1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 /* Bluetooth HCI connection handling. */ 26 27 #include <linux/export.h> 28 29 #include <net/bluetooth/bluetooth.h> 30 #include <net/bluetooth/hci_core.h> 31 32 #include "smp.h" 33 #include "a2mp.h" 34 35 struct sco_param { 36 u16 pkt_type; 37 u16 max_latency; 38 }; 39 40 static const struct sco_param sco_param_cvsd[] = { 41 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a }, /* S3 */ 42 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007 }, /* S2 */ 43 { EDR_ESCO_MASK | ESCO_EV3, 0x0007 }, /* S1 */ 44 { EDR_ESCO_MASK | ESCO_HV3, 0xffff }, /* D1 */ 45 { EDR_ESCO_MASK | ESCO_HV1, 0xffff }, /* D0 */ 46 }; 47 48 static const struct sco_param sco_param_wideband[] = { 49 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d }, /* T2 */ 50 { EDR_ESCO_MASK | ESCO_EV3, 0x0008 }, /* T1 */ 51 }; 52 53 static void hci_le_create_connection_cancel(struct hci_conn *conn) 54 { 55 hci_send_cmd(conn->hdev, HCI_OP_LE_CREATE_CONN_CANCEL, 0, NULL); 56 } 57 58 static void hci_acl_create_connection(struct hci_conn *conn) 59 { 60 struct hci_dev *hdev = conn->hdev; 61 struct inquiry_entry *ie; 62 struct hci_cp_create_conn cp; 63 64 BT_DBG("hcon %p", conn); 65 66 conn->state = BT_CONNECT; 67 conn->out = true; 68 69 conn->link_mode = HCI_LM_MASTER; 70 71 conn->attempt++; 72 73 conn->link_policy = hdev->link_policy; 74 75 memset(&cp, 0, sizeof(cp)); 76 bacpy(&cp.bdaddr, &conn->dst); 77 cp.pscan_rep_mode = 0x02; 78 79 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 80 if (ie) { 81 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) { 82 cp.pscan_rep_mode = ie->data.pscan_rep_mode; 83 cp.pscan_mode = ie->data.pscan_mode; 84 cp.clock_offset = ie->data.clock_offset | 85 cpu_to_le16(0x8000); 86 } 87 88 memcpy(conn->dev_class, ie->data.dev_class, 3); 89 if (ie->data.ssp_mode > 0) 90 set_bit(HCI_CONN_SSP_ENABLED, &conn->flags); 91 } 92 93 cp.pkt_type = cpu_to_le16(conn->pkt_type); 94 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER)) 95 cp.role_switch = 0x01; 96 else 97 cp.role_switch = 0x00; 98 99 hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp); 100 } 101 102 static void hci_acl_create_connection_cancel(struct hci_conn *conn) 103 { 104 struct hci_cp_create_conn_cancel cp; 105 106 BT_DBG("hcon %p", conn); 107 108 if (conn->hdev->hci_ver < BLUETOOTH_VER_1_2) 109 return; 110 111 bacpy(&cp.bdaddr, &conn->dst); 112 hci_send_cmd(conn->hdev, HCI_OP_CREATE_CONN_CANCEL, sizeof(cp), &cp); 113 } 114 115 static void hci_reject_sco(struct hci_conn *conn) 116 { 117 struct hci_cp_reject_sync_conn_req cp; 118 119 cp.reason = HCI_ERROR_REMOTE_USER_TERM; 120 bacpy(&cp.bdaddr, &conn->dst); 121 122 hci_send_cmd(conn->hdev, HCI_OP_REJECT_SYNC_CONN_REQ, sizeof(cp), &cp); 123 } 124 125 void hci_disconnect(struct hci_conn *conn, __u8 reason) 126 { 127 struct hci_cp_disconnect cp; 128 129 BT_DBG("hcon %p", conn); 130 131 conn->state = BT_DISCONN; 132 133 cp.handle = cpu_to_le16(conn->handle); 134 cp.reason = reason; 135 hci_send_cmd(conn->hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp); 136 } 137 138 static void hci_amp_disconn(struct hci_conn *conn, __u8 reason) 139 { 140 struct hci_cp_disconn_phy_link cp; 141 142 BT_DBG("hcon %p", conn); 143 144 conn->state = BT_DISCONN; 145 146 cp.phy_handle = HCI_PHY_HANDLE(conn->handle); 147 cp.reason = reason; 148 hci_send_cmd(conn->hdev, HCI_OP_DISCONN_PHY_LINK, 149 sizeof(cp), &cp); 150 } 151 152 static void hci_add_sco(struct hci_conn *conn, __u16 handle) 153 { 154 struct hci_dev *hdev = conn->hdev; 155 struct hci_cp_add_sco cp; 156 157 BT_DBG("hcon %p", conn); 158 159 conn->state = BT_CONNECT; 160 conn->out = true; 161 162 conn->attempt++; 163 164 cp.handle = cpu_to_le16(handle); 165 cp.pkt_type = cpu_to_le16(conn->pkt_type); 166 167 hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp); 168 } 169 170 bool hci_setup_sync(struct hci_conn *conn, __u16 handle) 171 { 172 struct hci_dev *hdev = conn->hdev; 173 struct hci_cp_setup_sync_conn cp; 174 const struct sco_param *param; 175 176 BT_DBG("hcon %p", conn); 177 178 conn->state = BT_CONNECT; 179 conn->out = true; 180 181 conn->attempt++; 182 183 cp.handle = cpu_to_le16(handle); 184 185 cp.tx_bandwidth = cpu_to_le32(0x00001f40); 186 cp.rx_bandwidth = cpu_to_le32(0x00001f40); 187 cp.voice_setting = cpu_to_le16(conn->setting); 188 189 switch (conn->setting & SCO_AIRMODE_MASK) { 190 case SCO_AIRMODE_TRANSP: 191 if (conn->attempt > ARRAY_SIZE(sco_param_wideband)) 192 return false; 193 cp.retrans_effort = 0x02; 194 param = &sco_param_wideband[conn->attempt - 1]; 195 break; 196 case SCO_AIRMODE_CVSD: 197 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd)) 198 return false; 199 cp.retrans_effort = 0x01; 200 param = &sco_param_cvsd[conn->attempt - 1]; 201 break; 202 default: 203 return false; 204 } 205 206 cp.pkt_type = __cpu_to_le16(param->pkt_type); 207 cp.max_latency = __cpu_to_le16(param->max_latency); 208 209 if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0) 210 return false; 211 212 return true; 213 } 214 215 void hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, 216 u16 latency, u16 to_multiplier) 217 { 218 struct hci_cp_le_conn_update cp; 219 struct hci_dev *hdev = conn->hdev; 220 221 memset(&cp, 0, sizeof(cp)); 222 223 cp.handle = cpu_to_le16(conn->handle); 224 cp.conn_interval_min = cpu_to_le16(min); 225 cp.conn_interval_max = cpu_to_le16(max); 226 cp.conn_latency = cpu_to_le16(latency); 227 cp.supervision_timeout = cpu_to_le16(to_multiplier); 228 cp.min_ce_len = cpu_to_le16(0x0000); 229 cp.max_ce_len = cpu_to_le16(0x0000); 230 231 hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp); 232 } 233 234 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand, 235 __u8 ltk[16]) 236 { 237 struct hci_dev *hdev = conn->hdev; 238 struct hci_cp_le_start_enc cp; 239 240 BT_DBG("hcon %p", conn); 241 242 memset(&cp, 0, sizeof(cp)); 243 244 cp.handle = cpu_to_le16(conn->handle); 245 cp.rand = rand; 246 cp.ediv = ediv; 247 memcpy(cp.ltk, ltk, sizeof(cp.ltk)); 248 249 hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp); 250 } 251 252 /* Device _must_ be locked */ 253 void hci_sco_setup(struct hci_conn *conn, __u8 status) 254 { 255 struct hci_conn *sco = conn->link; 256 257 if (!sco) 258 return; 259 260 BT_DBG("hcon %p", conn); 261 262 if (!status) { 263 if (lmp_esco_capable(conn->hdev)) 264 hci_setup_sync(sco, conn->handle); 265 else 266 hci_add_sco(sco, conn->handle); 267 } else { 268 hci_proto_connect_cfm(sco, status); 269 hci_conn_del(sco); 270 } 271 } 272 273 static void hci_conn_disconnect(struct hci_conn *conn) 274 { 275 __u8 reason = hci_proto_disconn_ind(conn); 276 277 switch (conn->type) { 278 case AMP_LINK: 279 hci_amp_disconn(conn, reason); 280 break; 281 default: 282 hci_disconnect(conn, reason); 283 break; 284 } 285 } 286 287 static void hci_conn_timeout(struct work_struct *work) 288 { 289 struct hci_conn *conn = container_of(work, struct hci_conn, 290 disc_work.work); 291 292 BT_DBG("hcon %p state %s", conn, state_to_string(conn->state)); 293 294 if (atomic_read(&conn->refcnt)) 295 return; 296 297 switch (conn->state) { 298 case BT_CONNECT: 299 case BT_CONNECT2: 300 if (conn->out) { 301 if (conn->type == ACL_LINK) 302 hci_acl_create_connection_cancel(conn); 303 else if (conn->type == LE_LINK) 304 hci_le_create_connection_cancel(conn); 305 } else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) { 306 hci_reject_sco(conn); 307 } 308 break; 309 case BT_CONFIG: 310 case BT_CONNECTED: 311 hci_conn_disconnect(conn); 312 break; 313 default: 314 conn->state = BT_CLOSED; 315 break; 316 } 317 } 318 319 /* Enter sniff mode */ 320 static void hci_conn_idle(struct work_struct *work) 321 { 322 struct hci_conn *conn = container_of(work, struct hci_conn, 323 idle_work.work); 324 struct hci_dev *hdev = conn->hdev; 325 326 BT_DBG("hcon %p mode %d", conn, conn->mode); 327 328 if (test_bit(HCI_RAW, &hdev->flags)) 329 return; 330 331 if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn)) 332 return; 333 334 if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF)) 335 return; 336 337 if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) { 338 struct hci_cp_sniff_subrate cp; 339 cp.handle = cpu_to_le16(conn->handle); 340 cp.max_latency = cpu_to_le16(0); 341 cp.min_remote_timeout = cpu_to_le16(0); 342 cp.min_local_timeout = cpu_to_le16(0); 343 hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp); 344 } 345 346 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 347 struct hci_cp_sniff_mode cp; 348 cp.handle = cpu_to_le16(conn->handle); 349 cp.max_interval = cpu_to_le16(hdev->sniff_max_interval); 350 cp.min_interval = cpu_to_le16(hdev->sniff_min_interval); 351 cp.attempt = cpu_to_le16(4); 352 cp.timeout = cpu_to_le16(1); 353 hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp); 354 } 355 } 356 357 static void hci_conn_auto_accept(struct work_struct *work) 358 { 359 struct hci_conn *conn = container_of(work, struct hci_conn, 360 auto_accept_work.work); 361 362 hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst), 363 &conn->dst); 364 } 365 366 static void le_conn_timeout(struct work_struct *work) 367 { 368 struct hci_conn *conn = container_of(work, struct hci_conn, 369 le_conn_timeout.work); 370 371 BT_DBG(""); 372 373 hci_le_create_connection_cancel(conn); 374 } 375 376 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst) 377 { 378 struct hci_conn *conn; 379 380 BT_DBG("%s dst %pMR", hdev->name, dst); 381 382 conn = kzalloc(sizeof(struct hci_conn), GFP_KERNEL); 383 if (!conn) 384 return NULL; 385 386 bacpy(&conn->dst, dst); 387 bacpy(&conn->src, &hdev->bdaddr); 388 conn->hdev = hdev; 389 conn->type = type; 390 conn->mode = HCI_CM_ACTIVE; 391 conn->state = BT_OPEN; 392 conn->auth_type = HCI_AT_GENERAL_BONDING; 393 conn->io_capability = hdev->io_capability; 394 conn->remote_auth = 0xff; 395 conn->key_type = 0xff; 396 397 set_bit(HCI_CONN_POWER_SAVE, &conn->flags); 398 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 399 400 switch (type) { 401 case ACL_LINK: 402 conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK; 403 break; 404 case SCO_LINK: 405 if (lmp_esco_capable(hdev)) 406 conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) | 407 (hdev->esco_type & EDR_ESCO_MASK); 408 else 409 conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK; 410 break; 411 case ESCO_LINK: 412 conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK; 413 break; 414 } 415 416 skb_queue_head_init(&conn->data_q); 417 418 INIT_LIST_HEAD(&conn->chan_list); 419 420 INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout); 421 INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept); 422 INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle); 423 INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout); 424 425 atomic_set(&conn->refcnt, 0); 426 427 hci_dev_hold(hdev); 428 429 hci_conn_hash_add(hdev, conn); 430 if (hdev->notify) 431 hdev->notify(hdev, HCI_NOTIFY_CONN_ADD); 432 433 hci_conn_init_sysfs(conn); 434 435 return conn; 436 } 437 438 int hci_conn_del(struct hci_conn *conn) 439 { 440 struct hci_dev *hdev = conn->hdev; 441 442 BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle); 443 444 cancel_delayed_work_sync(&conn->disc_work); 445 cancel_delayed_work_sync(&conn->auto_accept_work); 446 cancel_delayed_work_sync(&conn->idle_work); 447 448 if (conn->type == ACL_LINK) { 449 struct hci_conn *sco = conn->link; 450 if (sco) 451 sco->link = NULL; 452 453 /* Unacked frames */ 454 hdev->acl_cnt += conn->sent; 455 } else if (conn->type == LE_LINK) { 456 cancel_delayed_work_sync(&conn->le_conn_timeout); 457 458 if (hdev->le_pkts) 459 hdev->le_cnt += conn->sent; 460 else 461 hdev->acl_cnt += conn->sent; 462 } else { 463 struct hci_conn *acl = conn->link; 464 if (acl) { 465 acl->link = NULL; 466 hci_conn_drop(acl); 467 } 468 } 469 470 hci_chan_list_flush(conn); 471 472 if (conn->amp_mgr) 473 amp_mgr_put(conn->amp_mgr); 474 475 hci_conn_hash_del(hdev, conn); 476 if (hdev->notify) 477 hdev->notify(hdev, HCI_NOTIFY_CONN_DEL); 478 479 skb_queue_purge(&conn->data_q); 480 481 hci_conn_del_sysfs(conn); 482 483 hci_dev_put(hdev); 484 485 hci_conn_put(conn); 486 487 return 0; 488 } 489 490 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src) 491 { 492 int use_src = bacmp(src, BDADDR_ANY); 493 struct hci_dev *hdev = NULL, *d; 494 495 BT_DBG("%pMR -> %pMR", src, dst); 496 497 read_lock(&hci_dev_list_lock); 498 499 list_for_each_entry(d, &hci_dev_list, list) { 500 if (!test_bit(HCI_UP, &d->flags) || 501 test_bit(HCI_RAW, &d->flags) || 502 test_bit(HCI_USER_CHANNEL, &d->dev_flags) || 503 d->dev_type != HCI_BREDR) 504 continue; 505 506 /* Simple routing: 507 * No source address - find interface with bdaddr != dst 508 * Source address - find interface with bdaddr == src 509 */ 510 511 if (use_src) { 512 if (!bacmp(&d->bdaddr, src)) { 513 hdev = d; break; 514 } 515 } else { 516 if (bacmp(&d->bdaddr, dst)) { 517 hdev = d; break; 518 } 519 } 520 } 521 522 if (hdev) 523 hdev = hci_dev_hold(hdev); 524 525 read_unlock(&hci_dev_list_lock); 526 return hdev; 527 } 528 EXPORT_SYMBOL(hci_get_route); 529 530 /* This function requires the caller holds hdev->lock */ 531 void hci_le_conn_failed(struct hci_conn *conn, u8 status) 532 { 533 struct hci_dev *hdev = conn->hdev; 534 535 conn->state = BT_CLOSED; 536 537 mgmt_connect_failed(hdev, &conn->dst, conn->type, conn->dst_type, 538 status); 539 540 hci_proto_connect_cfm(conn, status); 541 542 hci_conn_del(conn); 543 544 /* Since we may have temporarily stopped the background scanning in 545 * favor of connection establishment, we should restart it. 546 */ 547 hci_update_background_scan(hdev); 548 } 549 550 static void create_le_conn_complete(struct hci_dev *hdev, u8 status) 551 { 552 struct hci_conn *conn; 553 554 if (status == 0) 555 return; 556 557 BT_ERR("HCI request failed to create LE connection: status 0x%2.2x", 558 status); 559 560 hci_dev_lock(hdev); 561 562 conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT); 563 if (!conn) 564 goto done; 565 566 hci_le_conn_failed(conn, status); 567 568 done: 569 hci_dev_unlock(hdev); 570 } 571 572 static void hci_req_add_le_create_conn(struct hci_request *req, 573 struct hci_conn *conn) 574 { 575 struct hci_cp_le_create_conn cp; 576 struct hci_dev *hdev = conn->hdev; 577 u8 own_addr_type; 578 579 memset(&cp, 0, sizeof(cp)); 580 581 /* Update random address, but set require_privacy to false so 582 * that we never connect with an unresolvable address. 583 */ 584 if (hci_update_random_address(req, false, &own_addr_type)) 585 return; 586 587 /* Save the address type used for this connnection attempt so we able 588 * to retrieve this information if we need it. 589 */ 590 conn->src_type = own_addr_type; 591 592 cp.scan_interval = cpu_to_le16(hdev->le_scan_interval); 593 cp.scan_window = cpu_to_le16(hdev->le_scan_window); 594 bacpy(&cp.peer_addr, &conn->dst); 595 cp.peer_addr_type = conn->dst_type; 596 cp.own_address_type = own_addr_type; 597 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 598 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 599 cp.supervision_timeout = cpu_to_le16(0x002a); 600 cp.min_ce_len = cpu_to_le16(0x0000); 601 cp.max_ce_len = cpu_to_le16(0x0000); 602 603 hci_req_add(req, HCI_OP_LE_CREATE_CONN, sizeof(cp), &cp); 604 605 conn->state = BT_CONNECT; 606 } 607 608 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst, 609 u8 dst_type, u8 sec_level, u8 auth_type) 610 { 611 struct hci_conn_params *params; 612 struct hci_conn *conn; 613 struct smp_irk *irk; 614 struct hci_request req; 615 int err; 616 617 if (test_bit(HCI_ADVERTISING, &hdev->flags)) 618 return ERR_PTR(-ENOTSUPP); 619 620 /* Some devices send ATT messages as soon as the physical link is 621 * established. To be able to handle these ATT messages, the user- 622 * space first establishes the connection and then starts the pairing 623 * process. 624 * 625 * So if a hci_conn object already exists for the following connection 626 * attempt, we simply update pending_sec_level and auth_type fields 627 * and return the object found. 628 */ 629 conn = hci_conn_hash_lookup_ba(hdev, LE_LINK, dst); 630 if (conn) { 631 conn->pending_sec_level = sec_level; 632 conn->auth_type = auth_type; 633 goto done; 634 } 635 636 /* Since the controller supports only one LE connection attempt at a 637 * time, we return -EBUSY if there is any connection attempt running. 638 */ 639 conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT); 640 if (conn) 641 return ERR_PTR(-EBUSY); 642 643 /* When given an identity address with existing identity 644 * resolving key, the connection needs to be established 645 * to a resolvable random address. 646 * 647 * This uses the cached random resolvable address from 648 * a previous scan. When no cached address is available, 649 * try connecting to the identity address instead. 650 * 651 * Storing the resolvable random address is required here 652 * to handle connection failures. The address will later 653 * be resolved back into the original identity address 654 * from the connect request. 655 */ 656 irk = hci_find_irk_by_addr(hdev, dst, dst_type); 657 if (irk && bacmp(&irk->rpa, BDADDR_ANY)) { 658 dst = &irk->rpa; 659 dst_type = ADDR_LE_DEV_RANDOM; 660 } 661 662 conn = hci_conn_add(hdev, LE_LINK, dst); 663 if (!conn) 664 return ERR_PTR(-ENOMEM); 665 666 conn->dst_type = dst_type; 667 668 conn->out = true; 669 conn->link_mode |= HCI_LM_MASTER; 670 conn->sec_level = BT_SECURITY_LOW; 671 conn->pending_sec_level = sec_level; 672 conn->auth_type = auth_type; 673 674 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 675 if (params) { 676 conn->le_conn_min_interval = params->conn_min_interval; 677 conn->le_conn_max_interval = params->conn_max_interval; 678 } else { 679 conn->le_conn_min_interval = hdev->le_conn_min_interval; 680 conn->le_conn_max_interval = hdev->le_conn_max_interval; 681 } 682 683 hci_req_init(&req, hdev); 684 685 /* If controller is scanning, we stop it since some controllers are 686 * not able to scan and connect at the same time. Also set the 687 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 688 * handler for scan disabling knows to set the correct discovery 689 * state. 690 */ 691 if (test_bit(HCI_LE_SCAN, &hdev->dev_flags)) { 692 hci_req_add_le_scan_disable(&req); 693 set_bit(HCI_LE_SCAN_INTERRUPTED, &hdev->dev_flags); 694 } 695 696 hci_req_add_le_create_conn(&req, conn); 697 698 err = hci_req_run(&req, create_le_conn_complete); 699 if (err) { 700 hci_conn_del(conn); 701 return ERR_PTR(err); 702 } 703 704 done: 705 hci_conn_hold(conn); 706 return conn; 707 } 708 709 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst, 710 u8 sec_level, u8 auth_type) 711 { 712 struct hci_conn *acl; 713 714 if (!test_bit(HCI_BREDR_ENABLED, &hdev->dev_flags)) 715 return ERR_PTR(-ENOTSUPP); 716 717 acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst); 718 if (!acl) { 719 acl = hci_conn_add(hdev, ACL_LINK, dst); 720 if (!acl) 721 return ERR_PTR(-ENOMEM); 722 } 723 724 hci_conn_hold(acl); 725 726 if (acl->state == BT_OPEN || acl->state == BT_CLOSED) { 727 acl->sec_level = BT_SECURITY_LOW; 728 acl->pending_sec_level = sec_level; 729 acl->auth_type = auth_type; 730 hci_acl_create_connection(acl); 731 } 732 733 return acl; 734 } 735 736 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, 737 __u16 setting) 738 { 739 struct hci_conn *acl; 740 struct hci_conn *sco; 741 742 acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING); 743 if (IS_ERR(acl)) 744 return acl; 745 746 sco = hci_conn_hash_lookup_ba(hdev, type, dst); 747 if (!sco) { 748 sco = hci_conn_add(hdev, type, dst); 749 if (!sco) { 750 hci_conn_drop(acl); 751 return ERR_PTR(-ENOMEM); 752 } 753 } 754 755 acl->link = sco; 756 sco->link = acl; 757 758 hci_conn_hold(sco); 759 760 sco->setting = setting; 761 762 if (acl->state == BT_CONNECTED && 763 (sco->state == BT_OPEN || sco->state == BT_CLOSED)) { 764 set_bit(HCI_CONN_POWER_SAVE, &acl->flags); 765 hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON); 766 767 if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) { 768 /* defer SCO setup until mode change completed */ 769 set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags); 770 return sco; 771 } 772 773 hci_sco_setup(acl, 0x00); 774 } 775 776 return sco; 777 } 778 779 /* Check link security requirement */ 780 int hci_conn_check_link_mode(struct hci_conn *conn) 781 { 782 BT_DBG("hcon %p", conn); 783 784 /* In Secure Connections Only mode, it is required that Secure 785 * Connections is used and the link is encrypted with AES-CCM 786 * using a P-256 authenticated combination key. 787 */ 788 if (test_bit(HCI_SC_ONLY, &conn->hdev->flags)) { 789 if (!hci_conn_sc_enabled(conn) || 790 !test_bit(HCI_CONN_AES_CCM, &conn->flags) || 791 conn->key_type != HCI_LK_AUTH_COMBINATION_P256) 792 return 0; 793 } 794 795 if (hci_conn_ssp_enabled(conn) && !(conn->link_mode & HCI_LM_ENCRYPT)) 796 return 0; 797 798 return 1; 799 } 800 801 /* Authenticate remote device */ 802 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type) 803 { 804 BT_DBG("hcon %p", conn); 805 806 if (conn->pending_sec_level > sec_level) 807 sec_level = conn->pending_sec_level; 808 809 if (sec_level > conn->sec_level) 810 conn->pending_sec_level = sec_level; 811 else if (conn->link_mode & HCI_LM_AUTH) 812 return 1; 813 814 /* Make sure we preserve an existing MITM requirement*/ 815 auth_type |= (conn->auth_type & 0x01); 816 817 conn->auth_type = auth_type; 818 819 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) { 820 struct hci_cp_auth_requested cp; 821 822 /* encrypt must be pending if auth is also pending */ 823 set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); 824 825 cp.handle = cpu_to_le16(conn->handle); 826 hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED, 827 sizeof(cp), &cp); 828 if (conn->key_type != 0xff) 829 set_bit(HCI_CONN_REAUTH_PEND, &conn->flags); 830 } 831 832 return 0; 833 } 834 835 /* Encrypt the the link */ 836 static void hci_conn_encrypt(struct hci_conn *conn) 837 { 838 BT_DBG("hcon %p", conn); 839 840 if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) { 841 struct hci_cp_set_conn_encrypt cp; 842 cp.handle = cpu_to_le16(conn->handle); 843 cp.encrypt = 0x01; 844 hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp), 845 &cp); 846 } 847 } 848 849 /* Enable security */ 850 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type) 851 { 852 BT_DBG("hcon %p", conn); 853 854 if (conn->type == LE_LINK) 855 return smp_conn_security(conn, sec_level); 856 857 /* For sdp we don't need the link key. */ 858 if (sec_level == BT_SECURITY_SDP) 859 return 1; 860 861 /* For non 2.1 devices and low security level we don't need the link 862 key. */ 863 if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn)) 864 return 1; 865 866 /* For other security levels we need the link key. */ 867 if (!(conn->link_mode & HCI_LM_AUTH)) 868 goto auth; 869 870 /* An authenticated FIPS approved combination key has sufficient 871 * security for security level 4. */ 872 if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256 && 873 sec_level == BT_SECURITY_FIPS) 874 goto encrypt; 875 876 /* An authenticated combination key has sufficient security for 877 security level 3. */ 878 if ((conn->key_type == HCI_LK_AUTH_COMBINATION_P192 || 879 conn->key_type == HCI_LK_AUTH_COMBINATION_P256) && 880 sec_level == BT_SECURITY_HIGH) 881 goto encrypt; 882 883 /* An unauthenticated combination key has sufficient security for 884 security level 1 and 2. */ 885 if ((conn->key_type == HCI_LK_UNAUTH_COMBINATION_P192 || 886 conn->key_type == HCI_LK_UNAUTH_COMBINATION_P256) && 887 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW)) 888 goto encrypt; 889 890 /* A combination key has always sufficient security for the security 891 levels 1 or 2. High security level requires the combination key 892 is generated using maximum PIN code length (16). 893 For pre 2.1 units. */ 894 if (conn->key_type == HCI_LK_COMBINATION && 895 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW || 896 conn->pin_length == 16)) 897 goto encrypt; 898 899 auth: 900 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) 901 return 0; 902 903 if (!hci_conn_auth(conn, sec_level, auth_type)) 904 return 0; 905 906 encrypt: 907 if (conn->link_mode & HCI_LM_ENCRYPT) 908 return 1; 909 910 hci_conn_encrypt(conn); 911 return 0; 912 } 913 EXPORT_SYMBOL(hci_conn_security); 914 915 /* Check secure link requirement */ 916 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level) 917 { 918 BT_DBG("hcon %p", conn); 919 920 /* Accept if non-secure or higher security level is required */ 921 if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS) 922 return 1; 923 924 /* Accept if secure or higher security level is already present */ 925 if (conn->sec_level == BT_SECURITY_HIGH || 926 conn->sec_level == BT_SECURITY_FIPS) 927 return 1; 928 929 /* Reject not secure link */ 930 return 0; 931 } 932 EXPORT_SYMBOL(hci_conn_check_secure); 933 934 /* Change link key */ 935 int hci_conn_change_link_key(struct hci_conn *conn) 936 { 937 BT_DBG("hcon %p", conn); 938 939 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) { 940 struct hci_cp_change_conn_link_key cp; 941 cp.handle = cpu_to_le16(conn->handle); 942 hci_send_cmd(conn->hdev, HCI_OP_CHANGE_CONN_LINK_KEY, 943 sizeof(cp), &cp); 944 } 945 946 return 0; 947 } 948 949 /* Switch role */ 950 int hci_conn_switch_role(struct hci_conn *conn, __u8 role) 951 { 952 BT_DBG("hcon %p", conn); 953 954 if (!role && conn->link_mode & HCI_LM_MASTER) 955 return 1; 956 957 if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) { 958 struct hci_cp_switch_role cp; 959 bacpy(&cp.bdaddr, &conn->dst); 960 cp.role = role; 961 hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp); 962 } 963 964 return 0; 965 } 966 EXPORT_SYMBOL(hci_conn_switch_role); 967 968 /* Enter active mode */ 969 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active) 970 { 971 struct hci_dev *hdev = conn->hdev; 972 973 BT_DBG("hcon %p mode %d", conn, conn->mode); 974 975 if (test_bit(HCI_RAW, &hdev->flags)) 976 return; 977 978 if (conn->mode != HCI_CM_SNIFF) 979 goto timer; 980 981 if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active) 982 goto timer; 983 984 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 985 struct hci_cp_exit_sniff_mode cp; 986 cp.handle = cpu_to_le16(conn->handle); 987 hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp); 988 } 989 990 timer: 991 if (hdev->idle_timeout > 0) 992 queue_delayed_work(hdev->workqueue, &conn->idle_work, 993 msecs_to_jiffies(hdev->idle_timeout)); 994 } 995 996 /* Drop all connection on the device */ 997 void hci_conn_hash_flush(struct hci_dev *hdev) 998 { 999 struct hci_conn_hash *h = &hdev->conn_hash; 1000 struct hci_conn *c, *n; 1001 1002 BT_DBG("hdev %s", hdev->name); 1003 1004 list_for_each_entry_safe(c, n, &h->list, list) { 1005 c->state = BT_CLOSED; 1006 1007 hci_proto_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM); 1008 hci_conn_del(c); 1009 } 1010 } 1011 1012 /* Check pending connect attempts */ 1013 void hci_conn_check_pending(struct hci_dev *hdev) 1014 { 1015 struct hci_conn *conn; 1016 1017 BT_DBG("hdev %s", hdev->name); 1018 1019 hci_dev_lock(hdev); 1020 1021 conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2); 1022 if (conn) 1023 hci_acl_create_connection(conn); 1024 1025 hci_dev_unlock(hdev); 1026 } 1027 1028 int hci_get_conn_list(void __user *arg) 1029 { 1030 struct hci_conn *c; 1031 struct hci_conn_list_req req, *cl; 1032 struct hci_conn_info *ci; 1033 struct hci_dev *hdev; 1034 int n = 0, size, err; 1035 1036 if (copy_from_user(&req, arg, sizeof(req))) 1037 return -EFAULT; 1038 1039 if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci)) 1040 return -EINVAL; 1041 1042 size = sizeof(req) + req.conn_num * sizeof(*ci); 1043 1044 cl = kmalloc(size, GFP_KERNEL); 1045 if (!cl) 1046 return -ENOMEM; 1047 1048 hdev = hci_dev_get(req.dev_id); 1049 if (!hdev) { 1050 kfree(cl); 1051 return -ENODEV; 1052 } 1053 1054 ci = cl->conn_info; 1055 1056 hci_dev_lock(hdev); 1057 list_for_each_entry(c, &hdev->conn_hash.list, list) { 1058 bacpy(&(ci + n)->bdaddr, &c->dst); 1059 (ci + n)->handle = c->handle; 1060 (ci + n)->type = c->type; 1061 (ci + n)->out = c->out; 1062 (ci + n)->state = c->state; 1063 (ci + n)->link_mode = c->link_mode; 1064 if (++n >= req.conn_num) 1065 break; 1066 } 1067 hci_dev_unlock(hdev); 1068 1069 cl->dev_id = hdev->id; 1070 cl->conn_num = n; 1071 size = sizeof(req) + n * sizeof(*ci); 1072 1073 hci_dev_put(hdev); 1074 1075 err = copy_to_user(arg, cl, size); 1076 kfree(cl); 1077 1078 return err ? -EFAULT : 0; 1079 } 1080 1081 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg) 1082 { 1083 struct hci_conn_info_req req; 1084 struct hci_conn_info ci; 1085 struct hci_conn *conn; 1086 char __user *ptr = arg + sizeof(req); 1087 1088 if (copy_from_user(&req, arg, sizeof(req))) 1089 return -EFAULT; 1090 1091 hci_dev_lock(hdev); 1092 conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr); 1093 if (conn) { 1094 bacpy(&ci.bdaddr, &conn->dst); 1095 ci.handle = conn->handle; 1096 ci.type = conn->type; 1097 ci.out = conn->out; 1098 ci.state = conn->state; 1099 ci.link_mode = conn->link_mode; 1100 } 1101 hci_dev_unlock(hdev); 1102 1103 if (!conn) 1104 return -ENOENT; 1105 1106 return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0; 1107 } 1108 1109 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg) 1110 { 1111 struct hci_auth_info_req req; 1112 struct hci_conn *conn; 1113 1114 if (copy_from_user(&req, arg, sizeof(req))) 1115 return -EFAULT; 1116 1117 hci_dev_lock(hdev); 1118 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr); 1119 if (conn) 1120 req.type = conn->auth_type; 1121 hci_dev_unlock(hdev); 1122 1123 if (!conn) 1124 return -ENOENT; 1125 1126 return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0; 1127 } 1128 1129 struct hci_chan *hci_chan_create(struct hci_conn *conn) 1130 { 1131 struct hci_dev *hdev = conn->hdev; 1132 struct hci_chan *chan; 1133 1134 BT_DBG("%s hcon %p", hdev->name, conn); 1135 1136 chan = kzalloc(sizeof(struct hci_chan), GFP_KERNEL); 1137 if (!chan) 1138 return NULL; 1139 1140 chan->conn = conn; 1141 skb_queue_head_init(&chan->data_q); 1142 chan->state = BT_CONNECTED; 1143 1144 list_add_rcu(&chan->list, &conn->chan_list); 1145 1146 return chan; 1147 } 1148 1149 void hci_chan_del(struct hci_chan *chan) 1150 { 1151 struct hci_conn *conn = chan->conn; 1152 struct hci_dev *hdev = conn->hdev; 1153 1154 BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan); 1155 1156 list_del_rcu(&chan->list); 1157 1158 synchronize_rcu(); 1159 1160 hci_conn_drop(conn); 1161 1162 skb_queue_purge(&chan->data_q); 1163 kfree(chan); 1164 } 1165 1166 void hci_chan_list_flush(struct hci_conn *conn) 1167 { 1168 struct hci_chan *chan, *n; 1169 1170 BT_DBG("hcon %p", conn); 1171 1172 list_for_each_entry_safe(chan, n, &conn->chan_list, list) 1173 hci_chan_del(chan); 1174 } 1175 1176 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon, 1177 __u16 handle) 1178 { 1179 struct hci_chan *hchan; 1180 1181 list_for_each_entry(hchan, &hcon->chan_list, list) { 1182 if (hchan->handle == handle) 1183 return hchan; 1184 } 1185 1186 return NULL; 1187 } 1188 1189 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle) 1190 { 1191 struct hci_conn_hash *h = &hdev->conn_hash; 1192 struct hci_conn *hcon; 1193 struct hci_chan *hchan = NULL; 1194 1195 rcu_read_lock(); 1196 1197 list_for_each_entry_rcu(hcon, &h->list, list) { 1198 hchan = __hci_chan_lookup_handle(hcon, handle); 1199 if (hchan) 1200 break; 1201 } 1202 1203 rcu_read_unlock(); 1204 1205 return hchan; 1206 } 1207