1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 /* Bluetooth HCI connection handling. */ 26 27 #include <linux/export.h> 28 #include <linux/debugfs.h> 29 30 #include <net/bluetooth/bluetooth.h> 31 #include <net/bluetooth/hci_core.h> 32 #include <net/bluetooth/l2cap.h> 33 34 #include "hci_request.h" 35 #include "smp.h" 36 #include "a2mp.h" 37 38 struct sco_param { 39 u16 pkt_type; 40 u16 max_latency; 41 u8 retrans_effort; 42 }; 43 44 static const struct sco_param esco_param_cvsd[] = { 45 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a, 0x01 }, /* S3 */ 46 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007, 0x01 }, /* S2 */ 47 { EDR_ESCO_MASK | ESCO_EV3, 0x0007, 0x01 }, /* S1 */ 48 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0x01 }, /* D1 */ 49 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0x01 }, /* D0 */ 50 }; 51 52 static const struct sco_param sco_param_cvsd[] = { 53 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0xff }, /* D1 */ 54 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0xff }, /* D0 */ 55 }; 56 57 static const struct sco_param esco_param_msbc[] = { 58 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d, 0x02 }, /* T2 */ 59 { EDR_ESCO_MASK | ESCO_EV3, 0x0008, 0x02 }, /* T1 */ 60 }; 61 62 /* This function requires the caller holds hdev->lock */ 63 static void hci_connect_le_scan_cleanup(struct hci_conn *conn) 64 { 65 struct hci_conn_params *params; 66 struct hci_dev *hdev = conn->hdev; 67 struct smp_irk *irk; 68 bdaddr_t *bdaddr; 69 u8 bdaddr_type; 70 71 bdaddr = &conn->dst; 72 bdaddr_type = conn->dst_type; 73 74 /* Check if we need to convert to identity address */ 75 irk = hci_get_irk(hdev, bdaddr, bdaddr_type); 76 if (irk) { 77 bdaddr = &irk->bdaddr; 78 bdaddr_type = irk->addr_type; 79 } 80 81 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr, 82 bdaddr_type); 83 if (!params || !params->explicit_connect) 84 return; 85 86 /* The connection attempt was doing scan for new RPA, and is 87 * in scan phase. If params are not associated with any other 88 * autoconnect action, remove them completely. If they are, just unmark 89 * them as waiting for connection, by clearing explicit_connect field. 90 */ 91 params->explicit_connect = false; 92 93 list_del_init(¶ms->action); 94 95 switch (params->auto_connect) { 96 case HCI_AUTO_CONN_EXPLICIT: 97 hci_conn_params_del(hdev, bdaddr, bdaddr_type); 98 /* return instead of break to avoid duplicate scan update */ 99 return; 100 case HCI_AUTO_CONN_DIRECT: 101 case HCI_AUTO_CONN_ALWAYS: 102 list_add(¶ms->action, &hdev->pend_le_conns); 103 break; 104 case HCI_AUTO_CONN_REPORT: 105 list_add(¶ms->action, &hdev->pend_le_reports); 106 break; 107 default: 108 break; 109 } 110 111 hci_update_background_scan(hdev); 112 } 113 114 static void hci_conn_cleanup(struct hci_conn *conn) 115 { 116 struct hci_dev *hdev = conn->hdev; 117 118 if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags)) 119 hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type); 120 121 hci_chan_list_flush(conn); 122 123 hci_conn_hash_del(hdev, conn); 124 125 if (hdev->notify) 126 hdev->notify(hdev, HCI_NOTIFY_CONN_DEL); 127 128 hci_conn_del_sysfs(conn); 129 130 debugfs_remove_recursive(conn->debugfs); 131 132 hci_dev_put(hdev); 133 134 hci_conn_put(conn); 135 } 136 137 static void le_scan_cleanup(struct work_struct *work) 138 { 139 struct hci_conn *conn = container_of(work, struct hci_conn, 140 le_scan_cleanup); 141 struct hci_dev *hdev = conn->hdev; 142 struct hci_conn *c = NULL; 143 144 BT_DBG("%s hcon %p", hdev->name, conn); 145 146 hci_dev_lock(hdev); 147 148 /* Check that the hci_conn is still around */ 149 rcu_read_lock(); 150 list_for_each_entry_rcu(c, &hdev->conn_hash.list, list) { 151 if (c == conn) 152 break; 153 } 154 rcu_read_unlock(); 155 156 if (c == conn) { 157 hci_connect_le_scan_cleanup(conn); 158 hci_conn_cleanup(conn); 159 } 160 161 hci_dev_unlock(hdev); 162 hci_dev_put(hdev); 163 hci_conn_put(conn); 164 } 165 166 static void hci_connect_le_scan_remove(struct hci_conn *conn) 167 { 168 BT_DBG("%s hcon %p", conn->hdev->name, conn); 169 170 /* We can't call hci_conn_del/hci_conn_cleanup here since that 171 * could deadlock with another hci_conn_del() call that's holding 172 * hci_dev_lock and doing cancel_delayed_work_sync(&conn->disc_work). 173 * Instead, grab temporary extra references to the hci_dev and 174 * hci_conn and perform the necessary cleanup in a separate work 175 * callback. 176 */ 177 178 hci_dev_hold(conn->hdev); 179 hci_conn_get(conn); 180 181 /* Even though we hold a reference to the hdev, many other 182 * things might get cleaned up meanwhile, including the hdev's 183 * own workqueue, so we can't use that for scheduling. 184 */ 185 schedule_work(&conn->le_scan_cleanup); 186 } 187 188 static void hci_acl_create_connection(struct hci_conn *conn) 189 { 190 struct hci_dev *hdev = conn->hdev; 191 struct inquiry_entry *ie; 192 struct hci_cp_create_conn cp; 193 194 BT_DBG("hcon %p", conn); 195 196 conn->state = BT_CONNECT; 197 conn->out = true; 198 conn->role = HCI_ROLE_MASTER; 199 200 conn->attempt++; 201 202 conn->link_policy = hdev->link_policy; 203 204 memset(&cp, 0, sizeof(cp)); 205 bacpy(&cp.bdaddr, &conn->dst); 206 cp.pscan_rep_mode = 0x02; 207 208 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 209 if (ie) { 210 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) { 211 cp.pscan_rep_mode = ie->data.pscan_rep_mode; 212 cp.pscan_mode = ie->data.pscan_mode; 213 cp.clock_offset = ie->data.clock_offset | 214 cpu_to_le16(0x8000); 215 } 216 217 memcpy(conn->dev_class, ie->data.dev_class, 3); 218 if (ie->data.ssp_mode > 0) 219 set_bit(HCI_CONN_SSP_ENABLED, &conn->flags); 220 } 221 222 cp.pkt_type = cpu_to_le16(conn->pkt_type); 223 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER)) 224 cp.role_switch = 0x01; 225 else 226 cp.role_switch = 0x00; 227 228 hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp); 229 } 230 231 int hci_disconnect(struct hci_conn *conn, __u8 reason) 232 { 233 BT_DBG("hcon %p", conn); 234 235 /* When we are master of an established connection and it enters 236 * the disconnect timeout, then go ahead and try to read the 237 * current clock offset. Processing of the result is done 238 * within the event handling and hci_clock_offset_evt function. 239 */ 240 if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER && 241 (conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) { 242 struct hci_dev *hdev = conn->hdev; 243 struct hci_cp_read_clock_offset clkoff_cp; 244 245 clkoff_cp.handle = cpu_to_le16(conn->handle); 246 hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp), 247 &clkoff_cp); 248 } 249 250 return hci_abort_conn(conn, reason); 251 } 252 253 static void hci_add_sco(struct hci_conn *conn, __u16 handle) 254 { 255 struct hci_dev *hdev = conn->hdev; 256 struct hci_cp_add_sco cp; 257 258 BT_DBG("hcon %p", conn); 259 260 conn->state = BT_CONNECT; 261 conn->out = true; 262 263 conn->attempt++; 264 265 cp.handle = cpu_to_le16(handle); 266 cp.pkt_type = cpu_to_le16(conn->pkt_type); 267 268 hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp); 269 } 270 271 bool hci_setup_sync(struct hci_conn *conn, __u16 handle) 272 { 273 struct hci_dev *hdev = conn->hdev; 274 struct hci_cp_setup_sync_conn cp; 275 const struct sco_param *param; 276 277 BT_DBG("hcon %p", conn); 278 279 conn->state = BT_CONNECT; 280 conn->out = true; 281 282 conn->attempt++; 283 284 cp.handle = cpu_to_le16(handle); 285 286 cp.tx_bandwidth = cpu_to_le32(0x00001f40); 287 cp.rx_bandwidth = cpu_to_le32(0x00001f40); 288 cp.voice_setting = cpu_to_le16(conn->setting); 289 290 switch (conn->setting & SCO_AIRMODE_MASK) { 291 case SCO_AIRMODE_TRANSP: 292 if (conn->attempt > ARRAY_SIZE(esco_param_msbc)) 293 return false; 294 param = &esco_param_msbc[conn->attempt - 1]; 295 break; 296 case SCO_AIRMODE_CVSD: 297 if (lmp_esco_capable(conn->link)) { 298 if (conn->attempt > ARRAY_SIZE(esco_param_cvsd)) 299 return false; 300 param = &esco_param_cvsd[conn->attempt - 1]; 301 } else { 302 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd)) 303 return false; 304 param = &sco_param_cvsd[conn->attempt - 1]; 305 } 306 break; 307 default: 308 return false; 309 } 310 311 cp.retrans_effort = param->retrans_effort; 312 cp.pkt_type = __cpu_to_le16(param->pkt_type); 313 cp.max_latency = __cpu_to_le16(param->max_latency); 314 315 if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0) 316 return false; 317 318 return true; 319 } 320 321 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency, 322 u16 to_multiplier) 323 { 324 struct hci_dev *hdev = conn->hdev; 325 struct hci_conn_params *params; 326 struct hci_cp_le_conn_update cp; 327 328 hci_dev_lock(hdev); 329 330 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 331 if (params) { 332 params->conn_min_interval = min; 333 params->conn_max_interval = max; 334 params->conn_latency = latency; 335 params->supervision_timeout = to_multiplier; 336 } 337 338 hci_dev_unlock(hdev); 339 340 memset(&cp, 0, sizeof(cp)); 341 cp.handle = cpu_to_le16(conn->handle); 342 cp.conn_interval_min = cpu_to_le16(min); 343 cp.conn_interval_max = cpu_to_le16(max); 344 cp.conn_latency = cpu_to_le16(latency); 345 cp.supervision_timeout = cpu_to_le16(to_multiplier); 346 cp.min_ce_len = cpu_to_le16(0x0000); 347 cp.max_ce_len = cpu_to_le16(0x0000); 348 349 hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp); 350 351 if (params) 352 return 0x01; 353 354 return 0x00; 355 } 356 357 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand, 358 __u8 ltk[16], __u8 key_size) 359 { 360 struct hci_dev *hdev = conn->hdev; 361 struct hci_cp_le_start_enc cp; 362 363 BT_DBG("hcon %p", conn); 364 365 memset(&cp, 0, sizeof(cp)); 366 367 cp.handle = cpu_to_le16(conn->handle); 368 cp.rand = rand; 369 cp.ediv = ediv; 370 memcpy(cp.ltk, ltk, key_size); 371 372 hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp); 373 } 374 375 /* Device _must_ be locked */ 376 void hci_sco_setup(struct hci_conn *conn, __u8 status) 377 { 378 struct hci_conn *sco = conn->link; 379 380 if (!sco) 381 return; 382 383 BT_DBG("hcon %p", conn); 384 385 if (!status) { 386 if (lmp_esco_capable(conn->hdev)) 387 hci_setup_sync(sco, conn->handle); 388 else 389 hci_add_sco(sco, conn->handle); 390 } else { 391 hci_connect_cfm(sco, status); 392 hci_conn_del(sco); 393 } 394 } 395 396 static void hci_conn_timeout(struct work_struct *work) 397 { 398 struct hci_conn *conn = container_of(work, struct hci_conn, 399 disc_work.work); 400 int refcnt = atomic_read(&conn->refcnt); 401 402 BT_DBG("hcon %p state %s", conn, state_to_string(conn->state)); 403 404 WARN_ON(refcnt < 0); 405 406 /* FIXME: It was observed that in pairing failed scenario, refcnt 407 * drops below 0. Probably this is because l2cap_conn_del calls 408 * l2cap_chan_del for each channel, and inside l2cap_chan_del conn is 409 * dropped. After that loop hci_chan_del is called which also drops 410 * conn. For now make sure that ACL is alive if refcnt is higher then 0, 411 * otherwise drop it. 412 */ 413 if (refcnt > 0) 414 return; 415 416 /* LE connections in scanning state need special handling */ 417 if (conn->state == BT_CONNECT && conn->type == LE_LINK && 418 test_bit(HCI_CONN_SCANNING, &conn->flags)) { 419 hci_connect_le_scan_remove(conn); 420 return; 421 } 422 423 hci_abort_conn(conn, hci_proto_disconn_ind(conn)); 424 } 425 426 /* Enter sniff mode */ 427 static void hci_conn_idle(struct work_struct *work) 428 { 429 struct hci_conn *conn = container_of(work, struct hci_conn, 430 idle_work.work); 431 struct hci_dev *hdev = conn->hdev; 432 433 BT_DBG("hcon %p mode %d", conn, conn->mode); 434 435 if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn)) 436 return; 437 438 if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF)) 439 return; 440 441 if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) { 442 struct hci_cp_sniff_subrate cp; 443 cp.handle = cpu_to_le16(conn->handle); 444 cp.max_latency = cpu_to_le16(0); 445 cp.min_remote_timeout = cpu_to_le16(0); 446 cp.min_local_timeout = cpu_to_le16(0); 447 hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp); 448 } 449 450 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 451 struct hci_cp_sniff_mode cp; 452 cp.handle = cpu_to_le16(conn->handle); 453 cp.max_interval = cpu_to_le16(hdev->sniff_max_interval); 454 cp.min_interval = cpu_to_le16(hdev->sniff_min_interval); 455 cp.attempt = cpu_to_le16(4); 456 cp.timeout = cpu_to_le16(1); 457 hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp); 458 } 459 } 460 461 static void hci_conn_auto_accept(struct work_struct *work) 462 { 463 struct hci_conn *conn = container_of(work, struct hci_conn, 464 auto_accept_work.work); 465 466 hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst), 467 &conn->dst); 468 } 469 470 static void le_conn_timeout(struct work_struct *work) 471 { 472 struct hci_conn *conn = container_of(work, struct hci_conn, 473 le_conn_timeout.work); 474 struct hci_dev *hdev = conn->hdev; 475 476 BT_DBG(""); 477 478 /* We could end up here due to having done directed advertising, 479 * so clean up the state if necessary. This should however only 480 * happen with broken hardware or if low duty cycle was used 481 * (which doesn't have a timeout of its own). 482 */ 483 if (conn->role == HCI_ROLE_SLAVE) { 484 u8 enable = 0x00; 485 hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), 486 &enable); 487 hci_le_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT); 488 return; 489 } 490 491 hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM); 492 } 493 494 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst, 495 u8 role) 496 { 497 struct hci_conn *conn; 498 499 BT_DBG("%s dst %pMR", hdev->name, dst); 500 501 conn = kzalloc(sizeof(*conn), GFP_KERNEL); 502 if (!conn) 503 return NULL; 504 505 bacpy(&conn->dst, dst); 506 bacpy(&conn->src, &hdev->bdaddr); 507 conn->hdev = hdev; 508 conn->type = type; 509 conn->role = role; 510 conn->mode = HCI_CM_ACTIVE; 511 conn->state = BT_OPEN; 512 conn->auth_type = HCI_AT_GENERAL_BONDING; 513 conn->io_capability = hdev->io_capability; 514 conn->remote_auth = 0xff; 515 conn->key_type = 0xff; 516 conn->rssi = HCI_RSSI_INVALID; 517 conn->tx_power = HCI_TX_POWER_INVALID; 518 conn->max_tx_power = HCI_TX_POWER_INVALID; 519 520 set_bit(HCI_CONN_POWER_SAVE, &conn->flags); 521 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 522 523 /* Set Default Authenticated payload timeout to 30s */ 524 conn->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT; 525 526 if (conn->role == HCI_ROLE_MASTER) 527 conn->out = true; 528 529 switch (type) { 530 case ACL_LINK: 531 conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK; 532 break; 533 case LE_LINK: 534 /* conn->src should reflect the local identity address */ 535 hci_copy_identity_address(hdev, &conn->src, &conn->src_type); 536 break; 537 case SCO_LINK: 538 if (lmp_esco_capable(hdev)) 539 conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) | 540 (hdev->esco_type & EDR_ESCO_MASK); 541 else 542 conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK; 543 break; 544 case ESCO_LINK: 545 conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK; 546 break; 547 } 548 549 skb_queue_head_init(&conn->data_q); 550 551 INIT_LIST_HEAD(&conn->chan_list); 552 553 INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout); 554 INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept); 555 INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle); 556 INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout); 557 INIT_WORK(&conn->le_scan_cleanup, le_scan_cleanup); 558 559 atomic_set(&conn->refcnt, 0); 560 561 hci_dev_hold(hdev); 562 563 hci_conn_hash_add(hdev, conn); 564 if (hdev->notify) 565 hdev->notify(hdev, HCI_NOTIFY_CONN_ADD); 566 567 hci_conn_init_sysfs(conn); 568 569 return conn; 570 } 571 572 int hci_conn_del(struct hci_conn *conn) 573 { 574 struct hci_dev *hdev = conn->hdev; 575 576 BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle); 577 578 cancel_delayed_work_sync(&conn->disc_work); 579 cancel_delayed_work_sync(&conn->auto_accept_work); 580 cancel_delayed_work_sync(&conn->idle_work); 581 582 if (conn->type == ACL_LINK) { 583 struct hci_conn *sco = conn->link; 584 if (sco) 585 sco->link = NULL; 586 587 /* Unacked frames */ 588 hdev->acl_cnt += conn->sent; 589 } else if (conn->type == LE_LINK) { 590 cancel_delayed_work(&conn->le_conn_timeout); 591 592 if (hdev->le_pkts) 593 hdev->le_cnt += conn->sent; 594 else 595 hdev->acl_cnt += conn->sent; 596 } else { 597 struct hci_conn *acl = conn->link; 598 if (acl) { 599 acl->link = NULL; 600 hci_conn_drop(acl); 601 } 602 } 603 604 if (conn->amp_mgr) 605 amp_mgr_put(conn->amp_mgr); 606 607 skb_queue_purge(&conn->data_q); 608 609 /* Remove the connection from the list and cleanup its remaining 610 * state. This is a separate function since for some cases like 611 * BT_CONNECT_SCAN we *only* want the cleanup part without the 612 * rest of hci_conn_del. 613 */ 614 hci_conn_cleanup(conn); 615 616 return 0; 617 } 618 619 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, uint8_t src_type) 620 { 621 int use_src = bacmp(src, BDADDR_ANY); 622 struct hci_dev *hdev = NULL, *d; 623 624 BT_DBG("%pMR -> %pMR", src, dst); 625 626 read_lock(&hci_dev_list_lock); 627 628 list_for_each_entry(d, &hci_dev_list, list) { 629 if (!test_bit(HCI_UP, &d->flags) || 630 hci_dev_test_flag(d, HCI_USER_CHANNEL) || 631 d->dev_type != HCI_PRIMARY) 632 continue; 633 634 /* Simple routing: 635 * No source address - find interface with bdaddr != dst 636 * Source address - find interface with bdaddr == src 637 */ 638 639 if (use_src) { 640 bdaddr_t id_addr; 641 u8 id_addr_type; 642 643 if (src_type == BDADDR_BREDR) { 644 if (!lmp_bredr_capable(d)) 645 continue; 646 bacpy(&id_addr, &d->bdaddr); 647 id_addr_type = BDADDR_BREDR; 648 } else { 649 if (!lmp_le_capable(d)) 650 continue; 651 652 hci_copy_identity_address(d, &id_addr, 653 &id_addr_type); 654 655 /* Convert from HCI to three-value type */ 656 if (id_addr_type == ADDR_LE_DEV_PUBLIC) 657 id_addr_type = BDADDR_LE_PUBLIC; 658 else 659 id_addr_type = BDADDR_LE_RANDOM; 660 } 661 662 if (!bacmp(&id_addr, src) && id_addr_type == src_type) { 663 hdev = d; break; 664 } 665 } else { 666 if (bacmp(&d->bdaddr, dst)) { 667 hdev = d; break; 668 } 669 } 670 } 671 672 if (hdev) 673 hdev = hci_dev_hold(hdev); 674 675 read_unlock(&hci_dev_list_lock); 676 return hdev; 677 } 678 EXPORT_SYMBOL(hci_get_route); 679 680 /* This function requires the caller holds hdev->lock */ 681 void hci_le_conn_failed(struct hci_conn *conn, u8 status) 682 { 683 struct hci_dev *hdev = conn->hdev; 684 struct hci_conn_params *params; 685 686 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst, 687 conn->dst_type); 688 if (params && params->conn) { 689 hci_conn_drop(params->conn); 690 hci_conn_put(params->conn); 691 params->conn = NULL; 692 } 693 694 conn->state = BT_CLOSED; 695 696 /* If the status indicates successful cancellation of 697 * the attempt (i.e. Unkown Connection Id) there's no point of 698 * notifying failure since we'll go back to keep trying to 699 * connect. The only exception is explicit connect requests 700 * where a timeout + cancel does indicate an actual failure. 701 */ 702 if (status != HCI_ERROR_UNKNOWN_CONN_ID || 703 (params && params->explicit_connect)) 704 mgmt_connect_failed(hdev, &conn->dst, conn->type, 705 conn->dst_type, status); 706 707 hci_connect_cfm(conn, status); 708 709 hci_conn_del(conn); 710 711 /* Since we may have temporarily stopped the background scanning in 712 * favor of connection establishment, we should restart it. 713 */ 714 hci_update_background_scan(hdev); 715 716 /* Re-enable advertising in case this was a failed connection 717 * attempt as a peripheral. 718 */ 719 hci_req_reenable_advertising(hdev); 720 } 721 722 static void create_le_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode) 723 { 724 struct hci_conn *conn; 725 726 hci_dev_lock(hdev); 727 728 conn = hci_lookup_le_connect(hdev); 729 730 if (!status) { 731 hci_connect_le_scan_cleanup(conn); 732 goto done; 733 } 734 735 bt_dev_err(hdev, "request failed to create LE connection: " 736 "status 0x%2.2x", status); 737 738 if (!conn) 739 goto done; 740 741 hci_le_conn_failed(conn, status); 742 743 done: 744 hci_dev_unlock(hdev); 745 } 746 747 static bool conn_use_rpa(struct hci_conn *conn) 748 { 749 struct hci_dev *hdev = conn->hdev; 750 751 return hci_dev_test_flag(hdev, HCI_PRIVACY); 752 } 753 754 static void set_ext_conn_params(struct hci_conn *conn, 755 struct hci_cp_le_ext_conn_param *p) 756 { 757 struct hci_dev *hdev = conn->hdev; 758 759 memset(p, 0, sizeof(*p)); 760 761 /* Set window to be the same value as the interval to 762 * enable continuous scanning. 763 */ 764 p->scan_interval = cpu_to_le16(hdev->le_scan_interval); 765 p->scan_window = p->scan_interval; 766 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 767 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 768 p->conn_latency = cpu_to_le16(conn->le_conn_latency); 769 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 770 p->min_ce_len = cpu_to_le16(0x0000); 771 p->max_ce_len = cpu_to_le16(0x0000); 772 } 773 774 static void hci_req_add_le_create_conn(struct hci_request *req, 775 struct hci_conn *conn, 776 bdaddr_t *direct_rpa) 777 { 778 struct hci_dev *hdev = conn->hdev; 779 u8 own_addr_type; 780 781 /* If direct address was provided we use it instead of current 782 * address. 783 */ 784 if (direct_rpa) { 785 if (bacmp(&req->hdev->random_addr, direct_rpa)) 786 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, 787 direct_rpa); 788 789 /* direct address is always RPA */ 790 own_addr_type = ADDR_LE_DEV_RANDOM; 791 } else { 792 /* Update random address, but set require_privacy to false so 793 * that we never connect with an non-resolvable address. 794 */ 795 if (hci_update_random_address(req, false, conn_use_rpa(conn), 796 &own_addr_type)) 797 return; 798 } 799 800 if (use_ext_conn(hdev)) { 801 struct hci_cp_le_ext_create_conn *cp; 802 struct hci_cp_le_ext_conn_param *p; 803 u8 data[sizeof(*cp) + sizeof(*p) * 3]; 804 u32 plen; 805 806 cp = (void *) data; 807 p = (void *) cp->data; 808 809 memset(cp, 0, sizeof(*cp)); 810 811 bacpy(&cp->peer_addr, &conn->dst); 812 cp->peer_addr_type = conn->dst_type; 813 cp->own_addr_type = own_addr_type; 814 815 plen = sizeof(*cp); 816 817 if (scan_1m(hdev)) { 818 cp->phys |= LE_SCAN_PHY_1M; 819 set_ext_conn_params(conn, p); 820 821 p++; 822 plen += sizeof(*p); 823 } 824 825 if (scan_2m(hdev)) { 826 cp->phys |= LE_SCAN_PHY_2M; 827 set_ext_conn_params(conn, p); 828 829 p++; 830 plen += sizeof(*p); 831 } 832 833 if (scan_coded(hdev)) { 834 cp->phys |= LE_SCAN_PHY_CODED; 835 set_ext_conn_params(conn, p); 836 837 plen += sizeof(*p); 838 } 839 840 hci_req_add(req, HCI_OP_LE_EXT_CREATE_CONN, plen, data); 841 842 } else { 843 struct hci_cp_le_create_conn cp; 844 845 memset(&cp, 0, sizeof(cp)); 846 847 /* Set window to be the same value as the interval to enable 848 * continuous scanning. 849 */ 850 cp.scan_interval = cpu_to_le16(hdev->le_scan_interval); 851 cp.scan_window = cp.scan_interval; 852 853 bacpy(&cp.peer_addr, &conn->dst); 854 cp.peer_addr_type = conn->dst_type; 855 cp.own_address_type = own_addr_type; 856 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 857 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 858 cp.conn_latency = cpu_to_le16(conn->le_conn_latency); 859 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 860 cp.min_ce_len = cpu_to_le16(0x0000); 861 cp.max_ce_len = cpu_to_le16(0x0000); 862 863 hci_req_add(req, HCI_OP_LE_CREATE_CONN, sizeof(cp), &cp); 864 } 865 866 conn->state = BT_CONNECT; 867 clear_bit(HCI_CONN_SCANNING, &conn->flags); 868 } 869 870 static void hci_req_directed_advertising(struct hci_request *req, 871 struct hci_conn *conn) 872 { 873 struct hci_dev *hdev = req->hdev; 874 u8 own_addr_type; 875 u8 enable; 876 877 if (ext_adv_capable(hdev)) { 878 struct hci_cp_le_set_ext_adv_params cp; 879 bdaddr_t random_addr; 880 881 /* Set require_privacy to false so that the remote device has a 882 * chance of identifying us. 883 */ 884 if (hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, 885 &own_addr_type, &random_addr) < 0) 886 return; 887 888 memset(&cp, 0, sizeof(cp)); 889 890 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); 891 cp.own_addr_type = own_addr_type; 892 cp.channel_map = hdev->le_adv_channel_map; 893 cp.tx_power = HCI_TX_POWER_INVALID; 894 cp.primary_phy = HCI_ADV_PHY_1M; 895 cp.secondary_phy = HCI_ADV_PHY_1M; 896 cp.handle = 0; /* Use instance 0 for directed adv */ 897 cp.own_addr_type = own_addr_type; 898 cp.peer_addr_type = conn->dst_type; 899 bacpy(&cp.peer_addr, &conn->dst); 900 901 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp); 902 903 if (own_addr_type == ADDR_LE_DEV_RANDOM && 904 bacmp(&random_addr, BDADDR_ANY) && 905 bacmp(&random_addr, &hdev->random_addr)) { 906 struct hci_cp_le_set_adv_set_rand_addr cp; 907 908 memset(&cp, 0, sizeof(cp)); 909 910 cp.handle = 0; 911 bacpy(&cp.bdaddr, &random_addr); 912 913 hci_req_add(req, 914 HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 915 sizeof(cp), &cp); 916 } 917 918 __hci_req_enable_ext_advertising(req, 0x00); 919 } else { 920 struct hci_cp_le_set_adv_param cp; 921 922 /* Clear the HCI_LE_ADV bit temporarily so that the 923 * hci_update_random_address knows that it's safe to go ahead 924 * and write a new random address. The flag will be set back on 925 * as soon as the SET_ADV_ENABLE HCI command completes. 926 */ 927 hci_dev_clear_flag(hdev, HCI_LE_ADV); 928 929 /* Set require_privacy to false so that the remote device has a 930 * chance of identifying us. 931 */ 932 if (hci_update_random_address(req, false, conn_use_rpa(conn), 933 &own_addr_type) < 0) 934 return; 935 936 memset(&cp, 0, sizeof(cp)); 937 938 /* Some controllers might reject command if intervals are not 939 * within range for undirected advertising. 940 * BCM20702A0 is known to be affected by this. 941 */ 942 cp.min_interval = cpu_to_le16(0x0020); 943 cp.max_interval = cpu_to_le16(0x0020); 944 945 cp.type = LE_ADV_DIRECT_IND; 946 cp.own_address_type = own_addr_type; 947 cp.direct_addr_type = conn->dst_type; 948 bacpy(&cp.direct_addr, &conn->dst); 949 cp.channel_map = hdev->le_adv_channel_map; 950 951 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp); 952 953 enable = 0x01; 954 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), 955 &enable); 956 } 957 958 conn->state = BT_CONNECT; 959 } 960 961 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst, 962 u8 dst_type, u8 sec_level, u16 conn_timeout, 963 u8 role, bdaddr_t *direct_rpa) 964 { 965 struct hci_conn_params *params; 966 struct hci_conn *conn; 967 struct smp_irk *irk; 968 struct hci_request req; 969 int err; 970 971 /* Let's make sure that le is enabled.*/ 972 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 973 if (lmp_le_capable(hdev)) 974 return ERR_PTR(-ECONNREFUSED); 975 976 return ERR_PTR(-EOPNOTSUPP); 977 } 978 979 /* Since the controller supports only one LE connection attempt at a 980 * time, we return -EBUSY if there is any connection attempt running. 981 */ 982 if (hci_lookup_le_connect(hdev)) 983 return ERR_PTR(-EBUSY); 984 985 /* If there's already a connection object but it's not in 986 * scanning state it means it must already be established, in 987 * which case we can't do anything else except report a failure 988 * to connect. 989 */ 990 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); 991 if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) { 992 return ERR_PTR(-EBUSY); 993 } 994 995 /* When given an identity address with existing identity 996 * resolving key, the connection needs to be established 997 * to a resolvable random address. 998 * 999 * Storing the resolvable random address is required here 1000 * to handle connection failures. The address will later 1001 * be resolved back into the original identity address 1002 * from the connect request. 1003 */ 1004 irk = hci_find_irk_by_addr(hdev, dst, dst_type); 1005 if (irk && bacmp(&irk->rpa, BDADDR_ANY)) { 1006 dst = &irk->rpa; 1007 dst_type = ADDR_LE_DEV_RANDOM; 1008 } 1009 1010 if (conn) { 1011 bacpy(&conn->dst, dst); 1012 } else { 1013 conn = hci_conn_add(hdev, LE_LINK, dst, role); 1014 if (!conn) 1015 return ERR_PTR(-ENOMEM); 1016 hci_conn_hold(conn); 1017 conn->pending_sec_level = sec_level; 1018 } 1019 1020 conn->dst_type = dst_type; 1021 conn->sec_level = BT_SECURITY_LOW; 1022 conn->conn_timeout = conn_timeout; 1023 1024 hci_req_init(&req, hdev); 1025 1026 /* Disable advertising if we're active. For master role 1027 * connections most controllers will refuse to connect if 1028 * advertising is enabled, and for slave role connections we 1029 * anyway have to disable it in order to start directed 1030 * advertising. 1031 */ 1032 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) { 1033 u8 enable = 0x00; 1034 hci_req_add(&req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), 1035 &enable); 1036 } 1037 1038 /* If requested to connect as slave use directed advertising */ 1039 if (conn->role == HCI_ROLE_SLAVE) { 1040 /* If we're active scanning most controllers are unable 1041 * to initiate advertising. Simply reject the attempt. 1042 */ 1043 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && 1044 hdev->le_scan_type == LE_SCAN_ACTIVE) { 1045 hci_req_purge(&req); 1046 hci_conn_del(conn); 1047 return ERR_PTR(-EBUSY); 1048 } 1049 1050 hci_req_directed_advertising(&req, conn); 1051 goto create_conn; 1052 } 1053 1054 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 1055 if (params) { 1056 conn->le_conn_min_interval = params->conn_min_interval; 1057 conn->le_conn_max_interval = params->conn_max_interval; 1058 conn->le_conn_latency = params->conn_latency; 1059 conn->le_supv_timeout = params->supervision_timeout; 1060 } else { 1061 conn->le_conn_min_interval = hdev->le_conn_min_interval; 1062 conn->le_conn_max_interval = hdev->le_conn_max_interval; 1063 conn->le_conn_latency = hdev->le_conn_latency; 1064 conn->le_supv_timeout = hdev->le_supv_timeout; 1065 } 1066 1067 /* If controller is scanning, we stop it since some controllers are 1068 * not able to scan and connect at the same time. Also set the 1069 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 1070 * handler for scan disabling knows to set the correct discovery 1071 * state. 1072 */ 1073 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 1074 hci_req_add_le_scan_disable(&req); 1075 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 1076 } 1077 1078 hci_req_add_le_create_conn(&req, conn, direct_rpa); 1079 1080 create_conn: 1081 err = hci_req_run(&req, create_le_conn_complete); 1082 if (err) { 1083 hci_conn_del(conn); 1084 return ERR_PTR(err); 1085 } 1086 1087 return conn; 1088 } 1089 1090 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type) 1091 { 1092 struct hci_conn *conn; 1093 1094 conn = hci_conn_hash_lookup_le(hdev, addr, type); 1095 if (!conn) 1096 return false; 1097 1098 if (conn->state != BT_CONNECTED) 1099 return false; 1100 1101 return true; 1102 } 1103 1104 /* This function requires the caller holds hdev->lock */ 1105 static int hci_explicit_conn_params_set(struct hci_dev *hdev, 1106 bdaddr_t *addr, u8 addr_type) 1107 { 1108 struct hci_conn_params *params; 1109 1110 if (is_connected(hdev, addr, addr_type)) 1111 return -EISCONN; 1112 1113 params = hci_conn_params_lookup(hdev, addr, addr_type); 1114 if (!params) { 1115 params = hci_conn_params_add(hdev, addr, addr_type); 1116 if (!params) 1117 return -ENOMEM; 1118 1119 /* If we created new params, mark them to be deleted in 1120 * hci_connect_le_scan_cleanup. It's different case than 1121 * existing disabled params, those will stay after cleanup. 1122 */ 1123 params->auto_connect = HCI_AUTO_CONN_EXPLICIT; 1124 } 1125 1126 /* We're trying to connect, so make sure params are at pend_le_conns */ 1127 if (params->auto_connect == HCI_AUTO_CONN_DISABLED || 1128 params->auto_connect == HCI_AUTO_CONN_REPORT || 1129 params->auto_connect == HCI_AUTO_CONN_EXPLICIT) { 1130 list_del_init(¶ms->action); 1131 list_add(¶ms->action, &hdev->pend_le_conns); 1132 } 1133 1134 params->explicit_connect = true; 1135 1136 BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type, 1137 params->auto_connect); 1138 1139 return 0; 1140 } 1141 1142 /* This function requires the caller holds hdev->lock */ 1143 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst, 1144 u8 dst_type, u8 sec_level, 1145 u16 conn_timeout) 1146 { 1147 struct hci_conn *conn; 1148 1149 /* Let's make sure that le is enabled.*/ 1150 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 1151 if (lmp_le_capable(hdev)) 1152 return ERR_PTR(-ECONNREFUSED); 1153 1154 return ERR_PTR(-EOPNOTSUPP); 1155 } 1156 1157 /* Some devices send ATT messages as soon as the physical link is 1158 * established. To be able to handle these ATT messages, the user- 1159 * space first establishes the connection and then starts the pairing 1160 * process. 1161 * 1162 * So if a hci_conn object already exists for the following connection 1163 * attempt, we simply update pending_sec_level and auth_type fields 1164 * and return the object found. 1165 */ 1166 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); 1167 if (conn) { 1168 if (conn->pending_sec_level < sec_level) 1169 conn->pending_sec_level = sec_level; 1170 goto done; 1171 } 1172 1173 BT_DBG("requesting refresh of dst_addr"); 1174 1175 conn = hci_conn_add(hdev, LE_LINK, dst, HCI_ROLE_MASTER); 1176 if (!conn) 1177 return ERR_PTR(-ENOMEM); 1178 1179 if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0) { 1180 hci_conn_del(conn); 1181 return ERR_PTR(-EBUSY); 1182 } 1183 1184 conn->state = BT_CONNECT; 1185 set_bit(HCI_CONN_SCANNING, &conn->flags); 1186 conn->dst_type = dst_type; 1187 conn->sec_level = BT_SECURITY_LOW; 1188 conn->pending_sec_level = sec_level; 1189 conn->conn_timeout = conn_timeout; 1190 1191 hci_update_background_scan(hdev); 1192 1193 done: 1194 hci_conn_hold(conn); 1195 return conn; 1196 } 1197 1198 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst, 1199 u8 sec_level, u8 auth_type) 1200 { 1201 struct hci_conn *acl; 1202 1203 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 1204 if (lmp_bredr_capable(hdev)) 1205 return ERR_PTR(-ECONNREFUSED); 1206 1207 return ERR_PTR(-EOPNOTSUPP); 1208 } 1209 1210 acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst); 1211 if (!acl) { 1212 acl = hci_conn_add(hdev, ACL_LINK, dst, HCI_ROLE_MASTER); 1213 if (!acl) 1214 return ERR_PTR(-ENOMEM); 1215 } 1216 1217 hci_conn_hold(acl); 1218 1219 if (acl->state == BT_OPEN || acl->state == BT_CLOSED) { 1220 acl->sec_level = BT_SECURITY_LOW; 1221 acl->pending_sec_level = sec_level; 1222 acl->auth_type = auth_type; 1223 hci_acl_create_connection(acl); 1224 } 1225 1226 return acl; 1227 } 1228 1229 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, 1230 __u16 setting) 1231 { 1232 struct hci_conn *acl; 1233 struct hci_conn *sco; 1234 1235 acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING); 1236 if (IS_ERR(acl)) 1237 return acl; 1238 1239 sco = hci_conn_hash_lookup_ba(hdev, type, dst); 1240 if (!sco) { 1241 sco = hci_conn_add(hdev, type, dst, HCI_ROLE_MASTER); 1242 if (!sco) { 1243 hci_conn_drop(acl); 1244 return ERR_PTR(-ENOMEM); 1245 } 1246 } 1247 1248 acl->link = sco; 1249 sco->link = acl; 1250 1251 hci_conn_hold(sco); 1252 1253 sco->setting = setting; 1254 1255 if (acl->state == BT_CONNECTED && 1256 (sco->state == BT_OPEN || sco->state == BT_CLOSED)) { 1257 set_bit(HCI_CONN_POWER_SAVE, &acl->flags); 1258 hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON); 1259 1260 if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) { 1261 /* defer SCO setup until mode change completed */ 1262 set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags); 1263 return sco; 1264 } 1265 1266 hci_sco_setup(acl, 0x00); 1267 } 1268 1269 return sco; 1270 } 1271 1272 /* Check link security requirement */ 1273 int hci_conn_check_link_mode(struct hci_conn *conn) 1274 { 1275 BT_DBG("hcon %p", conn); 1276 1277 /* In Secure Connections Only mode, it is required that Secure 1278 * Connections is used and the link is encrypted with AES-CCM 1279 * using a P-256 authenticated combination key. 1280 */ 1281 if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) { 1282 if (!hci_conn_sc_enabled(conn) || 1283 !test_bit(HCI_CONN_AES_CCM, &conn->flags) || 1284 conn->key_type != HCI_LK_AUTH_COMBINATION_P256) 1285 return 0; 1286 } 1287 1288 if (hci_conn_ssp_enabled(conn) && 1289 !test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1290 return 0; 1291 1292 return 1; 1293 } 1294 1295 /* Authenticate remote device */ 1296 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type) 1297 { 1298 BT_DBG("hcon %p", conn); 1299 1300 if (conn->pending_sec_level > sec_level) 1301 sec_level = conn->pending_sec_level; 1302 1303 if (sec_level > conn->sec_level) 1304 conn->pending_sec_level = sec_level; 1305 else if (test_bit(HCI_CONN_AUTH, &conn->flags)) 1306 return 1; 1307 1308 /* Make sure we preserve an existing MITM requirement*/ 1309 auth_type |= (conn->auth_type & 0x01); 1310 1311 conn->auth_type = auth_type; 1312 1313 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) { 1314 struct hci_cp_auth_requested cp; 1315 1316 cp.handle = cpu_to_le16(conn->handle); 1317 hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED, 1318 sizeof(cp), &cp); 1319 1320 /* If we're already encrypted set the REAUTH_PEND flag, 1321 * otherwise set the ENCRYPT_PEND. 1322 */ 1323 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1324 set_bit(HCI_CONN_REAUTH_PEND, &conn->flags); 1325 else 1326 set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); 1327 } 1328 1329 return 0; 1330 } 1331 1332 /* Encrypt the the link */ 1333 static void hci_conn_encrypt(struct hci_conn *conn) 1334 { 1335 BT_DBG("hcon %p", conn); 1336 1337 if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) { 1338 struct hci_cp_set_conn_encrypt cp; 1339 cp.handle = cpu_to_le16(conn->handle); 1340 cp.encrypt = 0x01; 1341 hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp), 1342 &cp); 1343 } 1344 } 1345 1346 /* Enable security */ 1347 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type, 1348 bool initiator) 1349 { 1350 BT_DBG("hcon %p", conn); 1351 1352 if (conn->type == LE_LINK) 1353 return smp_conn_security(conn, sec_level); 1354 1355 /* For sdp we don't need the link key. */ 1356 if (sec_level == BT_SECURITY_SDP) 1357 return 1; 1358 1359 /* For non 2.1 devices and low security level we don't need the link 1360 key. */ 1361 if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn)) 1362 return 1; 1363 1364 /* For other security levels we need the link key. */ 1365 if (!test_bit(HCI_CONN_AUTH, &conn->flags)) 1366 goto auth; 1367 1368 /* An authenticated FIPS approved combination key has sufficient 1369 * security for security level 4. */ 1370 if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256 && 1371 sec_level == BT_SECURITY_FIPS) 1372 goto encrypt; 1373 1374 /* An authenticated combination key has sufficient security for 1375 security level 3. */ 1376 if ((conn->key_type == HCI_LK_AUTH_COMBINATION_P192 || 1377 conn->key_type == HCI_LK_AUTH_COMBINATION_P256) && 1378 sec_level == BT_SECURITY_HIGH) 1379 goto encrypt; 1380 1381 /* An unauthenticated combination key has sufficient security for 1382 security level 1 and 2. */ 1383 if ((conn->key_type == HCI_LK_UNAUTH_COMBINATION_P192 || 1384 conn->key_type == HCI_LK_UNAUTH_COMBINATION_P256) && 1385 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW)) 1386 goto encrypt; 1387 1388 /* A combination key has always sufficient security for the security 1389 levels 1 or 2. High security level requires the combination key 1390 is generated using maximum PIN code length (16). 1391 For pre 2.1 units. */ 1392 if (conn->key_type == HCI_LK_COMBINATION && 1393 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW || 1394 conn->pin_length == 16)) 1395 goto encrypt; 1396 1397 auth: 1398 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) 1399 return 0; 1400 1401 if (initiator) 1402 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags); 1403 1404 if (!hci_conn_auth(conn, sec_level, auth_type)) 1405 return 0; 1406 1407 encrypt: 1408 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) { 1409 /* Ensure that the encryption key size has been read, 1410 * otherwise stall the upper layer responses. 1411 */ 1412 if (!conn->enc_key_size) 1413 return 0; 1414 1415 /* Nothing else needed, all requirements are met */ 1416 return 1; 1417 } 1418 1419 hci_conn_encrypt(conn); 1420 return 0; 1421 } 1422 EXPORT_SYMBOL(hci_conn_security); 1423 1424 /* Check secure link requirement */ 1425 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level) 1426 { 1427 BT_DBG("hcon %p", conn); 1428 1429 /* Accept if non-secure or higher security level is required */ 1430 if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS) 1431 return 1; 1432 1433 /* Accept if secure or higher security level is already present */ 1434 if (conn->sec_level == BT_SECURITY_HIGH || 1435 conn->sec_level == BT_SECURITY_FIPS) 1436 return 1; 1437 1438 /* Reject not secure link */ 1439 return 0; 1440 } 1441 EXPORT_SYMBOL(hci_conn_check_secure); 1442 1443 /* Switch role */ 1444 int hci_conn_switch_role(struct hci_conn *conn, __u8 role) 1445 { 1446 BT_DBG("hcon %p", conn); 1447 1448 if (role == conn->role) 1449 return 1; 1450 1451 if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) { 1452 struct hci_cp_switch_role cp; 1453 bacpy(&cp.bdaddr, &conn->dst); 1454 cp.role = role; 1455 hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp); 1456 } 1457 1458 return 0; 1459 } 1460 EXPORT_SYMBOL(hci_conn_switch_role); 1461 1462 /* Enter active mode */ 1463 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active) 1464 { 1465 struct hci_dev *hdev = conn->hdev; 1466 1467 BT_DBG("hcon %p mode %d", conn, conn->mode); 1468 1469 if (conn->mode != HCI_CM_SNIFF) 1470 goto timer; 1471 1472 if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active) 1473 goto timer; 1474 1475 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 1476 struct hci_cp_exit_sniff_mode cp; 1477 cp.handle = cpu_to_le16(conn->handle); 1478 hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp); 1479 } 1480 1481 timer: 1482 if (hdev->idle_timeout > 0) 1483 queue_delayed_work(hdev->workqueue, &conn->idle_work, 1484 msecs_to_jiffies(hdev->idle_timeout)); 1485 } 1486 1487 /* Drop all connection on the device */ 1488 void hci_conn_hash_flush(struct hci_dev *hdev) 1489 { 1490 struct hci_conn_hash *h = &hdev->conn_hash; 1491 struct hci_conn *c, *n; 1492 1493 BT_DBG("hdev %s", hdev->name); 1494 1495 list_for_each_entry_safe(c, n, &h->list, list) { 1496 c->state = BT_CLOSED; 1497 1498 hci_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM); 1499 hci_conn_del(c); 1500 } 1501 } 1502 1503 /* Check pending connect attempts */ 1504 void hci_conn_check_pending(struct hci_dev *hdev) 1505 { 1506 struct hci_conn *conn; 1507 1508 BT_DBG("hdev %s", hdev->name); 1509 1510 hci_dev_lock(hdev); 1511 1512 conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2); 1513 if (conn) 1514 hci_acl_create_connection(conn); 1515 1516 hci_dev_unlock(hdev); 1517 } 1518 1519 static u32 get_link_mode(struct hci_conn *conn) 1520 { 1521 u32 link_mode = 0; 1522 1523 if (conn->role == HCI_ROLE_MASTER) 1524 link_mode |= HCI_LM_MASTER; 1525 1526 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1527 link_mode |= HCI_LM_ENCRYPT; 1528 1529 if (test_bit(HCI_CONN_AUTH, &conn->flags)) 1530 link_mode |= HCI_LM_AUTH; 1531 1532 if (test_bit(HCI_CONN_SECURE, &conn->flags)) 1533 link_mode |= HCI_LM_SECURE; 1534 1535 if (test_bit(HCI_CONN_FIPS, &conn->flags)) 1536 link_mode |= HCI_LM_FIPS; 1537 1538 return link_mode; 1539 } 1540 1541 int hci_get_conn_list(void __user *arg) 1542 { 1543 struct hci_conn *c; 1544 struct hci_conn_list_req req, *cl; 1545 struct hci_conn_info *ci; 1546 struct hci_dev *hdev; 1547 int n = 0, size, err; 1548 1549 if (copy_from_user(&req, arg, sizeof(req))) 1550 return -EFAULT; 1551 1552 if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci)) 1553 return -EINVAL; 1554 1555 size = sizeof(req) + req.conn_num * sizeof(*ci); 1556 1557 cl = kmalloc(size, GFP_KERNEL); 1558 if (!cl) 1559 return -ENOMEM; 1560 1561 hdev = hci_dev_get(req.dev_id); 1562 if (!hdev) { 1563 kfree(cl); 1564 return -ENODEV; 1565 } 1566 1567 ci = cl->conn_info; 1568 1569 hci_dev_lock(hdev); 1570 list_for_each_entry(c, &hdev->conn_hash.list, list) { 1571 bacpy(&(ci + n)->bdaddr, &c->dst); 1572 (ci + n)->handle = c->handle; 1573 (ci + n)->type = c->type; 1574 (ci + n)->out = c->out; 1575 (ci + n)->state = c->state; 1576 (ci + n)->link_mode = get_link_mode(c); 1577 if (++n >= req.conn_num) 1578 break; 1579 } 1580 hci_dev_unlock(hdev); 1581 1582 cl->dev_id = hdev->id; 1583 cl->conn_num = n; 1584 size = sizeof(req) + n * sizeof(*ci); 1585 1586 hci_dev_put(hdev); 1587 1588 err = copy_to_user(arg, cl, size); 1589 kfree(cl); 1590 1591 return err ? -EFAULT : 0; 1592 } 1593 1594 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg) 1595 { 1596 struct hci_conn_info_req req; 1597 struct hci_conn_info ci; 1598 struct hci_conn *conn; 1599 char __user *ptr = arg + sizeof(req); 1600 1601 if (copy_from_user(&req, arg, sizeof(req))) 1602 return -EFAULT; 1603 1604 hci_dev_lock(hdev); 1605 conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr); 1606 if (conn) { 1607 bacpy(&ci.bdaddr, &conn->dst); 1608 ci.handle = conn->handle; 1609 ci.type = conn->type; 1610 ci.out = conn->out; 1611 ci.state = conn->state; 1612 ci.link_mode = get_link_mode(conn); 1613 } 1614 hci_dev_unlock(hdev); 1615 1616 if (!conn) 1617 return -ENOENT; 1618 1619 return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0; 1620 } 1621 1622 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg) 1623 { 1624 struct hci_auth_info_req req; 1625 struct hci_conn *conn; 1626 1627 if (copy_from_user(&req, arg, sizeof(req))) 1628 return -EFAULT; 1629 1630 hci_dev_lock(hdev); 1631 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr); 1632 if (conn) 1633 req.type = conn->auth_type; 1634 hci_dev_unlock(hdev); 1635 1636 if (!conn) 1637 return -ENOENT; 1638 1639 return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0; 1640 } 1641 1642 struct hci_chan *hci_chan_create(struct hci_conn *conn) 1643 { 1644 struct hci_dev *hdev = conn->hdev; 1645 struct hci_chan *chan; 1646 1647 BT_DBG("%s hcon %p", hdev->name, conn); 1648 1649 if (test_bit(HCI_CONN_DROP, &conn->flags)) { 1650 BT_DBG("Refusing to create new hci_chan"); 1651 return NULL; 1652 } 1653 1654 chan = kzalloc(sizeof(*chan), GFP_KERNEL); 1655 if (!chan) 1656 return NULL; 1657 1658 chan->conn = hci_conn_get(conn); 1659 skb_queue_head_init(&chan->data_q); 1660 chan->state = BT_CONNECTED; 1661 1662 list_add_rcu(&chan->list, &conn->chan_list); 1663 1664 return chan; 1665 } 1666 1667 void hci_chan_del(struct hci_chan *chan) 1668 { 1669 struct hci_conn *conn = chan->conn; 1670 struct hci_dev *hdev = conn->hdev; 1671 1672 BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan); 1673 1674 list_del_rcu(&chan->list); 1675 1676 synchronize_rcu(); 1677 1678 /* Prevent new hci_chan's to be created for this hci_conn */ 1679 set_bit(HCI_CONN_DROP, &conn->flags); 1680 1681 hci_conn_put(conn); 1682 1683 skb_queue_purge(&chan->data_q); 1684 kfree(chan); 1685 } 1686 1687 void hci_chan_list_flush(struct hci_conn *conn) 1688 { 1689 struct hci_chan *chan, *n; 1690 1691 BT_DBG("hcon %p", conn); 1692 1693 list_for_each_entry_safe(chan, n, &conn->chan_list, list) 1694 hci_chan_del(chan); 1695 } 1696 1697 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon, 1698 __u16 handle) 1699 { 1700 struct hci_chan *hchan; 1701 1702 list_for_each_entry(hchan, &hcon->chan_list, list) { 1703 if (hchan->handle == handle) 1704 return hchan; 1705 } 1706 1707 return NULL; 1708 } 1709 1710 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle) 1711 { 1712 struct hci_conn_hash *h = &hdev->conn_hash; 1713 struct hci_conn *hcon; 1714 struct hci_chan *hchan = NULL; 1715 1716 rcu_read_lock(); 1717 1718 list_for_each_entry_rcu(hcon, &h->list, list) { 1719 hchan = __hci_chan_lookup_handle(hcon, handle); 1720 if (hchan) 1721 break; 1722 } 1723 1724 rcu_read_unlock(); 1725 1726 return hchan; 1727 } 1728