1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 /* Bluetooth HCI connection handling. */ 26 27 #include <linux/export.h> 28 #include <linux/debugfs.h> 29 30 #include <net/bluetooth/bluetooth.h> 31 #include <net/bluetooth/hci_core.h> 32 #include <net/bluetooth/l2cap.h> 33 34 #include "hci_request.h" 35 #include "smp.h" 36 #include "a2mp.h" 37 38 struct sco_param { 39 u16 pkt_type; 40 u16 max_latency; 41 u8 retrans_effort; 42 }; 43 44 static const struct sco_param esco_param_cvsd[] = { 45 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a, 0x01 }, /* S3 */ 46 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007, 0x01 }, /* S2 */ 47 { EDR_ESCO_MASK | ESCO_EV3, 0x0007, 0x01 }, /* S1 */ 48 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0x01 }, /* D1 */ 49 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0x01 }, /* D0 */ 50 }; 51 52 static const struct sco_param sco_param_cvsd[] = { 53 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0xff }, /* D1 */ 54 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0xff }, /* D0 */ 55 }; 56 57 static const struct sco_param esco_param_msbc[] = { 58 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d, 0x02 }, /* T2 */ 59 { EDR_ESCO_MASK | ESCO_EV3, 0x0008, 0x02 }, /* T1 */ 60 }; 61 62 /* This function requires the caller holds hdev->lock */ 63 static void hci_connect_le_scan_cleanup(struct hci_conn *conn) 64 { 65 struct hci_conn_params *params; 66 struct hci_dev *hdev = conn->hdev; 67 struct smp_irk *irk; 68 bdaddr_t *bdaddr; 69 u8 bdaddr_type; 70 71 bdaddr = &conn->dst; 72 bdaddr_type = conn->dst_type; 73 74 /* Check if we need to convert to identity address */ 75 irk = hci_get_irk(hdev, bdaddr, bdaddr_type); 76 if (irk) { 77 bdaddr = &irk->bdaddr; 78 bdaddr_type = irk->addr_type; 79 } 80 81 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr, 82 bdaddr_type); 83 if (!params || !params->explicit_connect) 84 return; 85 86 /* The connection attempt was doing scan for new RPA, and is 87 * in scan phase. If params are not associated with any other 88 * autoconnect action, remove them completely. If they are, just unmark 89 * them as waiting for connection, by clearing explicit_connect field. 90 */ 91 params->explicit_connect = false; 92 93 list_del_init(¶ms->action); 94 95 switch (params->auto_connect) { 96 case HCI_AUTO_CONN_EXPLICIT: 97 hci_conn_params_del(hdev, bdaddr, bdaddr_type); 98 /* return instead of break to avoid duplicate scan update */ 99 return; 100 case HCI_AUTO_CONN_DIRECT: 101 case HCI_AUTO_CONN_ALWAYS: 102 list_add(¶ms->action, &hdev->pend_le_conns); 103 break; 104 case HCI_AUTO_CONN_REPORT: 105 list_add(¶ms->action, &hdev->pend_le_reports); 106 break; 107 default: 108 break; 109 } 110 111 hci_update_background_scan(hdev); 112 } 113 114 static void hci_conn_cleanup(struct hci_conn *conn) 115 { 116 struct hci_dev *hdev = conn->hdev; 117 118 if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags)) 119 hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type); 120 121 hci_chan_list_flush(conn); 122 123 hci_conn_hash_del(hdev, conn); 124 125 if (hdev->notify) 126 hdev->notify(hdev, HCI_NOTIFY_CONN_DEL); 127 128 hci_conn_del_sysfs(conn); 129 130 debugfs_remove_recursive(conn->debugfs); 131 132 hci_dev_put(hdev); 133 134 hci_conn_put(conn); 135 } 136 137 static void le_scan_cleanup(struct work_struct *work) 138 { 139 struct hci_conn *conn = container_of(work, struct hci_conn, 140 le_scan_cleanup); 141 struct hci_dev *hdev = conn->hdev; 142 struct hci_conn *c = NULL; 143 144 BT_DBG("%s hcon %p", hdev->name, conn); 145 146 hci_dev_lock(hdev); 147 148 /* Check that the hci_conn is still around */ 149 rcu_read_lock(); 150 list_for_each_entry_rcu(c, &hdev->conn_hash.list, list) { 151 if (c == conn) 152 break; 153 } 154 rcu_read_unlock(); 155 156 if (c == conn) { 157 hci_connect_le_scan_cleanup(conn); 158 hci_conn_cleanup(conn); 159 } 160 161 hci_dev_unlock(hdev); 162 hci_dev_put(hdev); 163 hci_conn_put(conn); 164 } 165 166 static void hci_connect_le_scan_remove(struct hci_conn *conn) 167 { 168 BT_DBG("%s hcon %p", conn->hdev->name, conn); 169 170 /* We can't call hci_conn_del/hci_conn_cleanup here since that 171 * could deadlock with another hci_conn_del() call that's holding 172 * hci_dev_lock and doing cancel_delayed_work_sync(&conn->disc_work). 173 * Instead, grab temporary extra references to the hci_dev and 174 * hci_conn and perform the necessary cleanup in a separate work 175 * callback. 176 */ 177 178 hci_dev_hold(conn->hdev); 179 hci_conn_get(conn); 180 181 /* Even though we hold a reference to the hdev, many other 182 * things might get cleaned up meanwhile, including the hdev's 183 * own workqueue, so we can't use that for scheduling. 184 */ 185 schedule_work(&conn->le_scan_cleanup); 186 } 187 188 static void hci_acl_create_connection(struct hci_conn *conn) 189 { 190 struct hci_dev *hdev = conn->hdev; 191 struct inquiry_entry *ie; 192 struct hci_cp_create_conn cp; 193 194 BT_DBG("hcon %p", conn); 195 196 conn->state = BT_CONNECT; 197 conn->out = true; 198 conn->role = HCI_ROLE_MASTER; 199 200 conn->attempt++; 201 202 conn->link_policy = hdev->link_policy; 203 204 memset(&cp, 0, sizeof(cp)); 205 bacpy(&cp.bdaddr, &conn->dst); 206 cp.pscan_rep_mode = 0x02; 207 208 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 209 if (ie) { 210 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) { 211 cp.pscan_rep_mode = ie->data.pscan_rep_mode; 212 cp.pscan_mode = ie->data.pscan_mode; 213 cp.clock_offset = ie->data.clock_offset | 214 cpu_to_le16(0x8000); 215 } 216 217 memcpy(conn->dev_class, ie->data.dev_class, 3); 218 if (ie->data.ssp_mode > 0) 219 set_bit(HCI_CONN_SSP_ENABLED, &conn->flags); 220 } 221 222 cp.pkt_type = cpu_to_le16(conn->pkt_type); 223 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER)) 224 cp.role_switch = 0x01; 225 else 226 cp.role_switch = 0x00; 227 228 hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp); 229 } 230 231 int hci_disconnect(struct hci_conn *conn, __u8 reason) 232 { 233 BT_DBG("hcon %p", conn); 234 235 /* When we are master of an established connection and it enters 236 * the disconnect timeout, then go ahead and try to read the 237 * current clock offset. Processing of the result is done 238 * within the event handling and hci_clock_offset_evt function. 239 */ 240 if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER && 241 (conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) { 242 struct hci_dev *hdev = conn->hdev; 243 struct hci_cp_read_clock_offset clkoff_cp; 244 245 clkoff_cp.handle = cpu_to_le16(conn->handle); 246 hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp), 247 &clkoff_cp); 248 } 249 250 return hci_abort_conn(conn, reason); 251 } 252 253 static void hci_add_sco(struct hci_conn *conn, __u16 handle) 254 { 255 struct hci_dev *hdev = conn->hdev; 256 struct hci_cp_add_sco cp; 257 258 BT_DBG("hcon %p", conn); 259 260 conn->state = BT_CONNECT; 261 conn->out = true; 262 263 conn->attempt++; 264 265 cp.handle = cpu_to_le16(handle); 266 cp.pkt_type = cpu_to_le16(conn->pkt_type); 267 268 hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp); 269 } 270 271 bool hci_setup_sync(struct hci_conn *conn, __u16 handle) 272 { 273 struct hci_dev *hdev = conn->hdev; 274 struct hci_cp_setup_sync_conn cp; 275 const struct sco_param *param; 276 277 BT_DBG("hcon %p", conn); 278 279 conn->state = BT_CONNECT; 280 conn->out = true; 281 282 conn->attempt++; 283 284 cp.handle = cpu_to_le16(handle); 285 286 cp.tx_bandwidth = cpu_to_le32(0x00001f40); 287 cp.rx_bandwidth = cpu_to_le32(0x00001f40); 288 cp.voice_setting = cpu_to_le16(conn->setting); 289 290 switch (conn->setting & SCO_AIRMODE_MASK) { 291 case SCO_AIRMODE_TRANSP: 292 if (conn->attempt > ARRAY_SIZE(esco_param_msbc)) 293 return false; 294 param = &esco_param_msbc[conn->attempt - 1]; 295 break; 296 case SCO_AIRMODE_CVSD: 297 if (lmp_esco_capable(conn->link)) { 298 if (conn->attempt > ARRAY_SIZE(esco_param_cvsd)) 299 return false; 300 param = &esco_param_cvsd[conn->attempt - 1]; 301 } else { 302 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd)) 303 return false; 304 param = &sco_param_cvsd[conn->attempt - 1]; 305 } 306 break; 307 default: 308 return false; 309 } 310 311 cp.retrans_effort = param->retrans_effort; 312 cp.pkt_type = __cpu_to_le16(param->pkt_type); 313 cp.max_latency = __cpu_to_le16(param->max_latency); 314 315 if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0) 316 return false; 317 318 return true; 319 } 320 321 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency, 322 u16 to_multiplier) 323 { 324 struct hci_dev *hdev = conn->hdev; 325 struct hci_conn_params *params; 326 struct hci_cp_le_conn_update cp; 327 328 hci_dev_lock(hdev); 329 330 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 331 if (params) { 332 params->conn_min_interval = min; 333 params->conn_max_interval = max; 334 params->conn_latency = latency; 335 params->supervision_timeout = to_multiplier; 336 } 337 338 hci_dev_unlock(hdev); 339 340 memset(&cp, 0, sizeof(cp)); 341 cp.handle = cpu_to_le16(conn->handle); 342 cp.conn_interval_min = cpu_to_le16(min); 343 cp.conn_interval_max = cpu_to_le16(max); 344 cp.conn_latency = cpu_to_le16(latency); 345 cp.supervision_timeout = cpu_to_le16(to_multiplier); 346 cp.min_ce_len = cpu_to_le16(0x0000); 347 cp.max_ce_len = cpu_to_le16(0x0000); 348 349 hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp); 350 351 if (params) 352 return 0x01; 353 354 return 0x00; 355 } 356 357 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand, 358 __u8 ltk[16], __u8 key_size) 359 { 360 struct hci_dev *hdev = conn->hdev; 361 struct hci_cp_le_start_enc cp; 362 363 BT_DBG("hcon %p", conn); 364 365 memset(&cp, 0, sizeof(cp)); 366 367 cp.handle = cpu_to_le16(conn->handle); 368 cp.rand = rand; 369 cp.ediv = ediv; 370 memcpy(cp.ltk, ltk, key_size); 371 372 hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp); 373 } 374 375 /* Device _must_ be locked */ 376 void hci_sco_setup(struct hci_conn *conn, __u8 status) 377 { 378 struct hci_conn *sco = conn->link; 379 380 if (!sco) 381 return; 382 383 BT_DBG("hcon %p", conn); 384 385 if (!status) { 386 if (lmp_esco_capable(conn->hdev)) 387 hci_setup_sync(sco, conn->handle); 388 else 389 hci_add_sco(sco, conn->handle); 390 } else { 391 hci_connect_cfm(sco, status); 392 hci_conn_del(sco); 393 } 394 } 395 396 static void hci_conn_timeout(struct work_struct *work) 397 { 398 struct hci_conn *conn = container_of(work, struct hci_conn, 399 disc_work.work); 400 int refcnt = atomic_read(&conn->refcnt); 401 402 BT_DBG("hcon %p state %s", conn, state_to_string(conn->state)); 403 404 WARN_ON(refcnt < 0); 405 406 /* FIXME: It was observed that in pairing failed scenario, refcnt 407 * drops below 0. Probably this is because l2cap_conn_del calls 408 * l2cap_chan_del for each channel, and inside l2cap_chan_del conn is 409 * dropped. After that loop hci_chan_del is called which also drops 410 * conn. For now make sure that ACL is alive if refcnt is higher then 0, 411 * otherwise drop it. 412 */ 413 if (refcnt > 0) 414 return; 415 416 /* LE connections in scanning state need special handling */ 417 if (conn->state == BT_CONNECT && conn->type == LE_LINK && 418 test_bit(HCI_CONN_SCANNING, &conn->flags)) { 419 hci_connect_le_scan_remove(conn); 420 return; 421 } 422 423 hci_abort_conn(conn, hci_proto_disconn_ind(conn)); 424 } 425 426 /* Enter sniff mode */ 427 static void hci_conn_idle(struct work_struct *work) 428 { 429 struct hci_conn *conn = container_of(work, struct hci_conn, 430 idle_work.work); 431 struct hci_dev *hdev = conn->hdev; 432 433 BT_DBG("hcon %p mode %d", conn, conn->mode); 434 435 if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn)) 436 return; 437 438 if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF)) 439 return; 440 441 if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) { 442 struct hci_cp_sniff_subrate cp; 443 cp.handle = cpu_to_le16(conn->handle); 444 cp.max_latency = cpu_to_le16(0); 445 cp.min_remote_timeout = cpu_to_le16(0); 446 cp.min_local_timeout = cpu_to_le16(0); 447 hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp); 448 } 449 450 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 451 struct hci_cp_sniff_mode cp; 452 cp.handle = cpu_to_le16(conn->handle); 453 cp.max_interval = cpu_to_le16(hdev->sniff_max_interval); 454 cp.min_interval = cpu_to_le16(hdev->sniff_min_interval); 455 cp.attempt = cpu_to_le16(4); 456 cp.timeout = cpu_to_le16(1); 457 hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp); 458 } 459 } 460 461 static void hci_conn_auto_accept(struct work_struct *work) 462 { 463 struct hci_conn *conn = container_of(work, struct hci_conn, 464 auto_accept_work.work); 465 466 hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst), 467 &conn->dst); 468 } 469 470 static void le_conn_timeout(struct work_struct *work) 471 { 472 struct hci_conn *conn = container_of(work, struct hci_conn, 473 le_conn_timeout.work); 474 struct hci_dev *hdev = conn->hdev; 475 476 BT_DBG(""); 477 478 /* We could end up here due to having done directed advertising, 479 * so clean up the state if necessary. This should however only 480 * happen with broken hardware or if low duty cycle was used 481 * (which doesn't have a timeout of its own). 482 */ 483 if (conn->role == HCI_ROLE_SLAVE) { 484 u8 enable = 0x00; 485 hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), 486 &enable); 487 hci_le_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT); 488 return; 489 } 490 491 hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM); 492 } 493 494 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst, 495 u8 role) 496 { 497 struct hci_conn *conn; 498 499 BT_DBG("%s dst %pMR", hdev->name, dst); 500 501 conn = kzalloc(sizeof(*conn), GFP_KERNEL); 502 if (!conn) 503 return NULL; 504 505 bacpy(&conn->dst, dst); 506 bacpy(&conn->src, &hdev->bdaddr); 507 conn->hdev = hdev; 508 conn->type = type; 509 conn->role = role; 510 conn->mode = HCI_CM_ACTIVE; 511 conn->state = BT_OPEN; 512 conn->auth_type = HCI_AT_GENERAL_BONDING; 513 conn->io_capability = hdev->io_capability; 514 conn->remote_auth = 0xff; 515 conn->key_type = 0xff; 516 conn->rssi = HCI_RSSI_INVALID; 517 conn->tx_power = HCI_TX_POWER_INVALID; 518 conn->max_tx_power = HCI_TX_POWER_INVALID; 519 520 set_bit(HCI_CONN_POWER_SAVE, &conn->flags); 521 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 522 523 /* Set Default Authenticated payload timeout to 30s */ 524 conn->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT; 525 526 if (conn->role == HCI_ROLE_MASTER) 527 conn->out = true; 528 529 switch (type) { 530 case ACL_LINK: 531 conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK; 532 break; 533 case LE_LINK: 534 /* conn->src should reflect the local identity address */ 535 hci_copy_identity_address(hdev, &conn->src, &conn->src_type); 536 break; 537 case SCO_LINK: 538 if (lmp_esco_capable(hdev)) 539 conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) | 540 (hdev->esco_type & EDR_ESCO_MASK); 541 else 542 conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK; 543 break; 544 case ESCO_LINK: 545 conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK; 546 break; 547 } 548 549 skb_queue_head_init(&conn->data_q); 550 551 INIT_LIST_HEAD(&conn->chan_list); 552 553 INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout); 554 INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept); 555 INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle); 556 INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout); 557 INIT_WORK(&conn->le_scan_cleanup, le_scan_cleanup); 558 559 atomic_set(&conn->refcnt, 0); 560 561 hci_dev_hold(hdev); 562 563 hci_conn_hash_add(hdev, conn); 564 if (hdev->notify) 565 hdev->notify(hdev, HCI_NOTIFY_CONN_ADD); 566 567 hci_conn_init_sysfs(conn); 568 569 return conn; 570 } 571 572 int hci_conn_del(struct hci_conn *conn) 573 { 574 struct hci_dev *hdev = conn->hdev; 575 576 BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle); 577 578 cancel_delayed_work_sync(&conn->disc_work); 579 cancel_delayed_work_sync(&conn->auto_accept_work); 580 cancel_delayed_work_sync(&conn->idle_work); 581 582 if (conn->type == ACL_LINK) { 583 struct hci_conn *sco = conn->link; 584 if (sco) 585 sco->link = NULL; 586 587 /* Unacked frames */ 588 hdev->acl_cnt += conn->sent; 589 } else if (conn->type == LE_LINK) { 590 cancel_delayed_work(&conn->le_conn_timeout); 591 592 if (hdev->le_pkts) 593 hdev->le_cnt += conn->sent; 594 else 595 hdev->acl_cnt += conn->sent; 596 } else { 597 struct hci_conn *acl = conn->link; 598 if (acl) { 599 acl->link = NULL; 600 hci_conn_drop(acl); 601 } 602 } 603 604 if (conn->amp_mgr) 605 amp_mgr_put(conn->amp_mgr); 606 607 skb_queue_purge(&conn->data_q); 608 609 /* Remove the connection from the list and cleanup its remaining 610 * state. This is a separate function since for some cases like 611 * BT_CONNECT_SCAN we *only* want the cleanup part without the 612 * rest of hci_conn_del. 613 */ 614 hci_conn_cleanup(conn); 615 616 return 0; 617 } 618 619 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, uint8_t src_type) 620 { 621 int use_src = bacmp(src, BDADDR_ANY); 622 struct hci_dev *hdev = NULL, *d; 623 624 BT_DBG("%pMR -> %pMR", src, dst); 625 626 read_lock(&hci_dev_list_lock); 627 628 list_for_each_entry(d, &hci_dev_list, list) { 629 if (!test_bit(HCI_UP, &d->flags) || 630 hci_dev_test_flag(d, HCI_USER_CHANNEL) || 631 d->dev_type != HCI_PRIMARY) 632 continue; 633 634 /* Simple routing: 635 * No source address - find interface with bdaddr != dst 636 * Source address - find interface with bdaddr == src 637 */ 638 639 if (use_src) { 640 bdaddr_t id_addr; 641 u8 id_addr_type; 642 643 if (src_type == BDADDR_BREDR) { 644 if (!lmp_bredr_capable(d)) 645 continue; 646 bacpy(&id_addr, &d->bdaddr); 647 id_addr_type = BDADDR_BREDR; 648 } else { 649 if (!lmp_le_capable(d)) 650 continue; 651 652 hci_copy_identity_address(d, &id_addr, 653 &id_addr_type); 654 655 /* Convert from HCI to three-value type */ 656 if (id_addr_type == ADDR_LE_DEV_PUBLIC) 657 id_addr_type = BDADDR_LE_PUBLIC; 658 else 659 id_addr_type = BDADDR_LE_RANDOM; 660 } 661 662 if (!bacmp(&id_addr, src) && id_addr_type == src_type) { 663 hdev = d; break; 664 } 665 } else { 666 if (bacmp(&d->bdaddr, dst)) { 667 hdev = d; break; 668 } 669 } 670 } 671 672 if (hdev) 673 hdev = hci_dev_hold(hdev); 674 675 read_unlock(&hci_dev_list_lock); 676 return hdev; 677 } 678 EXPORT_SYMBOL(hci_get_route); 679 680 /* This function requires the caller holds hdev->lock */ 681 void hci_le_conn_failed(struct hci_conn *conn, u8 status) 682 { 683 struct hci_dev *hdev = conn->hdev; 684 struct hci_conn_params *params; 685 686 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst, 687 conn->dst_type); 688 if (params && params->conn) { 689 hci_conn_drop(params->conn); 690 hci_conn_put(params->conn); 691 params->conn = NULL; 692 } 693 694 conn->state = BT_CLOSED; 695 696 /* If the status indicates successful cancellation of 697 * the attempt (i.e. Unkown Connection Id) there's no point of 698 * notifying failure since we'll go back to keep trying to 699 * connect. The only exception is explicit connect requests 700 * where a timeout + cancel does indicate an actual failure. 701 */ 702 if (status != HCI_ERROR_UNKNOWN_CONN_ID || 703 (params && params->explicit_connect)) 704 mgmt_connect_failed(hdev, &conn->dst, conn->type, 705 conn->dst_type, status); 706 707 hci_connect_cfm(conn, status); 708 709 hci_conn_del(conn); 710 711 /* Since we may have temporarily stopped the background scanning in 712 * favor of connection establishment, we should restart it. 713 */ 714 hci_update_background_scan(hdev); 715 716 /* Re-enable advertising in case this was a failed connection 717 * attempt as a peripheral. 718 */ 719 hci_req_reenable_advertising(hdev); 720 } 721 722 static void create_le_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode) 723 { 724 struct hci_conn *conn; 725 726 hci_dev_lock(hdev); 727 728 conn = hci_lookup_le_connect(hdev); 729 730 if (!status) { 731 hci_connect_le_scan_cleanup(conn); 732 goto done; 733 } 734 735 bt_dev_err(hdev, "request failed to create LE connection: " 736 "status 0x%2.2x", status); 737 738 if (!conn) 739 goto done; 740 741 hci_le_conn_failed(conn, status); 742 743 done: 744 hci_dev_unlock(hdev); 745 } 746 747 static bool conn_use_rpa(struct hci_conn *conn) 748 { 749 struct hci_dev *hdev = conn->hdev; 750 751 return hci_dev_test_flag(hdev, HCI_PRIVACY); 752 } 753 754 static void set_ext_conn_params(struct hci_conn *conn, 755 struct hci_cp_le_ext_conn_param *p) 756 { 757 struct hci_dev *hdev = conn->hdev; 758 759 memset(p, 0, sizeof(*p)); 760 761 /* Set window to be the same value as the interval to 762 * enable continuous scanning. 763 */ 764 p->scan_interval = cpu_to_le16(hdev->le_scan_interval); 765 p->scan_window = p->scan_interval; 766 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 767 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 768 p->conn_latency = cpu_to_le16(conn->le_conn_latency); 769 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 770 p->min_ce_len = cpu_to_le16(0x0000); 771 p->max_ce_len = cpu_to_le16(0x0000); 772 } 773 774 static void hci_req_add_le_create_conn(struct hci_request *req, 775 struct hci_conn *conn, 776 bdaddr_t *direct_rpa) 777 { 778 struct hci_dev *hdev = conn->hdev; 779 u8 own_addr_type; 780 781 /* If direct address was provided we use it instead of current 782 * address. 783 */ 784 if (direct_rpa) { 785 if (bacmp(&req->hdev->random_addr, direct_rpa)) 786 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, 787 direct_rpa); 788 789 /* direct address is always RPA */ 790 own_addr_type = ADDR_LE_DEV_RANDOM; 791 } else { 792 /* Update random address, but set require_privacy to false so 793 * that we never connect with an non-resolvable address. 794 */ 795 if (hci_update_random_address(req, false, conn_use_rpa(conn), 796 &own_addr_type)) 797 return; 798 } 799 800 if (use_ext_conn(hdev)) { 801 struct hci_cp_le_ext_create_conn *cp; 802 struct hci_cp_le_ext_conn_param *p; 803 u8 data[sizeof(*cp) + sizeof(*p) * 3]; 804 u32 plen; 805 806 cp = (void *) data; 807 p = (void *) cp->data; 808 809 memset(cp, 0, sizeof(*cp)); 810 811 bacpy(&cp->peer_addr, &conn->dst); 812 cp->peer_addr_type = conn->dst_type; 813 cp->own_addr_type = own_addr_type; 814 815 plen = sizeof(*cp); 816 817 if (scan_1m(hdev)) { 818 cp->phys |= LE_SCAN_PHY_1M; 819 set_ext_conn_params(conn, p); 820 821 p++; 822 plen += sizeof(*p); 823 } 824 825 if (scan_2m(hdev)) { 826 cp->phys |= LE_SCAN_PHY_2M; 827 set_ext_conn_params(conn, p); 828 829 p++; 830 plen += sizeof(*p); 831 } 832 833 if (scan_coded(hdev)) { 834 cp->phys |= LE_SCAN_PHY_CODED; 835 set_ext_conn_params(conn, p); 836 837 plen += sizeof(*p); 838 } 839 840 hci_req_add(req, HCI_OP_LE_EXT_CREATE_CONN, plen, data); 841 842 } else { 843 struct hci_cp_le_create_conn cp; 844 845 memset(&cp, 0, sizeof(cp)); 846 847 /* Set window to be the same value as the interval to enable 848 * continuous scanning. 849 */ 850 cp.scan_interval = cpu_to_le16(hdev->le_scan_interval); 851 cp.scan_window = cp.scan_interval; 852 853 bacpy(&cp.peer_addr, &conn->dst); 854 cp.peer_addr_type = conn->dst_type; 855 cp.own_address_type = own_addr_type; 856 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 857 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 858 cp.conn_latency = cpu_to_le16(conn->le_conn_latency); 859 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 860 cp.min_ce_len = cpu_to_le16(0x0000); 861 cp.max_ce_len = cpu_to_le16(0x0000); 862 863 hci_req_add(req, HCI_OP_LE_CREATE_CONN, sizeof(cp), &cp); 864 } 865 866 conn->state = BT_CONNECT; 867 clear_bit(HCI_CONN_SCANNING, &conn->flags); 868 } 869 870 static void hci_req_directed_advertising(struct hci_request *req, 871 struct hci_conn *conn) 872 { 873 struct hci_dev *hdev = req->hdev; 874 u8 own_addr_type; 875 u8 enable; 876 877 if (ext_adv_capable(hdev)) { 878 struct hci_cp_le_set_ext_adv_params cp; 879 bdaddr_t random_addr; 880 881 /* Set require_privacy to false so that the remote device has a 882 * chance of identifying us. 883 */ 884 if (hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, 885 &own_addr_type, &random_addr) < 0) 886 return; 887 888 memset(&cp, 0, sizeof(cp)); 889 890 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); 891 cp.own_addr_type = own_addr_type; 892 cp.channel_map = hdev->le_adv_channel_map; 893 cp.tx_power = HCI_TX_POWER_INVALID; 894 cp.primary_phy = HCI_ADV_PHY_1M; 895 cp.secondary_phy = HCI_ADV_PHY_1M; 896 cp.handle = 0; /* Use instance 0 for directed adv */ 897 cp.own_addr_type = own_addr_type; 898 cp.peer_addr_type = conn->dst_type; 899 bacpy(&cp.peer_addr, &conn->dst); 900 901 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp); 902 903 if (own_addr_type == ADDR_LE_DEV_RANDOM && 904 bacmp(&random_addr, BDADDR_ANY) && 905 bacmp(&random_addr, &hdev->random_addr)) { 906 struct hci_cp_le_set_adv_set_rand_addr cp; 907 908 memset(&cp, 0, sizeof(cp)); 909 910 cp.handle = 0; 911 bacpy(&cp.bdaddr, &random_addr); 912 913 hci_req_add(req, 914 HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 915 sizeof(cp), &cp); 916 } 917 918 __hci_req_enable_ext_advertising(req, 0x00); 919 } else { 920 struct hci_cp_le_set_adv_param cp; 921 922 /* Clear the HCI_LE_ADV bit temporarily so that the 923 * hci_update_random_address knows that it's safe to go ahead 924 * and write a new random address. The flag will be set back on 925 * as soon as the SET_ADV_ENABLE HCI command completes. 926 */ 927 hci_dev_clear_flag(hdev, HCI_LE_ADV); 928 929 /* Set require_privacy to false so that the remote device has a 930 * chance of identifying us. 931 */ 932 if (hci_update_random_address(req, false, conn_use_rpa(conn), 933 &own_addr_type) < 0) 934 return; 935 936 memset(&cp, 0, sizeof(cp)); 937 cp.type = LE_ADV_DIRECT_IND; 938 cp.own_address_type = own_addr_type; 939 cp.direct_addr_type = conn->dst_type; 940 bacpy(&cp.direct_addr, &conn->dst); 941 cp.channel_map = hdev->le_adv_channel_map; 942 943 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp); 944 945 enable = 0x01; 946 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), 947 &enable); 948 } 949 950 conn->state = BT_CONNECT; 951 } 952 953 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst, 954 u8 dst_type, u8 sec_level, u16 conn_timeout, 955 u8 role, bdaddr_t *direct_rpa) 956 { 957 struct hci_conn_params *params; 958 struct hci_conn *conn; 959 struct smp_irk *irk; 960 struct hci_request req; 961 int err; 962 963 /* Let's make sure that le is enabled.*/ 964 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 965 if (lmp_le_capable(hdev)) 966 return ERR_PTR(-ECONNREFUSED); 967 968 return ERR_PTR(-EOPNOTSUPP); 969 } 970 971 /* Since the controller supports only one LE connection attempt at a 972 * time, we return -EBUSY if there is any connection attempt running. 973 */ 974 if (hci_lookup_le_connect(hdev)) 975 return ERR_PTR(-EBUSY); 976 977 /* If there's already a connection object but it's not in 978 * scanning state it means it must already be established, in 979 * which case we can't do anything else except report a failure 980 * to connect. 981 */ 982 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); 983 if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) { 984 return ERR_PTR(-EBUSY); 985 } 986 987 /* When given an identity address with existing identity 988 * resolving key, the connection needs to be established 989 * to a resolvable random address. 990 * 991 * Storing the resolvable random address is required here 992 * to handle connection failures. The address will later 993 * be resolved back into the original identity address 994 * from the connect request. 995 */ 996 irk = hci_find_irk_by_addr(hdev, dst, dst_type); 997 if (irk && bacmp(&irk->rpa, BDADDR_ANY)) { 998 dst = &irk->rpa; 999 dst_type = ADDR_LE_DEV_RANDOM; 1000 } 1001 1002 if (conn) { 1003 bacpy(&conn->dst, dst); 1004 } else { 1005 conn = hci_conn_add(hdev, LE_LINK, dst, role); 1006 if (!conn) 1007 return ERR_PTR(-ENOMEM); 1008 hci_conn_hold(conn); 1009 conn->pending_sec_level = sec_level; 1010 } 1011 1012 conn->dst_type = dst_type; 1013 conn->sec_level = BT_SECURITY_LOW; 1014 conn->conn_timeout = conn_timeout; 1015 1016 hci_req_init(&req, hdev); 1017 1018 /* Disable advertising if we're active. For master role 1019 * connections most controllers will refuse to connect if 1020 * advertising is enabled, and for slave role connections we 1021 * anyway have to disable it in order to start directed 1022 * advertising. 1023 */ 1024 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) { 1025 u8 enable = 0x00; 1026 hci_req_add(&req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), 1027 &enable); 1028 } 1029 1030 /* If requested to connect as slave use directed advertising */ 1031 if (conn->role == HCI_ROLE_SLAVE) { 1032 /* If we're active scanning most controllers are unable 1033 * to initiate advertising. Simply reject the attempt. 1034 */ 1035 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && 1036 hdev->le_scan_type == LE_SCAN_ACTIVE) { 1037 hci_req_purge(&req); 1038 hci_conn_del(conn); 1039 return ERR_PTR(-EBUSY); 1040 } 1041 1042 hci_req_directed_advertising(&req, conn); 1043 goto create_conn; 1044 } 1045 1046 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 1047 if (params) { 1048 conn->le_conn_min_interval = params->conn_min_interval; 1049 conn->le_conn_max_interval = params->conn_max_interval; 1050 conn->le_conn_latency = params->conn_latency; 1051 conn->le_supv_timeout = params->supervision_timeout; 1052 } else { 1053 conn->le_conn_min_interval = hdev->le_conn_min_interval; 1054 conn->le_conn_max_interval = hdev->le_conn_max_interval; 1055 conn->le_conn_latency = hdev->le_conn_latency; 1056 conn->le_supv_timeout = hdev->le_supv_timeout; 1057 } 1058 1059 /* If controller is scanning, we stop it since some controllers are 1060 * not able to scan and connect at the same time. Also set the 1061 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 1062 * handler for scan disabling knows to set the correct discovery 1063 * state. 1064 */ 1065 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 1066 hci_req_add_le_scan_disable(&req); 1067 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 1068 } 1069 1070 hci_req_add_le_create_conn(&req, conn, direct_rpa); 1071 1072 create_conn: 1073 err = hci_req_run(&req, create_le_conn_complete); 1074 if (err) { 1075 hci_conn_del(conn); 1076 return ERR_PTR(err); 1077 } 1078 1079 return conn; 1080 } 1081 1082 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type) 1083 { 1084 struct hci_conn *conn; 1085 1086 conn = hci_conn_hash_lookup_le(hdev, addr, type); 1087 if (!conn) 1088 return false; 1089 1090 if (conn->state != BT_CONNECTED) 1091 return false; 1092 1093 return true; 1094 } 1095 1096 /* This function requires the caller holds hdev->lock */ 1097 static int hci_explicit_conn_params_set(struct hci_dev *hdev, 1098 bdaddr_t *addr, u8 addr_type) 1099 { 1100 struct hci_conn_params *params; 1101 1102 if (is_connected(hdev, addr, addr_type)) 1103 return -EISCONN; 1104 1105 params = hci_conn_params_lookup(hdev, addr, addr_type); 1106 if (!params) { 1107 params = hci_conn_params_add(hdev, addr, addr_type); 1108 if (!params) 1109 return -ENOMEM; 1110 1111 /* If we created new params, mark them to be deleted in 1112 * hci_connect_le_scan_cleanup. It's different case than 1113 * existing disabled params, those will stay after cleanup. 1114 */ 1115 params->auto_connect = HCI_AUTO_CONN_EXPLICIT; 1116 } 1117 1118 /* We're trying to connect, so make sure params are at pend_le_conns */ 1119 if (params->auto_connect == HCI_AUTO_CONN_DISABLED || 1120 params->auto_connect == HCI_AUTO_CONN_REPORT || 1121 params->auto_connect == HCI_AUTO_CONN_EXPLICIT) { 1122 list_del_init(¶ms->action); 1123 list_add(¶ms->action, &hdev->pend_le_conns); 1124 } 1125 1126 params->explicit_connect = true; 1127 1128 BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type, 1129 params->auto_connect); 1130 1131 return 0; 1132 } 1133 1134 /* This function requires the caller holds hdev->lock */ 1135 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst, 1136 u8 dst_type, u8 sec_level, 1137 u16 conn_timeout) 1138 { 1139 struct hci_conn *conn; 1140 1141 /* Let's make sure that le is enabled.*/ 1142 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 1143 if (lmp_le_capable(hdev)) 1144 return ERR_PTR(-ECONNREFUSED); 1145 1146 return ERR_PTR(-EOPNOTSUPP); 1147 } 1148 1149 /* Some devices send ATT messages as soon as the physical link is 1150 * established. To be able to handle these ATT messages, the user- 1151 * space first establishes the connection and then starts the pairing 1152 * process. 1153 * 1154 * So if a hci_conn object already exists for the following connection 1155 * attempt, we simply update pending_sec_level and auth_type fields 1156 * and return the object found. 1157 */ 1158 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); 1159 if (conn) { 1160 if (conn->pending_sec_level < sec_level) 1161 conn->pending_sec_level = sec_level; 1162 goto done; 1163 } 1164 1165 BT_DBG("requesting refresh of dst_addr"); 1166 1167 conn = hci_conn_add(hdev, LE_LINK, dst, HCI_ROLE_MASTER); 1168 if (!conn) 1169 return ERR_PTR(-ENOMEM); 1170 1171 if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0) 1172 return ERR_PTR(-EBUSY); 1173 1174 conn->state = BT_CONNECT; 1175 set_bit(HCI_CONN_SCANNING, &conn->flags); 1176 conn->dst_type = dst_type; 1177 conn->sec_level = BT_SECURITY_LOW; 1178 conn->pending_sec_level = sec_level; 1179 conn->conn_timeout = conn_timeout; 1180 1181 hci_update_background_scan(hdev); 1182 1183 done: 1184 hci_conn_hold(conn); 1185 return conn; 1186 } 1187 1188 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst, 1189 u8 sec_level, u8 auth_type) 1190 { 1191 struct hci_conn *acl; 1192 1193 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 1194 if (lmp_bredr_capable(hdev)) 1195 return ERR_PTR(-ECONNREFUSED); 1196 1197 return ERR_PTR(-EOPNOTSUPP); 1198 } 1199 1200 acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst); 1201 if (!acl) { 1202 acl = hci_conn_add(hdev, ACL_LINK, dst, HCI_ROLE_MASTER); 1203 if (!acl) 1204 return ERR_PTR(-ENOMEM); 1205 } 1206 1207 hci_conn_hold(acl); 1208 1209 if (acl->state == BT_OPEN || acl->state == BT_CLOSED) { 1210 acl->sec_level = BT_SECURITY_LOW; 1211 acl->pending_sec_level = sec_level; 1212 acl->auth_type = auth_type; 1213 hci_acl_create_connection(acl); 1214 } 1215 1216 return acl; 1217 } 1218 1219 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, 1220 __u16 setting) 1221 { 1222 struct hci_conn *acl; 1223 struct hci_conn *sco; 1224 1225 acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING); 1226 if (IS_ERR(acl)) 1227 return acl; 1228 1229 sco = hci_conn_hash_lookup_ba(hdev, type, dst); 1230 if (!sco) { 1231 sco = hci_conn_add(hdev, type, dst, HCI_ROLE_MASTER); 1232 if (!sco) { 1233 hci_conn_drop(acl); 1234 return ERR_PTR(-ENOMEM); 1235 } 1236 } 1237 1238 acl->link = sco; 1239 sco->link = acl; 1240 1241 hci_conn_hold(sco); 1242 1243 sco->setting = setting; 1244 1245 if (acl->state == BT_CONNECTED && 1246 (sco->state == BT_OPEN || sco->state == BT_CLOSED)) { 1247 set_bit(HCI_CONN_POWER_SAVE, &acl->flags); 1248 hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON); 1249 1250 if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) { 1251 /* defer SCO setup until mode change completed */ 1252 set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags); 1253 return sco; 1254 } 1255 1256 hci_sco_setup(acl, 0x00); 1257 } 1258 1259 return sco; 1260 } 1261 1262 /* Check link security requirement */ 1263 int hci_conn_check_link_mode(struct hci_conn *conn) 1264 { 1265 BT_DBG("hcon %p", conn); 1266 1267 /* In Secure Connections Only mode, it is required that Secure 1268 * Connections is used and the link is encrypted with AES-CCM 1269 * using a P-256 authenticated combination key. 1270 */ 1271 if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) { 1272 if (!hci_conn_sc_enabled(conn) || 1273 !test_bit(HCI_CONN_AES_CCM, &conn->flags) || 1274 conn->key_type != HCI_LK_AUTH_COMBINATION_P256) 1275 return 0; 1276 } 1277 1278 if (hci_conn_ssp_enabled(conn) && 1279 !test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1280 return 0; 1281 1282 return 1; 1283 } 1284 1285 /* Authenticate remote device */ 1286 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type) 1287 { 1288 BT_DBG("hcon %p", conn); 1289 1290 if (conn->pending_sec_level > sec_level) 1291 sec_level = conn->pending_sec_level; 1292 1293 if (sec_level > conn->sec_level) 1294 conn->pending_sec_level = sec_level; 1295 else if (test_bit(HCI_CONN_AUTH, &conn->flags)) 1296 return 1; 1297 1298 /* Make sure we preserve an existing MITM requirement*/ 1299 auth_type |= (conn->auth_type & 0x01); 1300 1301 conn->auth_type = auth_type; 1302 1303 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) { 1304 struct hci_cp_auth_requested cp; 1305 1306 cp.handle = cpu_to_le16(conn->handle); 1307 hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED, 1308 sizeof(cp), &cp); 1309 1310 /* If we're already encrypted set the REAUTH_PEND flag, 1311 * otherwise set the ENCRYPT_PEND. 1312 */ 1313 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1314 set_bit(HCI_CONN_REAUTH_PEND, &conn->flags); 1315 else 1316 set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); 1317 } 1318 1319 return 0; 1320 } 1321 1322 /* Encrypt the the link */ 1323 static void hci_conn_encrypt(struct hci_conn *conn) 1324 { 1325 BT_DBG("hcon %p", conn); 1326 1327 if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) { 1328 struct hci_cp_set_conn_encrypt cp; 1329 cp.handle = cpu_to_le16(conn->handle); 1330 cp.encrypt = 0x01; 1331 hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp), 1332 &cp); 1333 } 1334 } 1335 1336 /* Enable security */ 1337 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type, 1338 bool initiator) 1339 { 1340 BT_DBG("hcon %p", conn); 1341 1342 if (conn->type == LE_LINK) 1343 return smp_conn_security(conn, sec_level); 1344 1345 /* For sdp we don't need the link key. */ 1346 if (sec_level == BT_SECURITY_SDP) 1347 return 1; 1348 1349 /* For non 2.1 devices and low security level we don't need the link 1350 key. */ 1351 if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn)) 1352 return 1; 1353 1354 /* For other security levels we need the link key. */ 1355 if (!test_bit(HCI_CONN_AUTH, &conn->flags)) 1356 goto auth; 1357 1358 /* An authenticated FIPS approved combination key has sufficient 1359 * security for security level 4. */ 1360 if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256 && 1361 sec_level == BT_SECURITY_FIPS) 1362 goto encrypt; 1363 1364 /* An authenticated combination key has sufficient security for 1365 security level 3. */ 1366 if ((conn->key_type == HCI_LK_AUTH_COMBINATION_P192 || 1367 conn->key_type == HCI_LK_AUTH_COMBINATION_P256) && 1368 sec_level == BT_SECURITY_HIGH) 1369 goto encrypt; 1370 1371 /* An unauthenticated combination key has sufficient security for 1372 security level 1 and 2. */ 1373 if ((conn->key_type == HCI_LK_UNAUTH_COMBINATION_P192 || 1374 conn->key_type == HCI_LK_UNAUTH_COMBINATION_P256) && 1375 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW)) 1376 goto encrypt; 1377 1378 /* A combination key has always sufficient security for the security 1379 levels 1 or 2. High security level requires the combination key 1380 is generated using maximum PIN code length (16). 1381 For pre 2.1 units. */ 1382 if (conn->key_type == HCI_LK_COMBINATION && 1383 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW || 1384 conn->pin_length == 16)) 1385 goto encrypt; 1386 1387 auth: 1388 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) 1389 return 0; 1390 1391 if (initiator) 1392 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags); 1393 1394 if (!hci_conn_auth(conn, sec_level, auth_type)) 1395 return 0; 1396 1397 encrypt: 1398 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) { 1399 /* Ensure that the encryption key size has been read, 1400 * otherwise stall the upper layer responses. 1401 */ 1402 if (!conn->enc_key_size) 1403 return 0; 1404 1405 /* Nothing else needed, all requirements are met */ 1406 return 1; 1407 } 1408 1409 hci_conn_encrypt(conn); 1410 return 0; 1411 } 1412 EXPORT_SYMBOL(hci_conn_security); 1413 1414 /* Check secure link requirement */ 1415 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level) 1416 { 1417 BT_DBG("hcon %p", conn); 1418 1419 /* Accept if non-secure or higher security level is required */ 1420 if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS) 1421 return 1; 1422 1423 /* Accept if secure or higher security level is already present */ 1424 if (conn->sec_level == BT_SECURITY_HIGH || 1425 conn->sec_level == BT_SECURITY_FIPS) 1426 return 1; 1427 1428 /* Reject not secure link */ 1429 return 0; 1430 } 1431 EXPORT_SYMBOL(hci_conn_check_secure); 1432 1433 /* Switch role */ 1434 int hci_conn_switch_role(struct hci_conn *conn, __u8 role) 1435 { 1436 BT_DBG("hcon %p", conn); 1437 1438 if (role == conn->role) 1439 return 1; 1440 1441 if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) { 1442 struct hci_cp_switch_role cp; 1443 bacpy(&cp.bdaddr, &conn->dst); 1444 cp.role = role; 1445 hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp); 1446 } 1447 1448 return 0; 1449 } 1450 EXPORT_SYMBOL(hci_conn_switch_role); 1451 1452 /* Enter active mode */ 1453 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active) 1454 { 1455 struct hci_dev *hdev = conn->hdev; 1456 1457 BT_DBG("hcon %p mode %d", conn, conn->mode); 1458 1459 if (conn->mode != HCI_CM_SNIFF) 1460 goto timer; 1461 1462 if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active) 1463 goto timer; 1464 1465 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 1466 struct hci_cp_exit_sniff_mode cp; 1467 cp.handle = cpu_to_le16(conn->handle); 1468 hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp); 1469 } 1470 1471 timer: 1472 if (hdev->idle_timeout > 0) 1473 queue_delayed_work(hdev->workqueue, &conn->idle_work, 1474 msecs_to_jiffies(hdev->idle_timeout)); 1475 } 1476 1477 /* Drop all connection on the device */ 1478 void hci_conn_hash_flush(struct hci_dev *hdev) 1479 { 1480 struct hci_conn_hash *h = &hdev->conn_hash; 1481 struct hci_conn *c, *n; 1482 1483 BT_DBG("hdev %s", hdev->name); 1484 1485 list_for_each_entry_safe(c, n, &h->list, list) { 1486 c->state = BT_CLOSED; 1487 1488 hci_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM); 1489 hci_conn_del(c); 1490 } 1491 } 1492 1493 /* Check pending connect attempts */ 1494 void hci_conn_check_pending(struct hci_dev *hdev) 1495 { 1496 struct hci_conn *conn; 1497 1498 BT_DBG("hdev %s", hdev->name); 1499 1500 hci_dev_lock(hdev); 1501 1502 conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2); 1503 if (conn) 1504 hci_acl_create_connection(conn); 1505 1506 hci_dev_unlock(hdev); 1507 } 1508 1509 static u32 get_link_mode(struct hci_conn *conn) 1510 { 1511 u32 link_mode = 0; 1512 1513 if (conn->role == HCI_ROLE_MASTER) 1514 link_mode |= HCI_LM_MASTER; 1515 1516 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1517 link_mode |= HCI_LM_ENCRYPT; 1518 1519 if (test_bit(HCI_CONN_AUTH, &conn->flags)) 1520 link_mode |= HCI_LM_AUTH; 1521 1522 if (test_bit(HCI_CONN_SECURE, &conn->flags)) 1523 link_mode |= HCI_LM_SECURE; 1524 1525 if (test_bit(HCI_CONN_FIPS, &conn->flags)) 1526 link_mode |= HCI_LM_FIPS; 1527 1528 return link_mode; 1529 } 1530 1531 int hci_get_conn_list(void __user *arg) 1532 { 1533 struct hci_conn *c; 1534 struct hci_conn_list_req req, *cl; 1535 struct hci_conn_info *ci; 1536 struct hci_dev *hdev; 1537 int n = 0, size, err; 1538 1539 if (copy_from_user(&req, arg, sizeof(req))) 1540 return -EFAULT; 1541 1542 if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci)) 1543 return -EINVAL; 1544 1545 size = sizeof(req) + req.conn_num * sizeof(*ci); 1546 1547 cl = kmalloc(size, GFP_KERNEL); 1548 if (!cl) 1549 return -ENOMEM; 1550 1551 hdev = hci_dev_get(req.dev_id); 1552 if (!hdev) { 1553 kfree(cl); 1554 return -ENODEV; 1555 } 1556 1557 ci = cl->conn_info; 1558 1559 hci_dev_lock(hdev); 1560 list_for_each_entry(c, &hdev->conn_hash.list, list) { 1561 bacpy(&(ci + n)->bdaddr, &c->dst); 1562 (ci + n)->handle = c->handle; 1563 (ci + n)->type = c->type; 1564 (ci + n)->out = c->out; 1565 (ci + n)->state = c->state; 1566 (ci + n)->link_mode = get_link_mode(c); 1567 if (++n >= req.conn_num) 1568 break; 1569 } 1570 hci_dev_unlock(hdev); 1571 1572 cl->dev_id = hdev->id; 1573 cl->conn_num = n; 1574 size = sizeof(req) + n * sizeof(*ci); 1575 1576 hci_dev_put(hdev); 1577 1578 err = copy_to_user(arg, cl, size); 1579 kfree(cl); 1580 1581 return err ? -EFAULT : 0; 1582 } 1583 1584 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg) 1585 { 1586 struct hci_conn_info_req req; 1587 struct hci_conn_info ci; 1588 struct hci_conn *conn; 1589 char __user *ptr = arg + sizeof(req); 1590 1591 if (copy_from_user(&req, arg, sizeof(req))) 1592 return -EFAULT; 1593 1594 hci_dev_lock(hdev); 1595 conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr); 1596 if (conn) { 1597 bacpy(&ci.bdaddr, &conn->dst); 1598 ci.handle = conn->handle; 1599 ci.type = conn->type; 1600 ci.out = conn->out; 1601 ci.state = conn->state; 1602 ci.link_mode = get_link_mode(conn); 1603 } 1604 hci_dev_unlock(hdev); 1605 1606 if (!conn) 1607 return -ENOENT; 1608 1609 return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0; 1610 } 1611 1612 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg) 1613 { 1614 struct hci_auth_info_req req; 1615 struct hci_conn *conn; 1616 1617 if (copy_from_user(&req, arg, sizeof(req))) 1618 return -EFAULT; 1619 1620 hci_dev_lock(hdev); 1621 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr); 1622 if (conn) 1623 req.type = conn->auth_type; 1624 hci_dev_unlock(hdev); 1625 1626 if (!conn) 1627 return -ENOENT; 1628 1629 return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0; 1630 } 1631 1632 struct hci_chan *hci_chan_create(struct hci_conn *conn) 1633 { 1634 struct hci_dev *hdev = conn->hdev; 1635 struct hci_chan *chan; 1636 1637 BT_DBG("%s hcon %p", hdev->name, conn); 1638 1639 if (test_bit(HCI_CONN_DROP, &conn->flags)) { 1640 BT_DBG("Refusing to create new hci_chan"); 1641 return NULL; 1642 } 1643 1644 chan = kzalloc(sizeof(*chan), GFP_KERNEL); 1645 if (!chan) 1646 return NULL; 1647 1648 chan->conn = hci_conn_get(conn); 1649 skb_queue_head_init(&chan->data_q); 1650 chan->state = BT_CONNECTED; 1651 1652 list_add_rcu(&chan->list, &conn->chan_list); 1653 1654 return chan; 1655 } 1656 1657 void hci_chan_del(struct hci_chan *chan) 1658 { 1659 struct hci_conn *conn = chan->conn; 1660 struct hci_dev *hdev = conn->hdev; 1661 1662 BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan); 1663 1664 list_del_rcu(&chan->list); 1665 1666 synchronize_rcu(); 1667 1668 /* Prevent new hci_chan's to be created for this hci_conn */ 1669 set_bit(HCI_CONN_DROP, &conn->flags); 1670 1671 hci_conn_put(conn); 1672 1673 skb_queue_purge(&chan->data_q); 1674 kfree(chan); 1675 } 1676 1677 void hci_chan_list_flush(struct hci_conn *conn) 1678 { 1679 struct hci_chan *chan, *n; 1680 1681 BT_DBG("hcon %p", conn); 1682 1683 list_for_each_entry_safe(chan, n, &conn->chan_list, list) 1684 hci_chan_del(chan); 1685 } 1686 1687 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon, 1688 __u16 handle) 1689 { 1690 struct hci_chan *hchan; 1691 1692 list_for_each_entry(hchan, &hcon->chan_list, list) { 1693 if (hchan->handle == handle) 1694 return hchan; 1695 } 1696 1697 return NULL; 1698 } 1699 1700 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle) 1701 { 1702 struct hci_conn_hash *h = &hdev->conn_hash; 1703 struct hci_conn *hcon; 1704 struct hci_chan *hchan = NULL; 1705 1706 rcu_read_lock(); 1707 1708 list_for_each_entry_rcu(hcon, &h->list, list) { 1709 hchan = __hci_chan_lookup_handle(hcon, handle); 1710 if (hchan) 1711 break; 1712 } 1713 1714 rcu_read_unlock(); 1715 1716 return hchan; 1717 } 1718