1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 Copyright 2023 NXP 5 6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License version 2 as 10 published by the Free Software Foundation; 11 12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 23 SOFTWARE IS DISCLAIMED. 24 */ 25 26 /* Bluetooth HCI connection handling. */ 27 28 #include <linux/export.h> 29 #include <linux/debugfs.h> 30 31 #include <net/bluetooth/bluetooth.h> 32 #include <net/bluetooth/hci_core.h> 33 #include <net/bluetooth/l2cap.h> 34 #include <net/bluetooth/iso.h> 35 #include <net/bluetooth/mgmt.h> 36 37 #include "hci_request.h" 38 #include "smp.h" 39 #include "a2mp.h" 40 #include "eir.h" 41 42 struct sco_param { 43 u16 pkt_type; 44 u16 max_latency; 45 u8 retrans_effort; 46 }; 47 48 struct conn_handle_t { 49 struct hci_conn *conn; 50 __u16 handle; 51 }; 52 53 static const struct sco_param esco_param_cvsd[] = { 54 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a, 0x01 }, /* S3 */ 55 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007, 0x01 }, /* S2 */ 56 { EDR_ESCO_MASK | ESCO_EV3, 0x0007, 0x01 }, /* S1 */ 57 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0x01 }, /* D1 */ 58 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0x01 }, /* D0 */ 59 }; 60 61 static const struct sco_param sco_param_cvsd[] = { 62 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0xff }, /* D1 */ 63 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0xff }, /* D0 */ 64 }; 65 66 static const struct sco_param esco_param_msbc[] = { 67 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d, 0x02 }, /* T2 */ 68 { EDR_ESCO_MASK | ESCO_EV3, 0x0008, 0x02 }, /* T1 */ 69 }; 70 71 /* This function requires the caller holds hdev->lock */ 72 static void hci_connect_le_scan_cleanup(struct hci_conn *conn, u8 status) 73 { 74 struct hci_conn_params *params; 75 struct hci_dev *hdev = conn->hdev; 76 struct smp_irk *irk; 77 bdaddr_t *bdaddr; 78 u8 bdaddr_type; 79 80 bdaddr = &conn->dst; 81 bdaddr_type = conn->dst_type; 82 83 /* Check if we need to convert to identity address */ 84 irk = hci_get_irk(hdev, bdaddr, bdaddr_type); 85 if (irk) { 86 bdaddr = &irk->bdaddr; 87 bdaddr_type = irk->addr_type; 88 } 89 90 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr, 91 bdaddr_type); 92 if (!params) 93 return; 94 95 if (params->conn) { 96 hci_conn_drop(params->conn); 97 hci_conn_put(params->conn); 98 params->conn = NULL; 99 } 100 101 if (!params->explicit_connect) 102 return; 103 104 /* If the status indicates successful cancellation of 105 * the attempt (i.e. Unknown Connection Id) there's no point of 106 * notifying failure since we'll go back to keep trying to 107 * connect. The only exception is explicit connect requests 108 * where a timeout + cancel does indicate an actual failure. 109 */ 110 if (status && status != HCI_ERROR_UNKNOWN_CONN_ID) 111 mgmt_connect_failed(hdev, &conn->dst, conn->type, 112 conn->dst_type, status); 113 114 /* The connection attempt was doing scan for new RPA, and is 115 * in scan phase. If params are not associated with any other 116 * autoconnect action, remove them completely. If they are, just unmark 117 * them as waiting for connection, by clearing explicit_connect field. 118 */ 119 params->explicit_connect = false; 120 121 hci_pend_le_list_del_init(params); 122 123 switch (params->auto_connect) { 124 case HCI_AUTO_CONN_EXPLICIT: 125 hci_conn_params_del(hdev, bdaddr, bdaddr_type); 126 /* return instead of break to avoid duplicate scan update */ 127 return; 128 case HCI_AUTO_CONN_DIRECT: 129 case HCI_AUTO_CONN_ALWAYS: 130 hci_pend_le_list_add(params, &hdev->pend_le_conns); 131 break; 132 case HCI_AUTO_CONN_REPORT: 133 hci_pend_le_list_add(params, &hdev->pend_le_reports); 134 break; 135 default: 136 break; 137 } 138 139 hci_update_passive_scan(hdev); 140 } 141 142 static void hci_conn_cleanup(struct hci_conn *conn) 143 { 144 struct hci_dev *hdev = conn->hdev; 145 146 if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags)) 147 hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type); 148 149 if (test_and_clear_bit(HCI_CONN_FLUSH_KEY, &conn->flags)) 150 hci_remove_link_key(hdev, &conn->dst); 151 152 hci_chan_list_flush(conn); 153 154 hci_conn_hash_del(hdev, conn); 155 156 if (conn->cleanup) 157 conn->cleanup(conn); 158 159 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) { 160 switch (conn->setting & SCO_AIRMODE_MASK) { 161 case SCO_AIRMODE_CVSD: 162 case SCO_AIRMODE_TRANSP: 163 if (hdev->notify) 164 hdev->notify(hdev, HCI_NOTIFY_DISABLE_SCO); 165 break; 166 } 167 } else { 168 if (hdev->notify) 169 hdev->notify(hdev, HCI_NOTIFY_CONN_DEL); 170 } 171 172 hci_conn_del_sysfs(conn); 173 174 debugfs_remove_recursive(conn->debugfs); 175 176 hci_dev_put(hdev); 177 178 hci_conn_put(conn); 179 } 180 181 static void le_scan_cleanup(struct work_struct *work) 182 { 183 struct hci_conn *conn = container_of(work, struct hci_conn, 184 le_scan_cleanup); 185 struct hci_dev *hdev = conn->hdev; 186 struct hci_conn *c = NULL; 187 188 BT_DBG("%s hcon %p", hdev->name, conn); 189 190 hci_dev_lock(hdev); 191 192 /* Check that the hci_conn is still around */ 193 rcu_read_lock(); 194 list_for_each_entry_rcu(c, &hdev->conn_hash.list, list) { 195 if (c == conn) 196 break; 197 } 198 rcu_read_unlock(); 199 200 if (c == conn) { 201 hci_connect_le_scan_cleanup(conn, 0x00); 202 hci_conn_cleanup(conn); 203 } 204 205 hci_dev_unlock(hdev); 206 hci_dev_put(hdev); 207 hci_conn_put(conn); 208 } 209 210 static void hci_connect_le_scan_remove(struct hci_conn *conn) 211 { 212 BT_DBG("%s hcon %p", conn->hdev->name, conn); 213 214 /* We can't call hci_conn_del/hci_conn_cleanup here since that 215 * could deadlock with another hci_conn_del() call that's holding 216 * hci_dev_lock and doing cancel_delayed_work_sync(&conn->disc_work). 217 * Instead, grab temporary extra references to the hci_dev and 218 * hci_conn and perform the necessary cleanup in a separate work 219 * callback. 220 */ 221 222 hci_dev_hold(conn->hdev); 223 hci_conn_get(conn); 224 225 /* Even though we hold a reference to the hdev, many other 226 * things might get cleaned up meanwhile, including the hdev's 227 * own workqueue, so we can't use that for scheduling. 228 */ 229 schedule_work(&conn->le_scan_cleanup); 230 } 231 232 static void hci_acl_create_connection(struct hci_conn *conn) 233 { 234 struct hci_dev *hdev = conn->hdev; 235 struct inquiry_entry *ie; 236 struct hci_cp_create_conn cp; 237 238 BT_DBG("hcon %p", conn); 239 240 /* Many controllers disallow HCI Create Connection while it is doing 241 * HCI Inquiry. So we cancel the Inquiry first before issuing HCI Create 242 * Connection. This may cause the MGMT discovering state to become false 243 * without user space's request but it is okay since the MGMT Discovery 244 * APIs do not promise that discovery should be done forever. Instead, 245 * the user space monitors the status of MGMT discovering and it may 246 * request for discovery again when this flag becomes false. 247 */ 248 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 249 /* Put this connection to "pending" state so that it will be 250 * executed after the inquiry cancel command complete event. 251 */ 252 conn->state = BT_CONNECT2; 253 hci_send_cmd(hdev, HCI_OP_INQUIRY_CANCEL, 0, NULL); 254 return; 255 } 256 257 conn->state = BT_CONNECT; 258 conn->out = true; 259 conn->role = HCI_ROLE_MASTER; 260 261 conn->attempt++; 262 263 conn->link_policy = hdev->link_policy; 264 265 memset(&cp, 0, sizeof(cp)); 266 bacpy(&cp.bdaddr, &conn->dst); 267 cp.pscan_rep_mode = 0x02; 268 269 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 270 if (ie) { 271 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) { 272 cp.pscan_rep_mode = ie->data.pscan_rep_mode; 273 cp.pscan_mode = ie->data.pscan_mode; 274 cp.clock_offset = ie->data.clock_offset | 275 cpu_to_le16(0x8000); 276 } 277 278 memcpy(conn->dev_class, ie->data.dev_class, 3); 279 } 280 281 cp.pkt_type = cpu_to_le16(conn->pkt_type); 282 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER)) 283 cp.role_switch = 0x01; 284 else 285 cp.role_switch = 0x00; 286 287 hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp); 288 } 289 290 int hci_disconnect(struct hci_conn *conn, __u8 reason) 291 { 292 BT_DBG("hcon %p", conn); 293 294 /* When we are central of an established connection and it enters 295 * the disconnect timeout, then go ahead and try to read the 296 * current clock offset. Processing of the result is done 297 * within the event handling and hci_clock_offset_evt function. 298 */ 299 if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER && 300 (conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) { 301 struct hci_dev *hdev = conn->hdev; 302 struct hci_cp_read_clock_offset clkoff_cp; 303 304 clkoff_cp.handle = cpu_to_le16(conn->handle); 305 hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp), 306 &clkoff_cp); 307 } 308 309 return hci_abort_conn(conn, reason); 310 } 311 312 static void hci_add_sco(struct hci_conn *conn, __u16 handle) 313 { 314 struct hci_dev *hdev = conn->hdev; 315 struct hci_cp_add_sco cp; 316 317 BT_DBG("hcon %p", conn); 318 319 conn->state = BT_CONNECT; 320 conn->out = true; 321 322 conn->attempt++; 323 324 cp.handle = cpu_to_le16(handle); 325 cp.pkt_type = cpu_to_le16(conn->pkt_type); 326 327 hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp); 328 } 329 330 static bool find_next_esco_param(struct hci_conn *conn, 331 const struct sco_param *esco_param, int size) 332 { 333 if (!conn->parent) 334 return false; 335 336 for (; conn->attempt <= size; conn->attempt++) { 337 if (lmp_esco_2m_capable(conn->parent) || 338 (esco_param[conn->attempt - 1].pkt_type & ESCO_2EV3)) 339 break; 340 BT_DBG("hcon %p skipped attempt %d, eSCO 2M not supported", 341 conn, conn->attempt); 342 } 343 344 return conn->attempt <= size; 345 } 346 347 static int configure_datapath_sync(struct hci_dev *hdev, struct bt_codec *codec) 348 { 349 int err; 350 __u8 vnd_len, *vnd_data = NULL; 351 struct hci_op_configure_data_path *cmd = NULL; 352 353 err = hdev->get_codec_config_data(hdev, ESCO_LINK, codec, &vnd_len, 354 &vnd_data); 355 if (err < 0) 356 goto error; 357 358 cmd = kzalloc(sizeof(*cmd) + vnd_len, GFP_KERNEL); 359 if (!cmd) { 360 err = -ENOMEM; 361 goto error; 362 } 363 364 err = hdev->get_data_path_id(hdev, &cmd->data_path_id); 365 if (err < 0) 366 goto error; 367 368 cmd->vnd_len = vnd_len; 369 memcpy(cmd->vnd_data, vnd_data, vnd_len); 370 371 cmd->direction = 0x00; 372 __hci_cmd_sync_status(hdev, HCI_CONFIGURE_DATA_PATH, 373 sizeof(*cmd) + vnd_len, cmd, HCI_CMD_TIMEOUT); 374 375 cmd->direction = 0x01; 376 err = __hci_cmd_sync_status(hdev, HCI_CONFIGURE_DATA_PATH, 377 sizeof(*cmd) + vnd_len, cmd, 378 HCI_CMD_TIMEOUT); 379 error: 380 381 kfree(cmd); 382 kfree(vnd_data); 383 return err; 384 } 385 386 static int hci_enhanced_setup_sync(struct hci_dev *hdev, void *data) 387 { 388 struct conn_handle_t *conn_handle = data; 389 struct hci_conn *conn = conn_handle->conn; 390 __u16 handle = conn_handle->handle; 391 struct hci_cp_enhanced_setup_sync_conn cp; 392 const struct sco_param *param; 393 394 kfree(conn_handle); 395 396 bt_dev_dbg(hdev, "hcon %p", conn); 397 398 /* for offload use case, codec needs to configured before opening SCO */ 399 if (conn->codec.data_path) 400 configure_datapath_sync(hdev, &conn->codec); 401 402 conn->state = BT_CONNECT; 403 conn->out = true; 404 405 conn->attempt++; 406 407 memset(&cp, 0x00, sizeof(cp)); 408 409 cp.handle = cpu_to_le16(handle); 410 411 cp.tx_bandwidth = cpu_to_le32(0x00001f40); 412 cp.rx_bandwidth = cpu_to_le32(0x00001f40); 413 414 switch (conn->codec.id) { 415 case BT_CODEC_MSBC: 416 if (!find_next_esco_param(conn, esco_param_msbc, 417 ARRAY_SIZE(esco_param_msbc))) 418 return -EINVAL; 419 420 param = &esco_param_msbc[conn->attempt - 1]; 421 cp.tx_coding_format.id = 0x05; 422 cp.rx_coding_format.id = 0x05; 423 cp.tx_codec_frame_size = __cpu_to_le16(60); 424 cp.rx_codec_frame_size = __cpu_to_le16(60); 425 cp.in_bandwidth = __cpu_to_le32(32000); 426 cp.out_bandwidth = __cpu_to_le32(32000); 427 cp.in_coding_format.id = 0x04; 428 cp.out_coding_format.id = 0x04; 429 cp.in_coded_data_size = __cpu_to_le16(16); 430 cp.out_coded_data_size = __cpu_to_le16(16); 431 cp.in_pcm_data_format = 2; 432 cp.out_pcm_data_format = 2; 433 cp.in_pcm_sample_payload_msb_pos = 0; 434 cp.out_pcm_sample_payload_msb_pos = 0; 435 cp.in_data_path = conn->codec.data_path; 436 cp.out_data_path = conn->codec.data_path; 437 cp.in_transport_unit_size = 1; 438 cp.out_transport_unit_size = 1; 439 break; 440 441 case BT_CODEC_TRANSPARENT: 442 if (!find_next_esco_param(conn, esco_param_msbc, 443 ARRAY_SIZE(esco_param_msbc))) 444 return false; 445 param = &esco_param_msbc[conn->attempt - 1]; 446 cp.tx_coding_format.id = 0x03; 447 cp.rx_coding_format.id = 0x03; 448 cp.tx_codec_frame_size = __cpu_to_le16(60); 449 cp.rx_codec_frame_size = __cpu_to_le16(60); 450 cp.in_bandwidth = __cpu_to_le32(0x1f40); 451 cp.out_bandwidth = __cpu_to_le32(0x1f40); 452 cp.in_coding_format.id = 0x03; 453 cp.out_coding_format.id = 0x03; 454 cp.in_coded_data_size = __cpu_to_le16(16); 455 cp.out_coded_data_size = __cpu_to_le16(16); 456 cp.in_pcm_data_format = 2; 457 cp.out_pcm_data_format = 2; 458 cp.in_pcm_sample_payload_msb_pos = 0; 459 cp.out_pcm_sample_payload_msb_pos = 0; 460 cp.in_data_path = conn->codec.data_path; 461 cp.out_data_path = conn->codec.data_path; 462 cp.in_transport_unit_size = 1; 463 cp.out_transport_unit_size = 1; 464 break; 465 466 case BT_CODEC_CVSD: 467 if (conn->parent && lmp_esco_capable(conn->parent)) { 468 if (!find_next_esco_param(conn, esco_param_cvsd, 469 ARRAY_SIZE(esco_param_cvsd))) 470 return -EINVAL; 471 param = &esco_param_cvsd[conn->attempt - 1]; 472 } else { 473 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd)) 474 return -EINVAL; 475 param = &sco_param_cvsd[conn->attempt - 1]; 476 } 477 cp.tx_coding_format.id = 2; 478 cp.rx_coding_format.id = 2; 479 cp.tx_codec_frame_size = __cpu_to_le16(60); 480 cp.rx_codec_frame_size = __cpu_to_le16(60); 481 cp.in_bandwidth = __cpu_to_le32(16000); 482 cp.out_bandwidth = __cpu_to_le32(16000); 483 cp.in_coding_format.id = 4; 484 cp.out_coding_format.id = 4; 485 cp.in_coded_data_size = __cpu_to_le16(16); 486 cp.out_coded_data_size = __cpu_to_le16(16); 487 cp.in_pcm_data_format = 2; 488 cp.out_pcm_data_format = 2; 489 cp.in_pcm_sample_payload_msb_pos = 0; 490 cp.out_pcm_sample_payload_msb_pos = 0; 491 cp.in_data_path = conn->codec.data_path; 492 cp.out_data_path = conn->codec.data_path; 493 cp.in_transport_unit_size = 16; 494 cp.out_transport_unit_size = 16; 495 break; 496 default: 497 return -EINVAL; 498 } 499 500 cp.retrans_effort = param->retrans_effort; 501 cp.pkt_type = __cpu_to_le16(param->pkt_type); 502 cp.max_latency = __cpu_to_le16(param->max_latency); 503 504 if (hci_send_cmd(hdev, HCI_OP_ENHANCED_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0) 505 return -EIO; 506 507 return 0; 508 } 509 510 static bool hci_setup_sync_conn(struct hci_conn *conn, __u16 handle) 511 { 512 struct hci_dev *hdev = conn->hdev; 513 struct hci_cp_setup_sync_conn cp; 514 const struct sco_param *param; 515 516 bt_dev_dbg(hdev, "hcon %p", conn); 517 518 conn->state = BT_CONNECT; 519 conn->out = true; 520 521 conn->attempt++; 522 523 cp.handle = cpu_to_le16(handle); 524 525 cp.tx_bandwidth = cpu_to_le32(0x00001f40); 526 cp.rx_bandwidth = cpu_to_le32(0x00001f40); 527 cp.voice_setting = cpu_to_le16(conn->setting); 528 529 switch (conn->setting & SCO_AIRMODE_MASK) { 530 case SCO_AIRMODE_TRANSP: 531 if (!find_next_esco_param(conn, esco_param_msbc, 532 ARRAY_SIZE(esco_param_msbc))) 533 return false; 534 param = &esco_param_msbc[conn->attempt - 1]; 535 break; 536 case SCO_AIRMODE_CVSD: 537 if (conn->parent && lmp_esco_capable(conn->parent)) { 538 if (!find_next_esco_param(conn, esco_param_cvsd, 539 ARRAY_SIZE(esco_param_cvsd))) 540 return false; 541 param = &esco_param_cvsd[conn->attempt - 1]; 542 } else { 543 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd)) 544 return false; 545 param = &sco_param_cvsd[conn->attempt - 1]; 546 } 547 break; 548 default: 549 return false; 550 } 551 552 cp.retrans_effort = param->retrans_effort; 553 cp.pkt_type = __cpu_to_le16(param->pkt_type); 554 cp.max_latency = __cpu_to_le16(param->max_latency); 555 556 if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0) 557 return false; 558 559 return true; 560 } 561 562 bool hci_setup_sync(struct hci_conn *conn, __u16 handle) 563 { 564 int result; 565 struct conn_handle_t *conn_handle; 566 567 if (enhanced_sync_conn_capable(conn->hdev)) { 568 conn_handle = kzalloc(sizeof(*conn_handle), GFP_KERNEL); 569 570 if (!conn_handle) 571 return false; 572 573 conn_handle->conn = conn; 574 conn_handle->handle = handle; 575 result = hci_cmd_sync_queue(conn->hdev, hci_enhanced_setup_sync, 576 conn_handle, NULL); 577 if (result < 0) 578 kfree(conn_handle); 579 580 return result == 0; 581 } 582 583 return hci_setup_sync_conn(conn, handle); 584 } 585 586 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency, 587 u16 to_multiplier) 588 { 589 struct hci_dev *hdev = conn->hdev; 590 struct hci_conn_params *params; 591 struct hci_cp_le_conn_update cp; 592 593 hci_dev_lock(hdev); 594 595 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 596 if (params) { 597 params->conn_min_interval = min; 598 params->conn_max_interval = max; 599 params->conn_latency = latency; 600 params->supervision_timeout = to_multiplier; 601 } 602 603 hci_dev_unlock(hdev); 604 605 memset(&cp, 0, sizeof(cp)); 606 cp.handle = cpu_to_le16(conn->handle); 607 cp.conn_interval_min = cpu_to_le16(min); 608 cp.conn_interval_max = cpu_to_le16(max); 609 cp.conn_latency = cpu_to_le16(latency); 610 cp.supervision_timeout = cpu_to_le16(to_multiplier); 611 cp.min_ce_len = cpu_to_le16(0x0000); 612 cp.max_ce_len = cpu_to_le16(0x0000); 613 614 hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp); 615 616 if (params) 617 return 0x01; 618 619 return 0x00; 620 } 621 622 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand, 623 __u8 ltk[16], __u8 key_size) 624 { 625 struct hci_dev *hdev = conn->hdev; 626 struct hci_cp_le_start_enc cp; 627 628 BT_DBG("hcon %p", conn); 629 630 memset(&cp, 0, sizeof(cp)); 631 632 cp.handle = cpu_to_le16(conn->handle); 633 cp.rand = rand; 634 cp.ediv = ediv; 635 memcpy(cp.ltk, ltk, key_size); 636 637 hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp); 638 } 639 640 /* Device _must_ be locked */ 641 void hci_sco_setup(struct hci_conn *conn, __u8 status) 642 { 643 struct hci_link *link; 644 645 link = list_first_entry_or_null(&conn->link_list, struct hci_link, list); 646 if (!link || !link->conn) 647 return; 648 649 BT_DBG("hcon %p", conn); 650 651 if (!status) { 652 if (lmp_esco_capable(conn->hdev)) 653 hci_setup_sync(link->conn, conn->handle); 654 else 655 hci_add_sco(link->conn, conn->handle); 656 } else { 657 hci_connect_cfm(link->conn, status); 658 hci_conn_del(link->conn); 659 } 660 } 661 662 static void hci_conn_timeout(struct work_struct *work) 663 { 664 struct hci_conn *conn = container_of(work, struct hci_conn, 665 disc_work.work); 666 int refcnt = atomic_read(&conn->refcnt); 667 668 BT_DBG("hcon %p state %s", conn, state_to_string(conn->state)); 669 670 WARN_ON(refcnt < 0); 671 672 /* FIXME: It was observed that in pairing failed scenario, refcnt 673 * drops below 0. Probably this is because l2cap_conn_del calls 674 * l2cap_chan_del for each channel, and inside l2cap_chan_del conn is 675 * dropped. After that loop hci_chan_del is called which also drops 676 * conn. For now make sure that ACL is alive if refcnt is higher then 0, 677 * otherwise drop it. 678 */ 679 if (refcnt > 0) 680 return; 681 682 /* LE connections in scanning state need special handling */ 683 if (conn->state == BT_CONNECT && conn->type == LE_LINK && 684 test_bit(HCI_CONN_SCANNING, &conn->flags)) { 685 hci_connect_le_scan_remove(conn); 686 return; 687 } 688 689 hci_abort_conn(conn, hci_proto_disconn_ind(conn)); 690 } 691 692 /* Enter sniff mode */ 693 static void hci_conn_idle(struct work_struct *work) 694 { 695 struct hci_conn *conn = container_of(work, struct hci_conn, 696 idle_work.work); 697 struct hci_dev *hdev = conn->hdev; 698 699 BT_DBG("hcon %p mode %d", conn, conn->mode); 700 701 if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn)) 702 return; 703 704 if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF)) 705 return; 706 707 if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) { 708 struct hci_cp_sniff_subrate cp; 709 cp.handle = cpu_to_le16(conn->handle); 710 cp.max_latency = cpu_to_le16(0); 711 cp.min_remote_timeout = cpu_to_le16(0); 712 cp.min_local_timeout = cpu_to_le16(0); 713 hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp); 714 } 715 716 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 717 struct hci_cp_sniff_mode cp; 718 cp.handle = cpu_to_le16(conn->handle); 719 cp.max_interval = cpu_to_le16(hdev->sniff_max_interval); 720 cp.min_interval = cpu_to_le16(hdev->sniff_min_interval); 721 cp.attempt = cpu_to_le16(4); 722 cp.timeout = cpu_to_le16(1); 723 hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp); 724 } 725 } 726 727 static void hci_conn_auto_accept(struct work_struct *work) 728 { 729 struct hci_conn *conn = container_of(work, struct hci_conn, 730 auto_accept_work.work); 731 732 hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst), 733 &conn->dst); 734 } 735 736 static void le_disable_advertising(struct hci_dev *hdev) 737 { 738 if (ext_adv_capable(hdev)) { 739 struct hci_cp_le_set_ext_adv_enable cp; 740 741 cp.enable = 0x00; 742 cp.num_of_sets = 0x00; 743 744 hci_send_cmd(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp), 745 &cp); 746 } else { 747 u8 enable = 0x00; 748 hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), 749 &enable); 750 } 751 } 752 753 static void le_conn_timeout(struct work_struct *work) 754 { 755 struct hci_conn *conn = container_of(work, struct hci_conn, 756 le_conn_timeout.work); 757 struct hci_dev *hdev = conn->hdev; 758 759 BT_DBG(""); 760 761 /* We could end up here due to having done directed advertising, 762 * so clean up the state if necessary. This should however only 763 * happen with broken hardware or if low duty cycle was used 764 * (which doesn't have a timeout of its own). 765 */ 766 if (conn->role == HCI_ROLE_SLAVE) { 767 /* Disable LE Advertising */ 768 le_disable_advertising(hdev); 769 hci_dev_lock(hdev); 770 hci_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT); 771 hci_dev_unlock(hdev); 772 return; 773 } 774 775 hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM); 776 } 777 778 struct iso_cig_params { 779 struct hci_cp_le_set_cig_params cp; 780 struct hci_cis_params cis[0x1f]; 781 }; 782 783 struct iso_list_data { 784 union { 785 u8 cig; 786 u8 big; 787 }; 788 union { 789 u8 cis; 790 u8 bis; 791 u16 sync_handle; 792 }; 793 int count; 794 struct iso_cig_params pdu; 795 }; 796 797 static void bis_list(struct hci_conn *conn, void *data) 798 { 799 struct iso_list_data *d = data; 800 801 /* Skip if not broadcast/ANY address */ 802 if (bacmp(&conn->dst, BDADDR_ANY)) 803 return; 804 805 if (d->big != conn->iso_qos.bcast.big || d->bis == BT_ISO_QOS_BIS_UNSET || 806 d->bis != conn->iso_qos.bcast.bis) 807 return; 808 809 d->count++; 810 } 811 812 static void find_bis(struct hci_conn *conn, void *data) 813 { 814 struct iso_list_data *d = data; 815 816 /* Ignore unicast */ 817 if (bacmp(&conn->dst, BDADDR_ANY)) 818 return; 819 820 d->count++; 821 } 822 823 static int terminate_big_sync(struct hci_dev *hdev, void *data) 824 { 825 struct iso_list_data *d = data; 826 827 bt_dev_dbg(hdev, "big 0x%2.2x bis 0x%2.2x", d->big, d->bis); 828 829 hci_remove_ext_adv_instance_sync(hdev, d->bis, NULL); 830 831 /* Check if ISO connection is a BIS and terminate BIG if there are 832 * no other connections using it. 833 */ 834 hci_conn_hash_list_state(hdev, find_bis, ISO_LINK, BT_CONNECTED, d); 835 if (d->count) 836 return 0; 837 838 return hci_le_terminate_big_sync(hdev, d->big, 839 HCI_ERROR_LOCAL_HOST_TERM); 840 } 841 842 static void terminate_big_destroy(struct hci_dev *hdev, void *data, int err) 843 { 844 kfree(data); 845 } 846 847 static int hci_le_terminate_big(struct hci_dev *hdev, u8 big, u8 bis) 848 { 849 struct iso_list_data *d; 850 int ret; 851 852 bt_dev_dbg(hdev, "big 0x%2.2x bis 0x%2.2x", big, bis); 853 854 d = kzalloc(sizeof(*d), GFP_KERNEL); 855 if (!d) 856 return -ENOMEM; 857 858 d->big = big; 859 d->bis = bis; 860 861 ret = hci_cmd_sync_queue(hdev, terminate_big_sync, d, 862 terminate_big_destroy); 863 if (ret) 864 kfree(d); 865 866 return ret; 867 } 868 869 static int big_terminate_sync(struct hci_dev *hdev, void *data) 870 { 871 struct iso_list_data *d = data; 872 873 bt_dev_dbg(hdev, "big 0x%2.2x sync_handle 0x%4.4x", d->big, 874 d->sync_handle); 875 876 /* Check if ISO connection is a BIS and terminate BIG if there are 877 * no other connections using it. 878 */ 879 hci_conn_hash_list_state(hdev, find_bis, ISO_LINK, BT_CONNECTED, d); 880 if (d->count) 881 return 0; 882 883 hci_le_big_terminate_sync(hdev, d->big); 884 885 return hci_le_pa_terminate_sync(hdev, d->sync_handle); 886 } 887 888 static int hci_le_big_terminate(struct hci_dev *hdev, u8 big, u16 sync_handle) 889 { 890 struct iso_list_data *d; 891 int ret; 892 893 bt_dev_dbg(hdev, "big 0x%2.2x sync_handle 0x%4.4x", big, sync_handle); 894 895 d = kzalloc(sizeof(*d), GFP_KERNEL); 896 if (!d) 897 return -ENOMEM; 898 899 d->big = big; 900 d->sync_handle = sync_handle; 901 902 ret = hci_cmd_sync_queue(hdev, big_terminate_sync, d, 903 terminate_big_destroy); 904 if (ret) 905 kfree(d); 906 907 return ret; 908 } 909 910 /* Cleanup BIS connection 911 * 912 * Detects if there any BIS left connected in a BIG 913 * broadcaster: Remove advertising instance and terminate BIG. 914 * broadcaster receiver: Teminate BIG sync and terminate PA sync. 915 */ 916 static void bis_cleanup(struct hci_conn *conn) 917 { 918 struct hci_dev *hdev = conn->hdev; 919 920 bt_dev_dbg(hdev, "conn %p", conn); 921 922 if (conn->role == HCI_ROLE_MASTER) { 923 if (!test_and_clear_bit(HCI_CONN_PER_ADV, &conn->flags)) 924 return; 925 926 hci_le_terminate_big(hdev, conn->iso_qos.bcast.big, 927 conn->iso_qos.bcast.bis); 928 } else { 929 hci_le_big_terminate(hdev, conn->iso_qos.bcast.big, 930 conn->sync_handle); 931 } 932 } 933 934 static int remove_cig_sync(struct hci_dev *hdev, void *data) 935 { 936 u8 handle = PTR_ERR(data); 937 938 return hci_le_remove_cig_sync(hdev, handle); 939 } 940 941 static int hci_le_remove_cig(struct hci_dev *hdev, u8 handle) 942 { 943 bt_dev_dbg(hdev, "handle 0x%2.2x", handle); 944 945 return hci_cmd_sync_queue(hdev, remove_cig_sync, ERR_PTR(handle), NULL); 946 } 947 948 static void find_cis(struct hci_conn *conn, void *data) 949 { 950 struct iso_list_data *d = data; 951 952 /* Ignore broadcast or if CIG don't match */ 953 if (!bacmp(&conn->dst, BDADDR_ANY) || d->cig != conn->iso_qos.ucast.cig) 954 return; 955 956 d->count++; 957 } 958 959 /* Cleanup CIS connection: 960 * 961 * Detects if there any CIS left connected in a CIG and remove it. 962 */ 963 static void cis_cleanup(struct hci_conn *conn) 964 { 965 struct hci_dev *hdev = conn->hdev; 966 struct iso_list_data d; 967 968 if (conn->iso_qos.ucast.cig == BT_ISO_QOS_CIG_UNSET) 969 return; 970 971 memset(&d, 0, sizeof(d)); 972 d.cig = conn->iso_qos.ucast.cig; 973 974 /* Check if ISO connection is a CIS and remove CIG if there are 975 * no other connections using it. 976 */ 977 hci_conn_hash_list_state(hdev, find_cis, ISO_LINK, BT_BOUND, &d); 978 hci_conn_hash_list_state(hdev, find_cis, ISO_LINK, BT_CONNECT, &d); 979 hci_conn_hash_list_state(hdev, find_cis, ISO_LINK, BT_CONNECTED, &d); 980 if (d.count) 981 return; 982 983 hci_le_remove_cig(hdev, conn->iso_qos.ucast.cig); 984 } 985 986 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst, 987 u8 role) 988 { 989 struct hci_conn *conn; 990 991 BT_DBG("%s dst %pMR", hdev->name, dst); 992 993 conn = kzalloc(sizeof(*conn), GFP_KERNEL); 994 if (!conn) 995 return NULL; 996 997 bacpy(&conn->dst, dst); 998 bacpy(&conn->src, &hdev->bdaddr); 999 conn->handle = HCI_CONN_HANDLE_UNSET; 1000 conn->hdev = hdev; 1001 conn->type = type; 1002 conn->role = role; 1003 conn->mode = HCI_CM_ACTIVE; 1004 conn->state = BT_OPEN; 1005 conn->auth_type = HCI_AT_GENERAL_BONDING; 1006 conn->io_capability = hdev->io_capability; 1007 conn->remote_auth = 0xff; 1008 conn->key_type = 0xff; 1009 conn->rssi = HCI_RSSI_INVALID; 1010 conn->tx_power = HCI_TX_POWER_INVALID; 1011 conn->max_tx_power = HCI_TX_POWER_INVALID; 1012 1013 set_bit(HCI_CONN_POWER_SAVE, &conn->flags); 1014 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 1015 1016 /* Set Default Authenticated payload timeout to 30s */ 1017 conn->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT; 1018 1019 if (conn->role == HCI_ROLE_MASTER) 1020 conn->out = true; 1021 1022 switch (type) { 1023 case ACL_LINK: 1024 conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK; 1025 break; 1026 case LE_LINK: 1027 /* conn->src should reflect the local identity address */ 1028 hci_copy_identity_address(hdev, &conn->src, &conn->src_type); 1029 break; 1030 case ISO_LINK: 1031 /* conn->src should reflect the local identity address */ 1032 hci_copy_identity_address(hdev, &conn->src, &conn->src_type); 1033 1034 /* set proper cleanup function */ 1035 if (!bacmp(dst, BDADDR_ANY)) 1036 conn->cleanup = bis_cleanup; 1037 else if (conn->role == HCI_ROLE_MASTER) 1038 conn->cleanup = cis_cleanup; 1039 1040 break; 1041 case SCO_LINK: 1042 if (lmp_esco_capable(hdev)) 1043 conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) | 1044 (hdev->esco_type & EDR_ESCO_MASK); 1045 else 1046 conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK; 1047 break; 1048 case ESCO_LINK: 1049 conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK; 1050 break; 1051 } 1052 1053 skb_queue_head_init(&conn->data_q); 1054 1055 INIT_LIST_HEAD(&conn->chan_list); 1056 INIT_LIST_HEAD(&conn->link_list); 1057 1058 INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout); 1059 INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept); 1060 INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle); 1061 INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout); 1062 INIT_WORK(&conn->le_scan_cleanup, le_scan_cleanup); 1063 1064 atomic_set(&conn->refcnt, 0); 1065 1066 hci_dev_hold(hdev); 1067 1068 hci_conn_hash_add(hdev, conn); 1069 1070 /* The SCO and eSCO connections will only be notified when their 1071 * setup has been completed. This is different to ACL links which 1072 * can be notified right away. 1073 */ 1074 if (conn->type != SCO_LINK && conn->type != ESCO_LINK) { 1075 if (hdev->notify) 1076 hdev->notify(hdev, HCI_NOTIFY_CONN_ADD); 1077 } 1078 1079 hci_conn_init_sysfs(conn); 1080 1081 return conn; 1082 } 1083 1084 static void hci_conn_unlink(struct hci_conn *conn) 1085 { 1086 struct hci_dev *hdev = conn->hdev; 1087 1088 bt_dev_dbg(hdev, "hcon %p", conn); 1089 1090 if (!conn->parent) { 1091 struct hci_link *link, *t; 1092 1093 list_for_each_entry_safe(link, t, &conn->link_list, list) { 1094 struct hci_conn *child = link->conn; 1095 1096 hci_conn_unlink(child); 1097 1098 /* If hdev is down it means 1099 * hci_dev_close_sync/hci_conn_hash_flush is in progress 1100 * and links don't need to be cleanup as all connections 1101 * would be cleanup. 1102 */ 1103 if (!test_bit(HCI_UP, &hdev->flags)) 1104 continue; 1105 1106 /* Due to race, SCO connection might be not established 1107 * yet at this point. Delete it now, otherwise it is 1108 * possible for it to be stuck and can't be deleted. 1109 */ 1110 if ((child->type == SCO_LINK || 1111 child->type == ESCO_LINK) && 1112 child->handle == HCI_CONN_HANDLE_UNSET) 1113 hci_conn_del(child); 1114 } 1115 1116 return; 1117 } 1118 1119 if (!conn->link) 1120 return; 1121 1122 list_del_rcu(&conn->link->list); 1123 synchronize_rcu(); 1124 1125 hci_conn_drop(conn->parent); 1126 hci_conn_put(conn->parent); 1127 conn->parent = NULL; 1128 1129 kfree(conn->link); 1130 conn->link = NULL; 1131 } 1132 1133 void hci_conn_del(struct hci_conn *conn) 1134 { 1135 struct hci_dev *hdev = conn->hdev; 1136 1137 BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle); 1138 1139 hci_conn_unlink(conn); 1140 1141 cancel_delayed_work_sync(&conn->disc_work); 1142 cancel_delayed_work_sync(&conn->auto_accept_work); 1143 cancel_delayed_work_sync(&conn->idle_work); 1144 1145 if (conn->type == ACL_LINK) { 1146 /* Unacked frames */ 1147 hdev->acl_cnt += conn->sent; 1148 } else if (conn->type == LE_LINK) { 1149 cancel_delayed_work(&conn->le_conn_timeout); 1150 1151 if (hdev->le_pkts) 1152 hdev->le_cnt += conn->sent; 1153 else 1154 hdev->acl_cnt += conn->sent; 1155 } else { 1156 /* Unacked ISO frames */ 1157 if (conn->type == ISO_LINK) { 1158 if (hdev->iso_pkts) 1159 hdev->iso_cnt += conn->sent; 1160 else if (hdev->le_pkts) 1161 hdev->le_cnt += conn->sent; 1162 else 1163 hdev->acl_cnt += conn->sent; 1164 } 1165 } 1166 1167 if (conn->amp_mgr) 1168 amp_mgr_put(conn->amp_mgr); 1169 1170 skb_queue_purge(&conn->data_q); 1171 1172 /* Remove the connection from the list and cleanup its remaining 1173 * state. This is a separate function since for some cases like 1174 * BT_CONNECT_SCAN we *only* want the cleanup part without the 1175 * rest of hci_conn_del. 1176 */ 1177 hci_conn_cleanup(conn); 1178 } 1179 1180 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, uint8_t src_type) 1181 { 1182 int use_src = bacmp(src, BDADDR_ANY); 1183 struct hci_dev *hdev = NULL, *d; 1184 1185 BT_DBG("%pMR -> %pMR", src, dst); 1186 1187 read_lock(&hci_dev_list_lock); 1188 1189 list_for_each_entry(d, &hci_dev_list, list) { 1190 if (!test_bit(HCI_UP, &d->flags) || 1191 hci_dev_test_flag(d, HCI_USER_CHANNEL) || 1192 d->dev_type != HCI_PRIMARY) 1193 continue; 1194 1195 /* Simple routing: 1196 * No source address - find interface with bdaddr != dst 1197 * Source address - find interface with bdaddr == src 1198 */ 1199 1200 if (use_src) { 1201 bdaddr_t id_addr; 1202 u8 id_addr_type; 1203 1204 if (src_type == BDADDR_BREDR) { 1205 if (!lmp_bredr_capable(d)) 1206 continue; 1207 bacpy(&id_addr, &d->bdaddr); 1208 id_addr_type = BDADDR_BREDR; 1209 } else { 1210 if (!lmp_le_capable(d)) 1211 continue; 1212 1213 hci_copy_identity_address(d, &id_addr, 1214 &id_addr_type); 1215 1216 /* Convert from HCI to three-value type */ 1217 if (id_addr_type == ADDR_LE_DEV_PUBLIC) 1218 id_addr_type = BDADDR_LE_PUBLIC; 1219 else 1220 id_addr_type = BDADDR_LE_RANDOM; 1221 } 1222 1223 if (!bacmp(&id_addr, src) && id_addr_type == src_type) { 1224 hdev = d; break; 1225 } 1226 } else { 1227 if (bacmp(&d->bdaddr, dst)) { 1228 hdev = d; break; 1229 } 1230 } 1231 } 1232 1233 if (hdev) 1234 hdev = hci_dev_hold(hdev); 1235 1236 read_unlock(&hci_dev_list_lock); 1237 return hdev; 1238 } 1239 EXPORT_SYMBOL(hci_get_route); 1240 1241 /* This function requires the caller holds hdev->lock */ 1242 static void hci_le_conn_failed(struct hci_conn *conn, u8 status) 1243 { 1244 struct hci_dev *hdev = conn->hdev; 1245 1246 hci_connect_le_scan_cleanup(conn, status); 1247 1248 /* Enable advertising in case this was a failed connection 1249 * attempt as a peripheral. 1250 */ 1251 hci_enable_advertising(hdev); 1252 } 1253 1254 /* This function requires the caller holds hdev->lock */ 1255 void hci_conn_failed(struct hci_conn *conn, u8 status) 1256 { 1257 struct hci_dev *hdev = conn->hdev; 1258 1259 bt_dev_dbg(hdev, "status 0x%2.2x", status); 1260 1261 switch (conn->type) { 1262 case LE_LINK: 1263 hci_le_conn_failed(conn, status); 1264 break; 1265 case ACL_LINK: 1266 mgmt_connect_failed(hdev, &conn->dst, conn->type, 1267 conn->dst_type, status); 1268 break; 1269 } 1270 1271 conn->state = BT_CLOSED; 1272 hci_connect_cfm(conn, status); 1273 hci_conn_del(conn); 1274 } 1275 1276 static void create_le_conn_complete(struct hci_dev *hdev, void *data, int err) 1277 { 1278 struct hci_conn *conn = data; 1279 1280 bt_dev_dbg(hdev, "err %d", err); 1281 1282 hci_dev_lock(hdev); 1283 1284 if (!err) { 1285 hci_connect_le_scan_cleanup(conn, 0x00); 1286 goto done; 1287 } 1288 1289 /* Check if connection is still pending */ 1290 if (conn != hci_lookup_le_connect(hdev)) 1291 goto done; 1292 1293 /* Flush to make sure we send create conn cancel command if needed */ 1294 flush_delayed_work(&conn->le_conn_timeout); 1295 hci_conn_failed(conn, bt_status(err)); 1296 1297 done: 1298 hci_dev_unlock(hdev); 1299 } 1300 1301 static int hci_connect_le_sync(struct hci_dev *hdev, void *data) 1302 { 1303 struct hci_conn *conn = data; 1304 1305 bt_dev_dbg(hdev, "conn %p", conn); 1306 1307 return hci_le_create_conn_sync(hdev, conn); 1308 } 1309 1310 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst, 1311 u8 dst_type, bool dst_resolved, u8 sec_level, 1312 u16 conn_timeout, u8 role) 1313 { 1314 struct hci_conn *conn; 1315 struct smp_irk *irk; 1316 int err; 1317 1318 /* Let's make sure that le is enabled.*/ 1319 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 1320 if (lmp_le_capable(hdev)) 1321 return ERR_PTR(-ECONNREFUSED); 1322 1323 return ERR_PTR(-EOPNOTSUPP); 1324 } 1325 1326 /* Since the controller supports only one LE connection attempt at a 1327 * time, we return -EBUSY if there is any connection attempt running. 1328 */ 1329 if (hci_lookup_le_connect(hdev)) 1330 return ERR_PTR(-EBUSY); 1331 1332 /* If there's already a connection object but it's not in 1333 * scanning state it means it must already be established, in 1334 * which case we can't do anything else except report a failure 1335 * to connect. 1336 */ 1337 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); 1338 if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) { 1339 return ERR_PTR(-EBUSY); 1340 } 1341 1342 /* Check if the destination address has been resolved by the controller 1343 * since if it did then the identity address shall be used. 1344 */ 1345 if (!dst_resolved) { 1346 /* When given an identity address with existing identity 1347 * resolving key, the connection needs to be established 1348 * to a resolvable random address. 1349 * 1350 * Storing the resolvable random address is required here 1351 * to handle connection failures. The address will later 1352 * be resolved back into the original identity address 1353 * from the connect request. 1354 */ 1355 irk = hci_find_irk_by_addr(hdev, dst, dst_type); 1356 if (irk && bacmp(&irk->rpa, BDADDR_ANY)) { 1357 dst = &irk->rpa; 1358 dst_type = ADDR_LE_DEV_RANDOM; 1359 } 1360 } 1361 1362 if (conn) { 1363 bacpy(&conn->dst, dst); 1364 } else { 1365 conn = hci_conn_add(hdev, LE_LINK, dst, role); 1366 if (!conn) 1367 return ERR_PTR(-ENOMEM); 1368 hci_conn_hold(conn); 1369 conn->pending_sec_level = sec_level; 1370 } 1371 1372 conn->dst_type = dst_type; 1373 conn->sec_level = BT_SECURITY_LOW; 1374 conn->conn_timeout = conn_timeout; 1375 1376 conn->state = BT_CONNECT; 1377 clear_bit(HCI_CONN_SCANNING, &conn->flags); 1378 1379 err = hci_cmd_sync_queue(hdev, hci_connect_le_sync, conn, 1380 create_le_conn_complete); 1381 if (err) { 1382 hci_conn_del(conn); 1383 return ERR_PTR(err); 1384 } 1385 1386 return conn; 1387 } 1388 1389 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type) 1390 { 1391 struct hci_conn *conn; 1392 1393 conn = hci_conn_hash_lookup_le(hdev, addr, type); 1394 if (!conn) 1395 return false; 1396 1397 if (conn->state != BT_CONNECTED) 1398 return false; 1399 1400 return true; 1401 } 1402 1403 /* This function requires the caller holds hdev->lock */ 1404 static int hci_explicit_conn_params_set(struct hci_dev *hdev, 1405 bdaddr_t *addr, u8 addr_type) 1406 { 1407 struct hci_conn_params *params; 1408 1409 if (is_connected(hdev, addr, addr_type)) 1410 return -EISCONN; 1411 1412 params = hci_conn_params_lookup(hdev, addr, addr_type); 1413 if (!params) { 1414 params = hci_conn_params_add(hdev, addr, addr_type); 1415 if (!params) 1416 return -ENOMEM; 1417 1418 /* If we created new params, mark them to be deleted in 1419 * hci_connect_le_scan_cleanup. It's different case than 1420 * existing disabled params, those will stay after cleanup. 1421 */ 1422 params->auto_connect = HCI_AUTO_CONN_EXPLICIT; 1423 } 1424 1425 /* We're trying to connect, so make sure params are at pend_le_conns */ 1426 if (params->auto_connect == HCI_AUTO_CONN_DISABLED || 1427 params->auto_connect == HCI_AUTO_CONN_REPORT || 1428 params->auto_connect == HCI_AUTO_CONN_EXPLICIT) { 1429 hci_pend_le_list_del_init(params); 1430 hci_pend_le_list_add(params, &hdev->pend_le_conns); 1431 } 1432 1433 params->explicit_connect = true; 1434 1435 BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type, 1436 params->auto_connect); 1437 1438 return 0; 1439 } 1440 1441 static int qos_set_big(struct hci_dev *hdev, struct bt_iso_qos *qos) 1442 { 1443 struct iso_list_data data; 1444 1445 /* Allocate a BIG if not set */ 1446 if (qos->bcast.big == BT_ISO_QOS_BIG_UNSET) { 1447 for (data.big = 0x00; data.big < 0xef; data.big++) { 1448 data.count = 0; 1449 data.bis = 0xff; 1450 1451 hci_conn_hash_list_state(hdev, bis_list, ISO_LINK, 1452 BT_BOUND, &data); 1453 if (!data.count) 1454 break; 1455 } 1456 1457 if (data.big == 0xef) 1458 return -EADDRNOTAVAIL; 1459 1460 /* Update BIG */ 1461 qos->bcast.big = data.big; 1462 } 1463 1464 return 0; 1465 } 1466 1467 static int qos_set_bis(struct hci_dev *hdev, struct bt_iso_qos *qos) 1468 { 1469 struct iso_list_data data; 1470 1471 /* Allocate BIS if not set */ 1472 if (qos->bcast.bis == BT_ISO_QOS_BIS_UNSET) { 1473 /* Find an unused adv set to advertise BIS, skip instance 0x00 1474 * since it is reserved as general purpose set. 1475 */ 1476 for (data.bis = 0x01; data.bis < hdev->le_num_of_adv_sets; 1477 data.bis++) { 1478 data.count = 0; 1479 1480 hci_conn_hash_list_state(hdev, bis_list, ISO_LINK, 1481 BT_BOUND, &data); 1482 if (!data.count) 1483 break; 1484 } 1485 1486 if (data.bis == hdev->le_num_of_adv_sets) 1487 return -EADDRNOTAVAIL; 1488 1489 /* Update BIS */ 1490 qos->bcast.bis = data.bis; 1491 } 1492 1493 return 0; 1494 } 1495 1496 /* This function requires the caller holds hdev->lock */ 1497 static struct hci_conn *hci_add_bis(struct hci_dev *hdev, bdaddr_t *dst, 1498 struct bt_iso_qos *qos) 1499 { 1500 struct hci_conn *conn; 1501 struct iso_list_data data; 1502 int err; 1503 1504 /* Let's make sure that le is enabled.*/ 1505 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 1506 if (lmp_le_capable(hdev)) 1507 return ERR_PTR(-ECONNREFUSED); 1508 return ERR_PTR(-EOPNOTSUPP); 1509 } 1510 1511 err = qos_set_big(hdev, qos); 1512 if (err) 1513 return ERR_PTR(err); 1514 1515 err = qos_set_bis(hdev, qos); 1516 if (err) 1517 return ERR_PTR(err); 1518 1519 data.big = qos->bcast.big; 1520 data.bis = qos->bcast.bis; 1521 data.count = 0; 1522 1523 /* Check if there is already a matching BIG/BIS */ 1524 hci_conn_hash_list_state(hdev, bis_list, ISO_LINK, BT_BOUND, &data); 1525 if (data.count) 1526 return ERR_PTR(-EADDRINUSE); 1527 1528 conn = hci_conn_hash_lookup_bis(hdev, dst, qos->bcast.big, qos->bcast.bis); 1529 if (conn) 1530 return ERR_PTR(-EADDRINUSE); 1531 1532 conn = hci_conn_add(hdev, ISO_LINK, dst, HCI_ROLE_MASTER); 1533 if (!conn) 1534 return ERR_PTR(-ENOMEM); 1535 1536 set_bit(HCI_CONN_PER_ADV, &conn->flags); 1537 conn->state = BT_CONNECT; 1538 1539 hci_conn_hold(conn); 1540 return conn; 1541 } 1542 1543 /* This function requires the caller holds hdev->lock */ 1544 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst, 1545 u8 dst_type, u8 sec_level, 1546 u16 conn_timeout, 1547 enum conn_reasons conn_reason) 1548 { 1549 struct hci_conn *conn; 1550 1551 /* Let's make sure that le is enabled.*/ 1552 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 1553 if (lmp_le_capable(hdev)) 1554 return ERR_PTR(-ECONNREFUSED); 1555 1556 return ERR_PTR(-EOPNOTSUPP); 1557 } 1558 1559 /* Some devices send ATT messages as soon as the physical link is 1560 * established. To be able to handle these ATT messages, the user- 1561 * space first establishes the connection and then starts the pairing 1562 * process. 1563 * 1564 * So if a hci_conn object already exists for the following connection 1565 * attempt, we simply update pending_sec_level and auth_type fields 1566 * and return the object found. 1567 */ 1568 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); 1569 if (conn) { 1570 if (conn->pending_sec_level < sec_level) 1571 conn->pending_sec_level = sec_level; 1572 goto done; 1573 } 1574 1575 BT_DBG("requesting refresh of dst_addr"); 1576 1577 conn = hci_conn_add(hdev, LE_LINK, dst, HCI_ROLE_MASTER); 1578 if (!conn) 1579 return ERR_PTR(-ENOMEM); 1580 1581 if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0) { 1582 hci_conn_del(conn); 1583 return ERR_PTR(-EBUSY); 1584 } 1585 1586 conn->state = BT_CONNECT; 1587 set_bit(HCI_CONN_SCANNING, &conn->flags); 1588 conn->dst_type = dst_type; 1589 conn->sec_level = BT_SECURITY_LOW; 1590 conn->pending_sec_level = sec_level; 1591 conn->conn_timeout = conn_timeout; 1592 conn->conn_reason = conn_reason; 1593 1594 hci_update_passive_scan(hdev); 1595 1596 done: 1597 hci_conn_hold(conn); 1598 return conn; 1599 } 1600 1601 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst, 1602 u8 sec_level, u8 auth_type, 1603 enum conn_reasons conn_reason) 1604 { 1605 struct hci_conn *acl; 1606 1607 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 1608 if (lmp_bredr_capable(hdev)) 1609 return ERR_PTR(-ECONNREFUSED); 1610 1611 return ERR_PTR(-EOPNOTSUPP); 1612 } 1613 1614 acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst); 1615 if (!acl) { 1616 acl = hci_conn_add(hdev, ACL_LINK, dst, HCI_ROLE_MASTER); 1617 if (!acl) 1618 return ERR_PTR(-ENOMEM); 1619 } 1620 1621 hci_conn_hold(acl); 1622 1623 acl->conn_reason = conn_reason; 1624 if (acl->state == BT_OPEN || acl->state == BT_CLOSED) { 1625 acl->sec_level = BT_SECURITY_LOW; 1626 acl->pending_sec_level = sec_level; 1627 acl->auth_type = auth_type; 1628 hci_acl_create_connection(acl); 1629 } 1630 1631 return acl; 1632 } 1633 1634 static struct hci_link *hci_conn_link(struct hci_conn *parent, 1635 struct hci_conn *conn) 1636 { 1637 struct hci_dev *hdev = parent->hdev; 1638 struct hci_link *link; 1639 1640 bt_dev_dbg(hdev, "parent %p hcon %p", parent, conn); 1641 1642 if (conn->link) 1643 return conn->link; 1644 1645 if (conn->parent) 1646 return NULL; 1647 1648 link = kzalloc(sizeof(*link), GFP_KERNEL); 1649 if (!link) 1650 return NULL; 1651 1652 link->conn = hci_conn_hold(conn); 1653 conn->link = link; 1654 conn->parent = hci_conn_get(parent); 1655 1656 /* Use list_add_tail_rcu append to the list */ 1657 list_add_tail_rcu(&link->list, &parent->link_list); 1658 1659 return link; 1660 } 1661 1662 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, 1663 __u16 setting, struct bt_codec *codec) 1664 { 1665 struct hci_conn *acl; 1666 struct hci_conn *sco; 1667 struct hci_link *link; 1668 1669 acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING, 1670 CONN_REASON_SCO_CONNECT); 1671 if (IS_ERR(acl)) 1672 return acl; 1673 1674 sco = hci_conn_hash_lookup_ba(hdev, type, dst); 1675 if (!sco) { 1676 sco = hci_conn_add(hdev, type, dst, HCI_ROLE_MASTER); 1677 if (!sco) { 1678 hci_conn_drop(acl); 1679 return ERR_PTR(-ENOMEM); 1680 } 1681 } 1682 1683 link = hci_conn_link(acl, sco); 1684 if (!link) { 1685 hci_conn_drop(acl); 1686 hci_conn_drop(sco); 1687 return ERR_PTR(-ENOLINK); 1688 } 1689 1690 sco->setting = setting; 1691 sco->codec = *codec; 1692 1693 if (acl->state == BT_CONNECTED && 1694 (sco->state == BT_OPEN || sco->state == BT_CLOSED)) { 1695 set_bit(HCI_CONN_POWER_SAVE, &acl->flags); 1696 hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON); 1697 1698 if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) { 1699 /* defer SCO setup until mode change completed */ 1700 set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags); 1701 return sco; 1702 } 1703 1704 hci_sco_setup(acl, 0x00); 1705 } 1706 1707 return sco; 1708 } 1709 1710 static void cis_add(struct iso_list_data *d, struct bt_iso_qos *qos) 1711 { 1712 struct hci_cis_params *cis = &d->pdu.cis[d->pdu.cp.num_cis]; 1713 1714 cis->cis_id = qos->ucast.cis; 1715 cis->c_sdu = cpu_to_le16(qos->ucast.out.sdu); 1716 cis->p_sdu = cpu_to_le16(qos->ucast.in.sdu); 1717 cis->c_phy = qos->ucast.out.phy ? qos->ucast.out.phy : qos->ucast.in.phy; 1718 cis->p_phy = qos->ucast.in.phy ? qos->ucast.in.phy : qos->ucast.out.phy; 1719 cis->c_rtn = qos->ucast.out.rtn; 1720 cis->p_rtn = qos->ucast.in.rtn; 1721 1722 d->pdu.cp.num_cis++; 1723 } 1724 1725 static void cis_list(struct hci_conn *conn, void *data) 1726 { 1727 struct iso_list_data *d = data; 1728 1729 /* Skip if broadcast/ANY address */ 1730 if (!bacmp(&conn->dst, BDADDR_ANY)) 1731 return; 1732 1733 if (d->cig != conn->iso_qos.ucast.cig || d->cis == BT_ISO_QOS_CIS_UNSET || 1734 d->cis != conn->iso_qos.ucast.cis) 1735 return; 1736 1737 d->count++; 1738 1739 if (d->pdu.cp.cig_id == BT_ISO_QOS_CIG_UNSET || 1740 d->count >= ARRAY_SIZE(d->pdu.cis)) 1741 return; 1742 1743 cis_add(d, &conn->iso_qos); 1744 } 1745 1746 static int hci_le_create_big(struct hci_conn *conn, struct bt_iso_qos *qos) 1747 { 1748 struct hci_dev *hdev = conn->hdev; 1749 struct hci_cp_le_create_big cp; 1750 1751 memset(&cp, 0, sizeof(cp)); 1752 1753 cp.handle = qos->bcast.big; 1754 cp.adv_handle = qos->bcast.bis; 1755 cp.num_bis = 0x01; 1756 hci_cpu_to_le24(qos->bcast.out.interval, cp.bis.sdu_interval); 1757 cp.bis.sdu = cpu_to_le16(qos->bcast.out.sdu); 1758 cp.bis.latency = cpu_to_le16(qos->bcast.out.latency); 1759 cp.bis.rtn = qos->bcast.out.rtn; 1760 cp.bis.phy = qos->bcast.out.phy; 1761 cp.bis.packing = qos->bcast.packing; 1762 cp.bis.framing = qos->bcast.framing; 1763 cp.bis.encryption = qos->bcast.encryption; 1764 memcpy(cp.bis.bcode, qos->bcast.bcode, sizeof(cp.bis.bcode)); 1765 1766 return hci_send_cmd(hdev, HCI_OP_LE_CREATE_BIG, sizeof(cp), &cp); 1767 } 1768 1769 static void set_cig_params_complete(struct hci_dev *hdev, void *data, int err) 1770 { 1771 struct iso_cig_params *pdu = data; 1772 1773 bt_dev_dbg(hdev, ""); 1774 1775 if (err) 1776 bt_dev_err(hdev, "Unable to set CIG parameters: %d", err); 1777 1778 kfree(pdu); 1779 } 1780 1781 static int set_cig_params_sync(struct hci_dev *hdev, void *data) 1782 { 1783 struct iso_cig_params *pdu = data; 1784 u32 plen; 1785 1786 plen = sizeof(pdu->cp) + pdu->cp.num_cis * sizeof(pdu->cis[0]); 1787 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_CIG_PARAMS, plen, pdu, 1788 HCI_CMD_TIMEOUT); 1789 } 1790 1791 static bool hci_le_set_cig_params(struct hci_conn *conn, struct bt_iso_qos *qos) 1792 { 1793 struct hci_dev *hdev = conn->hdev; 1794 struct iso_list_data data; 1795 struct iso_cig_params *pdu; 1796 1797 memset(&data, 0, sizeof(data)); 1798 1799 /* Allocate first still reconfigurable CIG if not set */ 1800 if (qos->ucast.cig == BT_ISO_QOS_CIG_UNSET) { 1801 for (data.cig = 0x00; data.cig < 0xf0; data.cig++) { 1802 data.count = 0; 1803 1804 hci_conn_hash_list_state(hdev, find_cis, ISO_LINK, 1805 BT_CONNECT, &data); 1806 if (data.count) 1807 continue; 1808 1809 hci_conn_hash_list_state(hdev, find_cis, ISO_LINK, 1810 BT_CONNECTED, &data); 1811 if (!data.count) 1812 break; 1813 } 1814 1815 if (data.cig == 0xf0) 1816 return false; 1817 1818 /* Update CIG */ 1819 qos->ucast.cig = data.cig; 1820 } 1821 1822 data.pdu.cp.cig_id = qos->ucast.cig; 1823 hci_cpu_to_le24(qos->ucast.out.interval, data.pdu.cp.c_interval); 1824 hci_cpu_to_le24(qos->ucast.in.interval, data.pdu.cp.p_interval); 1825 data.pdu.cp.sca = qos->ucast.sca; 1826 data.pdu.cp.packing = qos->ucast.packing; 1827 data.pdu.cp.framing = qos->ucast.framing; 1828 data.pdu.cp.c_latency = cpu_to_le16(qos->ucast.out.latency); 1829 data.pdu.cp.p_latency = cpu_to_le16(qos->ucast.in.latency); 1830 1831 if (qos->ucast.cis != BT_ISO_QOS_CIS_UNSET) { 1832 data.count = 0; 1833 data.cig = qos->ucast.cig; 1834 data.cis = qos->ucast.cis; 1835 1836 hci_conn_hash_list_state(hdev, cis_list, ISO_LINK, BT_BOUND, 1837 &data); 1838 if (data.count) 1839 return false; 1840 1841 cis_add(&data, qos); 1842 } 1843 1844 /* Reprogram all CIS(s) with the same CIG */ 1845 for (data.cig = qos->ucast.cig, data.cis = 0x00; data.cis < 0x11; 1846 data.cis++) { 1847 data.count = 0; 1848 1849 hci_conn_hash_list_state(hdev, cis_list, ISO_LINK, BT_BOUND, 1850 &data); 1851 if (data.count) 1852 continue; 1853 1854 /* Allocate a CIS if not set */ 1855 if (qos->ucast.cis == BT_ISO_QOS_CIS_UNSET) { 1856 /* Update CIS */ 1857 qos->ucast.cis = data.cis; 1858 cis_add(&data, qos); 1859 } 1860 } 1861 1862 if (qos->ucast.cis == BT_ISO_QOS_CIS_UNSET || !data.pdu.cp.num_cis) 1863 return false; 1864 1865 pdu = kmemdup(&data.pdu, sizeof(*pdu), GFP_KERNEL); 1866 if (!pdu) 1867 return false; 1868 1869 if (hci_cmd_sync_queue(hdev, set_cig_params_sync, pdu, 1870 set_cig_params_complete) < 0) { 1871 kfree(pdu); 1872 return false; 1873 } 1874 1875 return true; 1876 } 1877 1878 struct hci_conn *hci_bind_cis(struct hci_dev *hdev, bdaddr_t *dst, 1879 __u8 dst_type, struct bt_iso_qos *qos) 1880 { 1881 struct hci_conn *cis; 1882 1883 cis = hci_conn_hash_lookup_cis(hdev, dst, dst_type, qos->ucast.cig, 1884 qos->ucast.cis); 1885 if (!cis) { 1886 cis = hci_conn_add(hdev, ISO_LINK, dst, HCI_ROLE_MASTER); 1887 if (!cis) 1888 return ERR_PTR(-ENOMEM); 1889 cis->cleanup = cis_cleanup; 1890 cis->dst_type = dst_type; 1891 } 1892 1893 if (cis->state == BT_CONNECTED) 1894 return cis; 1895 1896 /* Check if CIS has been set and the settings matches */ 1897 if (cis->state == BT_BOUND && 1898 !memcmp(&cis->iso_qos, qos, sizeof(*qos))) 1899 return cis; 1900 1901 /* Update LINK PHYs according to QoS preference */ 1902 cis->le_tx_phy = qos->ucast.out.phy; 1903 cis->le_rx_phy = qos->ucast.in.phy; 1904 1905 /* If output interval is not set use the input interval as it cannot be 1906 * 0x000000. 1907 */ 1908 if (!qos->ucast.out.interval) 1909 qos->ucast.out.interval = qos->ucast.in.interval; 1910 1911 /* If input interval is not set use the output interval as it cannot be 1912 * 0x000000. 1913 */ 1914 if (!qos->ucast.in.interval) 1915 qos->ucast.in.interval = qos->ucast.out.interval; 1916 1917 /* If output latency is not set use the input latency as it cannot be 1918 * 0x0000. 1919 */ 1920 if (!qos->ucast.out.latency) 1921 qos->ucast.out.latency = qos->ucast.in.latency; 1922 1923 /* If input latency is not set use the output latency as it cannot be 1924 * 0x0000. 1925 */ 1926 if (!qos->ucast.in.latency) 1927 qos->ucast.in.latency = qos->ucast.out.latency; 1928 1929 if (!hci_le_set_cig_params(cis, qos)) { 1930 hci_conn_drop(cis); 1931 return ERR_PTR(-EINVAL); 1932 } 1933 1934 cis->iso_qos = *qos; 1935 cis->state = BT_BOUND; 1936 1937 return cis; 1938 } 1939 1940 bool hci_iso_setup_path(struct hci_conn *conn) 1941 { 1942 struct hci_dev *hdev = conn->hdev; 1943 struct hci_cp_le_setup_iso_path cmd; 1944 1945 memset(&cmd, 0, sizeof(cmd)); 1946 1947 if (conn->iso_qos.ucast.out.sdu) { 1948 cmd.handle = cpu_to_le16(conn->handle); 1949 cmd.direction = 0x00; /* Input (Host to Controller) */ 1950 cmd.path = 0x00; /* HCI path if enabled */ 1951 cmd.codec = 0x03; /* Transparent Data */ 1952 1953 if (hci_send_cmd(hdev, HCI_OP_LE_SETUP_ISO_PATH, sizeof(cmd), 1954 &cmd) < 0) 1955 return false; 1956 } 1957 1958 if (conn->iso_qos.ucast.in.sdu) { 1959 cmd.handle = cpu_to_le16(conn->handle); 1960 cmd.direction = 0x01; /* Output (Controller to Host) */ 1961 cmd.path = 0x00; /* HCI path if enabled */ 1962 cmd.codec = 0x03; /* Transparent Data */ 1963 1964 if (hci_send_cmd(hdev, HCI_OP_LE_SETUP_ISO_PATH, sizeof(cmd), 1965 &cmd) < 0) 1966 return false; 1967 } 1968 1969 return true; 1970 } 1971 1972 static int hci_create_cis_sync(struct hci_dev *hdev, void *data) 1973 { 1974 return hci_le_create_cis_sync(hdev, data); 1975 } 1976 1977 int hci_le_create_cis(struct hci_conn *conn) 1978 { 1979 struct hci_conn *cis; 1980 struct hci_link *link, *t; 1981 struct hci_dev *hdev = conn->hdev; 1982 int err; 1983 1984 bt_dev_dbg(hdev, "hcon %p", conn); 1985 1986 switch (conn->type) { 1987 case LE_LINK: 1988 if (conn->state != BT_CONNECTED || list_empty(&conn->link_list)) 1989 return -EINVAL; 1990 1991 cis = NULL; 1992 1993 /* hci_conn_link uses list_add_tail_rcu so the list is in 1994 * the same order as the connections are requested. 1995 */ 1996 list_for_each_entry_safe(link, t, &conn->link_list, list) { 1997 if (link->conn->state == BT_BOUND) { 1998 err = hci_le_create_cis(link->conn); 1999 if (err) 2000 return err; 2001 2002 cis = link->conn; 2003 } 2004 } 2005 2006 return cis ? 0 : -EINVAL; 2007 case ISO_LINK: 2008 cis = conn; 2009 break; 2010 default: 2011 return -EINVAL; 2012 } 2013 2014 if (cis->state == BT_CONNECT) 2015 return 0; 2016 2017 /* Queue Create CIS */ 2018 err = hci_cmd_sync_queue(hdev, hci_create_cis_sync, cis, NULL); 2019 if (err) 2020 return err; 2021 2022 cis->state = BT_CONNECT; 2023 2024 return 0; 2025 } 2026 2027 static void hci_iso_qos_setup(struct hci_dev *hdev, struct hci_conn *conn, 2028 struct bt_iso_io_qos *qos, __u8 phy) 2029 { 2030 /* Only set MTU if PHY is enabled */ 2031 if (!qos->sdu && qos->phy) { 2032 if (hdev->iso_mtu > 0) 2033 qos->sdu = hdev->iso_mtu; 2034 else if (hdev->le_mtu > 0) 2035 qos->sdu = hdev->le_mtu; 2036 else 2037 qos->sdu = hdev->acl_mtu; 2038 } 2039 2040 /* Use the same PHY as ACL if set to any */ 2041 if (qos->phy == BT_ISO_PHY_ANY) 2042 qos->phy = phy; 2043 2044 /* Use LE ACL connection interval if not set */ 2045 if (!qos->interval) 2046 /* ACL interval unit in 1.25 ms to us */ 2047 qos->interval = conn->le_conn_interval * 1250; 2048 2049 /* Use LE ACL connection latency if not set */ 2050 if (!qos->latency) 2051 qos->latency = conn->le_conn_latency; 2052 } 2053 2054 static void hci_bind_bis(struct hci_conn *conn, 2055 struct bt_iso_qos *qos) 2056 { 2057 /* Update LINK PHYs according to QoS preference */ 2058 conn->le_tx_phy = qos->bcast.out.phy; 2059 conn->le_tx_phy = qos->bcast.out.phy; 2060 conn->iso_qos = *qos; 2061 conn->state = BT_BOUND; 2062 } 2063 2064 static int create_big_sync(struct hci_dev *hdev, void *data) 2065 { 2066 struct hci_conn *conn = data; 2067 struct bt_iso_qos *qos = &conn->iso_qos; 2068 u16 interval, sync_interval = 0; 2069 u32 flags = 0; 2070 int err; 2071 2072 if (qos->bcast.out.phy == 0x02) 2073 flags |= MGMT_ADV_FLAG_SEC_2M; 2074 2075 /* Align intervals */ 2076 interval = (qos->bcast.out.interval / 1250) * qos->bcast.sync_factor; 2077 2078 if (qos->bcast.bis) 2079 sync_interval = interval * 4; 2080 2081 err = hci_start_per_adv_sync(hdev, qos->bcast.bis, conn->le_per_adv_data_len, 2082 conn->le_per_adv_data, flags, interval, 2083 interval, sync_interval); 2084 if (err) 2085 return err; 2086 2087 return hci_le_create_big(conn, &conn->iso_qos); 2088 } 2089 2090 static void create_pa_complete(struct hci_dev *hdev, void *data, int err) 2091 { 2092 struct hci_cp_le_pa_create_sync *cp = data; 2093 2094 bt_dev_dbg(hdev, ""); 2095 2096 if (err) 2097 bt_dev_err(hdev, "Unable to create PA: %d", err); 2098 2099 kfree(cp); 2100 } 2101 2102 static int create_pa_sync(struct hci_dev *hdev, void *data) 2103 { 2104 struct hci_cp_le_pa_create_sync *cp = data; 2105 int err; 2106 2107 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_CREATE_SYNC, 2108 sizeof(*cp), cp, HCI_CMD_TIMEOUT); 2109 if (err) { 2110 hci_dev_clear_flag(hdev, HCI_PA_SYNC); 2111 return err; 2112 } 2113 2114 return hci_update_passive_scan_sync(hdev); 2115 } 2116 2117 int hci_pa_create_sync(struct hci_dev *hdev, bdaddr_t *dst, __u8 dst_type, 2118 __u8 sid, struct bt_iso_qos *qos) 2119 { 2120 struct hci_cp_le_pa_create_sync *cp; 2121 2122 if (hci_dev_test_and_set_flag(hdev, HCI_PA_SYNC)) 2123 return -EBUSY; 2124 2125 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 2126 if (!cp) { 2127 hci_dev_clear_flag(hdev, HCI_PA_SYNC); 2128 return -ENOMEM; 2129 } 2130 2131 cp->options = qos->bcast.options; 2132 cp->sid = sid; 2133 cp->addr_type = dst_type; 2134 bacpy(&cp->addr, dst); 2135 cp->skip = cpu_to_le16(qos->bcast.skip); 2136 cp->sync_timeout = cpu_to_le16(qos->bcast.sync_timeout); 2137 cp->sync_cte_type = qos->bcast.sync_cte_type; 2138 2139 /* Queue start pa_create_sync and scan */ 2140 return hci_cmd_sync_queue(hdev, create_pa_sync, cp, create_pa_complete); 2141 } 2142 2143 int hci_le_big_create_sync(struct hci_dev *hdev, struct bt_iso_qos *qos, 2144 __u16 sync_handle, __u8 num_bis, __u8 bis[]) 2145 { 2146 struct _packed { 2147 struct hci_cp_le_big_create_sync cp; 2148 __u8 bis[0x11]; 2149 } pdu; 2150 int err; 2151 2152 if (num_bis > sizeof(pdu.bis)) 2153 return -EINVAL; 2154 2155 err = qos_set_big(hdev, qos); 2156 if (err) 2157 return err; 2158 2159 memset(&pdu, 0, sizeof(pdu)); 2160 pdu.cp.handle = qos->bcast.big; 2161 pdu.cp.sync_handle = cpu_to_le16(sync_handle); 2162 pdu.cp.encryption = qos->bcast.encryption; 2163 memcpy(pdu.cp.bcode, qos->bcast.bcode, sizeof(pdu.cp.bcode)); 2164 pdu.cp.mse = qos->bcast.mse; 2165 pdu.cp.timeout = cpu_to_le16(qos->bcast.timeout); 2166 pdu.cp.num_bis = num_bis; 2167 memcpy(pdu.bis, bis, num_bis); 2168 2169 return hci_send_cmd(hdev, HCI_OP_LE_BIG_CREATE_SYNC, 2170 sizeof(pdu.cp) + num_bis, &pdu); 2171 } 2172 2173 static void create_big_complete(struct hci_dev *hdev, void *data, int err) 2174 { 2175 struct hci_conn *conn = data; 2176 2177 bt_dev_dbg(hdev, "conn %p", conn); 2178 2179 if (err) { 2180 bt_dev_err(hdev, "Unable to create BIG: %d", err); 2181 hci_connect_cfm(conn, err); 2182 hci_conn_del(conn); 2183 } 2184 } 2185 2186 struct hci_conn *hci_connect_bis(struct hci_dev *hdev, bdaddr_t *dst, 2187 __u8 dst_type, struct bt_iso_qos *qos, 2188 __u8 base_len, __u8 *base) 2189 { 2190 struct hci_conn *conn; 2191 int err; 2192 2193 /* We need hci_conn object using the BDADDR_ANY as dst */ 2194 conn = hci_add_bis(hdev, dst, qos); 2195 if (IS_ERR(conn)) 2196 return conn; 2197 2198 hci_bind_bis(conn, qos); 2199 2200 /* Add Basic Announcement into Peridic Adv Data if BASE is set */ 2201 if (base_len && base) { 2202 base_len = eir_append_service_data(conn->le_per_adv_data, 0, 2203 0x1851, base, base_len); 2204 conn->le_per_adv_data_len = base_len; 2205 } 2206 2207 /* Queue start periodic advertising and create BIG */ 2208 err = hci_cmd_sync_queue(hdev, create_big_sync, conn, 2209 create_big_complete); 2210 if (err < 0) { 2211 hci_conn_drop(conn); 2212 return ERR_PTR(err); 2213 } 2214 2215 hci_iso_qos_setup(hdev, conn, &qos->bcast.out, 2216 conn->le_tx_phy ? conn->le_tx_phy : 2217 hdev->le_tx_def_phys); 2218 2219 return conn; 2220 } 2221 2222 struct hci_conn *hci_connect_cis(struct hci_dev *hdev, bdaddr_t *dst, 2223 __u8 dst_type, struct bt_iso_qos *qos) 2224 { 2225 struct hci_conn *le; 2226 struct hci_conn *cis; 2227 struct hci_link *link; 2228 2229 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) 2230 le = hci_connect_le(hdev, dst, dst_type, false, 2231 BT_SECURITY_LOW, 2232 HCI_LE_CONN_TIMEOUT, 2233 HCI_ROLE_SLAVE); 2234 else 2235 le = hci_connect_le_scan(hdev, dst, dst_type, 2236 BT_SECURITY_LOW, 2237 HCI_LE_CONN_TIMEOUT, 2238 CONN_REASON_ISO_CONNECT); 2239 if (IS_ERR(le)) 2240 return le; 2241 2242 hci_iso_qos_setup(hdev, le, &qos->ucast.out, 2243 le->le_tx_phy ? le->le_tx_phy : hdev->le_tx_def_phys); 2244 hci_iso_qos_setup(hdev, le, &qos->ucast.in, 2245 le->le_rx_phy ? le->le_rx_phy : hdev->le_rx_def_phys); 2246 2247 cis = hci_bind_cis(hdev, dst, dst_type, qos); 2248 if (IS_ERR(cis)) { 2249 hci_conn_drop(le); 2250 return cis; 2251 } 2252 2253 link = hci_conn_link(le, cis); 2254 if (!link) { 2255 hci_conn_drop(le); 2256 hci_conn_drop(cis); 2257 return ERR_PTR(-ENOLINK); 2258 } 2259 2260 /* If LE is already connected and CIS handle is already set proceed to 2261 * Create CIS immediately. 2262 */ 2263 if (le->state == BT_CONNECTED && cis->handle != HCI_CONN_HANDLE_UNSET) 2264 hci_le_create_cis(cis); 2265 2266 return cis; 2267 } 2268 2269 /* Check link security requirement */ 2270 int hci_conn_check_link_mode(struct hci_conn *conn) 2271 { 2272 BT_DBG("hcon %p", conn); 2273 2274 /* In Secure Connections Only mode, it is required that Secure 2275 * Connections is used and the link is encrypted with AES-CCM 2276 * using a P-256 authenticated combination key. 2277 */ 2278 if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) { 2279 if (!hci_conn_sc_enabled(conn) || 2280 !test_bit(HCI_CONN_AES_CCM, &conn->flags) || 2281 conn->key_type != HCI_LK_AUTH_COMBINATION_P256) 2282 return 0; 2283 } 2284 2285 /* AES encryption is required for Level 4: 2286 * 2287 * BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 3, Part C 2288 * page 1319: 2289 * 2290 * 128-bit equivalent strength for link and encryption keys 2291 * required using FIPS approved algorithms (E0 not allowed, 2292 * SAFER+ not allowed, and P-192 not allowed; encryption key 2293 * not shortened) 2294 */ 2295 if (conn->sec_level == BT_SECURITY_FIPS && 2296 !test_bit(HCI_CONN_AES_CCM, &conn->flags)) { 2297 bt_dev_err(conn->hdev, 2298 "Invalid security: Missing AES-CCM usage"); 2299 return 0; 2300 } 2301 2302 if (hci_conn_ssp_enabled(conn) && 2303 !test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 2304 return 0; 2305 2306 return 1; 2307 } 2308 2309 /* Authenticate remote device */ 2310 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type) 2311 { 2312 BT_DBG("hcon %p", conn); 2313 2314 if (conn->pending_sec_level > sec_level) 2315 sec_level = conn->pending_sec_level; 2316 2317 if (sec_level > conn->sec_level) 2318 conn->pending_sec_level = sec_level; 2319 else if (test_bit(HCI_CONN_AUTH, &conn->flags)) 2320 return 1; 2321 2322 /* Make sure we preserve an existing MITM requirement*/ 2323 auth_type |= (conn->auth_type & 0x01); 2324 2325 conn->auth_type = auth_type; 2326 2327 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) { 2328 struct hci_cp_auth_requested cp; 2329 2330 cp.handle = cpu_to_le16(conn->handle); 2331 hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED, 2332 sizeof(cp), &cp); 2333 2334 /* If we're already encrypted set the REAUTH_PEND flag, 2335 * otherwise set the ENCRYPT_PEND. 2336 */ 2337 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 2338 set_bit(HCI_CONN_REAUTH_PEND, &conn->flags); 2339 else 2340 set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); 2341 } 2342 2343 return 0; 2344 } 2345 2346 /* Encrypt the link */ 2347 static void hci_conn_encrypt(struct hci_conn *conn) 2348 { 2349 BT_DBG("hcon %p", conn); 2350 2351 if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) { 2352 struct hci_cp_set_conn_encrypt cp; 2353 cp.handle = cpu_to_le16(conn->handle); 2354 cp.encrypt = 0x01; 2355 hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp), 2356 &cp); 2357 } 2358 } 2359 2360 /* Enable security */ 2361 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type, 2362 bool initiator) 2363 { 2364 BT_DBG("hcon %p", conn); 2365 2366 if (conn->type == LE_LINK) 2367 return smp_conn_security(conn, sec_level); 2368 2369 /* For sdp we don't need the link key. */ 2370 if (sec_level == BT_SECURITY_SDP) 2371 return 1; 2372 2373 /* For non 2.1 devices and low security level we don't need the link 2374 key. */ 2375 if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn)) 2376 return 1; 2377 2378 /* For other security levels we need the link key. */ 2379 if (!test_bit(HCI_CONN_AUTH, &conn->flags)) 2380 goto auth; 2381 2382 /* An authenticated FIPS approved combination key has sufficient 2383 * security for security level 4. */ 2384 if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256 && 2385 sec_level == BT_SECURITY_FIPS) 2386 goto encrypt; 2387 2388 /* An authenticated combination key has sufficient security for 2389 security level 3. */ 2390 if ((conn->key_type == HCI_LK_AUTH_COMBINATION_P192 || 2391 conn->key_type == HCI_LK_AUTH_COMBINATION_P256) && 2392 sec_level == BT_SECURITY_HIGH) 2393 goto encrypt; 2394 2395 /* An unauthenticated combination key has sufficient security for 2396 security level 1 and 2. */ 2397 if ((conn->key_type == HCI_LK_UNAUTH_COMBINATION_P192 || 2398 conn->key_type == HCI_LK_UNAUTH_COMBINATION_P256) && 2399 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW)) 2400 goto encrypt; 2401 2402 /* A combination key has always sufficient security for the security 2403 levels 1 or 2. High security level requires the combination key 2404 is generated using maximum PIN code length (16). 2405 For pre 2.1 units. */ 2406 if (conn->key_type == HCI_LK_COMBINATION && 2407 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW || 2408 conn->pin_length == 16)) 2409 goto encrypt; 2410 2411 auth: 2412 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) 2413 return 0; 2414 2415 if (initiator) 2416 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags); 2417 2418 if (!hci_conn_auth(conn, sec_level, auth_type)) 2419 return 0; 2420 2421 encrypt: 2422 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) { 2423 /* Ensure that the encryption key size has been read, 2424 * otherwise stall the upper layer responses. 2425 */ 2426 if (!conn->enc_key_size) 2427 return 0; 2428 2429 /* Nothing else needed, all requirements are met */ 2430 return 1; 2431 } 2432 2433 hci_conn_encrypt(conn); 2434 return 0; 2435 } 2436 EXPORT_SYMBOL(hci_conn_security); 2437 2438 /* Check secure link requirement */ 2439 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level) 2440 { 2441 BT_DBG("hcon %p", conn); 2442 2443 /* Accept if non-secure or higher security level is required */ 2444 if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS) 2445 return 1; 2446 2447 /* Accept if secure or higher security level is already present */ 2448 if (conn->sec_level == BT_SECURITY_HIGH || 2449 conn->sec_level == BT_SECURITY_FIPS) 2450 return 1; 2451 2452 /* Reject not secure link */ 2453 return 0; 2454 } 2455 EXPORT_SYMBOL(hci_conn_check_secure); 2456 2457 /* Switch role */ 2458 int hci_conn_switch_role(struct hci_conn *conn, __u8 role) 2459 { 2460 BT_DBG("hcon %p", conn); 2461 2462 if (role == conn->role) 2463 return 1; 2464 2465 if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) { 2466 struct hci_cp_switch_role cp; 2467 bacpy(&cp.bdaddr, &conn->dst); 2468 cp.role = role; 2469 hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp); 2470 } 2471 2472 return 0; 2473 } 2474 EXPORT_SYMBOL(hci_conn_switch_role); 2475 2476 /* Enter active mode */ 2477 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active) 2478 { 2479 struct hci_dev *hdev = conn->hdev; 2480 2481 BT_DBG("hcon %p mode %d", conn, conn->mode); 2482 2483 if (conn->mode != HCI_CM_SNIFF) 2484 goto timer; 2485 2486 if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active) 2487 goto timer; 2488 2489 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 2490 struct hci_cp_exit_sniff_mode cp; 2491 cp.handle = cpu_to_le16(conn->handle); 2492 hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp); 2493 } 2494 2495 timer: 2496 if (hdev->idle_timeout > 0) 2497 queue_delayed_work(hdev->workqueue, &conn->idle_work, 2498 msecs_to_jiffies(hdev->idle_timeout)); 2499 } 2500 2501 /* Drop all connection on the device */ 2502 void hci_conn_hash_flush(struct hci_dev *hdev) 2503 { 2504 struct list_head *head = &hdev->conn_hash.list; 2505 struct hci_conn *conn; 2506 2507 BT_DBG("hdev %s", hdev->name); 2508 2509 /* We should not traverse the list here, because hci_conn_del 2510 * can remove extra links, which may cause the list traversal 2511 * to hit items that have already been released. 2512 */ 2513 while ((conn = list_first_entry_or_null(head, 2514 struct hci_conn, 2515 list)) != NULL) { 2516 conn->state = BT_CLOSED; 2517 hci_disconn_cfm(conn, HCI_ERROR_LOCAL_HOST_TERM); 2518 hci_conn_del(conn); 2519 } 2520 } 2521 2522 /* Check pending connect attempts */ 2523 void hci_conn_check_pending(struct hci_dev *hdev) 2524 { 2525 struct hci_conn *conn; 2526 2527 BT_DBG("hdev %s", hdev->name); 2528 2529 hci_dev_lock(hdev); 2530 2531 conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2); 2532 if (conn) 2533 hci_acl_create_connection(conn); 2534 2535 hci_dev_unlock(hdev); 2536 } 2537 2538 static u32 get_link_mode(struct hci_conn *conn) 2539 { 2540 u32 link_mode = 0; 2541 2542 if (conn->role == HCI_ROLE_MASTER) 2543 link_mode |= HCI_LM_MASTER; 2544 2545 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 2546 link_mode |= HCI_LM_ENCRYPT; 2547 2548 if (test_bit(HCI_CONN_AUTH, &conn->flags)) 2549 link_mode |= HCI_LM_AUTH; 2550 2551 if (test_bit(HCI_CONN_SECURE, &conn->flags)) 2552 link_mode |= HCI_LM_SECURE; 2553 2554 if (test_bit(HCI_CONN_FIPS, &conn->flags)) 2555 link_mode |= HCI_LM_FIPS; 2556 2557 return link_mode; 2558 } 2559 2560 int hci_get_conn_list(void __user *arg) 2561 { 2562 struct hci_conn *c; 2563 struct hci_conn_list_req req, *cl; 2564 struct hci_conn_info *ci; 2565 struct hci_dev *hdev; 2566 int n = 0, size, err; 2567 2568 if (copy_from_user(&req, arg, sizeof(req))) 2569 return -EFAULT; 2570 2571 if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci)) 2572 return -EINVAL; 2573 2574 size = sizeof(req) + req.conn_num * sizeof(*ci); 2575 2576 cl = kmalloc(size, GFP_KERNEL); 2577 if (!cl) 2578 return -ENOMEM; 2579 2580 hdev = hci_dev_get(req.dev_id); 2581 if (!hdev) { 2582 kfree(cl); 2583 return -ENODEV; 2584 } 2585 2586 ci = cl->conn_info; 2587 2588 hci_dev_lock(hdev); 2589 list_for_each_entry(c, &hdev->conn_hash.list, list) { 2590 bacpy(&(ci + n)->bdaddr, &c->dst); 2591 (ci + n)->handle = c->handle; 2592 (ci + n)->type = c->type; 2593 (ci + n)->out = c->out; 2594 (ci + n)->state = c->state; 2595 (ci + n)->link_mode = get_link_mode(c); 2596 if (++n >= req.conn_num) 2597 break; 2598 } 2599 hci_dev_unlock(hdev); 2600 2601 cl->dev_id = hdev->id; 2602 cl->conn_num = n; 2603 size = sizeof(req) + n * sizeof(*ci); 2604 2605 hci_dev_put(hdev); 2606 2607 err = copy_to_user(arg, cl, size); 2608 kfree(cl); 2609 2610 return err ? -EFAULT : 0; 2611 } 2612 2613 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg) 2614 { 2615 struct hci_conn_info_req req; 2616 struct hci_conn_info ci; 2617 struct hci_conn *conn; 2618 char __user *ptr = arg + sizeof(req); 2619 2620 if (copy_from_user(&req, arg, sizeof(req))) 2621 return -EFAULT; 2622 2623 hci_dev_lock(hdev); 2624 conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr); 2625 if (conn) { 2626 bacpy(&ci.bdaddr, &conn->dst); 2627 ci.handle = conn->handle; 2628 ci.type = conn->type; 2629 ci.out = conn->out; 2630 ci.state = conn->state; 2631 ci.link_mode = get_link_mode(conn); 2632 } 2633 hci_dev_unlock(hdev); 2634 2635 if (!conn) 2636 return -ENOENT; 2637 2638 return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0; 2639 } 2640 2641 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg) 2642 { 2643 struct hci_auth_info_req req; 2644 struct hci_conn *conn; 2645 2646 if (copy_from_user(&req, arg, sizeof(req))) 2647 return -EFAULT; 2648 2649 hci_dev_lock(hdev); 2650 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr); 2651 if (conn) 2652 req.type = conn->auth_type; 2653 hci_dev_unlock(hdev); 2654 2655 if (!conn) 2656 return -ENOENT; 2657 2658 return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0; 2659 } 2660 2661 struct hci_chan *hci_chan_create(struct hci_conn *conn) 2662 { 2663 struct hci_dev *hdev = conn->hdev; 2664 struct hci_chan *chan; 2665 2666 BT_DBG("%s hcon %p", hdev->name, conn); 2667 2668 if (test_bit(HCI_CONN_DROP, &conn->flags)) { 2669 BT_DBG("Refusing to create new hci_chan"); 2670 return NULL; 2671 } 2672 2673 chan = kzalloc(sizeof(*chan), GFP_KERNEL); 2674 if (!chan) 2675 return NULL; 2676 2677 chan->conn = hci_conn_get(conn); 2678 skb_queue_head_init(&chan->data_q); 2679 chan->state = BT_CONNECTED; 2680 2681 list_add_rcu(&chan->list, &conn->chan_list); 2682 2683 return chan; 2684 } 2685 2686 void hci_chan_del(struct hci_chan *chan) 2687 { 2688 struct hci_conn *conn = chan->conn; 2689 struct hci_dev *hdev = conn->hdev; 2690 2691 BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan); 2692 2693 list_del_rcu(&chan->list); 2694 2695 synchronize_rcu(); 2696 2697 /* Prevent new hci_chan's to be created for this hci_conn */ 2698 set_bit(HCI_CONN_DROP, &conn->flags); 2699 2700 hci_conn_put(conn); 2701 2702 skb_queue_purge(&chan->data_q); 2703 kfree(chan); 2704 } 2705 2706 void hci_chan_list_flush(struct hci_conn *conn) 2707 { 2708 struct hci_chan *chan, *n; 2709 2710 BT_DBG("hcon %p", conn); 2711 2712 list_for_each_entry_safe(chan, n, &conn->chan_list, list) 2713 hci_chan_del(chan); 2714 } 2715 2716 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon, 2717 __u16 handle) 2718 { 2719 struct hci_chan *hchan; 2720 2721 list_for_each_entry(hchan, &hcon->chan_list, list) { 2722 if (hchan->handle == handle) 2723 return hchan; 2724 } 2725 2726 return NULL; 2727 } 2728 2729 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle) 2730 { 2731 struct hci_conn_hash *h = &hdev->conn_hash; 2732 struct hci_conn *hcon; 2733 struct hci_chan *hchan = NULL; 2734 2735 rcu_read_lock(); 2736 2737 list_for_each_entry_rcu(hcon, &h->list, list) { 2738 hchan = __hci_chan_lookup_handle(hcon, handle); 2739 if (hchan) 2740 break; 2741 } 2742 2743 rcu_read_unlock(); 2744 2745 return hchan; 2746 } 2747 2748 u32 hci_conn_get_phy(struct hci_conn *conn) 2749 { 2750 u32 phys = 0; 2751 2752 /* BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 2, Part B page 471: 2753 * Table 6.2: Packets defined for synchronous, asynchronous, and 2754 * CPB logical transport types. 2755 */ 2756 switch (conn->type) { 2757 case SCO_LINK: 2758 /* SCO logical transport (1 Mb/s): 2759 * HV1, HV2, HV3 and DV. 2760 */ 2761 phys |= BT_PHY_BR_1M_1SLOT; 2762 2763 break; 2764 2765 case ACL_LINK: 2766 /* ACL logical transport (1 Mb/s) ptt=0: 2767 * DH1, DM3, DH3, DM5 and DH5. 2768 */ 2769 phys |= BT_PHY_BR_1M_1SLOT; 2770 2771 if (conn->pkt_type & (HCI_DM3 | HCI_DH3)) 2772 phys |= BT_PHY_BR_1M_3SLOT; 2773 2774 if (conn->pkt_type & (HCI_DM5 | HCI_DH5)) 2775 phys |= BT_PHY_BR_1M_5SLOT; 2776 2777 /* ACL logical transport (2 Mb/s) ptt=1: 2778 * 2-DH1, 2-DH3 and 2-DH5. 2779 */ 2780 if (!(conn->pkt_type & HCI_2DH1)) 2781 phys |= BT_PHY_EDR_2M_1SLOT; 2782 2783 if (!(conn->pkt_type & HCI_2DH3)) 2784 phys |= BT_PHY_EDR_2M_3SLOT; 2785 2786 if (!(conn->pkt_type & HCI_2DH5)) 2787 phys |= BT_PHY_EDR_2M_5SLOT; 2788 2789 /* ACL logical transport (3 Mb/s) ptt=1: 2790 * 3-DH1, 3-DH3 and 3-DH5. 2791 */ 2792 if (!(conn->pkt_type & HCI_3DH1)) 2793 phys |= BT_PHY_EDR_3M_1SLOT; 2794 2795 if (!(conn->pkt_type & HCI_3DH3)) 2796 phys |= BT_PHY_EDR_3M_3SLOT; 2797 2798 if (!(conn->pkt_type & HCI_3DH5)) 2799 phys |= BT_PHY_EDR_3M_5SLOT; 2800 2801 break; 2802 2803 case ESCO_LINK: 2804 /* eSCO logical transport (1 Mb/s): EV3, EV4 and EV5 */ 2805 phys |= BT_PHY_BR_1M_1SLOT; 2806 2807 if (!(conn->pkt_type & (ESCO_EV4 | ESCO_EV5))) 2808 phys |= BT_PHY_BR_1M_3SLOT; 2809 2810 /* eSCO logical transport (2 Mb/s): 2-EV3, 2-EV5 */ 2811 if (!(conn->pkt_type & ESCO_2EV3)) 2812 phys |= BT_PHY_EDR_2M_1SLOT; 2813 2814 if (!(conn->pkt_type & ESCO_2EV5)) 2815 phys |= BT_PHY_EDR_2M_3SLOT; 2816 2817 /* eSCO logical transport (3 Mb/s): 3-EV3, 3-EV5 */ 2818 if (!(conn->pkt_type & ESCO_3EV3)) 2819 phys |= BT_PHY_EDR_3M_1SLOT; 2820 2821 if (!(conn->pkt_type & ESCO_3EV5)) 2822 phys |= BT_PHY_EDR_3M_3SLOT; 2823 2824 break; 2825 2826 case LE_LINK: 2827 if (conn->le_tx_phy & HCI_LE_SET_PHY_1M) 2828 phys |= BT_PHY_LE_1M_TX; 2829 2830 if (conn->le_rx_phy & HCI_LE_SET_PHY_1M) 2831 phys |= BT_PHY_LE_1M_RX; 2832 2833 if (conn->le_tx_phy & HCI_LE_SET_PHY_2M) 2834 phys |= BT_PHY_LE_2M_TX; 2835 2836 if (conn->le_rx_phy & HCI_LE_SET_PHY_2M) 2837 phys |= BT_PHY_LE_2M_RX; 2838 2839 if (conn->le_tx_phy & HCI_LE_SET_PHY_CODED) 2840 phys |= BT_PHY_LE_CODED_TX; 2841 2842 if (conn->le_rx_phy & HCI_LE_SET_PHY_CODED) 2843 phys |= BT_PHY_LE_CODED_RX; 2844 2845 break; 2846 } 2847 2848 return phys; 2849 } 2850 2851 int hci_abort_conn(struct hci_conn *conn, u8 reason) 2852 { 2853 int r = 0; 2854 2855 if (test_and_set_bit(HCI_CONN_CANCEL, &conn->flags)) 2856 return 0; 2857 2858 switch (conn->state) { 2859 case BT_CONNECTED: 2860 case BT_CONFIG: 2861 if (conn->type == AMP_LINK) { 2862 struct hci_cp_disconn_phy_link cp; 2863 2864 cp.phy_handle = HCI_PHY_HANDLE(conn->handle); 2865 cp.reason = reason; 2866 r = hci_send_cmd(conn->hdev, HCI_OP_DISCONN_PHY_LINK, 2867 sizeof(cp), &cp); 2868 } else { 2869 struct hci_cp_disconnect dc; 2870 2871 dc.handle = cpu_to_le16(conn->handle); 2872 dc.reason = reason; 2873 r = hci_send_cmd(conn->hdev, HCI_OP_DISCONNECT, 2874 sizeof(dc), &dc); 2875 } 2876 2877 conn->state = BT_DISCONN; 2878 2879 break; 2880 case BT_CONNECT: 2881 if (conn->type == LE_LINK) { 2882 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 2883 break; 2884 r = hci_send_cmd(conn->hdev, 2885 HCI_OP_LE_CREATE_CONN_CANCEL, 0, NULL); 2886 } else if (conn->type == ACL_LINK) { 2887 if (conn->hdev->hci_ver < BLUETOOTH_VER_1_2) 2888 break; 2889 r = hci_send_cmd(conn->hdev, 2890 HCI_OP_CREATE_CONN_CANCEL, 2891 6, &conn->dst); 2892 } 2893 break; 2894 case BT_CONNECT2: 2895 if (conn->type == ACL_LINK) { 2896 struct hci_cp_reject_conn_req rej; 2897 2898 bacpy(&rej.bdaddr, &conn->dst); 2899 rej.reason = reason; 2900 2901 r = hci_send_cmd(conn->hdev, 2902 HCI_OP_REJECT_CONN_REQ, 2903 sizeof(rej), &rej); 2904 } else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) { 2905 struct hci_cp_reject_sync_conn_req rej; 2906 2907 bacpy(&rej.bdaddr, &conn->dst); 2908 2909 /* SCO rejection has its own limited set of 2910 * allowed error values (0x0D-0x0F) which isn't 2911 * compatible with most values passed to this 2912 * function. To be safe hard-code one of the 2913 * values that's suitable for SCO. 2914 */ 2915 rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; 2916 2917 r = hci_send_cmd(conn->hdev, 2918 HCI_OP_REJECT_SYNC_CONN_REQ, 2919 sizeof(rej), &rej); 2920 } 2921 break; 2922 default: 2923 conn->state = BT_CLOSED; 2924 break; 2925 } 2926 2927 return r; 2928 } 2929