1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 /* Bluetooth HCI connection handling. */ 26 27 #include <linux/export.h> 28 29 #include <net/bluetooth/bluetooth.h> 30 #include <net/bluetooth/hci_core.h> 31 32 #include "smp.h" 33 #include "a2mp.h" 34 35 struct sco_param { 36 u16 pkt_type; 37 u16 max_latency; 38 }; 39 40 static const struct sco_param sco_param_cvsd[] = { 41 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a }, /* S3 */ 42 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007 }, /* S2 */ 43 { EDR_ESCO_MASK | ESCO_EV3, 0x0007 }, /* S1 */ 44 { EDR_ESCO_MASK | ESCO_HV3, 0xffff }, /* D1 */ 45 { EDR_ESCO_MASK | ESCO_HV1, 0xffff }, /* D0 */ 46 }; 47 48 static const struct sco_param sco_param_wideband[] = { 49 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d }, /* T2 */ 50 { EDR_ESCO_MASK | ESCO_EV3, 0x0008 }, /* T1 */ 51 }; 52 53 static void hci_le_create_connection_cancel(struct hci_conn *conn) 54 { 55 hci_send_cmd(conn->hdev, HCI_OP_LE_CREATE_CONN_CANCEL, 0, NULL); 56 } 57 58 static void hci_acl_create_connection(struct hci_conn *conn) 59 { 60 struct hci_dev *hdev = conn->hdev; 61 struct inquiry_entry *ie; 62 struct hci_cp_create_conn cp; 63 64 BT_DBG("hcon %p", conn); 65 66 conn->state = BT_CONNECT; 67 conn->out = true; 68 69 conn->link_mode = HCI_LM_MASTER; 70 71 conn->attempt++; 72 73 conn->link_policy = hdev->link_policy; 74 75 memset(&cp, 0, sizeof(cp)); 76 bacpy(&cp.bdaddr, &conn->dst); 77 cp.pscan_rep_mode = 0x02; 78 79 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 80 if (ie) { 81 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) { 82 cp.pscan_rep_mode = ie->data.pscan_rep_mode; 83 cp.pscan_mode = ie->data.pscan_mode; 84 cp.clock_offset = ie->data.clock_offset | 85 __constant_cpu_to_le16(0x8000); 86 } 87 88 memcpy(conn->dev_class, ie->data.dev_class, 3); 89 if (ie->data.ssp_mode > 0) 90 set_bit(HCI_CONN_SSP_ENABLED, &conn->flags); 91 } 92 93 cp.pkt_type = cpu_to_le16(conn->pkt_type); 94 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER)) 95 cp.role_switch = 0x01; 96 else 97 cp.role_switch = 0x00; 98 99 hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp); 100 } 101 102 static void hci_acl_create_connection_cancel(struct hci_conn *conn) 103 { 104 struct hci_cp_create_conn_cancel cp; 105 106 BT_DBG("hcon %p", conn); 107 108 if (conn->hdev->hci_ver < BLUETOOTH_VER_1_2) 109 return; 110 111 bacpy(&cp.bdaddr, &conn->dst); 112 hci_send_cmd(conn->hdev, HCI_OP_CREATE_CONN_CANCEL, sizeof(cp), &cp); 113 } 114 115 static void hci_reject_sco(struct hci_conn *conn) 116 { 117 struct hci_cp_reject_sync_conn_req cp; 118 119 cp.reason = HCI_ERROR_REMOTE_USER_TERM; 120 bacpy(&cp.bdaddr, &conn->dst); 121 122 hci_send_cmd(conn->hdev, HCI_OP_REJECT_SYNC_CONN_REQ, sizeof(cp), &cp); 123 } 124 125 void hci_disconnect(struct hci_conn *conn, __u8 reason) 126 { 127 struct hci_cp_disconnect cp; 128 129 BT_DBG("hcon %p", conn); 130 131 conn->state = BT_DISCONN; 132 133 cp.handle = cpu_to_le16(conn->handle); 134 cp.reason = reason; 135 hci_send_cmd(conn->hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp); 136 } 137 138 static void hci_amp_disconn(struct hci_conn *conn, __u8 reason) 139 { 140 struct hci_cp_disconn_phy_link cp; 141 142 BT_DBG("hcon %p", conn); 143 144 conn->state = BT_DISCONN; 145 146 cp.phy_handle = HCI_PHY_HANDLE(conn->handle); 147 cp.reason = reason; 148 hci_send_cmd(conn->hdev, HCI_OP_DISCONN_PHY_LINK, 149 sizeof(cp), &cp); 150 } 151 152 static void hci_add_sco(struct hci_conn *conn, __u16 handle) 153 { 154 struct hci_dev *hdev = conn->hdev; 155 struct hci_cp_add_sco cp; 156 157 BT_DBG("hcon %p", conn); 158 159 conn->state = BT_CONNECT; 160 conn->out = true; 161 162 conn->attempt++; 163 164 cp.handle = cpu_to_le16(handle); 165 cp.pkt_type = cpu_to_le16(conn->pkt_type); 166 167 hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp); 168 } 169 170 bool hci_setup_sync(struct hci_conn *conn, __u16 handle) 171 { 172 struct hci_dev *hdev = conn->hdev; 173 struct hci_cp_setup_sync_conn cp; 174 const struct sco_param *param; 175 176 BT_DBG("hcon %p", conn); 177 178 conn->state = BT_CONNECT; 179 conn->out = true; 180 181 conn->attempt++; 182 183 cp.handle = cpu_to_le16(handle); 184 185 cp.tx_bandwidth = __constant_cpu_to_le32(0x00001f40); 186 cp.rx_bandwidth = __constant_cpu_to_le32(0x00001f40); 187 cp.voice_setting = cpu_to_le16(conn->setting); 188 189 switch (conn->setting & SCO_AIRMODE_MASK) { 190 case SCO_AIRMODE_TRANSP: 191 if (conn->attempt > ARRAY_SIZE(sco_param_wideband)) 192 return false; 193 cp.retrans_effort = 0x02; 194 param = &sco_param_wideband[conn->attempt - 1]; 195 break; 196 case SCO_AIRMODE_CVSD: 197 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd)) 198 return false; 199 cp.retrans_effort = 0x01; 200 param = &sco_param_cvsd[conn->attempt - 1]; 201 break; 202 default: 203 return false; 204 } 205 206 cp.pkt_type = __cpu_to_le16(param->pkt_type); 207 cp.max_latency = __cpu_to_le16(param->max_latency); 208 209 if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0) 210 return false; 211 212 return true; 213 } 214 215 void hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, 216 u16 latency, u16 to_multiplier) 217 { 218 struct hci_cp_le_conn_update cp; 219 struct hci_dev *hdev = conn->hdev; 220 221 memset(&cp, 0, sizeof(cp)); 222 223 cp.handle = cpu_to_le16(conn->handle); 224 cp.conn_interval_min = cpu_to_le16(min); 225 cp.conn_interval_max = cpu_to_le16(max); 226 cp.conn_latency = cpu_to_le16(latency); 227 cp.supervision_timeout = cpu_to_le16(to_multiplier); 228 cp.min_ce_len = __constant_cpu_to_le16(0x0001); 229 cp.max_ce_len = __constant_cpu_to_le16(0x0001); 230 231 hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp); 232 } 233 234 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __u8 rand[8], 235 __u8 ltk[16]) 236 { 237 struct hci_dev *hdev = conn->hdev; 238 struct hci_cp_le_start_enc cp; 239 240 BT_DBG("hcon %p", conn); 241 242 memset(&cp, 0, sizeof(cp)); 243 244 cp.handle = cpu_to_le16(conn->handle); 245 memcpy(cp.ltk, ltk, sizeof(cp.ltk)); 246 cp.ediv = ediv; 247 memcpy(cp.rand, rand, sizeof(cp.rand)); 248 249 hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp); 250 } 251 252 /* Device _must_ be locked */ 253 void hci_sco_setup(struct hci_conn *conn, __u8 status) 254 { 255 struct hci_conn *sco = conn->link; 256 257 if (!sco) 258 return; 259 260 BT_DBG("hcon %p", conn); 261 262 if (!status) { 263 if (lmp_esco_capable(conn->hdev)) 264 hci_setup_sync(sco, conn->handle); 265 else 266 hci_add_sco(sco, conn->handle); 267 } else { 268 hci_proto_connect_cfm(sco, status); 269 hci_conn_del(sco); 270 } 271 } 272 273 static void hci_conn_disconnect(struct hci_conn *conn) 274 { 275 __u8 reason = hci_proto_disconn_ind(conn); 276 277 switch (conn->type) { 278 case AMP_LINK: 279 hci_amp_disconn(conn, reason); 280 break; 281 default: 282 hci_disconnect(conn, reason); 283 break; 284 } 285 } 286 287 static void hci_conn_timeout(struct work_struct *work) 288 { 289 struct hci_conn *conn = container_of(work, struct hci_conn, 290 disc_work.work); 291 292 BT_DBG("hcon %p state %s", conn, state_to_string(conn->state)); 293 294 if (atomic_read(&conn->refcnt)) 295 return; 296 297 switch (conn->state) { 298 case BT_CONNECT: 299 case BT_CONNECT2: 300 if (conn->out) { 301 if (conn->type == ACL_LINK) 302 hci_acl_create_connection_cancel(conn); 303 else if (conn->type == LE_LINK) 304 hci_le_create_connection_cancel(conn); 305 } else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) { 306 hci_reject_sco(conn); 307 } 308 break; 309 case BT_CONFIG: 310 case BT_CONNECTED: 311 hci_conn_disconnect(conn); 312 break; 313 default: 314 conn->state = BT_CLOSED; 315 break; 316 } 317 } 318 319 /* Enter sniff mode */ 320 static void hci_conn_idle(struct work_struct *work) 321 { 322 struct hci_conn *conn = container_of(work, struct hci_conn, 323 idle_work.work); 324 struct hci_dev *hdev = conn->hdev; 325 326 BT_DBG("hcon %p mode %d", conn, conn->mode); 327 328 if (test_bit(HCI_RAW, &hdev->flags)) 329 return; 330 331 if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn)) 332 return; 333 334 if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF)) 335 return; 336 337 if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) { 338 struct hci_cp_sniff_subrate cp; 339 cp.handle = cpu_to_le16(conn->handle); 340 cp.max_latency = __constant_cpu_to_le16(0); 341 cp.min_remote_timeout = __constant_cpu_to_le16(0); 342 cp.min_local_timeout = __constant_cpu_to_le16(0); 343 hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp); 344 } 345 346 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 347 struct hci_cp_sniff_mode cp; 348 cp.handle = cpu_to_le16(conn->handle); 349 cp.max_interval = cpu_to_le16(hdev->sniff_max_interval); 350 cp.min_interval = cpu_to_le16(hdev->sniff_min_interval); 351 cp.attempt = __constant_cpu_to_le16(4); 352 cp.timeout = __constant_cpu_to_le16(1); 353 hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp); 354 } 355 } 356 357 static void hci_conn_auto_accept(struct work_struct *work) 358 { 359 struct hci_conn *conn = container_of(work, struct hci_conn, 360 auto_accept_work.work); 361 362 hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst), 363 &conn->dst); 364 } 365 366 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst) 367 { 368 struct hci_conn *conn; 369 370 BT_DBG("%s dst %pMR", hdev->name, dst); 371 372 conn = kzalloc(sizeof(struct hci_conn), GFP_KERNEL); 373 if (!conn) 374 return NULL; 375 376 bacpy(&conn->dst, dst); 377 bacpy(&conn->src, &hdev->bdaddr); 378 conn->hdev = hdev; 379 conn->type = type; 380 conn->mode = HCI_CM_ACTIVE; 381 conn->state = BT_OPEN; 382 conn->auth_type = HCI_AT_GENERAL_BONDING; 383 conn->io_capability = hdev->io_capability; 384 conn->remote_auth = 0xff; 385 conn->key_type = 0xff; 386 387 set_bit(HCI_CONN_POWER_SAVE, &conn->flags); 388 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 389 390 switch (type) { 391 case ACL_LINK: 392 conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK; 393 break; 394 case SCO_LINK: 395 if (lmp_esco_capable(hdev)) 396 conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) | 397 (hdev->esco_type & EDR_ESCO_MASK); 398 else 399 conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK; 400 break; 401 case ESCO_LINK: 402 conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK; 403 break; 404 } 405 406 skb_queue_head_init(&conn->data_q); 407 408 INIT_LIST_HEAD(&conn->chan_list); 409 410 INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout); 411 INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept); 412 INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle); 413 414 atomic_set(&conn->refcnt, 0); 415 416 hci_dev_hold(hdev); 417 418 hci_conn_hash_add(hdev, conn); 419 if (hdev->notify) 420 hdev->notify(hdev, HCI_NOTIFY_CONN_ADD); 421 422 hci_conn_init_sysfs(conn); 423 424 return conn; 425 } 426 427 int hci_conn_del(struct hci_conn *conn) 428 { 429 struct hci_dev *hdev = conn->hdev; 430 431 BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle); 432 433 cancel_delayed_work_sync(&conn->disc_work); 434 cancel_delayed_work_sync(&conn->auto_accept_work); 435 cancel_delayed_work_sync(&conn->idle_work); 436 437 if (conn->type == ACL_LINK) { 438 struct hci_conn *sco = conn->link; 439 if (sco) 440 sco->link = NULL; 441 442 /* Unacked frames */ 443 hdev->acl_cnt += conn->sent; 444 } else if (conn->type == LE_LINK) { 445 if (hdev->le_pkts) 446 hdev->le_cnt += conn->sent; 447 else 448 hdev->acl_cnt += conn->sent; 449 } else { 450 struct hci_conn *acl = conn->link; 451 if (acl) { 452 acl->link = NULL; 453 hci_conn_drop(acl); 454 } 455 } 456 457 hci_chan_list_flush(conn); 458 459 if (conn->amp_mgr) 460 amp_mgr_put(conn->amp_mgr); 461 462 hci_conn_hash_del(hdev, conn); 463 if (hdev->notify) 464 hdev->notify(hdev, HCI_NOTIFY_CONN_DEL); 465 466 skb_queue_purge(&conn->data_q); 467 468 hci_conn_del_sysfs(conn); 469 470 hci_dev_put(hdev); 471 472 hci_conn_put(conn); 473 474 return 0; 475 } 476 477 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src) 478 { 479 int use_src = bacmp(src, BDADDR_ANY); 480 struct hci_dev *hdev = NULL, *d; 481 482 BT_DBG("%pMR -> %pMR", src, dst); 483 484 read_lock(&hci_dev_list_lock); 485 486 list_for_each_entry(d, &hci_dev_list, list) { 487 if (!test_bit(HCI_UP, &d->flags) || 488 test_bit(HCI_RAW, &d->flags) || 489 test_bit(HCI_USER_CHANNEL, &d->dev_flags) || 490 d->dev_type != HCI_BREDR) 491 continue; 492 493 /* Simple routing: 494 * No source address - find interface with bdaddr != dst 495 * Source address - find interface with bdaddr == src 496 */ 497 498 if (use_src) { 499 if (!bacmp(&d->bdaddr, src)) { 500 hdev = d; break; 501 } 502 } else { 503 if (bacmp(&d->bdaddr, dst)) { 504 hdev = d; break; 505 } 506 } 507 } 508 509 if (hdev) 510 hdev = hci_dev_hold(hdev); 511 512 read_unlock(&hci_dev_list_lock); 513 return hdev; 514 } 515 EXPORT_SYMBOL(hci_get_route); 516 517 static void create_le_conn_complete(struct hci_dev *hdev, u8 status) 518 { 519 struct hci_conn *conn; 520 521 if (status == 0) 522 return; 523 524 BT_ERR("HCI request failed to create LE connection: status 0x%2.2x", 525 status); 526 527 hci_dev_lock(hdev); 528 529 conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT); 530 if (!conn) 531 goto done; 532 533 conn->state = BT_CLOSED; 534 535 mgmt_connect_failed(hdev, &conn->dst, conn->type, conn->dst_type, 536 status); 537 538 hci_proto_connect_cfm(conn, status); 539 540 hci_conn_del(conn); 541 542 done: 543 hci_dev_unlock(hdev); 544 } 545 546 static int hci_create_le_conn(struct hci_conn *conn) 547 { 548 struct hci_dev *hdev = conn->hdev; 549 struct hci_cp_le_create_conn cp; 550 struct hci_request req; 551 int err; 552 553 hci_req_init(&req, hdev); 554 555 memset(&cp, 0, sizeof(cp)); 556 cp.scan_interval = cpu_to_le16(hdev->le_scan_interval); 557 cp.scan_window = cpu_to_le16(hdev->le_scan_window); 558 bacpy(&cp.peer_addr, &conn->dst); 559 cp.peer_addr_type = conn->dst_type; 560 cp.own_address_type = conn->src_type; 561 cp.conn_interval_min = cpu_to_le16(hdev->le_conn_min_interval); 562 cp.conn_interval_max = cpu_to_le16(hdev->le_conn_max_interval); 563 cp.supervision_timeout = __constant_cpu_to_le16(0x002a); 564 cp.min_ce_len = __constant_cpu_to_le16(0x0000); 565 cp.max_ce_len = __constant_cpu_to_le16(0x0000); 566 567 hci_req_add(&req, HCI_OP_LE_CREATE_CONN, sizeof(cp), &cp); 568 569 err = hci_req_run(&req, create_le_conn_complete); 570 if (err) { 571 hci_conn_del(conn); 572 return err; 573 } 574 575 return 0; 576 } 577 578 static struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst, 579 u8 dst_type, u8 sec_level, u8 auth_type) 580 { 581 struct hci_conn *conn; 582 int err; 583 584 if (test_bit(HCI_ADVERTISING, &hdev->flags)) 585 return ERR_PTR(-ENOTSUPP); 586 587 /* Some devices send ATT messages as soon as the physical link is 588 * established. To be able to handle these ATT messages, the user- 589 * space first establishes the connection and then starts the pairing 590 * process. 591 * 592 * So if a hci_conn object already exists for the following connection 593 * attempt, we simply update pending_sec_level and auth_type fields 594 * and return the object found. 595 */ 596 conn = hci_conn_hash_lookup_ba(hdev, LE_LINK, dst); 597 if (conn) { 598 conn->pending_sec_level = sec_level; 599 conn->auth_type = auth_type; 600 goto done; 601 } 602 603 /* Since the controller supports only one LE connection attempt at a 604 * time, we return -EBUSY if there is any connection attempt running. 605 */ 606 conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT); 607 if (conn) 608 return ERR_PTR(-EBUSY); 609 610 conn = hci_conn_add(hdev, LE_LINK, dst); 611 if (!conn) 612 return ERR_PTR(-ENOMEM); 613 614 if (dst_type == BDADDR_LE_PUBLIC) 615 conn->dst_type = ADDR_LE_DEV_PUBLIC; 616 else 617 conn->dst_type = ADDR_LE_DEV_RANDOM; 618 619 conn->src_type = hdev->own_addr_type; 620 621 conn->state = BT_CONNECT; 622 conn->out = true; 623 conn->link_mode |= HCI_LM_MASTER; 624 conn->sec_level = BT_SECURITY_LOW; 625 conn->pending_sec_level = sec_level; 626 conn->auth_type = auth_type; 627 628 err = hci_create_le_conn(conn); 629 if (err) 630 return ERR_PTR(err); 631 632 done: 633 hci_conn_hold(conn); 634 return conn; 635 } 636 637 static struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst, 638 u8 sec_level, u8 auth_type) 639 { 640 struct hci_conn *acl; 641 642 if (!test_bit(HCI_BREDR_ENABLED, &hdev->dev_flags)) 643 return ERR_PTR(-ENOTSUPP); 644 645 acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst); 646 if (!acl) { 647 acl = hci_conn_add(hdev, ACL_LINK, dst); 648 if (!acl) 649 return ERR_PTR(-ENOMEM); 650 } 651 652 hci_conn_hold(acl); 653 654 if (acl->state == BT_OPEN || acl->state == BT_CLOSED) { 655 acl->sec_level = BT_SECURITY_LOW; 656 acl->pending_sec_level = sec_level; 657 acl->auth_type = auth_type; 658 hci_acl_create_connection(acl); 659 } 660 661 return acl; 662 } 663 664 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, 665 __u16 setting) 666 { 667 struct hci_conn *acl; 668 struct hci_conn *sco; 669 670 acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING); 671 if (IS_ERR(acl)) 672 return acl; 673 674 sco = hci_conn_hash_lookup_ba(hdev, type, dst); 675 if (!sco) { 676 sco = hci_conn_add(hdev, type, dst); 677 if (!sco) { 678 hci_conn_drop(acl); 679 return ERR_PTR(-ENOMEM); 680 } 681 } 682 683 acl->link = sco; 684 sco->link = acl; 685 686 hci_conn_hold(sco); 687 688 sco->setting = setting; 689 690 if (acl->state == BT_CONNECTED && 691 (sco->state == BT_OPEN || sco->state == BT_CLOSED)) { 692 set_bit(HCI_CONN_POWER_SAVE, &acl->flags); 693 hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON); 694 695 if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) { 696 /* defer SCO setup until mode change completed */ 697 set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags); 698 return sco; 699 } 700 701 hci_sco_setup(acl, 0x00); 702 } 703 704 return sco; 705 } 706 707 /* Create SCO, ACL or LE connection. */ 708 struct hci_conn *hci_connect(struct hci_dev *hdev, int type, bdaddr_t *dst, 709 __u8 dst_type, __u8 sec_level, __u8 auth_type) 710 { 711 BT_DBG("%s dst %pMR type 0x%x", hdev->name, dst, type); 712 713 switch (type) { 714 case LE_LINK: 715 return hci_connect_le(hdev, dst, dst_type, sec_level, auth_type); 716 case ACL_LINK: 717 return hci_connect_acl(hdev, dst, sec_level, auth_type); 718 } 719 720 return ERR_PTR(-EINVAL); 721 } 722 723 /* Check link security requirement */ 724 int hci_conn_check_link_mode(struct hci_conn *conn) 725 { 726 BT_DBG("hcon %p", conn); 727 728 if (hci_conn_ssp_enabled(conn) && !(conn->link_mode & HCI_LM_ENCRYPT)) 729 return 0; 730 731 return 1; 732 } 733 734 /* Authenticate remote device */ 735 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type) 736 { 737 BT_DBG("hcon %p", conn); 738 739 if (conn->pending_sec_level > sec_level) 740 sec_level = conn->pending_sec_level; 741 742 if (sec_level > conn->sec_level) 743 conn->pending_sec_level = sec_level; 744 else if (conn->link_mode & HCI_LM_AUTH) 745 return 1; 746 747 /* Make sure we preserve an existing MITM requirement*/ 748 auth_type |= (conn->auth_type & 0x01); 749 750 conn->auth_type = auth_type; 751 752 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) { 753 struct hci_cp_auth_requested cp; 754 755 /* encrypt must be pending if auth is also pending */ 756 set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); 757 758 cp.handle = cpu_to_le16(conn->handle); 759 hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED, 760 sizeof(cp), &cp); 761 if (conn->key_type != 0xff) 762 set_bit(HCI_CONN_REAUTH_PEND, &conn->flags); 763 } 764 765 return 0; 766 } 767 768 /* Encrypt the the link */ 769 static void hci_conn_encrypt(struct hci_conn *conn) 770 { 771 BT_DBG("hcon %p", conn); 772 773 if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) { 774 struct hci_cp_set_conn_encrypt cp; 775 cp.handle = cpu_to_le16(conn->handle); 776 cp.encrypt = 0x01; 777 hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp), 778 &cp); 779 } 780 } 781 782 /* Enable security */ 783 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type) 784 { 785 BT_DBG("hcon %p", conn); 786 787 if (conn->type == LE_LINK) 788 return smp_conn_security(conn, sec_level); 789 790 /* For sdp we don't need the link key. */ 791 if (sec_level == BT_SECURITY_SDP) 792 return 1; 793 794 /* For non 2.1 devices and low security level we don't need the link 795 key. */ 796 if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn)) 797 return 1; 798 799 /* For other security levels we need the link key. */ 800 if (!(conn->link_mode & HCI_LM_AUTH)) 801 goto auth; 802 803 /* An authenticated combination key has sufficient security for any 804 security level. */ 805 if (conn->key_type == HCI_LK_AUTH_COMBINATION) 806 goto encrypt; 807 808 /* An unauthenticated combination key has sufficient security for 809 security level 1 and 2. */ 810 if (conn->key_type == HCI_LK_UNAUTH_COMBINATION && 811 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW)) 812 goto encrypt; 813 814 /* A combination key has always sufficient security for the security 815 levels 1 or 2. High security level requires the combination key 816 is generated using maximum PIN code length (16). 817 For pre 2.1 units. */ 818 if (conn->key_type == HCI_LK_COMBINATION && 819 (sec_level != BT_SECURITY_HIGH || conn->pin_length == 16)) 820 goto encrypt; 821 822 auth: 823 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) 824 return 0; 825 826 if (!hci_conn_auth(conn, sec_level, auth_type)) 827 return 0; 828 829 encrypt: 830 if (conn->link_mode & HCI_LM_ENCRYPT) 831 return 1; 832 833 hci_conn_encrypt(conn); 834 return 0; 835 } 836 EXPORT_SYMBOL(hci_conn_security); 837 838 /* Check secure link requirement */ 839 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level) 840 { 841 BT_DBG("hcon %p", conn); 842 843 if (sec_level != BT_SECURITY_HIGH) 844 return 1; /* Accept if non-secure is required */ 845 846 if (conn->sec_level == BT_SECURITY_HIGH) 847 return 1; 848 849 return 0; /* Reject not secure link */ 850 } 851 EXPORT_SYMBOL(hci_conn_check_secure); 852 853 /* Change link key */ 854 int hci_conn_change_link_key(struct hci_conn *conn) 855 { 856 BT_DBG("hcon %p", conn); 857 858 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) { 859 struct hci_cp_change_conn_link_key cp; 860 cp.handle = cpu_to_le16(conn->handle); 861 hci_send_cmd(conn->hdev, HCI_OP_CHANGE_CONN_LINK_KEY, 862 sizeof(cp), &cp); 863 } 864 865 return 0; 866 } 867 868 /* Switch role */ 869 int hci_conn_switch_role(struct hci_conn *conn, __u8 role) 870 { 871 BT_DBG("hcon %p", conn); 872 873 if (!role && conn->link_mode & HCI_LM_MASTER) 874 return 1; 875 876 if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) { 877 struct hci_cp_switch_role cp; 878 bacpy(&cp.bdaddr, &conn->dst); 879 cp.role = role; 880 hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp); 881 } 882 883 return 0; 884 } 885 EXPORT_SYMBOL(hci_conn_switch_role); 886 887 /* Enter active mode */ 888 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active) 889 { 890 struct hci_dev *hdev = conn->hdev; 891 892 BT_DBG("hcon %p mode %d", conn, conn->mode); 893 894 if (test_bit(HCI_RAW, &hdev->flags)) 895 return; 896 897 if (conn->mode != HCI_CM_SNIFF) 898 goto timer; 899 900 if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active) 901 goto timer; 902 903 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 904 struct hci_cp_exit_sniff_mode cp; 905 cp.handle = cpu_to_le16(conn->handle); 906 hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp); 907 } 908 909 timer: 910 if (hdev->idle_timeout > 0) 911 queue_delayed_work(hdev->workqueue, &conn->idle_work, 912 msecs_to_jiffies(hdev->idle_timeout)); 913 } 914 915 /* Drop all connection on the device */ 916 void hci_conn_hash_flush(struct hci_dev *hdev) 917 { 918 struct hci_conn_hash *h = &hdev->conn_hash; 919 struct hci_conn *c, *n; 920 921 BT_DBG("hdev %s", hdev->name); 922 923 list_for_each_entry_safe(c, n, &h->list, list) { 924 c->state = BT_CLOSED; 925 926 hci_proto_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM); 927 hci_conn_del(c); 928 } 929 } 930 931 /* Check pending connect attempts */ 932 void hci_conn_check_pending(struct hci_dev *hdev) 933 { 934 struct hci_conn *conn; 935 936 BT_DBG("hdev %s", hdev->name); 937 938 hci_dev_lock(hdev); 939 940 conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2); 941 if (conn) 942 hci_acl_create_connection(conn); 943 944 hci_dev_unlock(hdev); 945 } 946 947 int hci_get_conn_list(void __user *arg) 948 { 949 struct hci_conn *c; 950 struct hci_conn_list_req req, *cl; 951 struct hci_conn_info *ci; 952 struct hci_dev *hdev; 953 int n = 0, size, err; 954 955 if (copy_from_user(&req, arg, sizeof(req))) 956 return -EFAULT; 957 958 if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci)) 959 return -EINVAL; 960 961 size = sizeof(req) + req.conn_num * sizeof(*ci); 962 963 cl = kmalloc(size, GFP_KERNEL); 964 if (!cl) 965 return -ENOMEM; 966 967 hdev = hci_dev_get(req.dev_id); 968 if (!hdev) { 969 kfree(cl); 970 return -ENODEV; 971 } 972 973 ci = cl->conn_info; 974 975 hci_dev_lock(hdev); 976 list_for_each_entry(c, &hdev->conn_hash.list, list) { 977 bacpy(&(ci + n)->bdaddr, &c->dst); 978 (ci + n)->handle = c->handle; 979 (ci + n)->type = c->type; 980 (ci + n)->out = c->out; 981 (ci + n)->state = c->state; 982 (ci + n)->link_mode = c->link_mode; 983 if (++n >= req.conn_num) 984 break; 985 } 986 hci_dev_unlock(hdev); 987 988 cl->dev_id = hdev->id; 989 cl->conn_num = n; 990 size = sizeof(req) + n * sizeof(*ci); 991 992 hci_dev_put(hdev); 993 994 err = copy_to_user(arg, cl, size); 995 kfree(cl); 996 997 return err ? -EFAULT : 0; 998 } 999 1000 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg) 1001 { 1002 struct hci_conn_info_req req; 1003 struct hci_conn_info ci; 1004 struct hci_conn *conn; 1005 char __user *ptr = arg + sizeof(req); 1006 1007 if (copy_from_user(&req, arg, sizeof(req))) 1008 return -EFAULT; 1009 1010 hci_dev_lock(hdev); 1011 conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr); 1012 if (conn) { 1013 bacpy(&ci.bdaddr, &conn->dst); 1014 ci.handle = conn->handle; 1015 ci.type = conn->type; 1016 ci.out = conn->out; 1017 ci.state = conn->state; 1018 ci.link_mode = conn->link_mode; 1019 } 1020 hci_dev_unlock(hdev); 1021 1022 if (!conn) 1023 return -ENOENT; 1024 1025 return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0; 1026 } 1027 1028 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg) 1029 { 1030 struct hci_auth_info_req req; 1031 struct hci_conn *conn; 1032 1033 if (copy_from_user(&req, arg, sizeof(req))) 1034 return -EFAULT; 1035 1036 hci_dev_lock(hdev); 1037 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr); 1038 if (conn) 1039 req.type = conn->auth_type; 1040 hci_dev_unlock(hdev); 1041 1042 if (!conn) 1043 return -ENOENT; 1044 1045 return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0; 1046 } 1047 1048 struct hci_chan *hci_chan_create(struct hci_conn *conn) 1049 { 1050 struct hci_dev *hdev = conn->hdev; 1051 struct hci_chan *chan; 1052 1053 BT_DBG("%s hcon %p", hdev->name, conn); 1054 1055 chan = kzalloc(sizeof(struct hci_chan), GFP_KERNEL); 1056 if (!chan) 1057 return NULL; 1058 1059 chan->conn = conn; 1060 skb_queue_head_init(&chan->data_q); 1061 chan->state = BT_CONNECTED; 1062 1063 list_add_rcu(&chan->list, &conn->chan_list); 1064 1065 return chan; 1066 } 1067 1068 void hci_chan_del(struct hci_chan *chan) 1069 { 1070 struct hci_conn *conn = chan->conn; 1071 struct hci_dev *hdev = conn->hdev; 1072 1073 BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan); 1074 1075 list_del_rcu(&chan->list); 1076 1077 synchronize_rcu(); 1078 1079 hci_conn_drop(conn); 1080 1081 skb_queue_purge(&chan->data_q); 1082 kfree(chan); 1083 } 1084 1085 void hci_chan_list_flush(struct hci_conn *conn) 1086 { 1087 struct hci_chan *chan, *n; 1088 1089 BT_DBG("hcon %p", conn); 1090 1091 list_for_each_entry_safe(chan, n, &conn->chan_list, list) 1092 hci_chan_del(chan); 1093 } 1094 1095 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon, 1096 __u16 handle) 1097 { 1098 struct hci_chan *hchan; 1099 1100 list_for_each_entry(hchan, &hcon->chan_list, list) { 1101 if (hchan->handle == handle) 1102 return hchan; 1103 } 1104 1105 return NULL; 1106 } 1107 1108 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle) 1109 { 1110 struct hci_conn_hash *h = &hdev->conn_hash; 1111 struct hci_conn *hcon; 1112 struct hci_chan *hchan = NULL; 1113 1114 rcu_read_lock(); 1115 1116 list_for_each_entry_rcu(hcon, &h->list, list) { 1117 hchan = __hci_chan_lookup_handle(hcon, handle); 1118 if (hchan) 1119 break; 1120 } 1121 1122 rcu_read_unlock(); 1123 1124 return hchan; 1125 } 1126