1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 /* Bluetooth HCI connection handling. */ 26 27 #include <linux/export.h> 28 #include <linux/debugfs.h> 29 30 #include <net/bluetooth/bluetooth.h> 31 #include <net/bluetooth/hci_core.h> 32 #include <net/bluetooth/l2cap.h> 33 #include <net/bluetooth/iso.h> 34 #include <net/bluetooth/mgmt.h> 35 36 #include "hci_request.h" 37 #include "smp.h" 38 #include "a2mp.h" 39 #include "eir.h" 40 41 struct sco_param { 42 u16 pkt_type; 43 u16 max_latency; 44 u8 retrans_effort; 45 }; 46 47 struct conn_handle_t { 48 struct hci_conn *conn; 49 __u16 handle; 50 }; 51 52 static const struct sco_param esco_param_cvsd[] = { 53 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a, 0x01 }, /* S3 */ 54 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007, 0x01 }, /* S2 */ 55 { EDR_ESCO_MASK | ESCO_EV3, 0x0007, 0x01 }, /* S1 */ 56 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0x01 }, /* D1 */ 57 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0x01 }, /* D0 */ 58 }; 59 60 static const struct sco_param sco_param_cvsd[] = { 61 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0xff }, /* D1 */ 62 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0xff }, /* D0 */ 63 }; 64 65 static const struct sco_param esco_param_msbc[] = { 66 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d, 0x02 }, /* T2 */ 67 { EDR_ESCO_MASK | ESCO_EV3, 0x0008, 0x02 }, /* T1 */ 68 }; 69 70 /* This function requires the caller holds hdev->lock */ 71 static void hci_connect_le_scan_cleanup(struct hci_conn *conn) 72 { 73 struct hci_conn_params *params; 74 struct hci_dev *hdev = conn->hdev; 75 struct smp_irk *irk; 76 bdaddr_t *bdaddr; 77 u8 bdaddr_type; 78 79 bdaddr = &conn->dst; 80 bdaddr_type = conn->dst_type; 81 82 /* Check if we need to convert to identity address */ 83 irk = hci_get_irk(hdev, bdaddr, bdaddr_type); 84 if (irk) { 85 bdaddr = &irk->bdaddr; 86 bdaddr_type = irk->addr_type; 87 } 88 89 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr, 90 bdaddr_type); 91 if (!params || !params->explicit_connect) 92 return; 93 94 /* The connection attempt was doing scan for new RPA, and is 95 * in scan phase. If params are not associated with any other 96 * autoconnect action, remove them completely. If they are, just unmark 97 * them as waiting for connection, by clearing explicit_connect field. 98 */ 99 params->explicit_connect = false; 100 101 list_del_init(¶ms->action); 102 103 switch (params->auto_connect) { 104 case HCI_AUTO_CONN_EXPLICIT: 105 hci_conn_params_del(hdev, bdaddr, bdaddr_type); 106 /* return instead of break to avoid duplicate scan update */ 107 return; 108 case HCI_AUTO_CONN_DIRECT: 109 case HCI_AUTO_CONN_ALWAYS: 110 list_add(¶ms->action, &hdev->pend_le_conns); 111 break; 112 case HCI_AUTO_CONN_REPORT: 113 list_add(¶ms->action, &hdev->pend_le_reports); 114 break; 115 default: 116 break; 117 } 118 119 hci_update_passive_scan(hdev); 120 } 121 122 static void hci_conn_cleanup(struct hci_conn *conn) 123 { 124 struct hci_dev *hdev = conn->hdev; 125 126 if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags)) 127 hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type); 128 129 if (test_and_clear_bit(HCI_CONN_FLUSH_KEY, &conn->flags)) 130 hci_remove_link_key(hdev, &conn->dst); 131 132 hci_chan_list_flush(conn); 133 134 hci_conn_hash_del(hdev, conn); 135 136 if (conn->cleanup) 137 conn->cleanup(conn); 138 139 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) { 140 switch (conn->setting & SCO_AIRMODE_MASK) { 141 case SCO_AIRMODE_CVSD: 142 case SCO_AIRMODE_TRANSP: 143 if (hdev->notify) 144 hdev->notify(hdev, HCI_NOTIFY_DISABLE_SCO); 145 break; 146 } 147 } else { 148 if (hdev->notify) 149 hdev->notify(hdev, HCI_NOTIFY_CONN_DEL); 150 } 151 152 hci_conn_del_sysfs(conn); 153 154 debugfs_remove_recursive(conn->debugfs); 155 156 hci_dev_put(hdev); 157 158 hci_conn_put(conn); 159 } 160 161 static void le_scan_cleanup(struct work_struct *work) 162 { 163 struct hci_conn *conn = container_of(work, struct hci_conn, 164 le_scan_cleanup); 165 struct hci_dev *hdev = conn->hdev; 166 struct hci_conn *c = NULL; 167 168 BT_DBG("%s hcon %p", hdev->name, conn); 169 170 hci_dev_lock(hdev); 171 172 /* Check that the hci_conn is still around */ 173 rcu_read_lock(); 174 list_for_each_entry_rcu(c, &hdev->conn_hash.list, list) { 175 if (c == conn) 176 break; 177 } 178 rcu_read_unlock(); 179 180 if (c == conn) { 181 hci_connect_le_scan_cleanup(conn); 182 hci_conn_cleanup(conn); 183 } 184 185 hci_dev_unlock(hdev); 186 hci_dev_put(hdev); 187 hci_conn_put(conn); 188 } 189 190 static void hci_connect_le_scan_remove(struct hci_conn *conn) 191 { 192 BT_DBG("%s hcon %p", conn->hdev->name, conn); 193 194 /* We can't call hci_conn_del/hci_conn_cleanup here since that 195 * could deadlock with another hci_conn_del() call that's holding 196 * hci_dev_lock and doing cancel_delayed_work_sync(&conn->disc_work). 197 * Instead, grab temporary extra references to the hci_dev and 198 * hci_conn and perform the necessary cleanup in a separate work 199 * callback. 200 */ 201 202 hci_dev_hold(conn->hdev); 203 hci_conn_get(conn); 204 205 /* Even though we hold a reference to the hdev, many other 206 * things might get cleaned up meanwhile, including the hdev's 207 * own workqueue, so we can't use that for scheduling. 208 */ 209 schedule_work(&conn->le_scan_cleanup); 210 } 211 212 static void hci_acl_create_connection(struct hci_conn *conn) 213 { 214 struct hci_dev *hdev = conn->hdev; 215 struct inquiry_entry *ie; 216 struct hci_cp_create_conn cp; 217 218 BT_DBG("hcon %p", conn); 219 220 /* Many controllers disallow HCI Create Connection while it is doing 221 * HCI Inquiry. So we cancel the Inquiry first before issuing HCI Create 222 * Connection. This may cause the MGMT discovering state to become false 223 * without user space's request but it is okay since the MGMT Discovery 224 * APIs do not promise that discovery should be done forever. Instead, 225 * the user space monitors the status of MGMT discovering and it may 226 * request for discovery again when this flag becomes false. 227 */ 228 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 229 /* Put this connection to "pending" state so that it will be 230 * executed after the inquiry cancel command complete event. 231 */ 232 conn->state = BT_CONNECT2; 233 hci_send_cmd(hdev, HCI_OP_INQUIRY_CANCEL, 0, NULL); 234 return; 235 } 236 237 conn->state = BT_CONNECT; 238 conn->out = true; 239 conn->role = HCI_ROLE_MASTER; 240 241 conn->attempt++; 242 243 conn->link_policy = hdev->link_policy; 244 245 memset(&cp, 0, sizeof(cp)); 246 bacpy(&cp.bdaddr, &conn->dst); 247 cp.pscan_rep_mode = 0x02; 248 249 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 250 if (ie) { 251 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) { 252 cp.pscan_rep_mode = ie->data.pscan_rep_mode; 253 cp.pscan_mode = ie->data.pscan_mode; 254 cp.clock_offset = ie->data.clock_offset | 255 cpu_to_le16(0x8000); 256 } 257 258 memcpy(conn->dev_class, ie->data.dev_class, 3); 259 } 260 261 cp.pkt_type = cpu_to_le16(conn->pkt_type); 262 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER)) 263 cp.role_switch = 0x01; 264 else 265 cp.role_switch = 0x00; 266 267 hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp); 268 } 269 270 int hci_disconnect(struct hci_conn *conn, __u8 reason) 271 { 272 BT_DBG("hcon %p", conn); 273 274 /* When we are central of an established connection and it enters 275 * the disconnect timeout, then go ahead and try to read the 276 * current clock offset. Processing of the result is done 277 * within the event handling and hci_clock_offset_evt function. 278 */ 279 if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER && 280 (conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) { 281 struct hci_dev *hdev = conn->hdev; 282 struct hci_cp_read_clock_offset clkoff_cp; 283 284 clkoff_cp.handle = cpu_to_le16(conn->handle); 285 hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp), 286 &clkoff_cp); 287 } 288 289 return hci_abort_conn(conn, reason); 290 } 291 292 static void hci_add_sco(struct hci_conn *conn, __u16 handle) 293 { 294 struct hci_dev *hdev = conn->hdev; 295 struct hci_cp_add_sco cp; 296 297 BT_DBG("hcon %p", conn); 298 299 conn->state = BT_CONNECT; 300 conn->out = true; 301 302 conn->attempt++; 303 304 cp.handle = cpu_to_le16(handle); 305 cp.pkt_type = cpu_to_le16(conn->pkt_type); 306 307 hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp); 308 } 309 310 static bool find_next_esco_param(struct hci_conn *conn, 311 const struct sco_param *esco_param, int size) 312 { 313 for (; conn->attempt <= size; conn->attempt++) { 314 if (lmp_esco_2m_capable(conn->link) || 315 (esco_param[conn->attempt - 1].pkt_type & ESCO_2EV3)) 316 break; 317 BT_DBG("hcon %p skipped attempt %d, eSCO 2M not supported", 318 conn, conn->attempt); 319 } 320 321 return conn->attempt <= size; 322 } 323 324 static int configure_datapath_sync(struct hci_dev *hdev, struct bt_codec *codec) 325 { 326 int err; 327 __u8 vnd_len, *vnd_data = NULL; 328 struct hci_op_configure_data_path *cmd = NULL; 329 330 err = hdev->get_codec_config_data(hdev, ESCO_LINK, codec, &vnd_len, 331 &vnd_data); 332 if (err < 0) 333 goto error; 334 335 cmd = kzalloc(sizeof(*cmd) + vnd_len, GFP_KERNEL); 336 if (!cmd) { 337 err = -ENOMEM; 338 goto error; 339 } 340 341 err = hdev->get_data_path_id(hdev, &cmd->data_path_id); 342 if (err < 0) 343 goto error; 344 345 cmd->vnd_len = vnd_len; 346 memcpy(cmd->vnd_data, vnd_data, vnd_len); 347 348 cmd->direction = 0x00; 349 __hci_cmd_sync_status(hdev, HCI_CONFIGURE_DATA_PATH, 350 sizeof(*cmd) + vnd_len, cmd, HCI_CMD_TIMEOUT); 351 352 cmd->direction = 0x01; 353 err = __hci_cmd_sync_status(hdev, HCI_CONFIGURE_DATA_PATH, 354 sizeof(*cmd) + vnd_len, cmd, 355 HCI_CMD_TIMEOUT); 356 error: 357 358 kfree(cmd); 359 kfree(vnd_data); 360 return err; 361 } 362 363 static int hci_enhanced_setup_sync(struct hci_dev *hdev, void *data) 364 { 365 struct conn_handle_t *conn_handle = data; 366 struct hci_conn *conn = conn_handle->conn; 367 __u16 handle = conn_handle->handle; 368 struct hci_cp_enhanced_setup_sync_conn cp; 369 const struct sco_param *param; 370 371 kfree(conn_handle); 372 373 bt_dev_dbg(hdev, "hcon %p", conn); 374 375 /* for offload use case, codec needs to configured before opening SCO */ 376 if (conn->codec.data_path) 377 configure_datapath_sync(hdev, &conn->codec); 378 379 conn->state = BT_CONNECT; 380 conn->out = true; 381 382 conn->attempt++; 383 384 memset(&cp, 0x00, sizeof(cp)); 385 386 cp.handle = cpu_to_le16(handle); 387 388 cp.tx_bandwidth = cpu_to_le32(0x00001f40); 389 cp.rx_bandwidth = cpu_to_le32(0x00001f40); 390 391 switch (conn->codec.id) { 392 case BT_CODEC_MSBC: 393 if (!find_next_esco_param(conn, esco_param_msbc, 394 ARRAY_SIZE(esco_param_msbc))) 395 return -EINVAL; 396 397 param = &esco_param_msbc[conn->attempt - 1]; 398 cp.tx_coding_format.id = 0x05; 399 cp.rx_coding_format.id = 0x05; 400 cp.tx_codec_frame_size = __cpu_to_le16(60); 401 cp.rx_codec_frame_size = __cpu_to_le16(60); 402 cp.in_bandwidth = __cpu_to_le32(32000); 403 cp.out_bandwidth = __cpu_to_le32(32000); 404 cp.in_coding_format.id = 0x04; 405 cp.out_coding_format.id = 0x04; 406 cp.in_coded_data_size = __cpu_to_le16(16); 407 cp.out_coded_data_size = __cpu_to_le16(16); 408 cp.in_pcm_data_format = 2; 409 cp.out_pcm_data_format = 2; 410 cp.in_pcm_sample_payload_msb_pos = 0; 411 cp.out_pcm_sample_payload_msb_pos = 0; 412 cp.in_data_path = conn->codec.data_path; 413 cp.out_data_path = conn->codec.data_path; 414 cp.in_transport_unit_size = 1; 415 cp.out_transport_unit_size = 1; 416 break; 417 418 case BT_CODEC_TRANSPARENT: 419 if (!find_next_esco_param(conn, esco_param_msbc, 420 ARRAY_SIZE(esco_param_msbc))) 421 return false; 422 param = &esco_param_msbc[conn->attempt - 1]; 423 cp.tx_coding_format.id = 0x03; 424 cp.rx_coding_format.id = 0x03; 425 cp.tx_codec_frame_size = __cpu_to_le16(60); 426 cp.rx_codec_frame_size = __cpu_to_le16(60); 427 cp.in_bandwidth = __cpu_to_le32(0x1f40); 428 cp.out_bandwidth = __cpu_to_le32(0x1f40); 429 cp.in_coding_format.id = 0x03; 430 cp.out_coding_format.id = 0x03; 431 cp.in_coded_data_size = __cpu_to_le16(16); 432 cp.out_coded_data_size = __cpu_to_le16(16); 433 cp.in_pcm_data_format = 2; 434 cp.out_pcm_data_format = 2; 435 cp.in_pcm_sample_payload_msb_pos = 0; 436 cp.out_pcm_sample_payload_msb_pos = 0; 437 cp.in_data_path = conn->codec.data_path; 438 cp.out_data_path = conn->codec.data_path; 439 cp.in_transport_unit_size = 1; 440 cp.out_transport_unit_size = 1; 441 break; 442 443 case BT_CODEC_CVSD: 444 if (lmp_esco_capable(conn->link)) { 445 if (!find_next_esco_param(conn, esco_param_cvsd, 446 ARRAY_SIZE(esco_param_cvsd))) 447 return -EINVAL; 448 param = &esco_param_cvsd[conn->attempt - 1]; 449 } else { 450 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd)) 451 return -EINVAL; 452 param = &sco_param_cvsd[conn->attempt - 1]; 453 } 454 cp.tx_coding_format.id = 2; 455 cp.rx_coding_format.id = 2; 456 cp.tx_codec_frame_size = __cpu_to_le16(60); 457 cp.rx_codec_frame_size = __cpu_to_le16(60); 458 cp.in_bandwidth = __cpu_to_le32(16000); 459 cp.out_bandwidth = __cpu_to_le32(16000); 460 cp.in_coding_format.id = 4; 461 cp.out_coding_format.id = 4; 462 cp.in_coded_data_size = __cpu_to_le16(16); 463 cp.out_coded_data_size = __cpu_to_le16(16); 464 cp.in_pcm_data_format = 2; 465 cp.out_pcm_data_format = 2; 466 cp.in_pcm_sample_payload_msb_pos = 0; 467 cp.out_pcm_sample_payload_msb_pos = 0; 468 cp.in_data_path = conn->codec.data_path; 469 cp.out_data_path = conn->codec.data_path; 470 cp.in_transport_unit_size = 16; 471 cp.out_transport_unit_size = 16; 472 break; 473 default: 474 return -EINVAL; 475 } 476 477 cp.retrans_effort = param->retrans_effort; 478 cp.pkt_type = __cpu_to_le16(param->pkt_type); 479 cp.max_latency = __cpu_to_le16(param->max_latency); 480 481 if (hci_send_cmd(hdev, HCI_OP_ENHANCED_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0) 482 return -EIO; 483 484 return 0; 485 } 486 487 static bool hci_setup_sync_conn(struct hci_conn *conn, __u16 handle) 488 { 489 struct hci_dev *hdev = conn->hdev; 490 struct hci_cp_setup_sync_conn cp; 491 const struct sco_param *param; 492 493 bt_dev_dbg(hdev, "hcon %p", conn); 494 495 conn->state = BT_CONNECT; 496 conn->out = true; 497 498 conn->attempt++; 499 500 cp.handle = cpu_to_le16(handle); 501 502 cp.tx_bandwidth = cpu_to_le32(0x00001f40); 503 cp.rx_bandwidth = cpu_to_le32(0x00001f40); 504 cp.voice_setting = cpu_to_le16(conn->setting); 505 506 switch (conn->setting & SCO_AIRMODE_MASK) { 507 case SCO_AIRMODE_TRANSP: 508 if (!find_next_esco_param(conn, esco_param_msbc, 509 ARRAY_SIZE(esco_param_msbc))) 510 return false; 511 param = &esco_param_msbc[conn->attempt - 1]; 512 break; 513 case SCO_AIRMODE_CVSD: 514 if (lmp_esco_capable(conn->link)) { 515 if (!find_next_esco_param(conn, esco_param_cvsd, 516 ARRAY_SIZE(esco_param_cvsd))) 517 return false; 518 param = &esco_param_cvsd[conn->attempt - 1]; 519 } else { 520 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd)) 521 return false; 522 param = &sco_param_cvsd[conn->attempt - 1]; 523 } 524 break; 525 default: 526 return false; 527 } 528 529 cp.retrans_effort = param->retrans_effort; 530 cp.pkt_type = __cpu_to_le16(param->pkt_type); 531 cp.max_latency = __cpu_to_le16(param->max_latency); 532 533 if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0) 534 return false; 535 536 return true; 537 } 538 539 bool hci_setup_sync(struct hci_conn *conn, __u16 handle) 540 { 541 int result; 542 struct conn_handle_t *conn_handle; 543 544 if (enhanced_sync_conn_capable(conn->hdev)) { 545 conn_handle = kzalloc(sizeof(*conn_handle), GFP_KERNEL); 546 547 if (!conn_handle) 548 return false; 549 550 conn_handle->conn = conn; 551 conn_handle->handle = handle; 552 result = hci_cmd_sync_queue(conn->hdev, hci_enhanced_setup_sync, 553 conn_handle, NULL); 554 if (result < 0) 555 kfree(conn_handle); 556 557 return result == 0; 558 } 559 560 return hci_setup_sync_conn(conn, handle); 561 } 562 563 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency, 564 u16 to_multiplier) 565 { 566 struct hci_dev *hdev = conn->hdev; 567 struct hci_conn_params *params; 568 struct hci_cp_le_conn_update cp; 569 570 hci_dev_lock(hdev); 571 572 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 573 if (params) { 574 params->conn_min_interval = min; 575 params->conn_max_interval = max; 576 params->conn_latency = latency; 577 params->supervision_timeout = to_multiplier; 578 } 579 580 hci_dev_unlock(hdev); 581 582 memset(&cp, 0, sizeof(cp)); 583 cp.handle = cpu_to_le16(conn->handle); 584 cp.conn_interval_min = cpu_to_le16(min); 585 cp.conn_interval_max = cpu_to_le16(max); 586 cp.conn_latency = cpu_to_le16(latency); 587 cp.supervision_timeout = cpu_to_le16(to_multiplier); 588 cp.min_ce_len = cpu_to_le16(0x0000); 589 cp.max_ce_len = cpu_to_le16(0x0000); 590 591 hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp); 592 593 if (params) 594 return 0x01; 595 596 return 0x00; 597 } 598 599 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand, 600 __u8 ltk[16], __u8 key_size) 601 { 602 struct hci_dev *hdev = conn->hdev; 603 struct hci_cp_le_start_enc cp; 604 605 BT_DBG("hcon %p", conn); 606 607 memset(&cp, 0, sizeof(cp)); 608 609 cp.handle = cpu_to_le16(conn->handle); 610 cp.rand = rand; 611 cp.ediv = ediv; 612 memcpy(cp.ltk, ltk, key_size); 613 614 hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp); 615 } 616 617 /* Device _must_ be locked */ 618 void hci_sco_setup(struct hci_conn *conn, __u8 status) 619 { 620 struct hci_conn *sco = conn->link; 621 622 if (!sco) 623 return; 624 625 BT_DBG("hcon %p", conn); 626 627 if (!status) { 628 if (lmp_esco_capable(conn->hdev)) 629 hci_setup_sync(sco, conn->handle); 630 else 631 hci_add_sco(sco, conn->handle); 632 } else { 633 hci_connect_cfm(sco, status); 634 hci_conn_del(sco); 635 } 636 } 637 638 static void hci_conn_timeout(struct work_struct *work) 639 { 640 struct hci_conn *conn = container_of(work, struct hci_conn, 641 disc_work.work); 642 int refcnt = atomic_read(&conn->refcnt); 643 644 BT_DBG("hcon %p state %s", conn, state_to_string(conn->state)); 645 646 WARN_ON(refcnt < 0); 647 648 /* FIXME: It was observed that in pairing failed scenario, refcnt 649 * drops below 0. Probably this is because l2cap_conn_del calls 650 * l2cap_chan_del for each channel, and inside l2cap_chan_del conn is 651 * dropped. After that loop hci_chan_del is called which also drops 652 * conn. For now make sure that ACL is alive if refcnt is higher then 0, 653 * otherwise drop it. 654 */ 655 if (refcnt > 0) 656 return; 657 658 /* LE connections in scanning state need special handling */ 659 if (conn->state == BT_CONNECT && conn->type == LE_LINK && 660 test_bit(HCI_CONN_SCANNING, &conn->flags)) { 661 hci_connect_le_scan_remove(conn); 662 return; 663 } 664 665 hci_abort_conn(conn, hci_proto_disconn_ind(conn)); 666 } 667 668 /* Enter sniff mode */ 669 static void hci_conn_idle(struct work_struct *work) 670 { 671 struct hci_conn *conn = container_of(work, struct hci_conn, 672 idle_work.work); 673 struct hci_dev *hdev = conn->hdev; 674 675 BT_DBG("hcon %p mode %d", conn, conn->mode); 676 677 if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn)) 678 return; 679 680 if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF)) 681 return; 682 683 if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) { 684 struct hci_cp_sniff_subrate cp; 685 cp.handle = cpu_to_le16(conn->handle); 686 cp.max_latency = cpu_to_le16(0); 687 cp.min_remote_timeout = cpu_to_le16(0); 688 cp.min_local_timeout = cpu_to_le16(0); 689 hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp); 690 } 691 692 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 693 struct hci_cp_sniff_mode cp; 694 cp.handle = cpu_to_le16(conn->handle); 695 cp.max_interval = cpu_to_le16(hdev->sniff_max_interval); 696 cp.min_interval = cpu_to_le16(hdev->sniff_min_interval); 697 cp.attempt = cpu_to_le16(4); 698 cp.timeout = cpu_to_le16(1); 699 hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp); 700 } 701 } 702 703 static void hci_conn_auto_accept(struct work_struct *work) 704 { 705 struct hci_conn *conn = container_of(work, struct hci_conn, 706 auto_accept_work.work); 707 708 hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst), 709 &conn->dst); 710 } 711 712 static void le_disable_advertising(struct hci_dev *hdev) 713 { 714 if (ext_adv_capable(hdev)) { 715 struct hci_cp_le_set_ext_adv_enable cp; 716 717 cp.enable = 0x00; 718 cp.num_of_sets = 0x00; 719 720 hci_send_cmd(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp), 721 &cp); 722 } else { 723 u8 enable = 0x00; 724 hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), 725 &enable); 726 } 727 } 728 729 static void le_conn_timeout(struct work_struct *work) 730 { 731 struct hci_conn *conn = container_of(work, struct hci_conn, 732 le_conn_timeout.work); 733 struct hci_dev *hdev = conn->hdev; 734 735 BT_DBG(""); 736 737 /* We could end up here due to having done directed advertising, 738 * so clean up the state if necessary. This should however only 739 * happen with broken hardware or if low duty cycle was used 740 * (which doesn't have a timeout of its own). 741 */ 742 if (conn->role == HCI_ROLE_SLAVE) { 743 /* Disable LE Advertising */ 744 le_disable_advertising(hdev); 745 hci_dev_lock(hdev); 746 hci_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT); 747 hci_dev_unlock(hdev); 748 return; 749 } 750 751 hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM); 752 } 753 754 struct iso_list_data { 755 union { 756 u8 cig; 757 u8 big; 758 }; 759 union { 760 u8 cis; 761 u8 bis; 762 u16 sync_handle; 763 }; 764 int count; 765 struct { 766 struct hci_cp_le_set_cig_params cp; 767 struct hci_cis_params cis[0x11]; 768 } pdu; 769 }; 770 771 static void bis_list(struct hci_conn *conn, void *data) 772 { 773 struct iso_list_data *d = data; 774 775 /* Skip if not broadcast/ANY address */ 776 if (bacmp(&conn->dst, BDADDR_ANY)) 777 return; 778 779 if (d->big != conn->iso_qos.big || d->bis == BT_ISO_QOS_BIS_UNSET || 780 d->bis != conn->iso_qos.bis) 781 return; 782 783 d->count++; 784 } 785 786 static void find_bis(struct hci_conn *conn, void *data) 787 { 788 struct iso_list_data *d = data; 789 790 /* Ignore unicast */ 791 if (bacmp(&conn->dst, BDADDR_ANY)) 792 return; 793 794 d->count++; 795 } 796 797 static int terminate_big_sync(struct hci_dev *hdev, void *data) 798 { 799 struct iso_list_data *d = data; 800 801 bt_dev_dbg(hdev, "big 0x%2.2x bis 0x%2.2x", d->big, d->bis); 802 803 hci_remove_ext_adv_instance_sync(hdev, d->bis, NULL); 804 805 /* Check if ISO connection is a BIS and terminate BIG if there are 806 * no other connections using it. 807 */ 808 hci_conn_hash_list_state(hdev, find_bis, ISO_LINK, BT_CONNECTED, d); 809 if (d->count) 810 return 0; 811 812 return hci_le_terminate_big_sync(hdev, d->big, 813 HCI_ERROR_LOCAL_HOST_TERM); 814 } 815 816 static void terminate_big_destroy(struct hci_dev *hdev, void *data, int err) 817 { 818 kfree(data); 819 } 820 821 static int hci_le_terminate_big(struct hci_dev *hdev, u8 big, u8 bis) 822 { 823 struct iso_list_data *d; 824 825 bt_dev_dbg(hdev, "big 0x%2.2x bis 0x%2.2x", big, bis); 826 827 d = kzalloc(sizeof(*d), GFP_KERNEL); 828 if (!d) 829 return -ENOMEM; 830 831 d->big = big; 832 d->bis = bis; 833 834 return hci_cmd_sync_queue(hdev, terminate_big_sync, d, 835 terminate_big_destroy); 836 } 837 838 static int big_terminate_sync(struct hci_dev *hdev, void *data) 839 { 840 struct iso_list_data *d = data; 841 842 bt_dev_dbg(hdev, "big 0x%2.2x sync_handle 0x%4.4x", d->big, 843 d->sync_handle); 844 845 /* Check if ISO connection is a BIS and terminate BIG if there are 846 * no other connections using it. 847 */ 848 hci_conn_hash_list_state(hdev, find_bis, ISO_LINK, BT_CONNECTED, d); 849 if (d->count) 850 return 0; 851 852 hci_le_big_terminate_sync(hdev, d->big); 853 854 return hci_le_pa_terminate_sync(hdev, d->sync_handle); 855 } 856 857 static int hci_le_big_terminate(struct hci_dev *hdev, u8 big, u16 sync_handle) 858 { 859 struct iso_list_data *d; 860 861 bt_dev_dbg(hdev, "big 0x%2.2x sync_handle 0x%4.4x", big, sync_handle); 862 863 d = kzalloc(sizeof(*d), GFP_KERNEL); 864 if (!d) 865 return -ENOMEM; 866 867 d->big = big; 868 d->sync_handle = sync_handle; 869 870 return hci_cmd_sync_queue(hdev, big_terminate_sync, d, 871 terminate_big_destroy); 872 } 873 874 /* Cleanup BIS connection 875 * 876 * Detects if there any BIS left connected in a BIG 877 * broadcaster: Remove advertising instance and terminate BIG. 878 * broadcaster receiver: Teminate BIG sync and terminate PA sync. 879 */ 880 static void bis_cleanup(struct hci_conn *conn) 881 { 882 struct hci_dev *hdev = conn->hdev; 883 884 bt_dev_dbg(hdev, "conn %p", conn); 885 886 if (conn->role == HCI_ROLE_MASTER) { 887 if (!test_and_clear_bit(HCI_CONN_PER_ADV, &conn->flags)) 888 return; 889 890 hci_le_terminate_big(hdev, conn->iso_qos.big, 891 conn->iso_qos.bis); 892 } else { 893 hci_le_big_terminate(hdev, conn->iso_qos.big, 894 conn->sync_handle); 895 } 896 } 897 898 static int remove_cig_sync(struct hci_dev *hdev, void *data) 899 { 900 u8 handle = PTR_ERR(data); 901 902 return hci_le_remove_cig_sync(hdev, handle); 903 } 904 905 static int hci_le_remove_cig(struct hci_dev *hdev, u8 handle) 906 { 907 bt_dev_dbg(hdev, "handle 0x%2.2x", handle); 908 909 return hci_cmd_sync_queue(hdev, remove_cig_sync, ERR_PTR(handle), NULL); 910 } 911 912 static void find_cis(struct hci_conn *conn, void *data) 913 { 914 struct iso_list_data *d = data; 915 916 /* Ignore broadcast */ 917 if (!bacmp(&conn->dst, BDADDR_ANY)) 918 return; 919 920 d->count++; 921 } 922 923 /* Cleanup CIS connection: 924 * 925 * Detects if there any CIS left connected in a CIG and remove it. 926 */ 927 static void cis_cleanup(struct hci_conn *conn) 928 { 929 struct hci_dev *hdev = conn->hdev; 930 struct iso_list_data d; 931 932 memset(&d, 0, sizeof(d)); 933 d.cig = conn->iso_qos.cig; 934 935 /* Check if ISO connection is a CIS and remove CIG if there are 936 * no other connections using it. 937 */ 938 hci_conn_hash_list_state(hdev, find_cis, ISO_LINK, BT_CONNECTED, &d); 939 if (d.count) 940 return; 941 942 hci_le_remove_cig(hdev, conn->iso_qos.cig); 943 } 944 945 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst, 946 u8 role) 947 { 948 struct hci_conn *conn; 949 950 BT_DBG("%s dst %pMR", hdev->name, dst); 951 952 conn = kzalloc(sizeof(*conn), GFP_KERNEL); 953 if (!conn) 954 return NULL; 955 956 bacpy(&conn->dst, dst); 957 bacpy(&conn->src, &hdev->bdaddr); 958 conn->handle = HCI_CONN_HANDLE_UNSET; 959 conn->hdev = hdev; 960 conn->type = type; 961 conn->role = role; 962 conn->mode = HCI_CM_ACTIVE; 963 conn->state = BT_OPEN; 964 conn->auth_type = HCI_AT_GENERAL_BONDING; 965 conn->io_capability = hdev->io_capability; 966 conn->remote_auth = 0xff; 967 conn->key_type = 0xff; 968 conn->rssi = HCI_RSSI_INVALID; 969 conn->tx_power = HCI_TX_POWER_INVALID; 970 conn->max_tx_power = HCI_TX_POWER_INVALID; 971 972 set_bit(HCI_CONN_POWER_SAVE, &conn->flags); 973 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 974 975 /* Set Default Authenticated payload timeout to 30s */ 976 conn->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT; 977 978 if (conn->role == HCI_ROLE_MASTER) 979 conn->out = true; 980 981 switch (type) { 982 case ACL_LINK: 983 conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK; 984 break; 985 case LE_LINK: 986 /* conn->src should reflect the local identity address */ 987 hci_copy_identity_address(hdev, &conn->src, &conn->src_type); 988 break; 989 case ISO_LINK: 990 /* conn->src should reflect the local identity address */ 991 hci_copy_identity_address(hdev, &conn->src, &conn->src_type); 992 993 /* set proper cleanup function */ 994 if (!bacmp(dst, BDADDR_ANY)) 995 conn->cleanup = bis_cleanup; 996 else if (conn->role == HCI_ROLE_MASTER) 997 conn->cleanup = cis_cleanup; 998 999 break; 1000 case SCO_LINK: 1001 if (lmp_esco_capable(hdev)) 1002 conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) | 1003 (hdev->esco_type & EDR_ESCO_MASK); 1004 else 1005 conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK; 1006 break; 1007 case ESCO_LINK: 1008 conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK; 1009 break; 1010 } 1011 1012 skb_queue_head_init(&conn->data_q); 1013 1014 INIT_LIST_HEAD(&conn->chan_list); 1015 1016 INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout); 1017 INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept); 1018 INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle); 1019 INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout); 1020 INIT_WORK(&conn->le_scan_cleanup, le_scan_cleanup); 1021 1022 atomic_set(&conn->refcnt, 0); 1023 1024 hci_dev_hold(hdev); 1025 1026 hci_conn_hash_add(hdev, conn); 1027 1028 /* The SCO and eSCO connections will only be notified when their 1029 * setup has been completed. This is different to ACL links which 1030 * can be notified right away. 1031 */ 1032 if (conn->type != SCO_LINK && conn->type != ESCO_LINK) { 1033 if (hdev->notify) 1034 hdev->notify(hdev, HCI_NOTIFY_CONN_ADD); 1035 } 1036 1037 hci_conn_init_sysfs(conn); 1038 1039 return conn; 1040 } 1041 1042 int hci_conn_del(struct hci_conn *conn) 1043 { 1044 struct hci_dev *hdev = conn->hdev; 1045 1046 BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle); 1047 1048 cancel_delayed_work_sync(&conn->disc_work); 1049 cancel_delayed_work_sync(&conn->auto_accept_work); 1050 cancel_delayed_work_sync(&conn->idle_work); 1051 1052 if (conn->type == ACL_LINK) { 1053 struct hci_conn *sco = conn->link; 1054 if (sco) 1055 sco->link = NULL; 1056 1057 /* Unacked frames */ 1058 hdev->acl_cnt += conn->sent; 1059 } else if (conn->type == LE_LINK) { 1060 cancel_delayed_work(&conn->le_conn_timeout); 1061 1062 if (hdev->le_pkts) 1063 hdev->le_cnt += conn->sent; 1064 else 1065 hdev->acl_cnt += conn->sent; 1066 } else { 1067 struct hci_conn *acl = conn->link; 1068 1069 if (acl) { 1070 acl->link = NULL; 1071 hci_conn_drop(acl); 1072 } 1073 1074 /* Unacked ISO frames */ 1075 if (conn->type == ISO_LINK) { 1076 if (hdev->iso_pkts) 1077 hdev->iso_cnt += conn->sent; 1078 else if (hdev->le_pkts) 1079 hdev->le_cnt += conn->sent; 1080 else 1081 hdev->acl_cnt += conn->sent; 1082 } 1083 } 1084 1085 if (conn->amp_mgr) 1086 amp_mgr_put(conn->amp_mgr); 1087 1088 skb_queue_purge(&conn->data_q); 1089 1090 /* Remove the connection from the list and cleanup its remaining 1091 * state. This is a separate function since for some cases like 1092 * BT_CONNECT_SCAN we *only* want the cleanup part without the 1093 * rest of hci_conn_del. 1094 */ 1095 hci_conn_cleanup(conn); 1096 1097 return 0; 1098 } 1099 1100 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, uint8_t src_type) 1101 { 1102 int use_src = bacmp(src, BDADDR_ANY); 1103 struct hci_dev *hdev = NULL, *d; 1104 1105 BT_DBG("%pMR -> %pMR", src, dst); 1106 1107 read_lock(&hci_dev_list_lock); 1108 1109 list_for_each_entry(d, &hci_dev_list, list) { 1110 if (!test_bit(HCI_UP, &d->flags) || 1111 hci_dev_test_flag(d, HCI_USER_CHANNEL) || 1112 d->dev_type != HCI_PRIMARY) 1113 continue; 1114 1115 /* Simple routing: 1116 * No source address - find interface with bdaddr != dst 1117 * Source address - find interface with bdaddr == src 1118 */ 1119 1120 if (use_src) { 1121 bdaddr_t id_addr; 1122 u8 id_addr_type; 1123 1124 if (src_type == BDADDR_BREDR) { 1125 if (!lmp_bredr_capable(d)) 1126 continue; 1127 bacpy(&id_addr, &d->bdaddr); 1128 id_addr_type = BDADDR_BREDR; 1129 } else { 1130 if (!lmp_le_capable(d)) 1131 continue; 1132 1133 hci_copy_identity_address(d, &id_addr, 1134 &id_addr_type); 1135 1136 /* Convert from HCI to three-value type */ 1137 if (id_addr_type == ADDR_LE_DEV_PUBLIC) 1138 id_addr_type = BDADDR_LE_PUBLIC; 1139 else 1140 id_addr_type = BDADDR_LE_RANDOM; 1141 } 1142 1143 if (!bacmp(&id_addr, src) && id_addr_type == src_type) { 1144 hdev = d; break; 1145 } 1146 } else { 1147 if (bacmp(&d->bdaddr, dst)) { 1148 hdev = d; break; 1149 } 1150 } 1151 } 1152 1153 if (hdev) 1154 hdev = hci_dev_hold(hdev); 1155 1156 read_unlock(&hci_dev_list_lock); 1157 return hdev; 1158 } 1159 EXPORT_SYMBOL(hci_get_route); 1160 1161 /* This function requires the caller holds hdev->lock */ 1162 static void hci_le_conn_failed(struct hci_conn *conn, u8 status) 1163 { 1164 struct hci_dev *hdev = conn->hdev; 1165 struct hci_conn_params *params; 1166 1167 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst, 1168 conn->dst_type); 1169 if (params && params->conn) { 1170 hci_conn_drop(params->conn); 1171 hci_conn_put(params->conn); 1172 params->conn = NULL; 1173 } 1174 1175 /* If the status indicates successful cancellation of 1176 * the attempt (i.e. Unknown Connection Id) there's no point of 1177 * notifying failure since we'll go back to keep trying to 1178 * connect. The only exception is explicit connect requests 1179 * where a timeout + cancel does indicate an actual failure. 1180 */ 1181 if (status != HCI_ERROR_UNKNOWN_CONN_ID || 1182 (params && params->explicit_connect)) 1183 mgmt_connect_failed(hdev, &conn->dst, conn->type, 1184 conn->dst_type, status); 1185 1186 /* Since we may have temporarily stopped the background scanning in 1187 * favor of connection establishment, we should restart it. 1188 */ 1189 hci_update_passive_scan(hdev); 1190 1191 /* Enable advertising in case this was a failed connection 1192 * attempt as a peripheral. 1193 */ 1194 hci_enable_advertising(hdev); 1195 } 1196 1197 /* This function requires the caller holds hdev->lock */ 1198 void hci_conn_failed(struct hci_conn *conn, u8 status) 1199 { 1200 struct hci_dev *hdev = conn->hdev; 1201 1202 bt_dev_dbg(hdev, "status 0x%2.2x", status); 1203 1204 switch (conn->type) { 1205 case LE_LINK: 1206 hci_le_conn_failed(conn, status); 1207 break; 1208 case ACL_LINK: 1209 mgmt_connect_failed(hdev, &conn->dst, conn->type, 1210 conn->dst_type, status); 1211 break; 1212 } 1213 1214 conn->state = BT_CLOSED; 1215 hci_connect_cfm(conn, status); 1216 hci_conn_del(conn); 1217 } 1218 1219 static void create_le_conn_complete(struct hci_dev *hdev, void *data, int err) 1220 { 1221 struct hci_conn *conn = data; 1222 1223 hci_dev_lock(hdev); 1224 1225 if (!err) { 1226 hci_connect_le_scan_cleanup(conn); 1227 goto done; 1228 } 1229 1230 bt_dev_err(hdev, "request failed to create LE connection: err %d", err); 1231 1232 /* Check if connection is still pending */ 1233 if (conn != hci_lookup_le_connect(hdev)) 1234 goto done; 1235 1236 hci_conn_failed(conn, bt_status(err)); 1237 1238 done: 1239 hci_dev_unlock(hdev); 1240 } 1241 1242 static int hci_connect_le_sync(struct hci_dev *hdev, void *data) 1243 { 1244 struct hci_conn *conn = data; 1245 1246 bt_dev_dbg(hdev, "conn %p", conn); 1247 1248 return hci_le_create_conn_sync(hdev, conn); 1249 } 1250 1251 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst, 1252 u8 dst_type, bool dst_resolved, u8 sec_level, 1253 u16 conn_timeout, u8 role) 1254 { 1255 struct hci_conn *conn; 1256 struct smp_irk *irk; 1257 int err; 1258 1259 /* Let's make sure that le is enabled.*/ 1260 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 1261 if (lmp_le_capable(hdev)) 1262 return ERR_PTR(-ECONNREFUSED); 1263 1264 return ERR_PTR(-EOPNOTSUPP); 1265 } 1266 1267 /* Since the controller supports only one LE connection attempt at a 1268 * time, we return -EBUSY if there is any connection attempt running. 1269 */ 1270 if (hci_lookup_le_connect(hdev)) 1271 return ERR_PTR(-EBUSY); 1272 1273 /* If there's already a connection object but it's not in 1274 * scanning state it means it must already be established, in 1275 * which case we can't do anything else except report a failure 1276 * to connect. 1277 */ 1278 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); 1279 if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) { 1280 return ERR_PTR(-EBUSY); 1281 } 1282 1283 /* Check if the destination address has been resolved by the controller 1284 * since if it did then the identity address shall be used. 1285 */ 1286 if (!dst_resolved) { 1287 /* When given an identity address with existing identity 1288 * resolving key, the connection needs to be established 1289 * to a resolvable random address. 1290 * 1291 * Storing the resolvable random address is required here 1292 * to handle connection failures. The address will later 1293 * be resolved back into the original identity address 1294 * from the connect request. 1295 */ 1296 irk = hci_find_irk_by_addr(hdev, dst, dst_type); 1297 if (irk && bacmp(&irk->rpa, BDADDR_ANY)) { 1298 dst = &irk->rpa; 1299 dst_type = ADDR_LE_DEV_RANDOM; 1300 } 1301 } 1302 1303 if (conn) { 1304 bacpy(&conn->dst, dst); 1305 } else { 1306 conn = hci_conn_add(hdev, LE_LINK, dst, role); 1307 if (!conn) 1308 return ERR_PTR(-ENOMEM); 1309 hci_conn_hold(conn); 1310 conn->pending_sec_level = sec_level; 1311 } 1312 1313 conn->dst_type = dst_type; 1314 conn->sec_level = BT_SECURITY_LOW; 1315 conn->conn_timeout = conn_timeout; 1316 1317 conn->state = BT_CONNECT; 1318 clear_bit(HCI_CONN_SCANNING, &conn->flags); 1319 1320 err = hci_cmd_sync_queue(hdev, hci_connect_le_sync, conn, 1321 create_le_conn_complete); 1322 if (err) { 1323 hci_conn_del(conn); 1324 return ERR_PTR(err); 1325 } 1326 1327 return conn; 1328 } 1329 1330 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type) 1331 { 1332 struct hci_conn *conn; 1333 1334 conn = hci_conn_hash_lookup_le(hdev, addr, type); 1335 if (!conn) 1336 return false; 1337 1338 if (conn->state != BT_CONNECTED) 1339 return false; 1340 1341 return true; 1342 } 1343 1344 /* This function requires the caller holds hdev->lock */ 1345 static int hci_explicit_conn_params_set(struct hci_dev *hdev, 1346 bdaddr_t *addr, u8 addr_type) 1347 { 1348 struct hci_conn_params *params; 1349 1350 if (is_connected(hdev, addr, addr_type)) 1351 return -EISCONN; 1352 1353 params = hci_conn_params_lookup(hdev, addr, addr_type); 1354 if (!params) { 1355 params = hci_conn_params_add(hdev, addr, addr_type); 1356 if (!params) 1357 return -ENOMEM; 1358 1359 /* If we created new params, mark them to be deleted in 1360 * hci_connect_le_scan_cleanup. It's different case than 1361 * existing disabled params, those will stay after cleanup. 1362 */ 1363 params->auto_connect = HCI_AUTO_CONN_EXPLICIT; 1364 } 1365 1366 /* We're trying to connect, so make sure params are at pend_le_conns */ 1367 if (params->auto_connect == HCI_AUTO_CONN_DISABLED || 1368 params->auto_connect == HCI_AUTO_CONN_REPORT || 1369 params->auto_connect == HCI_AUTO_CONN_EXPLICIT) { 1370 list_del_init(¶ms->action); 1371 list_add(¶ms->action, &hdev->pend_le_conns); 1372 } 1373 1374 params->explicit_connect = true; 1375 1376 BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type, 1377 params->auto_connect); 1378 1379 return 0; 1380 } 1381 1382 static int qos_set_big(struct hci_dev *hdev, struct bt_iso_qos *qos) 1383 { 1384 struct iso_list_data data; 1385 1386 /* Allocate a BIG if not set */ 1387 if (qos->big == BT_ISO_QOS_BIG_UNSET) { 1388 for (data.big = 0x00; data.big < 0xef; data.big++) { 1389 data.count = 0; 1390 data.bis = 0xff; 1391 1392 hci_conn_hash_list_state(hdev, bis_list, ISO_LINK, 1393 BT_BOUND, &data); 1394 if (!data.count) 1395 break; 1396 } 1397 1398 if (data.big == 0xef) 1399 return -EADDRNOTAVAIL; 1400 1401 /* Update BIG */ 1402 qos->big = data.big; 1403 } 1404 1405 return 0; 1406 } 1407 1408 static int qos_set_bis(struct hci_dev *hdev, struct bt_iso_qos *qos) 1409 { 1410 struct iso_list_data data; 1411 1412 /* Allocate BIS if not set */ 1413 if (qos->bis == BT_ISO_QOS_BIS_UNSET) { 1414 /* Find an unused adv set to advertise BIS, skip instance 0x00 1415 * since it is reserved as general purpose set. 1416 */ 1417 for (data.bis = 0x01; data.bis < hdev->le_num_of_adv_sets; 1418 data.bis++) { 1419 data.count = 0; 1420 1421 hci_conn_hash_list_state(hdev, bis_list, ISO_LINK, 1422 BT_BOUND, &data); 1423 if (!data.count) 1424 break; 1425 } 1426 1427 if (data.bis == hdev->le_num_of_adv_sets) 1428 return -EADDRNOTAVAIL; 1429 1430 /* Update BIS */ 1431 qos->bis = data.bis; 1432 } 1433 1434 return 0; 1435 } 1436 1437 /* This function requires the caller holds hdev->lock */ 1438 static struct hci_conn *hci_add_bis(struct hci_dev *hdev, bdaddr_t *dst, 1439 struct bt_iso_qos *qos) 1440 { 1441 struct hci_conn *conn; 1442 struct iso_list_data data; 1443 int err; 1444 1445 /* Let's make sure that le is enabled.*/ 1446 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 1447 if (lmp_le_capable(hdev)) 1448 return ERR_PTR(-ECONNREFUSED); 1449 return ERR_PTR(-EOPNOTSUPP); 1450 } 1451 1452 err = qos_set_big(hdev, qos); 1453 if (err) 1454 return ERR_PTR(err); 1455 1456 err = qos_set_bis(hdev, qos); 1457 if (err) 1458 return ERR_PTR(err); 1459 1460 data.big = qos->big; 1461 data.bis = qos->bis; 1462 data.count = 0; 1463 1464 /* Check if there is already a matching BIG/BIS */ 1465 hci_conn_hash_list_state(hdev, bis_list, ISO_LINK, BT_BOUND, &data); 1466 if (data.count) 1467 return ERR_PTR(-EADDRINUSE); 1468 1469 conn = hci_conn_hash_lookup_bis(hdev, dst, qos->big, qos->bis); 1470 if (conn) 1471 return ERR_PTR(-EADDRINUSE); 1472 1473 conn = hci_conn_add(hdev, ISO_LINK, dst, HCI_ROLE_MASTER); 1474 if (!conn) 1475 return ERR_PTR(-ENOMEM); 1476 1477 set_bit(HCI_CONN_PER_ADV, &conn->flags); 1478 conn->state = BT_CONNECT; 1479 1480 hci_conn_hold(conn); 1481 return conn; 1482 } 1483 1484 /* This function requires the caller holds hdev->lock */ 1485 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst, 1486 u8 dst_type, u8 sec_level, 1487 u16 conn_timeout, 1488 enum conn_reasons conn_reason) 1489 { 1490 struct hci_conn *conn; 1491 1492 /* Let's make sure that le is enabled.*/ 1493 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 1494 if (lmp_le_capable(hdev)) 1495 return ERR_PTR(-ECONNREFUSED); 1496 1497 return ERR_PTR(-EOPNOTSUPP); 1498 } 1499 1500 /* Some devices send ATT messages as soon as the physical link is 1501 * established. To be able to handle these ATT messages, the user- 1502 * space first establishes the connection and then starts the pairing 1503 * process. 1504 * 1505 * So if a hci_conn object already exists for the following connection 1506 * attempt, we simply update pending_sec_level and auth_type fields 1507 * and return the object found. 1508 */ 1509 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); 1510 if (conn) { 1511 if (conn->pending_sec_level < sec_level) 1512 conn->pending_sec_level = sec_level; 1513 goto done; 1514 } 1515 1516 BT_DBG("requesting refresh of dst_addr"); 1517 1518 conn = hci_conn_add(hdev, LE_LINK, dst, HCI_ROLE_MASTER); 1519 if (!conn) 1520 return ERR_PTR(-ENOMEM); 1521 1522 if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0) { 1523 hci_conn_del(conn); 1524 return ERR_PTR(-EBUSY); 1525 } 1526 1527 conn->state = BT_CONNECT; 1528 set_bit(HCI_CONN_SCANNING, &conn->flags); 1529 conn->dst_type = dst_type; 1530 conn->sec_level = BT_SECURITY_LOW; 1531 conn->pending_sec_level = sec_level; 1532 conn->conn_timeout = conn_timeout; 1533 conn->conn_reason = conn_reason; 1534 1535 hci_update_passive_scan(hdev); 1536 1537 done: 1538 hci_conn_hold(conn); 1539 return conn; 1540 } 1541 1542 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst, 1543 u8 sec_level, u8 auth_type, 1544 enum conn_reasons conn_reason) 1545 { 1546 struct hci_conn *acl; 1547 1548 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 1549 if (lmp_bredr_capable(hdev)) 1550 return ERR_PTR(-ECONNREFUSED); 1551 1552 return ERR_PTR(-EOPNOTSUPP); 1553 } 1554 1555 acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst); 1556 if (!acl) { 1557 acl = hci_conn_add(hdev, ACL_LINK, dst, HCI_ROLE_MASTER); 1558 if (!acl) 1559 return ERR_PTR(-ENOMEM); 1560 } 1561 1562 hci_conn_hold(acl); 1563 1564 acl->conn_reason = conn_reason; 1565 if (acl->state == BT_OPEN || acl->state == BT_CLOSED) { 1566 acl->sec_level = BT_SECURITY_LOW; 1567 acl->pending_sec_level = sec_level; 1568 acl->auth_type = auth_type; 1569 hci_acl_create_connection(acl); 1570 } 1571 1572 return acl; 1573 } 1574 1575 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, 1576 __u16 setting, struct bt_codec *codec) 1577 { 1578 struct hci_conn *acl; 1579 struct hci_conn *sco; 1580 1581 acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING, 1582 CONN_REASON_SCO_CONNECT); 1583 if (IS_ERR(acl)) 1584 return acl; 1585 1586 sco = hci_conn_hash_lookup_ba(hdev, type, dst); 1587 if (!sco) { 1588 sco = hci_conn_add(hdev, type, dst, HCI_ROLE_MASTER); 1589 if (!sco) { 1590 hci_conn_drop(acl); 1591 return ERR_PTR(-ENOMEM); 1592 } 1593 } 1594 1595 acl->link = sco; 1596 sco->link = acl; 1597 1598 hci_conn_hold(sco); 1599 1600 sco->setting = setting; 1601 sco->codec = *codec; 1602 1603 if (acl->state == BT_CONNECTED && 1604 (sco->state == BT_OPEN || sco->state == BT_CLOSED)) { 1605 set_bit(HCI_CONN_POWER_SAVE, &acl->flags); 1606 hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON); 1607 1608 if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) { 1609 /* defer SCO setup until mode change completed */ 1610 set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags); 1611 return sco; 1612 } 1613 1614 hci_sco_setup(acl, 0x00); 1615 } 1616 1617 return sco; 1618 } 1619 1620 static void cis_add(struct iso_list_data *d, struct bt_iso_qos *qos) 1621 { 1622 struct hci_cis_params *cis = &d->pdu.cis[d->pdu.cp.num_cis]; 1623 1624 cis->cis_id = qos->cis; 1625 cis->c_sdu = cpu_to_le16(qos->out.sdu); 1626 cis->p_sdu = cpu_to_le16(qos->in.sdu); 1627 cis->c_phy = qos->out.phy ? qos->out.phy : qos->in.phy; 1628 cis->p_phy = qos->in.phy ? qos->in.phy : qos->out.phy; 1629 cis->c_rtn = qos->out.rtn; 1630 cis->p_rtn = qos->in.rtn; 1631 1632 d->pdu.cp.num_cis++; 1633 } 1634 1635 static void cis_list(struct hci_conn *conn, void *data) 1636 { 1637 struct iso_list_data *d = data; 1638 1639 /* Skip if broadcast/ANY address */ 1640 if (!bacmp(&conn->dst, BDADDR_ANY)) 1641 return; 1642 1643 if (d->cig != conn->iso_qos.cig || d->cis == BT_ISO_QOS_CIS_UNSET || 1644 d->cis != conn->iso_qos.cis) 1645 return; 1646 1647 d->count++; 1648 1649 if (d->pdu.cp.cig_id == BT_ISO_QOS_CIG_UNSET || 1650 d->count >= ARRAY_SIZE(d->pdu.cis)) 1651 return; 1652 1653 cis_add(d, &conn->iso_qos); 1654 } 1655 1656 static int hci_le_create_big(struct hci_conn *conn, struct bt_iso_qos *qos) 1657 { 1658 struct hci_dev *hdev = conn->hdev; 1659 struct hci_cp_le_create_big cp; 1660 1661 memset(&cp, 0, sizeof(cp)); 1662 1663 cp.handle = qos->big; 1664 cp.adv_handle = qos->bis; 1665 cp.num_bis = 0x01; 1666 hci_cpu_to_le24(qos->out.interval, cp.bis.sdu_interval); 1667 cp.bis.sdu = cpu_to_le16(qos->out.sdu); 1668 cp.bis.latency = cpu_to_le16(qos->out.latency); 1669 cp.bis.rtn = qos->out.rtn; 1670 cp.bis.phy = qos->out.phy; 1671 cp.bis.packing = qos->packing; 1672 cp.bis.framing = qos->framing; 1673 cp.bis.encryption = 0x00; 1674 memset(&cp.bis.bcode, 0, sizeof(cp.bis.bcode)); 1675 1676 return hci_send_cmd(hdev, HCI_OP_LE_CREATE_BIG, sizeof(cp), &cp); 1677 } 1678 1679 static bool hci_le_set_cig_params(struct hci_conn *conn, struct bt_iso_qos *qos) 1680 { 1681 struct hci_dev *hdev = conn->hdev; 1682 struct iso_list_data data; 1683 1684 memset(&data, 0, sizeof(data)); 1685 1686 /* Allocate a CIG if not set */ 1687 if (qos->cig == BT_ISO_QOS_CIG_UNSET) { 1688 for (data.cig = 0x00; data.cig < 0xff; data.cig++) { 1689 data.count = 0; 1690 data.cis = 0xff; 1691 1692 hci_conn_hash_list_state(hdev, cis_list, ISO_LINK, 1693 BT_BOUND, &data); 1694 if (data.count) 1695 continue; 1696 1697 hci_conn_hash_list_state(hdev, cis_list, ISO_LINK, 1698 BT_CONNECTED, &data); 1699 if (!data.count) 1700 break; 1701 } 1702 1703 if (data.cig == 0xff) 1704 return false; 1705 1706 /* Update CIG */ 1707 qos->cig = data.cig; 1708 } 1709 1710 data.pdu.cp.cig_id = qos->cig; 1711 hci_cpu_to_le24(qos->out.interval, data.pdu.cp.c_interval); 1712 hci_cpu_to_le24(qos->in.interval, data.pdu.cp.p_interval); 1713 data.pdu.cp.sca = qos->sca; 1714 data.pdu.cp.packing = qos->packing; 1715 data.pdu.cp.framing = qos->framing; 1716 data.pdu.cp.c_latency = cpu_to_le16(qos->out.latency); 1717 data.pdu.cp.p_latency = cpu_to_le16(qos->in.latency); 1718 1719 if (qos->cis != BT_ISO_QOS_CIS_UNSET) { 1720 data.count = 0; 1721 data.cig = qos->cig; 1722 data.cis = qos->cis; 1723 1724 hci_conn_hash_list_state(hdev, cis_list, ISO_LINK, BT_BOUND, 1725 &data); 1726 if (data.count) 1727 return false; 1728 1729 cis_add(&data, qos); 1730 } 1731 1732 /* Reprogram all CIS(s) with the same CIG */ 1733 for (data.cig = qos->cig, data.cis = 0x00; data.cis < 0x11; 1734 data.cis++) { 1735 data.count = 0; 1736 1737 hci_conn_hash_list_state(hdev, cis_list, ISO_LINK, BT_BOUND, 1738 &data); 1739 if (data.count) 1740 continue; 1741 1742 /* Allocate a CIS if not set */ 1743 if (qos->cis == BT_ISO_QOS_CIS_UNSET) { 1744 /* Update CIS */ 1745 qos->cis = data.cis; 1746 cis_add(&data, qos); 1747 } 1748 } 1749 1750 if (qos->cis == BT_ISO_QOS_CIS_UNSET || !data.pdu.cp.num_cis) 1751 return false; 1752 1753 if (hci_send_cmd(hdev, HCI_OP_LE_SET_CIG_PARAMS, 1754 sizeof(data.pdu.cp) + 1755 (data.pdu.cp.num_cis * sizeof(*data.pdu.cis)), 1756 &data.pdu) < 0) 1757 return false; 1758 1759 return true; 1760 } 1761 1762 struct hci_conn *hci_bind_cis(struct hci_dev *hdev, bdaddr_t *dst, 1763 __u8 dst_type, struct bt_iso_qos *qos) 1764 { 1765 struct hci_conn *cis; 1766 1767 cis = hci_conn_hash_lookup_cis(hdev, dst, dst_type); 1768 if (!cis) { 1769 cis = hci_conn_add(hdev, ISO_LINK, dst, HCI_ROLE_MASTER); 1770 if (!cis) 1771 return ERR_PTR(-ENOMEM); 1772 cis->cleanup = cis_cleanup; 1773 cis->dst_type = dst_type; 1774 } 1775 1776 if (cis->state == BT_CONNECTED) 1777 return cis; 1778 1779 /* Check if CIS has been set and the settings matches */ 1780 if (cis->state == BT_BOUND && 1781 !memcmp(&cis->iso_qos, qos, sizeof(*qos))) 1782 return cis; 1783 1784 /* Update LINK PHYs according to QoS preference */ 1785 cis->le_tx_phy = qos->out.phy; 1786 cis->le_rx_phy = qos->in.phy; 1787 1788 /* If output interval is not set use the input interval as it cannot be 1789 * 0x000000. 1790 */ 1791 if (!qos->out.interval) 1792 qos->out.interval = qos->in.interval; 1793 1794 /* If input interval is not set use the output interval as it cannot be 1795 * 0x000000. 1796 */ 1797 if (!qos->in.interval) 1798 qos->in.interval = qos->out.interval; 1799 1800 /* If output latency is not set use the input latency as it cannot be 1801 * 0x0000. 1802 */ 1803 if (!qos->out.latency) 1804 qos->out.latency = qos->in.latency; 1805 1806 /* If input latency is not set use the output latency as it cannot be 1807 * 0x0000. 1808 */ 1809 if (!qos->in.latency) 1810 qos->in.latency = qos->out.latency; 1811 1812 if (!hci_le_set_cig_params(cis, qos)) { 1813 hci_conn_drop(cis); 1814 return ERR_PTR(-EINVAL); 1815 } 1816 1817 cis->iso_qos = *qos; 1818 cis->state = BT_BOUND; 1819 1820 return cis; 1821 } 1822 1823 bool hci_iso_setup_path(struct hci_conn *conn) 1824 { 1825 struct hci_dev *hdev = conn->hdev; 1826 struct hci_cp_le_setup_iso_path cmd; 1827 1828 memset(&cmd, 0, sizeof(cmd)); 1829 1830 if (conn->iso_qos.out.sdu) { 1831 cmd.handle = cpu_to_le16(conn->handle); 1832 cmd.direction = 0x00; /* Input (Host to Controller) */ 1833 cmd.path = 0x00; /* HCI path if enabled */ 1834 cmd.codec = 0x03; /* Transparent Data */ 1835 1836 if (hci_send_cmd(hdev, HCI_OP_LE_SETUP_ISO_PATH, sizeof(cmd), 1837 &cmd) < 0) 1838 return false; 1839 } 1840 1841 if (conn->iso_qos.in.sdu) { 1842 cmd.handle = cpu_to_le16(conn->handle); 1843 cmd.direction = 0x01; /* Output (Controller to Host) */ 1844 cmd.path = 0x00; /* HCI path if enabled */ 1845 cmd.codec = 0x03; /* Transparent Data */ 1846 1847 if (hci_send_cmd(hdev, HCI_OP_LE_SETUP_ISO_PATH, sizeof(cmd), 1848 &cmd) < 0) 1849 return false; 1850 } 1851 1852 return true; 1853 } 1854 1855 static int hci_create_cis_sync(struct hci_dev *hdev, void *data) 1856 { 1857 struct { 1858 struct hci_cp_le_create_cis cp; 1859 struct hci_cis cis[0x1f]; 1860 } cmd; 1861 struct hci_conn *conn = data; 1862 u8 cig; 1863 1864 memset(&cmd, 0, sizeof(cmd)); 1865 cmd.cis[0].acl_handle = cpu_to_le16(conn->link->handle); 1866 cmd.cis[0].cis_handle = cpu_to_le16(conn->handle); 1867 cmd.cp.num_cis++; 1868 cig = conn->iso_qos.cig; 1869 1870 hci_dev_lock(hdev); 1871 1872 rcu_read_lock(); 1873 1874 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 1875 struct hci_cis *cis = &cmd.cis[cmd.cp.num_cis]; 1876 1877 if (conn == data || conn->type != ISO_LINK || 1878 conn->state == BT_CONNECTED || conn->iso_qos.cig != cig) 1879 continue; 1880 1881 /* Check if all CIS(s) belonging to a CIG are ready */ 1882 if (!conn->link || conn->link->state != BT_CONNECTED || 1883 conn->state != BT_CONNECT) { 1884 cmd.cp.num_cis = 0; 1885 break; 1886 } 1887 1888 /* Group all CIS with state BT_CONNECT since the spec don't 1889 * allow to send them individually: 1890 * 1891 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 1892 * page 2566: 1893 * 1894 * If the Host issues this command before all the 1895 * HCI_LE_CIS_Established events from the previous use of the 1896 * command have been generated, the Controller shall return the 1897 * error code Command Disallowed (0x0C). 1898 */ 1899 cis->acl_handle = cpu_to_le16(conn->link->handle); 1900 cis->cis_handle = cpu_to_le16(conn->handle); 1901 cmd.cp.num_cis++; 1902 } 1903 1904 rcu_read_unlock(); 1905 1906 hci_dev_unlock(hdev); 1907 1908 if (!cmd.cp.num_cis) 1909 return 0; 1910 1911 return hci_send_cmd(hdev, HCI_OP_LE_CREATE_CIS, sizeof(cmd.cp) + 1912 sizeof(cmd.cis[0]) * cmd.cp.num_cis, &cmd); 1913 } 1914 1915 int hci_le_create_cis(struct hci_conn *conn) 1916 { 1917 struct hci_conn *cis; 1918 struct hci_dev *hdev = conn->hdev; 1919 int err; 1920 1921 switch (conn->type) { 1922 case LE_LINK: 1923 if (!conn->link || conn->state != BT_CONNECTED) 1924 return -EINVAL; 1925 cis = conn->link; 1926 break; 1927 case ISO_LINK: 1928 cis = conn; 1929 break; 1930 default: 1931 return -EINVAL; 1932 } 1933 1934 if (cis->state == BT_CONNECT) 1935 return 0; 1936 1937 /* Queue Create CIS */ 1938 err = hci_cmd_sync_queue(hdev, hci_create_cis_sync, cis, NULL); 1939 if (err) 1940 return err; 1941 1942 cis->state = BT_CONNECT; 1943 1944 return 0; 1945 } 1946 1947 static void hci_iso_qos_setup(struct hci_dev *hdev, struct hci_conn *conn, 1948 struct bt_iso_io_qos *qos, __u8 phy) 1949 { 1950 /* Only set MTU if PHY is enabled */ 1951 if (!qos->sdu && qos->phy) { 1952 if (hdev->iso_mtu > 0) 1953 qos->sdu = hdev->iso_mtu; 1954 else if (hdev->le_mtu > 0) 1955 qos->sdu = hdev->le_mtu; 1956 else 1957 qos->sdu = hdev->acl_mtu; 1958 } 1959 1960 /* Use the same PHY as ACL if set to any */ 1961 if (qos->phy == BT_ISO_PHY_ANY) 1962 qos->phy = phy; 1963 1964 /* Use LE ACL connection interval if not set */ 1965 if (!qos->interval) 1966 /* ACL interval unit in 1.25 ms to us */ 1967 qos->interval = conn->le_conn_interval * 1250; 1968 1969 /* Use LE ACL connection latency if not set */ 1970 if (!qos->latency) 1971 qos->latency = conn->le_conn_latency; 1972 } 1973 1974 static struct hci_conn *hci_bind_bis(struct hci_conn *conn, 1975 struct bt_iso_qos *qos) 1976 { 1977 /* Update LINK PHYs according to QoS preference */ 1978 conn->le_tx_phy = qos->out.phy; 1979 conn->le_tx_phy = qos->out.phy; 1980 conn->iso_qos = *qos; 1981 conn->state = BT_BOUND; 1982 1983 return conn; 1984 } 1985 1986 static int create_big_sync(struct hci_dev *hdev, void *data) 1987 { 1988 struct hci_conn *conn = data; 1989 struct bt_iso_qos *qos = &conn->iso_qos; 1990 u16 interval, sync_interval = 0; 1991 u32 flags = 0; 1992 int err; 1993 1994 if (qos->out.phy == 0x02) 1995 flags |= MGMT_ADV_FLAG_SEC_2M; 1996 1997 /* Align intervals */ 1998 interval = qos->out.interval / 1250; 1999 2000 if (qos->bis) 2001 sync_interval = qos->sync_interval * 1600; 2002 2003 err = hci_start_per_adv_sync(hdev, qos->bis, conn->le_per_adv_data_len, 2004 conn->le_per_adv_data, flags, interval, 2005 interval, sync_interval); 2006 if (err) 2007 return err; 2008 2009 return hci_le_create_big(conn, &conn->iso_qos); 2010 } 2011 2012 static void create_pa_complete(struct hci_dev *hdev, void *data, int err) 2013 { 2014 struct hci_cp_le_pa_create_sync *cp = data; 2015 2016 bt_dev_dbg(hdev, ""); 2017 2018 if (err) 2019 bt_dev_err(hdev, "Unable to create PA: %d", err); 2020 2021 kfree(cp); 2022 } 2023 2024 static int create_pa_sync(struct hci_dev *hdev, void *data) 2025 { 2026 struct hci_cp_le_pa_create_sync *cp = data; 2027 int err; 2028 2029 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_CREATE_SYNC, 2030 sizeof(*cp), cp, HCI_CMD_TIMEOUT); 2031 if (err) { 2032 hci_dev_clear_flag(hdev, HCI_PA_SYNC); 2033 return err; 2034 } 2035 2036 return hci_update_passive_scan_sync(hdev); 2037 } 2038 2039 int hci_pa_create_sync(struct hci_dev *hdev, bdaddr_t *dst, __u8 dst_type, 2040 __u8 sid) 2041 { 2042 struct hci_cp_le_pa_create_sync *cp; 2043 2044 if (hci_dev_test_and_set_flag(hdev, HCI_PA_SYNC)) 2045 return -EBUSY; 2046 2047 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 2048 if (!cp) { 2049 hci_dev_clear_flag(hdev, HCI_PA_SYNC); 2050 return -ENOMEM; 2051 } 2052 2053 cp->sid = sid; 2054 cp->addr_type = dst_type; 2055 bacpy(&cp->addr, dst); 2056 2057 /* Queue start pa_create_sync and scan */ 2058 return hci_cmd_sync_queue(hdev, create_pa_sync, cp, create_pa_complete); 2059 } 2060 2061 int hci_le_big_create_sync(struct hci_dev *hdev, struct bt_iso_qos *qos, 2062 __u16 sync_handle, __u8 num_bis, __u8 bis[]) 2063 { 2064 struct _packed { 2065 struct hci_cp_le_big_create_sync cp; 2066 __u8 bis[0x11]; 2067 } pdu; 2068 int err; 2069 2070 if (num_bis > sizeof(pdu.bis)) 2071 return -EINVAL; 2072 2073 err = qos_set_big(hdev, qos); 2074 if (err) 2075 return err; 2076 2077 memset(&pdu, 0, sizeof(pdu)); 2078 pdu.cp.handle = qos->big; 2079 pdu.cp.sync_handle = cpu_to_le16(sync_handle); 2080 pdu.cp.num_bis = num_bis; 2081 memcpy(pdu.bis, bis, num_bis); 2082 2083 return hci_send_cmd(hdev, HCI_OP_LE_BIG_CREATE_SYNC, 2084 sizeof(pdu.cp) + num_bis, &pdu); 2085 } 2086 2087 static void create_big_complete(struct hci_dev *hdev, void *data, int err) 2088 { 2089 struct hci_conn *conn = data; 2090 2091 bt_dev_dbg(hdev, "conn %p", conn); 2092 2093 if (err) { 2094 bt_dev_err(hdev, "Unable to create BIG: %d", err); 2095 hci_connect_cfm(conn, err); 2096 hci_conn_del(conn); 2097 } 2098 } 2099 2100 struct hci_conn *hci_connect_bis(struct hci_dev *hdev, bdaddr_t *dst, 2101 __u8 dst_type, struct bt_iso_qos *qos, 2102 __u8 base_len, __u8 *base) 2103 { 2104 struct hci_conn *conn; 2105 int err; 2106 2107 /* We need hci_conn object using the BDADDR_ANY as dst */ 2108 conn = hci_add_bis(hdev, dst, qos); 2109 if (IS_ERR(conn)) 2110 return conn; 2111 2112 conn = hci_bind_bis(conn, qos); 2113 if (!conn) { 2114 hci_conn_drop(conn); 2115 return ERR_PTR(-ENOMEM); 2116 } 2117 2118 /* Add Basic Announcement into Peridic Adv Data if BASE is set */ 2119 if (base_len && base) { 2120 base_len = eir_append_service_data(conn->le_per_adv_data, 0, 2121 0x1851, base, base_len); 2122 conn->le_per_adv_data_len = base_len; 2123 } 2124 2125 /* Queue start periodic advertising and create BIG */ 2126 err = hci_cmd_sync_queue(hdev, create_big_sync, conn, 2127 create_big_complete); 2128 if (err < 0) { 2129 hci_conn_drop(conn); 2130 return ERR_PTR(err); 2131 } 2132 2133 hci_iso_qos_setup(hdev, conn, &qos->out, 2134 conn->le_tx_phy ? conn->le_tx_phy : 2135 hdev->le_tx_def_phys); 2136 2137 return conn; 2138 } 2139 2140 struct hci_conn *hci_connect_cis(struct hci_dev *hdev, bdaddr_t *dst, 2141 __u8 dst_type, struct bt_iso_qos *qos) 2142 { 2143 struct hci_conn *le; 2144 struct hci_conn *cis; 2145 2146 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) 2147 le = hci_connect_le(hdev, dst, dst_type, false, 2148 BT_SECURITY_LOW, 2149 HCI_LE_CONN_TIMEOUT, 2150 HCI_ROLE_SLAVE); 2151 else 2152 le = hci_connect_le_scan(hdev, dst, dst_type, 2153 BT_SECURITY_LOW, 2154 HCI_LE_CONN_TIMEOUT, 2155 CONN_REASON_ISO_CONNECT); 2156 if (IS_ERR(le)) 2157 return le; 2158 2159 hci_iso_qos_setup(hdev, le, &qos->out, 2160 le->le_tx_phy ? le->le_tx_phy : hdev->le_tx_def_phys); 2161 hci_iso_qos_setup(hdev, le, &qos->in, 2162 le->le_rx_phy ? le->le_rx_phy : hdev->le_rx_def_phys); 2163 2164 cis = hci_bind_cis(hdev, dst, dst_type, qos); 2165 if (IS_ERR(cis)) { 2166 hci_conn_drop(le); 2167 return cis; 2168 } 2169 2170 le->link = cis; 2171 cis->link = le; 2172 2173 hci_conn_hold(cis); 2174 2175 /* If LE is already connected and CIS handle is already set proceed to 2176 * Create CIS immediately. 2177 */ 2178 if (le->state == BT_CONNECTED && cis->handle != HCI_CONN_HANDLE_UNSET) 2179 hci_le_create_cis(le); 2180 2181 return cis; 2182 } 2183 2184 /* Check link security requirement */ 2185 int hci_conn_check_link_mode(struct hci_conn *conn) 2186 { 2187 BT_DBG("hcon %p", conn); 2188 2189 /* In Secure Connections Only mode, it is required that Secure 2190 * Connections is used and the link is encrypted with AES-CCM 2191 * using a P-256 authenticated combination key. 2192 */ 2193 if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) { 2194 if (!hci_conn_sc_enabled(conn) || 2195 !test_bit(HCI_CONN_AES_CCM, &conn->flags) || 2196 conn->key_type != HCI_LK_AUTH_COMBINATION_P256) 2197 return 0; 2198 } 2199 2200 /* AES encryption is required for Level 4: 2201 * 2202 * BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 3, Part C 2203 * page 1319: 2204 * 2205 * 128-bit equivalent strength for link and encryption keys 2206 * required using FIPS approved algorithms (E0 not allowed, 2207 * SAFER+ not allowed, and P-192 not allowed; encryption key 2208 * not shortened) 2209 */ 2210 if (conn->sec_level == BT_SECURITY_FIPS && 2211 !test_bit(HCI_CONN_AES_CCM, &conn->flags)) { 2212 bt_dev_err(conn->hdev, 2213 "Invalid security: Missing AES-CCM usage"); 2214 return 0; 2215 } 2216 2217 if (hci_conn_ssp_enabled(conn) && 2218 !test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 2219 return 0; 2220 2221 return 1; 2222 } 2223 2224 /* Authenticate remote device */ 2225 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type) 2226 { 2227 BT_DBG("hcon %p", conn); 2228 2229 if (conn->pending_sec_level > sec_level) 2230 sec_level = conn->pending_sec_level; 2231 2232 if (sec_level > conn->sec_level) 2233 conn->pending_sec_level = sec_level; 2234 else if (test_bit(HCI_CONN_AUTH, &conn->flags)) 2235 return 1; 2236 2237 /* Make sure we preserve an existing MITM requirement*/ 2238 auth_type |= (conn->auth_type & 0x01); 2239 2240 conn->auth_type = auth_type; 2241 2242 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) { 2243 struct hci_cp_auth_requested cp; 2244 2245 cp.handle = cpu_to_le16(conn->handle); 2246 hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED, 2247 sizeof(cp), &cp); 2248 2249 /* If we're already encrypted set the REAUTH_PEND flag, 2250 * otherwise set the ENCRYPT_PEND. 2251 */ 2252 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 2253 set_bit(HCI_CONN_REAUTH_PEND, &conn->flags); 2254 else 2255 set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); 2256 } 2257 2258 return 0; 2259 } 2260 2261 /* Encrypt the link */ 2262 static void hci_conn_encrypt(struct hci_conn *conn) 2263 { 2264 BT_DBG("hcon %p", conn); 2265 2266 if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) { 2267 struct hci_cp_set_conn_encrypt cp; 2268 cp.handle = cpu_to_le16(conn->handle); 2269 cp.encrypt = 0x01; 2270 hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp), 2271 &cp); 2272 } 2273 } 2274 2275 /* Enable security */ 2276 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type, 2277 bool initiator) 2278 { 2279 BT_DBG("hcon %p", conn); 2280 2281 if (conn->type == LE_LINK) 2282 return smp_conn_security(conn, sec_level); 2283 2284 /* For sdp we don't need the link key. */ 2285 if (sec_level == BT_SECURITY_SDP) 2286 return 1; 2287 2288 /* For non 2.1 devices and low security level we don't need the link 2289 key. */ 2290 if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn)) 2291 return 1; 2292 2293 /* For other security levels we need the link key. */ 2294 if (!test_bit(HCI_CONN_AUTH, &conn->flags)) 2295 goto auth; 2296 2297 /* An authenticated FIPS approved combination key has sufficient 2298 * security for security level 4. */ 2299 if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256 && 2300 sec_level == BT_SECURITY_FIPS) 2301 goto encrypt; 2302 2303 /* An authenticated combination key has sufficient security for 2304 security level 3. */ 2305 if ((conn->key_type == HCI_LK_AUTH_COMBINATION_P192 || 2306 conn->key_type == HCI_LK_AUTH_COMBINATION_P256) && 2307 sec_level == BT_SECURITY_HIGH) 2308 goto encrypt; 2309 2310 /* An unauthenticated combination key has sufficient security for 2311 security level 1 and 2. */ 2312 if ((conn->key_type == HCI_LK_UNAUTH_COMBINATION_P192 || 2313 conn->key_type == HCI_LK_UNAUTH_COMBINATION_P256) && 2314 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW)) 2315 goto encrypt; 2316 2317 /* A combination key has always sufficient security for the security 2318 levels 1 or 2. High security level requires the combination key 2319 is generated using maximum PIN code length (16). 2320 For pre 2.1 units. */ 2321 if (conn->key_type == HCI_LK_COMBINATION && 2322 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW || 2323 conn->pin_length == 16)) 2324 goto encrypt; 2325 2326 auth: 2327 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) 2328 return 0; 2329 2330 if (initiator) 2331 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags); 2332 2333 if (!hci_conn_auth(conn, sec_level, auth_type)) 2334 return 0; 2335 2336 encrypt: 2337 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) { 2338 /* Ensure that the encryption key size has been read, 2339 * otherwise stall the upper layer responses. 2340 */ 2341 if (!conn->enc_key_size) 2342 return 0; 2343 2344 /* Nothing else needed, all requirements are met */ 2345 return 1; 2346 } 2347 2348 hci_conn_encrypt(conn); 2349 return 0; 2350 } 2351 EXPORT_SYMBOL(hci_conn_security); 2352 2353 /* Check secure link requirement */ 2354 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level) 2355 { 2356 BT_DBG("hcon %p", conn); 2357 2358 /* Accept if non-secure or higher security level is required */ 2359 if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS) 2360 return 1; 2361 2362 /* Accept if secure or higher security level is already present */ 2363 if (conn->sec_level == BT_SECURITY_HIGH || 2364 conn->sec_level == BT_SECURITY_FIPS) 2365 return 1; 2366 2367 /* Reject not secure link */ 2368 return 0; 2369 } 2370 EXPORT_SYMBOL(hci_conn_check_secure); 2371 2372 /* Switch role */ 2373 int hci_conn_switch_role(struct hci_conn *conn, __u8 role) 2374 { 2375 BT_DBG("hcon %p", conn); 2376 2377 if (role == conn->role) 2378 return 1; 2379 2380 if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) { 2381 struct hci_cp_switch_role cp; 2382 bacpy(&cp.bdaddr, &conn->dst); 2383 cp.role = role; 2384 hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp); 2385 } 2386 2387 return 0; 2388 } 2389 EXPORT_SYMBOL(hci_conn_switch_role); 2390 2391 /* Enter active mode */ 2392 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active) 2393 { 2394 struct hci_dev *hdev = conn->hdev; 2395 2396 BT_DBG("hcon %p mode %d", conn, conn->mode); 2397 2398 if (conn->mode != HCI_CM_SNIFF) 2399 goto timer; 2400 2401 if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active) 2402 goto timer; 2403 2404 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 2405 struct hci_cp_exit_sniff_mode cp; 2406 cp.handle = cpu_to_le16(conn->handle); 2407 hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp); 2408 } 2409 2410 timer: 2411 if (hdev->idle_timeout > 0) 2412 queue_delayed_work(hdev->workqueue, &conn->idle_work, 2413 msecs_to_jiffies(hdev->idle_timeout)); 2414 } 2415 2416 /* Drop all connection on the device */ 2417 void hci_conn_hash_flush(struct hci_dev *hdev) 2418 { 2419 struct hci_conn_hash *h = &hdev->conn_hash; 2420 struct hci_conn *c, *n; 2421 2422 BT_DBG("hdev %s", hdev->name); 2423 2424 list_for_each_entry_safe(c, n, &h->list, list) { 2425 c->state = BT_CLOSED; 2426 2427 hci_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM); 2428 hci_conn_del(c); 2429 } 2430 } 2431 2432 /* Check pending connect attempts */ 2433 void hci_conn_check_pending(struct hci_dev *hdev) 2434 { 2435 struct hci_conn *conn; 2436 2437 BT_DBG("hdev %s", hdev->name); 2438 2439 hci_dev_lock(hdev); 2440 2441 conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2); 2442 if (conn) 2443 hci_acl_create_connection(conn); 2444 2445 hci_dev_unlock(hdev); 2446 } 2447 2448 static u32 get_link_mode(struct hci_conn *conn) 2449 { 2450 u32 link_mode = 0; 2451 2452 if (conn->role == HCI_ROLE_MASTER) 2453 link_mode |= HCI_LM_MASTER; 2454 2455 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 2456 link_mode |= HCI_LM_ENCRYPT; 2457 2458 if (test_bit(HCI_CONN_AUTH, &conn->flags)) 2459 link_mode |= HCI_LM_AUTH; 2460 2461 if (test_bit(HCI_CONN_SECURE, &conn->flags)) 2462 link_mode |= HCI_LM_SECURE; 2463 2464 if (test_bit(HCI_CONN_FIPS, &conn->flags)) 2465 link_mode |= HCI_LM_FIPS; 2466 2467 return link_mode; 2468 } 2469 2470 int hci_get_conn_list(void __user *arg) 2471 { 2472 struct hci_conn *c; 2473 struct hci_conn_list_req req, *cl; 2474 struct hci_conn_info *ci; 2475 struct hci_dev *hdev; 2476 int n = 0, size, err; 2477 2478 if (copy_from_user(&req, arg, sizeof(req))) 2479 return -EFAULT; 2480 2481 if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci)) 2482 return -EINVAL; 2483 2484 size = sizeof(req) + req.conn_num * sizeof(*ci); 2485 2486 cl = kmalloc(size, GFP_KERNEL); 2487 if (!cl) 2488 return -ENOMEM; 2489 2490 hdev = hci_dev_get(req.dev_id); 2491 if (!hdev) { 2492 kfree(cl); 2493 return -ENODEV; 2494 } 2495 2496 ci = cl->conn_info; 2497 2498 hci_dev_lock(hdev); 2499 list_for_each_entry(c, &hdev->conn_hash.list, list) { 2500 bacpy(&(ci + n)->bdaddr, &c->dst); 2501 (ci + n)->handle = c->handle; 2502 (ci + n)->type = c->type; 2503 (ci + n)->out = c->out; 2504 (ci + n)->state = c->state; 2505 (ci + n)->link_mode = get_link_mode(c); 2506 if (++n >= req.conn_num) 2507 break; 2508 } 2509 hci_dev_unlock(hdev); 2510 2511 cl->dev_id = hdev->id; 2512 cl->conn_num = n; 2513 size = sizeof(req) + n * sizeof(*ci); 2514 2515 hci_dev_put(hdev); 2516 2517 err = copy_to_user(arg, cl, size); 2518 kfree(cl); 2519 2520 return err ? -EFAULT : 0; 2521 } 2522 2523 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg) 2524 { 2525 struct hci_conn_info_req req; 2526 struct hci_conn_info ci; 2527 struct hci_conn *conn; 2528 char __user *ptr = arg + sizeof(req); 2529 2530 if (copy_from_user(&req, arg, sizeof(req))) 2531 return -EFAULT; 2532 2533 hci_dev_lock(hdev); 2534 conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr); 2535 if (conn) { 2536 bacpy(&ci.bdaddr, &conn->dst); 2537 ci.handle = conn->handle; 2538 ci.type = conn->type; 2539 ci.out = conn->out; 2540 ci.state = conn->state; 2541 ci.link_mode = get_link_mode(conn); 2542 } 2543 hci_dev_unlock(hdev); 2544 2545 if (!conn) 2546 return -ENOENT; 2547 2548 return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0; 2549 } 2550 2551 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg) 2552 { 2553 struct hci_auth_info_req req; 2554 struct hci_conn *conn; 2555 2556 if (copy_from_user(&req, arg, sizeof(req))) 2557 return -EFAULT; 2558 2559 hci_dev_lock(hdev); 2560 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr); 2561 if (conn) 2562 req.type = conn->auth_type; 2563 hci_dev_unlock(hdev); 2564 2565 if (!conn) 2566 return -ENOENT; 2567 2568 return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0; 2569 } 2570 2571 struct hci_chan *hci_chan_create(struct hci_conn *conn) 2572 { 2573 struct hci_dev *hdev = conn->hdev; 2574 struct hci_chan *chan; 2575 2576 BT_DBG("%s hcon %p", hdev->name, conn); 2577 2578 if (test_bit(HCI_CONN_DROP, &conn->flags)) { 2579 BT_DBG("Refusing to create new hci_chan"); 2580 return NULL; 2581 } 2582 2583 chan = kzalloc(sizeof(*chan), GFP_KERNEL); 2584 if (!chan) 2585 return NULL; 2586 2587 chan->conn = hci_conn_get(conn); 2588 skb_queue_head_init(&chan->data_q); 2589 chan->state = BT_CONNECTED; 2590 2591 list_add_rcu(&chan->list, &conn->chan_list); 2592 2593 return chan; 2594 } 2595 2596 void hci_chan_del(struct hci_chan *chan) 2597 { 2598 struct hci_conn *conn = chan->conn; 2599 struct hci_dev *hdev = conn->hdev; 2600 2601 BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan); 2602 2603 list_del_rcu(&chan->list); 2604 2605 synchronize_rcu(); 2606 2607 /* Prevent new hci_chan's to be created for this hci_conn */ 2608 set_bit(HCI_CONN_DROP, &conn->flags); 2609 2610 hci_conn_put(conn); 2611 2612 skb_queue_purge(&chan->data_q); 2613 kfree(chan); 2614 } 2615 2616 void hci_chan_list_flush(struct hci_conn *conn) 2617 { 2618 struct hci_chan *chan, *n; 2619 2620 BT_DBG("hcon %p", conn); 2621 2622 list_for_each_entry_safe(chan, n, &conn->chan_list, list) 2623 hci_chan_del(chan); 2624 } 2625 2626 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon, 2627 __u16 handle) 2628 { 2629 struct hci_chan *hchan; 2630 2631 list_for_each_entry(hchan, &hcon->chan_list, list) { 2632 if (hchan->handle == handle) 2633 return hchan; 2634 } 2635 2636 return NULL; 2637 } 2638 2639 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle) 2640 { 2641 struct hci_conn_hash *h = &hdev->conn_hash; 2642 struct hci_conn *hcon; 2643 struct hci_chan *hchan = NULL; 2644 2645 rcu_read_lock(); 2646 2647 list_for_each_entry_rcu(hcon, &h->list, list) { 2648 hchan = __hci_chan_lookup_handle(hcon, handle); 2649 if (hchan) 2650 break; 2651 } 2652 2653 rcu_read_unlock(); 2654 2655 return hchan; 2656 } 2657 2658 u32 hci_conn_get_phy(struct hci_conn *conn) 2659 { 2660 u32 phys = 0; 2661 2662 /* BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 2, Part B page 471: 2663 * Table 6.2: Packets defined for synchronous, asynchronous, and 2664 * CPB logical transport types. 2665 */ 2666 switch (conn->type) { 2667 case SCO_LINK: 2668 /* SCO logical transport (1 Mb/s): 2669 * HV1, HV2, HV3 and DV. 2670 */ 2671 phys |= BT_PHY_BR_1M_1SLOT; 2672 2673 break; 2674 2675 case ACL_LINK: 2676 /* ACL logical transport (1 Mb/s) ptt=0: 2677 * DH1, DM3, DH3, DM5 and DH5. 2678 */ 2679 phys |= BT_PHY_BR_1M_1SLOT; 2680 2681 if (conn->pkt_type & (HCI_DM3 | HCI_DH3)) 2682 phys |= BT_PHY_BR_1M_3SLOT; 2683 2684 if (conn->pkt_type & (HCI_DM5 | HCI_DH5)) 2685 phys |= BT_PHY_BR_1M_5SLOT; 2686 2687 /* ACL logical transport (2 Mb/s) ptt=1: 2688 * 2-DH1, 2-DH3 and 2-DH5. 2689 */ 2690 if (!(conn->pkt_type & HCI_2DH1)) 2691 phys |= BT_PHY_EDR_2M_1SLOT; 2692 2693 if (!(conn->pkt_type & HCI_2DH3)) 2694 phys |= BT_PHY_EDR_2M_3SLOT; 2695 2696 if (!(conn->pkt_type & HCI_2DH5)) 2697 phys |= BT_PHY_EDR_2M_5SLOT; 2698 2699 /* ACL logical transport (3 Mb/s) ptt=1: 2700 * 3-DH1, 3-DH3 and 3-DH5. 2701 */ 2702 if (!(conn->pkt_type & HCI_3DH1)) 2703 phys |= BT_PHY_EDR_3M_1SLOT; 2704 2705 if (!(conn->pkt_type & HCI_3DH3)) 2706 phys |= BT_PHY_EDR_3M_3SLOT; 2707 2708 if (!(conn->pkt_type & HCI_3DH5)) 2709 phys |= BT_PHY_EDR_3M_5SLOT; 2710 2711 break; 2712 2713 case ESCO_LINK: 2714 /* eSCO logical transport (1 Mb/s): EV3, EV4 and EV5 */ 2715 phys |= BT_PHY_BR_1M_1SLOT; 2716 2717 if (!(conn->pkt_type & (ESCO_EV4 | ESCO_EV5))) 2718 phys |= BT_PHY_BR_1M_3SLOT; 2719 2720 /* eSCO logical transport (2 Mb/s): 2-EV3, 2-EV5 */ 2721 if (!(conn->pkt_type & ESCO_2EV3)) 2722 phys |= BT_PHY_EDR_2M_1SLOT; 2723 2724 if (!(conn->pkt_type & ESCO_2EV5)) 2725 phys |= BT_PHY_EDR_2M_3SLOT; 2726 2727 /* eSCO logical transport (3 Mb/s): 3-EV3, 3-EV5 */ 2728 if (!(conn->pkt_type & ESCO_3EV3)) 2729 phys |= BT_PHY_EDR_3M_1SLOT; 2730 2731 if (!(conn->pkt_type & ESCO_3EV5)) 2732 phys |= BT_PHY_EDR_3M_3SLOT; 2733 2734 break; 2735 2736 case LE_LINK: 2737 if (conn->le_tx_phy & HCI_LE_SET_PHY_1M) 2738 phys |= BT_PHY_LE_1M_TX; 2739 2740 if (conn->le_rx_phy & HCI_LE_SET_PHY_1M) 2741 phys |= BT_PHY_LE_1M_RX; 2742 2743 if (conn->le_tx_phy & HCI_LE_SET_PHY_2M) 2744 phys |= BT_PHY_LE_2M_TX; 2745 2746 if (conn->le_rx_phy & HCI_LE_SET_PHY_2M) 2747 phys |= BT_PHY_LE_2M_RX; 2748 2749 if (conn->le_tx_phy & HCI_LE_SET_PHY_CODED) 2750 phys |= BT_PHY_LE_CODED_TX; 2751 2752 if (conn->le_rx_phy & HCI_LE_SET_PHY_CODED) 2753 phys |= BT_PHY_LE_CODED_RX; 2754 2755 break; 2756 } 2757 2758 return phys; 2759 } 2760 2761 int hci_abort_conn(struct hci_conn *conn, u8 reason) 2762 { 2763 int r = 0; 2764 2765 switch (conn->state) { 2766 case BT_CONNECTED: 2767 case BT_CONFIG: 2768 if (conn->type == AMP_LINK) { 2769 struct hci_cp_disconn_phy_link cp; 2770 2771 cp.phy_handle = HCI_PHY_HANDLE(conn->handle); 2772 cp.reason = reason; 2773 r = hci_send_cmd(conn->hdev, HCI_OP_DISCONN_PHY_LINK, 2774 sizeof(cp), &cp); 2775 } else { 2776 struct hci_cp_disconnect dc; 2777 2778 dc.handle = cpu_to_le16(conn->handle); 2779 dc.reason = reason; 2780 r = hci_send_cmd(conn->hdev, HCI_OP_DISCONNECT, 2781 sizeof(dc), &dc); 2782 } 2783 2784 conn->state = BT_DISCONN; 2785 2786 break; 2787 case BT_CONNECT: 2788 if (conn->type == LE_LINK) { 2789 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 2790 break; 2791 r = hci_send_cmd(conn->hdev, 2792 HCI_OP_LE_CREATE_CONN_CANCEL, 0, NULL); 2793 } else if (conn->type == ACL_LINK) { 2794 if (conn->hdev->hci_ver < BLUETOOTH_VER_1_2) 2795 break; 2796 r = hci_send_cmd(conn->hdev, 2797 HCI_OP_CREATE_CONN_CANCEL, 2798 6, &conn->dst); 2799 } 2800 break; 2801 case BT_CONNECT2: 2802 if (conn->type == ACL_LINK) { 2803 struct hci_cp_reject_conn_req rej; 2804 2805 bacpy(&rej.bdaddr, &conn->dst); 2806 rej.reason = reason; 2807 2808 r = hci_send_cmd(conn->hdev, 2809 HCI_OP_REJECT_CONN_REQ, 2810 sizeof(rej), &rej); 2811 } else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) { 2812 struct hci_cp_reject_sync_conn_req rej; 2813 2814 bacpy(&rej.bdaddr, &conn->dst); 2815 2816 /* SCO rejection has its own limited set of 2817 * allowed error values (0x0D-0x0F) which isn't 2818 * compatible with most values passed to this 2819 * function. To be safe hard-code one of the 2820 * values that's suitable for SCO. 2821 */ 2822 rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; 2823 2824 r = hci_send_cmd(conn->hdev, 2825 HCI_OP_REJECT_SYNC_CONN_REQ, 2826 sizeof(rej), &rej); 2827 } 2828 break; 2829 default: 2830 conn->state = BT_CLOSED; 2831 break; 2832 } 2833 2834 return r; 2835 } 2836