1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 /* Bluetooth HCI connection handling. */ 26 27 #include <linux/export.h> 28 #include <linux/debugfs.h> 29 30 #include <net/bluetooth/bluetooth.h> 31 #include <net/bluetooth/hci_core.h> 32 #include <net/bluetooth/l2cap.h> 33 34 #include "hci_request.h" 35 #include "smp.h" 36 #include "a2mp.h" 37 38 struct sco_param { 39 u16 pkt_type; 40 u16 max_latency; 41 u8 retrans_effort; 42 }; 43 44 static const struct sco_param esco_param_cvsd[] = { 45 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a, 0x01 }, /* S3 */ 46 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007, 0x01 }, /* S2 */ 47 { EDR_ESCO_MASK | ESCO_EV3, 0x0007, 0x01 }, /* S1 */ 48 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0x01 }, /* D1 */ 49 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0x01 }, /* D0 */ 50 }; 51 52 static const struct sco_param sco_param_cvsd[] = { 53 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0xff }, /* D1 */ 54 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0xff }, /* D0 */ 55 }; 56 57 static const struct sco_param esco_param_msbc[] = { 58 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d, 0x02 }, /* T2 */ 59 { EDR_ESCO_MASK | ESCO_EV3, 0x0008, 0x02 }, /* T1 */ 60 }; 61 62 /* This function requires the caller holds hdev->lock */ 63 static void hci_connect_le_scan_cleanup(struct hci_conn *conn) 64 { 65 struct hci_conn_params *params; 66 struct hci_dev *hdev = conn->hdev; 67 struct smp_irk *irk; 68 bdaddr_t *bdaddr; 69 u8 bdaddr_type; 70 71 bdaddr = &conn->dst; 72 bdaddr_type = conn->dst_type; 73 74 /* Check if we need to convert to identity address */ 75 irk = hci_get_irk(hdev, bdaddr, bdaddr_type); 76 if (irk) { 77 bdaddr = &irk->bdaddr; 78 bdaddr_type = irk->addr_type; 79 } 80 81 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr, 82 bdaddr_type); 83 if (!params || !params->explicit_connect) 84 return; 85 86 /* The connection attempt was doing scan for new RPA, and is 87 * in scan phase. If params are not associated with any other 88 * autoconnect action, remove them completely. If they are, just unmark 89 * them as waiting for connection, by clearing explicit_connect field. 90 */ 91 params->explicit_connect = false; 92 93 list_del_init(¶ms->action); 94 95 switch (params->auto_connect) { 96 case HCI_AUTO_CONN_EXPLICIT: 97 hci_conn_params_del(hdev, bdaddr, bdaddr_type); 98 /* return instead of break to avoid duplicate scan update */ 99 return; 100 case HCI_AUTO_CONN_DIRECT: 101 case HCI_AUTO_CONN_ALWAYS: 102 list_add(¶ms->action, &hdev->pend_le_conns); 103 break; 104 case HCI_AUTO_CONN_REPORT: 105 list_add(¶ms->action, &hdev->pend_le_reports); 106 break; 107 default: 108 break; 109 } 110 111 hci_update_background_scan(hdev); 112 } 113 114 static void hci_conn_cleanup(struct hci_conn *conn) 115 { 116 struct hci_dev *hdev = conn->hdev; 117 118 if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags)) 119 hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type); 120 121 hci_chan_list_flush(conn); 122 123 hci_conn_hash_del(hdev, conn); 124 125 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) { 126 switch (conn->setting & SCO_AIRMODE_MASK) { 127 case SCO_AIRMODE_CVSD: 128 case SCO_AIRMODE_TRANSP: 129 if (hdev->notify) 130 hdev->notify(hdev, HCI_NOTIFY_DISABLE_SCO); 131 break; 132 } 133 } else { 134 if (hdev->notify) 135 hdev->notify(hdev, HCI_NOTIFY_CONN_DEL); 136 } 137 138 hci_conn_del_sysfs(conn); 139 140 debugfs_remove_recursive(conn->debugfs); 141 142 hci_dev_put(hdev); 143 144 hci_conn_put(conn); 145 } 146 147 static void le_scan_cleanup(struct work_struct *work) 148 { 149 struct hci_conn *conn = container_of(work, struct hci_conn, 150 le_scan_cleanup); 151 struct hci_dev *hdev = conn->hdev; 152 struct hci_conn *c = NULL; 153 154 BT_DBG("%s hcon %p", hdev->name, conn); 155 156 hci_dev_lock(hdev); 157 158 /* Check that the hci_conn is still around */ 159 rcu_read_lock(); 160 list_for_each_entry_rcu(c, &hdev->conn_hash.list, list) { 161 if (c == conn) 162 break; 163 } 164 rcu_read_unlock(); 165 166 if (c == conn) { 167 hci_connect_le_scan_cleanup(conn); 168 hci_conn_cleanup(conn); 169 } 170 171 hci_dev_unlock(hdev); 172 hci_dev_put(hdev); 173 hci_conn_put(conn); 174 } 175 176 static void hci_connect_le_scan_remove(struct hci_conn *conn) 177 { 178 BT_DBG("%s hcon %p", conn->hdev->name, conn); 179 180 /* We can't call hci_conn_del/hci_conn_cleanup here since that 181 * could deadlock with another hci_conn_del() call that's holding 182 * hci_dev_lock and doing cancel_delayed_work_sync(&conn->disc_work). 183 * Instead, grab temporary extra references to the hci_dev and 184 * hci_conn and perform the necessary cleanup in a separate work 185 * callback. 186 */ 187 188 hci_dev_hold(conn->hdev); 189 hci_conn_get(conn); 190 191 /* Even though we hold a reference to the hdev, many other 192 * things might get cleaned up meanwhile, including the hdev's 193 * own workqueue, so we can't use that for scheduling. 194 */ 195 schedule_work(&conn->le_scan_cleanup); 196 } 197 198 static void hci_acl_create_connection(struct hci_conn *conn) 199 { 200 struct hci_dev *hdev = conn->hdev; 201 struct inquiry_entry *ie; 202 struct hci_cp_create_conn cp; 203 204 BT_DBG("hcon %p", conn); 205 206 /* Many controllers disallow HCI Create Connection while it is doing 207 * HCI Inquiry. So we cancel the Inquiry first before issuing HCI Create 208 * Connection. This may cause the MGMT discovering state to become false 209 * without user space's request but it is okay since the MGMT Discovery 210 * APIs do not promise that discovery should be done forever. Instead, 211 * the user space monitors the status of MGMT discovering and it may 212 * request for discovery again when this flag becomes false. 213 */ 214 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 215 /* Put this connection to "pending" state so that it will be 216 * executed after the inquiry cancel command complete event. 217 */ 218 conn->state = BT_CONNECT2; 219 hci_send_cmd(hdev, HCI_OP_INQUIRY_CANCEL, 0, NULL); 220 return; 221 } 222 223 conn->state = BT_CONNECT; 224 conn->out = true; 225 conn->role = HCI_ROLE_MASTER; 226 227 conn->attempt++; 228 229 conn->link_policy = hdev->link_policy; 230 231 memset(&cp, 0, sizeof(cp)); 232 bacpy(&cp.bdaddr, &conn->dst); 233 cp.pscan_rep_mode = 0x02; 234 235 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 236 if (ie) { 237 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) { 238 cp.pscan_rep_mode = ie->data.pscan_rep_mode; 239 cp.pscan_mode = ie->data.pscan_mode; 240 cp.clock_offset = ie->data.clock_offset | 241 cpu_to_le16(0x8000); 242 } 243 244 memcpy(conn->dev_class, ie->data.dev_class, 3); 245 } 246 247 cp.pkt_type = cpu_to_le16(conn->pkt_type); 248 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER)) 249 cp.role_switch = 0x01; 250 else 251 cp.role_switch = 0x00; 252 253 hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp); 254 } 255 256 int hci_disconnect(struct hci_conn *conn, __u8 reason) 257 { 258 BT_DBG("hcon %p", conn); 259 260 /* When we are central of an established connection and it enters 261 * the disconnect timeout, then go ahead and try to read the 262 * current clock offset. Processing of the result is done 263 * within the event handling and hci_clock_offset_evt function. 264 */ 265 if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER && 266 (conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) { 267 struct hci_dev *hdev = conn->hdev; 268 struct hci_cp_read_clock_offset clkoff_cp; 269 270 clkoff_cp.handle = cpu_to_le16(conn->handle); 271 hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp), 272 &clkoff_cp); 273 } 274 275 return hci_abort_conn(conn, reason); 276 } 277 278 static void hci_add_sco(struct hci_conn *conn, __u16 handle) 279 { 280 struct hci_dev *hdev = conn->hdev; 281 struct hci_cp_add_sco cp; 282 283 BT_DBG("hcon %p", conn); 284 285 conn->state = BT_CONNECT; 286 conn->out = true; 287 288 conn->attempt++; 289 290 cp.handle = cpu_to_le16(handle); 291 cp.pkt_type = cpu_to_le16(conn->pkt_type); 292 293 hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp); 294 } 295 296 static bool find_next_esco_param(struct hci_conn *conn, 297 const struct sco_param *esco_param, int size) 298 { 299 for (; conn->attempt <= size; conn->attempt++) { 300 if (lmp_esco_2m_capable(conn->link) || 301 (esco_param[conn->attempt - 1].pkt_type & ESCO_2EV3)) 302 break; 303 BT_DBG("hcon %p skipped attempt %d, eSCO 2M not supported", 304 conn, conn->attempt); 305 } 306 307 return conn->attempt <= size; 308 } 309 310 static bool hci_enhanced_setup_sync_conn(struct hci_conn *conn, __u16 handle) 311 { 312 struct hci_dev *hdev = conn->hdev; 313 struct hci_cp_enhanced_setup_sync_conn cp; 314 const struct sco_param *param; 315 316 bt_dev_dbg(hdev, "hcon %p", conn); 317 318 /* for offload use case, codec needs to configured before opening SCO */ 319 if (conn->codec.data_path) 320 hci_req_configure_datapath(hdev, &conn->codec); 321 322 conn->state = BT_CONNECT; 323 conn->out = true; 324 325 conn->attempt++; 326 327 memset(&cp, 0x00, sizeof(cp)); 328 329 cp.handle = cpu_to_le16(handle); 330 331 cp.tx_bandwidth = cpu_to_le32(0x00001f40); 332 cp.rx_bandwidth = cpu_to_le32(0x00001f40); 333 334 switch (conn->codec.id) { 335 case BT_CODEC_MSBC: 336 if (!find_next_esco_param(conn, esco_param_msbc, 337 ARRAY_SIZE(esco_param_msbc))) 338 return false; 339 340 param = &esco_param_msbc[conn->attempt - 1]; 341 cp.tx_coding_format.id = 0x05; 342 cp.rx_coding_format.id = 0x05; 343 cp.tx_codec_frame_size = __cpu_to_le16(60); 344 cp.rx_codec_frame_size = __cpu_to_le16(60); 345 cp.in_bandwidth = __cpu_to_le32(32000); 346 cp.out_bandwidth = __cpu_to_le32(32000); 347 cp.in_coding_format.id = 0x04; 348 cp.out_coding_format.id = 0x04; 349 cp.in_coded_data_size = __cpu_to_le16(16); 350 cp.out_coded_data_size = __cpu_to_le16(16); 351 cp.in_pcm_data_format = 2; 352 cp.out_pcm_data_format = 2; 353 cp.in_pcm_sample_payload_msb_pos = 0; 354 cp.out_pcm_sample_payload_msb_pos = 0; 355 cp.in_data_path = conn->codec.data_path; 356 cp.out_data_path = conn->codec.data_path; 357 cp.in_transport_unit_size = 1; 358 cp.out_transport_unit_size = 1; 359 break; 360 361 case BT_CODEC_TRANSPARENT: 362 if (!find_next_esco_param(conn, esco_param_msbc, 363 ARRAY_SIZE(esco_param_msbc))) 364 return false; 365 param = &esco_param_msbc[conn->attempt - 1]; 366 cp.tx_coding_format.id = 0x03; 367 cp.rx_coding_format.id = 0x03; 368 cp.tx_codec_frame_size = __cpu_to_le16(60); 369 cp.rx_codec_frame_size = __cpu_to_le16(60); 370 cp.in_bandwidth = __cpu_to_le32(0x1f40); 371 cp.out_bandwidth = __cpu_to_le32(0x1f40); 372 cp.in_coding_format.id = 0x03; 373 cp.out_coding_format.id = 0x03; 374 cp.in_coded_data_size = __cpu_to_le16(16); 375 cp.out_coded_data_size = __cpu_to_le16(16); 376 cp.in_pcm_data_format = 2; 377 cp.out_pcm_data_format = 2; 378 cp.in_pcm_sample_payload_msb_pos = 0; 379 cp.out_pcm_sample_payload_msb_pos = 0; 380 cp.in_data_path = conn->codec.data_path; 381 cp.out_data_path = conn->codec.data_path; 382 cp.in_transport_unit_size = 1; 383 cp.out_transport_unit_size = 1; 384 break; 385 386 case BT_CODEC_CVSD: 387 if (lmp_esco_capable(conn->link)) { 388 if (!find_next_esco_param(conn, esco_param_cvsd, 389 ARRAY_SIZE(esco_param_cvsd))) 390 return false; 391 param = &esco_param_cvsd[conn->attempt - 1]; 392 } else { 393 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd)) 394 return false; 395 param = &sco_param_cvsd[conn->attempt - 1]; 396 } 397 cp.tx_coding_format.id = 2; 398 cp.rx_coding_format.id = 2; 399 cp.tx_codec_frame_size = __cpu_to_le16(60); 400 cp.rx_codec_frame_size = __cpu_to_le16(60); 401 cp.in_bandwidth = __cpu_to_le32(16000); 402 cp.out_bandwidth = __cpu_to_le32(16000); 403 cp.in_coding_format.id = 4; 404 cp.out_coding_format.id = 4; 405 cp.in_coded_data_size = __cpu_to_le16(16); 406 cp.out_coded_data_size = __cpu_to_le16(16); 407 cp.in_pcm_data_format = 2; 408 cp.out_pcm_data_format = 2; 409 cp.in_pcm_sample_payload_msb_pos = 0; 410 cp.out_pcm_sample_payload_msb_pos = 0; 411 cp.in_data_path = conn->codec.data_path; 412 cp.out_data_path = conn->codec.data_path; 413 cp.in_transport_unit_size = 16; 414 cp.out_transport_unit_size = 16; 415 break; 416 default: 417 return false; 418 } 419 420 cp.retrans_effort = param->retrans_effort; 421 cp.pkt_type = __cpu_to_le16(param->pkt_type); 422 cp.max_latency = __cpu_to_le16(param->max_latency); 423 424 if (hci_send_cmd(hdev, HCI_OP_ENHANCED_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0) 425 return false; 426 427 return true; 428 } 429 430 static bool hci_setup_sync_conn(struct hci_conn *conn, __u16 handle) 431 { 432 struct hci_dev *hdev = conn->hdev; 433 struct hci_cp_setup_sync_conn cp; 434 const struct sco_param *param; 435 436 bt_dev_dbg(hdev, "hcon %p", conn); 437 438 conn->state = BT_CONNECT; 439 conn->out = true; 440 441 conn->attempt++; 442 443 cp.handle = cpu_to_le16(handle); 444 445 cp.tx_bandwidth = cpu_to_le32(0x00001f40); 446 cp.rx_bandwidth = cpu_to_le32(0x00001f40); 447 cp.voice_setting = cpu_to_le16(conn->setting); 448 449 switch (conn->setting & SCO_AIRMODE_MASK) { 450 case SCO_AIRMODE_TRANSP: 451 if (!find_next_esco_param(conn, esco_param_msbc, 452 ARRAY_SIZE(esco_param_msbc))) 453 return false; 454 param = &esco_param_msbc[conn->attempt - 1]; 455 break; 456 case SCO_AIRMODE_CVSD: 457 if (lmp_esco_capable(conn->link)) { 458 if (!find_next_esco_param(conn, esco_param_cvsd, 459 ARRAY_SIZE(esco_param_cvsd))) 460 return false; 461 param = &esco_param_cvsd[conn->attempt - 1]; 462 } else { 463 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd)) 464 return false; 465 param = &sco_param_cvsd[conn->attempt - 1]; 466 } 467 break; 468 default: 469 return false; 470 } 471 472 cp.retrans_effort = param->retrans_effort; 473 cp.pkt_type = __cpu_to_le16(param->pkt_type); 474 cp.max_latency = __cpu_to_le16(param->max_latency); 475 476 if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0) 477 return false; 478 479 return true; 480 } 481 482 bool hci_setup_sync(struct hci_conn *conn, __u16 handle) 483 { 484 if (enhanced_sco_capable(conn->hdev)) 485 return hci_enhanced_setup_sync_conn(conn, handle); 486 487 return hci_setup_sync_conn(conn, handle); 488 } 489 490 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency, 491 u16 to_multiplier) 492 { 493 struct hci_dev *hdev = conn->hdev; 494 struct hci_conn_params *params; 495 struct hci_cp_le_conn_update cp; 496 497 hci_dev_lock(hdev); 498 499 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 500 if (params) { 501 params->conn_min_interval = min; 502 params->conn_max_interval = max; 503 params->conn_latency = latency; 504 params->supervision_timeout = to_multiplier; 505 } 506 507 hci_dev_unlock(hdev); 508 509 memset(&cp, 0, sizeof(cp)); 510 cp.handle = cpu_to_le16(conn->handle); 511 cp.conn_interval_min = cpu_to_le16(min); 512 cp.conn_interval_max = cpu_to_le16(max); 513 cp.conn_latency = cpu_to_le16(latency); 514 cp.supervision_timeout = cpu_to_le16(to_multiplier); 515 cp.min_ce_len = cpu_to_le16(0x0000); 516 cp.max_ce_len = cpu_to_le16(0x0000); 517 518 hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp); 519 520 if (params) 521 return 0x01; 522 523 return 0x00; 524 } 525 526 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand, 527 __u8 ltk[16], __u8 key_size) 528 { 529 struct hci_dev *hdev = conn->hdev; 530 struct hci_cp_le_start_enc cp; 531 532 BT_DBG("hcon %p", conn); 533 534 memset(&cp, 0, sizeof(cp)); 535 536 cp.handle = cpu_to_le16(conn->handle); 537 cp.rand = rand; 538 cp.ediv = ediv; 539 memcpy(cp.ltk, ltk, key_size); 540 541 hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp); 542 } 543 544 /* Device _must_ be locked */ 545 void hci_sco_setup(struct hci_conn *conn, __u8 status) 546 { 547 struct hci_conn *sco = conn->link; 548 549 if (!sco) 550 return; 551 552 BT_DBG("hcon %p", conn); 553 554 if (!status) { 555 if (lmp_esco_capable(conn->hdev)) 556 hci_setup_sync(sco, conn->handle); 557 else 558 hci_add_sco(sco, conn->handle); 559 } else { 560 hci_connect_cfm(sco, status); 561 hci_conn_del(sco); 562 } 563 } 564 565 static void hci_conn_timeout(struct work_struct *work) 566 { 567 struct hci_conn *conn = container_of(work, struct hci_conn, 568 disc_work.work); 569 int refcnt = atomic_read(&conn->refcnt); 570 571 BT_DBG("hcon %p state %s", conn, state_to_string(conn->state)); 572 573 WARN_ON(refcnt < 0); 574 575 /* FIXME: It was observed that in pairing failed scenario, refcnt 576 * drops below 0. Probably this is because l2cap_conn_del calls 577 * l2cap_chan_del for each channel, and inside l2cap_chan_del conn is 578 * dropped. After that loop hci_chan_del is called which also drops 579 * conn. For now make sure that ACL is alive if refcnt is higher then 0, 580 * otherwise drop it. 581 */ 582 if (refcnt > 0) 583 return; 584 585 /* LE connections in scanning state need special handling */ 586 if (conn->state == BT_CONNECT && conn->type == LE_LINK && 587 test_bit(HCI_CONN_SCANNING, &conn->flags)) { 588 hci_connect_le_scan_remove(conn); 589 return; 590 } 591 592 hci_abort_conn(conn, hci_proto_disconn_ind(conn)); 593 } 594 595 /* Enter sniff mode */ 596 static void hci_conn_idle(struct work_struct *work) 597 { 598 struct hci_conn *conn = container_of(work, struct hci_conn, 599 idle_work.work); 600 struct hci_dev *hdev = conn->hdev; 601 602 BT_DBG("hcon %p mode %d", conn, conn->mode); 603 604 if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn)) 605 return; 606 607 if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF)) 608 return; 609 610 if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) { 611 struct hci_cp_sniff_subrate cp; 612 cp.handle = cpu_to_le16(conn->handle); 613 cp.max_latency = cpu_to_le16(0); 614 cp.min_remote_timeout = cpu_to_le16(0); 615 cp.min_local_timeout = cpu_to_le16(0); 616 hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp); 617 } 618 619 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 620 struct hci_cp_sniff_mode cp; 621 cp.handle = cpu_to_le16(conn->handle); 622 cp.max_interval = cpu_to_le16(hdev->sniff_max_interval); 623 cp.min_interval = cpu_to_le16(hdev->sniff_min_interval); 624 cp.attempt = cpu_to_le16(4); 625 cp.timeout = cpu_to_le16(1); 626 hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp); 627 } 628 } 629 630 static void hci_conn_auto_accept(struct work_struct *work) 631 { 632 struct hci_conn *conn = container_of(work, struct hci_conn, 633 auto_accept_work.work); 634 635 hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst), 636 &conn->dst); 637 } 638 639 static void le_disable_advertising(struct hci_dev *hdev) 640 { 641 if (ext_adv_capable(hdev)) { 642 struct hci_cp_le_set_ext_adv_enable cp; 643 644 cp.enable = 0x00; 645 cp.num_of_sets = 0x00; 646 647 hci_send_cmd(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp), 648 &cp); 649 } else { 650 u8 enable = 0x00; 651 hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), 652 &enable); 653 } 654 } 655 656 static void le_conn_timeout(struct work_struct *work) 657 { 658 struct hci_conn *conn = container_of(work, struct hci_conn, 659 le_conn_timeout.work); 660 struct hci_dev *hdev = conn->hdev; 661 662 BT_DBG(""); 663 664 /* We could end up here due to having done directed advertising, 665 * so clean up the state if necessary. This should however only 666 * happen with broken hardware or if low duty cycle was used 667 * (which doesn't have a timeout of its own). 668 */ 669 if (conn->role == HCI_ROLE_SLAVE) { 670 /* Disable LE Advertising */ 671 le_disable_advertising(hdev); 672 hci_le_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT); 673 return; 674 } 675 676 hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM); 677 } 678 679 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst, 680 u8 role) 681 { 682 struct hci_conn *conn; 683 684 BT_DBG("%s dst %pMR", hdev->name, dst); 685 686 conn = kzalloc(sizeof(*conn), GFP_KERNEL); 687 if (!conn) 688 return NULL; 689 690 bacpy(&conn->dst, dst); 691 bacpy(&conn->src, &hdev->bdaddr); 692 conn->hdev = hdev; 693 conn->type = type; 694 conn->role = role; 695 conn->mode = HCI_CM_ACTIVE; 696 conn->state = BT_OPEN; 697 conn->auth_type = HCI_AT_GENERAL_BONDING; 698 conn->io_capability = hdev->io_capability; 699 conn->remote_auth = 0xff; 700 conn->key_type = 0xff; 701 conn->rssi = HCI_RSSI_INVALID; 702 conn->tx_power = HCI_TX_POWER_INVALID; 703 conn->max_tx_power = HCI_TX_POWER_INVALID; 704 705 set_bit(HCI_CONN_POWER_SAVE, &conn->flags); 706 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 707 708 /* Set Default Authenticated payload timeout to 30s */ 709 conn->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT; 710 711 if (conn->role == HCI_ROLE_MASTER) 712 conn->out = true; 713 714 switch (type) { 715 case ACL_LINK: 716 conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK; 717 break; 718 case LE_LINK: 719 /* conn->src should reflect the local identity address */ 720 hci_copy_identity_address(hdev, &conn->src, &conn->src_type); 721 break; 722 case SCO_LINK: 723 if (lmp_esco_capable(hdev)) 724 conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) | 725 (hdev->esco_type & EDR_ESCO_MASK); 726 else 727 conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK; 728 break; 729 case ESCO_LINK: 730 conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK; 731 break; 732 } 733 734 skb_queue_head_init(&conn->data_q); 735 736 INIT_LIST_HEAD(&conn->chan_list); 737 738 INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout); 739 INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept); 740 INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle); 741 INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout); 742 INIT_WORK(&conn->le_scan_cleanup, le_scan_cleanup); 743 744 atomic_set(&conn->refcnt, 0); 745 746 hci_dev_hold(hdev); 747 748 hci_conn_hash_add(hdev, conn); 749 750 /* The SCO and eSCO connections will only be notified when their 751 * setup has been completed. This is different to ACL links which 752 * can be notified right away. 753 */ 754 if (conn->type != SCO_LINK && conn->type != ESCO_LINK) { 755 if (hdev->notify) 756 hdev->notify(hdev, HCI_NOTIFY_CONN_ADD); 757 } 758 759 hci_conn_init_sysfs(conn); 760 761 return conn; 762 } 763 764 int hci_conn_del(struct hci_conn *conn) 765 { 766 struct hci_dev *hdev = conn->hdev; 767 768 BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle); 769 770 cancel_delayed_work_sync(&conn->disc_work); 771 cancel_delayed_work_sync(&conn->auto_accept_work); 772 cancel_delayed_work_sync(&conn->idle_work); 773 774 if (conn->type == ACL_LINK) { 775 struct hci_conn *sco = conn->link; 776 if (sco) 777 sco->link = NULL; 778 779 /* Unacked frames */ 780 hdev->acl_cnt += conn->sent; 781 } else if (conn->type == LE_LINK) { 782 cancel_delayed_work(&conn->le_conn_timeout); 783 784 if (hdev->le_pkts) 785 hdev->le_cnt += conn->sent; 786 else 787 hdev->acl_cnt += conn->sent; 788 } else { 789 struct hci_conn *acl = conn->link; 790 if (acl) { 791 acl->link = NULL; 792 hci_conn_drop(acl); 793 } 794 } 795 796 if (conn->amp_mgr) 797 amp_mgr_put(conn->amp_mgr); 798 799 skb_queue_purge(&conn->data_q); 800 801 /* Remove the connection from the list and cleanup its remaining 802 * state. This is a separate function since for some cases like 803 * BT_CONNECT_SCAN we *only* want the cleanup part without the 804 * rest of hci_conn_del. 805 */ 806 hci_conn_cleanup(conn); 807 808 return 0; 809 } 810 811 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, uint8_t src_type) 812 { 813 int use_src = bacmp(src, BDADDR_ANY); 814 struct hci_dev *hdev = NULL, *d; 815 816 BT_DBG("%pMR -> %pMR", src, dst); 817 818 read_lock(&hci_dev_list_lock); 819 820 list_for_each_entry(d, &hci_dev_list, list) { 821 if (!test_bit(HCI_UP, &d->flags) || 822 hci_dev_test_flag(d, HCI_USER_CHANNEL) || 823 d->dev_type != HCI_PRIMARY) 824 continue; 825 826 /* Simple routing: 827 * No source address - find interface with bdaddr != dst 828 * Source address - find interface with bdaddr == src 829 */ 830 831 if (use_src) { 832 bdaddr_t id_addr; 833 u8 id_addr_type; 834 835 if (src_type == BDADDR_BREDR) { 836 if (!lmp_bredr_capable(d)) 837 continue; 838 bacpy(&id_addr, &d->bdaddr); 839 id_addr_type = BDADDR_BREDR; 840 } else { 841 if (!lmp_le_capable(d)) 842 continue; 843 844 hci_copy_identity_address(d, &id_addr, 845 &id_addr_type); 846 847 /* Convert from HCI to three-value type */ 848 if (id_addr_type == ADDR_LE_DEV_PUBLIC) 849 id_addr_type = BDADDR_LE_PUBLIC; 850 else 851 id_addr_type = BDADDR_LE_RANDOM; 852 } 853 854 if (!bacmp(&id_addr, src) && id_addr_type == src_type) { 855 hdev = d; break; 856 } 857 } else { 858 if (bacmp(&d->bdaddr, dst)) { 859 hdev = d; break; 860 } 861 } 862 } 863 864 if (hdev) 865 hdev = hci_dev_hold(hdev); 866 867 read_unlock(&hci_dev_list_lock); 868 return hdev; 869 } 870 EXPORT_SYMBOL(hci_get_route); 871 872 /* This function requires the caller holds hdev->lock */ 873 void hci_le_conn_failed(struct hci_conn *conn, u8 status) 874 { 875 struct hci_dev *hdev = conn->hdev; 876 struct hci_conn_params *params; 877 878 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst, 879 conn->dst_type); 880 if (params && params->conn) { 881 hci_conn_drop(params->conn); 882 hci_conn_put(params->conn); 883 params->conn = NULL; 884 } 885 886 conn->state = BT_CLOSED; 887 888 /* If the status indicates successful cancellation of 889 * the attempt (i.e. Unknown Connection Id) there's no point of 890 * notifying failure since we'll go back to keep trying to 891 * connect. The only exception is explicit connect requests 892 * where a timeout + cancel does indicate an actual failure. 893 */ 894 if (status != HCI_ERROR_UNKNOWN_CONN_ID || 895 (params && params->explicit_connect)) 896 mgmt_connect_failed(hdev, &conn->dst, conn->type, 897 conn->dst_type, status); 898 899 hci_connect_cfm(conn, status); 900 901 hci_conn_del(conn); 902 903 /* The suspend notifier is waiting for all devices to disconnect and an 904 * LE connect cancel will result in an hci_le_conn_failed. Once the last 905 * connection is deleted, we should also wake the suspend queue to 906 * complete suspend operations. 907 */ 908 if (list_empty(&hdev->conn_hash.list) && 909 test_and_clear_bit(SUSPEND_DISCONNECTING, hdev->suspend_tasks)) { 910 wake_up(&hdev->suspend_wait_q); 911 } 912 913 /* Since we may have temporarily stopped the background scanning in 914 * favor of connection establishment, we should restart it. 915 */ 916 hci_update_background_scan(hdev); 917 918 /* Re-enable advertising in case this was a failed connection 919 * attempt as a peripheral. 920 */ 921 hci_req_reenable_advertising(hdev); 922 } 923 924 static void create_le_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode) 925 { 926 struct hci_conn *conn; 927 928 hci_dev_lock(hdev); 929 930 conn = hci_lookup_le_connect(hdev); 931 932 if (hdev->adv_instance_cnt) 933 hci_req_resume_adv_instances(hdev); 934 935 if (!status) { 936 hci_connect_le_scan_cleanup(conn); 937 goto done; 938 } 939 940 bt_dev_err(hdev, "request failed to create LE connection: " 941 "status 0x%2.2x", status); 942 943 if (!conn) 944 goto done; 945 946 hci_le_conn_failed(conn, status); 947 948 done: 949 hci_dev_unlock(hdev); 950 } 951 952 static bool conn_use_rpa(struct hci_conn *conn) 953 { 954 struct hci_dev *hdev = conn->hdev; 955 956 return hci_dev_test_flag(hdev, HCI_PRIVACY); 957 } 958 959 static void set_ext_conn_params(struct hci_conn *conn, 960 struct hci_cp_le_ext_conn_param *p) 961 { 962 struct hci_dev *hdev = conn->hdev; 963 964 memset(p, 0, sizeof(*p)); 965 966 p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 967 p->scan_window = cpu_to_le16(hdev->le_scan_window_connect); 968 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 969 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 970 p->conn_latency = cpu_to_le16(conn->le_conn_latency); 971 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 972 p->min_ce_len = cpu_to_le16(0x0000); 973 p->max_ce_len = cpu_to_le16(0x0000); 974 } 975 976 static void hci_req_add_le_create_conn(struct hci_request *req, 977 struct hci_conn *conn, 978 bdaddr_t *direct_rpa) 979 { 980 struct hci_dev *hdev = conn->hdev; 981 u8 own_addr_type; 982 983 /* If direct address was provided we use it instead of current 984 * address. 985 */ 986 if (direct_rpa) { 987 if (bacmp(&req->hdev->random_addr, direct_rpa)) 988 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, 989 direct_rpa); 990 991 /* direct address is always RPA */ 992 own_addr_type = ADDR_LE_DEV_RANDOM; 993 } else { 994 /* Update random address, but set require_privacy to false so 995 * that we never connect with an non-resolvable address. 996 */ 997 if (hci_update_random_address(req, false, conn_use_rpa(conn), 998 &own_addr_type)) 999 return; 1000 } 1001 1002 if (use_ext_conn(hdev)) { 1003 struct hci_cp_le_ext_create_conn *cp; 1004 struct hci_cp_le_ext_conn_param *p; 1005 u8 data[sizeof(*cp) + sizeof(*p) * 3]; 1006 u32 plen; 1007 1008 cp = (void *) data; 1009 p = (void *) cp->data; 1010 1011 memset(cp, 0, sizeof(*cp)); 1012 1013 bacpy(&cp->peer_addr, &conn->dst); 1014 cp->peer_addr_type = conn->dst_type; 1015 cp->own_addr_type = own_addr_type; 1016 1017 plen = sizeof(*cp); 1018 1019 if (scan_1m(hdev)) { 1020 cp->phys |= LE_SCAN_PHY_1M; 1021 set_ext_conn_params(conn, p); 1022 1023 p++; 1024 plen += sizeof(*p); 1025 } 1026 1027 if (scan_2m(hdev)) { 1028 cp->phys |= LE_SCAN_PHY_2M; 1029 set_ext_conn_params(conn, p); 1030 1031 p++; 1032 plen += sizeof(*p); 1033 } 1034 1035 if (scan_coded(hdev)) { 1036 cp->phys |= LE_SCAN_PHY_CODED; 1037 set_ext_conn_params(conn, p); 1038 1039 plen += sizeof(*p); 1040 } 1041 1042 hci_req_add(req, HCI_OP_LE_EXT_CREATE_CONN, plen, data); 1043 1044 } else { 1045 struct hci_cp_le_create_conn cp; 1046 1047 memset(&cp, 0, sizeof(cp)); 1048 1049 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 1050 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect); 1051 1052 bacpy(&cp.peer_addr, &conn->dst); 1053 cp.peer_addr_type = conn->dst_type; 1054 cp.own_address_type = own_addr_type; 1055 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 1056 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 1057 cp.conn_latency = cpu_to_le16(conn->le_conn_latency); 1058 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 1059 cp.min_ce_len = cpu_to_le16(0x0000); 1060 cp.max_ce_len = cpu_to_le16(0x0000); 1061 1062 hci_req_add(req, HCI_OP_LE_CREATE_CONN, sizeof(cp), &cp); 1063 } 1064 1065 conn->state = BT_CONNECT; 1066 clear_bit(HCI_CONN_SCANNING, &conn->flags); 1067 } 1068 1069 static void hci_req_directed_advertising(struct hci_request *req, 1070 struct hci_conn *conn) 1071 { 1072 struct hci_dev *hdev = req->hdev; 1073 u8 own_addr_type; 1074 u8 enable; 1075 1076 if (ext_adv_capable(hdev)) { 1077 struct hci_cp_le_set_ext_adv_params cp; 1078 bdaddr_t random_addr; 1079 1080 /* Set require_privacy to false so that the remote device has a 1081 * chance of identifying us. 1082 */ 1083 if (hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, 1084 &own_addr_type, &random_addr) < 0) 1085 return; 1086 1087 memset(&cp, 0, sizeof(cp)); 1088 1089 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); 1090 cp.own_addr_type = own_addr_type; 1091 cp.channel_map = hdev->le_adv_channel_map; 1092 cp.tx_power = HCI_TX_POWER_INVALID; 1093 cp.primary_phy = HCI_ADV_PHY_1M; 1094 cp.secondary_phy = HCI_ADV_PHY_1M; 1095 cp.handle = 0; /* Use instance 0 for directed adv */ 1096 cp.own_addr_type = own_addr_type; 1097 cp.peer_addr_type = conn->dst_type; 1098 bacpy(&cp.peer_addr, &conn->dst); 1099 1100 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for 1101 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND 1102 * does not supports advertising data when the advertising set already 1103 * contains some, the controller shall return erroc code 'Invalid 1104 * HCI Command Parameters(0x12). 1105 * So it is required to remove adv set for handle 0x00. since we use 1106 * instance 0 for directed adv. 1107 */ 1108 __hci_req_remove_ext_adv_instance(req, cp.handle); 1109 1110 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp); 1111 1112 if (own_addr_type == ADDR_LE_DEV_RANDOM && 1113 bacmp(&random_addr, BDADDR_ANY) && 1114 bacmp(&random_addr, &hdev->random_addr)) { 1115 struct hci_cp_le_set_adv_set_rand_addr cp; 1116 1117 memset(&cp, 0, sizeof(cp)); 1118 1119 cp.handle = 0; 1120 bacpy(&cp.bdaddr, &random_addr); 1121 1122 hci_req_add(req, 1123 HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 1124 sizeof(cp), &cp); 1125 } 1126 1127 __hci_req_enable_ext_advertising(req, 0x00); 1128 } else { 1129 struct hci_cp_le_set_adv_param cp; 1130 1131 /* Clear the HCI_LE_ADV bit temporarily so that the 1132 * hci_update_random_address knows that it's safe to go ahead 1133 * and write a new random address. The flag will be set back on 1134 * as soon as the SET_ADV_ENABLE HCI command completes. 1135 */ 1136 hci_dev_clear_flag(hdev, HCI_LE_ADV); 1137 1138 /* Set require_privacy to false so that the remote device has a 1139 * chance of identifying us. 1140 */ 1141 if (hci_update_random_address(req, false, conn_use_rpa(conn), 1142 &own_addr_type) < 0) 1143 return; 1144 1145 memset(&cp, 0, sizeof(cp)); 1146 1147 /* Some controllers might reject command if intervals are not 1148 * within range for undirected advertising. 1149 * BCM20702A0 is known to be affected by this. 1150 */ 1151 cp.min_interval = cpu_to_le16(0x0020); 1152 cp.max_interval = cpu_to_le16(0x0020); 1153 1154 cp.type = LE_ADV_DIRECT_IND; 1155 cp.own_address_type = own_addr_type; 1156 cp.direct_addr_type = conn->dst_type; 1157 bacpy(&cp.direct_addr, &conn->dst); 1158 cp.channel_map = hdev->le_adv_channel_map; 1159 1160 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp); 1161 1162 enable = 0x01; 1163 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), 1164 &enable); 1165 } 1166 1167 conn->state = BT_CONNECT; 1168 } 1169 1170 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst, 1171 u8 dst_type, bool dst_resolved, u8 sec_level, 1172 u16 conn_timeout, u8 role, bdaddr_t *direct_rpa) 1173 { 1174 struct hci_conn_params *params; 1175 struct hci_conn *conn; 1176 struct smp_irk *irk; 1177 struct hci_request req; 1178 int err; 1179 1180 /* This ensures that during disable le_scan address resolution 1181 * will not be disabled if it is followed by le_create_conn 1182 */ 1183 bool rpa_le_conn = true; 1184 1185 /* Let's make sure that le is enabled.*/ 1186 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 1187 if (lmp_le_capable(hdev)) 1188 return ERR_PTR(-ECONNREFUSED); 1189 1190 return ERR_PTR(-EOPNOTSUPP); 1191 } 1192 1193 /* Since the controller supports only one LE connection attempt at a 1194 * time, we return -EBUSY if there is any connection attempt running. 1195 */ 1196 if (hci_lookup_le_connect(hdev)) 1197 return ERR_PTR(-EBUSY); 1198 1199 /* If there's already a connection object but it's not in 1200 * scanning state it means it must already be established, in 1201 * which case we can't do anything else except report a failure 1202 * to connect. 1203 */ 1204 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); 1205 if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) { 1206 return ERR_PTR(-EBUSY); 1207 } 1208 1209 /* Check if the destination address has been resolved by the controller 1210 * since if it did then the identity address shall be used. 1211 */ 1212 if (!dst_resolved) { 1213 /* When given an identity address with existing identity 1214 * resolving key, the connection needs to be established 1215 * to a resolvable random address. 1216 * 1217 * Storing the resolvable random address is required here 1218 * to handle connection failures. The address will later 1219 * be resolved back into the original identity address 1220 * from the connect request. 1221 */ 1222 irk = hci_find_irk_by_addr(hdev, dst, dst_type); 1223 if (irk && bacmp(&irk->rpa, BDADDR_ANY)) { 1224 dst = &irk->rpa; 1225 dst_type = ADDR_LE_DEV_RANDOM; 1226 } 1227 } 1228 1229 if (conn) { 1230 bacpy(&conn->dst, dst); 1231 } else { 1232 conn = hci_conn_add(hdev, LE_LINK, dst, role); 1233 if (!conn) 1234 return ERR_PTR(-ENOMEM); 1235 hci_conn_hold(conn); 1236 conn->pending_sec_level = sec_level; 1237 } 1238 1239 conn->dst_type = dst_type; 1240 conn->sec_level = BT_SECURITY_LOW; 1241 conn->conn_timeout = conn_timeout; 1242 1243 hci_req_init(&req, hdev); 1244 1245 /* Disable advertising if we're active. For central role 1246 * connections most controllers will refuse to connect if 1247 * advertising is enabled, and for peripheral role connections we 1248 * anyway have to disable it in order to start directed 1249 * advertising. Any registered advertisements will be 1250 * re-enabled after the connection attempt is finished. 1251 */ 1252 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) 1253 __hci_req_pause_adv_instances(&req); 1254 1255 /* If requested to connect as peripheral use directed advertising */ 1256 if (conn->role == HCI_ROLE_SLAVE) { 1257 /* If we're active scanning most controllers are unable 1258 * to initiate advertising. Simply reject the attempt. 1259 */ 1260 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && 1261 hdev->le_scan_type == LE_SCAN_ACTIVE) { 1262 hci_req_purge(&req); 1263 hci_conn_del(conn); 1264 return ERR_PTR(-EBUSY); 1265 } 1266 1267 hci_req_directed_advertising(&req, conn); 1268 goto create_conn; 1269 } 1270 1271 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 1272 if (params) { 1273 conn->le_conn_min_interval = params->conn_min_interval; 1274 conn->le_conn_max_interval = params->conn_max_interval; 1275 conn->le_conn_latency = params->conn_latency; 1276 conn->le_supv_timeout = params->supervision_timeout; 1277 } else { 1278 conn->le_conn_min_interval = hdev->le_conn_min_interval; 1279 conn->le_conn_max_interval = hdev->le_conn_max_interval; 1280 conn->le_conn_latency = hdev->le_conn_latency; 1281 conn->le_supv_timeout = hdev->le_supv_timeout; 1282 } 1283 1284 /* If controller is scanning, we stop it since some controllers are 1285 * not able to scan and connect at the same time. Also set the 1286 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 1287 * handler for scan disabling knows to set the correct discovery 1288 * state. 1289 */ 1290 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 1291 hci_req_add_le_scan_disable(&req, rpa_le_conn); 1292 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 1293 } 1294 1295 hci_req_add_le_create_conn(&req, conn, direct_rpa); 1296 1297 create_conn: 1298 err = hci_req_run(&req, create_le_conn_complete); 1299 if (err) { 1300 hci_conn_del(conn); 1301 1302 if (hdev->adv_instance_cnt) 1303 hci_req_resume_adv_instances(hdev); 1304 1305 return ERR_PTR(err); 1306 } 1307 1308 return conn; 1309 } 1310 1311 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type) 1312 { 1313 struct hci_conn *conn; 1314 1315 conn = hci_conn_hash_lookup_le(hdev, addr, type); 1316 if (!conn) 1317 return false; 1318 1319 if (conn->state != BT_CONNECTED) 1320 return false; 1321 1322 return true; 1323 } 1324 1325 /* This function requires the caller holds hdev->lock */ 1326 static int hci_explicit_conn_params_set(struct hci_dev *hdev, 1327 bdaddr_t *addr, u8 addr_type) 1328 { 1329 struct hci_conn_params *params; 1330 1331 if (is_connected(hdev, addr, addr_type)) 1332 return -EISCONN; 1333 1334 params = hci_conn_params_lookup(hdev, addr, addr_type); 1335 if (!params) { 1336 params = hci_conn_params_add(hdev, addr, addr_type); 1337 if (!params) 1338 return -ENOMEM; 1339 1340 /* If we created new params, mark them to be deleted in 1341 * hci_connect_le_scan_cleanup. It's different case than 1342 * existing disabled params, those will stay after cleanup. 1343 */ 1344 params->auto_connect = HCI_AUTO_CONN_EXPLICIT; 1345 } 1346 1347 /* We're trying to connect, so make sure params are at pend_le_conns */ 1348 if (params->auto_connect == HCI_AUTO_CONN_DISABLED || 1349 params->auto_connect == HCI_AUTO_CONN_REPORT || 1350 params->auto_connect == HCI_AUTO_CONN_EXPLICIT) { 1351 list_del_init(¶ms->action); 1352 list_add(¶ms->action, &hdev->pend_le_conns); 1353 } 1354 1355 params->explicit_connect = true; 1356 1357 BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type, 1358 params->auto_connect); 1359 1360 return 0; 1361 } 1362 1363 /* This function requires the caller holds hdev->lock */ 1364 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst, 1365 u8 dst_type, u8 sec_level, 1366 u16 conn_timeout, 1367 enum conn_reasons conn_reason) 1368 { 1369 struct hci_conn *conn; 1370 1371 /* Let's make sure that le is enabled.*/ 1372 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 1373 if (lmp_le_capable(hdev)) 1374 return ERR_PTR(-ECONNREFUSED); 1375 1376 return ERR_PTR(-EOPNOTSUPP); 1377 } 1378 1379 /* Some devices send ATT messages as soon as the physical link is 1380 * established. To be able to handle these ATT messages, the user- 1381 * space first establishes the connection and then starts the pairing 1382 * process. 1383 * 1384 * So if a hci_conn object already exists for the following connection 1385 * attempt, we simply update pending_sec_level and auth_type fields 1386 * and return the object found. 1387 */ 1388 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); 1389 if (conn) { 1390 if (conn->pending_sec_level < sec_level) 1391 conn->pending_sec_level = sec_level; 1392 goto done; 1393 } 1394 1395 BT_DBG("requesting refresh of dst_addr"); 1396 1397 conn = hci_conn_add(hdev, LE_LINK, dst, HCI_ROLE_MASTER); 1398 if (!conn) 1399 return ERR_PTR(-ENOMEM); 1400 1401 if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0) { 1402 hci_conn_del(conn); 1403 return ERR_PTR(-EBUSY); 1404 } 1405 1406 conn->state = BT_CONNECT; 1407 set_bit(HCI_CONN_SCANNING, &conn->flags); 1408 conn->dst_type = dst_type; 1409 conn->sec_level = BT_SECURITY_LOW; 1410 conn->pending_sec_level = sec_level; 1411 conn->conn_timeout = conn_timeout; 1412 conn->conn_reason = conn_reason; 1413 1414 hci_update_background_scan(hdev); 1415 1416 done: 1417 hci_conn_hold(conn); 1418 return conn; 1419 } 1420 1421 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst, 1422 u8 sec_level, u8 auth_type, 1423 enum conn_reasons conn_reason) 1424 { 1425 struct hci_conn *acl; 1426 1427 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 1428 if (lmp_bredr_capable(hdev)) 1429 return ERR_PTR(-ECONNREFUSED); 1430 1431 return ERR_PTR(-EOPNOTSUPP); 1432 } 1433 1434 acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst); 1435 if (!acl) { 1436 acl = hci_conn_add(hdev, ACL_LINK, dst, HCI_ROLE_MASTER); 1437 if (!acl) 1438 return ERR_PTR(-ENOMEM); 1439 } 1440 1441 hci_conn_hold(acl); 1442 1443 acl->conn_reason = conn_reason; 1444 if (acl->state == BT_OPEN || acl->state == BT_CLOSED) { 1445 acl->sec_level = BT_SECURITY_LOW; 1446 acl->pending_sec_level = sec_level; 1447 acl->auth_type = auth_type; 1448 hci_acl_create_connection(acl); 1449 } 1450 1451 return acl; 1452 } 1453 1454 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, 1455 __u16 setting, struct bt_codec *codec) 1456 { 1457 struct hci_conn *acl; 1458 struct hci_conn *sco; 1459 1460 acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING, 1461 CONN_REASON_SCO_CONNECT); 1462 if (IS_ERR(acl)) 1463 return acl; 1464 1465 sco = hci_conn_hash_lookup_ba(hdev, type, dst); 1466 if (!sco) { 1467 sco = hci_conn_add(hdev, type, dst, HCI_ROLE_MASTER); 1468 if (!sco) { 1469 hci_conn_drop(acl); 1470 return ERR_PTR(-ENOMEM); 1471 } 1472 } 1473 1474 acl->link = sco; 1475 sco->link = acl; 1476 1477 hci_conn_hold(sco); 1478 1479 sco->setting = setting; 1480 sco->codec = *codec; 1481 1482 if (acl->state == BT_CONNECTED && 1483 (sco->state == BT_OPEN || sco->state == BT_CLOSED)) { 1484 set_bit(HCI_CONN_POWER_SAVE, &acl->flags); 1485 hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON); 1486 1487 if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) { 1488 /* defer SCO setup until mode change completed */ 1489 set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags); 1490 return sco; 1491 } 1492 1493 hci_sco_setup(acl, 0x00); 1494 } 1495 1496 return sco; 1497 } 1498 1499 /* Check link security requirement */ 1500 int hci_conn_check_link_mode(struct hci_conn *conn) 1501 { 1502 BT_DBG("hcon %p", conn); 1503 1504 /* In Secure Connections Only mode, it is required that Secure 1505 * Connections is used and the link is encrypted with AES-CCM 1506 * using a P-256 authenticated combination key. 1507 */ 1508 if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) { 1509 if (!hci_conn_sc_enabled(conn) || 1510 !test_bit(HCI_CONN_AES_CCM, &conn->flags) || 1511 conn->key_type != HCI_LK_AUTH_COMBINATION_P256) 1512 return 0; 1513 } 1514 1515 /* AES encryption is required for Level 4: 1516 * 1517 * BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 3, Part C 1518 * page 1319: 1519 * 1520 * 128-bit equivalent strength for link and encryption keys 1521 * required using FIPS approved algorithms (E0 not allowed, 1522 * SAFER+ not allowed, and P-192 not allowed; encryption key 1523 * not shortened) 1524 */ 1525 if (conn->sec_level == BT_SECURITY_FIPS && 1526 !test_bit(HCI_CONN_AES_CCM, &conn->flags)) { 1527 bt_dev_err(conn->hdev, 1528 "Invalid security: Missing AES-CCM usage"); 1529 return 0; 1530 } 1531 1532 if (hci_conn_ssp_enabled(conn) && 1533 !test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1534 return 0; 1535 1536 return 1; 1537 } 1538 1539 /* Authenticate remote device */ 1540 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type) 1541 { 1542 BT_DBG("hcon %p", conn); 1543 1544 if (conn->pending_sec_level > sec_level) 1545 sec_level = conn->pending_sec_level; 1546 1547 if (sec_level > conn->sec_level) 1548 conn->pending_sec_level = sec_level; 1549 else if (test_bit(HCI_CONN_AUTH, &conn->flags)) 1550 return 1; 1551 1552 /* Make sure we preserve an existing MITM requirement*/ 1553 auth_type |= (conn->auth_type & 0x01); 1554 1555 conn->auth_type = auth_type; 1556 1557 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) { 1558 struct hci_cp_auth_requested cp; 1559 1560 cp.handle = cpu_to_le16(conn->handle); 1561 hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED, 1562 sizeof(cp), &cp); 1563 1564 /* If we're already encrypted set the REAUTH_PEND flag, 1565 * otherwise set the ENCRYPT_PEND. 1566 */ 1567 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1568 set_bit(HCI_CONN_REAUTH_PEND, &conn->flags); 1569 else 1570 set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); 1571 } 1572 1573 return 0; 1574 } 1575 1576 /* Encrypt the link */ 1577 static void hci_conn_encrypt(struct hci_conn *conn) 1578 { 1579 BT_DBG("hcon %p", conn); 1580 1581 if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) { 1582 struct hci_cp_set_conn_encrypt cp; 1583 cp.handle = cpu_to_le16(conn->handle); 1584 cp.encrypt = 0x01; 1585 hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp), 1586 &cp); 1587 } 1588 } 1589 1590 /* Enable security */ 1591 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type, 1592 bool initiator) 1593 { 1594 BT_DBG("hcon %p", conn); 1595 1596 if (conn->type == LE_LINK) 1597 return smp_conn_security(conn, sec_level); 1598 1599 /* For sdp we don't need the link key. */ 1600 if (sec_level == BT_SECURITY_SDP) 1601 return 1; 1602 1603 /* For non 2.1 devices and low security level we don't need the link 1604 key. */ 1605 if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn)) 1606 return 1; 1607 1608 /* For other security levels we need the link key. */ 1609 if (!test_bit(HCI_CONN_AUTH, &conn->flags)) 1610 goto auth; 1611 1612 /* An authenticated FIPS approved combination key has sufficient 1613 * security for security level 4. */ 1614 if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256 && 1615 sec_level == BT_SECURITY_FIPS) 1616 goto encrypt; 1617 1618 /* An authenticated combination key has sufficient security for 1619 security level 3. */ 1620 if ((conn->key_type == HCI_LK_AUTH_COMBINATION_P192 || 1621 conn->key_type == HCI_LK_AUTH_COMBINATION_P256) && 1622 sec_level == BT_SECURITY_HIGH) 1623 goto encrypt; 1624 1625 /* An unauthenticated combination key has sufficient security for 1626 security level 1 and 2. */ 1627 if ((conn->key_type == HCI_LK_UNAUTH_COMBINATION_P192 || 1628 conn->key_type == HCI_LK_UNAUTH_COMBINATION_P256) && 1629 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW)) 1630 goto encrypt; 1631 1632 /* A combination key has always sufficient security for the security 1633 levels 1 or 2. High security level requires the combination key 1634 is generated using maximum PIN code length (16). 1635 For pre 2.1 units. */ 1636 if (conn->key_type == HCI_LK_COMBINATION && 1637 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW || 1638 conn->pin_length == 16)) 1639 goto encrypt; 1640 1641 auth: 1642 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) 1643 return 0; 1644 1645 if (initiator) 1646 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags); 1647 1648 if (!hci_conn_auth(conn, sec_level, auth_type)) 1649 return 0; 1650 1651 encrypt: 1652 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) { 1653 /* Ensure that the encryption key size has been read, 1654 * otherwise stall the upper layer responses. 1655 */ 1656 if (!conn->enc_key_size) 1657 return 0; 1658 1659 /* Nothing else needed, all requirements are met */ 1660 return 1; 1661 } 1662 1663 hci_conn_encrypt(conn); 1664 return 0; 1665 } 1666 EXPORT_SYMBOL(hci_conn_security); 1667 1668 /* Check secure link requirement */ 1669 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level) 1670 { 1671 BT_DBG("hcon %p", conn); 1672 1673 /* Accept if non-secure or higher security level is required */ 1674 if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS) 1675 return 1; 1676 1677 /* Accept if secure or higher security level is already present */ 1678 if (conn->sec_level == BT_SECURITY_HIGH || 1679 conn->sec_level == BT_SECURITY_FIPS) 1680 return 1; 1681 1682 /* Reject not secure link */ 1683 return 0; 1684 } 1685 EXPORT_SYMBOL(hci_conn_check_secure); 1686 1687 /* Switch role */ 1688 int hci_conn_switch_role(struct hci_conn *conn, __u8 role) 1689 { 1690 BT_DBG("hcon %p", conn); 1691 1692 if (role == conn->role) 1693 return 1; 1694 1695 if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) { 1696 struct hci_cp_switch_role cp; 1697 bacpy(&cp.bdaddr, &conn->dst); 1698 cp.role = role; 1699 hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp); 1700 } 1701 1702 return 0; 1703 } 1704 EXPORT_SYMBOL(hci_conn_switch_role); 1705 1706 /* Enter active mode */ 1707 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active) 1708 { 1709 struct hci_dev *hdev = conn->hdev; 1710 1711 BT_DBG("hcon %p mode %d", conn, conn->mode); 1712 1713 if (conn->mode != HCI_CM_SNIFF) 1714 goto timer; 1715 1716 if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active) 1717 goto timer; 1718 1719 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 1720 struct hci_cp_exit_sniff_mode cp; 1721 cp.handle = cpu_to_le16(conn->handle); 1722 hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp); 1723 } 1724 1725 timer: 1726 if (hdev->idle_timeout > 0) 1727 queue_delayed_work(hdev->workqueue, &conn->idle_work, 1728 msecs_to_jiffies(hdev->idle_timeout)); 1729 } 1730 1731 /* Drop all connection on the device */ 1732 void hci_conn_hash_flush(struct hci_dev *hdev) 1733 { 1734 struct hci_conn_hash *h = &hdev->conn_hash; 1735 struct hci_conn *c, *n; 1736 1737 BT_DBG("hdev %s", hdev->name); 1738 1739 list_for_each_entry_safe(c, n, &h->list, list) { 1740 c->state = BT_CLOSED; 1741 1742 hci_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM); 1743 hci_conn_del(c); 1744 } 1745 } 1746 1747 /* Check pending connect attempts */ 1748 void hci_conn_check_pending(struct hci_dev *hdev) 1749 { 1750 struct hci_conn *conn; 1751 1752 BT_DBG("hdev %s", hdev->name); 1753 1754 hci_dev_lock(hdev); 1755 1756 conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2); 1757 if (conn) 1758 hci_acl_create_connection(conn); 1759 1760 hci_dev_unlock(hdev); 1761 } 1762 1763 static u32 get_link_mode(struct hci_conn *conn) 1764 { 1765 u32 link_mode = 0; 1766 1767 if (conn->role == HCI_ROLE_MASTER) 1768 link_mode |= HCI_LM_MASTER; 1769 1770 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1771 link_mode |= HCI_LM_ENCRYPT; 1772 1773 if (test_bit(HCI_CONN_AUTH, &conn->flags)) 1774 link_mode |= HCI_LM_AUTH; 1775 1776 if (test_bit(HCI_CONN_SECURE, &conn->flags)) 1777 link_mode |= HCI_LM_SECURE; 1778 1779 if (test_bit(HCI_CONN_FIPS, &conn->flags)) 1780 link_mode |= HCI_LM_FIPS; 1781 1782 return link_mode; 1783 } 1784 1785 int hci_get_conn_list(void __user *arg) 1786 { 1787 struct hci_conn *c; 1788 struct hci_conn_list_req req, *cl; 1789 struct hci_conn_info *ci; 1790 struct hci_dev *hdev; 1791 int n = 0, size, err; 1792 1793 if (copy_from_user(&req, arg, sizeof(req))) 1794 return -EFAULT; 1795 1796 if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci)) 1797 return -EINVAL; 1798 1799 size = sizeof(req) + req.conn_num * sizeof(*ci); 1800 1801 cl = kmalloc(size, GFP_KERNEL); 1802 if (!cl) 1803 return -ENOMEM; 1804 1805 hdev = hci_dev_get(req.dev_id); 1806 if (!hdev) { 1807 kfree(cl); 1808 return -ENODEV; 1809 } 1810 1811 ci = cl->conn_info; 1812 1813 hci_dev_lock(hdev); 1814 list_for_each_entry(c, &hdev->conn_hash.list, list) { 1815 bacpy(&(ci + n)->bdaddr, &c->dst); 1816 (ci + n)->handle = c->handle; 1817 (ci + n)->type = c->type; 1818 (ci + n)->out = c->out; 1819 (ci + n)->state = c->state; 1820 (ci + n)->link_mode = get_link_mode(c); 1821 if (++n >= req.conn_num) 1822 break; 1823 } 1824 hci_dev_unlock(hdev); 1825 1826 cl->dev_id = hdev->id; 1827 cl->conn_num = n; 1828 size = sizeof(req) + n * sizeof(*ci); 1829 1830 hci_dev_put(hdev); 1831 1832 err = copy_to_user(arg, cl, size); 1833 kfree(cl); 1834 1835 return err ? -EFAULT : 0; 1836 } 1837 1838 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg) 1839 { 1840 struct hci_conn_info_req req; 1841 struct hci_conn_info ci; 1842 struct hci_conn *conn; 1843 char __user *ptr = arg + sizeof(req); 1844 1845 if (copy_from_user(&req, arg, sizeof(req))) 1846 return -EFAULT; 1847 1848 hci_dev_lock(hdev); 1849 conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr); 1850 if (conn) { 1851 bacpy(&ci.bdaddr, &conn->dst); 1852 ci.handle = conn->handle; 1853 ci.type = conn->type; 1854 ci.out = conn->out; 1855 ci.state = conn->state; 1856 ci.link_mode = get_link_mode(conn); 1857 } 1858 hci_dev_unlock(hdev); 1859 1860 if (!conn) 1861 return -ENOENT; 1862 1863 return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0; 1864 } 1865 1866 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg) 1867 { 1868 struct hci_auth_info_req req; 1869 struct hci_conn *conn; 1870 1871 if (copy_from_user(&req, arg, sizeof(req))) 1872 return -EFAULT; 1873 1874 hci_dev_lock(hdev); 1875 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr); 1876 if (conn) 1877 req.type = conn->auth_type; 1878 hci_dev_unlock(hdev); 1879 1880 if (!conn) 1881 return -ENOENT; 1882 1883 return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0; 1884 } 1885 1886 struct hci_chan *hci_chan_create(struct hci_conn *conn) 1887 { 1888 struct hci_dev *hdev = conn->hdev; 1889 struct hci_chan *chan; 1890 1891 BT_DBG("%s hcon %p", hdev->name, conn); 1892 1893 if (test_bit(HCI_CONN_DROP, &conn->flags)) { 1894 BT_DBG("Refusing to create new hci_chan"); 1895 return NULL; 1896 } 1897 1898 chan = kzalloc(sizeof(*chan), GFP_KERNEL); 1899 if (!chan) 1900 return NULL; 1901 1902 chan->conn = hci_conn_get(conn); 1903 skb_queue_head_init(&chan->data_q); 1904 chan->state = BT_CONNECTED; 1905 1906 list_add_rcu(&chan->list, &conn->chan_list); 1907 1908 return chan; 1909 } 1910 1911 void hci_chan_del(struct hci_chan *chan) 1912 { 1913 struct hci_conn *conn = chan->conn; 1914 struct hci_dev *hdev = conn->hdev; 1915 1916 BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan); 1917 1918 list_del_rcu(&chan->list); 1919 1920 synchronize_rcu(); 1921 1922 /* Prevent new hci_chan's to be created for this hci_conn */ 1923 set_bit(HCI_CONN_DROP, &conn->flags); 1924 1925 hci_conn_put(conn); 1926 1927 skb_queue_purge(&chan->data_q); 1928 kfree(chan); 1929 } 1930 1931 void hci_chan_list_flush(struct hci_conn *conn) 1932 { 1933 struct hci_chan *chan, *n; 1934 1935 BT_DBG("hcon %p", conn); 1936 1937 list_for_each_entry_safe(chan, n, &conn->chan_list, list) 1938 hci_chan_del(chan); 1939 } 1940 1941 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon, 1942 __u16 handle) 1943 { 1944 struct hci_chan *hchan; 1945 1946 list_for_each_entry(hchan, &hcon->chan_list, list) { 1947 if (hchan->handle == handle) 1948 return hchan; 1949 } 1950 1951 return NULL; 1952 } 1953 1954 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle) 1955 { 1956 struct hci_conn_hash *h = &hdev->conn_hash; 1957 struct hci_conn *hcon; 1958 struct hci_chan *hchan = NULL; 1959 1960 rcu_read_lock(); 1961 1962 list_for_each_entry_rcu(hcon, &h->list, list) { 1963 hchan = __hci_chan_lookup_handle(hcon, handle); 1964 if (hchan) 1965 break; 1966 } 1967 1968 rcu_read_unlock(); 1969 1970 return hchan; 1971 } 1972 1973 u32 hci_conn_get_phy(struct hci_conn *conn) 1974 { 1975 u32 phys = 0; 1976 1977 /* BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 2, Part B page 471: 1978 * Table 6.2: Packets defined for synchronous, asynchronous, and 1979 * CPB logical transport types. 1980 */ 1981 switch (conn->type) { 1982 case SCO_LINK: 1983 /* SCO logical transport (1 Mb/s): 1984 * HV1, HV2, HV3 and DV. 1985 */ 1986 phys |= BT_PHY_BR_1M_1SLOT; 1987 1988 break; 1989 1990 case ACL_LINK: 1991 /* ACL logical transport (1 Mb/s) ptt=0: 1992 * DH1, DM3, DH3, DM5 and DH5. 1993 */ 1994 phys |= BT_PHY_BR_1M_1SLOT; 1995 1996 if (conn->pkt_type & (HCI_DM3 | HCI_DH3)) 1997 phys |= BT_PHY_BR_1M_3SLOT; 1998 1999 if (conn->pkt_type & (HCI_DM5 | HCI_DH5)) 2000 phys |= BT_PHY_BR_1M_5SLOT; 2001 2002 /* ACL logical transport (2 Mb/s) ptt=1: 2003 * 2-DH1, 2-DH3 and 2-DH5. 2004 */ 2005 if (!(conn->pkt_type & HCI_2DH1)) 2006 phys |= BT_PHY_EDR_2M_1SLOT; 2007 2008 if (!(conn->pkt_type & HCI_2DH3)) 2009 phys |= BT_PHY_EDR_2M_3SLOT; 2010 2011 if (!(conn->pkt_type & HCI_2DH5)) 2012 phys |= BT_PHY_EDR_2M_5SLOT; 2013 2014 /* ACL logical transport (3 Mb/s) ptt=1: 2015 * 3-DH1, 3-DH3 and 3-DH5. 2016 */ 2017 if (!(conn->pkt_type & HCI_3DH1)) 2018 phys |= BT_PHY_EDR_3M_1SLOT; 2019 2020 if (!(conn->pkt_type & HCI_3DH3)) 2021 phys |= BT_PHY_EDR_3M_3SLOT; 2022 2023 if (!(conn->pkt_type & HCI_3DH5)) 2024 phys |= BT_PHY_EDR_3M_5SLOT; 2025 2026 break; 2027 2028 case ESCO_LINK: 2029 /* eSCO logical transport (1 Mb/s): EV3, EV4 and EV5 */ 2030 phys |= BT_PHY_BR_1M_1SLOT; 2031 2032 if (!(conn->pkt_type & (ESCO_EV4 | ESCO_EV5))) 2033 phys |= BT_PHY_BR_1M_3SLOT; 2034 2035 /* eSCO logical transport (2 Mb/s): 2-EV3, 2-EV5 */ 2036 if (!(conn->pkt_type & ESCO_2EV3)) 2037 phys |= BT_PHY_EDR_2M_1SLOT; 2038 2039 if (!(conn->pkt_type & ESCO_2EV5)) 2040 phys |= BT_PHY_EDR_2M_3SLOT; 2041 2042 /* eSCO logical transport (3 Mb/s): 3-EV3, 3-EV5 */ 2043 if (!(conn->pkt_type & ESCO_3EV3)) 2044 phys |= BT_PHY_EDR_3M_1SLOT; 2045 2046 if (!(conn->pkt_type & ESCO_3EV5)) 2047 phys |= BT_PHY_EDR_3M_3SLOT; 2048 2049 break; 2050 2051 case LE_LINK: 2052 if (conn->le_tx_phy & HCI_LE_SET_PHY_1M) 2053 phys |= BT_PHY_LE_1M_TX; 2054 2055 if (conn->le_rx_phy & HCI_LE_SET_PHY_1M) 2056 phys |= BT_PHY_LE_1M_RX; 2057 2058 if (conn->le_tx_phy & HCI_LE_SET_PHY_2M) 2059 phys |= BT_PHY_LE_2M_TX; 2060 2061 if (conn->le_rx_phy & HCI_LE_SET_PHY_2M) 2062 phys |= BT_PHY_LE_2M_RX; 2063 2064 if (conn->le_tx_phy & HCI_LE_SET_PHY_CODED) 2065 phys |= BT_PHY_LE_CODED_TX; 2066 2067 if (conn->le_rx_phy & HCI_LE_SET_PHY_CODED) 2068 phys |= BT_PHY_LE_CODED_RX; 2069 2070 break; 2071 } 2072 2073 return phys; 2074 } 2075