xref: /openbmc/linux/net/bluetooth/hci_conn.c (revision 2b1b1267080fe822789d0845a58ebb452724736b)
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
4 
5    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License version 2 as
9    published by the Free Software Foundation;
10 
11    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 
20    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22    SOFTWARE IS DISCLAIMED.
23 */
24 
25 /* Bluetooth HCI connection handling. */
26 
27 #include <linux/export.h>
28 #include <linux/debugfs.h>
29 
30 #include <net/bluetooth/bluetooth.h>
31 #include <net/bluetooth/hci_core.h>
32 #include <net/bluetooth/l2cap.h>
33 
34 #include "hci_request.h"
35 #include "smp.h"
36 #include "a2mp.h"
37 
38 struct sco_param {
39 	u16 pkt_type;
40 	u16 max_latency;
41 	u8  retrans_effort;
42 };
43 
44 static const struct sco_param esco_param_cvsd[] = {
45 	{ EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a,	0x01 }, /* S3 */
46 	{ EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007,	0x01 }, /* S2 */
47 	{ EDR_ESCO_MASK | ESCO_EV3,   0x0007,	0x01 }, /* S1 */
48 	{ EDR_ESCO_MASK | ESCO_HV3,   0xffff,	0x01 }, /* D1 */
49 	{ EDR_ESCO_MASK | ESCO_HV1,   0xffff,	0x01 }, /* D0 */
50 };
51 
52 static const struct sco_param sco_param_cvsd[] = {
53 	{ EDR_ESCO_MASK | ESCO_HV3,   0xffff,	0xff }, /* D1 */
54 	{ EDR_ESCO_MASK | ESCO_HV1,   0xffff,	0xff }, /* D0 */
55 };
56 
57 static const struct sco_param esco_param_msbc[] = {
58 	{ EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d,	0x02 }, /* T2 */
59 	{ EDR_ESCO_MASK | ESCO_EV3,   0x0008,	0x02 }, /* T1 */
60 };
61 
62 /* This function requires the caller holds hdev->lock */
63 static void hci_connect_le_scan_cleanup(struct hci_conn *conn)
64 {
65 	struct hci_conn_params *params;
66 	struct hci_dev *hdev = conn->hdev;
67 	struct smp_irk *irk;
68 	bdaddr_t *bdaddr;
69 	u8 bdaddr_type;
70 
71 	bdaddr = &conn->dst;
72 	bdaddr_type = conn->dst_type;
73 
74 	/* Check if we need to convert to identity address */
75 	irk = hci_get_irk(hdev, bdaddr, bdaddr_type);
76 	if (irk) {
77 		bdaddr = &irk->bdaddr;
78 		bdaddr_type = irk->addr_type;
79 	}
80 
81 	params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr,
82 					   bdaddr_type);
83 	if (!params || !params->explicit_connect)
84 		return;
85 
86 	/* The connection attempt was doing scan for new RPA, and is
87 	 * in scan phase. If params are not associated with any other
88 	 * autoconnect action, remove them completely. If they are, just unmark
89 	 * them as waiting for connection, by clearing explicit_connect field.
90 	 */
91 	params->explicit_connect = false;
92 
93 	list_del_init(&params->action);
94 
95 	switch (params->auto_connect) {
96 	case HCI_AUTO_CONN_EXPLICIT:
97 		hci_conn_params_del(hdev, bdaddr, bdaddr_type);
98 		/* return instead of break to avoid duplicate scan update */
99 		return;
100 	case HCI_AUTO_CONN_DIRECT:
101 	case HCI_AUTO_CONN_ALWAYS:
102 		list_add(&params->action, &hdev->pend_le_conns);
103 		break;
104 	case HCI_AUTO_CONN_REPORT:
105 		list_add(&params->action, &hdev->pend_le_reports);
106 		break;
107 	default:
108 		break;
109 	}
110 
111 	hci_update_background_scan(hdev);
112 }
113 
114 static void hci_conn_cleanup(struct hci_conn *conn)
115 {
116 	struct hci_dev *hdev = conn->hdev;
117 
118 	if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags))
119 		hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type);
120 
121 	hci_chan_list_flush(conn);
122 
123 	hci_conn_hash_del(hdev, conn);
124 
125 	if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
126 		switch (conn->setting & SCO_AIRMODE_MASK) {
127 		case SCO_AIRMODE_CVSD:
128 		case SCO_AIRMODE_TRANSP:
129 			if (hdev->notify)
130 				hdev->notify(hdev, HCI_NOTIFY_DISABLE_SCO);
131 			break;
132 		}
133 	} else {
134 		if (hdev->notify)
135 			hdev->notify(hdev, HCI_NOTIFY_CONN_DEL);
136 	}
137 
138 	hci_conn_del_sysfs(conn);
139 
140 	debugfs_remove_recursive(conn->debugfs);
141 
142 	hci_dev_put(hdev);
143 
144 	hci_conn_put(conn);
145 }
146 
147 static void le_scan_cleanup(struct work_struct *work)
148 {
149 	struct hci_conn *conn = container_of(work, struct hci_conn,
150 					     le_scan_cleanup);
151 	struct hci_dev *hdev = conn->hdev;
152 	struct hci_conn *c = NULL;
153 
154 	BT_DBG("%s hcon %p", hdev->name, conn);
155 
156 	hci_dev_lock(hdev);
157 
158 	/* Check that the hci_conn is still around */
159 	rcu_read_lock();
160 	list_for_each_entry_rcu(c, &hdev->conn_hash.list, list) {
161 		if (c == conn)
162 			break;
163 	}
164 	rcu_read_unlock();
165 
166 	if (c == conn) {
167 		hci_connect_le_scan_cleanup(conn);
168 		hci_conn_cleanup(conn);
169 	}
170 
171 	hci_dev_unlock(hdev);
172 	hci_dev_put(hdev);
173 	hci_conn_put(conn);
174 }
175 
176 static void hci_connect_le_scan_remove(struct hci_conn *conn)
177 {
178 	BT_DBG("%s hcon %p", conn->hdev->name, conn);
179 
180 	/* We can't call hci_conn_del/hci_conn_cleanup here since that
181 	 * could deadlock with another hci_conn_del() call that's holding
182 	 * hci_dev_lock and doing cancel_delayed_work_sync(&conn->disc_work).
183 	 * Instead, grab temporary extra references to the hci_dev and
184 	 * hci_conn and perform the necessary cleanup in a separate work
185 	 * callback.
186 	 */
187 
188 	hci_dev_hold(conn->hdev);
189 	hci_conn_get(conn);
190 
191 	/* Even though we hold a reference to the hdev, many other
192 	 * things might get cleaned up meanwhile, including the hdev's
193 	 * own workqueue, so we can't use that for scheduling.
194 	 */
195 	schedule_work(&conn->le_scan_cleanup);
196 }
197 
198 static void hci_acl_create_connection(struct hci_conn *conn)
199 {
200 	struct hci_dev *hdev = conn->hdev;
201 	struct inquiry_entry *ie;
202 	struct hci_cp_create_conn cp;
203 
204 	BT_DBG("hcon %p", conn);
205 
206 	conn->state = BT_CONNECT;
207 	conn->out = true;
208 	conn->role = HCI_ROLE_MASTER;
209 
210 	conn->attempt++;
211 
212 	conn->link_policy = hdev->link_policy;
213 
214 	memset(&cp, 0, sizeof(cp));
215 	bacpy(&cp.bdaddr, &conn->dst);
216 	cp.pscan_rep_mode = 0x02;
217 
218 	ie = hci_inquiry_cache_lookup(hdev, &conn->dst);
219 	if (ie) {
220 		if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) {
221 			cp.pscan_rep_mode = ie->data.pscan_rep_mode;
222 			cp.pscan_mode     = ie->data.pscan_mode;
223 			cp.clock_offset   = ie->data.clock_offset |
224 					    cpu_to_le16(0x8000);
225 		}
226 
227 		memcpy(conn->dev_class, ie->data.dev_class, 3);
228 	}
229 
230 	cp.pkt_type = cpu_to_le16(conn->pkt_type);
231 	if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER))
232 		cp.role_switch = 0x01;
233 	else
234 		cp.role_switch = 0x00;
235 
236 	hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp);
237 }
238 
239 int hci_disconnect(struct hci_conn *conn, __u8 reason)
240 {
241 	BT_DBG("hcon %p", conn);
242 
243 	/* When we are master of an established connection and it enters
244 	 * the disconnect timeout, then go ahead and try to read the
245 	 * current clock offset.  Processing of the result is done
246 	 * within the event handling and hci_clock_offset_evt function.
247 	 */
248 	if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER &&
249 	    (conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) {
250 		struct hci_dev *hdev = conn->hdev;
251 		struct hci_cp_read_clock_offset clkoff_cp;
252 
253 		clkoff_cp.handle = cpu_to_le16(conn->handle);
254 		hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp),
255 			     &clkoff_cp);
256 	}
257 
258 	return hci_abort_conn(conn, reason);
259 }
260 
261 static void hci_add_sco(struct hci_conn *conn, __u16 handle)
262 {
263 	struct hci_dev *hdev = conn->hdev;
264 	struct hci_cp_add_sco cp;
265 
266 	BT_DBG("hcon %p", conn);
267 
268 	conn->state = BT_CONNECT;
269 	conn->out = true;
270 
271 	conn->attempt++;
272 
273 	cp.handle   = cpu_to_le16(handle);
274 	cp.pkt_type = cpu_to_le16(conn->pkt_type);
275 
276 	hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp);
277 }
278 
279 bool hci_setup_sync(struct hci_conn *conn, __u16 handle)
280 {
281 	struct hci_dev *hdev = conn->hdev;
282 	struct hci_cp_setup_sync_conn cp;
283 	const struct sco_param *param;
284 
285 	BT_DBG("hcon %p", conn);
286 
287 	conn->state = BT_CONNECT;
288 	conn->out = true;
289 
290 	conn->attempt++;
291 
292 	cp.handle   = cpu_to_le16(handle);
293 
294 	cp.tx_bandwidth   = cpu_to_le32(0x00001f40);
295 	cp.rx_bandwidth   = cpu_to_le32(0x00001f40);
296 	cp.voice_setting  = cpu_to_le16(conn->setting);
297 
298 	switch (conn->setting & SCO_AIRMODE_MASK) {
299 	case SCO_AIRMODE_TRANSP:
300 		if (conn->attempt > ARRAY_SIZE(esco_param_msbc))
301 			return false;
302 		param = &esco_param_msbc[conn->attempt - 1];
303 		break;
304 	case SCO_AIRMODE_CVSD:
305 		if (lmp_esco_capable(conn->link)) {
306 			if (conn->attempt > ARRAY_SIZE(esco_param_cvsd))
307 				return false;
308 			param = &esco_param_cvsd[conn->attempt - 1];
309 		} else {
310 			if (conn->attempt > ARRAY_SIZE(sco_param_cvsd))
311 				return false;
312 			param = &sco_param_cvsd[conn->attempt - 1];
313 		}
314 		break;
315 	default:
316 		return false;
317 	}
318 
319 	cp.retrans_effort = param->retrans_effort;
320 	cp.pkt_type = __cpu_to_le16(param->pkt_type);
321 	cp.max_latency = __cpu_to_le16(param->max_latency);
322 
323 	if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0)
324 		return false;
325 
326 	return true;
327 }
328 
329 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency,
330 		      u16 to_multiplier)
331 {
332 	struct hci_dev *hdev = conn->hdev;
333 	struct hci_conn_params *params;
334 	struct hci_cp_le_conn_update cp;
335 
336 	hci_dev_lock(hdev);
337 
338 	params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
339 	if (params) {
340 		params->conn_min_interval = min;
341 		params->conn_max_interval = max;
342 		params->conn_latency = latency;
343 		params->supervision_timeout = to_multiplier;
344 	}
345 
346 	hci_dev_unlock(hdev);
347 
348 	memset(&cp, 0, sizeof(cp));
349 	cp.handle		= cpu_to_le16(conn->handle);
350 	cp.conn_interval_min	= cpu_to_le16(min);
351 	cp.conn_interval_max	= cpu_to_le16(max);
352 	cp.conn_latency		= cpu_to_le16(latency);
353 	cp.supervision_timeout	= cpu_to_le16(to_multiplier);
354 	cp.min_ce_len		= cpu_to_le16(0x0000);
355 	cp.max_ce_len		= cpu_to_le16(0x0000);
356 
357 	hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp);
358 
359 	if (params)
360 		return 0x01;
361 
362 	return 0x00;
363 }
364 
365 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand,
366 		      __u8 ltk[16], __u8 key_size)
367 {
368 	struct hci_dev *hdev = conn->hdev;
369 	struct hci_cp_le_start_enc cp;
370 
371 	BT_DBG("hcon %p", conn);
372 
373 	memset(&cp, 0, sizeof(cp));
374 
375 	cp.handle = cpu_to_le16(conn->handle);
376 	cp.rand = rand;
377 	cp.ediv = ediv;
378 	memcpy(cp.ltk, ltk, key_size);
379 
380 	hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp);
381 }
382 
383 /* Device _must_ be locked */
384 void hci_sco_setup(struct hci_conn *conn, __u8 status)
385 {
386 	struct hci_conn *sco = conn->link;
387 
388 	if (!sco)
389 		return;
390 
391 	BT_DBG("hcon %p", conn);
392 
393 	if (!status) {
394 		if (lmp_esco_capable(conn->hdev))
395 			hci_setup_sync(sco, conn->handle);
396 		else
397 			hci_add_sco(sco, conn->handle);
398 	} else {
399 		hci_connect_cfm(sco, status);
400 		hci_conn_del(sco);
401 	}
402 }
403 
404 static void hci_conn_timeout(struct work_struct *work)
405 {
406 	struct hci_conn *conn = container_of(work, struct hci_conn,
407 					     disc_work.work);
408 	int refcnt = atomic_read(&conn->refcnt);
409 
410 	BT_DBG("hcon %p state %s", conn, state_to_string(conn->state));
411 
412 	WARN_ON(refcnt < 0);
413 
414 	/* FIXME: It was observed that in pairing failed scenario, refcnt
415 	 * drops below 0. Probably this is because l2cap_conn_del calls
416 	 * l2cap_chan_del for each channel, and inside l2cap_chan_del conn is
417 	 * dropped. After that loop hci_chan_del is called which also drops
418 	 * conn. For now make sure that ACL is alive if refcnt is higher then 0,
419 	 * otherwise drop it.
420 	 */
421 	if (refcnt > 0)
422 		return;
423 
424 	/* LE connections in scanning state need special handling */
425 	if (conn->state == BT_CONNECT && conn->type == LE_LINK &&
426 	    test_bit(HCI_CONN_SCANNING, &conn->flags)) {
427 		hci_connect_le_scan_remove(conn);
428 		return;
429 	}
430 
431 	hci_abort_conn(conn, hci_proto_disconn_ind(conn));
432 }
433 
434 /* Enter sniff mode */
435 static void hci_conn_idle(struct work_struct *work)
436 {
437 	struct hci_conn *conn = container_of(work, struct hci_conn,
438 					     idle_work.work);
439 	struct hci_dev *hdev = conn->hdev;
440 
441 	BT_DBG("hcon %p mode %d", conn, conn->mode);
442 
443 	if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn))
444 		return;
445 
446 	if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF))
447 		return;
448 
449 	if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) {
450 		struct hci_cp_sniff_subrate cp;
451 		cp.handle             = cpu_to_le16(conn->handle);
452 		cp.max_latency        = cpu_to_le16(0);
453 		cp.min_remote_timeout = cpu_to_le16(0);
454 		cp.min_local_timeout  = cpu_to_le16(0);
455 		hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp);
456 	}
457 
458 	if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
459 		struct hci_cp_sniff_mode cp;
460 		cp.handle       = cpu_to_le16(conn->handle);
461 		cp.max_interval = cpu_to_le16(hdev->sniff_max_interval);
462 		cp.min_interval = cpu_to_le16(hdev->sniff_min_interval);
463 		cp.attempt      = cpu_to_le16(4);
464 		cp.timeout      = cpu_to_le16(1);
465 		hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp);
466 	}
467 }
468 
469 static void hci_conn_auto_accept(struct work_struct *work)
470 {
471 	struct hci_conn *conn = container_of(work, struct hci_conn,
472 					     auto_accept_work.work);
473 
474 	hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst),
475 		     &conn->dst);
476 }
477 
478 static void le_disable_advertising(struct hci_dev *hdev)
479 {
480 	if (ext_adv_capable(hdev)) {
481 		struct hci_cp_le_set_ext_adv_enable cp;
482 
483 		cp.enable = 0x00;
484 		cp.num_of_sets = 0x00;
485 
486 		hci_send_cmd(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp),
487 			     &cp);
488 	} else {
489 		u8 enable = 0x00;
490 		hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
491 			     &enable);
492 	}
493 }
494 
495 static void le_conn_timeout(struct work_struct *work)
496 {
497 	struct hci_conn *conn = container_of(work, struct hci_conn,
498 					     le_conn_timeout.work);
499 	struct hci_dev *hdev = conn->hdev;
500 
501 	BT_DBG("");
502 
503 	/* We could end up here due to having done directed advertising,
504 	 * so clean up the state if necessary. This should however only
505 	 * happen with broken hardware or if low duty cycle was used
506 	 * (which doesn't have a timeout of its own).
507 	 */
508 	if (conn->role == HCI_ROLE_SLAVE) {
509 		/* Disable LE Advertising */
510 		le_disable_advertising(hdev);
511 		hci_le_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT);
512 		return;
513 	}
514 
515 	hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM);
516 }
517 
518 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst,
519 			      u8 role)
520 {
521 	struct hci_conn *conn;
522 
523 	BT_DBG("%s dst %pMR", hdev->name, dst);
524 
525 	conn = kzalloc(sizeof(*conn), GFP_KERNEL);
526 	if (!conn)
527 		return NULL;
528 
529 	bacpy(&conn->dst, dst);
530 	bacpy(&conn->src, &hdev->bdaddr);
531 	conn->hdev  = hdev;
532 	conn->type  = type;
533 	conn->role  = role;
534 	conn->mode  = HCI_CM_ACTIVE;
535 	conn->state = BT_OPEN;
536 	conn->auth_type = HCI_AT_GENERAL_BONDING;
537 	conn->io_capability = hdev->io_capability;
538 	conn->remote_auth = 0xff;
539 	conn->key_type = 0xff;
540 	conn->rssi = HCI_RSSI_INVALID;
541 	conn->tx_power = HCI_TX_POWER_INVALID;
542 	conn->max_tx_power = HCI_TX_POWER_INVALID;
543 
544 	set_bit(HCI_CONN_POWER_SAVE, &conn->flags);
545 	conn->disc_timeout = HCI_DISCONN_TIMEOUT;
546 
547 	/* Set Default Authenticated payload timeout to 30s */
548 	conn->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
549 
550 	if (conn->role == HCI_ROLE_MASTER)
551 		conn->out = true;
552 
553 	switch (type) {
554 	case ACL_LINK:
555 		conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK;
556 		break;
557 	case LE_LINK:
558 		/* conn->src should reflect the local identity address */
559 		hci_copy_identity_address(hdev, &conn->src, &conn->src_type);
560 		break;
561 	case SCO_LINK:
562 		if (lmp_esco_capable(hdev))
563 			conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) |
564 					(hdev->esco_type & EDR_ESCO_MASK);
565 		else
566 			conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK;
567 		break;
568 	case ESCO_LINK:
569 		conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK;
570 		break;
571 	}
572 
573 	skb_queue_head_init(&conn->data_q);
574 
575 	INIT_LIST_HEAD(&conn->chan_list);
576 
577 	INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout);
578 	INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept);
579 	INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle);
580 	INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout);
581 	INIT_WORK(&conn->le_scan_cleanup, le_scan_cleanup);
582 
583 	atomic_set(&conn->refcnt, 0);
584 
585 	hci_dev_hold(hdev);
586 
587 	hci_conn_hash_add(hdev, conn);
588 
589 	/* The SCO and eSCO connections will only be notified when their
590 	 * setup has been completed. This is different to ACL links which
591 	 * can be notified right away.
592 	 */
593 	if (conn->type != SCO_LINK && conn->type != ESCO_LINK) {
594 		if (hdev->notify)
595 			hdev->notify(hdev, HCI_NOTIFY_CONN_ADD);
596 	}
597 
598 	hci_conn_init_sysfs(conn);
599 
600 	return conn;
601 }
602 
603 int hci_conn_del(struct hci_conn *conn)
604 {
605 	struct hci_dev *hdev = conn->hdev;
606 
607 	BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle);
608 
609 	cancel_delayed_work_sync(&conn->disc_work);
610 	cancel_delayed_work_sync(&conn->auto_accept_work);
611 	cancel_delayed_work_sync(&conn->idle_work);
612 
613 	if (conn->type == ACL_LINK) {
614 		struct hci_conn *sco = conn->link;
615 		if (sco)
616 			sco->link = NULL;
617 
618 		/* Unacked frames */
619 		hdev->acl_cnt += conn->sent;
620 	} else if (conn->type == LE_LINK) {
621 		cancel_delayed_work(&conn->le_conn_timeout);
622 
623 		if (hdev->le_pkts)
624 			hdev->le_cnt += conn->sent;
625 		else
626 			hdev->acl_cnt += conn->sent;
627 	} else {
628 		struct hci_conn *acl = conn->link;
629 		if (acl) {
630 			acl->link = NULL;
631 			hci_conn_drop(acl);
632 		}
633 	}
634 
635 	if (conn->amp_mgr)
636 		amp_mgr_put(conn->amp_mgr);
637 
638 	skb_queue_purge(&conn->data_q);
639 
640 	/* Remove the connection from the list and cleanup its remaining
641 	 * state. This is a separate function since for some cases like
642 	 * BT_CONNECT_SCAN we *only* want the cleanup part without the
643 	 * rest of hci_conn_del.
644 	 */
645 	hci_conn_cleanup(conn);
646 
647 	return 0;
648 }
649 
650 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, uint8_t src_type)
651 {
652 	int use_src = bacmp(src, BDADDR_ANY);
653 	struct hci_dev *hdev = NULL, *d;
654 
655 	BT_DBG("%pMR -> %pMR", src, dst);
656 
657 	read_lock(&hci_dev_list_lock);
658 
659 	list_for_each_entry(d, &hci_dev_list, list) {
660 		if (!test_bit(HCI_UP, &d->flags) ||
661 		    hci_dev_test_flag(d, HCI_USER_CHANNEL) ||
662 		    d->dev_type != HCI_PRIMARY)
663 			continue;
664 
665 		/* Simple routing:
666 		 *   No source address - find interface with bdaddr != dst
667 		 *   Source address    - find interface with bdaddr == src
668 		 */
669 
670 		if (use_src) {
671 			bdaddr_t id_addr;
672 			u8 id_addr_type;
673 
674 			if (src_type == BDADDR_BREDR) {
675 				if (!lmp_bredr_capable(d))
676 					continue;
677 				bacpy(&id_addr, &d->bdaddr);
678 				id_addr_type = BDADDR_BREDR;
679 			} else {
680 				if (!lmp_le_capable(d))
681 					continue;
682 
683 				hci_copy_identity_address(d, &id_addr,
684 							  &id_addr_type);
685 
686 				/* Convert from HCI to three-value type */
687 				if (id_addr_type == ADDR_LE_DEV_PUBLIC)
688 					id_addr_type = BDADDR_LE_PUBLIC;
689 				else
690 					id_addr_type = BDADDR_LE_RANDOM;
691 			}
692 
693 			if (!bacmp(&id_addr, src) && id_addr_type == src_type) {
694 				hdev = d; break;
695 			}
696 		} else {
697 			if (bacmp(&d->bdaddr, dst)) {
698 				hdev = d; break;
699 			}
700 		}
701 	}
702 
703 	if (hdev)
704 		hdev = hci_dev_hold(hdev);
705 
706 	read_unlock(&hci_dev_list_lock);
707 	return hdev;
708 }
709 EXPORT_SYMBOL(hci_get_route);
710 
711 /* This function requires the caller holds hdev->lock */
712 void hci_le_conn_failed(struct hci_conn *conn, u8 status)
713 {
714 	struct hci_dev *hdev = conn->hdev;
715 	struct hci_conn_params *params;
716 
717 	params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst,
718 					   conn->dst_type);
719 	if (params && params->conn) {
720 		hci_conn_drop(params->conn);
721 		hci_conn_put(params->conn);
722 		params->conn = NULL;
723 	}
724 
725 	conn->state = BT_CLOSED;
726 
727 	/* If the status indicates successful cancellation of
728 	 * the attempt (i.e. Unkown Connection Id) there's no point of
729 	 * notifying failure since we'll go back to keep trying to
730 	 * connect. The only exception is explicit connect requests
731 	 * where a timeout + cancel does indicate an actual failure.
732 	 */
733 	if (status != HCI_ERROR_UNKNOWN_CONN_ID ||
734 	    (params && params->explicit_connect))
735 		mgmt_connect_failed(hdev, &conn->dst, conn->type,
736 				    conn->dst_type, status);
737 
738 	hci_connect_cfm(conn, status);
739 
740 	hci_conn_del(conn);
741 
742 	/* Since we may have temporarily stopped the background scanning in
743 	 * favor of connection establishment, we should restart it.
744 	 */
745 	hci_update_background_scan(hdev);
746 
747 	/* Re-enable advertising in case this was a failed connection
748 	 * attempt as a peripheral.
749 	 */
750 	hci_req_reenable_advertising(hdev);
751 }
752 
753 static void create_le_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
754 {
755 	struct hci_conn *conn;
756 
757 	hci_dev_lock(hdev);
758 
759 	conn = hci_lookup_le_connect(hdev);
760 
761 	if (!status) {
762 		hci_connect_le_scan_cleanup(conn);
763 		goto done;
764 	}
765 
766 	bt_dev_err(hdev, "request failed to create LE connection: "
767 		   "status 0x%2.2x", status);
768 
769 	if (!conn)
770 		goto done;
771 
772 	hci_le_conn_failed(conn, status);
773 
774 done:
775 	hci_dev_unlock(hdev);
776 }
777 
778 static bool conn_use_rpa(struct hci_conn *conn)
779 {
780 	struct hci_dev *hdev = conn->hdev;
781 
782 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
783 }
784 
785 static void set_ext_conn_params(struct hci_conn *conn,
786 				struct hci_cp_le_ext_conn_param *p)
787 {
788 	struct hci_dev *hdev = conn->hdev;
789 
790 	memset(p, 0, sizeof(*p));
791 
792 	/* Set window to be the same value as the interval to
793 	 * enable continuous scanning.
794 	 */
795 	p->scan_interval = cpu_to_le16(hdev->le_scan_interval);
796 	p->scan_window = p->scan_interval;
797 	p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
798 	p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
799 	p->conn_latency = cpu_to_le16(conn->le_conn_latency);
800 	p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
801 	p->min_ce_len = cpu_to_le16(0x0000);
802 	p->max_ce_len = cpu_to_le16(0x0000);
803 }
804 
805 static void hci_req_add_le_create_conn(struct hci_request *req,
806 				       struct hci_conn *conn,
807 				       bdaddr_t *direct_rpa)
808 {
809 	struct hci_dev *hdev = conn->hdev;
810 	u8 own_addr_type;
811 
812 	/* If direct address was provided we use it instead of current
813 	 * address.
814 	 */
815 	if (direct_rpa) {
816 		if (bacmp(&req->hdev->random_addr, direct_rpa))
817 			hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
818 								direct_rpa);
819 
820 		/* direct address is always RPA */
821 		own_addr_type = ADDR_LE_DEV_RANDOM;
822 	} else {
823 		/* Update random address, but set require_privacy to false so
824 		 * that we never connect with an non-resolvable address.
825 		 */
826 		if (hci_update_random_address(req, false, conn_use_rpa(conn),
827 					      &own_addr_type))
828 			return;
829 	}
830 
831 	if (use_ext_conn(hdev)) {
832 		struct hci_cp_le_ext_create_conn *cp;
833 		struct hci_cp_le_ext_conn_param *p;
834 		u8 data[sizeof(*cp) + sizeof(*p) * 3];
835 		u32 plen;
836 
837 		cp = (void *) data;
838 		p = (void *) cp->data;
839 
840 		memset(cp, 0, sizeof(*cp));
841 
842 		bacpy(&cp->peer_addr, &conn->dst);
843 		cp->peer_addr_type = conn->dst_type;
844 		cp->own_addr_type = own_addr_type;
845 
846 		plen = sizeof(*cp);
847 
848 		if (scan_1m(hdev)) {
849 			cp->phys |= LE_SCAN_PHY_1M;
850 			set_ext_conn_params(conn, p);
851 
852 			p++;
853 			plen += sizeof(*p);
854 		}
855 
856 		if (scan_2m(hdev)) {
857 			cp->phys |= LE_SCAN_PHY_2M;
858 			set_ext_conn_params(conn, p);
859 
860 			p++;
861 			plen += sizeof(*p);
862 		}
863 
864 		if (scan_coded(hdev)) {
865 			cp->phys |= LE_SCAN_PHY_CODED;
866 			set_ext_conn_params(conn, p);
867 
868 			plen += sizeof(*p);
869 		}
870 
871 		hci_req_add(req, HCI_OP_LE_EXT_CREATE_CONN, plen, data);
872 
873 	} else {
874 		struct hci_cp_le_create_conn cp;
875 
876 		memset(&cp, 0, sizeof(cp));
877 
878 		/* Set window to be the same value as the interval to enable
879 		 * continuous scanning.
880 		 */
881 		cp.scan_interval = cpu_to_le16(hdev->le_scan_interval);
882 		cp.scan_window = cp.scan_interval;
883 
884 		bacpy(&cp.peer_addr, &conn->dst);
885 		cp.peer_addr_type = conn->dst_type;
886 		cp.own_address_type = own_addr_type;
887 		cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
888 		cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
889 		cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
890 		cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
891 		cp.min_ce_len = cpu_to_le16(0x0000);
892 		cp.max_ce_len = cpu_to_le16(0x0000);
893 
894 		hci_req_add(req, HCI_OP_LE_CREATE_CONN, sizeof(cp), &cp);
895 	}
896 
897 	conn->state = BT_CONNECT;
898 	clear_bit(HCI_CONN_SCANNING, &conn->flags);
899 }
900 
901 static void hci_req_directed_advertising(struct hci_request *req,
902 					 struct hci_conn *conn)
903 {
904 	struct hci_dev *hdev = req->hdev;
905 	u8 own_addr_type;
906 	u8 enable;
907 
908 	if (ext_adv_capable(hdev)) {
909 		struct hci_cp_le_set_ext_adv_params cp;
910 		bdaddr_t random_addr;
911 
912 		/* Set require_privacy to false so that the remote device has a
913 		 * chance of identifying us.
914 		 */
915 		if (hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL,
916 					   &own_addr_type, &random_addr) < 0)
917 			return;
918 
919 		memset(&cp, 0, sizeof(cp));
920 
921 		cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND);
922 		cp.own_addr_type = own_addr_type;
923 		cp.channel_map = hdev->le_adv_channel_map;
924 		cp.tx_power = HCI_TX_POWER_INVALID;
925 		cp.primary_phy = HCI_ADV_PHY_1M;
926 		cp.secondary_phy = HCI_ADV_PHY_1M;
927 		cp.handle = 0; /* Use instance 0 for directed adv */
928 		cp.own_addr_type = own_addr_type;
929 		cp.peer_addr_type = conn->dst_type;
930 		bacpy(&cp.peer_addr, &conn->dst);
931 
932 		/* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for
933 		 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND
934 		 * does not supports advertising data when the advertising set already
935 		 * contains some, the controller shall return erroc code 'Invalid
936 		 * HCI Command Parameters(0x12).
937 		 * So it is required to remove adv set for handle 0x00. since we use
938 		 * instance 0 for directed adv.
939 		 */
940 		hci_req_add(req, HCI_OP_LE_REMOVE_ADV_SET, sizeof(cp.handle), &cp.handle);
941 
942 		hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);
943 
944 		if (own_addr_type == ADDR_LE_DEV_RANDOM &&
945 		    bacmp(&random_addr, BDADDR_ANY) &&
946 		    bacmp(&random_addr, &hdev->random_addr)) {
947 			struct hci_cp_le_set_adv_set_rand_addr cp;
948 
949 			memset(&cp, 0, sizeof(cp));
950 
951 			cp.handle = 0;
952 			bacpy(&cp.bdaddr, &random_addr);
953 
954 			hci_req_add(req,
955 				    HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
956 				    sizeof(cp), &cp);
957 		}
958 
959 		__hci_req_enable_ext_advertising(req, 0x00);
960 	} else {
961 		struct hci_cp_le_set_adv_param cp;
962 
963 		/* Clear the HCI_LE_ADV bit temporarily so that the
964 		 * hci_update_random_address knows that it's safe to go ahead
965 		 * and write a new random address. The flag will be set back on
966 		 * as soon as the SET_ADV_ENABLE HCI command completes.
967 		 */
968 		hci_dev_clear_flag(hdev, HCI_LE_ADV);
969 
970 		/* Set require_privacy to false so that the remote device has a
971 		 * chance of identifying us.
972 		 */
973 		if (hci_update_random_address(req, false, conn_use_rpa(conn),
974 					      &own_addr_type) < 0)
975 			return;
976 
977 		memset(&cp, 0, sizeof(cp));
978 
979 		/* Some controllers might reject command if intervals are not
980 		 * within range for undirected advertising.
981 		 * BCM20702A0 is known to be affected by this.
982 		 */
983 		cp.min_interval = cpu_to_le16(0x0020);
984 		cp.max_interval = cpu_to_le16(0x0020);
985 
986 		cp.type = LE_ADV_DIRECT_IND;
987 		cp.own_address_type = own_addr_type;
988 		cp.direct_addr_type = conn->dst_type;
989 		bacpy(&cp.direct_addr, &conn->dst);
990 		cp.channel_map = hdev->le_adv_channel_map;
991 
992 		hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
993 
994 		enable = 0x01;
995 		hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable),
996 			    &enable);
997 	}
998 
999 	conn->state = BT_CONNECT;
1000 }
1001 
1002 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst,
1003 				u8 dst_type, u8 sec_level, u16 conn_timeout,
1004 				u8 role, bdaddr_t *direct_rpa)
1005 {
1006 	struct hci_conn_params *params;
1007 	struct hci_conn *conn;
1008 	struct smp_irk *irk;
1009 	struct hci_request req;
1010 	int err;
1011 
1012 	/* Let's make sure that le is enabled.*/
1013 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
1014 		if (lmp_le_capable(hdev))
1015 			return ERR_PTR(-ECONNREFUSED);
1016 
1017 		return ERR_PTR(-EOPNOTSUPP);
1018 	}
1019 
1020 	/* Since the controller supports only one LE connection attempt at a
1021 	 * time, we return -EBUSY if there is any connection attempt running.
1022 	 */
1023 	if (hci_lookup_le_connect(hdev))
1024 		return ERR_PTR(-EBUSY);
1025 
1026 	/* If there's already a connection object but it's not in
1027 	 * scanning state it means it must already be established, in
1028 	 * which case we can't do anything else except report a failure
1029 	 * to connect.
1030 	 */
1031 	conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
1032 	if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) {
1033 		return ERR_PTR(-EBUSY);
1034 	}
1035 
1036 	/* When given an identity address with existing identity
1037 	 * resolving key, the connection needs to be established
1038 	 * to a resolvable random address.
1039 	 *
1040 	 * Storing the resolvable random address is required here
1041 	 * to handle connection failures. The address will later
1042 	 * be resolved back into the original identity address
1043 	 * from the connect request.
1044 	 */
1045 	irk = hci_find_irk_by_addr(hdev, dst, dst_type);
1046 	if (irk && bacmp(&irk->rpa, BDADDR_ANY)) {
1047 		dst = &irk->rpa;
1048 		dst_type = ADDR_LE_DEV_RANDOM;
1049 	}
1050 
1051 	if (conn) {
1052 		bacpy(&conn->dst, dst);
1053 	} else {
1054 		conn = hci_conn_add(hdev, LE_LINK, dst, role);
1055 		if (!conn)
1056 			return ERR_PTR(-ENOMEM);
1057 		hci_conn_hold(conn);
1058 		conn->pending_sec_level = sec_level;
1059 	}
1060 
1061 	conn->dst_type = dst_type;
1062 	conn->sec_level = BT_SECURITY_LOW;
1063 	conn->conn_timeout = conn_timeout;
1064 
1065 	hci_req_init(&req, hdev);
1066 
1067 	/* Disable advertising if we're active. For master role
1068 	 * connections most controllers will refuse to connect if
1069 	 * advertising is enabled, and for slave role connections we
1070 	 * anyway have to disable it in order to start directed
1071 	 * advertising.
1072 	 */
1073 	if (hci_dev_test_flag(hdev, HCI_LE_ADV))
1074 		 __hci_req_disable_advertising(&req);
1075 
1076 	/* If requested to connect as slave use directed advertising */
1077 	if (conn->role == HCI_ROLE_SLAVE) {
1078 		/* If we're active scanning most controllers are unable
1079 		 * to initiate advertising. Simply reject the attempt.
1080 		 */
1081 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
1082 		    hdev->le_scan_type == LE_SCAN_ACTIVE) {
1083 			hci_req_purge(&req);
1084 			hci_conn_del(conn);
1085 			return ERR_PTR(-EBUSY);
1086 		}
1087 
1088 		hci_req_directed_advertising(&req, conn);
1089 		goto create_conn;
1090 	}
1091 
1092 	params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
1093 	if (params) {
1094 		conn->le_conn_min_interval = params->conn_min_interval;
1095 		conn->le_conn_max_interval = params->conn_max_interval;
1096 		conn->le_conn_latency = params->conn_latency;
1097 		conn->le_supv_timeout = params->supervision_timeout;
1098 	} else {
1099 		conn->le_conn_min_interval = hdev->le_conn_min_interval;
1100 		conn->le_conn_max_interval = hdev->le_conn_max_interval;
1101 		conn->le_conn_latency = hdev->le_conn_latency;
1102 		conn->le_supv_timeout = hdev->le_supv_timeout;
1103 	}
1104 
1105 	/* If controller is scanning, we stop it since some controllers are
1106 	 * not able to scan and connect at the same time. Also set the
1107 	 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete
1108 	 * handler for scan disabling knows to set the correct discovery
1109 	 * state.
1110 	 */
1111 	if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
1112 		hci_req_add_le_scan_disable(&req);
1113 		hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
1114 	}
1115 
1116 	hci_req_add_le_create_conn(&req, conn, direct_rpa);
1117 
1118 create_conn:
1119 	err = hci_req_run(&req, create_le_conn_complete);
1120 	if (err) {
1121 		hci_conn_del(conn);
1122 		return ERR_PTR(err);
1123 	}
1124 
1125 	return conn;
1126 }
1127 
1128 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type)
1129 {
1130 	struct hci_conn *conn;
1131 
1132 	conn = hci_conn_hash_lookup_le(hdev, addr, type);
1133 	if (!conn)
1134 		return false;
1135 
1136 	if (conn->state != BT_CONNECTED)
1137 		return false;
1138 
1139 	return true;
1140 }
1141 
1142 /* This function requires the caller holds hdev->lock */
1143 static int hci_explicit_conn_params_set(struct hci_dev *hdev,
1144 					bdaddr_t *addr, u8 addr_type)
1145 {
1146 	struct hci_conn_params *params;
1147 
1148 	if (is_connected(hdev, addr, addr_type))
1149 		return -EISCONN;
1150 
1151 	params = hci_conn_params_lookup(hdev, addr, addr_type);
1152 	if (!params) {
1153 		params = hci_conn_params_add(hdev, addr, addr_type);
1154 		if (!params)
1155 			return -ENOMEM;
1156 
1157 		/* If we created new params, mark them to be deleted in
1158 		 * hci_connect_le_scan_cleanup. It's different case than
1159 		 * existing disabled params, those will stay after cleanup.
1160 		 */
1161 		params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
1162 	}
1163 
1164 	/* We're trying to connect, so make sure params are at pend_le_conns */
1165 	if (params->auto_connect == HCI_AUTO_CONN_DISABLED ||
1166 	    params->auto_connect == HCI_AUTO_CONN_REPORT ||
1167 	    params->auto_connect == HCI_AUTO_CONN_EXPLICIT) {
1168 		list_del_init(&params->action);
1169 		list_add(&params->action, &hdev->pend_le_conns);
1170 	}
1171 
1172 	params->explicit_connect = true;
1173 
1174 	BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type,
1175 	       params->auto_connect);
1176 
1177 	return 0;
1178 }
1179 
1180 /* This function requires the caller holds hdev->lock */
1181 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst,
1182 				     u8 dst_type, u8 sec_level,
1183 				     u16 conn_timeout)
1184 {
1185 	struct hci_conn *conn;
1186 
1187 	/* Let's make sure that le is enabled.*/
1188 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
1189 		if (lmp_le_capable(hdev))
1190 			return ERR_PTR(-ECONNREFUSED);
1191 
1192 		return ERR_PTR(-EOPNOTSUPP);
1193 	}
1194 
1195 	/* Some devices send ATT messages as soon as the physical link is
1196 	 * established. To be able to handle these ATT messages, the user-
1197 	 * space first establishes the connection and then starts the pairing
1198 	 * process.
1199 	 *
1200 	 * So if a hci_conn object already exists for the following connection
1201 	 * attempt, we simply update pending_sec_level and auth_type fields
1202 	 * and return the object found.
1203 	 */
1204 	conn = hci_conn_hash_lookup_le(hdev, dst, dst_type);
1205 	if (conn) {
1206 		if (conn->pending_sec_level < sec_level)
1207 			conn->pending_sec_level = sec_level;
1208 		goto done;
1209 	}
1210 
1211 	BT_DBG("requesting refresh of dst_addr");
1212 
1213 	conn = hci_conn_add(hdev, LE_LINK, dst, HCI_ROLE_MASTER);
1214 	if (!conn)
1215 		return ERR_PTR(-ENOMEM);
1216 
1217 	if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0) {
1218 		hci_conn_del(conn);
1219 		return ERR_PTR(-EBUSY);
1220 	}
1221 
1222 	conn->state = BT_CONNECT;
1223 	set_bit(HCI_CONN_SCANNING, &conn->flags);
1224 	conn->dst_type = dst_type;
1225 	conn->sec_level = BT_SECURITY_LOW;
1226 	conn->pending_sec_level = sec_level;
1227 	conn->conn_timeout = conn_timeout;
1228 
1229 	hci_update_background_scan(hdev);
1230 
1231 done:
1232 	hci_conn_hold(conn);
1233 	return conn;
1234 }
1235 
1236 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst,
1237 				 u8 sec_level, u8 auth_type)
1238 {
1239 	struct hci_conn *acl;
1240 
1241 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1242 		if (lmp_bredr_capable(hdev))
1243 			return ERR_PTR(-ECONNREFUSED);
1244 
1245 		return ERR_PTR(-EOPNOTSUPP);
1246 	}
1247 
1248 	acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst);
1249 	if (!acl) {
1250 		acl = hci_conn_add(hdev, ACL_LINK, dst, HCI_ROLE_MASTER);
1251 		if (!acl)
1252 			return ERR_PTR(-ENOMEM);
1253 	}
1254 
1255 	hci_conn_hold(acl);
1256 
1257 	if (acl->state == BT_OPEN || acl->state == BT_CLOSED) {
1258 		acl->sec_level = BT_SECURITY_LOW;
1259 		acl->pending_sec_level = sec_level;
1260 		acl->auth_type = auth_type;
1261 		hci_acl_create_connection(acl);
1262 	}
1263 
1264 	return acl;
1265 }
1266 
1267 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst,
1268 				 __u16 setting)
1269 {
1270 	struct hci_conn *acl;
1271 	struct hci_conn *sco;
1272 
1273 	acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING);
1274 	if (IS_ERR(acl))
1275 		return acl;
1276 
1277 	sco = hci_conn_hash_lookup_ba(hdev, type, dst);
1278 	if (!sco) {
1279 		sco = hci_conn_add(hdev, type, dst, HCI_ROLE_MASTER);
1280 		if (!sco) {
1281 			hci_conn_drop(acl);
1282 			return ERR_PTR(-ENOMEM);
1283 		}
1284 	}
1285 
1286 	acl->link = sco;
1287 	sco->link = acl;
1288 
1289 	hci_conn_hold(sco);
1290 
1291 	sco->setting = setting;
1292 
1293 	if (acl->state == BT_CONNECTED &&
1294 	    (sco->state == BT_OPEN || sco->state == BT_CLOSED)) {
1295 		set_bit(HCI_CONN_POWER_SAVE, &acl->flags);
1296 		hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON);
1297 
1298 		if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) {
1299 			/* defer SCO setup until mode change completed */
1300 			set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags);
1301 			return sco;
1302 		}
1303 
1304 		hci_sco_setup(acl, 0x00);
1305 	}
1306 
1307 	return sco;
1308 }
1309 
1310 /* Check link security requirement */
1311 int hci_conn_check_link_mode(struct hci_conn *conn)
1312 {
1313 	BT_DBG("hcon %p", conn);
1314 
1315 	/* In Secure Connections Only mode, it is required that Secure
1316 	 * Connections is used and the link is encrypted with AES-CCM
1317 	 * using a P-256 authenticated combination key.
1318 	 */
1319 	if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) {
1320 		if (!hci_conn_sc_enabled(conn) ||
1321 		    !test_bit(HCI_CONN_AES_CCM, &conn->flags) ||
1322 		    conn->key_type != HCI_LK_AUTH_COMBINATION_P256)
1323 			return 0;
1324 	}
1325 
1326 	if (hci_conn_ssp_enabled(conn) &&
1327 	    !test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1328 		return 0;
1329 
1330 	return 1;
1331 }
1332 
1333 /* Authenticate remote device */
1334 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type)
1335 {
1336 	BT_DBG("hcon %p", conn);
1337 
1338 	if (conn->pending_sec_level > sec_level)
1339 		sec_level = conn->pending_sec_level;
1340 
1341 	if (sec_level > conn->sec_level)
1342 		conn->pending_sec_level = sec_level;
1343 	else if (test_bit(HCI_CONN_AUTH, &conn->flags))
1344 		return 1;
1345 
1346 	/* Make sure we preserve an existing MITM requirement*/
1347 	auth_type |= (conn->auth_type & 0x01);
1348 
1349 	conn->auth_type = auth_type;
1350 
1351 	if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) {
1352 		struct hci_cp_auth_requested cp;
1353 
1354 		cp.handle = cpu_to_le16(conn->handle);
1355 		hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED,
1356 			     sizeof(cp), &cp);
1357 
1358 		/* If we're already encrypted set the REAUTH_PEND flag,
1359 		 * otherwise set the ENCRYPT_PEND.
1360 		 */
1361 		if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1362 			set_bit(HCI_CONN_REAUTH_PEND, &conn->flags);
1363 		else
1364 			set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags);
1365 	}
1366 
1367 	return 0;
1368 }
1369 
1370 /* Encrypt the the link */
1371 static void hci_conn_encrypt(struct hci_conn *conn)
1372 {
1373 	BT_DBG("hcon %p", conn);
1374 
1375 	if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) {
1376 		struct hci_cp_set_conn_encrypt cp;
1377 		cp.handle  = cpu_to_le16(conn->handle);
1378 		cp.encrypt = 0x01;
1379 		hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp),
1380 			     &cp);
1381 	}
1382 }
1383 
1384 /* Enable security */
1385 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type,
1386 		      bool initiator)
1387 {
1388 	BT_DBG("hcon %p", conn);
1389 
1390 	if (conn->type == LE_LINK)
1391 		return smp_conn_security(conn, sec_level);
1392 
1393 	/* For sdp we don't need the link key. */
1394 	if (sec_level == BT_SECURITY_SDP)
1395 		return 1;
1396 
1397 	/* For non 2.1 devices and low security level we don't need the link
1398 	   key. */
1399 	if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn))
1400 		return 1;
1401 
1402 	/* For other security levels we need the link key. */
1403 	if (!test_bit(HCI_CONN_AUTH, &conn->flags))
1404 		goto auth;
1405 
1406 	/* An authenticated FIPS approved combination key has sufficient
1407 	 * security for security level 4. */
1408 	if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256 &&
1409 	    sec_level == BT_SECURITY_FIPS)
1410 		goto encrypt;
1411 
1412 	/* An authenticated combination key has sufficient security for
1413 	   security level 3. */
1414 	if ((conn->key_type == HCI_LK_AUTH_COMBINATION_P192 ||
1415 	     conn->key_type == HCI_LK_AUTH_COMBINATION_P256) &&
1416 	    sec_level == BT_SECURITY_HIGH)
1417 		goto encrypt;
1418 
1419 	/* An unauthenticated combination key has sufficient security for
1420 	   security level 1 and 2. */
1421 	if ((conn->key_type == HCI_LK_UNAUTH_COMBINATION_P192 ||
1422 	     conn->key_type == HCI_LK_UNAUTH_COMBINATION_P256) &&
1423 	    (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW))
1424 		goto encrypt;
1425 
1426 	/* A combination key has always sufficient security for the security
1427 	   levels 1 or 2. High security level requires the combination key
1428 	   is generated using maximum PIN code length (16).
1429 	   For pre 2.1 units. */
1430 	if (conn->key_type == HCI_LK_COMBINATION &&
1431 	    (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW ||
1432 	     conn->pin_length == 16))
1433 		goto encrypt;
1434 
1435 auth:
1436 	if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
1437 		return 0;
1438 
1439 	if (initiator)
1440 		set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags);
1441 
1442 	if (!hci_conn_auth(conn, sec_level, auth_type))
1443 		return 0;
1444 
1445 encrypt:
1446 	if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) {
1447 		/* Ensure that the encryption key size has been read,
1448 		 * otherwise stall the upper layer responses.
1449 		 */
1450 		if (!conn->enc_key_size)
1451 			return 0;
1452 
1453 		/* Nothing else needed, all requirements are met */
1454 		return 1;
1455 	}
1456 
1457 	hci_conn_encrypt(conn);
1458 	return 0;
1459 }
1460 EXPORT_SYMBOL(hci_conn_security);
1461 
1462 /* Check secure link requirement */
1463 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level)
1464 {
1465 	BT_DBG("hcon %p", conn);
1466 
1467 	/* Accept if non-secure or higher security level is required */
1468 	if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS)
1469 		return 1;
1470 
1471 	/* Accept if secure or higher security level is already present */
1472 	if (conn->sec_level == BT_SECURITY_HIGH ||
1473 	    conn->sec_level == BT_SECURITY_FIPS)
1474 		return 1;
1475 
1476 	/* Reject not secure link */
1477 	return 0;
1478 }
1479 EXPORT_SYMBOL(hci_conn_check_secure);
1480 
1481 /* Switch role */
1482 int hci_conn_switch_role(struct hci_conn *conn, __u8 role)
1483 {
1484 	BT_DBG("hcon %p", conn);
1485 
1486 	if (role == conn->role)
1487 		return 1;
1488 
1489 	if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) {
1490 		struct hci_cp_switch_role cp;
1491 		bacpy(&cp.bdaddr, &conn->dst);
1492 		cp.role = role;
1493 		hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp);
1494 	}
1495 
1496 	return 0;
1497 }
1498 EXPORT_SYMBOL(hci_conn_switch_role);
1499 
1500 /* Enter active mode */
1501 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active)
1502 {
1503 	struct hci_dev *hdev = conn->hdev;
1504 
1505 	BT_DBG("hcon %p mode %d", conn, conn->mode);
1506 
1507 	if (conn->mode != HCI_CM_SNIFF)
1508 		goto timer;
1509 
1510 	if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active)
1511 		goto timer;
1512 
1513 	if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) {
1514 		struct hci_cp_exit_sniff_mode cp;
1515 		cp.handle = cpu_to_le16(conn->handle);
1516 		hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp);
1517 	}
1518 
1519 timer:
1520 	if (hdev->idle_timeout > 0)
1521 		queue_delayed_work(hdev->workqueue, &conn->idle_work,
1522 				   msecs_to_jiffies(hdev->idle_timeout));
1523 }
1524 
1525 /* Drop all connection on the device */
1526 void hci_conn_hash_flush(struct hci_dev *hdev)
1527 {
1528 	struct hci_conn_hash *h = &hdev->conn_hash;
1529 	struct hci_conn *c, *n;
1530 
1531 	BT_DBG("hdev %s", hdev->name);
1532 
1533 	list_for_each_entry_safe(c, n, &h->list, list) {
1534 		c->state = BT_CLOSED;
1535 
1536 		hci_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM);
1537 		hci_conn_del(c);
1538 	}
1539 }
1540 
1541 /* Check pending connect attempts */
1542 void hci_conn_check_pending(struct hci_dev *hdev)
1543 {
1544 	struct hci_conn *conn;
1545 
1546 	BT_DBG("hdev %s", hdev->name);
1547 
1548 	hci_dev_lock(hdev);
1549 
1550 	conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2);
1551 	if (conn)
1552 		hci_acl_create_connection(conn);
1553 
1554 	hci_dev_unlock(hdev);
1555 }
1556 
1557 static u32 get_link_mode(struct hci_conn *conn)
1558 {
1559 	u32 link_mode = 0;
1560 
1561 	if (conn->role == HCI_ROLE_MASTER)
1562 		link_mode |= HCI_LM_MASTER;
1563 
1564 	if (test_bit(HCI_CONN_ENCRYPT, &conn->flags))
1565 		link_mode |= HCI_LM_ENCRYPT;
1566 
1567 	if (test_bit(HCI_CONN_AUTH, &conn->flags))
1568 		link_mode |= HCI_LM_AUTH;
1569 
1570 	if (test_bit(HCI_CONN_SECURE, &conn->flags))
1571 		link_mode |= HCI_LM_SECURE;
1572 
1573 	if (test_bit(HCI_CONN_FIPS, &conn->flags))
1574 		link_mode |= HCI_LM_FIPS;
1575 
1576 	return link_mode;
1577 }
1578 
1579 int hci_get_conn_list(void __user *arg)
1580 {
1581 	struct hci_conn *c;
1582 	struct hci_conn_list_req req, *cl;
1583 	struct hci_conn_info *ci;
1584 	struct hci_dev *hdev;
1585 	int n = 0, size, err;
1586 
1587 	if (copy_from_user(&req, arg, sizeof(req)))
1588 		return -EFAULT;
1589 
1590 	if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci))
1591 		return -EINVAL;
1592 
1593 	size = sizeof(req) + req.conn_num * sizeof(*ci);
1594 
1595 	cl = kmalloc(size, GFP_KERNEL);
1596 	if (!cl)
1597 		return -ENOMEM;
1598 
1599 	hdev = hci_dev_get(req.dev_id);
1600 	if (!hdev) {
1601 		kfree(cl);
1602 		return -ENODEV;
1603 	}
1604 
1605 	ci = cl->conn_info;
1606 
1607 	hci_dev_lock(hdev);
1608 	list_for_each_entry(c, &hdev->conn_hash.list, list) {
1609 		bacpy(&(ci + n)->bdaddr, &c->dst);
1610 		(ci + n)->handle = c->handle;
1611 		(ci + n)->type  = c->type;
1612 		(ci + n)->out   = c->out;
1613 		(ci + n)->state = c->state;
1614 		(ci + n)->link_mode = get_link_mode(c);
1615 		if (++n >= req.conn_num)
1616 			break;
1617 	}
1618 	hci_dev_unlock(hdev);
1619 
1620 	cl->dev_id = hdev->id;
1621 	cl->conn_num = n;
1622 	size = sizeof(req) + n * sizeof(*ci);
1623 
1624 	hci_dev_put(hdev);
1625 
1626 	err = copy_to_user(arg, cl, size);
1627 	kfree(cl);
1628 
1629 	return err ? -EFAULT : 0;
1630 }
1631 
1632 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg)
1633 {
1634 	struct hci_conn_info_req req;
1635 	struct hci_conn_info ci;
1636 	struct hci_conn *conn;
1637 	char __user *ptr = arg + sizeof(req);
1638 
1639 	if (copy_from_user(&req, arg, sizeof(req)))
1640 		return -EFAULT;
1641 
1642 	hci_dev_lock(hdev);
1643 	conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr);
1644 	if (conn) {
1645 		bacpy(&ci.bdaddr, &conn->dst);
1646 		ci.handle = conn->handle;
1647 		ci.type  = conn->type;
1648 		ci.out   = conn->out;
1649 		ci.state = conn->state;
1650 		ci.link_mode = get_link_mode(conn);
1651 	}
1652 	hci_dev_unlock(hdev);
1653 
1654 	if (!conn)
1655 		return -ENOENT;
1656 
1657 	return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0;
1658 }
1659 
1660 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg)
1661 {
1662 	struct hci_auth_info_req req;
1663 	struct hci_conn *conn;
1664 
1665 	if (copy_from_user(&req, arg, sizeof(req)))
1666 		return -EFAULT;
1667 
1668 	hci_dev_lock(hdev);
1669 	conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr);
1670 	if (conn)
1671 		req.type = conn->auth_type;
1672 	hci_dev_unlock(hdev);
1673 
1674 	if (!conn)
1675 		return -ENOENT;
1676 
1677 	return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0;
1678 }
1679 
1680 struct hci_chan *hci_chan_create(struct hci_conn *conn)
1681 {
1682 	struct hci_dev *hdev = conn->hdev;
1683 	struct hci_chan *chan;
1684 
1685 	BT_DBG("%s hcon %p", hdev->name, conn);
1686 
1687 	if (test_bit(HCI_CONN_DROP, &conn->flags)) {
1688 		BT_DBG("Refusing to create new hci_chan");
1689 		return NULL;
1690 	}
1691 
1692 	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1693 	if (!chan)
1694 		return NULL;
1695 
1696 	chan->conn = hci_conn_get(conn);
1697 	skb_queue_head_init(&chan->data_q);
1698 	chan->state = BT_CONNECTED;
1699 
1700 	list_add_rcu(&chan->list, &conn->chan_list);
1701 
1702 	return chan;
1703 }
1704 
1705 void hci_chan_del(struct hci_chan *chan)
1706 {
1707 	struct hci_conn *conn = chan->conn;
1708 	struct hci_dev *hdev = conn->hdev;
1709 
1710 	BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan);
1711 
1712 	list_del_rcu(&chan->list);
1713 
1714 	synchronize_rcu();
1715 
1716 	/* Prevent new hci_chan's to be created for this hci_conn */
1717 	set_bit(HCI_CONN_DROP, &conn->flags);
1718 
1719 	hci_conn_put(conn);
1720 
1721 	skb_queue_purge(&chan->data_q);
1722 	kfree(chan);
1723 }
1724 
1725 void hci_chan_list_flush(struct hci_conn *conn)
1726 {
1727 	struct hci_chan *chan, *n;
1728 
1729 	BT_DBG("hcon %p", conn);
1730 
1731 	list_for_each_entry_safe(chan, n, &conn->chan_list, list)
1732 		hci_chan_del(chan);
1733 }
1734 
1735 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon,
1736 						 __u16 handle)
1737 {
1738 	struct hci_chan *hchan;
1739 
1740 	list_for_each_entry(hchan, &hcon->chan_list, list) {
1741 		if (hchan->handle == handle)
1742 			return hchan;
1743 	}
1744 
1745 	return NULL;
1746 }
1747 
1748 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle)
1749 {
1750 	struct hci_conn_hash *h = &hdev->conn_hash;
1751 	struct hci_conn *hcon;
1752 	struct hci_chan *hchan = NULL;
1753 
1754 	rcu_read_lock();
1755 
1756 	list_for_each_entry_rcu(hcon, &h->list, list) {
1757 		hchan = __hci_chan_lookup_handle(hcon, handle);
1758 		if (hchan)
1759 			break;
1760 	}
1761 
1762 	rcu_read_unlock();
1763 
1764 	return hchan;
1765 }
1766 
1767 u32 hci_conn_get_phy(struct hci_conn *conn)
1768 {
1769 	u32 phys = 0;
1770 
1771 	hci_dev_lock(conn->hdev);
1772 
1773 	/* BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 2, Part B page 471:
1774 	 * Table 6.2: Packets defined for synchronous, asynchronous, and
1775 	 * CSB logical transport types.
1776 	 */
1777 	switch (conn->type) {
1778 	case SCO_LINK:
1779 		/* SCO logical transport (1 Mb/s):
1780 		 * HV1, HV2, HV3 and DV.
1781 		 */
1782 		phys |= BT_PHY_BR_1M_1SLOT;
1783 
1784 		break;
1785 
1786 	case ACL_LINK:
1787 		/* ACL logical transport (1 Mb/s) ptt=0:
1788 		 * DH1, DM3, DH3, DM5 and DH5.
1789 		 */
1790 		phys |= BT_PHY_BR_1M_1SLOT;
1791 
1792 		if (conn->pkt_type & (HCI_DM3 | HCI_DH3))
1793 			phys |= BT_PHY_BR_1M_3SLOT;
1794 
1795 		if (conn->pkt_type & (HCI_DM5 | HCI_DH5))
1796 			phys |= BT_PHY_BR_1M_5SLOT;
1797 
1798 		/* ACL logical transport (2 Mb/s) ptt=1:
1799 		 * 2-DH1, 2-DH3 and 2-DH5.
1800 		 */
1801 		if (!(conn->pkt_type & HCI_2DH1))
1802 			phys |= BT_PHY_EDR_2M_1SLOT;
1803 
1804 		if (!(conn->pkt_type & HCI_2DH3))
1805 			phys |= BT_PHY_EDR_2M_3SLOT;
1806 
1807 		if (!(conn->pkt_type & HCI_2DH5))
1808 			phys |= BT_PHY_EDR_2M_5SLOT;
1809 
1810 		/* ACL logical transport (3 Mb/s) ptt=1:
1811 		 * 3-DH1, 3-DH3 and 3-DH5.
1812 		 */
1813 		if (!(conn->pkt_type & HCI_3DH1))
1814 			phys |= BT_PHY_EDR_3M_1SLOT;
1815 
1816 		if (!(conn->pkt_type & HCI_3DH3))
1817 			phys |= BT_PHY_EDR_3M_3SLOT;
1818 
1819 		if (!(conn->pkt_type & HCI_3DH5))
1820 			phys |= BT_PHY_EDR_3M_5SLOT;
1821 
1822 		break;
1823 
1824 	case ESCO_LINK:
1825 		/* eSCO logical transport (1 Mb/s): EV3, EV4 and EV5 */
1826 		phys |= BT_PHY_BR_1M_1SLOT;
1827 
1828 		if (!(conn->pkt_type & (ESCO_EV4 | ESCO_EV5)))
1829 			phys |= BT_PHY_BR_1M_3SLOT;
1830 
1831 		/* eSCO logical transport (2 Mb/s): 2-EV3, 2-EV5 */
1832 		if (!(conn->pkt_type & ESCO_2EV3))
1833 			phys |= BT_PHY_EDR_2M_1SLOT;
1834 
1835 		if (!(conn->pkt_type & ESCO_2EV5))
1836 			phys |= BT_PHY_EDR_2M_3SLOT;
1837 
1838 		/* eSCO logical transport (3 Mb/s): 3-EV3, 3-EV5 */
1839 		if (!(conn->pkt_type & ESCO_3EV3))
1840 			phys |= BT_PHY_EDR_3M_1SLOT;
1841 
1842 		if (!(conn->pkt_type & ESCO_3EV5))
1843 			phys |= BT_PHY_EDR_3M_3SLOT;
1844 
1845 		break;
1846 
1847 	case LE_LINK:
1848 		if (conn->le_tx_phy & HCI_LE_SET_PHY_1M)
1849 			phys |= BT_PHY_LE_1M_TX;
1850 
1851 		if (conn->le_rx_phy & HCI_LE_SET_PHY_1M)
1852 			phys |= BT_PHY_LE_1M_RX;
1853 
1854 		if (conn->le_tx_phy & HCI_LE_SET_PHY_2M)
1855 			phys |= BT_PHY_LE_2M_TX;
1856 
1857 		if (conn->le_rx_phy & HCI_LE_SET_PHY_2M)
1858 			phys |= BT_PHY_LE_2M_RX;
1859 
1860 		if (conn->le_tx_phy & HCI_LE_SET_PHY_CODED)
1861 			phys |= BT_PHY_LE_CODED_TX;
1862 
1863 		if (conn->le_rx_phy & HCI_LE_SET_PHY_CODED)
1864 			phys |= BT_PHY_LE_CODED_RX;
1865 
1866 		break;
1867 	}
1868 
1869 	hci_dev_unlock(conn->hdev);
1870 
1871 	return phys;
1872 }
1873