplier; 377 } 378 379 hci_dev_unlock(hdev); 380 381 memset(&cp, 0, sizeof(cp)); 382 cp.handle = cpu_to_le16(conn->handle); 383 cp.conn_interval_min = cpu_to_le16(min); 384 cp.conn_interval_max = cpu_to_le16(max); 385 cp.conn_latency = cpu_to_le16(latency); 386 cp.supervision_timeout = cpu_to_le16(to_multiplier); 387 cp.min_ce_len = cpu_to_le16(0x0000); 388 cp.max_ce_len = cpu_to_le16(0x0000); 389 390 hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp); 391 392 if (params) 393 return 0x01; 394 395 return 0x00; 396 } 397 398 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand, 399 __u8 ltk[16], __u8 key_size) 400 { 401 struct hci_dev *hdev = conn->hdev; 402 struct hci_cp_le_start_enc cp; 403 404 BT_DBG("hcon %p", conn); 405 406 memset(&cp, 0, sizeof(cp)); 407 408 cp.handle = cpu_to_le16(conn->handle); 409 cp.rand = rand; 410 cp.ediv = ediv; 411 memcpy(cp.ltk, ltk, key_size); 412 413 hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp); 414 } 415 416 /* Device _must_ be locked */ 417 void hci_sco_setup(struct hci_conn *conn, __u8 status) 418 { 419 struct hci_conn *sco = conn->link; 420 421 if (!sco) 422 return; 423 424 BT_DBG("hcon %p", conn); 425 426 if (!status) { 427 if (lmp_esco_capable(conn->hdev)) 428 hci_setup_sync(sco, conn->handle); 429 else 430 hci_add_sco(sco, conn->handle); 431 } else { 432 hci_connect_cfm(sco, status); 433 hci_conn_del(sco); 434 } 435 } 436 437 static void hci_conn_timeout(struct work_struct *work) 438 { 439 struct hci_conn *conn = container_of(work, struct hci_conn, 440 disc_work.work); 441 int refcnt = atomic_read(&conn->refcnt); 442 443 BT_DBG("hcon %p state %s", conn, state_to_string(conn->state)); 444 445 WARN_ON(refcnt < 0); 446 447 /* FIXME: It was observed that in pairing failed scenario, refcnt 448 * drops below 0. Probably this is because l2cap_conn_del calls 449 * l2cap_chan_del for each channel, and inside l2cap_chan_del conn is 450 * dropped. After that loop hci_chan_del is called which also drops 451 * conn. For now make sure that ACL is alive if refcnt is higher then 0, 452 * otherwise drop it. 453 */ 454 if (refcnt > 0) 455 return; 456 457 /* LE connections in scanning state need special handling */ 458 if (conn->state == BT_CONNECT && conn->type == LE_LINK && 459 test_bit(HCI_CONN_SCANNING, &conn->flags)) { 460 hci_connect_le_scan_remove(conn); 461 return; 462 } 463 464 hci_abort_conn(conn, hci_proto_disconn_ind(conn)); 465 } 466 467 /* Enter sniff mode */ 468 static void hci_conn_idle(struct work_struct *work) 469 { 470 struct hci_conn *conn = container_of(work, struct hci_conn, 471 idle_work.work); 472 struct hci_dev *hdev = conn->hdev; 473 474 BT_DBG("hcon %p mode %d", conn, conn->mode); 475 476 if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn)) 477 return; 478 479 if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF)) 480 return; 481 482 if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) { 483 struct hci_cp_sniff_subrate cp; 484 cp.handle = cpu_to_le16(conn->handle); 485 cp.max_latency = cpu_to_le16(0); 486 cp.min_remote_timeout = cpu_to_le16(0); 487 cp.min_local_timeout = cpu_to_le16(0); 488 hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp); 489 } 490 491 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 492 struct hci_cp_sniff_mode cp; 493 cp.handle = cpu_to_le16(conn->handle); 494 cp.max_interval = cpu_to_le16(hdev->sniff_max_interval); 495 cp.min_interval = cpu_to_le16(hdev->sniff_min_interval); 496 cp.attempt = cpu_to_le16(4); 497 cp.timeout = cpu_to_le16(1); 498 hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp); 499 } 500 } 501 502 static void hci_conn_auto_accept(struct work_struct *work) 503 { 504 struct hci_conn *conn = container_of(work, struct hci_conn, 505 auto_accept_work.work); 506 507 hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst), 508 &conn->dst); 509 } 510 511 static void le_disable_advertising(struct hci_dev *hdev) 512 { 513 if (ext_adv_capable(hdev)) { 514 struct hci_cp_le_set_ext_adv_enable cp; 515 516 cp.enable = 0x00; 517 cp.num_of_sets = 0x00; 518 519 hci_send_cmd(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp), 520 &cp); 521 } else { 522 u8 enable = 0x00; 523 hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), 524 &enable); 525 } 526 } 527 528 static void le_conn_timeout(struct work_struct *work) 529 { 530 struct hci_conn *conn = container_of(work, struct hci_conn, 531 le_conn_timeout.work); 532 struct hci_dev *hdev = conn->hdev; 533 534 BT_DBG(""); 535 536 /* We could end up here due to having done directed advertising, 537 * so clean up the state if necessary. This should however only 538 * happen with broken hardware or if low duty cycle was used 539 * (which doesn't have a timeout of its own). 540 */ 541 if (conn->role == HCI_ROLE_SLAVE) { 542 /* Disable LE Advertising */ 543 le_disable_advertising(hdev); 544 hci_le_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT); 545 return; 546 } 547 548 hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM); 549 } 550 551 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst, 552 u8 role) 553 { 554 struct hci_conn *conn; 555 556 BT_DBG("%s dst %pMR", hdev->name, dst); 557 558 conn = kzalloc(sizeof(*conn), GFP_KERNEL); 559 if (!conn) 560 return NULL; 561 562 bacpy(&conn->dst, dst); 563 bacpy(&conn->src, &hdev->bdaddr); 564 conn->hdev = hdev; 565 conn->type = type; 566 conn->role = role; 567 conn->mode = HCI_CM_ACTIVE; 568 conn->state = BT_OPEN; 569 conn->auth_type = HCI_AT_GENERAL_BONDING; 570 conn->io_capability = hdev->io_capability; 571 conn->remote_auth = 0xff; 572 conn->key_type = 0xff; 573 conn->rssi = HCI_RSSI_INVALID; 574 conn->tx_power = HCI_TX_POWER_INVALID; 575 conn->max_tx_power = HCI_TX_POWER_INVALID; 576 577 set_bit(HCI_CONN_POWER_SAVE, &conn->flags); 578 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 579 580 /* Set Default Authenticated payload timeout to 30s */ 581 conn->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT; 582 583 if (conn->role == HCI_ROLE_MASTER) 584 conn->out = true; 585 586 switch (type) { 587 case ACL_LINK: 588 conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK; 589 break; 590 case LE_LINK: 591 /* conn->src should reflect the local identity address */ 592 hci_copy_identity_address(hdev, &conn->src, &conn->src_type); 593 break; 594 case SCO_LINK: 595 if (lmp_esco_capable(hdev)) 596 conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) | 597 (hdev->esco_type & EDR_ESCO_MASK); 598 else 599 conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK; 600 break; 601 case ESCO_LINK: 602 conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK; 603 break; 604 } 605 606 skb_queue_head_init(&conn->data_q); 607 608 INIT_LIST_HEAD(&conn->chan_list); 609 610 INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout); 611 INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept); 612 INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle); 613 INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout); 614 INIT_WORK(&conn->le_scan_cleanup, le_scan_cleanup); 615 616 atomic_set(&conn->refcnt, 0); 617 618 hci_dev_hold(hdev); 619 620 hci_conn_hash_add(hdev, conn); 621 622 /* The SCO and eSCO connections will only be notified when their 623 * setup has been completed. This is different to ACL links which 624 * can be notified right away. 625 */ 626 if (conn->type != SCO_LINK && conn->type != ESCO_LINK) { 627 if (hdev->notify) 628 hdev->notify(hdev, HCI_NOTIFY_CONN_ADD); 629 } 630 631 hci_conn_init_sysfs(conn); 632 633 return conn; 634 } 635 636 int hci_conn_del(struct hci_conn *conn) 637 { 638 struct hci_dev *hdev = conn->hdev; 639 640 BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle); 641 642 cancel_delayed_work_sync(&conn->disc_work); 643 cancel_delayed_work_sync(&conn->auto_accept_work); 644 cancel_delayed_work_sync(&conn->idle_work); 645 646 if (conn->type == ACL_LINK) { 647 struct hci_conn *sco = conn->link; 648 if (sco) 649 sco->link = NULL; 650 651 /* Unacked frames */ 652 hdev->acl_cnt += conn->sent; 653 } else if (conn->type == LE_LINK) { 654 cancel_delayed_work(&conn->le_conn_timeout); 655 656 if (hdev->le_pkts) 657 hdev->le_cnt += conn->sent; 658 else 659 hdev->acl_cnt += conn->sent; 660 } else { 661 struct hci_conn *acl = conn->link; 662 if (acl) { 663 acl->link = NULL; 664 hci_conn_drop(acl); 665 } 666 } 667 668 if (conn->amp_mgr) 669 amp_mgr_put(conn->amp_mgr); 670 671 skb_queue_purge(&conn->data_q); 672 673 /* Remove the connection from the list and cleanup its remaining 674 * state. This is a separate function since for some cases like 675 * BT_CONNECT_SCAN we *only* want the cleanup part without the 676 * rest of hci_conn_del. 677 */ 678 hci_conn_cleanup(conn); 679 680 return 0; 681 } 682 683 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, uint8_t src_type) 684 { 685 int use_src = bacmp(src, BDADDR_ANY); 686 struct hci_dev *hdev = NULL, *d; 687 688 BT_DBG("%pMR -> %pMR", src, dst); 689 690 read_lock(&hci_dev_list_lock); 691 692 list_for_each_entry(d, &hci_dev_list, list) { 693 if (!test_bit(HCI_UP, &d->flags) || 694 hci_dev_test_flag(d, HCI_USER_CHANNEL) || 695 d->dev_type != HCI_PRIMARY) 696 continue; 697 698 /* Simple routing: 699 * No source address - find interface with bdaddr != dst 700 * Source address - find interface with bdaddr == src 701 */ 702 703 if (use_src) { 704 bdaddr_t id_addr; 705 u8 id_addr_type; 706 707 if (src_type == BDADDR_BREDR) { 708 if (!lmp_bredr_capable(d)) 709 continue; 710 bacpy(&id_addr, &d->bdaddr); 711 id_addr_type = BDADDR_BREDR; 712 } else { 713 if (!lmp_le_capable(d)) 714 continue; 715 716 hci_copy_identity_address(d, &id_addr, 717 &id_addr_type); 718 719 /* Convert from HCI to three-value type */ 720 if (id_addr_type == ADDR_LE_DEV_PUBLIC) 721 id_addr_type = BDADDR_LE_PUBLIC; 722 else 723 id_addr_type = BDADDR_LE_RANDOM; 724 } 725 726 if (!bacmp(&id_addr, src) && id_addr_type == src_type) { 727 hdev = d; break; 728 } 729 } else { 730 if (bacmp(&d->bdaddr, dst)) { 731 hdev = d; break; 732 } 733 } 734 } 735 736 if (hdev) 737 hdev = hci_dev_hold(hdev); 738 739 read_unlock(&hci_dev_list_lock); 740 return hdev; 741 } 742 EXPORT_SYMBOL(hci_get_route); 743 744 /* This function requires the caller holds hdev->lock */ 745 void hci_le_conn_failed(struct hci_conn *conn, u8 status) 746 { 747 struct hci_dev *hdev = conn->hdev; 748 struct hci_conn_params *params; 749 750 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst, 751 conn->dst_type); 752 if (params && params->conn) { 753 hci_conn_drop(params->conn); 754 hci_conn_put(params->conn); 755 params->conn = NULL; 756 } 757 758 conn->state = BT_CLOSED; 759 760 /* If the status indicates successful cancellation of 761 * the attempt (i.e. Unknown Connection Id) there's no point of 762 * notifying failure since we'll go back to keep trying to 763 * connect. The only exception is explicit connect requests 764 * where a timeout + cancel does indicate an actual failure. 765 */ 766 if (status != HCI_ERROR_UNKNOWN_CONN_ID || 767 (params && params->explicit_connect)) 768 mgmt_connect_failed(hdev, &conn->dst, conn->type, 769 conn->dst_type, status); 770 771 hci_connect_cfm(conn, status); 772 773 hci_conn_del(conn); 774 775 /* The suspend notifier is waiting for all devices to disconnect and an 776 * LE connect cancel will result in an hci_le_conn_failed. Once the last 777 * connection is deleted, we should also wake the suspend queue to 778 * complete suspend operations. 779 */ 780 if (list_empty(&hdev->conn_hash.list) && 781 test_and_clear_bit(SUSPEND_DISCONNECTING, hdev->suspend_tasks)) { 782 wake_up(&hdev->suspend_wait_q); 783 } 784 785 /* Since we may have temporarily stopped the background scanning in 786 * favor of connection establishment, we should restart it. 787 */ 788 hci_update_background_scan(hdev); 789 790 /* Re-enable advertising in case this was a failed connection 791 * attempt as a peripheral. 792 */ 793 hci_req_reenable_advertising(hdev); 794 } 795 796 static void create_le_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode) 797 { 798 struct hci_conn *conn; 799 800 hci_dev_lock(hdev); 801 802 conn = hci_lookup_le_connect(hdev); 803 804 if (hdev->adv_instance_cnt) 805 hci_req_resume_adv_instances(hdev); 806 807 if (!status) { 808 hci_connect_le_scan_cleanup(conn); 809 goto done; 810 } 811 812 bt_dev_err(hdev, "request failed to create LE connection: " 813 "status 0x%2.2x", status); 814 815 if (!conn) 816 goto done; 817 818 hci_le_conn_failed(conn, status); 819 820 done: 821 hci_dev_unlock(hdev); 822 } 823 824 static bool conn_use_rpa(struct hci_conn *conn) 825 { 826 struct hci_dev *hdev = conn->hdev; 827 828 return hci_dev_test_flag(hdev, HCI_PRIVACY); 829 } 830 831 static void set_ext_conn_params(struct hci_conn *conn, 832 struct hci_cp_le_ext_conn_param *p) 833 { 834 struct hci_dev *hdev = conn->hdev; 835 836 memset(p, 0, sizeof(*p)); 837 838 p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 839 p->scan_window = cpu_to_le16(hdev->le_scan_window_connect); 840 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 841 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 842 p->conn_latency = cpu_to_le16(conn->le_conn_latency); 843 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 844 p->min_ce_len = cpu_to_le16(0x0000); 845 p->max_ce_len = cpu_to_le16(0x0000); 846 } 847 848 static void hci_req_add_le_create_conn(struct hci_request *req, 849 struct hci_conn *conn, 850 bdaddr_t *direct_rpa) 851 { 852 struct hci_dev *hdev = conn->hdev; 853 u8 own_addr_type; 854 855 /* If direct address was provided we use it instead of current 856 * address. 857 */ 858 if (direct_rpa) { 859 if (bacmp(&req->hdev->random_addr, direct_rpa)) 860 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, 861 direct_rpa); 862 863 /* direct address is always RPA */ 864 own_addr_type = ADDR_LE_DEV_RANDOM; 865 } else { 866 /* Update random address, but set require_privacy to false so 867 * that we never connect with an non-resolvable address. 868 */ 869 if (hci_update_random_address(req, false, conn_use_rpa(conn), 870 &own_addr_type)) 871 return; 872 } 873 874 if (use_ext_conn(hdev)) { 875 struct hci_cp_le_ext_create_conn *cp; 876 struct hci_cp_le_ext_conn_param *p; 877 u8 data[sizeof(*cp) + sizeof(*p) * 3]; 878 u32 plen; 879 880 cp = (void *) data; 881 p = (void *) cp->data; 882 883 memset(cp, 0, sizeof(*cp)); 884 885 bacpy(&cp->peer_addr, &conn->dst); 886 cp->peer_addr_type = conn->dst_type; 887 cp->own_addr_type = own_addr_type; 888 889 plen = sizeof(*cp); 890 891 if (scan_1m(hdev)) { 892 cp->phys |= LE_SCAN_PHY_1M; 893 set_ext_conn_params(conn, p); 894 895 p++; 896 plen += sizeof(*p); 897 } 898 899 if (scan_2m(hdev)) { 900 cp->phys |= LE_SCAN_PHY_2M; 901 set_ext_conn_params(conn, p); 902 903 p++; 904 plen += sizeof(*p); 905 } 906 907 if (scan_coded(hdev)) { 908 cp->phys |= LE_SCAN_PHY_CODED; 909 set_ext_conn_params(conn, p); 910 911 plen += sizeof(*p); 912 } 913 914 hci_req_add(req, HCI_OP_LE_EXT_CREATE_CONN, plen, data); 915 916 } else { 917 struct hci_cp_le_create_conn cp; 918 919 memset(&cp, 0, sizeof(cp)); 920 921 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 922 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect); 923 924 bacpy(&cp.peer_addr, &conn->dst); 925 cp.peer_addr_type = conn->dst_type; 926 cp.own_address_type = own_addr_type; 927 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 928 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 929 cp.conn_latency = cpu_to_le16(conn->le_conn_latency); 930 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 931 cp.min_ce_len = cpu_to_le16(0x0000); 932 cp.max_ce_len = cpu_to_le16(0x0000); 933 934 hci_req_add(req, HCI_OP_LE_CREATE_CONN, sizeof(cp), &cp); 935 } 936 937 conn->state = BT_CONNECT; 938 clear_bit(HCI_CONN_SCANNING, &conn->flags); 939 } 940 941 static void hci_req_directed_advertising(struct hci_request *req, 942 struct hci_conn *conn) 943 { 944 struct hci_dev *hdev = req->hdev; 945 u8 own_addr_type; 946 u8 enable; 947 948 if (ext_adv_capable(hdev)) { 949 struct hci_cp_le_set_ext_adv_params cp; 950 bdaddr_t random_addr; 951 952 /* Set require_privacy to false so that the remote device has a 953 * chance of identifying us. 954 */ 955 if (hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, 956 &own_addr_type, &random_addr) < 0) 957 return; 958 959 memset(&cp, 0, sizeof(cp)); 960 961 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); 962 cp.own_addr_type = own_addr_type; 963 cp.channel_map = hdev->le_adv_channel_map; 964 cp.tx_power = HCI_TX_POWER_INVALID; 965 cp.primary_phy = HCI_ADV_PHY_1M; 966 cp.secondary_phy = HCI_ADV_PHY_1M; 967 cp.handle = 0; /* Use instance 0 for directed adv */ 968 cp.own_addr_type = own_addr_type; 969 cp.peer_addr_type = conn->dst_type; 970 bacpy(&cp.peer_addr, &conn->dst); 971 972 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for 973 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND 974 * does not supports advertising data when the advertising set already 975 * contains some, the controller shall return erroc code 'Invalid 976 * HCI Command Parameters(0x12). 977 * So it is required to remove adv set for handle 0x00. since we use 978 * instance 0 for directed adv. 979 */ 980 __hci_req_remove_ext_adv_instance(req, cp.handle); 981 982 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp); 983 984 if (own_addr_type == ADDR_LE_DEV_RANDOM && 985 bacmp(&random_addr, BDADDR_ANY) && 986 bacmp(&random_addr, &hdev->random_addr)) { 987 struct hci_cp_le_set_adv_set_rand_addr cp; 988 989 memset(&cp, 0, sizeof(cp)); 990 991 cp.handle = 0; 992 bacpy(&cp.bdaddr, &random_addr); 993 994 hci_req_add(req, 995 HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 996 sizeof(cp), &cp); 997 } 998 999 __hci_req_enable_ext_advertising(req, 0x00); 1000 } else { 1001 struct hci_cp_le_set_adv_param cp; 1002 1003 /* Clear the HCI_LE_ADV bit temporarily so that the 1004 * hci_update_random_address knows that it's safe to go ahead 1005 * and write a new random address. The flag will be set back on 1006 * as soon as the SET_ADV_ENABLE HCI command completes. 1007 */ 1008 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1009 1010 /* Set require_privacy to false so that the remote device has a 1011 * chance of identifying us. 1012 */ 1013 if (hci_update_random_address(req, false, conn_use_rpa(conn), 1014 &own_addr_type) < 0) 1015 return; 1016 1017 memset(&cp, 0, sizeof(cp)); 1018 1019 /* Some controllers might reject command if intervals are not 1020 * within range for undirected advertising. 1021 * BCM20702A0 is known to be affected by this. 1022 */ 1023 cp.min_interval = cpu_to_le16(0x0020); 1024 cp.max_interval = cpu_to_le16(0x0020); 1025 1026 cp.type = LE_ADV_DIRECT_IND; 1027 cp.own_address_type = own_addr_type; 1028 cp.direct_addr_type = conn->dst_type; 1029 bacpy(&cp.direct_addr, &conn->dst); 1030 cp.channel_map = hdev->le_adv_channel_map; 1031 1032 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp); 1033 1034 enable = 0x01; 1035 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), 1036 &enable); 1037 } 1038 1039 conn->state = BT_CONNECT; 1040 } 1041 1042 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst, 1043 u8 dst_type, u8 sec_level, u16 conn_timeout, 1044 u8 role, bdaddr_t *direct_rpa) 1045 { 1046 struct hci_conn_params *params; 1047 struct hci_conn *conn; 1048 struct smp_irk *irk; 1049 struct hci_request req; 1050 int err; 1051 1052 /* This ensures that during disable le_scan address resolution 1053 * will not be disabled if it is followed by le_create_conn 1054 */ 1055 bool rpa_le_conn = true; 1056 1057 /* Let's make sure that le is enabled.*/ 1058 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 1059 if (lmp_le_capable(hdev)) 1060 return ERR_PTR(-ECONNREFUSED); 1061 1062 return ERR_PTR(-EOPNOTSUPP); 1063 } 1064 1065 /* Since the controller supports only one LE connection attempt at a 1066 * time, we return -EBUSY if there is any connection attempt running. 1067 */ 1068 if (hci_lookup_le_connect(hdev)) 1069 return ERR_PTR(-EBUSY); 1070 1071 /* If there's already a connection object but it's not in 1072 * scanning state it means it must already be established, in 1073 * which case we can't do anything else except report a failure 1074 * to connect. 1075 */ 1076 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); 1077 if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) { 1078 return ERR_PTR(-EBUSY); 1079 } 1080 1081 /* When given an identity address with existing identity 1082 * resolving key, the connection needs to be established 1083 * to a resolvable random address. 1084 * 1085 * Storing the resolvable random address is required here 1086 * to handle connection failures. The address will later 1087 * be resolved back into the original identity address 1088 * from the connect request. 1089 */ 1090 irk = hci_find_irk_by_addr(hdev, dst, dst_type); 1091 if (irk && bacmp(&irk->rpa, BDADDR_ANY)) { 1092 dst = &irk->rpa; 1093 dst_type = ADDR_LE_DEV_RANDOM; 1094 } 1095 1096 if (conn) { 1097 bacpy(&conn->dst, dst); 1098 } else { 1099 conn = hci_conn_add(hdev, LE_LINK, dst, role); 1100 if (!conn) 1101 return ERR_PTR(-ENOMEM); 1102 hci_conn_hold(conn); 1103 conn->pending_sec_level = sec_level; 1104 } 1105 1106 conn->dst_type = dst_type; 1107 conn->sec_level = BT_SECURITY_LOW; 1108 conn->conn_timeout = conn_timeout; 1109 1110 hci_req_init(&req, hdev); 1111 1112 /* Disable advertising if we're active. For master role 1113 * connections most controllers will refuse to connect if 1114 * advertising is enabled, and for slave role connections we 1115 * anyway have to disable it in order to start directed 1116 * advertising. Any registered advertisements will be 1117 * re-enabled after the connection attempt is finished. 1118 */ 1119 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) 1120 __hci_req_pause_adv_instances(&req); 1121 1122 /* If requested to connect as slave use directed advertising */ 1123 if (conn->role == HCI_ROLE_SLAVE) { 1124 /* If we're active scanning most controllers are unable 1125 * to initiate advertising. Simply reject the attempt. 1126 */ 1127 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && 1128 hdev->le_scan_type == LE_SCAN_ACTIVE) { 1129 hci_req_purge(&req); 1130 hci_conn_del(conn); 1131 return ERR_PTR(-EBUSY); 1132 } 1133 1134 hci_req_directed_advertising(&req, conn); 1135 goto create_conn; 1136 } 1137 1138 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 1139 if (params) { 1140 conn->le_conn_min_interval = params->conn_min_interval; 1141 conn->le_conn_max_interval = params->conn_max_interval; 1142 conn->le_conn_latency = params->conn_latency; 1143 conn->le_supv_timeout = params->supervision_timeout; 1144 } else { 1145 conn->le_conn_min_interval = hdev->le_conn_min_interval; 1146 conn->le_conn_max_interval = hdev->le_conn_max_interval; 1147 conn->le_conn_latency = hdev->le_conn_latency; 1148 conn->le_supv_timeout = hdev->le_supv_timeout; 1149 } 1150 1151 /* If controller is scanning, we stop it since some controllers are 1152 * not able to scan and connect at the same time. Also set the 1153 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 1154 * handler for scan disabling knows to set the correct discovery 1155 * state. 1156 */ 1157 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 1158 hci_req_add_le_scan_disable(&req, rpa_le_conn); 1159 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 1160 } 1161 1162 hci_req_add_le_create_conn(&req, conn, direct_rpa); 1163 1164 create_conn: 1165 err = hci_req_run(&req, create_le_conn_complete); 1166 if (err) { 1167 hci_conn_del(conn); 1168 1169 if (hdev->adv_instance_cnt) 1170 hci_req_resume_adv_instances(hdev); 1171 1172 return ERR_PTR(err); 1173 } 1174 1175 return conn; 1176 } 1177 1178 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type) 1179 { 1180 struct hci_conn *conn; 1181 1182 conn = hci_conn_hash_lookup_le(hdev, addr, type); 1183 if (!conn) 1184 return false; 1185 1186 if (conn->state != BT_CONNECTED) 1187 return false; 1188 1189 return true; 1190 } 1191 1192 /* This function requires the caller holds hdev->lock */ 1193 static int hci_explicit_conn_params_set(struct hci_dev *hdev, 1194 bdaddr_t *addr, u8 addr_type) 1195 { 1196 struct hci_conn_params *params; 1197 1198 if (is_connected(hdev, addr, addr_type)) 1199 return -EISCONN; 1200 1201 params = hci_conn_params_lookup(hdev, addr, addr_type); 1202 if (!params) { 1203 params = hci_conn_params_add(hdev, addr, addr_type); 1204 if (!params) 1205 return -ENOMEM; 1206 1207 /* If we created new params, mark them to be deleted in 1208 * hci_connect_le_scan_cleanup. It's different case than 1209 * existing disabled params, those will stay after cleanup. 1210 */ 1211 params->auto_connect = HCI_AUTO_CONN_EXPLICIT; 1212 } 1213 1214 /* We're trying to connect, so make sure params are at pend_le_conns */ 1215 if (params->auto_connect == HCI_AUTO_CONN_DISABLED || 1216 params->auto_connect == HCI_AUTO_CONN_REPORT || 1217 params->auto_connect == HCI_AUTO_CONN_EXPLICIT) { 1218 list_del_init(¶ms->action); 1219 list_add(¶ms->action, &hdev->pend_le_conns); 1220 } 1221 1222 params->explicit_connect = true; 1223 1224 BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type, 1225 params->auto_connect); 1226 1227 return 0; 1228 } 1229 1230 /* This function requires the caller holds hdev->lock */ 1231 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst, 1232 u8 dst_type, u8 sec_level, 1233 u16 conn_timeout, 1234 enum conn_reasons conn_reason) 1235 { 1236 struct hci_conn *conn; 1237 1238 /* Let's make sure that le is enabled.*/ 1239 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 1240 if (lmp_le_capable(hdev)) 1241 return ERR_PTR(-ECONNREFUSED); 1242 1243 return ERR_PTR(-EOPNOTSUPP); 1244 } 1245 1246 /* Some devices send ATT messages as soon as the physical link is 1247 * established. To be able to handle these ATT messages, the user- 1248 * space first establishes the connection and then starts the pairing 1249 * process. 1250 * 1251 * So if a hci_conn object already exists for the following connection 1252 * attempt, we simply update pending_sec_level and auth_type fields 1253 * and return the object found. 1254 */ 1255 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); 1256 if (conn) { 1257 if (conn->pending_sec_level < sec_level) 1258 conn->pending_sec_level = sec_level; 1259 goto done; 1260 } 1261 1262 BT_DBG("requesting refresh of dst_addr"); 1263 1264 conn = hci_conn_add(hdev, LE_LINK, dst, HCI_ROLE_MASTER); 1265 if (!conn) 1266 return ERR_PTR(-ENOMEM); 1267 1268 if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0) { 1269 hci_conn_del(conn); 1270 return ERR_PTR(-EBUSY); 1271 } 1272 1273 conn->state = BT_CONNECT; 1274 set_bit(HCI_CONN_SCANNING, &conn->flags); 1275 conn->dst_type = dst_type; 1276 conn->sec_level = BT_SECURITY_LOW; 1277 conn->pending_sec_level = sec_level; 1278 conn->conn_timeout = conn_timeout; 1279 conn->conn_reason = conn_reason; 1280 1281 hci_update_background_scan(hdev); 1282 1283 done: 1284 hci_conn_hold(conn); 1285 return conn; 1286 } 1287 1288 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst, 1289 u8 sec_level, u8 auth_type, 1290 enum conn_reasons conn_reason) 1291 { 1292 struct hci_conn *acl; 1293 1294 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 1295 if (lmp_bredr_capable(hdev)) 1296 return ERR_PTR(-ECONNREFUSED); 1297 1298 return ERR_PTR(-EOPNOTSUPP); 1299 } 1300 1301 acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst); 1302 if (!acl) { 1303 acl = hci_conn_add(hdev, ACL_LINK, dst, HCI_ROLE_MASTER); 1304 if (!acl) 1305 return ERR_PTR(-ENOMEM); 1306 } 1307 1308 hci_conn_hold(acl); 1309 1310 acl->conn_reason = conn_reason; 1311 if (acl->state == BT_OPEN || acl->state == BT_CLOSED) { 1312 acl->sec_level = BT_SECURITY_LOW; 1313 acl->pending_sec_level = sec_level; 1314 acl->auth_type = auth_type; 1315 hci_acl_create_connection(acl); 1316 } 1317 1318 return acl; 1319 } 1320 1321 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, 1322 __u16 setting) 1323 { 1324 struct hci_conn *acl; 1325 struct hci_conn *sco; 1326 1327 acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING, 1328 CONN_REASON_SCO_CONNECT); 1329 if (IS_ERR(acl)) 1330 return acl; 1331 1332 sco = hci_conn_hash_lookup_ba(hdev, type, dst); 1333 if (!sco) { 1334 sco = hci_conn_add(hdev, type, dst, HCI_ROLE_MASTER); 1335 if (!sco) { 1336 hci_conn_drop(acl); 1337 return ERR_PTR(-ENOMEM); 1338 } 1339 } 1340 1341 acl->link = sco; 1342 sco->link = acl; 1343 1344 hci_conn_hold(sco); 1345 1346 sco->setting = setting; 1347 1348 if (acl->state == BT_CONNECTED && 1349 (sco->state == BT_OPEN || sco->state == BT_CLOSED)) { 1350 set_bit(HCI_CONN_POWER_SAVE, &acl->flags); 1351 hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON); 1352 1353 if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) { 1354 /* defer SCO setup until mode change completed */ 1355 set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags); 1356 return sco; 1357 } 1358 1359 hci_sco_setup(acl, 0x00); 1360 } 1361 1362 return sco; 1363 } 1364 1365 /* Check link security requirement */ 1366 int hci_conn_check_link_mode(struct hci_conn *conn) 1367 { 1368 BT_DBG("hcon %p", conn); 1369 1370 /* In Secure Connections Only mode, it is required that Secure 1371 * Connections is used and the link is encrypted with AES-CCM 1372 * using a P-256 authenticated combination key. 1373 */ 1374 if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) { 1375 if (!hci_conn_sc_enabled(conn) || 1376 !test_bit(HCI_CONN_AES_CCM, &conn->flags) || 1377 conn->key_type != HCI_LK_AUTH_COMBINATION_P256) 1378 return 0; 1379 } 1380 1381 /* AES encryption is required for Level 4: 1382 * 1383 * BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 3, Part C 1384 * page 1319: 1385 * 1386 * 128-bit equivalent strength for link and encryption keys 1387 * required using FIPS approved algorithms (E0 not allowed, 1388 * SAFER+ not allowed, and P-192 not allowed; encryption key 1389 * not shortened) 1390 */ 1391 if (conn->sec_level == BT_SECURITY_FIPS && 1392 !test_bit(HCI_CONN_AES_CCM, &conn->flags)) { 1393 bt_dev_err(conn->hdev, 1394 "Invalid security: Missing AES-CCM usage"); 1395 return 0; 1396 } 1397 1398 if (hci_conn_ssp_enabled(conn) && 1399 !test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1400 return 0; 1401 1402 return 1; 1403 } 1404 1405 /* Authenticate remote device */ 1406 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type) 1407 { 1408 BT_DBG("hcon %p", conn); 1409 1410 if (conn->pending_sec_level > sec_level) 1411 sec_level = conn->pending_sec_level; 1412 1413 if (sec_level > conn->sec_level) 1414 conn->pending_sec_level = sec_level; 1415 else if (test_bit(HCI_CONN_AUTH, &conn->flags)) 1416 return 1; 1417 1418 /* Make sure we preserve an existing MITM requirement*/ 1419 auth_type |= (conn->auth_type & 0x01); 1420 1421 conn->auth_type = auth_type; 1422 1423 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) { 1424 struct hci_cp_auth_requested cp; 1425 1426 cp.handle = cpu_to_le16(conn->handle); 1427 hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED, 1428 sizeof(cp), &cp); 1429 1430 /* If we're already encrypted set the REAUTH_PEND flag, 1431 * otherwise set the ENCRYPT_PEND. 1432 */ 1433 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1434 set_bit(HCI_CONN_REAUTH_PEND, &conn->flags); 1435 else 1436 set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); 1437 } 1438 1439 return 0; 1440 } 1441 1442 /* Encrypt the link */ 1443 static void hci_conn_encrypt(struct hci_conn *conn) 1444 { 1445 BT_DBG("hcon %p", conn); 1446 1447 if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) { 1448 struct hci_cp_set_conn_encrypt cp; 1449 cp.handle = cpu_to_le16(conn->handle); 1450 cp.encrypt = 0x01; 1451 hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp), 1452 &cp); 1453 } 1454 } 1455 1456 /* Enable security */ 1457 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type, 1458 bool initiator) 1459 { 1460 BT_DBG("hcon %p", conn); 1461 1462 if (conn->type == LE_LINK) 1463 return smp_conn_security(conn, sec_level); 1464 1465 /* For sdp we don't need the link key. */ 1466 if (sec_level == BT_SECURITY_SDP) 1467 return 1; 1468 1469 /* For non 2.1 devices and low security level we don't need the link 1470 key. */ 1471 if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn)) 1472 return 1; 1473 1474 /* For other security levels we need the link key. */ 1475 if (!test_bit(HCI_CONN_AUTH, &conn->flags)) 1476 goto auth; 1477 1478 /* An authenticated FIPS approved combination key has sufficient 1479 * security for security level 4. */ 1480 if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256 && 1481 sec_level == BT_SECURITY_FIPS) 1482 goto encrypt; 1483 1484 /* An authenticated combination key has sufficient security for 1485 security level 3. */ 1486 if ((conn->key_type == HCI_LK_AUTH_COMBINATION_P192 || 1487 conn->key_type == HCI_LK_AUTH_COMBINATION_P256) && 1488 sec_level == BT_SECURITY_HIGH) 1489 goto encrypt; 1490 1491 /* An unauthenticated combination key has sufficient security for 1492 security level 1 and 2. */ 1493 if ((conn->key_type == HCI_LK_UNAUTH_COMBINATION_P192 || 1494 conn->key_type == HCI_LK_UNAUTH_COMBINATION_P256) && 1495 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW)) 1496 goto encrypt; 1497 1498 /* A combination key has always sufficient security for the security 1499 levels 1 or 2. High security level requires the combination key 1500 is generated using maximum PIN code length (16). 1501 For pre 2.1 units. */ 1502 if (conn->key_type == HCI_LK_COMBINATION && 1503 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW || 1504 conn->pin_length == 16)) 1505 goto encrypt; 1506 1507 auth: 1508 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) 1509 return 0; 1510 1511 if (initiator) 1512 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags); 1513 1514 if (!hci_conn_auth(conn, sec_level, auth_type)) 1515 return 0; 1516 1517 encrypt: 1518 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) { 1519 /* Ensure that the encryption key size has been read, 1520 * otherwise stall the upper layer responses. 1521 */ 1522 if (!conn->enc_key_size) 1523 return 0; 1524 1525 /* Nothing else needed, all requirements are met */ 1526 return 1; 1527 } 1528 1529 hci_conn_encrypt(conn); 1530 return 0; 1531 } 1532 EXPORT_SYMBOL(hci_conn_security); 1533 1534 /* Check secure link requirement */ 1535 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level) 1536 { 1537 BT_DBG("hcon %p", conn); 1538 1539 /* Accept if non-secure or higher security level is required */ 1540 if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS) 1541 return 1; 1542 1543 /* Accept if secure or higher security level is already present */ 1544 if (conn->sec_level == BT_SECURITY_HIGH || 1545 conn->sec_level == BT_SECURITY_FIPS) 1546 return 1; 1547 1548 /* Reject not secure link */ 1549 return 0; 1550 } 1551 EXPORT_SYMBOL(hci_conn_check_secure); 1552 1553 /* Switch role */ 1554 int hci_conn_switch_role(struct hci_conn *conn, __u8 role) 1555 { 1556 BT_DBG("hcon %p", conn); 1557 1558 if (role == conn->role) 1559 return 1; 1560 1561 if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) { 1562 struct hci_cp_switch_role cp; 1563 bacpy(&cp.bdaddr, &conn->dst); 1564 cp.role = role; 1565 hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp); 1566 } 1567 1568 return 0; 1569 } 1570 EXPORT_SYMBOL(hci_conn_switch_role); 1571 1572 /* Enter active mode */ 1573 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active) 1574 { 1575 struct hci_dev *hdev = conn->hdev; 1576 1577 BT_DBG("hcon %p mode %d", conn, conn->mode); 1578 1579 if (conn->mode != HCI_CM_SNIFF) 1580 goto timer; 1581 1582 if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active) 1583 goto timer; 1584 1585 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 1586 struct hci_cp_exit_sniff_mode cp; 1587 cp.handle = cpu_to_le16(conn->handle); 1588 hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp); 1589 } 1590 1591 timer: 1592 if (hdev->idle_timeout > 0) 1593 queue_delayed_work(hdev->workqueue, &conn->idle_work, 1594 msecs_to_jiffies(hdev->idle_timeout)); 1595 } 1596 1597 /* Drop all connection on the device */ 1598 void hci_conn_hash_flush(struct hci_dev *hdev) 1599 { 1600 struct hci_conn_hash *h = &hdev->conn_hash; 1601 struct hci_conn *c, *n; 1602 1603 BT_DBG("hdev %s", hdev->name); 1604 1605 list_for_each_entry_safe(c, n, &h->list, list) { 1606 c->state = BT_CLOSED; 1607 1608 hci_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM); 1609 hci_conn_del(c); 1610 } 1611 } 1612 1613 /* Check pending connect attempts */ 1614 void hci_conn_check_pending(struct hci_dev *hdev) 1615 { 1616 struct hci_conn *conn; 1617 1618 BT_DBG("hdev %s", hdev->name); 1619 1620 hci_dev_lock(hdev); 1621 1622 conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2); 1623 if (conn) 1624 hci_acl_create_connection(conn); 1625 1626 hci_dev_unlock(hdev); 1627 } 1628 1629 static u32 get_link_mode(struct hci_conn *conn) 1630 { 1631 u32 link_mode = 0; 1632 1633 if (conn->role == HCI_ROLE_MASTER) 1634 link_mode |= HCI_LM_MASTER; 1635 1636 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1637 link_mode |= HCI_LM_ENCRYPT; 1638 1639 if (test_bit(HCI_CONN_AUTH, &conn->flags)) 1640 link_mode |= HCI_LM_AUTH; 1641 1642 if (test_bit(HCI_CONN_SECURE, &conn->flags)) 1643 link_mode |= HCI_LM_SECURE; 1644 1645 if (test_bit(HCI_CONN_FIPS, &conn->flags)) 1646 link_mode |= HCI_LM_FIPS; 1647 1648 return link_mode; 1649 } 1650 1651 int hci_get_conn_list(void __user *arg) 1652 { 1653 struct hci_conn *c; 1654 struct hci_conn_list_req req, *cl; 1655 struct hci_conn_info *ci; 1656 struct hci_dev *hdev; 1657 int n = 0, size, err; 1658 1659 if (copy_from_user(&req, arg, sizeof(req))) 1660 return -EFAULT; 1661 1662 if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci)) 1663 return -EINVAL; 1664 1665 size = sizeof(req) + req.conn_num * sizeof(*ci); 1666 1667 cl = kmalloc(size, GFP_KERNEL); 1668 if (!cl) 1669 return -ENOMEM; 1670 1671 hdev = hci_dev_get(req.dev_id); 1672 if (!hdev) { 1673 kfree(cl); 1674 return -ENODEV; 1675 } 1676 1677 ci = cl->conn_info; 1678 1679 hci_dev_lock(hdev); 1680 list_for_each_entry(c, &hdev->conn_hash.list, list) { 1681 bacpy(&(ci + n)->bdaddr, &c->dst); 1682 (ci + n)->handle = c->handle; 1683 (ci + n)->type = c->type; 1684 (ci + n)->out = c->out; 1685 (ci + n)->state = c->state; 1686 (ci + n)->link_mode = get_link_mode(c); 1687 if (++n >= req.conn_num) 1688 break; 1689 } 1690 hci_dev_unlock(hdev); 1691 1692 cl->dev_id = hdev->id; 1693 cl->conn_num = n; 1694 size = sizeof(req) + n * sizeof(*ci); 1695 1696 hci_dev_put(hdev); 1697 1698 err = copy_to_user(arg, cl, size); 1699 kfree(cl); 1700 1701 return err ? -EFAULT : 0; 1702 } 1703 1704 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg) 1705 { 1706 struct hci_conn_info_req req; 1707 struct hci_conn_info ci; 1708 struct hci_conn *conn; 1709 char __user *ptr = arg + sizeof(req); 1710 1711 if (copy_from_user(&req, arg, sizeof(req))) 1712 return -EFAULT; 1713 1714 hci_dev_lock(hdev); 1715 conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr); 1716 if (conn) { 1717 bacpy(&ci.bdaddr, &conn->dst); 1718 ci.handle = conn->handle; 1719 ci.type = conn->type; 1720 ci.out = conn->out; 1721 ci.state = conn->state; 1722 ci.link_mode = get_link_mode(conn); 1723 } 1724 hci_dev_unlock(hdev); 1725 1726 if (!conn) 1727 return -ENOENT; 1728 1729 return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0; 1730 } 1731 1732 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg) 1733 { 1734 struct hci_auth_info_req req; 1735 struct hci_conn *conn; 1736 1737 if (copy_from_user(&req, arg, sizeof(req))) 1738 return -EFAULT; 1739 1740 hci_dev_lock(hdev); 1741 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr); 1742 if (conn) 1743 req.type = conn->auth_type; 1744 hci_dev_unlock(hdev); 1745 1746 if (!conn) 1747 return -ENOENT; 1748 1749 return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0; 1750 } 1751 1752 struct hci_chan *hci_chan_create(struct hci_conn *conn) 1753 { 1754 struct hci_dev *hdev = conn->hdev; 1755 struct hci_chan *chan; 1756 1757 BT_DBG("%s hcon %p", hdev->name, conn); 1758 1759 if (test_bit(HCI_CONN_DROP, &conn->flags)) { 1760 BT_DBG("Refusing to create new hci_chan"); 1761 return NULL; 1762 } 1763 1764 chan = kzalloc(sizeof(*chan), GFP_KERNEL); 1765 if (!chan) 1766 return NULL; 1767 1768 chan->conn = hci_conn_get(conn); 1769 skb_queue_head_init(&chan->data_q); 1770 chan->state = BT_CONNECTED; 1771 1772 list_add_rcu(&chan->list, &conn->chan_list); 1773 1774 return chan; 1775 } 1776 1777 void hci_chan_del(struct hci_chan *chan) 1778 { 1779 struct hci_conn *conn = chan->conn; 1780 struct hci_dev *hdev = conn->hdev; 1781 1782 BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan); 1783 1784 list_del_rcu(&chan->list); 1785 1786 synchronize_rcu(); 1787 1788 /* Prevent new hci_chan's to be created for this hci_conn */ 1789 set_bit(HCI_CONN_DROP, &conn->flags); 1790 1791 hci_conn_put(conn); 1792 1793 skb_queue_purge(&chan->data_q); 1794 kfree(chan); 1795 } 1796 1797 void hci_chan_list_flush(struct hci_conn *conn) 1798 { 1799 struct hci_chan *chan, *n; 1800 1801 BT_DBG("hcon %p", conn); 1802 1803 list_for_each_entry_safe(chan, n, &conn->chan_list, list) 1804 hci_chan_del(chan); 1805 } 1806 1807 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon, 1808 __u16 handle) 1809 { 1810 struct hci_chan *hchan; 1811 1812 list_for_each_entry(hchan, &hcon->chan_list, list) { 1813 if (hchan->handle == handle) 1814 return hchan; 1815 } 1816 1817 return NULL; 1818 } 1819 1820 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle) 1821 { 1822 struct hci_conn_hash *h = &hdev->conn_hash; 1823 struct hci_conn *hcon; 1824 struct hci_chan *hchan = NULL; 1825 1826 rcu_read_lock(); 1827 1828 list_for_each_entry_rcu(hcon, &h->list, list) { 1829 hchan = __hci_chan_lookup_handle(hcon, handle); 1830 if (hchan) 1831 break; 1832 } 1833 1834 rcu_read_unlock(); 1835 1836 return hchan; 1837 } 1838 1839 u32 hci_conn_get_phy(struct hci_conn *conn) 1840 { 1841 u32 phys = 0; 1842 1843 /* BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 2, Part B page 471: 1844 * Table 6.2: Packets defined for synchronous, asynchronous, and 1845 * CSB logical transport types. 1846 */ 1847 switch (conn->type) { 1848 case SCO_LINK: 1849 /* SCO logical transport (1 Mb/s): 1850 * HV1, HV2, HV3 and DV. 1851 */ 1852 phys |= BT_PHY_BR_1M_1SLOT; 1853 1854 break; 1855 1856 case ACL_LINK: 1857 /* ACL logical transport (1 Mb/s) ptt=0: 1858 * DH1, DM3, DH3, DM5 and DH5. 1859 */ 1860 phys |= BT_PHY_BR_1M_1SLOT; 1861 1862 if (conn->pkt_type & (HCI_DM3 | HCI_DH3)) 1863 phys |= BT_PHY_BR_1M_3SLOT; 1864 1865 if (conn->pkt_type & (HCI_DM5 | HCI_DH5)) 1866 phys |= BT_PHY_BR_1M_5SLOT; 1867 1868 /* ACL logical transport (2 Mb/s) ptt=1: 1869 * 2-DH1, 2-DH3 and 2-DH5. 1870 */ 1871 if (!(conn->pkt_type & HCI_2DH1)) 1872 phys |= BT_PHY_EDR_2M_1SLOT; 1873 1874 if (!(conn->pkt_type & HCI_2DH3)) 1875 phys |= BT_PHY_EDR_2M_3SLOT; 1876 1877 if (!(conn->pkt_type & HCI_2DH5)) 1878 phys |= BT_PHY_EDR_2M_5SLOT; 1879 1880 /* ACL logical transport (3 Mb/s) ptt=1: 1881 * 3-DH1, 3-DH3 and 3-DH5. 1882 */ 1883 if (!(conn->pkt_type & HCI_3DH1)) 1884 phys |= BT_PHY_EDR_3M_1SLOT; 1885 1886 if (!(conn->pkt_type & HCI_3DH3)) 1887 phys |= BT_PHY_EDR_3M_3SLOT; 1888 1889 if (!(conn->pkt_type & HCI_3DH5)) 1890 phys |= BT_PHY_EDR_3M_5SLOT; 1891 1892 break; 1893 1894 case ESCO_LINK: 1895 /* eSCO logical transport (1 Mb/s): EV3, EV4 and EV5 */ 1896 phys |= BT_PHY_BR_1M_1SLOT; 1897 1898 if (!(conn->pkt_type & (ESCO_EV4 | ESCO_EV5))) 1899 phys |= BT_PHY_BR_1M_3SLOT; 1900 1901 /* eSCO logical transport (2 Mb/s): 2-EV3, 2-EV5 */ 1902 if (!(conn->pkt_type & ESCO_2EV3)) 1903 phys |= BT_PHY_EDR_2M_1SLOT; 1904 1905 if (!(conn->pkt_type & ESCO_2EV5)) 1906 phys |= BT_PHY_EDR_2M_3SLOT; 1907 1908 /* eSCO logical transport (3 Mb/s): 3-EV3, 3-EV5 */ 1909 if (!(conn->pkt_type & ESCO_3EV3)) 1910 phys |= BT_PHY_EDR_3M_1SLOT; 1911 1912 if (!(conn->pkt_type & ESCO_3EV5)) 1913 phys |= BT_PHY_EDR_3M_3SLOT; 1914 1915 break; 1916 1917 case LE_LINK: 1918 if (conn->le_tx_phy & HCI_LE_SET_PHY_1M) 1919 phys |= BT_PHY_LE_1M_TX; 1920 1921 if (conn->le_rx_phy & HCI_LE_SET_PHY_1M) 1922 phys |= BT_PHY_LE_1M_RX; 1923 1924 if (conn->le_tx_phy & HCI_LE_SET_PHY_2M) 1925 phys |= BT_PHY_LE_2M_TX; 1926 1927 if (conn->le_rx_phy & HCI_LE_SET_PHY_2M) 1928 phys |= BT_PHY_LE_2M_RX; 1929 1930 if (conn->le_tx_phy & HCI_LE_SET_PHY_CODED) 1931 phys |= BT_PHY_LE_CODED_TX; 1932 1933 if (conn->le_rx_phy & HCI_LE_SET_PHY_CODED) 1934 phys |= BT_PHY_LE_CODED_RX; 1935 1936 break; 1937 } 1938 1939 return phys; 1940 } 1941