1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 /* Bluetooth HCI connection handling. */ 26 27 #include <linux/export.h> 28 #include <linux/debugfs.h> 29 30 #include <net/bluetooth/bluetooth.h> 31 #include <net/bluetooth/hci_core.h> 32 #include <net/bluetooth/l2cap.h> 33 34 #include "hci_request.h" 35 #include "smp.h" 36 #include "a2mp.h" 37 38 struct sco_param { 39 u16 pkt_type; 40 u16 max_latency; 41 u8 retrans_effort; 42 }; 43 44 static const struct sco_param esco_param_cvsd[] = { 45 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a, 0x01 }, /* S3 */ 46 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007, 0x01 }, /* S2 */ 47 { EDR_ESCO_MASK | ESCO_EV3, 0x0007, 0x01 }, /* S1 */ 48 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0x01 }, /* D1 */ 49 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0x01 }, /* D0 */ 50 }; 51 52 static const struct sco_param sco_param_cvsd[] = { 53 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0xff }, /* D1 */ 54 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0xff }, /* D0 */ 55 }; 56 57 static const struct sco_param esco_param_msbc[] = { 58 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d, 0x02 }, /* T2 */ 59 { EDR_ESCO_MASK | ESCO_EV3, 0x0008, 0x02 }, /* T1 */ 60 }; 61 62 /* This function requires the caller holds hdev->lock */ 63 static void hci_connect_le_scan_cleanup(struct hci_conn *conn) 64 { 65 struct hci_conn_params *params; 66 struct hci_dev *hdev = conn->hdev; 67 struct smp_irk *irk; 68 bdaddr_t *bdaddr; 69 u8 bdaddr_type; 70 71 bdaddr = &conn->dst; 72 bdaddr_type = conn->dst_type; 73 74 /* Check if we need to convert to identity address */ 75 irk = hci_get_irk(hdev, bdaddr, bdaddr_type); 76 if (irk) { 77 bdaddr = &irk->bdaddr; 78 bdaddr_type = irk->addr_type; 79 } 80 81 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr, 82 bdaddr_type); 83 if (!params || !params->explicit_connect) 84 return; 85 86 /* The connection attempt was doing scan for new RPA, and is 87 * in scan phase. If params are not associated with any other 88 * autoconnect action, remove them completely. If they are, just unmark 89 * them as waiting for connection, by clearing explicit_connect field. 90 */ 91 params->explicit_connect = false; 92 93 list_del_init(¶ms->action); 94 95 switch (params->auto_connect) { 96 case HCI_AUTO_CONN_EXPLICIT: 97 hci_conn_params_del(hdev, bdaddr, bdaddr_type); 98 /* return instead of break to avoid duplicate scan update */ 99 return; 100 case HCI_AUTO_CONN_DIRECT: 101 case HCI_AUTO_CONN_ALWAYS: 102 list_add(¶ms->action, &hdev->pend_le_conns); 103 break; 104 case HCI_AUTO_CONN_REPORT: 105 list_add(¶ms->action, &hdev->pend_le_reports); 106 break; 107 default: 108 break; 109 } 110 111 hci_update_background_scan(hdev); 112 } 113 114 static void hci_conn_cleanup(struct hci_conn *conn) 115 { 116 struct hci_dev *hdev = conn->hdev; 117 118 if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags)) 119 hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type); 120 121 hci_chan_list_flush(conn); 122 123 hci_conn_hash_del(hdev, conn); 124 125 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) { 126 switch (conn->setting & SCO_AIRMODE_MASK) { 127 case SCO_AIRMODE_CVSD: 128 case SCO_AIRMODE_TRANSP: 129 if (hdev->notify) 130 hdev->notify(hdev, HCI_NOTIFY_DISABLE_SCO); 131 break; 132 } 133 } else { 134 if (hdev->notify) 135 hdev->notify(hdev, HCI_NOTIFY_CONN_DEL); 136 } 137 138 hci_conn_del_sysfs(conn); 139 140 debugfs_remove_recursive(conn->debugfs); 141 142 hci_dev_put(hdev); 143 144 hci_conn_put(conn); 145 } 146 147 static void le_scan_cleanup(struct work_struct *work) 148 { 149 struct hci_conn *conn = container_of(work, struct hci_conn, 150 le_scan_cleanup); 151 struct hci_dev *hdev = conn->hdev; 152 struct hci_conn *c = NULL; 153 154 BT_DBG("%s hcon %p", hdev->name, conn); 155 156 hci_dev_lock(hdev); 157 158 /* Check that the hci_conn is still around */ 159 rcu_read_lock(); 160 list_for_each_entry_rcu(c, &hdev->conn_hash.list, list) { 161 if (c == conn) 162 break; 163 } 164 rcu_read_unlock(); 165 166 if (c == conn) { 167 hci_connect_le_scan_cleanup(conn); 168 hci_conn_cleanup(conn); 169 } 170 171 hci_dev_unlock(hdev); 172 hci_dev_put(hdev); 173 hci_conn_put(conn); 174 } 175 176 static void hci_connect_le_scan_remove(struct hci_conn *conn) 177 { 178 BT_DBG("%s hcon %p", conn->hdev->name, conn); 179 180 /* We can't call hci_conn_del/hci_conn_cleanup here since that 181 * could deadlock with another hci_conn_del() call that's holding 182 * hci_dev_lock and doing cancel_delayed_work_sync(&conn->disc_work). 183 * Instead, grab temporary extra references to the hci_dev and 184 * hci_conn and perform the necessary cleanup in a separate work 185 * callback. 186 */ 187 188 hci_dev_hold(conn->hdev); 189 hci_conn_get(conn); 190 191 /* Even though we hold a reference to the hdev, many other 192 * things might get cleaned up meanwhile, including the hdev's 193 * own workqueue, so we can't use that for scheduling. 194 */ 195 schedule_work(&conn->le_scan_cleanup); 196 } 197 198 static void hci_acl_create_connection(struct hci_conn *conn) 199 { 200 struct hci_dev *hdev = conn->hdev; 201 struct inquiry_entry *ie; 202 struct hci_cp_create_conn cp; 203 204 BT_DBG("hcon %p", conn); 205 206 conn->state = BT_CONNECT; 207 conn->out = true; 208 conn->role = HCI_ROLE_MASTER; 209 210 conn->attempt++; 211 212 conn->link_policy = hdev->link_policy; 213 214 memset(&cp, 0, sizeof(cp)); 215 bacpy(&cp.bdaddr, &conn->dst); 216 cp.pscan_rep_mode = 0x02; 217 218 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 219 if (ie) { 220 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) { 221 cp.pscan_rep_mode = ie->data.pscan_rep_mode; 222 cp.pscan_mode = ie->data.pscan_mode; 223 cp.clock_offset = ie->data.clock_offset | 224 cpu_to_le16(0x8000); 225 } 226 227 memcpy(conn->dev_class, ie->data.dev_class, 3); 228 } 229 230 cp.pkt_type = cpu_to_le16(conn->pkt_type); 231 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER)) 232 cp.role_switch = 0x01; 233 else 234 cp.role_switch = 0x00; 235 236 hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp); 237 } 238 239 int hci_disconnect(struct hci_conn *conn, __u8 reason) 240 { 241 BT_DBG("hcon %p", conn); 242 243 /* When we are master of an established connection and it enters 244 * the disconnect timeout, then go ahead and try to read the 245 * current clock offset. Processing of the result is done 246 * within the event handling and hci_clock_offset_evt function. 247 */ 248 if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER && 249 (conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) { 250 struct hci_dev *hdev = conn->hdev; 251 struct hci_cp_read_clock_offset clkoff_cp; 252 253 clkoff_cp.handle = cpu_to_le16(conn->handle); 254 hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp), 255 &clkoff_cp); 256 } 257 258 return hci_abort_conn(conn, reason); 259 } 260 261 static void hci_add_sco(struct hci_conn *conn, __u16 handle) 262 { 263 struct hci_dev *hdev = conn->hdev; 264 struct hci_cp_add_sco cp; 265 266 BT_DBG("hcon %p", conn); 267 268 conn->state = BT_CONNECT; 269 conn->out = true; 270 271 conn->attempt++; 272 273 cp.handle = cpu_to_le16(handle); 274 cp.pkt_type = cpu_to_le16(conn->pkt_type); 275 276 hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp); 277 } 278 279 bool hci_setup_sync(struct hci_conn *conn, __u16 handle) 280 { 281 struct hci_dev *hdev = conn->hdev; 282 struct hci_cp_setup_sync_conn cp; 283 const struct sco_param *param; 284 285 BT_DBG("hcon %p", conn); 286 287 conn->state = BT_CONNECT; 288 conn->out = true; 289 290 conn->attempt++; 291 292 cp.handle = cpu_to_le16(handle); 293 294 cp.tx_bandwidth = cpu_to_le32(0x00001f40); 295 cp.rx_bandwidth = cpu_to_le32(0x00001f40); 296 cp.voice_setting = cpu_to_le16(conn->setting); 297 298 switch (conn->setting & SCO_AIRMODE_MASK) { 299 case SCO_AIRMODE_TRANSP: 300 if (conn->attempt > ARRAY_SIZE(esco_param_msbc)) 301 return false; 302 param = &esco_param_msbc[conn->attempt - 1]; 303 break; 304 case SCO_AIRMODE_CVSD: 305 if (lmp_esco_capable(conn->link)) { 306 if (conn->attempt > ARRAY_SIZE(esco_param_cvsd)) 307 return false; 308 param = &esco_param_cvsd[conn->attempt - 1]; 309 } else { 310 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd)) 311 return false; 312 param = &sco_param_cvsd[conn->attempt - 1]; 313 } 314 break; 315 default: 316 return false; 317 } 318 319 cp.retrans_effort = param->retrans_effort; 320 cp.pkt_type = __cpu_to_le16(param->pkt_type); 321 cp.max_latency = __cpu_to_le16(param->max_latency); 322 323 if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0) 324 return false; 325 326 return true; 327 } 328 329 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency, 330 u16 to_multiplier) 331 { 332 struct hci_dev *hdev = conn->hdev; 333 struct hci_conn_params *params; 334 struct hci_cp_le_conn_update cp; 335 336 hci_dev_lock(hdev); 337 338 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 339 if (params) { 340 params->conn_min_interval = min; 341 params->conn_max_interval = max; 342 params->conn_latency = latency; 343 params->supervision_timeout = to_multiplier; 344 } 345 346 hci_dev_unlock(hdev); 347 348 memset(&cp, 0, sizeof(cp)); 349 cp.handle = cpu_to_le16(conn->handle); 350 cp.conn_interval_min = cpu_to_le16(min); 351 cp.conn_interval_max = cpu_to_le16(max); 352 cp.conn_latency = cpu_to_le16(latency); 353 cp.supervision_timeout = cpu_to_le16(to_multiplier); 354 cp.min_ce_len = cpu_to_le16(0x0000); 355 cp.max_ce_len = cpu_to_le16(0x0000); 356 357 hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp); 358 359 if (params) 360 return 0x01; 361 362 return 0x00; 363 } 364 365 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand, 366 __u8 ltk[16], __u8 key_size) 367 { 368 struct hci_dev *hdev = conn->hdev; 369 struct hci_cp_le_start_enc cp; 370 371 BT_DBG("hcon %p", conn); 372 373 memset(&cp, 0, sizeof(cp)); 374 375 cp.handle = cpu_to_le16(conn->handle); 376 cp.rand = rand; 377 cp.ediv = ediv; 378 memcpy(cp.ltk, ltk, key_size); 379 380 hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp); 381 } 382 383 /* Device _must_ be locked */ 384 void hci_sco_setup(struct hci_conn *conn, __u8 status) 385 { 386 struct hci_conn *sco = conn->link; 387 388 if (!sco) 389 return; 390 391 BT_DBG("hcon %p", conn); 392 393 if (!status) { 394 if (lmp_esco_capable(conn->hdev)) 395 hci_setup_sync(sco, conn->handle); 396 else 397 hci_add_sco(sco, conn->handle); 398 } else { 399 hci_connect_cfm(sco, status); 400 hci_conn_del(sco); 401 } 402 } 403 404 static void hci_conn_timeout(struct work_struct *work) 405 { 406 struct hci_conn *conn = container_of(work, struct hci_conn, 407 disc_work.work); 408 int refcnt = atomic_read(&conn->refcnt); 409 410 BT_DBG("hcon %p state %s", conn, state_to_string(conn->state)); 411 412 WARN_ON(refcnt < 0); 413 414 /* FIXME: It was observed that in pairing failed scenario, refcnt 415 * drops below 0. Probably this is because l2cap_conn_del calls 416 * l2cap_chan_del for each channel, and inside l2cap_chan_del conn is 417 * dropped. After that loop hci_chan_del is called which also drops 418 * conn. For now make sure that ACL is alive if refcnt is higher then 0, 419 * otherwise drop it. 420 */ 421 if (refcnt > 0) 422 return; 423 424 /* LE connections in scanning state need special handling */ 425 if (conn->state == BT_CONNECT && conn->type == LE_LINK && 426 test_bit(HCI_CONN_SCANNING, &conn->flags)) { 427 hci_connect_le_scan_remove(conn); 428 return; 429 } 430 431 hci_abort_conn(conn, hci_proto_disconn_ind(conn)); 432 } 433 434 /* Enter sniff mode */ 435 static void hci_conn_idle(struct work_struct *work) 436 { 437 struct hci_conn *conn = container_of(work, struct hci_conn, 438 idle_work.work); 439 struct hci_dev *hdev = conn->hdev; 440 441 BT_DBG("hcon %p mode %d", conn, conn->mode); 442 443 if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn)) 444 return; 445 446 if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF)) 447 return; 448 449 if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) { 450 struct hci_cp_sniff_subrate cp; 451 cp.handle = cpu_to_le16(conn->handle); 452 cp.max_latency = cpu_to_le16(0); 453 cp.min_remote_timeout = cpu_to_le16(0); 454 cp.min_local_timeout = cpu_to_le16(0); 455 hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp); 456 } 457 458 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 459 struct hci_cp_sniff_mode cp; 460 cp.handle = cpu_to_le16(conn->handle); 461 cp.max_interval = cpu_to_le16(hdev->sniff_max_interval); 462 cp.min_interval = cpu_to_le16(hdev->sniff_min_interval); 463 cp.attempt = cpu_to_le16(4); 464 cp.timeout = cpu_to_le16(1); 465 hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp); 466 } 467 } 468 469 static void hci_conn_auto_accept(struct work_struct *work) 470 { 471 struct hci_conn *conn = container_of(work, struct hci_conn, 472 auto_accept_work.work); 473 474 hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst), 475 &conn->dst); 476 } 477 478 static void le_disable_advertising(struct hci_dev *hdev) 479 { 480 if (ext_adv_capable(hdev)) { 481 struct hci_cp_le_set_ext_adv_enable cp; 482 483 cp.enable = 0x00; 484 cp.num_of_sets = 0x00; 485 486 hci_send_cmd(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp), 487 &cp); 488 } else { 489 u8 enable = 0x00; 490 hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), 491 &enable); 492 } 493 } 494 495 static void le_conn_timeout(struct work_struct *work) 496 { 497 struct hci_conn *conn = container_of(work, struct hci_conn, 498 le_conn_timeout.work); 499 struct hci_dev *hdev = conn->hdev; 500 501 BT_DBG(""); 502 503 /* We could end up here due to having done directed advertising, 504 * so clean up the state if necessary. This should however only 505 * happen with broken hardware or if low duty cycle was used 506 * (which doesn't have a timeout of its own). 507 */ 508 if (conn->role == HCI_ROLE_SLAVE) { 509 /* Disable LE Advertising */ 510 le_disable_advertising(hdev); 511 hci_le_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT); 512 return; 513 } 514 515 hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM); 516 } 517 518 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst, 519 u8 role) 520 { 521 struct hci_conn *conn; 522 523 BT_DBG("%s dst %pMR", hdev->name, dst); 524 525 conn = kzalloc(sizeof(*conn), GFP_KERNEL); 526 if (!conn) 527 return NULL; 528 529 bacpy(&conn->dst, dst); 530 bacpy(&conn->src, &hdev->bdaddr); 531 conn->hdev = hdev; 532 conn->type = type; 533 conn->role = role; 534 conn->mode = HCI_CM_ACTIVE; 535 conn->state = BT_OPEN; 536 conn->auth_type = HCI_AT_GENERAL_BONDING; 537 conn->io_capability = hdev->io_capability; 538 conn->remote_auth = 0xff; 539 conn->key_type = 0xff; 540 conn->rssi = HCI_RSSI_INVALID; 541 conn->tx_power = HCI_TX_POWER_INVALID; 542 conn->max_tx_power = HCI_TX_POWER_INVALID; 543 544 set_bit(HCI_CONN_POWER_SAVE, &conn->flags); 545 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 546 547 /* Set Default Authenticated payload timeout to 30s */ 548 conn->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT; 549 550 if (conn->role == HCI_ROLE_MASTER) 551 conn->out = true; 552 553 switch (type) { 554 case ACL_LINK: 555 conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK; 556 break; 557 case LE_LINK: 558 /* conn->src should reflect the local identity address */ 559 hci_copy_identity_address(hdev, &conn->src, &conn->src_type); 560 break; 561 case SCO_LINK: 562 if (lmp_esco_capable(hdev)) 563 conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) | 564 (hdev->esco_type & EDR_ESCO_MASK); 565 else 566 conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK; 567 break; 568 case ESCO_LINK: 569 conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK; 570 break; 571 } 572 573 skb_queue_head_init(&conn->data_q); 574 575 INIT_LIST_HEAD(&conn->chan_list); 576 577 INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout); 578 INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept); 579 INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle); 580 INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout); 581 INIT_WORK(&conn->le_scan_cleanup, le_scan_cleanup); 582 583 atomic_set(&conn->refcnt, 0); 584 585 hci_dev_hold(hdev); 586 587 hci_conn_hash_add(hdev, conn); 588 589 /* The SCO and eSCO connections will only be notified when their 590 * setup has been completed. This is different to ACL links which 591 * can be notified right away. 592 */ 593 if (conn->type != SCO_LINK && conn->type != ESCO_LINK) { 594 if (hdev->notify) 595 hdev->notify(hdev, HCI_NOTIFY_CONN_ADD); 596 } 597 598 hci_conn_init_sysfs(conn); 599 600 return conn; 601 } 602 603 int hci_conn_del(struct hci_conn *conn) 604 { 605 struct hci_dev *hdev = conn->hdev; 606 607 BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle); 608 609 cancel_delayed_work_sync(&conn->disc_work); 610 cancel_delayed_work_sync(&conn->auto_accept_work); 611 cancel_delayed_work_sync(&conn->idle_work); 612 613 if (conn->type == ACL_LINK) { 614 struct hci_conn *sco = conn->link; 615 if (sco) 616 sco->link = NULL; 617 618 /* Unacked frames */ 619 hdev->acl_cnt += conn->sent; 620 } else if (conn->type == LE_LINK) { 621 cancel_delayed_work(&conn->le_conn_timeout); 622 623 if (hdev->le_pkts) 624 hdev->le_cnt += conn->sent; 625 else 626 hdev->acl_cnt += conn->sent; 627 } else { 628 struct hci_conn *acl = conn->link; 629 if (acl) { 630 acl->link = NULL; 631 hci_conn_drop(acl); 632 } 633 } 634 635 if (conn->amp_mgr) 636 amp_mgr_put(conn->amp_mgr); 637 638 skb_queue_purge(&conn->data_q); 639 640 /* Remove the connection from the list and cleanup its remaining 641 * state. This is a separate function since for some cases like 642 * BT_CONNECT_SCAN we *only* want the cleanup part without the 643 * rest of hci_conn_del. 644 */ 645 hci_conn_cleanup(conn); 646 647 return 0; 648 } 649 650 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, uint8_t src_type) 651 { 652 int use_src = bacmp(src, BDADDR_ANY); 653 struct hci_dev *hdev = NULL, *d; 654 655 BT_DBG("%pMR -> %pMR", src, dst); 656 657 read_lock(&hci_dev_list_lock); 658 659 list_for_each_entry(d, &hci_dev_list, list) { 660 if (!test_bit(HCI_UP, &d->flags) || 661 hci_dev_test_flag(d, HCI_USER_CHANNEL) || 662 d->dev_type != HCI_PRIMARY) 663 continue; 664 665 /* Simple routing: 666 * No source address - find interface with bdaddr != dst 667 * Source address - find interface with bdaddr == src 668 */ 669 670 if (use_src) { 671 bdaddr_t id_addr; 672 u8 id_addr_type; 673 674 if (src_type == BDADDR_BREDR) { 675 if (!lmp_bredr_capable(d)) 676 continue; 677 bacpy(&id_addr, &d->bdaddr); 678 id_addr_type = BDADDR_BREDR; 679 } else { 680 if (!lmp_le_capable(d)) 681 continue; 682 683 hci_copy_identity_address(d, &id_addr, 684 &id_addr_type); 685 686 /* Convert from HCI to three-value type */ 687 if (id_addr_type == ADDR_LE_DEV_PUBLIC) 688 id_addr_type = BDADDR_LE_PUBLIC; 689 else 690 id_addr_type = BDADDR_LE_RANDOM; 691 } 692 693 if (!bacmp(&id_addr, src) && id_addr_type == src_type) { 694 hdev = d; break; 695 } 696 } else { 697 if (bacmp(&d->bdaddr, dst)) { 698 hdev = d; break; 699 } 700 } 701 } 702 703 if (hdev) 704 hdev = hci_dev_hold(hdev); 705 706 read_unlock(&hci_dev_list_lock); 707 return hdev; 708 } 709 EXPORT_SYMBOL(hci_get_route); 710 711 /* This function requires the caller holds hdev->lock */ 712 void hci_le_conn_failed(struct hci_conn *conn, u8 status) 713 { 714 struct hci_dev *hdev = conn->hdev; 715 struct hci_conn_params *params; 716 717 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst, 718 conn->dst_type); 719 if (params && params->conn) { 720 hci_conn_drop(params->conn); 721 hci_conn_put(params->conn); 722 params->conn = NULL; 723 } 724 725 conn->state = BT_CLOSED; 726 727 /* If the status indicates successful cancellation of 728 * the attempt (i.e. Unkown Connection Id) there's no point of 729 * notifying failure since we'll go back to keep trying to 730 * connect. The only exception is explicit connect requests 731 * where a timeout + cancel does indicate an actual failure. 732 */ 733 if (status != HCI_ERROR_UNKNOWN_CONN_ID || 734 (params && params->explicit_connect)) 735 mgmt_connect_failed(hdev, &conn->dst, conn->type, 736 conn->dst_type, status); 737 738 hci_connect_cfm(conn, status); 739 740 hci_conn_del(conn); 741 742 /* Since we may have temporarily stopped the background scanning in 743 * favor of connection establishment, we should restart it. 744 */ 745 hci_update_background_scan(hdev); 746 747 /* Re-enable advertising in case this was a failed connection 748 * attempt as a peripheral. 749 */ 750 hci_req_reenable_advertising(hdev); 751 } 752 753 static void create_le_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode) 754 { 755 struct hci_conn *conn; 756 757 hci_dev_lock(hdev); 758 759 conn = hci_lookup_le_connect(hdev); 760 761 if (!status) { 762 hci_connect_le_scan_cleanup(conn); 763 goto done; 764 } 765 766 bt_dev_err(hdev, "request failed to create LE connection: " 767 "status 0x%2.2x", status); 768 769 if (!conn) 770 goto done; 771 772 hci_le_conn_failed(conn, status); 773 774 done: 775 hci_dev_unlock(hdev); 776 } 777 778 static bool conn_use_rpa(struct hci_conn *conn) 779 { 780 struct hci_dev *hdev = conn->hdev; 781 782 return hci_dev_test_flag(hdev, HCI_PRIVACY); 783 } 784 785 static void set_ext_conn_params(struct hci_conn *conn, 786 struct hci_cp_le_ext_conn_param *p) 787 { 788 struct hci_dev *hdev = conn->hdev; 789 790 memset(p, 0, sizeof(*p)); 791 792 p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 793 p->scan_window = cpu_to_le16(hdev->le_scan_window_connect); 794 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 795 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 796 p->conn_latency = cpu_to_le16(conn->le_conn_latency); 797 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 798 p->min_ce_len = cpu_to_le16(0x0000); 799 p->max_ce_len = cpu_to_le16(0x0000); 800 } 801 802 static void hci_req_add_le_create_conn(struct hci_request *req, 803 struct hci_conn *conn, 804 bdaddr_t *direct_rpa) 805 { 806 struct hci_dev *hdev = conn->hdev; 807 u8 own_addr_type; 808 809 /* If direct address was provided we use it instead of current 810 * address. 811 */ 812 if (direct_rpa) { 813 if (bacmp(&req->hdev->random_addr, direct_rpa)) 814 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, 815 direct_rpa); 816 817 /* direct address is always RPA */ 818 own_addr_type = ADDR_LE_DEV_RANDOM; 819 } else { 820 /* Update random address, but set require_privacy to false so 821 * that we never connect with an non-resolvable address. 822 */ 823 if (hci_update_random_address(req, false, conn_use_rpa(conn), 824 &own_addr_type)) 825 return; 826 } 827 828 if (use_ext_conn(hdev)) { 829 struct hci_cp_le_ext_create_conn *cp; 830 struct hci_cp_le_ext_conn_param *p; 831 u8 data[sizeof(*cp) + sizeof(*p) * 3]; 832 u32 plen; 833 834 cp = (void *) data; 835 p = (void *) cp->data; 836 837 memset(cp, 0, sizeof(*cp)); 838 839 bacpy(&cp->peer_addr, &conn->dst); 840 cp->peer_addr_type = conn->dst_type; 841 cp->own_addr_type = own_addr_type; 842 843 plen = sizeof(*cp); 844 845 if (scan_1m(hdev)) { 846 cp->phys |= LE_SCAN_PHY_1M; 847 set_ext_conn_params(conn, p); 848 849 p++; 850 plen += sizeof(*p); 851 } 852 853 if (scan_2m(hdev)) { 854 cp->phys |= LE_SCAN_PHY_2M; 855 set_ext_conn_params(conn, p); 856 857 p++; 858 plen += sizeof(*p); 859 } 860 861 if (scan_coded(hdev)) { 862 cp->phys |= LE_SCAN_PHY_CODED; 863 set_ext_conn_params(conn, p); 864 865 plen += sizeof(*p); 866 } 867 868 hci_req_add(req, HCI_OP_LE_EXT_CREATE_CONN, plen, data); 869 870 } else { 871 struct hci_cp_le_create_conn cp; 872 873 memset(&cp, 0, sizeof(cp)); 874 875 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect); 876 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect); 877 878 bacpy(&cp.peer_addr, &conn->dst); 879 cp.peer_addr_type = conn->dst_type; 880 cp.own_address_type = own_addr_type; 881 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 882 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 883 cp.conn_latency = cpu_to_le16(conn->le_conn_latency); 884 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 885 cp.min_ce_len = cpu_to_le16(0x0000); 886 cp.max_ce_len = cpu_to_le16(0x0000); 887 888 hci_req_add(req, HCI_OP_LE_CREATE_CONN, sizeof(cp), &cp); 889 } 890 891 conn->state = BT_CONNECT; 892 clear_bit(HCI_CONN_SCANNING, &conn->flags); 893 } 894 895 static void hci_req_directed_advertising(struct hci_request *req, 896 struct hci_conn *conn) 897 { 898 struct hci_dev *hdev = req->hdev; 899 u8 own_addr_type; 900 u8 enable; 901 902 if (ext_adv_capable(hdev)) { 903 struct hci_cp_le_set_ext_adv_params cp; 904 bdaddr_t random_addr; 905 906 /* Set require_privacy to false so that the remote device has a 907 * chance of identifying us. 908 */ 909 if (hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, 910 &own_addr_type, &random_addr) < 0) 911 return; 912 913 memset(&cp, 0, sizeof(cp)); 914 915 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); 916 cp.own_addr_type = own_addr_type; 917 cp.channel_map = hdev->le_adv_channel_map; 918 cp.tx_power = HCI_TX_POWER_INVALID; 919 cp.primary_phy = HCI_ADV_PHY_1M; 920 cp.secondary_phy = HCI_ADV_PHY_1M; 921 cp.handle = 0; /* Use instance 0 for directed adv */ 922 cp.own_addr_type = own_addr_type; 923 cp.peer_addr_type = conn->dst_type; 924 bacpy(&cp.peer_addr, &conn->dst); 925 926 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for 927 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND 928 * does not supports advertising data when the advertising set already 929 * contains some, the controller shall return erroc code 'Invalid 930 * HCI Command Parameters(0x12). 931 * So it is required to remove adv set for handle 0x00. since we use 932 * instance 0 for directed adv. 933 */ 934 __hci_req_remove_ext_adv_instance(req, cp.handle); 935 936 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp); 937 938 if (own_addr_type == ADDR_LE_DEV_RANDOM && 939 bacmp(&random_addr, BDADDR_ANY) && 940 bacmp(&random_addr, &hdev->random_addr)) { 941 struct hci_cp_le_set_adv_set_rand_addr cp; 942 943 memset(&cp, 0, sizeof(cp)); 944 945 cp.handle = 0; 946 bacpy(&cp.bdaddr, &random_addr); 947 948 hci_req_add(req, 949 HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 950 sizeof(cp), &cp); 951 } 952 953 __hci_req_enable_ext_advertising(req, 0x00); 954 } else { 955 struct hci_cp_le_set_adv_param cp; 956 957 /* Clear the HCI_LE_ADV bit temporarily so that the 958 * hci_update_random_address knows that it's safe to go ahead 959 * and write a new random address. The flag will be set back on 960 * as soon as the SET_ADV_ENABLE HCI command completes. 961 */ 962 hci_dev_clear_flag(hdev, HCI_LE_ADV); 963 964 /* Set require_privacy to false so that the remote device has a 965 * chance of identifying us. 966 */ 967 if (hci_update_random_address(req, false, conn_use_rpa(conn), 968 &own_addr_type) < 0) 969 return; 970 971 memset(&cp, 0, sizeof(cp)); 972 973 /* Some controllers might reject command if intervals are not 974 * within range for undirected advertising. 975 * BCM20702A0 is known to be affected by this. 976 */ 977 cp.min_interval = cpu_to_le16(0x0020); 978 cp.max_interval = cpu_to_le16(0x0020); 979 980 cp.type = LE_ADV_DIRECT_IND; 981 cp.own_address_type = own_addr_type; 982 cp.direct_addr_type = conn->dst_type; 983 bacpy(&cp.direct_addr, &conn->dst); 984 cp.channel_map = hdev->le_adv_channel_map; 985 986 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp); 987 988 enable = 0x01; 989 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), 990 &enable); 991 } 992 993 conn->state = BT_CONNECT; 994 } 995 996 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst, 997 u8 dst_type, u8 sec_level, u16 conn_timeout, 998 u8 role, bdaddr_t *direct_rpa) 999 { 1000 struct hci_conn_params *params; 1001 struct hci_conn *conn; 1002 struct smp_irk *irk; 1003 struct hci_request req; 1004 int err; 1005 1006 /* This ensures that during disable le_scan address resolution 1007 * will not be disabled if it is followed by le_create_conn 1008 */ 1009 bool rpa_le_conn = true; 1010 1011 /* Let's make sure that le is enabled.*/ 1012 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 1013 if (lmp_le_capable(hdev)) 1014 return ERR_PTR(-ECONNREFUSED); 1015 1016 return ERR_PTR(-EOPNOTSUPP); 1017 } 1018 1019 /* Since the controller supports only one LE connection attempt at a 1020 * time, we return -EBUSY if there is any connection attempt running. 1021 */ 1022 if (hci_lookup_le_connect(hdev)) 1023 return ERR_PTR(-EBUSY); 1024 1025 /* If there's already a connection object but it's not in 1026 * scanning state it means it must already be established, in 1027 * which case we can't do anything else except report a failure 1028 * to connect. 1029 */ 1030 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); 1031 if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) { 1032 return ERR_PTR(-EBUSY); 1033 } 1034 1035 /* When given an identity address with existing identity 1036 * resolving key, the connection needs to be established 1037 * to a resolvable random address. 1038 * 1039 * Storing the resolvable random address is required here 1040 * to handle connection failures. The address will later 1041 * be resolved back into the original identity address 1042 * from the connect request. 1043 */ 1044 irk = hci_find_irk_by_addr(hdev, dst, dst_type); 1045 if (irk && bacmp(&irk->rpa, BDADDR_ANY)) { 1046 dst = &irk->rpa; 1047 dst_type = ADDR_LE_DEV_RANDOM; 1048 } 1049 1050 if (conn) { 1051 bacpy(&conn->dst, dst); 1052 } else { 1053 conn = hci_conn_add(hdev, LE_LINK, dst, role); 1054 if (!conn) 1055 return ERR_PTR(-ENOMEM); 1056 hci_conn_hold(conn); 1057 conn->pending_sec_level = sec_level; 1058 } 1059 1060 conn->dst_type = dst_type; 1061 conn->sec_level = BT_SECURITY_LOW; 1062 conn->conn_timeout = conn_timeout; 1063 1064 hci_req_init(&req, hdev); 1065 1066 /* Disable advertising if we're active. For master role 1067 * connections most controllers will refuse to connect if 1068 * advertising is enabled, and for slave role connections we 1069 * anyway have to disable it in order to start directed 1070 * advertising. 1071 */ 1072 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) 1073 __hci_req_disable_advertising(&req); 1074 1075 /* If requested to connect as slave use directed advertising */ 1076 if (conn->role == HCI_ROLE_SLAVE) { 1077 /* If we're active scanning most controllers are unable 1078 * to initiate advertising. Simply reject the attempt. 1079 */ 1080 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && 1081 hdev->le_scan_type == LE_SCAN_ACTIVE) { 1082 hci_req_purge(&req); 1083 hci_conn_del(conn); 1084 return ERR_PTR(-EBUSY); 1085 } 1086 1087 hci_req_directed_advertising(&req, conn); 1088 goto create_conn; 1089 } 1090 1091 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 1092 if (params) { 1093 conn->le_conn_min_interval = params->conn_min_interval; 1094 conn->le_conn_max_interval = params->conn_max_interval; 1095 conn->le_conn_latency = params->conn_latency; 1096 conn->le_supv_timeout = params->supervision_timeout; 1097 } else { 1098 conn->le_conn_min_interval = hdev->le_conn_min_interval; 1099 conn->le_conn_max_interval = hdev->le_conn_max_interval; 1100 conn->le_conn_latency = hdev->le_conn_latency; 1101 conn->le_supv_timeout = hdev->le_supv_timeout; 1102 } 1103 1104 /* If controller is scanning, we stop it since some controllers are 1105 * not able to scan and connect at the same time. Also set the 1106 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 1107 * handler for scan disabling knows to set the correct discovery 1108 * state. 1109 */ 1110 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 1111 hci_req_add_le_scan_disable(&req, rpa_le_conn); 1112 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 1113 } 1114 1115 hci_req_add_le_create_conn(&req, conn, direct_rpa); 1116 1117 create_conn: 1118 err = hci_req_run(&req, create_le_conn_complete); 1119 if (err) { 1120 hci_conn_del(conn); 1121 return ERR_PTR(err); 1122 } 1123 1124 return conn; 1125 } 1126 1127 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type) 1128 { 1129 struct hci_conn *conn; 1130 1131 conn = hci_conn_hash_lookup_le(hdev, addr, type); 1132 if (!conn) 1133 return false; 1134 1135 if (conn->state != BT_CONNECTED) 1136 return false; 1137 1138 return true; 1139 } 1140 1141 /* This function requires the caller holds hdev->lock */ 1142 static int hci_explicit_conn_params_set(struct hci_dev *hdev, 1143 bdaddr_t *addr, u8 addr_type) 1144 { 1145 struct hci_conn_params *params; 1146 1147 if (is_connected(hdev, addr, addr_type)) 1148 return -EISCONN; 1149 1150 params = hci_conn_params_lookup(hdev, addr, addr_type); 1151 if (!params) { 1152 params = hci_conn_params_add(hdev, addr, addr_type); 1153 if (!params) 1154 return -ENOMEM; 1155 1156 /* If we created new params, mark them to be deleted in 1157 * hci_connect_le_scan_cleanup. It's different case than 1158 * existing disabled params, those will stay after cleanup. 1159 */ 1160 params->auto_connect = HCI_AUTO_CONN_EXPLICIT; 1161 } 1162 1163 /* We're trying to connect, so make sure params are at pend_le_conns */ 1164 if (params->auto_connect == HCI_AUTO_CONN_DISABLED || 1165 params->auto_connect == HCI_AUTO_CONN_REPORT || 1166 params->auto_connect == HCI_AUTO_CONN_EXPLICIT) { 1167 list_del_init(¶ms->action); 1168 list_add(¶ms->action, &hdev->pend_le_conns); 1169 } 1170 1171 params->explicit_connect = true; 1172 1173 BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type, 1174 params->auto_connect); 1175 1176 return 0; 1177 } 1178 1179 /* This function requires the caller holds hdev->lock */ 1180 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst, 1181 u8 dst_type, u8 sec_level, 1182 u16 conn_timeout, 1183 enum conn_reasons conn_reason) 1184 { 1185 struct hci_conn *conn; 1186 1187 /* Let's make sure that le is enabled.*/ 1188 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 1189 if (lmp_le_capable(hdev)) 1190 return ERR_PTR(-ECONNREFUSED); 1191 1192 return ERR_PTR(-EOPNOTSUPP); 1193 } 1194 1195 /* Some devices send ATT messages as soon as the physical link is 1196 * established. To be able to handle these ATT messages, the user- 1197 * space first establishes the connection and then starts the pairing 1198 * process. 1199 * 1200 * So if a hci_conn object already exists for the following connection 1201 * attempt, we simply update pending_sec_level and auth_type fields 1202 * and return the object found. 1203 */ 1204 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); 1205 if (conn) { 1206 if (conn->pending_sec_level < sec_level) 1207 conn->pending_sec_level = sec_level; 1208 goto done; 1209 } 1210 1211 BT_DBG("requesting refresh of dst_addr"); 1212 1213 conn = hci_conn_add(hdev, LE_LINK, dst, HCI_ROLE_MASTER); 1214 if (!conn) 1215 return ERR_PTR(-ENOMEM); 1216 1217 if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0) { 1218 hci_conn_del(conn); 1219 return ERR_PTR(-EBUSY); 1220 } 1221 1222 conn->state = BT_CONNECT; 1223 set_bit(HCI_CONN_SCANNING, &conn->flags); 1224 conn->dst_type = dst_type; 1225 conn->sec_level = BT_SECURITY_LOW; 1226 conn->pending_sec_level = sec_level; 1227 conn->conn_timeout = conn_timeout; 1228 conn->conn_reason = conn_reason; 1229 1230 hci_update_background_scan(hdev); 1231 1232 done: 1233 hci_conn_hold(conn); 1234 return conn; 1235 } 1236 1237 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst, 1238 u8 sec_level, u8 auth_type, 1239 enum conn_reasons conn_reason) 1240 { 1241 struct hci_conn *acl; 1242 1243 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 1244 if (lmp_bredr_capable(hdev)) 1245 return ERR_PTR(-ECONNREFUSED); 1246 1247 return ERR_PTR(-EOPNOTSUPP); 1248 } 1249 1250 acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst); 1251 if (!acl) { 1252 acl = hci_conn_add(hdev, ACL_LINK, dst, HCI_ROLE_MASTER); 1253 if (!acl) 1254 return ERR_PTR(-ENOMEM); 1255 } 1256 1257 hci_conn_hold(acl); 1258 1259 acl->conn_reason = conn_reason; 1260 if (acl->state == BT_OPEN || acl->state == BT_CLOSED) { 1261 acl->sec_level = BT_SECURITY_LOW; 1262 acl->pending_sec_level = sec_level; 1263 acl->auth_type = auth_type; 1264 hci_acl_create_connection(acl); 1265 } 1266 1267 return acl; 1268 } 1269 1270 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, 1271 __u16 setting) 1272 { 1273 struct hci_conn *acl; 1274 struct hci_conn *sco; 1275 1276 acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING, 1277 CONN_REASON_SCO_CONNECT); 1278 if (IS_ERR(acl)) 1279 return acl; 1280 1281 sco = hci_conn_hash_lookup_ba(hdev, type, dst); 1282 if (!sco) { 1283 sco = hci_conn_add(hdev, type, dst, HCI_ROLE_MASTER); 1284 if (!sco) { 1285 hci_conn_drop(acl); 1286 return ERR_PTR(-ENOMEM); 1287 } 1288 } 1289 1290 acl->link = sco; 1291 sco->link = acl; 1292 1293 hci_conn_hold(sco); 1294 1295 sco->setting = setting; 1296 1297 if (acl->state == BT_CONNECTED && 1298 (sco->state == BT_OPEN || sco->state == BT_CLOSED)) { 1299 set_bit(HCI_CONN_POWER_SAVE, &acl->flags); 1300 hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON); 1301 1302 if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) { 1303 /* defer SCO setup until mode change completed */ 1304 set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags); 1305 return sco; 1306 } 1307 1308 hci_sco_setup(acl, 0x00); 1309 } 1310 1311 return sco; 1312 } 1313 1314 /* Check link security requirement */ 1315 int hci_conn_check_link_mode(struct hci_conn *conn) 1316 { 1317 BT_DBG("hcon %p", conn); 1318 1319 /* In Secure Connections Only mode, it is required that Secure 1320 * Connections is used and the link is encrypted with AES-CCM 1321 * using a P-256 authenticated combination key. 1322 */ 1323 if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) { 1324 if (!hci_conn_sc_enabled(conn) || 1325 !test_bit(HCI_CONN_AES_CCM, &conn->flags) || 1326 conn->key_type != HCI_LK_AUTH_COMBINATION_P256) 1327 return 0; 1328 } 1329 1330 /* AES encryption is required for Level 4: 1331 * 1332 * BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 3, Part C 1333 * page 1319: 1334 * 1335 * 128-bit equivalent strength for link and encryption keys 1336 * required using FIPS approved algorithms (E0 not allowed, 1337 * SAFER+ not allowed, and P-192 not allowed; encryption key 1338 * not shortened) 1339 */ 1340 if (conn->sec_level == BT_SECURITY_FIPS && 1341 !test_bit(HCI_CONN_AES_CCM, &conn->flags)) { 1342 bt_dev_err(conn->hdev, 1343 "Invalid security: Missing AES-CCM usage"); 1344 return 0; 1345 } 1346 1347 if (hci_conn_ssp_enabled(conn) && 1348 !test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1349 return 0; 1350 1351 return 1; 1352 } 1353 1354 /* Authenticate remote device */ 1355 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type) 1356 { 1357 BT_DBG("hcon %p", conn); 1358 1359 if (conn->pending_sec_level > sec_level) 1360 sec_level = conn->pending_sec_level; 1361 1362 if (sec_level > conn->sec_level) 1363 conn->pending_sec_level = sec_level; 1364 else if (test_bit(HCI_CONN_AUTH, &conn->flags)) 1365 return 1; 1366 1367 /* Make sure we preserve an existing MITM requirement*/ 1368 auth_type |= (conn->auth_type & 0x01); 1369 1370 conn->auth_type = auth_type; 1371 1372 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) { 1373 struct hci_cp_auth_requested cp; 1374 1375 cp.handle = cpu_to_le16(conn->handle); 1376 hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED, 1377 sizeof(cp), &cp); 1378 1379 /* If we're already encrypted set the REAUTH_PEND flag, 1380 * otherwise set the ENCRYPT_PEND. 1381 */ 1382 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1383 set_bit(HCI_CONN_REAUTH_PEND, &conn->flags); 1384 else 1385 set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); 1386 } 1387 1388 return 0; 1389 } 1390 1391 /* Encrypt the the link */ 1392 static void hci_conn_encrypt(struct hci_conn *conn) 1393 { 1394 BT_DBG("hcon %p", conn); 1395 1396 if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) { 1397 struct hci_cp_set_conn_encrypt cp; 1398 cp.handle = cpu_to_le16(conn->handle); 1399 cp.encrypt = 0x01; 1400 hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp), 1401 &cp); 1402 } 1403 } 1404 1405 /* Enable security */ 1406 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type, 1407 bool initiator) 1408 { 1409 BT_DBG("hcon %p", conn); 1410 1411 if (conn->type == LE_LINK) 1412 return smp_conn_security(conn, sec_level); 1413 1414 /* For sdp we don't need the link key. */ 1415 if (sec_level == BT_SECURITY_SDP) 1416 return 1; 1417 1418 /* For non 2.1 devices and low security level we don't need the link 1419 key. */ 1420 if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn)) 1421 return 1; 1422 1423 /* For other security levels we need the link key. */ 1424 if (!test_bit(HCI_CONN_AUTH, &conn->flags)) 1425 goto auth; 1426 1427 /* An authenticated FIPS approved combination key has sufficient 1428 * security for security level 4. */ 1429 if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256 && 1430 sec_level == BT_SECURITY_FIPS) 1431 goto encrypt; 1432 1433 /* An authenticated combination key has sufficient security for 1434 security level 3. */ 1435 if ((conn->key_type == HCI_LK_AUTH_COMBINATION_P192 || 1436 conn->key_type == HCI_LK_AUTH_COMBINATION_P256) && 1437 sec_level == BT_SECURITY_HIGH) 1438 goto encrypt; 1439 1440 /* An unauthenticated combination key has sufficient security for 1441 security level 1 and 2. */ 1442 if ((conn->key_type == HCI_LK_UNAUTH_COMBINATION_P192 || 1443 conn->key_type == HCI_LK_UNAUTH_COMBINATION_P256) && 1444 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW)) 1445 goto encrypt; 1446 1447 /* A combination key has always sufficient security for the security 1448 levels 1 or 2. High security level requires the combination key 1449 is generated using maximum PIN code length (16). 1450 For pre 2.1 units. */ 1451 if (conn->key_type == HCI_LK_COMBINATION && 1452 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW || 1453 conn->pin_length == 16)) 1454 goto encrypt; 1455 1456 auth: 1457 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) 1458 return 0; 1459 1460 if (initiator) 1461 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags); 1462 1463 if (!hci_conn_auth(conn, sec_level, auth_type)) 1464 return 0; 1465 1466 encrypt: 1467 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) { 1468 /* Ensure that the encryption key size has been read, 1469 * otherwise stall the upper layer responses. 1470 */ 1471 if (!conn->enc_key_size) 1472 return 0; 1473 1474 /* Nothing else needed, all requirements are met */ 1475 return 1; 1476 } 1477 1478 hci_conn_encrypt(conn); 1479 return 0; 1480 } 1481 EXPORT_SYMBOL(hci_conn_security); 1482 1483 /* Check secure link requirement */ 1484 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level) 1485 { 1486 BT_DBG("hcon %p", conn); 1487 1488 /* Accept if non-secure or higher security level is required */ 1489 if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS) 1490 return 1; 1491 1492 /* Accept if secure or higher security level is already present */ 1493 if (conn->sec_level == BT_SECURITY_HIGH || 1494 conn->sec_level == BT_SECURITY_FIPS) 1495 return 1; 1496 1497 /* Reject not secure link */ 1498 return 0; 1499 } 1500 EXPORT_SYMBOL(hci_conn_check_secure); 1501 1502 /* Switch role */ 1503 int hci_conn_switch_role(struct hci_conn *conn, __u8 role) 1504 { 1505 BT_DBG("hcon %p", conn); 1506 1507 if (role == conn->role) 1508 return 1; 1509 1510 if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) { 1511 struct hci_cp_switch_role cp; 1512 bacpy(&cp.bdaddr, &conn->dst); 1513 cp.role = role; 1514 hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp); 1515 } 1516 1517 return 0; 1518 } 1519 EXPORT_SYMBOL(hci_conn_switch_role); 1520 1521 /* Enter active mode */ 1522 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active) 1523 { 1524 struct hci_dev *hdev = conn->hdev; 1525 1526 BT_DBG("hcon %p mode %d", conn, conn->mode); 1527 1528 if (conn->mode != HCI_CM_SNIFF) 1529 goto timer; 1530 1531 if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active) 1532 goto timer; 1533 1534 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 1535 struct hci_cp_exit_sniff_mode cp; 1536 cp.handle = cpu_to_le16(conn->handle); 1537 hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp); 1538 } 1539 1540 timer: 1541 if (hdev->idle_timeout > 0) 1542 queue_delayed_work(hdev->workqueue, &conn->idle_work, 1543 msecs_to_jiffies(hdev->idle_timeout)); 1544 } 1545 1546 /* Drop all connection on the device */ 1547 void hci_conn_hash_flush(struct hci_dev *hdev) 1548 { 1549 struct hci_conn_hash *h = &hdev->conn_hash; 1550 struct hci_conn *c, *n; 1551 1552 BT_DBG("hdev %s", hdev->name); 1553 1554 list_for_each_entry_safe(c, n, &h->list, list) { 1555 c->state = BT_CLOSED; 1556 1557 hci_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM); 1558 hci_conn_del(c); 1559 } 1560 } 1561 1562 /* Check pending connect attempts */ 1563 void hci_conn_check_pending(struct hci_dev *hdev) 1564 { 1565 struct hci_conn *conn; 1566 1567 BT_DBG("hdev %s", hdev->name); 1568 1569 hci_dev_lock(hdev); 1570 1571 conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2); 1572 if (conn) 1573 hci_acl_create_connection(conn); 1574 1575 hci_dev_unlock(hdev); 1576 } 1577 1578 static u32 get_link_mode(struct hci_conn *conn) 1579 { 1580 u32 link_mode = 0; 1581 1582 if (conn->role == HCI_ROLE_MASTER) 1583 link_mode |= HCI_LM_MASTER; 1584 1585 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1586 link_mode |= HCI_LM_ENCRYPT; 1587 1588 if (test_bit(HCI_CONN_AUTH, &conn->flags)) 1589 link_mode |= HCI_LM_AUTH; 1590 1591 if (test_bit(HCI_CONN_SECURE, &conn->flags)) 1592 link_mode |= HCI_LM_SECURE; 1593 1594 if (test_bit(HCI_CONN_FIPS, &conn->flags)) 1595 link_mode |= HCI_LM_FIPS; 1596 1597 return link_mode; 1598 } 1599 1600 int hci_get_conn_list(void __user *arg) 1601 { 1602 struct hci_conn *c; 1603 struct hci_conn_list_req req, *cl; 1604 struct hci_conn_info *ci; 1605 struct hci_dev *hdev; 1606 int n = 0, size, err; 1607 1608 if (copy_from_user(&req, arg, sizeof(req))) 1609 return -EFAULT; 1610 1611 if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci)) 1612 return -EINVAL; 1613 1614 size = sizeof(req) + req.conn_num * sizeof(*ci); 1615 1616 cl = kmalloc(size, GFP_KERNEL); 1617 if (!cl) 1618 return -ENOMEM; 1619 1620 hdev = hci_dev_get(req.dev_id); 1621 if (!hdev) { 1622 kfree(cl); 1623 return -ENODEV; 1624 } 1625 1626 ci = cl->conn_info; 1627 1628 hci_dev_lock(hdev); 1629 list_for_each_entry(c, &hdev->conn_hash.list, list) { 1630 bacpy(&(ci + n)->bdaddr, &c->dst); 1631 (ci + n)->handle = c->handle; 1632 (ci + n)->type = c->type; 1633 (ci + n)->out = c->out; 1634 (ci + n)->state = c->state; 1635 (ci + n)->link_mode = get_link_mode(c); 1636 if (++n >= req.conn_num) 1637 break; 1638 } 1639 hci_dev_unlock(hdev); 1640 1641 cl->dev_id = hdev->id; 1642 cl->conn_num = n; 1643 size = sizeof(req) + n * sizeof(*ci); 1644 1645 hci_dev_put(hdev); 1646 1647 err = copy_to_user(arg, cl, size); 1648 kfree(cl); 1649 1650 return err ? -EFAULT : 0; 1651 } 1652 1653 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg) 1654 { 1655 struct hci_conn_info_req req; 1656 struct hci_conn_info ci; 1657 struct hci_conn *conn; 1658 char __user *ptr = arg + sizeof(req); 1659 1660 if (copy_from_user(&req, arg, sizeof(req))) 1661 return -EFAULT; 1662 1663 hci_dev_lock(hdev); 1664 conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr); 1665 if (conn) { 1666 bacpy(&ci.bdaddr, &conn->dst); 1667 ci.handle = conn->handle; 1668 ci.type = conn->type; 1669 ci.out = conn->out; 1670 ci.state = conn->state; 1671 ci.link_mode = get_link_mode(conn); 1672 } 1673 hci_dev_unlock(hdev); 1674 1675 if (!conn) 1676 return -ENOENT; 1677 1678 return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0; 1679 } 1680 1681 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg) 1682 { 1683 struct hci_auth_info_req req; 1684 struct hci_conn *conn; 1685 1686 if (copy_from_user(&req, arg, sizeof(req))) 1687 return -EFAULT; 1688 1689 hci_dev_lock(hdev); 1690 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr); 1691 if (conn) 1692 req.type = conn->auth_type; 1693 hci_dev_unlock(hdev); 1694 1695 if (!conn) 1696 return -ENOENT; 1697 1698 return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0; 1699 } 1700 1701 struct hci_chan *hci_chan_create(struct hci_conn *conn) 1702 { 1703 struct hci_dev *hdev = conn->hdev; 1704 struct hci_chan *chan; 1705 1706 BT_DBG("%s hcon %p", hdev->name, conn); 1707 1708 if (test_bit(HCI_CONN_DROP, &conn->flags)) { 1709 BT_DBG("Refusing to create new hci_chan"); 1710 return NULL; 1711 } 1712 1713 chan = kzalloc(sizeof(*chan), GFP_KERNEL); 1714 if (!chan) 1715 return NULL; 1716 1717 chan->conn = hci_conn_get(conn); 1718 skb_queue_head_init(&chan->data_q); 1719 chan->state = BT_CONNECTED; 1720 1721 list_add_rcu(&chan->list, &conn->chan_list); 1722 1723 return chan; 1724 } 1725 1726 void hci_chan_del(struct hci_chan *chan) 1727 { 1728 struct hci_conn *conn = chan->conn; 1729 struct hci_dev *hdev = conn->hdev; 1730 1731 BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan); 1732 1733 list_del_rcu(&chan->list); 1734 1735 synchronize_rcu(); 1736 1737 /* Prevent new hci_chan's to be created for this hci_conn */ 1738 set_bit(HCI_CONN_DROP, &conn->flags); 1739 1740 hci_conn_put(conn); 1741 1742 skb_queue_purge(&chan->data_q); 1743 kfree(chan); 1744 } 1745 1746 void hci_chan_list_flush(struct hci_conn *conn) 1747 { 1748 struct hci_chan *chan, *n; 1749 1750 BT_DBG("hcon %p", conn); 1751 1752 list_for_each_entry_safe(chan, n, &conn->chan_list, list) 1753 hci_chan_del(chan); 1754 } 1755 1756 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon, 1757 __u16 handle) 1758 { 1759 struct hci_chan *hchan; 1760 1761 list_for_each_entry(hchan, &hcon->chan_list, list) { 1762 if (hchan->handle == handle) 1763 return hchan; 1764 } 1765 1766 return NULL; 1767 } 1768 1769 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle) 1770 { 1771 struct hci_conn_hash *h = &hdev->conn_hash; 1772 struct hci_conn *hcon; 1773 struct hci_chan *hchan = NULL; 1774 1775 rcu_read_lock(); 1776 1777 list_for_each_entry_rcu(hcon, &h->list, list) { 1778 hchan = __hci_chan_lookup_handle(hcon, handle); 1779 if (hchan) 1780 break; 1781 } 1782 1783 rcu_read_unlock(); 1784 1785 return hchan; 1786 } 1787 1788 u32 hci_conn_get_phy(struct hci_conn *conn) 1789 { 1790 u32 phys = 0; 1791 1792 hci_dev_lock(conn->hdev); 1793 1794 /* BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 2, Part B page 471: 1795 * Table 6.2: Packets defined for synchronous, asynchronous, and 1796 * CSB logical transport types. 1797 */ 1798 switch (conn->type) { 1799 case SCO_LINK: 1800 /* SCO logical transport (1 Mb/s): 1801 * HV1, HV2, HV3 and DV. 1802 */ 1803 phys |= BT_PHY_BR_1M_1SLOT; 1804 1805 break; 1806 1807 case ACL_LINK: 1808 /* ACL logical transport (1 Mb/s) ptt=0: 1809 * DH1, DM3, DH3, DM5 and DH5. 1810 */ 1811 phys |= BT_PHY_BR_1M_1SLOT; 1812 1813 if (conn->pkt_type & (HCI_DM3 | HCI_DH3)) 1814 phys |= BT_PHY_BR_1M_3SLOT; 1815 1816 if (conn->pkt_type & (HCI_DM5 | HCI_DH5)) 1817 phys |= BT_PHY_BR_1M_5SLOT; 1818 1819 /* ACL logical transport (2 Mb/s) ptt=1: 1820 * 2-DH1, 2-DH3 and 2-DH5. 1821 */ 1822 if (!(conn->pkt_type & HCI_2DH1)) 1823 phys |= BT_PHY_EDR_2M_1SLOT; 1824 1825 if (!(conn->pkt_type & HCI_2DH3)) 1826 phys |= BT_PHY_EDR_2M_3SLOT; 1827 1828 if (!(conn->pkt_type & HCI_2DH5)) 1829 phys |= BT_PHY_EDR_2M_5SLOT; 1830 1831 /* ACL logical transport (3 Mb/s) ptt=1: 1832 * 3-DH1, 3-DH3 and 3-DH5. 1833 */ 1834 if (!(conn->pkt_type & HCI_3DH1)) 1835 phys |= BT_PHY_EDR_3M_1SLOT; 1836 1837 if (!(conn->pkt_type & HCI_3DH3)) 1838 phys |= BT_PHY_EDR_3M_3SLOT; 1839 1840 if (!(conn->pkt_type & HCI_3DH5)) 1841 phys |= BT_PHY_EDR_3M_5SLOT; 1842 1843 break; 1844 1845 case ESCO_LINK: 1846 /* eSCO logical transport (1 Mb/s): EV3, EV4 and EV5 */ 1847 phys |= BT_PHY_BR_1M_1SLOT; 1848 1849 if (!(conn->pkt_type & (ESCO_EV4 | ESCO_EV5))) 1850 phys |= BT_PHY_BR_1M_3SLOT; 1851 1852 /* eSCO logical transport (2 Mb/s): 2-EV3, 2-EV5 */ 1853 if (!(conn->pkt_type & ESCO_2EV3)) 1854 phys |= BT_PHY_EDR_2M_1SLOT; 1855 1856 if (!(conn->pkt_type & ESCO_2EV5)) 1857 phys |= BT_PHY_EDR_2M_3SLOT; 1858 1859 /* eSCO logical transport (3 Mb/s): 3-EV3, 3-EV5 */ 1860 if (!(conn->pkt_type & ESCO_3EV3)) 1861 phys |= BT_PHY_EDR_3M_1SLOT; 1862 1863 if (!(conn->pkt_type & ESCO_3EV5)) 1864 phys |= BT_PHY_EDR_3M_3SLOT; 1865 1866 break; 1867 1868 case LE_LINK: 1869 if (conn->le_tx_phy & HCI_LE_SET_PHY_1M) 1870 phys |= BT_PHY_LE_1M_TX; 1871 1872 if (conn->le_rx_phy & HCI_LE_SET_PHY_1M) 1873 phys |= BT_PHY_LE_1M_RX; 1874 1875 if (conn->le_tx_phy & HCI_LE_SET_PHY_2M) 1876 phys |= BT_PHY_LE_2M_TX; 1877 1878 if (conn->le_rx_phy & HCI_LE_SET_PHY_2M) 1879 phys |= BT_PHY_LE_2M_RX; 1880 1881 if (conn->le_tx_phy & HCI_LE_SET_PHY_CODED) 1882 phys |= BT_PHY_LE_CODED_TX; 1883 1884 if (conn->le_rx_phy & HCI_LE_SET_PHY_CODED) 1885 phys |= BT_PHY_LE_CODED_RX; 1886 1887 break; 1888 } 1889 1890 hci_dev_unlock(conn->hdev); 1891 1892 return phys; 1893 } 1894