1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 /* Bluetooth HCI connection handling. */ 26 27 #include <linux/export.h> 28 #include <linux/debugfs.h> 29 30 #include <net/bluetooth/bluetooth.h> 31 #include <net/bluetooth/hci_core.h> 32 #include <net/bluetooth/l2cap.h> 33 34 #include "hci_request.h" 35 #include "smp.h" 36 #include "a2mp.h" 37 38 struct sco_param { 39 u16 pkt_type; 40 u16 max_latency; 41 u8 retrans_effort; 42 }; 43 44 static const struct sco_param esco_param_cvsd[] = { 45 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a, 0x01 }, /* S3 */ 46 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007, 0x01 }, /* S2 */ 47 { EDR_ESCO_MASK | ESCO_EV3, 0x0007, 0x01 }, /* S1 */ 48 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0x01 }, /* D1 */ 49 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0x01 }, /* D0 */ 50 }; 51 52 static const struct sco_param sco_param_cvsd[] = { 53 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0xff }, /* D1 */ 54 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0xff }, /* D0 */ 55 }; 56 57 static const struct sco_param esco_param_msbc[] = { 58 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d, 0x02 }, /* T2 */ 59 { EDR_ESCO_MASK | ESCO_EV3, 0x0008, 0x02 }, /* T1 */ 60 }; 61 62 /* This function requires the caller holds hdev->lock */ 63 static void hci_connect_le_scan_cleanup(struct hci_conn *conn) 64 { 65 struct hci_conn_params *params; 66 struct hci_dev *hdev = conn->hdev; 67 struct smp_irk *irk; 68 bdaddr_t *bdaddr; 69 u8 bdaddr_type; 70 71 bdaddr = &conn->dst; 72 bdaddr_type = conn->dst_type; 73 74 /* Check if we need to convert to identity address */ 75 irk = hci_get_irk(hdev, bdaddr, bdaddr_type); 76 if (irk) { 77 bdaddr = &irk->bdaddr; 78 bdaddr_type = irk->addr_type; 79 } 80 81 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr, 82 bdaddr_type); 83 if (!params || !params->explicit_connect) 84 return; 85 86 /* The connection attempt was doing scan for new RPA, and is 87 * in scan phase. If params are not associated with any other 88 * autoconnect action, remove them completely. If they are, just unmark 89 * them as waiting for connection, by clearing explicit_connect field. 90 */ 91 params->explicit_connect = false; 92 93 list_del_init(¶ms->action); 94 95 switch (params->auto_connect) { 96 case HCI_AUTO_CONN_EXPLICIT: 97 hci_conn_params_del(hdev, bdaddr, bdaddr_type); 98 /* return instead of break to avoid duplicate scan update */ 99 return; 100 case HCI_AUTO_CONN_DIRECT: 101 case HCI_AUTO_CONN_ALWAYS: 102 list_add(¶ms->action, &hdev->pend_le_conns); 103 break; 104 case HCI_AUTO_CONN_REPORT: 105 list_add(¶ms->action, &hdev->pend_le_reports); 106 break; 107 default: 108 break; 109 } 110 111 hci_update_passive_scan(hdev); 112 } 113 114 static void hci_conn_cleanup(struct hci_conn *conn) 115 { 116 struct hci_dev *hdev = conn->hdev; 117 118 if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags)) 119 hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type); 120 121 hci_chan_list_flush(conn); 122 123 hci_conn_hash_del(hdev, conn); 124 125 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) { 126 switch (conn->setting & SCO_AIRMODE_MASK) { 127 case SCO_AIRMODE_CVSD: 128 case SCO_AIRMODE_TRANSP: 129 if (hdev->notify) 130 hdev->notify(hdev, HCI_NOTIFY_DISABLE_SCO); 131 break; 132 } 133 } else { 134 if (hdev->notify) 135 hdev->notify(hdev, HCI_NOTIFY_CONN_DEL); 136 } 137 138 hci_conn_del_sysfs(conn); 139 140 debugfs_remove_recursive(conn->debugfs); 141 142 hci_dev_put(hdev); 143 144 hci_conn_put(conn); 145 } 146 147 static void le_scan_cleanup(struct work_struct *work) 148 { 149 struct hci_conn *conn = container_of(work, struct hci_conn, 150 le_scan_cleanup); 151 struct hci_dev *hdev = conn->hdev; 152 struct hci_conn *c = NULL; 153 154 BT_DBG("%s hcon %p", hdev->name, conn); 155 156 hci_dev_lock(hdev); 157 158 /* Check that the hci_conn is still around */ 159 rcu_read_lock(); 160 list_for_each_entry_rcu(c, &hdev->conn_hash.list, list) { 161 if (c == conn) 162 break; 163 } 164 rcu_read_unlock(); 165 166 if (c == conn) { 167 hci_connect_le_scan_cleanup(conn); 168 hci_conn_cleanup(conn); 169 } 170 171 hci_dev_unlock(hdev); 172 hci_dev_put(hdev); 173 hci_conn_put(conn); 174 } 175 176 static void hci_connect_le_scan_remove(struct hci_conn *conn) 177 { 178 BT_DBG("%s hcon %p", conn->hdev->name, conn); 179 180 /* We can't call hci_conn_del/hci_conn_cleanup here since that 181 * could deadlock with another hci_conn_del() call that's holding 182 * hci_dev_lock and doing cancel_delayed_work_sync(&conn->disc_work). 183 * Instead, grab temporary extra references to the hci_dev and 184 * hci_conn and perform the necessary cleanup in a separate work 185 * callback. 186 */ 187 188 hci_dev_hold(conn->hdev); 189 hci_conn_get(conn); 190 191 /* Even though we hold a reference to the hdev, many other 192 * things might get cleaned up meanwhile, including the hdev's 193 * own workqueue, so we can't use that for scheduling. 194 */ 195 schedule_work(&conn->le_scan_cleanup); 196 } 197 198 static void hci_acl_create_connection(struct hci_conn *conn) 199 { 200 struct hci_dev *hdev = conn->hdev; 201 struct inquiry_entry *ie; 202 struct hci_cp_create_conn cp; 203 204 BT_DBG("hcon %p", conn); 205 206 /* Many controllers disallow HCI Create Connection while it is doing 207 * HCI Inquiry. So we cancel the Inquiry first before issuing HCI Create 208 * Connection. This may cause the MGMT discovering state to become false 209 * without user space's request but it is okay since the MGMT Discovery 210 * APIs do not promise that discovery should be done forever. Instead, 211 * the user space monitors the status of MGMT discovering and it may 212 * request for discovery again when this flag becomes false. 213 */ 214 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 215 /* Put this connection to "pending" state so that it will be 216 * executed after the inquiry cancel command complete event. 217 */ 218 conn->state = BT_CONNECT2; 219 hci_send_cmd(hdev, HCI_OP_INQUIRY_CANCEL, 0, NULL); 220 return; 221 } 222 223 conn->state = BT_CONNECT; 224 conn->out = true; 225 conn->role = HCI_ROLE_MASTER; 226 227 conn->attempt++; 228 229 conn->link_policy = hdev->link_policy; 230 231 memset(&cp, 0, sizeof(cp)); 232 bacpy(&cp.bdaddr, &conn->dst); 233 cp.pscan_rep_mode = 0x02; 234 235 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 236 if (ie) { 237 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) { 238 cp.pscan_rep_mode = ie->data.pscan_rep_mode; 239 cp.pscan_mode = ie->data.pscan_mode; 240 cp.clock_offset = ie->data.clock_offset | 241 cpu_to_le16(0x8000); 242 } 243 244 memcpy(conn->dev_class, ie->data.dev_class, 3); 245 } 246 247 cp.pkt_type = cpu_to_le16(conn->pkt_type); 248 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER)) 249 cp.role_switch = 0x01; 250 else 251 cp.role_switch = 0x00; 252 253 hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp); 254 } 255 256 int hci_disconnect(struct hci_conn *conn, __u8 reason) 257 { 258 BT_DBG("hcon %p", conn); 259 260 /* When we are central of an established connection and it enters 261 * the disconnect timeout, then go ahead and try to read the 262 * current clock offset. Processing of the result is done 263 * within the event handling and hci_clock_offset_evt function. 264 */ 265 if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER && 266 (conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) { 267 struct hci_dev *hdev = conn->hdev; 268 struct hci_cp_read_clock_offset clkoff_cp; 269 270 clkoff_cp.handle = cpu_to_le16(conn->handle); 271 hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp), 272 &clkoff_cp); 273 } 274 275 return hci_abort_conn(conn, reason); 276 } 277 278 static void hci_add_sco(struct hci_conn *conn, __u16 handle) 279 { 280 struct hci_dev *hdev = conn->hdev; 281 struct hci_cp_add_sco cp; 282 283 BT_DBG("hcon %p", conn); 284 285 conn->state = BT_CONNECT; 286 conn->out = true; 287 288 conn->attempt++; 289 290 cp.handle = cpu_to_le16(handle); 291 cp.pkt_type = cpu_to_le16(conn->pkt_type); 292 293 hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp); 294 } 295 296 static bool find_next_esco_param(struct hci_conn *conn, 297 const struct sco_param *esco_param, int size) 298 { 299 for (; conn->attempt <= size; conn->attempt++) { 300 if (lmp_esco_2m_capable(conn->link) || 301 (esco_param[conn->attempt - 1].pkt_type & ESCO_2EV3)) 302 break; 303 BT_DBG("hcon %p skipped attempt %d, eSCO 2M not supported", 304 conn, conn->attempt); 305 } 306 307 return conn->attempt <= size; 308 } 309 310 static bool hci_enhanced_setup_sync_conn(struct hci_conn *conn, __u16 handle) 311 { 312 struct hci_dev *hdev = conn->hdev; 313 struct hci_cp_enhanced_setup_sync_conn cp; 314 const struct sco_param *param; 315 316 bt_dev_dbg(hdev, "hcon %p", conn); 317 318 /* for offload use case, codec needs to configured before opening SCO */ 319 if (conn->codec.data_path) 320 hci_req_configure_datapath(hdev, &conn->codec); 321 322 conn->state = BT_CONNECT; 323 conn->out = true; 324 325 conn->attempt++; 326 327 memset(&cp, 0x00, sizeof(cp)); 328 329 cp.handle = cpu_to_le16(handle); 330 331 cp.tx_bandwidth = cpu_to_le32(0x00001f40); 332 cp.rx_bandwidth = cpu_to_le32(0x00001f40); 333 334 switch (conn->codec.id) { 335 case BT_CODEC_MSBC: 336 if (!find_next_esco_param(conn, esco_param_msbc, 337 ARRAY_SIZE(esco_param_msbc))) 338 return false; 339 340 param = &esco_param_msbc[conn->attempt - 1]; 341 cp.tx_coding_format.id = 0x05; 342 cp.rx_coding_format.id = 0x05; 343 cp.tx_codec_frame_size = __cpu_to_le16(60); 344 cp.rx_codec_frame_size = __cpu_to_le16(60); 345 cp.in_bandwidth = __cpu_to_le32(32000); 346 cp.out_bandwidth = __cpu_to_le32(32000); 347 cp.in_coding_format.id = 0x04; 348 cp.out_coding_format.id = 0x04; 349 cp.in_coded_data_size = __cpu_to_le16(16); 350 cp.out_coded_data_size = __cpu_to_le16(16); 351 cp.in_pcm_data_format = 2; 352 cp.out_pcm_data_format = 2; 353 cp.in_pcm_sample_payload_msb_pos = 0; 354 cp.out_pcm_sample_payload_msb_pos = 0; 355 cp.in_data_path = conn->codec.data_path; 356 cp.out_data_path = conn->codec.data_path; 357 cp.in_transport_unit_size = 1; 358 cp.out_transport_unit_size = 1; 359 break; 360 361 case BT_CODEC_TRANSPARENT: 362 if (!find_next_esco_param(conn, esco_param_msbc, 363 ARRAY_SIZE(esco_param_msbc))) 364 return false; 365 param = &esco_param_msbc[conn->attempt - 1]; 366 cp.tx_coding_format.id = 0x03; 367 cp.rx_coding_format.id = 0x03; 368 cp.tx_codec_frame_size = __cpu_to_le16(60); 369 cp.rx_codec_frame_size = __cpu_to_le16(60); 370 cp.in_bandwidth = __cpu_to_le32(0x1f40); 371 cp.out_bandwidth = __cpu_to_le32(0x1f40); 372 cp.in_coding_format.id = 0x03; 373 cp.out_coding_format.id = 0x03; 374 cp.in_coded_data_size = __cpu_to_le16(16); 375 cp.out_coded_data_size = __cpu_to_le16(16); 376 cp.in_pcm_data_format = 2; 377 cp.out_pcm_data_format = 2; 378 cp.in_pcm_sample_payload_msb_pos = 0; 379 cp.out_pcm_sample_payload_msb_pos = 0; 380 cp.in_data_path = conn->codec.data_path; 381 cp.out_data_path = conn->codec.data_path; 382 cp.in_transport_unit_size = 1; 383 cp.out_transport_unit_size = 1; 384 break; 385 386 case BT_CODEC_CVSD: 387 if (lmp_esco_capable(conn->link)) { 388 if (!find_next_esco_param(conn, esco_param_cvsd, 389 ARRAY_SIZE(esco_param_cvsd))) 390 return false; 391 param = &esco_param_cvsd[conn->attempt - 1]; 392 } else { 393 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd)) 394 return false; 395 param = &sco_param_cvsd[conn->attempt - 1]; 396 } 397 cp.tx_coding_format.id = 2; 398 cp.rx_coding_format.id = 2; 399 cp.tx_codec_frame_size = __cpu_to_le16(60); 400 cp.rx_codec_frame_size = __cpu_to_le16(60); 401 cp.in_bandwidth = __cpu_to_le32(16000); 402 cp.out_bandwidth = __cpu_to_le32(16000); 403 cp.in_coding_format.id = 4; 404 cp.out_coding_format.id = 4; 405 cp.in_coded_data_size = __cpu_to_le16(16); 406 cp.out_coded_data_size = __cpu_to_le16(16); 407 cp.in_pcm_data_format = 2; 408 cp.out_pcm_data_format = 2; 409 cp.in_pcm_sample_payload_msb_pos = 0; 410 cp.out_pcm_sample_payload_msb_pos = 0; 411 cp.in_data_path = conn->codec.data_path; 412 cp.out_data_path = conn->codec.data_path; 413 cp.in_transport_unit_size = 16; 414 cp.out_transport_unit_size = 16; 415 break; 416 default: 417 return false; 418 } 419 420 cp.retrans_effort = param->retrans_effort; 421 cp.pkt_type = __cpu_to_le16(param->pkt_type); 422 cp.max_latency = __cpu_to_le16(param->max_latency); 423 424 if (hci_send_cmd(hdev, HCI_OP_ENHANCED_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0) 425 return false; 426 427 return true; 428 } 429 430 static bool hci_setup_sync_conn(struct hci_conn *conn, __u16 handle) 431 { 432 struct hci_dev *hdev = conn->hdev; 433 struct hci_cp_setup_sync_conn cp; 434 const struct sco_param *param; 435 436 bt_dev_dbg(hdev, "hcon %p", conn); 437 438 conn->state = BT_CONNECT; 439 conn->out = true; 440 441 conn->attempt++; 442 443 cp.handle = cpu_to_le16(handle); 444 445 cp.tx_bandwidth = cpu_to_le32(0x00001f40); 446 cp.rx_bandwidth = cpu_to_le32(0x00001f40); 447 cp.voice_setting = cpu_to_le16(conn->setting); 448 449 switch (conn->setting & SCO_AIRMODE_MASK) { 450 case SCO_AIRMODE_TRANSP: 451 if (!find_next_esco_param(conn, esco_param_msbc, 452 ARRAY_SIZE(esco_param_msbc))) 453 return false; 454 param = &esco_param_msbc[conn->attempt - 1]; 455 break; 456 case SCO_AIRMODE_CVSD: 457 if (lmp_esco_capable(conn->link)) { 458 if (!find_next_esco_param(conn, esco_param_cvsd, 459 ARRAY_SIZE(esco_param_cvsd))) 460 return false; 461 param = &esco_param_cvsd[conn->attempt - 1]; 462 } else { 463 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd)) 464 return false; 465 param = &sco_param_cvsd[conn->attempt - 1]; 466 } 467 break; 468 default: 469 return false; 470 } 471 472 cp.retrans_effort = param->retrans_effort; 473 cp.pkt_type = __cpu_to_le16(param->pkt_type); 474 cp.max_latency = __cpu_to_le16(param->max_latency); 475 476 if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0) 477 return false; 478 479 return true; 480 } 481 482 bool hci_setup_sync(struct hci_conn *conn, __u16 handle) 483 { 484 if (enhanced_sco_capable(conn->hdev)) 485 return hci_enhanced_setup_sync_conn(conn, handle); 486 487 return hci_setup_sync_conn(conn, handle); 488 } 489 490 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency, 491 u16 to_multiplier) 492 { 493 struct hci_dev *hdev = conn->hdev; 494 struct hci_conn_params *params; 495 struct hci_cp_le_conn_update cp; 496 497 hci_dev_lock(hdev); 498 499 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 500 if (params) { 501 params->conn_min_interval = min; 502 params->conn_max_interval = max; 503 params->conn_latency = latency; 504 params->supervision_timeout = to_multiplier; 505 } 506 507 hci_dev_unlock(hdev); 508 509 memset(&cp, 0, sizeof(cp)); 510 cp.handle = cpu_to_le16(conn->handle); 511 cp.conn_interval_min = cpu_to_le16(min); 512 cp.conn_interval_max = cpu_to_le16(max); 513 cp.conn_latency = cpu_to_le16(latency); 514 cp.supervision_timeout = cpu_to_le16(to_multiplier); 515 cp.min_ce_len = cpu_to_le16(0x0000); 516 cp.max_ce_len = cpu_to_le16(0x0000); 517 518 hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp); 519 520 if (params) 521 return 0x01; 522 523 return 0x00; 524 } 525 526 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand, 527 __u8 ltk[16], __u8 key_size) 528 { 529 struct hci_dev *hdev = conn->hdev; 530 struct hci_cp_le_start_enc cp; 531 532 BT_DBG("hcon %p", conn); 533 534 memset(&cp, 0, sizeof(cp)); 535 536 cp.handle = cpu_to_le16(conn->handle); 537 cp.rand = rand; 538 cp.ediv = ediv; 539 memcpy(cp.ltk, ltk, key_size); 540 541 hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp); 542 } 543 544 /* Device _must_ be locked */ 545 void hci_sco_setup(struct hci_conn *conn, __u8 status) 546 { 547 struct hci_conn *sco = conn->link; 548 549 if (!sco) 550 return; 551 552 BT_DBG("hcon %p", conn); 553 554 if (!status) { 555 if (lmp_esco_capable(conn->hdev)) 556 hci_setup_sync(sco, conn->handle); 557 else 558 hci_add_sco(sco, conn->handle); 559 } else { 560 hci_connect_cfm(sco, status); 561 hci_conn_del(sco); 562 } 563 } 564 565 static void hci_conn_timeout(struct work_struct *work) 566 { 567 struct hci_conn *conn = container_of(work, struct hci_conn, 568 disc_work.work); 569 int refcnt = atomic_read(&conn->refcnt); 570 571 BT_DBG("hcon %p state %s", conn, state_to_string(conn->state)); 572 573 WARN_ON(refcnt < 0); 574 575 /* FIXME: It was observed that in pairing failed scenario, refcnt 576 * drops below 0. Probably this is because l2cap_conn_del calls 577 * l2cap_chan_del for each channel, and inside l2cap_chan_del conn is 578 * dropped. After that loop hci_chan_del is called which also drops 579 * conn. For now make sure that ACL is alive if refcnt is higher then 0, 580 * otherwise drop it. 581 */ 582 if (refcnt > 0) 583 return; 584 585 /* LE connections in scanning state need special handling */ 586 if (conn->state == BT_CONNECT && conn->type == LE_LINK && 587 test_bit(HCI_CONN_SCANNING, &conn->flags)) { 588 hci_connect_le_scan_remove(conn); 589 return; 590 } 591 592 hci_abort_conn(conn, hci_proto_disconn_ind(conn)); 593 } 594 595 /* Enter sniff mode */ 596 static void hci_conn_idle(struct work_struct *work) 597 { 598 struct hci_conn *conn = container_of(work, struct hci_conn, 599 idle_work.work); 600 struct hci_dev *hdev = conn->hdev; 601 602 BT_DBG("hcon %p mode %d", conn, conn->mode); 603 604 if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn)) 605 return; 606 607 if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF)) 608 return; 609 610 if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) { 611 struct hci_cp_sniff_subrate cp; 612 cp.handle = cpu_to_le16(conn->handle); 613 cp.max_latency = cpu_to_le16(0); 614 cp.min_remote_timeout = cpu_to_le16(0); 615 cp.min_local_timeout = cpu_to_le16(0); 616 hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp); 617 } 618 619 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 620 struct hci_cp_sniff_mode cp; 621 cp.handle = cpu_to_le16(conn->handle); 622 cp.max_interval = cpu_to_le16(hdev->sniff_max_interval); 623 cp.min_interval = cpu_to_le16(hdev->sniff_min_interval); 624 cp.attempt = cpu_to_le16(4); 625 cp.timeout = cpu_to_le16(1); 626 hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp); 627 } 628 } 629 630 static void hci_conn_auto_accept(struct work_struct *work) 631 { 632 struct hci_conn *conn = container_of(work, struct hci_conn, 633 auto_accept_work.work); 634 635 hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst), 636 &conn->dst); 637 } 638 639 static void le_disable_advertising(struct hci_dev *hdev) 640 { 641 if (ext_adv_capable(hdev)) { 642 struct hci_cp_le_set_ext_adv_enable cp; 643 644 cp.enable = 0x00; 645 cp.num_of_sets = 0x00; 646 647 hci_send_cmd(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp), 648 &cp); 649 } else { 650 u8 enable = 0x00; 651 hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), 652 &enable); 653 } 654 } 655 656 static void le_conn_timeout(struct work_struct *work) 657 { 658 struct hci_conn *conn = container_of(work, struct hci_conn, 659 le_conn_timeout.work); 660 struct hci_dev *hdev = conn->hdev; 661 662 BT_DBG(""); 663 664 /* We could end up here due to having done directed advertising, 665 * so clean up the state if necessary. This should however only 666 * happen with broken hardware or if low duty cycle was used 667 * (which doesn't have a timeout of its own). 668 */ 669 if (conn->role == HCI_ROLE_SLAVE) { 670 /* Disable LE Advertising */ 671 le_disable_advertising(hdev); 672 hci_dev_lock(hdev); 673 hci_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT); 674 hci_dev_unlock(hdev); 675 return; 676 } 677 678 hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM); 679 } 680 681 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst, 682 u8 role) 683 { 684 struct hci_conn *conn; 685 686 BT_DBG("%s dst %pMR", hdev->name, dst); 687 688 conn = kzalloc(sizeof(*conn), GFP_KERNEL); 689 if (!conn) 690 return NULL; 691 692 bacpy(&conn->dst, dst); 693 bacpy(&conn->src, &hdev->bdaddr); 694 conn->handle = HCI_CONN_HANDLE_UNSET; 695 conn->hdev = hdev; 696 conn->type = type; 697 conn->role = role; 698 conn->mode = HCI_CM_ACTIVE; 699 conn->state = BT_OPEN; 700 conn->auth_type = HCI_AT_GENERAL_BONDING; 701 conn->io_capability = hdev->io_capability; 702 conn->remote_auth = 0xff; 703 conn->key_type = 0xff; 704 conn->rssi = HCI_RSSI_INVALID; 705 conn->tx_power = HCI_TX_POWER_INVALID; 706 conn->max_tx_power = HCI_TX_POWER_INVALID; 707 708 set_bit(HCI_CONN_POWER_SAVE, &conn->flags); 709 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 710 711 /* Set Default Authenticated payload timeout to 30s */ 712 conn->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT; 713 714 if (conn->role == HCI_ROLE_MASTER) 715 conn->out = true; 716 717 switch (type) { 718 case ACL_LINK: 719 conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK; 720 break; 721 case LE_LINK: 722 /* conn->src should reflect the local identity address */ 723 hci_copy_identity_address(hdev, &conn->src, &conn->src_type); 724 break; 725 case SCO_LINK: 726 if (lmp_esco_capable(hdev)) 727 conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) | 728 (hdev->esco_type & EDR_ESCO_MASK); 729 else 730 conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK; 731 break; 732 case ESCO_LINK: 733 conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK; 734 break; 735 } 736 737 skb_queue_head_init(&conn->data_q); 738 739 INIT_LIST_HEAD(&conn->chan_list); 740 741 INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout); 742 INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept); 743 INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle); 744 INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout); 745 INIT_WORK(&conn->le_scan_cleanup, le_scan_cleanup); 746 747 atomic_set(&conn->refcnt, 0); 748 749 hci_dev_hold(hdev); 750 751 hci_conn_hash_add(hdev, conn); 752 753 /* The SCO and eSCO connections will only be notified when their 754 * setup has been completed. This is different to ACL links which 755 * can be notified right away. 756 */ 757 if (conn->type != SCO_LINK && conn->type != ESCO_LINK) { 758 if (hdev->notify) 759 hdev->notify(hdev, HCI_NOTIFY_CONN_ADD); 760 } 761 762 hci_conn_init_sysfs(conn); 763 764 return conn; 765 } 766 767 int hci_conn_del(struct hci_conn *conn) 768 { 769 struct hci_dev *hdev = conn->hdev; 770 771 BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle); 772 773 cancel_delayed_work_sync(&conn->disc_work); 774 cancel_delayed_work_sync(&conn->auto_accept_work); 775 cancel_delayed_work_sync(&conn->idle_work); 776 777 if (conn->type == ACL_LINK) { 778 struct hci_conn *sco = conn->link; 779 if (sco) 780 sco->link = NULL; 781 782 /* Unacked frames */ 783 hdev->acl_cnt += conn->sent; 784 } else if (conn->type == LE_LINK) { 785 cancel_delayed_work(&conn->le_conn_timeout); 786 787 if (hdev->le_pkts) 788 hdev->le_cnt += conn->sent; 789 else 790 hdev->acl_cnt += conn->sent; 791 } else { 792 struct hci_conn *acl = conn->link; 793 if (acl) { 794 acl->link = NULL; 795 hci_conn_drop(acl); 796 } 797 } 798 799 if (conn->amp_mgr) 800 amp_mgr_put(conn->amp_mgr); 801 802 skb_queue_purge(&conn->data_q); 803 804 /* Remove the connection from the list and cleanup its remaining 805 * state. This is a separate function since for some cases like 806 * BT_CONNECT_SCAN we *only* want the cleanup part without the 807 * rest of hci_conn_del. 808 */ 809 hci_conn_cleanup(conn); 810 811 return 0; 812 } 813 814 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, uint8_t src_type) 815 { 816 int use_src = bacmp(src, BDADDR_ANY); 817 struct hci_dev *hdev = NULL, *d; 818 819 BT_DBG("%pMR -> %pMR", src, dst); 820 821 read_lock(&hci_dev_list_lock); 822 823 list_for_each_entry(d, &hci_dev_list, list) { 824 if (!test_bit(HCI_UP, &d->flags) || 825 hci_dev_test_flag(d, HCI_USER_CHANNEL) || 826 d->dev_type != HCI_PRIMARY) 827 continue; 828 829 /* Simple routing: 830 * No source address - find interface with bdaddr != dst 831 * Source address - find interface with bdaddr == src 832 */ 833 834 if (use_src) { 835 bdaddr_t id_addr; 836 u8 id_addr_type; 837 838 if (src_type == BDADDR_BREDR) { 839 if (!lmp_bredr_capable(d)) 840 continue; 841 bacpy(&id_addr, &d->bdaddr); 842 id_addr_type = BDADDR_BREDR; 843 } else { 844 if (!lmp_le_capable(d)) 845 continue; 846 847 hci_copy_identity_address(d, &id_addr, 848 &id_addr_type); 849 850 /* Convert from HCI to three-value type */ 851 if (id_addr_type == ADDR_LE_DEV_PUBLIC) 852 id_addr_type = BDADDR_LE_PUBLIC; 853 else 854 id_addr_type = BDADDR_LE_RANDOM; 855 } 856 857 if (!bacmp(&id_addr, src) && id_addr_type == src_type) { 858 hdev = d; break; 859 } 860 } else { 861 if (bacmp(&d->bdaddr, dst)) { 862 hdev = d; break; 863 } 864 } 865 } 866 867 if (hdev) 868 hdev = hci_dev_hold(hdev); 869 870 read_unlock(&hci_dev_list_lock); 871 return hdev; 872 } 873 EXPORT_SYMBOL(hci_get_route); 874 875 /* This function requires the caller holds hdev->lock */ 876 static void hci_le_conn_failed(struct hci_conn *conn, u8 status) 877 { 878 struct hci_dev *hdev = conn->hdev; 879 struct hci_conn_params *params; 880 881 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst, 882 conn->dst_type); 883 if (params && params->conn) { 884 hci_conn_drop(params->conn); 885 hci_conn_put(params->conn); 886 params->conn = NULL; 887 } 888 889 /* If the status indicates successful cancellation of 890 * the attempt (i.e. Unknown Connection Id) there's no point of 891 * notifying failure since we'll go back to keep trying to 892 * connect. The only exception is explicit connect requests 893 * where a timeout + cancel does indicate an actual failure. 894 */ 895 if (status != HCI_ERROR_UNKNOWN_CONN_ID || 896 (params && params->explicit_connect)) 897 mgmt_connect_failed(hdev, &conn->dst, conn->type, 898 conn->dst_type, status); 899 900 /* Since we may have temporarily stopped the background scanning in 901 * favor of connection establishment, we should restart it. 902 */ 903 hci_update_passive_scan(hdev); 904 905 /* Enable advertising in case this was a failed connection 906 * attempt as a peripheral. 907 */ 908 hci_enable_advertising(hdev); 909 } 910 911 /* This function requires the caller holds hdev->lock */ 912 void hci_conn_failed(struct hci_conn *conn, u8 status) 913 { 914 struct hci_dev *hdev = conn->hdev; 915 916 bt_dev_dbg(hdev, "status 0x%2.2x", status); 917 918 switch (conn->type) { 919 case LE_LINK: 920 hci_le_conn_failed(conn, status); 921 break; 922 case ACL_LINK: 923 mgmt_connect_failed(hdev, &conn->dst, conn->type, 924 conn->dst_type, status); 925 break; 926 } 927 928 conn->state = BT_CLOSED; 929 hci_connect_cfm(conn, status); 930 hci_conn_del(conn); 931 } 932 933 static void create_le_conn_complete(struct hci_dev *hdev, void *data, int err) 934 { 935 struct hci_conn *conn = data; 936 937 hci_dev_lock(hdev); 938 939 if (!err) { 940 hci_connect_le_scan_cleanup(conn); 941 goto done; 942 } 943 944 bt_dev_err(hdev, "request failed to create LE connection: err %d", err); 945 946 if (!conn) 947 goto done; 948 949 hci_le_conn_failed(conn, err); 950 951 done: 952 hci_dev_unlock(hdev); 953 } 954 955 static int hci_connect_le_sync(struct hci_dev *hdev, void *data) 956 { 957 struct hci_conn *conn = data; 958 959 bt_dev_dbg(hdev, "conn %p", conn); 960 961 return hci_le_create_conn_sync(hdev, conn); 962 } 963 964 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst, 965 u8 dst_type, bool dst_resolved, u8 sec_level, 966 u16 conn_timeout, u8 role) 967 { 968 struct hci_conn *conn; 969 struct smp_irk *irk; 970 int err; 971 972 /* Let's make sure that le is enabled.*/ 973 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 974 if (lmp_le_capable(hdev)) 975 return ERR_PTR(-ECONNREFUSED); 976 977 return ERR_PTR(-EOPNOTSUPP); 978 } 979 980 /* Since the controller supports only one LE connection attempt at a 981 * time, we return -EBUSY if there is any connection attempt running. 982 */ 983 if (hci_lookup_le_connect(hdev)) 984 return ERR_PTR(-EBUSY); 985 986 /* If there's already a connection object but it's not in 987 * scanning state it means it must already be established, in 988 * which case we can't do anything else except report a failure 989 * to connect. 990 */ 991 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); 992 if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) { 993 return ERR_PTR(-EBUSY); 994 } 995 996 /* Check if the destination address has been resolved by the controller 997 * since if it did then the identity address shall be used. 998 */ 999 if (!dst_resolved) { 1000 /* When given an identity address with existing identity 1001 * resolving key, the connection needs to be established 1002 * to a resolvable random address. 1003 * 1004 * Storing the resolvable random address is required here 1005 * to handle connection failures. The address will later 1006 * be resolved back into the original identity address 1007 * from the connect request. 1008 */ 1009 irk = hci_find_irk_by_addr(hdev, dst, dst_type); 1010 if (irk && bacmp(&irk->rpa, BDADDR_ANY)) { 1011 dst = &irk->rpa; 1012 dst_type = ADDR_LE_DEV_RANDOM; 1013 } 1014 } 1015 1016 if (conn) { 1017 bacpy(&conn->dst, dst); 1018 } else { 1019 conn = hci_conn_add(hdev, LE_LINK, dst, role); 1020 if (!conn) 1021 return ERR_PTR(-ENOMEM); 1022 hci_conn_hold(conn); 1023 conn->pending_sec_level = sec_level; 1024 } 1025 1026 conn->dst_type = dst_type; 1027 conn->sec_level = BT_SECURITY_LOW; 1028 conn->conn_timeout = conn_timeout; 1029 1030 conn->state = BT_CONNECT; 1031 clear_bit(HCI_CONN_SCANNING, &conn->flags); 1032 1033 err = hci_cmd_sync_queue(hdev, hci_connect_le_sync, conn, 1034 create_le_conn_complete); 1035 if (err) { 1036 hci_conn_del(conn); 1037 return ERR_PTR(err); 1038 } 1039 1040 return conn; 1041 } 1042 1043 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type) 1044 { 1045 struct hci_conn *conn; 1046 1047 conn = hci_conn_hash_lookup_le(hdev, addr, type); 1048 if (!conn) 1049 return false; 1050 1051 if (conn->state != BT_CONNECTED) 1052 return false; 1053 1054 return true; 1055 } 1056 1057 /* This function requires the caller holds hdev->lock */ 1058 static int hci_explicit_conn_params_set(struct hci_dev *hdev, 1059 bdaddr_t *addr, u8 addr_type) 1060 { 1061 struct hci_conn_params *params; 1062 1063 if (is_connected(hdev, addr, addr_type)) 1064 return -EISCONN; 1065 1066 params = hci_conn_params_lookup(hdev, addr, addr_type); 1067 if (!params) { 1068 params = hci_conn_params_add(hdev, addr, addr_type); 1069 if (!params) 1070 return -ENOMEM; 1071 1072 /* If we created new params, mark them to be deleted in 1073 * hci_connect_le_scan_cleanup. It's different case than 1074 * existing disabled params, those will stay after cleanup. 1075 */ 1076 params->auto_connect = HCI_AUTO_CONN_EXPLICIT; 1077 } 1078 1079 /* We're trying to connect, so make sure params are at pend_le_conns */ 1080 if (params->auto_connect == HCI_AUTO_CONN_DISABLED || 1081 params->auto_connect == HCI_AUTO_CONN_REPORT || 1082 params->auto_connect == HCI_AUTO_CONN_EXPLICIT) { 1083 list_del_init(¶ms->action); 1084 list_add(¶ms->action, &hdev->pend_le_conns); 1085 } 1086 1087 params->explicit_connect = true; 1088 1089 BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type, 1090 params->auto_connect); 1091 1092 return 0; 1093 } 1094 1095 /* This function requires the caller holds hdev->lock */ 1096 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst, 1097 u8 dst_type, u8 sec_level, 1098 u16 conn_timeout, 1099 enum conn_reasons conn_reason) 1100 { 1101 struct hci_conn *conn; 1102 1103 /* Let's make sure that le is enabled.*/ 1104 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 1105 if (lmp_le_capable(hdev)) 1106 return ERR_PTR(-ECONNREFUSED); 1107 1108 return ERR_PTR(-EOPNOTSUPP); 1109 } 1110 1111 /* Some devices send ATT messages as soon as the physical link is 1112 * established. To be able to handle these ATT messages, the user- 1113 * space first establishes the connection and then starts the pairing 1114 * process. 1115 * 1116 * So if a hci_conn object already exists for the following connection 1117 * attempt, we simply update pending_sec_level and auth_type fields 1118 * and return the object found. 1119 */ 1120 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); 1121 if (conn) { 1122 if (conn->pending_sec_level < sec_level) 1123 conn->pending_sec_level = sec_level; 1124 goto done; 1125 } 1126 1127 BT_DBG("requesting refresh of dst_addr"); 1128 1129 conn = hci_conn_add(hdev, LE_LINK, dst, HCI_ROLE_MASTER); 1130 if (!conn) 1131 return ERR_PTR(-ENOMEM); 1132 1133 if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0) { 1134 hci_conn_del(conn); 1135 return ERR_PTR(-EBUSY); 1136 } 1137 1138 conn->state = BT_CONNECT; 1139 set_bit(HCI_CONN_SCANNING, &conn->flags); 1140 conn->dst_type = dst_type; 1141 conn->sec_level = BT_SECURITY_LOW; 1142 conn->pending_sec_level = sec_level; 1143 conn->conn_timeout = conn_timeout; 1144 conn->conn_reason = conn_reason; 1145 1146 hci_update_passive_scan(hdev); 1147 1148 done: 1149 hci_conn_hold(conn); 1150 return conn; 1151 } 1152 1153 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst, 1154 u8 sec_level, u8 auth_type, 1155 enum conn_reasons conn_reason) 1156 { 1157 struct hci_conn *acl; 1158 1159 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 1160 if (lmp_bredr_capable(hdev)) 1161 return ERR_PTR(-ECONNREFUSED); 1162 1163 return ERR_PTR(-EOPNOTSUPP); 1164 } 1165 1166 acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst); 1167 if (!acl) { 1168 acl = hci_conn_add(hdev, ACL_LINK, dst, HCI_ROLE_MASTER); 1169 if (!acl) 1170 return ERR_PTR(-ENOMEM); 1171 } 1172 1173 hci_conn_hold(acl); 1174 1175 acl->conn_reason = conn_reason; 1176 if (acl->state == BT_OPEN || acl->state == BT_CLOSED) { 1177 acl->sec_level = BT_SECURITY_LOW; 1178 acl->pending_sec_level = sec_level; 1179 acl->auth_type = auth_type; 1180 hci_acl_create_connection(acl); 1181 } 1182 1183 return acl; 1184 } 1185 1186 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, 1187 __u16 setting, struct bt_codec *codec) 1188 { 1189 struct hci_conn *acl; 1190 struct hci_conn *sco; 1191 1192 acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING, 1193 CONN_REASON_SCO_CONNECT); 1194 if (IS_ERR(acl)) 1195 return acl; 1196 1197 sco = hci_conn_hash_lookup_ba(hdev, type, dst); 1198 if (!sco) { 1199 sco = hci_conn_add(hdev, type, dst, HCI_ROLE_MASTER); 1200 if (!sco) { 1201 hci_conn_drop(acl); 1202 return ERR_PTR(-ENOMEM); 1203 } 1204 } 1205 1206 acl->link = sco; 1207 sco->link = acl; 1208 1209 hci_conn_hold(sco); 1210 1211 sco->setting = setting; 1212 sco->codec = *codec; 1213 1214 if (acl->state == BT_CONNECTED && 1215 (sco->state == BT_OPEN || sco->state == BT_CLOSED)) { 1216 set_bit(HCI_CONN_POWER_SAVE, &acl->flags); 1217 hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON); 1218 1219 if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) { 1220 /* defer SCO setup until mode change completed */ 1221 set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags); 1222 return sco; 1223 } 1224 1225 hci_sco_setup(acl, 0x00); 1226 } 1227 1228 return sco; 1229 } 1230 1231 /* Check link security requirement */ 1232 int hci_conn_check_link_mode(struct hci_conn *conn) 1233 { 1234 BT_DBG("hcon %p", conn); 1235 1236 /* In Secure Connections Only mode, it is required that Secure 1237 * Connections is used and the link is encrypted with AES-CCM 1238 * using a P-256 authenticated combination key. 1239 */ 1240 if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) { 1241 if (!hci_conn_sc_enabled(conn) || 1242 !test_bit(HCI_CONN_AES_CCM, &conn->flags) || 1243 conn->key_type != HCI_LK_AUTH_COMBINATION_P256) 1244 return 0; 1245 } 1246 1247 /* AES encryption is required for Level 4: 1248 * 1249 * BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 3, Part C 1250 * page 1319: 1251 * 1252 * 128-bit equivalent strength for link and encryption keys 1253 * required using FIPS approved algorithms (E0 not allowed, 1254 * SAFER+ not allowed, and P-192 not allowed; encryption key 1255 * not shortened) 1256 */ 1257 if (conn->sec_level == BT_SECURITY_FIPS && 1258 !test_bit(HCI_CONN_AES_CCM, &conn->flags)) { 1259 bt_dev_err(conn->hdev, 1260 "Invalid security: Missing AES-CCM usage"); 1261 return 0; 1262 } 1263 1264 if (hci_conn_ssp_enabled(conn) && 1265 !test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1266 return 0; 1267 1268 return 1; 1269 } 1270 1271 /* Authenticate remote device */ 1272 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type) 1273 { 1274 BT_DBG("hcon %p", conn); 1275 1276 if (conn->pending_sec_level > sec_level) 1277 sec_level = conn->pending_sec_level; 1278 1279 if (sec_level > conn->sec_level) 1280 conn->pending_sec_level = sec_level; 1281 else if (test_bit(HCI_CONN_AUTH, &conn->flags)) 1282 return 1; 1283 1284 /* Make sure we preserve an existing MITM requirement*/ 1285 auth_type |= (conn->auth_type & 0x01); 1286 1287 conn->auth_type = auth_type; 1288 1289 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) { 1290 struct hci_cp_auth_requested cp; 1291 1292 cp.handle = cpu_to_le16(conn->handle); 1293 hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED, 1294 sizeof(cp), &cp); 1295 1296 /* If we're already encrypted set the REAUTH_PEND flag, 1297 * otherwise set the ENCRYPT_PEND. 1298 */ 1299 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1300 set_bit(HCI_CONN_REAUTH_PEND, &conn->flags); 1301 else 1302 set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); 1303 } 1304 1305 return 0; 1306 } 1307 1308 /* Encrypt the link */ 1309 static void hci_conn_encrypt(struct hci_conn *conn) 1310 { 1311 BT_DBG("hcon %p", conn); 1312 1313 if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) { 1314 struct hci_cp_set_conn_encrypt cp; 1315 cp.handle = cpu_to_le16(conn->handle); 1316 cp.encrypt = 0x01; 1317 hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp), 1318 &cp); 1319 } 1320 } 1321 1322 /* Enable security */ 1323 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type, 1324 bool initiator) 1325 { 1326 BT_DBG("hcon %p", conn); 1327 1328 if (conn->type == LE_LINK) 1329 return smp_conn_security(conn, sec_level); 1330 1331 /* For sdp we don't need the link key. */ 1332 if (sec_level == BT_SECURITY_SDP) 1333 return 1; 1334 1335 /* For non 2.1 devices and low security level we don't need the link 1336 key. */ 1337 if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn)) 1338 return 1; 1339 1340 /* For other security levels we need the link key. */ 1341 if (!test_bit(HCI_CONN_AUTH, &conn->flags)) 1342 goto auth; 1343 1344 /* An authenticated FIPS approved combination key has sufficient 1345 * security for security level 4. */ 1346 if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256 && 1347 sec_level == BT_SECURITY_FIPS) 1348 goto encrypt; 1349 1350 /* An authenticated combination key has sufficient security for 1351 security level 3. */ 1352 if ((conn->key_type == HCI_LK_AUTH_COMBINATION_P192 || 1353 conn->key_type == HCI_LK_AUTH_COMBINATION_P256) && 1354 sec_level == BT_SECURITY_HIGH) 1355 goto encrypt; 1356 1357 /* An unauthenticated combination key has sufficient security for 1358 security level 1 and 2. */ 1359 if ((conn->key_type == HCI_LK_UNAUTH_COMBINATION_P192 || 1360 conn->key_type == HCI_LK_UNAUTH_COMBINATION_P256) && 1361 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW)) 1362 goto encrypt; 1363 1364 /* A combination key has always sufficient security for the security 1365 levels 1 or 2. High security level requires the combination key 1366 is generated using maximum PIN code length (16). 1367 For pre 2.1 units. */ 1368 if (conn->key_type == HCI_LK_COMBINATION && 1369 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW || 1370 conn->pin_length == 16)) 1371 goto encrypt; 1372 1373 auth: 1374 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) 1375 return 0; 1376 1377 if (initiator) 1378 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags); 1379 1380 if (!hci_conn_auth(conn, sec_level, auth_type)) 1381 return 0; 1382 1383 encrypt: 1384 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) { 1385 /* Ensure that the encryption key size has been read, 1386 * otherwise stall the upper layer responses. 1387 */ 1388 if (!conn->enc_key_size) 1389 return 0; 1390 1391 /* Nothing else needed, all requirements are met */ 1392 return 1; 1393 } 1394 1395 hci_conn_encrypt(conn); 1396 return 0; 1397 } 1398 EXPORT_SYMBOL(hci_conn_security); 1399 1400 /* Check secure link requirement */ 1401 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level) 1402 { 1403 BT_DBG("hcon %p", conn); 1404 1405 /* Accept if non-secure or higher security level is required */ 1406 if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS) 1407 return 1; 1408 1409 /* Accept if secure or higher security level is already present */ 1410 if (conn->sec_level == BT_SECURITY_HIGH || 1411 conn->sec_level == BT_SECURITY_FIPS) 1412 return 1; 1413 1414 /* Reject not secure link */ 1415 return 0; 1416 } 1417 EXPORT_SYMBOL(hci_conn_check_secure); 1418 1419 /* Switch role */ 1420 int hci_conn_switch_role(struct hci_conn *conn, __u8 role) 1421 { 1422 BT_DBG("hcon %p", conn); 1423 1424 if (role == conn->role) 1425 return 1; 1426 1427 if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) { 1428 struct hci_cp_switch_role cp; 1429 bacpy(&cp.bdaddr, &conn->dst); 1430 cp.role = role; 1431 hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp); 1432 } 1433 1434 return 0; 1435 } 1436 EXPORT_SYMBOL(hci_conn_switch_role); 1437 1438 /* Enter active mode */ 1439 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active) 1440 { 1441 struct hci_dev *hdev = conn->hdev; 1442 1443 BT_DBG("hcon %p mode %d", conn, conn->mode); 1444 1445 if (conn->mode != HCI_CM_SNIFF) 1446 goto timer; 1447 1448 if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active) 1449 goto timer; 1450 1451 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 1452 struct hci_cp_exit_sniff_mode cp; 1453 cp.handle = cpu_to_le16(conn->handle); 1454 hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp); 1455 } 1456 1457 timer: 1458 if (hdev->idle_timeout > 0) 1459 queue_delayed_work(hdev->workqueue, &conn->idle_work, 1460 msecs_to_jiffies(hdev->idle_timeout)); 1461 } 1462 1463 /* Drop all connection on the device */ 1464 void hci_conn_hash_flush(struct hci_dev *hdev) 1465 { 1466 struct hci_conn_hash *h = &hdev->conn_hash; 1467 struct hci_conn *c, *n; 1468 1469 BT_DBG("hdev %s", hdev->name); 1470 1471 list_for_each_entry_safe(c, n, &h->list, list) { 1472 c->state = BT_CLOSED; 1473 1474 hci_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM); 1475 hci_conn_del(c); 1476 } 1477 } 1478 1479 /* Check pending connect attempts */ 1480 void hci_conn_check_pending(struct hci_dev *hdev) 1481 { 1482 struct hci_conn *conn; 1483 1484 BT_DBG("hdev %s", hdev->name); 1485 1486 hci_dev_lock(hdev); 1487 1488 conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2); 1489 if (conn) 1490 hci_acl_create_connection(conn); 1491 1492 hci_dev_unlock(hdev); 1493 } 1494 1495 static u32 get_link_mode(struct hci_conn *conn) 1496 { 1497 u32 link_mode = 0; 1498 1499 if (conn->role == HCI_ROLE_MASTER) 1500 link_mode |= HCI_LM_MASTER; 1501 1502 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1503 link_mode |= HCI_LM_ENCRYPT; 1504 1505 if (test_bit(HCI_CONN_AUTH, &conn->flags)) 1506 link_mode |= HCI_LM_AUTH; 1507 1508 if (test_bit(HCI_CONN_SECURE, &conn->flags)) 1509 link_mode |= HCI_LM_SECURE; 1510 1511 if (test_bit(HCI_CONN_FIPS, &conn->flags)) 1512 link_mode |= HCI_LM_FIPS; 1513 1514 return link_mode; 1515 } 1516 1517 int hci_get_conn_list(void __user *arg) 1518 { 1519 struct hci_conn *c; 1520 struct hci_conn_list_req req, *cl; 1521 struct hci_conn_info *ci; 1522 struct hci_dev *hdev; 1523 int n = 0, size, err; 1524 1525 if (copy_from_user(&req, arg, sizeof(req))) 1526 return -EFAULT; 1527 1528 if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci)) 1529 return -EINVAL; 1530 1531 size = sizeof(req) + req.conn_num * sizeof(*ci); 1532 1533 cl = kmalloc(size, GFP_KERNEL); 1534 if (!cl) 1535 return -ENOMEM; 1536 1537 hdev = hci_dev_get(req.dev_id); 1538 if (!hdev) { 1539 kfree(cl); 1540 return -ENODEV; 1541 } 1542 1543 ci = cl->conn_info; 1544 1545 hci_dev_lock(hdev); 1546 list_for_each_entry(c, &hdev->conn_hash.list, list) { 1547 bacpy(&(ci + n)->bdaddr, &c->dst); 1548 (ci + n)->handle = c->handle; 1549 (ci + n)->type = c->type; 1550 (ci + n)->out = c->out; 1551 (ci + n)->state = c->state; 1552 (ci + n)->link_mode = get_link_mode(c); 1553 if (++n >= req.conn_num) 1554 break; 1555 } 1556 hci_dev_unlock(hdev); 1557 1558 cl->dev_id = hdev->id; 1559 cl->conn_num = n; 1560 size = sizeof(req) + n * sizeof(*ci); 1561 1562 hci_dev_put(hdev); 1563 1564 err = copy_to_user(arg, cl, size); 1565 kfree(cl); 1566 1567 return err ? -EFAULT : 0; 1568 } 1569 1570 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg) 1571 { 1572 struct hci_conn_info_req req; 1573 struct hci_conn_info ci; 1574 struct hci_conn *conn; 1575 char __user *ptr = arg + sizeof(req); 1576 1577 if (copy_from_user(&req, arg, sizeof(req))) 1578 return -EFAULT; 1579 1580 hci_dev_lock(hdev); 1581 conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr); 1582 if (conn) { 1583 bacpy(&ci.bdaddr, &conn->dst); 1584 ci.handle = conn->handle; 1585 ci.type = conn->type; 1586 ci.out = conn->out; 1587 ci.state = conn->state; 1588 ci.link_mode = get_link_mode(conn); 1589 } 1590 hci_dev_unlock(hdev); 1591 1592 if (!conn) 1593 return -ENOENT; 1594 1595 return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0; 1596 } 1597 1598 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg) 1599 { 1600 struct hci_auth_info_req req; 1601 struct hci_conn *conn; 1602 1603 if (copy_from_user(&req, arg, sizeof(req))) 1604 return -EFAULT; 1605 1606 hci_dev_lock(hdev); 1607 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr); 1608 if (conn) 1609 req.type = conn->auth_type; 1610 hci_dev_unlock(hdev); 1611 1612 if (!conn) 1613 return -ENOENT; 1614 1615 return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0; 1616 } 1617 1618 struct hci_chan *hci_chan_create(struct hci_conn *conn) 1619 { 1620 struct hci_dev *hdev = conn->hdev; 1621 struct hci_chan *chan; 1622 1623 BT_DBG("%s hcon %p", hdev->name, conn); 1624 1625 if (test_bit(HCI_CONN_DROP, &conn->flags)) { 1626 BT_DBG("Refusing to create new hci_chan"); 1627 return NULL; 1628 } 1629 1630 chan = kzalloc(sizeof(*chan), GFP_KERNEL); 1631 if (!chan) 1632 return NULL; 1633 1634 chan->conn = hci_conn_get(conn); 1635 skb_queue_head_init(&chan->data_q); 1636 chan->state = BT_CONNECTED; 1637 1638 list_add_rcu(&chan->list, &conn->chan_list); 1639 1640 return chan; 1641 } 1642 1643 void hci_chan_del(struct hci_chan *chan) 1644 { 1645 struct hci_conn *conn = chan->conn; 1646 struct hci_dev *hdev = conn->hdev; 1647 1648 BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan); 1649 1650 list_del_rcu(&chan->list); 1651 1652 synchronize_rcu(); 1653 1654 /* Prevent new hci_chan's to be created for this hci_conn */ 1655 set_bit(HCI_CONN_DROP, &conn->flags); 1656 1657 hci_conn_put(conn); 1658 1659 skb_queue_purge(&chan->data_q); 1660 kfree(chan); 1661 } 1662 1663 void hci_chan_list_flush(struct hci_conn *conn) 1664 { 1665 struct hci_chan *chan, *n; 1666 1667 BT_DBG("hcon %p", conn); 1668 1669 list_for_each_entry_safe(chan, n, &conn->chan_list, list) 1670 hci_chan_del(chan); 1671 } 1672 1673 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon, 1674 __u16 handle) 1675 { 1676 struct hci_chan *hchan; 1677 1678 list_for_each_entry(hchan, &hcon->chan_list, list) { 1679 if (hchan->handle == handle) 1680 return hchan; 1681 } 1682 1683 return NULL; 1684 } 1685 1686 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle) 1687 { 1688 struct hci_conn_hash *h = &hdev->conn_hash; 1689 struct hci_conn *hcon; 1690 struct hci_chan *hchan = NULL; 1691 1692 rcu_read_lock(); 1693 1694 list_for_each_entry_rcu(hcon, &h->list, list) { 1695 hchan = __hci_chan_lookup_handle(hcon, handle); 1696 if (hchan) 1697 break; 1698 } 1699 1700 rcu_read_unlock(); 1701 1702 return hchan; 1703 } 1704 1705 u32 hci_conn_get_phy(struct hci_conn *conn) 1706 { 1707 u32 phys = 0; 1708 1709 /* BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 2, Part B page 471: 1710 * Table 6.2: Packets defined for synchronous, asynchronous, and 1711 * CPB logical transport types. 1712 */ 1713 switch (conn->type) { 1714 case SCO_LINK: 1715 /* SCO logical transport (1 Mb/s): 1716 * HV1, HV2, HV3 and DV. 1717 */ 1718 phys |= BT_PHY_BR_1M_1SLOT; 1719 1720 break; 1721 1722 case ACL_LINK: 1723 /* ACL logical transport (1 Mb/s) ptt=0: 1724 * DH1, DM3, DH3, DM5 and DH5. 1725 */ 1726 phys |= BT_PHY_BR_1M_1SLOT; 1727 1728 if (conn->pkt_type & (HCI_DM3 | HCI_DH3)) 1729 phys |= BT_PHY_BR_1M_3SLOT; 1730 1731 if (conn->pkt_type & (HCI_DM5 | HCI_DH5)) 1732 phys |= BT_PHY_BR_1M_5SLOT; 1733 1734 /* ACL logical transport (2 Mb/s) ptt=1: 1735 * 2-DH1, 2-DH3 and 2-DH5. 1736 */ 1737 if (!(conn->pkt_type & HCI_2DH1)) 1738 phys |= BT_PHY_EDR_2M_1SLOT; 1739 1740 if (!(conn->pkt_type & HCI_2DH3)) 1741 phys |= BT_PHY_EDR_2M_3SLOT; 1742 1743 if (!(conn->pkt_type & HCI_2DH5)) 1744 phys |= BT_PHY_EDR_2M_5SLOT; 1745 1746 /* ACL logical transport (3 Mb/s) ptt=1: 1747 * 3-DH1, 3-DH3 and 3-DH5. 1748 */ 1749 if (!(conn->pkt_type & HCI_3DH1)) 1750 phys |= BT_PHY_EDR_3M_1SLOT; 1751 1752 if (!(conn->pkt_type & HCI_3DH3)) 1753 phys |= BT_PHY_EDR_3M_3SLOT; 1754 1755 if (!(conn->pkt_type & HCI_3DH5)) 1756 phys |= BT_PHY_EDR_3M_5SLOT; 1757 1758 break; 1759 1760 case ESCO_LINK: 1761 /* eSCO logical transport (1 Mb/s): EV3, EV4 and EV5 */ 1762 phys |= BT_PHY_BR_1M_1SLOT; 1763 1764 if (!(conn->pkt_type & (ESCO_EV4 | ESCO_EV5))) 1765 phys |= BT_PHY_BR_1M_3SLOT; 1766 1767 /* eSCO logical transport (2 Mb/s): 2-EV3, 2-EV5 */ 1768 if (!(conn->pkt_type & ESCO_2EV3)) 1769 phys |= BT_PHY_EDR_2M_1SLOT; 1770 1771 if (!(conn->pkt_type & ESCO_2EV5)) 1772 phys |= BT_PHY_EDR_2M_3SLOT; 1773 1774 /* eSCO logical transport (3 Mb/s): 3-EV3, 3-EV5 */ 1775 if (!(conn->pkt_type & ESCO_3EV3)) 1776 phys |= BT_PHY_EDR_3M_1SLOT; 1777 1778 if (!(conn->pkt_type & ESCO_3EV5)) 1779 phys |= BT_PHY_EDR_3M_3SLOT; 1780 1781 break; 1782 1783 case LE_LINK: 1784 if (conn->le_tx_phy & HCI_LE_SET_PHY_1M) 1785 phys |= BT_PHY_LE_1M_TX; 1786 1787 if (conn->le_rx_phy & HCI_LE_SET_PHY_1M) 1788 phys |= BT_PHY_LE_1M_RX; 1789 1790 if (conn->le_tx_phy & HCI_LE_SET_PHY_2M) 1791 phys |= BT_PHY_LE_2M_TX; 1792 1793 if (conn->le_rx_phy & HCI_LE_SET_PHY_2M) 1794 phys |= BT_PHY_LE_2M_RX; 1795 1796 if (conn->le_tx_phy & HCI_LE_SET_PHY_CODED) 1797 phys |= BT_PHY_LE_CODED_TX; 1798 1799 if (conn->le_rx_phy & HCI_LE_SET_PHY_CODED) 1800 phys |= BT_PHY_LE_CODED_RX; 1801 1802 break; 1803 } 1804 1805 return phys; 1806 } 1807