1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 /* Bluetooth HCI connection handling. */ 26 27 #include <linux/export.h> 28 #include <linux/debugfs.h> 29 30 #include <net/bluetooth/bluetooth.h> 31 #include <net/bluetooth/hci_core.h> 32 #include <net/bluetooth/l2cap.h> 33 #include <net/bluetooth/iso.h> 34 #include <net/bluetooth/mgmt.h> 35 36 #include "hci_request.h" 37 #include "smp.h" 38 #include "a2mp.h" 39 #include "eir.h" 40 41 struct sco_param { 42 u16 pkt_type; 43 u16 max_latency; 44 u8 retrans_effort; 45 }; 46 47 struct conn_handle_t { 48 struct hci_conn *conn; 49 __u16 handle; 50 }; 51 52 static const struct sco_param esco_param_cvsd[] = { 53 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a, 0x01 }, /* S3 */ 54 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007, 0x01 }, /* S2 */ 55 { EDR_ESCO_MASK | ESCO_EV3, 0x0007, 0x01 }, /* S1 */ 56 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0x01 }, /* D1 */ 57 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0x01 }, /* D0 */ 58 }; 59 60 static const struct sco_param sco_param_cvsd[] = { 61 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0xff }, /* D1 */ 62 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0xff }, /* D0 */ 63 }; 64 65 static const struct sco_param esco_param_msbc[] = { 66 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d, 0x02 }, /* T2 */ 67 { EDR_ESCO_MASK | ESCO_EV3, 0x0008, 0x02 }, /* T1 */ 68 }; 69 70 /* This function requires the caller holds hdev->lock */ 71 static void hci_connect_le_scan_cleanup(struct hci_conn *conn) 72 { 73 struct hci_conn_params *params; 74 struct hci_dev *hdev = conn->hdev; 75 struct smp_irk *irk; 76 bdaddr_t *bdaddr; 77 u8 bdaddr_type; 78 79 bdaddr = &conn->dst; 80 bdaddr_type = conn->dst_type; 81 82 /* Check if we need to convert to identity address */ 83 irk = hci_get_irk(hdev, bdaddr, bdaddr_type); 84 if (irk) { 85 bdaddr = &irk->bdaddr; 86 bdaddr_type = irk->addr_type; 87 } 88 89 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr, 90 bdaddr_type); 91 if (!params || !params->explicit_connect) 92 return; 93 94 /* The connection attempt was doing scan for new RPA, and is 95 * in scan phase. If params are not associated with any other 96 * autoconnect action, remove them completely. If they are, just unmark 97 * them as waiting for connection, by clearing explicit_connect field. 98 */ 99 params->explicit_connect = false; 100 101 list_del_init(¶ms->action); 102 103 switch (params->auto_connect) { 104 case HCI_AUTO_CONN_EXPLICIT: 105 hci_conn_params_del(hdev, bdaddr, bdaddr_type); 106 /* return instead of break to avoid duplicate scan update */ 107 return; 108 case HCI_AUTO_CONN_DIRECT: 109 case HCI_AUTO_CONN_ALWAYS: 110 list_add(¶ms->action, &hdev->pend_le_conns); 111 break; 112 case HCI_AUTO_CONN_REPORT: 113 list_add(¶ms->action, &hdev->pend_le_reports); 114 break; 115 default: 116 break; 117 } 118 119 hci_update_passive_scan(hdev); 120 } 121 122 static void hci_conn_cleanup(struct hci_conn *conn) 123 { 124 struct hci_dev *hdev = conn->hdev; 125 126 if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags)) 127 hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type); 128 129 if (test_and_clear_bit(HCI_CONN_FLUSH_KEY, &conn->flags)) 130 hci_remove_link_key(hdev, &conn->dst); 131 132 hci_chan_list_flush(conn); 133 134 hci_conn_hash_del(hdev, conn); 135 136 if (conn->cleanup) 137 conn->cleanup(conn); 138 139 if (conn->type == SCO_LINK || conn->type == ESCO_LINK) { 140 switch (conn->setting & SCO_AIRMODE_MASK) { 141 case SCO_AIRMODE_CVSD: 142 case SCO_AIRMODE_TRANSP: 143 if (hdev->notify) 144 hdev->notify(hdev, HCI_NOTIFY_DISABLE_SCO); 145 break; 146 } 147 } else { 148 if (hdev->notify) 149 hdev->notify(hdev, HCI_NOTIFY_CONN_DEL); 150 } 151 152 hci_conn_del_sysfs(conn); 153 154 debugfs_remove_recursive(conn->debugfs); 155 156 hci_dev_put(hdev); 157 158 hci_conn_put(conn); 159 } 160 161 static void le_scan_cleanup(struct work_struct *work) 162 { 163 struct hci_conn *conn = container_of(work, struct hci_conn, 164 le_scan_cleanup); 165 struct hci_dev *hdev = conn->hdev; 166 struct hci_conn *c = NULL; 167 168 BT_DBG("%s hcon %p", hdev->name, conn); 169 170 hci_dev_lock(hdev); 171 172 /* Check that the hci_conn is still around */ 173 rcu_read_lock(); 174 list_for_each_entry_rcu(c, &hdev->conn_hash.list, list) { 175 if (c == conn) 176 break; 177 } 178 rcu_read_unlock(); 179 180 if (c == conn) { 181 hci_connect_le_scan_cleanup(conn); 182 hci_conn_cleanup(conn); 183 } 184 185 hci_dev_unlock(hdev); 186 hci_dev_put(hdev); 187 hci_conn_put(conn); 188 } 189 190 static void hci_connect_le_scan_remove(struct hci_conn *conn) 191 { 192 BT_DBG("%s hcon %p", conn->hdev->name, conn); 193 194 /* We can't call hci_conn_del/hci_conn_cleanup here since that 195 * could deadlock with another hci_conn_del() call that's holding 196 * hci_dev_lock and doing cancel_delayed_work_sync(&conn->disc_work). 197 * Instead, grab temporary extra references to the hci_dev and 198 * hci_conn and perform the necessary cleanup in a separate work 199 * callback. 200 */ 201 202 hci_dev_hold(conn->hdev); 203 hci_conn_get(conn); 204 205 /* Even though we hold a reference to the hdev, many other 206 * things might get cleaned up meanwhile, including the hdev's 207 * own workqueue, so we can't use that for scheduling. 208 */ 209 schedule_work(&conn->le_scan_cleanup); 210 } 211 212 static void hci_acl_create_connection(struct hci_conn *conn) 213 { 214 struct hci_dev *hdev = conn->hdev; 215 struct inquiry_entry *ie; 216 struct hci_cp_create_conn cp; 217 218 BT_DBG("hcon %p", conn); 219 220 /* Many controllers disallow HCI Create Connection while it is doing 221 * HCI Inquiry. So we cancel the Inquiry first before issuing HCI Create 222 * Connection. This may cause the MGMT discovering state to become false 223 * without user space's request but it is okay since the MGMT Discovery 224 * APIs do not promise that discovery should be done forever. Instead, 225 * the user space monitors the status of MGMT discovering and it may 226 * request for discovery again when this flag becomes false. 227 */ 228 if (test_bit(HCI_INQUIRY, &hdev->flags)) { 229 /* Put this connection to "pending" state so that it will be 230 * executed after the inquiry cancel command complete event. 231 */ 232 conn->state = BT_CONNECT2; 233 hci_send_cmd(hdev, HCI_OP_INQUIRY_CANCEL, 0, NULL); 234 return; 235 } 236 237 conn->state = BT_CONNECT; 238 conn->out = true; 239 conn->role = HCI_ROLE_MASTER; 240 241 conn->attempt++; 242 243 conn->link_policy = hdev->link_policy; 244 245 memset(&cp, 0, sizeof(cp)); 246 bacpy(&cp.bdaddr, &conn->dst); 247 cp.pscan_rep_mode = 0x02; 248 249 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 250 if (ie) { 251 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) { 252 cp.pscan_rep_mode = ie->data.pscan_rep_mode; 253 cp.pscan_mode = ie->data.pscan_mode; 254 cp.clock_offset = ie->data.clock_offset | 255 cpu_to_le16(0x8000); 256 } 257 258 memcpy(conn->dev_class, ie->data.dev_class, 3); 259 } 260 261 cp.pkt_type = cpu_to_le16(conn->pkt_type); 262 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER)) 263 cp.role_switch = 0x01; 264 else 265 cp.role_switch = 0x00; 266 267 hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp); 268 } 269 270 int hci_disconnect(struct hci_conn *conn, __u8 reason) 271 { 272 BT_DBG("hcon %p", conn); 273 274 /* When we are central of an established connection and it enters 275 * the disconnect timeout, then go ahead and try to read the 276 * current clock offset. Processing of the result is done 277 * within the event handling and hci_clock_offset_evt function. 278 */ 279 if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER && 280 (conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) { 281 struct hci_dev *hdev = conn->hdev; 282 struct hci_cp_read_clock_offset clkoff_cp; 283 284 clkoff_cp.handle = cpu_to_le16(conn->handle); 285 hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp), 286 &clkoff_cp); 287 } 288 289 return hci_abort_conn(conn, reason); 290 } 291 292 static void hci_add_sco(struct hci_conn *conn, __u16 handle) 293 { 294 struct hci_dev *hdev = conn->hdev; 295 struct hci_cp_add_sco cp; 296 297 BT_DBG("hcon %p", conn); 298 299 conn->state = BT_CONNECT; 300 conn->out = true; 301 302 conn->attempt++; 303 304 cp.handle = cpu_to_le16(handle); 305 cp.pkt_type = cpu_to_le16(conn->pkt_type); 306 307 hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp); 308 } 309 310 static bool find_next_esco_param(struct hci_conn *conn, 311 const struct sco_param *esco_param, int size) 312 { 313 for (; conn->attempt <= size; conn->attempt++) { 314 if (lmp_esco_2m_capable(conn->link) || 315 (esco_param[conn->attempt - 1].pkt_type & ESCO_2EV3)) 316 break; 317 BT_DBG("hcon %p skipped attempt %d, eSCO 2M not supported", 318 conn, conn->attempt); 319 } 320 321 return conn->attempt <= size; 322 } 323 324 static int configure_datapath_sync(struct hci_dev *hdev, struct bt_codec *codec) 325 { 326 int err; 327 __u8 vnd_len, *vnd_data = NULL; 328 struct hci_op_configure_data_path *cmd = NULL; 329 330 err = hdev->get_codec_config_data(hdev, ESCO_LINK, codec, &vnd_len, 331 &vnd_data); 332 if (err < 0) 333 goto error; 334 335 cmd = kzalloc(sizeof(*cmd) + vnd_len, GFP_KERNEL); 336 if (!cmd) { 337 err = -ENOMEM; 338 goto error; 339 } 340 341 err = hdev->get_data_path_id(hdev, &cmd->data_path_id); 342 if (err < 0) 343 goto error; 344 345 cmd->vnd_len = vnd_len; 346 memcpy(cmd->vnd_data, vnd_data, vnd_len); 347 348 cmd->direction = 0x00; 349 __hci_cmd_sync_status(hdev, HCI_CONFIGURE_DATA_PATH, 350 sizeof(*cmd) + vnd_len, cmd, HCI_CMD_TIMEOUT); 351 352 cmd->direction = 0x01; 353 err = __hci_cmd_sync_status(hdev, HCI_CONFIGURE_DATA_PATH, 354 sizeof(*cmd) + vnd_len, cmd, 355 HCI_CMD_TIMEOUT); 356 error: 357 358 kfree(cmd); 359 kfree(vnd_data); 360 return err; 361 } 362 363 static int hci_enhanced_setup_sync(struct hci_dev *hdev, void *data) 364 { 365 struct conn_handle_t *conn_handle = data; 366 struct hci_conn *conn = conn_handle->conn; 367 __u16 handle = conn_handle->handle; 368 struct hci_cp_enhanced_setup_sync_conn cp; 369 const struct sco_param *param; 370 371 kfree(conn_handle); 372 373 bt_dev_dbg(hdev, "hcon %p", conn); 374 375 /* for offload use case, codec needs to configured before opening SCO */ 376 if (conn->codec.data_path) 377 configure_datapath_sync(hdev, &conn->codec); 378 379 conn->state = BT_CONNECT; 380 conn->out = true; 381 382 conn->attempt++; 383 384 memset(&cp, 0x00, sizeof(cp)); 385 386 cp.handle = cpu_to_le16(handle); 387 388 cp.tx_bandwidth = cpu_to_le32(0x00001f40); 389 cp.rx_bandwidth = cpu_to_le32(0x00001f40); 390 391 switch (conn->codec.id) { 392 case BT_CODEC_MSBC: 393 if (!find_next_esco_param(conn, esco_param_msbc, 394 ARRAY_SIZE(esco_param_msbc))) 395 return -EINVAL; 396 397 param = &esco_param_msbc[conn->attempt - 1]; 398 cp.tx_coding_format.id = 0x05; 399 cp.rx_coding_format.id = 0x05; 400 cp.tx_codec_frame_size = __cpu_to_le16(60); 401 cp.rx_codec_frame_size = __cpu_to_le16(60); 402 cp.in_bandwidth = __cpu_to_le32(32000); 403 cp.out_bandwidth = __cpu_to_le32(32000); 404 cp.in_coding_format.id = 0x04; 405 cp.out_coding_format.id = 0x04; 406 cp.in_coded_data_size = __cpu_to_le16(16); 407 cp.out_coded_data_size = __cpu_to_le16(16); 408 cp.in_pcm_data_format = 2; 409 cp.out_pcm_data_format = 2; 410 cp.in_pcm_sample_payload_msb_pos = 0; 411 cp.out_pcm_sample_payload_msb_pos = 0; 412 cp.in_data_path = conn->codec.data_path; 413 cp.out_data_path = conn->codec.data_path; 414 cp.in_transport_unit_size = 1; 415 cp.out_transport_unit_size = 1; 416 break; 417 418 case BT_CODEC_TRANSPARENT: 419 if (!find_next_esco_param(conn, esco_param_msbc, 420 ARRAY_SIZE(esco_param_msbc))) 421 return false; 422 param = &esco_param_msbc[conn->attempt - 1]; 423 cp.tx_coding_format.id = 0x03; 424 cp.rx_coding_format.id = 0x03; 425 cp.tx_codec_frame_size = __cpu_to_le16(60); 426 cp.rx_codec_frame_size = __cpu_to_le16(60); 427 cp.in_bandwidth = __cpu_to_le32(0x1f40); 428 cp.out_bandwidth = __cpu_to_le32(0x1f40); 429 cp.in_coding_format.id = 0x03; 430 cp.out_coding_format.id = 0x03; 431 cp.in_coded_data_size = __cpu_to_le16(16); 432 cp.out_coded_data_size = __cpu_to_le16(16); 433 cp.in_pcm_data_format = 2; 434 cp.out_pcm_data_format = 2; 435 cp.in_pcm_sample_payload_msb_pos = 0; 436 cp.out_pcm_sample_payload_msb_pos = 0; 437 cp.in_data_path = conn->codec.data_path; 438 cp.out_data_path = conn->codec.data_path; 439 cp.in_transport_unit_size = 1; 440 cp.out_transport_unit_size = 1; 441 break; 442 443 case BT_CODEC_CVSD: 444 if (lmp_esco_capable(conn->link)) { 445 if (!find_next_esco_param(conn, esco_param_cvsd, 446 ARRAY_SIZE(esco_param_cvsd))) 447 return -EINVAL; 448 param = &esco_param_cvsd[conn->attempt - 1]; 449 } else { 450 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd)) 451 return -EINVAL; 452 param = &sco_param_cvsd[conn->attempt - 1]; 453 } 454 cp.tx_coding_format.id = 2; 455 cp.rx_coding_format.id = 2; 456 cp.tx_codec_frame_size = __cpu_to_le16(60); 457 cp.rx_codec_frame_size = __cpu_to_le16(60); 458 cp.in_bandwidth = __cpu_to_le32(16000); 459 cp.out_bandwidth = __cpu_to_le32(16000); 460 cp.in_coding_format.id = 4; 461 cp.out_coding_format.id = 4; 462 cp.in_coded_data_size = __cpu_to_le16(16); 463 cp.out_coded_data_size = __cpu_to_le16(16); 464 cp.in_pcm_data_format = 2; 465 cp.out_pcm_data_format = 2; 466 cp.in_pcm_sample_payload_msb_pos = 0; 467 cp.out_pcm_sample_payload_msb_pos = 0; 468 cp.in_data_path = conn->codec.data_path; 469 cp.out_data_path = conn->codec.data_path; 470 cp.in_transport_unit_size = 16; 471 cp.out_transport_unit_size = 16; 472 break; 473 default: 474 return -EINVAL; 475 } 476 477 cp.retrans_effort = param->retrans_effort; 478 cp.pkt_type = __cpu_to_le16(param->pkt_type); 479 cp.max_latency = __cpu_to_le16(param->max_latency); 480 481 if (hci_send_cmd(hdev, HCI_OP_ENHANCED_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0) 482 return -EIO; 483 484 return 0; 485 } 486 487 static bool hci_setup_sync_conn(struct hci_conn *conn, __u16 handle) 488 { 489 struct hci_dev *hdev = conn->hdev; 490 struct hci_cp_setup_sync_conn cp; 491 const struct sco_param *param; 492 493 bt_dev_dbg(hdev, "hcon %p", conn); 494 495 conn->state = BT_CONNECT; 496 conn->out = true; 497 498 conn->attempt++; 499 500 cp.handle = cpu_to_le16(handle); 501 502 cp.tx_bandwidth = cpu_to_le32(0x00001f40); 503 cp.rx_bandwidth = cpu_to_le32(0x00001f40); 504 cp.voice_setting = cpu_to_le16(conn->setting); 505 506 switch (conn->setting & SCO_AIRMODE_MASK) { 507 case SCO_AIRMODE_TRANSP: 508 if (!find_next_esco_param(conn, esco_param_msbc, 509 ARRAY_SIZE(esco_param_msbc))) 510 return false; 511 param = &esco_param_msbc[conn->attempt - 1]; 512 break; 513 case SCO_AIRMODE_CVSD: 514 if (lmp_esco_capable(conn->link)) { 515 if (!find_next_esco_param(conn, esco_param_cvsd, 516 ARRAY_SIZE(esco_param_cvsd))) 517 return false; 518 param = &esco_param_cvsd[conn->attempt - 1]; 519 } else { 520 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd)) 521 return false; 522 param = &sco_param_cvsd[conn->attempt - 1]; 523 } 524 break; 525 default: 526 return false; 527 } 528 529 cp.retrans_effort = param->retrans_effort; 530 cp.pkt_type = __cpu_to_le16(param->pkt_type); 531 cp.max_latency = __cpu_to_le16(param->max_latency); 532 533 if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0) 534 return false; 535 536 return true; 537 } 538 539 bool hci_setup_sync(struct hci_conn *conn, __u16 handle) 540 { 541 int result; 542 struct conn_handle_t *conn_handle; 543 544 if (enhanced_sync_conn_capable(conn->hdev)) { 545 conn_handle = kzalloc(sizeof(*conn_handle), GFP_KERNEL); 546 547 if (!conn_handle) 548 return false; 549 550 conn_handle->conn = conn; 551 conn_handle->handle = handle; 552 result = hci_cmd_sync_queue(conn->hdev, hci_enhanced_setup_sync, 553 conn_handle, NULL); 554 if (result < 0) 555 kfree(conn_handle); 556 557 return result == 0; 558 } 559 560 return hci_setup_sync_conn(conn, handle); 561 } 562 563 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency, 564 u16 to_multiplier) 565 { 566 struct hci_dev *hdev = conn->hdev; 567 struct hci_conn_params *params; 568 struct hci_cp_le_conn_update cp; 569 570 hci_dev_lock(hdev); 571 572 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 573 if (params) { 574 params->conn_min_interval = min; 575 params->conn_max_interval = max; 576 params->conn_latency = latency; 577 params->supervision_timeout = to_multiplier; 578 } 579 580 hci_dev_unlock(hdev); 581 582 memset(&cp, 0, sizeof(cp)); 583 cp.handle = cpu_to_le16(conn->handle); 584 cp.conn_interval_min = cpu_to_le16(min); 585 cp.conn_interval_max = cpu_to_le16(max); 586 cp.conn_latency = cpu_to_le16(latency); 587 cp.supervision_timeout = cpu_to_le16(to_multiplier); 588 cp.min_ce_len = cpu_to_le16(0x0000); 589 cp.max_ce_len = cpu_to_le16(0x0000); 590 591 hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp); 592 593 if (params) 594 return 0x01; 595 596 return 0x00; 597 } 598 599 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand, 600 __u8 ltk[16], __u8 key_size) 601 { 602 struct hci_dev *hdev = conn->hdev; 603 struct hci_cp_le_start_enc cp; 604 605 BT_DBG("hcon %p", conn); 606 607 memset(&cp, 0, sizeof(cp)); 608 609 cp.handle = cpu_to_le16(conn->handle); 610 cp.rand = rand; 611 cp.ediv = ediv; 612 memcpy(cp.ltk, ltk, key_size); 613 614 hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp); 615 } 616 617 /* Device _must_ be locked */ 618 void hci_sco_setup(struct hci_conn *conn, __u8 status) 619 { 620 struct hci_conn *sco = conn->link; 621 622 if (!sco) 623 return; 624 625 BT_DBG("hcon %p", conn); 626 627 if (!status) { 628 if (lmp_esco_capable(conn->hdev)) 629 hci_setup_sync(sco, conn->handle); 630 else 631 hci_add_sco(sco, conn->handle); 632 } else { 633 hci_connect_cfm(sco, status); 634 hci_conn_del(sco); 635 } 636 } 637 638 static void hci_conn_timeout(struct work_struct *work) 639 { 640 struct hci_conn *conn = container_of(work, struct hci_conn, 641 disc_work.work); 642 int refcnt = atomic_read(&conn->refcnt); 643 644 BT_DBG("hcon %p state %s", conn, state_to_string(conn->state)); 645 646 WARN_ON(refcnt < 0); 647 648 /* FIXME: It was observed that in pairing failed scenario, refcnt 649 * drops below 0. Probably this is because l2cap_conn_del calls 650 * l2cap_chan_del for each channel, and inside l2cap_chan_del conn is 651 * dropped. After that loop hci_chan_del is called which also drops 652 * conn. For now make sure that ACL is alive if refcnt is higher then 0, 653 * otherwise drop it. 654 */ 655 if (refcnt > 0) 656 return; 657 658 /* LE connections in scanning state need special handling */ 659 if (conn->state == BT_CONNECT && conn->type == LE_LINK && 660 test_bit(HCI_CONN_SCANNING, &conn->flags)) { 661 hci_connect_le_scan_remove(conn); 662 return; 663 } 664 665 hci_abort_conn(conn, hci_proto_disconn_ind(conn)); 666 } 667 668 /* Enter sniff mode */ 669 static void hci_conn_idle(struct work_struct *work) 670 { 671 struct hci_conn *conn = container_of(work, struct hci_conn, 672 idle_work.work); 673 struct hci_dev *hdev = conn->hdev; 674 675 BT_DBG("hcon %p mode %d", conn, conn->mode); 676 677 if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn)) 678 return; 679 680 if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF)) 681 return; 682 683 if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) { 684 struct hci_cp_sniff_subrate cp; 685 cp.handle = cpu_to_le16(conn->handle); 686 cp.max_latency = cpu_to_le16(0); 687 cp.min_remote_timeout = cpu_to_le16(0); 688 cp.min_local_timeout = cpu_to_le16(0); 689 hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp); 690 } 691 692 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 693 struct hci_cp_sniff_mode cp; 694 cp.handle = cpu_to_le16(conn->handle); 695 cp.max_interval = cpu_to_le16(hdev->sniff_max_interval); 696 cp.min_interval = cpu_to_le16(hdev->sniff_min_interval); 697 cp.attempt = cpu_to_le16(4); 698 cp.timeout = cpu_to_le16(1); 699 hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp); 700 } 701 } 702 703 static void hci_conn_auto_accept(struct work_struct *work) 704 { 705 struct hci_conn *conn = container_of(work, struct hci_conn, 706 auto_accept_work.work); 707 708 hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst), 709 &conn->dst); 710 } 711 712 static void le_disable_advertising(struct hci_dev *hdev) 713 { 714 if (ext_adv_capable(hdev)) { 715 struct hci_cp_le_set_ext_adv_enable cp; 716 717 cp.enable = 0x00; 718 cp.num_of_sets = 0x00; 719 720 hci_send_cmd(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp), 721 &cp); 722 } else { 723 u8 enable = 0x00; 724 hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), 725 &enable); 726 } 727 } 728 729 static void le_conn_timeout(struct work_struct *work) 730 { 731 struct hci_conn *conn = container_of(work, struct hci_conn, 732 le_conn_timeout.work); 733 struct hci_dev *hdev = conn->hdev; 734 735 BT_DBG(""); 736 737 /* We could end up here due to having done directed advertising, 738 * so clean up the state if necessary. This should however only 739 * happen with broken hardware or if low duty cycle was used 740 * (which doesn't have a timeout of its own). 741 */ 742 if (conn->role == HCI_ROLE_SLAVE) { 743 /* Disable LE Advertising */ 744 le_disable_advertising(hdev); 745 hci_dev_lock(hdev); 746 hci_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT); 747 hci_dev_unlock(hdev); 748 return; 749 } 750 751 hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM); 752 } 753 754 struct iso_list_data { 755 union { 756 u8 cig; 757 u8 big; 758 }; 759 union { 760 u8 cis; 761 u8 bis; 762 u16 sync_handle; 763 }; 764 int count; 765 struct { 766 struct hci_cp_le_set_cig_params cp; 767 struct hci_cis_params cis[0x11]; 768 } pdu; 769 }; 770 771 static void bis_list(struct hci_conn *conn, void *data) 772 { 773 struct iso_list_data *d = data; 774 775 /* Skip if not broadcast/ANY address */ 776 if (bacmp(&conn->dst, BDADDR_ANY)) 777 return; 778 779 if (d->big != conn->iso_qos.big || d->bis == BT_ISO_QOS_BIS_UNSET || 780 d->bis != conn->iso_qos.bis) 781 return; 782 783 d->count++; 784 } 785 786 static void find_bis(struct hci_conn *conn, void *data) 787 { 788 struct iso_list_data *d = data; 789 790 /* Ignore unicast */ 791 if (bacmp(&conn->dst, BDADDR_ANY)) 792 return; 793 794 d->count++; 795 } 796 797 static int terminate_big_sync(struct hci_dev *hdev, void *data) 798 { 799 struct iso_list_data *d = data; 800 801 bt_dev_dbg(hdev, "big 0x%2.2x bis 0x%2.2x", d->big, d->bis); 802 803 hci_remove_ext_adv_instance_sync(hdev, d->bis, NULL); 804 805 /* Check if ISO connection is a BIS and terminate BIG if there are 806 * no other connections using it. 807 */ 808 hci_conn_hash_list_state(hdev, find_bis, ISO_LINK, BT_CONNECTED, d); 809 if (d->count) 810 return 0; 811 812 return hci_le_terminate_big_sync(hdev, d->big, 813 HCI_ERROR_LOCAL_HOST_TERM); 814 } 815 816 static void terminate_big_destroy(struct hci_dev *hdev, void *data, int err) 817 { 818 kfree(data); 819 } 820 821 static int hci_le_terminate_big(struct hci_dev *hdev, u8 big, u8 bis) 822 { 823 struct iso_list_data *d; 824 int ret; 825 826 bt_dev_dbg(hdev, "big 0x%2.2x bis 0x%2.2x", big, bis); 827 828 d = kzalloc(sizeof(*d), GFP_KERNEL); 829 if (!d) 830 return -ENOMEM; 831 832 d->big = big; 833 d->bis = bis; 834 835 ret = hci_cmd_sync_queue(hdev, terminate_big_sync, d, 836 terminate_big_destroy); 837 if (ret) 838 kfree(d); 839 840 return ret; 841 } 842 843 static int big_terminate_sync(struct hci_dev *hdev, void *data) 844 { 845 struct iso_list_data *d = data; 846 847 bt_dev_dbg(hdev, "big 0x%2.2x sync_handle 0x%4.4x", d->big, 848 d->sync_handle); 849 850 /* Check if ISO connection is a BIS and terminate BIG if there are 851 * no other connections using it. 852 */ 853 hci_conn_hash_list_state(hdev, find_bis, ISO_LINK, BT_CONNECTED, d); 854 if (d->count) 855 return 0; 856 857 hci_le_big_terminate_sync(hdev, d->big); 858 859 return hci_le_pa_terminate_sync(hdev, d->sync_handle); 860 } 861 862 static int hci_le_big_terminate(struct hci_dev *hdev, u8 big, u16 sync_handle) 863 { 864 struct iso_list_data *d; 865 int ret; 866 867 bt_dev_dbg(hdev, "big 0x%2.2x sync_handle 0x%4.4x", big, sync_handle); 868 869 d = kzalloc(sizeof(*d), GFP_KERNEL); 870 if (!d) 871 return -ENOMEM; 872 873 d->big = big; 874 d->sync_handle = sync_handle; 875 876 ret = hci_cmd_sync_queue(hdev, big_terminate_sync, d, 877 terminate_big_destroy); 878 if (ret) 879 kfree(d); 880 881 return ret; 882 } 883 884 /* Cleanup BIS connection 885 * 886 * Detects if there any BIS left connected in a BIG 887 * broadcaster: Remove advertising instance and terminate BIG. 888 * broadcaster receiver: Teminate BIG sync and terminate PA sync. 889 */ 890 static void bis_cleanup(struct hci_conn *conn) 891 { 892 struct hci_dev *hdev = conn->hdev; 893 894 bt_dev_dbg(hdev, "conn %p", conn); 895 896 if (conn->role == HCI_ROLE_MASTER) { 897 if (!test_and_clear_bit(HCI_CONN_PER_ADV, &conn->flags)) 898 return; 899 900 hci_le_terminate_big(hdev, conn->iso_qos.big, 901 conn->iso_qos.bis); 902 } else { 903 hci_le_big_terminate(hdev, conn->iso_qos.big, 904 conn->sync_handle); 905 } 906 } 907 908 static int remove_cig_sync(struct hci_dev *hdev, void *data) 909 { 910 u8 handle = PTR_ERR(data); 911 912 return hci_le_remove_cig_sync(hdev, handle); 913 } 914 915 static int hci_le_remove_cig(struct hci_dev *hdev, u8 handle) 916 { 917 bt_dev_dbg(hdev, "handle 0x%2.2x", handle); 918 919 return hci_cmd_sync_queue(hdev, remove_cig_sync, ERR_PTR(handle), NULL); 920 } 921 922 static void find_cis(struct hci_conn *conn, void *data) 923 { 924 struct iso_list_data *d = data; 925 926 /* Ignore broadcast */ 927 if (!bacmp(&conn->dst, BDADDR_ANY)) 928 return; 929 930 d->count++; 931 } 932 933 /* Cleanup CIS connection: 934 * 935 * Detects if there any CIS left connected in a CIG and remove it. 936 */ 937 static void cis_cleanup(struct hci_conn *conn) 938 { 939 struct hci_dev *hdev = conn->hdev; 940 struct iso_list_data d; 941 942 memset(&d, 0, sizeof(d)); 943 d.cig = conn->iso_qos.cig; 944 945 /* Check if ISO connection is a CIS and remove CIG if there are 946 * no other connections using it. 947 */ 948 hci_conn_hash_list_state(hdev, find_cis, ISO_LINK, BT_CONNECTED, &d); 949 if (d.count) 950 return; 951 952 hci_le_remove_cig(hdev, conn->iso_qos.cig); 953 } 954 955 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst, 956 u8 role) 957 { 958 struct hci_conn *conn; 959 960 BT_DBG("%s dst %pMR", hdev->name, dst); 961 962 conn = kzalloc(sizeof(*conn), GFP_KERNEL); 963 if (!conn) 964 return NULL; 965 966 bacpy(&conn->dst, dst); 967 bacpy(&conn->src, &hdev->bdaddr); 968 conn->handle = HCI_CONN_HANDLE_UNSET; 969 conn->hdev = hdev; 970 conn->type = type; 971 conn->role = role; 972 conn->mode = HCI_CM_ACTIVE; 973 conn->state = BT_OPEN; 974 conn->auth_type = HCI_AT_GENERAL_BONDING; 975 conn->io_capability = hdev->io_capability; 976 conn->remote_auth = 0xff; 977 conn->key_type = 0xff; 978 conn->rssi = HCI_RSSI_INVALID; 979 conn->tx_power = HCI_TX_POWER_INVALID; 980 conn->max_tx_power = HCI_TX_POWER_INVALID; 981 982 set_bit(HCI_CONN_POWER_SAVE, &conn->flags); 983 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 984 985 /* Set Default Authenticated payload timeout to 30s */ 986 conn->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT; 987 988 if (conn->role == HCI_ROLE_MASTER) 989 conn->out = true; 990 991 switch (type) { 992 case ACL_LINK: 993 conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK; 994 break; 995 case LE_LINK: 996 /* conn->src should reflect the local identity address */ 997 hci_copy_identity_address(hdev, &conn->src, &conn->src_type); 998 break; 999 case ISO_LINK: 1000 /* conn->src should reflect the local identity address */ 1001 hci_copy_identity_address(hdev, &conn->src, &conn->src_type); 1002 1003 /* set proper cleanup function */ 1004 if (!bacmp(dst, BDADDR_ANY)) 1005 conn->cleanup = bis_cleanup; 1006 else if (conn->role == HCI_ROLE_MASTER) 1007 conn->cleanup = cis_cleanup; 1008 1009 break; 1010 case SCO_LINK: 1011 if (lmp_esco_capable(hdev)) 1012 conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) | 1013 (hdev->esco_type & EDR_ESCO_MASK); 1014 else 1015 conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK; 1016 break; 1017 case ESCO_LINK: 1018 conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK; 1019 break; 1020 } 1021 1022 skb_queue_head_init(&conn->data_q); 1023 1024 INIT_LIST_HEAD(&conn->chan_list); 1025 1026 INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout); 1027 INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept); 1028 INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle); 1029 INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout); 1030 INIT_WORK(&conn->le_scan_cleanup, le_scan_cleanup); 1031 1032 atomic_set(&conn->refcnt, 0); 1033 1034 hci_dev_hold(hdev); 1035 1036 hci_conn_hash_add(hdev, conn); 1037 1038 /* The SCO and eSCO connections will only be notified when their 1039 * setup has been completed. This is different to ACL links which 1040 * can be notified right away. 1041 */ 1042 if (conn->type != SCO_LINK && conn->type != ESCO_LINK) { 1043 if (hdev->notify) 1044 hdev->notify(hdev, HCI_NOTIFY_CONN_ADD); 1045 } 1046 1047 hci_conn_init_sysfs(conn); 1048 1049 return conn; 1050 } 1051 1052 int hci_conn_del(struct hci_conn *conn) 1053 { 1054 struct hci_dev *hdev = conn->hdev; 1055 1056 BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle); 1057 1058 cancel_delayed_work_sync(&conn->disc_work); 1059 cancel_delayed_work_sync(&conn->auto_accept_work); 1060 cancel_delayed_work_sync(&conn->idle_work); 1061 1062 if (conn->type == ACL_LINK) { 1063 struct hci_conn *sco = conn->link; 1064 if (sco) 1065 sco->link = NULL; 1066 1067 /* Unacked frames */ 1068 hdev->acl_cnt += conn->sent; 1069 } else if (conn->type == LE_LINK) { 1070 cancel_delayed_work(&conn->le_conn_timeout); 1071 1072 if (hdev->le_pkts) 1073 hdev->le_cnt += conn->sent; 1074 else 1075 hdev->acl_cnt += conn->sent; 1076 } else { 1077 struct hci_conn *acl = conn->link; 1078 1079 if (acl) { 1080 acl->link = NULL; 1081 hci_conn_drop(acl); 1082 } 1083 1084 /* Unacked ISO frames */ 1085 if (conn->type == ISO_LINK) { 1086 if (hdev->iso_pkts) 1087 hdev->iso_cnt += conn->sent; 1088 else if (hdev->le_pkts) 1089 hdev->le_cnt += conn->sent; 1090 else 1091 hdev->acl_cnt += conn->sent; 1092 } 1093 } 1094 1095 if (conn->amp_mgr) 1096 amp_mgr_put(conn->amp_mgr); 1097 1098 skb_queue_purge(&conn->data_q); 1099 1100 /* Remove the connection from the list and cleanup its remaining 1101 * state. This is a separate function since for some cases like 1102 * BT_CONNECT_SCAN we *only* want the cleanup part without the 1103 * rest of hci_conn_del. 1104 */ 1105 hci_conn_cleanup(conn); 1106 1107 return 0; 1108 } 1109 1110 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, uint8_t src_type) 1111 { 1112 int use_src = bacmp(src, BDADDR_ANY); 1113 struct hci_dev *hdev = NULL, *d; 1114 1115 BT_DBG("%pMR -> %pMR", src, dst); 1116 1117 read_lock(&hci_dev_list_lock); 1118 1119 list_for_each_entry(d, &hci_dev_list, list) { 1120 if (!test_bit(HCI_UP, &d->flags) || 1121 hci_dev_test_flag(d, HCI_USER_CHANNEL) || 1122 d->dev_type != HCI_PRIMARY) 1123 continue; 1124 1125 /* Simple routing: 1126 * No source address - find interface with bdaddr != dst 1127 * Source address - find interface with bdaddr == src 1128 */ 1129 1130 if (use_src) { 1131 bdaddr_t id_addr; 1132 u8 id_addr_type; 1133 1134 if (src_type == BDADDR_BREDR) { 1135 if (!lmp_bredr_capable(d)) 1136 continue; 1137 bacpy(&id_addr, &d->bdaddr); 1138 id_addr_type = BDADDR_BREDR; 1139 } else { 1140 if (!lmp_le_capable(d)) 1141 continue; 1142 1143 hci_copy_identity_address(d, &id_addr, 1144 &id_addr_type); 1145 1146 /* Convert from HCI to three-value type */ 1147 if (id_addr_type == ADDR_LE_DEV_PUBLIC) 1148 id_addr_type = BDADDR_LE_PUBLIC; 1149 else 1150 id_addr_type = BDADDR_LE_RANDOM; 1151 } 1152 1153 if (!bacmp(&id_addr, src) && id_addr_type == src_type) { 1154 hdev = d; break; 1155 } 1156 } else { 1157 if (bacmp(&d->bdaddr, dst)) { 1158 hdev = d; break; 1159 } 1160 } 1161 } 1162 1163 if (hdev) 1164 hdev = hci_dev_hold(hdev); 1165 1166 read_unlock(&hci_dev_list_lock); 1167 return hdev; 1168 } 1169 EXPORT_SYMBOL(hci_get_route); 1170 1171 /* This function requires the caller holds hdev->lock */ 1172 static void hci_le_conn_failed(struct hci_conn *conn, u8 status) 1173 { 1174 struct hci_dev *hdev = conn->hdev; 1175 struct hci_conn_params *params; 1176 1177 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst, 1178 conn->dst_type); 1179 if (params && params->conn) { 1180 hci_conn_drop(params->conn); 1181 hci_conn_put(params->conn); 1182 params->conn = NULL; 1183 } 1184 1185 /* If the status indicates successful cancellation of 1186 * the attempt (i.e. Unknown Connection Id) there's no point of 1187 * notifying failure since we'll go back to keep trying to 1188 * connect. The only exception is explicit connect requests 1189 * where a timeout + cancel does indicate an actual failure. 1190 */ 1191 if (status != HCI_ERROR_UNKNOWN_CONN_ID || 1192 (params && params->explicit_connect)) 1193 mgmt_connect_failed(hdev, &conn->dst, conn->type, 1194 conn->dst_type, status); 1195 1196 /* Since we may have temporarily stopped the background scanning in 1197 * favor of connection establishment, we should restart it. 1198 */ 1199 hci_update_passive_scan(hdev); 1200 1201 /* Enable advertising in case this was a failed connection 1202 * attempt as a peripheral. 1203 */ 1204 hci_enable_advertising(hdev); 1205 } 1206 1207 /* This function requires the caller holds hdev->lock */ 1208 void hci_conn_failed(struct hci_conn *conn, u8 status) 1209 { 1210 struct hci_dev *hdev = conn->hdev; 1211 1212 bt_dev_dbg(hdev, "status 0x%2.2x", status); 1213 1214 switch (conn->type) { 1215 case LE_LINK: 1216 hci_le_conn_failed(conn, status); 1217 break; 1218 case ACL_LINK: 1219 mgmt_connect_failed(hdev, &conn->dst, conn->type, 1220 conn->dst_type, status); 1221 break; 1222 } 1223 1224 conn->state = BT_CLOSED; 1225 hci_connect_cfm(conn, status); 1226 hci_conn_del(conn); 1227 } 1228 1229 static void create_le_conn_complete(struct hci_dev *hdev, void *data, int err) 1230 { 1231 struct hci_conn *conn = data; 1232 1233 hci_dev_lock(hdev); 1234 1235 if (!err) { 1236 hci_connect_le_scan_cleanup(conn); 1237 goto done; 1238 } 1239 1240 bt_dev_err(hdev, "request failed to create LE connection: err %d", err); 1241 1242 /* Check if connection is still pending */ 1243 if (conn != hci_lookup_le_connect(hdev)) 1244 goto done; 1245 1246 hci_conn_failed(conn, bt_status(err)); 1247 1248 done: 1249 hci_dev_unlock(hdev); 1250 } 1251 1252 static int hci_connect_le_sync(struct hci_dev *hdev, void *data) 1253 { 1254 struct hci_conn *conn = data; 1255 1256 bt_dev_dbg(hdev, "conn %p", conn); 1257 1258 return hci_le_create_conn_sync(hdev, conn); 1259 } 1260 1261 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst, 1262 u8 dst_type, bool dst_resolved, u8 sec_level, 1263 u16 conn_timeout, u8 role) 1264 { 1265 struct hci_conn *conn; 1266 struct smp_irk *irk; 1267 int err; 1268 1269 /* Let's make sure that le is enabled.*/ 1270 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 1271 if (lmp_le_capable(hdev)) 1272 return ERR_PTR(-ECONNREFUSED); 1273 1274 return ERR_PTR(-EOPNOTSUPP); 1275 } 1276 1277 /* Since the controller supports only one LE connection attempt at a 1278 * time, we return -EBUSY if there is any connection attempt running. 1279 */ 1280 if (hci_lookup_le_connect(hdev)) 1281 return ERR_PTR(-EBUSY); 1282 1283 /* If there's already a connection object but it's not in 1284 * scanning state it means it must already be established, in 1285 * which case we can't do anything else except report a failure 1286 * to connect. 1287 */ 1288 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); 1289 if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) { 1290 return ERR_PTR(-EBUSY); 1291 } 1292 1293 /* Check if the destination address has been resolved by the controller 1294 * since if it did then the identity address shall be used. 1295 */ 1296 if (!dst_resolved) { 1297 /* When given an identity address with existing identity 1298 * resolving key, the connection needs to be established 1299 * to a resolvable random address. 1300 * 1301 * Storing the resolvable random address is required here 1302 * to handle connection failures. The address will later 1303 * be resolved back into the original identity address 1304 * from the connect request. 1305 */ 1306 irk = hci_find_irk_by_addr(hdev, dst, dst_type); 1307 if (irk && bacmp(&irk->rpa, BDADDR_ANY)) { 1308 dst = &irk->rpa; 1309 dst_type = ADDR_LE_DEV_RANDOM; 1310 } 1311 } 1312 1313 if (conn) { 1314 bacpy(&conn->dst, dst); 1315 } else { 1316 conn = hci_conn_add(hdev, LE_LINK, dst, role); 1317 if (!conn) 1318 return ERR_PTR(-ENOMEM); 1319 hci_conn_hold(conn); 1320 conn->pending_sec_level = sec_level; 1321 } 1322 1323 conn->dst_type = dst_type; 1324 conn->sec_level = BT_SECURITY_LOW; 1325 conn->conn_timeout = conn_timeout; 1326 1327 conn->state = BT_CONNECT; 1328 clear_bit(HCI_CONN_SCANNING, &conn->flags); 1329 1330 err = hci_cmd_sync_queue(hdev, hci_connect_le_sync, conn, 1331 create_le_conn_complete); 1332 if (err) { 1333 hci_conn_del(conn); 1334 return ERR_PTR(err); 1335 } 1336 1337 return conn; 1338 } 1339 1340 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type) 1341 { 1342 struct hci_conn *conn; 1343 1344 conn = hci_conn_hash_lookup_le(hdev, addr, type); 1345 if (!conn) 1346 return false; 1347 1348 if (conn->state != BT_CONNECTED) 1349 return false; 1350 1351 return true; 1352 } 1353 1354 /* This function requires the caller holds hdev->lock */ 1355 static int hci_explicit_conn_params_set(struct hci_dev *hdev, 1356 bdaddr_t *addr, u8 addr_type) 1357 { 1358 struct hci_conn_params *params; 1359 1360 if (is_connected(hdev, addr, addr_type)) 1361 return -EISCONN; 1362 1363 params = hci_conn_params_lookup(hdev, addr, addr_type); 1364 if (!params) { 1365 params = hci_conn_params_add(hdev, addr, addr_type); 1366 if (!params) 1367 return -ENOMEM; 1368 1369 /* If we created new params, mark them to be deleted in 1370 * hci_connect_le_scan_cleanup. It's different case than 1371 * existing disabled params, those will stay after cleanup. 1372 */ 1373 params->auto_connect = HCI_AUTO_CONN_EXPLICIT; 1374 } 1375 1376 /* We're trying to connect, so make sure params are at pend_le_conns */ 1377 if (params->auto_connect == HCI_AUTO_CONN_DISABLED || 1378 params->auto_connect == HCI_AUTO_CONN_REPORT || 1379 params->auto_connect == HCI_AUTO_CONN_EXPLICIT) { 1380 list_del_init(¶ms->action); 1381 list_add(¶ms->action, &hdev->pend_le_conns); 1382 } 1383 1384 params->explicit_connect = true; 1385 1386 BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type, 1387 params->auto_connect); 1388 1389 return 0; 1390 } 1391 1392 static int qos_set_big(struct hci_dev *hdev, struct bt_iso_qos *qos) 1393 { 1394 struct iso_list_data data; 1395 1396 /* Allocate a BIG if not set */ 1397 if (qos->big == BT_ISO_QOS_BIG_UNSET) { 1398 for (data.big = 0x00; data.big < 0xef; data.big++) { 1399 data.count = 0; 1400 data.bis = 0xff; 1401 1402 hci_conn_hash_list_state(hdev, bis_list, ISO_LINK, 1403 BT_BOUND, &data); 1404 if (!data.count) 1405 break; 1406 } 1407 1408 if (data.big == 0xef) 1409 return -EADDRNOTAVAIL; 1410 1411 /* Update BIG */ 1412 qos->big = data.big; 1413 } 1414 1415 return 0; 1416 } 1417 1418 static int qos_set_bis(struct hci_dev *hdev, struct bt_iso_qos *qos) 1419 { 1420 struct iso_list_data data; 1421 1422 /* Allocate BIS if not set */ 1423 if (qos->bis == BT_ISO_QOS_BIS_UNSET) { 1424 /* Find an unused adv set to advertise BIS, skip instance 0x00 1425 * since it is reserved as general purpose set. 1426 */ 1427 for (data.bis = 0x01; data.bis < hdev->le_num_of_adv_sets; 1428 data.bis++) { 1429 data.count = 0; 1430 1431 hci_conn_hash_list_state(hdev, bis_list, ISO_LINK, 1432 BT_BOUND, &data); 1433 if (!data.count) 1434 break; 1435 } 1436 1437 if (data.bis == hdev->le_num_of_adv_sets) 1438 return -EADDRNOTAVAIL; 1439 1440 /* Update BIS */ 1441 qos->bis = data.bis; 1442 } 1443 1444 return 0; 1445 } 1446 1447 /* This function requires the caller holds hdev->lock */ 1448 static struct hci_conn *hci_add_bis(struct hci_dev *hdev, bdaddr_t *dst, 1449 struct bt_iso_qos *qos) 1450 { 1451 struct hci_conn *conn; 1452 struct iso_list_data data; 1453 int err; 1454 1455 /* Let's make sure that le is enabled.*/ 1456 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 1457 if (lmp_le_capable(hdev)) 1458 return ERR_PTR(-ECONNREFUSED); 1459 return ERR_PTR(-EOPNOTSUPP); 1460 } 1461 1462 err = qos_set_big(hdev, qos); 1463 if (err) 1464 return ERR_PTR(err); 1465 1466 err = qos_set_bis(hdev, qos); 1467 if (err) 1468 return ERR_PTR(err); 1469 1470 data.big = qos->big; 1471 data.bis = qos->bis; 1472 data.count = 0; 1473 1474 /* Check if there is already a matching BIG/BIS */ 1475 hci_conn_hash_list_state(hdev, bis_list, ISO_LINK, BT_BOUND, &data); 1476 if (data.count) 1477 return ERR_PTR(-EADDRINUSE); 1478 1479 conn = hci_conn_hash_lookup_bis(hdev, dst, qos->big, qos->bis); 1480 if (conn) 1481 return ERR_PTR(-EADDRINUSE); 1482 1483 conn = hci_conn_add(hdev, ISO_LINK, dst, HCI_ROLE_MASTER); 1484 if (!conn) 1485 return ERR_PTR(-ENOMEM); 1486 1487 set_bit(HCI_CONN_PER_ADV, &conn->flags); 1488 conn->state = BT_CONNECT; 1489 1490 hci_conn_hold(conn); 1491 return conn; 1492 } 1493 1494 /* This function requires the caller holds hdev->lock */ 1495 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst, 1496 u8 dst_type, u8 sec_level, 1497 u16 conn_timeout, 1498 enum conn_reasons conn_reason) 1499 { 1500 struct hci_conn *conn; 1501 1502 /* Let's make sure that le is enabled.*/ 1503 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 1504 if (lmp_le_capable(hdev)) 1505 return ERR_PTR(-ECONNREFUSED); 1506 1507 return ERR_PTR(-EOPNOTSUPP); 1508 } 1509 1510 /* Some devices send ATT messages as soon as the physical link is 1511 * established. To be able to handle these ATT messages, the user- 1512 * space first establishes the connection and then starts the pairing 1513 * process. 1514 * 1515 * So if a hci_conn object already exists for the following connection 1516 * attempt, we simply update pending_sec_level and auth_type fields 1517 * and return the object found. 1518 */ 1519 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); 1520 if (conn) { 1521 if (conn->pending_sec_level < sec_level) 1522 conn->pending_sec_level = sec_level; 1523 goto done; 1524 } 1525 1526 BT_DBG("requesting refresh of dst_addr"); 1527 1528 conn = hci_conn_add(hdev, LE_LINK, dst, HCI_ROLE_MASTER); 1529 if (!conn) 1530 return ERR_PTR(-ENOMEM); 1531 1532 if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0) { 1533 hci_conn_del(conn); 1534 return ERR_PTR(-EBUSY); 1535 } 1536 1537 conn->state = BT_CONNECT; 1538 set_bit(HCI_CONN_SCANNING, &conn->flags); 1539 conn->dst_type = dst_type; 1540 conn->sec_level = BT_SECURITY_LOW; 1541 conn->pending_sec_level = sec_level; 1542 conn->conn_timeout = conn_timeout; 1543 conn->conn_reason = conn_reason; 1544 1545 hci_update_passive_scan(hdev); 1546 1547 done: 1548 hci_conn_hold(conn); 1549 return conn; 1550 } 1551 1552 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst, 1553 u8 sec_level, u8 auth_type, 1554 enum conn_reasons conn_reason) 1555 { 1556 struct hci_conn *acl; 1557 1558 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 1559 if (lmp_bredr_capable(hdev)) 1560 return ERR_PTR(-ECONNREFUSED); 1561 1562 return ERR_PTR(-EOPNOTSUPP); 1563 } 1564 1565 acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst); 1566 if (!acl) { 1567 acl = hci_conn_add(hdev, ACL_LINK, dst, HCI_ROLE_MASTER); 1568 if (!acl) 1569 return ERR_PTR(-ENOMEM); 1570 } 1571 1572 hci_conn_hold(acl); 1573 1574 acl->conn_reason = conn_reason; 1575 if (acl->state == BT_OPEN || acl->state == BT_CLOSED) { 1576 acl->sec_level = BT_SECURITY_LOW; 1577 acl->pending_sec_level = sec_level; 1578 acl->auth_type = auth_type; 1579 hci_acl_create_connection(acl); 1580 } 1581 1582 return acl; 1583 } 1584 1585 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, 1586 __u16 setting, struct bt_codec *codec) 1587 { 1588 struct hci_conn *acl; 1589 struct hci_conn *sco; 1590 1591 acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING, 1592 CONN_REASON_SCO_CONNECT); 1593 if (IS_ERR(acl)) 1594 return acl; 1595 1596 sco = hci_conn_hash_lookup_ba(hdev, type, dst); 1597 if (!sco) { 1598 sco = hci_conn_add(hdev, type, dst, HCI_ROLE_MASTER); 1599 if (!sco) { 1600 hci_conn_drop(acl); 1601 return ERR_PTR(-ENOMEM); 1602 } 1603 } 1604 1605 acl->link = sco; 1606 sco->link = acl; 1607 1608 hci_conn_hold(sco); 1609 1610 sco->setting = setting; 1611 sco->codec = *codec; 1612 1613 if (acl->state == BT_CONNECTED && 1614 (sco->state == BT_OPEN || sco->state == BT_CLOSED)) { 1615 set_bit(HCI_CONN_POWER_SAVE, &acl->flags); 1616 hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON); 1617 1618 if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) { 1619 /* defer SCO setup until mode change completed */ 1620 set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags); 1621 return sco; 1622 } 1623 1624 hci_sco_setup(acl, 0x00); 1625 } 1626 1627 return sco; 1628 } 1629 1630 static void cis_add(struct iso_list_data *d, struct bt_iso_qos *qos) 1631 { 1632 struct hci_cis_params *cis = &d->pdu.cis[d->pdu.cp.num_cis]; 1633 1634 cis->cis_id = qos->cis; 1635 cis->c_sdu = cpu_to_le16(qos->out.sdu); 1636 cis->p_sdu = cpu_to_le16(qos->in.sdu); 1637 cis->c_phy = qos->out.phy ? qos->out.phy : qos->in.phy; 1638 cis->p_phy = qos->in.phy ? qos->in.phy : qos->out.phy; 1639 cis->c_rtn = qos->out.rtn; 1640 cis->p_rtn = qos->in.rtn; 1641 1642 d->pdu.cp.num_cis++; 1643 } 1644 1645 static void cis_list(struct hci_conn *conn, void *data) 1646 { 1647 struct iso_list_data *d = data; 1648 1649 /* Skip if broadcast/ANY address */ 1650 if (!bacmp(&conn->dst, BDADDR_ANY)) 1651 return; 1652 1653 if (d->cig != conn->iso_qos.cig || d->cis == BT_ISO_QOS_CIS_UNSET || 1654 d->cis != conn->iso_qos.cis) 1655 return; 1656 1657 d->count++; 1658 1659 if (d->pdu.cp.cig_id == BT_ISO_QOS_CIG_UNSET || 1660 d->count >= ARRAY_SIZE(d->pdu.cis)) 1661 return; 1662 1663 cis_add(d, &conn->iso_qos); 1664 } 1665 1666 static int hci_le_create_big(struct hci_conn *conn, struct bt_iso_qos *qos) 1667 { 1668 struct hci_dev *hdev = conn->hdev; 1669 struct hci_cp_le_create_big cp; 1670 1671 memset(&cp, 0, sizeof(cp)); 1672 1673 cp.handle = qos->big; 1674 cp.adv_handle = qos->bis; 1675 cp.num_bis = 0x01; 1676 hci_cpu_to_le24(qos->out.interval, cp.bis.sdu_interval); 1677 cp.bis.sdu = cpu_to_le16(qos->out.sdu); 1678 cp.bis.latency = cpu_to_le16(qos->out.latency); 1679 cp.bis.rtn = qos->out.rtn; 1680 cp.bis.phy = qos->out.phy; 1681 cp.bis.packing = qos->packing; 1682 cp.bis.framing = qos->framing; 1683 cp.bis.encryption = 0x00; 1684 memset(&cp.bis.bcode, 0, sizeof(cp.bis.bcode)); 1685 1686 return hci_send_cmd(hdev, HCI_OP_LE_CREATE_BIG, sizeof(cp), &cp); 1687 } 1688 1689 static bool hci_le_set_cig_params(struct hci_conn *conn, struct bt_iso_qos *qos) 1690 { 1691 struct hci_dev *hdev = conn->hdev; 1692 struct iso_list_data data; 1693 1694 memset(&data, 0, sizeof(data)); 1695 1696 /* Allocate a CIG if not set */ 1697 if (qos->cig == BT_ISO_QOS_CIG_UNSET) { 1698 for (data.cig = 0x00; data.cig < 0xff; data.cig++) { 1699 data.count = 0; 1700 data.cis = 0xff; 1701 1702 hci_conn_hash_list_state(hdev, cis_list, ISO_LINK, 1703 BT_BOUND, &data); 1704 if (data.count) 1705 continue; 1706 1707 hci_conn_hash_list_state(hdev, cis_list, ISO_LINK, 1708 BT_CONNECTED, &data); 1709 if (!data.count) 1710 break; 1711 } 1712 1713 if (data.cig == 0xff) 1714 return false; 1715 1716 /* Update CIG */ 1717 qos->cig = data.cig; 1718 } 1719 1720 data.pdu.cp.cig_id = qos->cig; 1721 hci_cpu_to_le24(qos->out.interval, data.pdu.cp.c_interval); 1722 hci_cpu_to_le24(qos->in.interval, data.pdu.cp.p_interval); 1723 data.pdu.cp.sca = qos->sca; 1724 data.pdu.cp.packing = qos->packing; 1725 data.pdu.cp.framing = qos->framing; 1726 data.pdu.cp.c_latency = cpu_to_le16(qos->out.latency); 1727 data.pdu.cp.p_latency = cpu_to_le16(qos->in.latency); 1728 1729 if (qos->cis != BT_ISO_QOS_CIS_UNSET) { 1730 data.count = 0; 1731 data.cig = qos->cig; 1732 data.cis = qos->cis; 1733 1734 hci_conn_hash_list_state(hdev, cis_list, ISO_LINK, BT_BOUND, 1735 &data); 1736 if (data.count) 1737 return false; 1738 1739 cis_add(&data, qos); 1740 } 1741 1742 /* Reprogram all CIS(s) with the same CIG */ 1743 for (data.cig = qos->cig, data.cis = 0x00; data.cis < 0x11; 1744 data.cis++) { 1745 data.count = 0; 1746 1747 hci_conn_hash_list_state(hdev, cis_list, ISO_LINK, BT_BOUND, 1748 &data); 1749 if (data.count) 1750 continue; 1751 1752 /* Allocate a CIS if not set */ 1753 if (qos->cis == BT_ISO_QOS_CIS_UNSET) { 1754 /* Update CIS */ 1755 qos->cis = data.cis; 1756 cis_add(&data, qos); 1757 } 1758 } 1759 1760 if (qos->cis == BT_ISO_QOS_CIS_UNSET || !data.pdu.cp.num_cis) 1761 return false; 1762 1763 if (hci_send_cmd(hdev, HCI_OP_LE_SET_CIG_PARAMS, 1764 sizeof(data.pdu.cp) + 1765 (data.pdu.cp.num_cis * sizeof(*data.pdu.cis)), 1766 &data.pdu) < 0) 1767 return false; 1768 1769 return true; 1770 } 1771 1772 struct hci_conn *hci_bind_cis(struct hci_dev *hdev, bdaddr_t *dst, 1773 __u8 dst_type, struct bt_iso_qos *qos) 1774 { 1775 struct hci_conn *cis; 1776 1777 cis = hci_conn_hash_lookup_cis(hdev, dst, dst_type); 1778 if (!cis) { 1779 cis = hci_conn_add(hdev, ISO_LINK, dst, HCI_ROLE_MASTER); 1780 if (!cis) 1781 return ERR_PTR(-ENOMEM); 1782 cis->cleanup = cis_cleanup; 1783 cis->dst_type = dst_type; 1784 } 1785 1786 if (cis->state == BT_CONNECTED) 1787 return cis; 1788 1789 /* Check if CIS has been set and the settings matches */ 1790 if (cis->state == BT_BOUND && 1791 !memcmp(&cis->iso_qos, qos, sizeof(*qos))) 1792 return cis; 1793 1794 /* Update LINK PHYs according to QoS preference */ 1795 cis->le_tx_phy = qos->out.phy; 1796 cis->le_rx_phy = qos->in.phy; 1797 1798 /* If output interval is not set use the input interval as it cannot be 1799 * 0x000000. 1800 */ 1801 if (!qos->out.interval) 1802 qos->out.interval = qos->in.interval; 1803 1804 /* If input interval is not set use the output interval as it cannot be 1805 * 0x000000. 1806 */ 1807 if (!qos->in.interval) 1808 qos->in.interval = qos->out.interval; 1809 1810 /* If output latency is not set use the input latency as it cannot be 1811 * 0x0000. 1812 */ 1813 if (!qos->out.latency) 1814 qos->out.latency = qos->in.latency; 1815 1816 /* If input latency is not set use the output latency as it cannot be 1817 * 0x0000. 1818 */ 1819 if (!qos->in.latency) 1820 qos->in.latency = qos->out.latency; 1821 1822 if (!hci_le_set_cig_params(cis, qos)) { 1823 hci_conn_drop(cis); 1824 return ERR_PTR(-EINVAL); 1825 } 1826 1827 cis->iso_qos = *qos; 1828 cis->state = BT_BOUND; 1829 1830 return cis; 1831 } 1832 1833 bool hci_iso_setup_path(struct hci_conn *conn) 1834 { 1835 struct hci_dev *hdev = conn->hdev; 1836 struct hci_cp_le_setup_iso_path cmd; 1837 1838 memset(&cmd, 0, sizeof(cmd)); 1839 1840 if (conn->iso_qos.out.sdu) { 1841 cmd.handle = cpu_to_le16(conn->handle); 1842 cmd.direction = 0x00; /* Input (Host to Controller) */ 1843 cmd.path = 0x00; /* HCI path if enabled */ 1844 cmd.codec = 0x03; /* Transparent Data */ 1845 1846 if (hci_send_cmd(hdev, HCI_OP_LE_SETUP_ISO_PATH, sizeof(cmd), 1847 &cmd) < 0) 1848 return false; 1849 } 1850 1851 if (conn->iso_qos.in.sdu) { 1852 cmd.handle = cpu_to_le16(conn->handle); 1853 cmd.direction = 0x01; /* Output (Controller to Host) */ 1854 cmd.path = 0x00; /* HCI path if enabled */ 1855 cmd.codec = 0x03; /* Transparent Data */ 1856 1857 if (hci_send_cmd(hdev, HCI_OP_LE_SETUP_ISO_PATH, sizeof(cmd), 1858 &cmd) < 0) 1859 return false; 1860 } 1861 1862 return true; 1863 } 1864 1865 static int hci_create_cis_sync(struct hci_dev *hdev, void *data) 1866 { 1867 struct { 1868 struct hci_cp_le_create_cis cp; 1869 struct hci_cis cis[0x1f]; 1870 } cmd; 1871 struct hci_conn *conn = data; 1872 u8 cig; 1873 1874 memset(&cmd, 0, sizeof(cmd)); 1875 cmd.cis[0].acl_handle = cpu_to_le16(conn->link->handle); 1876 cmd.cis[0].cis_handle = cpu_to_le16(conn->handle); 1877 cmd.cp.num_cis++; 1878 cig = conn->iso_qos.cig; 1879 1880 hci_dev_lock(hdev); 1881 1882 rcu_read_lock(); 1883 1884 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) { 1885 struct hci_cis *cis = &cmd.cis[cmd.cp.num_cis]; 1886 1887 if (conn == data || conn->type != ISO_LINK || 1888 conn->state == BT_CONNECTED || conn->iso_qos.cig != cig) 1889 continue; 1890 1891 /* Check if all CIS(s) belonging to a CIG are ready */ 1892 if (!conn->link || conn->link->state != BT_CONNECTED || 1893 conn->state != BT_CONNECT) { 1894 cmd.cp.num_cis = 0; 1895 break; 1896 } 1897 1898 /* Group all CIS with state BT_CONNECT since the spec don't 1899 * allow to send them individually: 1900 * 1901 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E 1902 * page 2566: 1903 * 1904 * If the Host issues this command before all the 1905 * HCI_LE_CIS_Established events from the previous use of the 1906 * command have been generated, the Controller shall return the 1907 * error code Command Disallowed (0x0C). 1908 */ 1909 cis->acl_handle = cpu_to_le16(conn->link->handle); 1910 cis->cis_handle = cpu_to_le16(conn->handle); 1911 cmd.cp.num_cis++; 1912 } 1913 1914 rcu_read_unlock(); 1915 1916 hci_dev_unlock(hdev); 1917 1918 if (!cmd.cp.num_cis) 1919 return 0; 1920 1921 return hci_send_cmd(hdev, HCI_OP_LE_CREATE_CIS, sizeof(cmd.cp) + 1922 sizeof(cmd.cis[0]) * cmd.cp.num_cis, &cmd); 1923 } 1924 1925 int hci_le_create_cis(struct hci_conn *conn) 1926 { 1927 struct hci_conn *cis; 1928 struct hci_dev *hdev = conn->hdev; 1929 int err; 1930 1931 switch (conn->type) { 1932 case LE_LINK: 1933 if (!conn->link || conn->state != BT_CONNECTED) 1934 return -EINVAL; 1935 cis = conn->link; 1936 break; 1937 case ISO_LINK: 1938 cis = conn; 1939 break; 1940 default: 1941 return -EINVAL; 1942 } 1943 1944 if (cis->state == BT_CONNECT) 1945 return 0; 1946 1947 /* Queue Create CIS */ 1948 err = hci_cmd_sync_queue(hdev, hci_create_cis_sync, cis, NULL); 1949 if (err) 1950 return err; 1951 1952 cis->state = BT_CONNECT; 1953 1954 return 0; 1955 } 1956 1957 static void hci_iso_qos_setup(struct hci_dev *hdev, struct hci_conn *conn, 1958 struct bt_iso_io_qos *qos, __u8 phy) 1959 { 1960 /* Only set MTU if PHY is enabled */ 1961 if (!qos->sdu && qos->phy) { 1962 if (hdev->iso_mtu > 0) 1963 qos->sdu = hdev->iso_mtu; 1964 else if (hdev->le_mtu > 0) 1965 qos->sdu = hdev->le_mtu; 1966 else 1967 qos->sdu = hdev->acl_mtu; 1968 } 1969 1970 /* Use the same PHY as ACL if set to any */ 1971 if (qos->phy == BT_ISO_PHY_ANY) 1972 qos->phy = phy; 1973 1974 /* Use LE ACL connection interval if not set */ 1975 if (!qos->interval) 1976 /* ACL interval unit in 1.25 ms to us */ 1977 qos->interval = conn->le_conn_interval * 1250; 1978 1979 /* Use LE ACL connection latency if not set */ 1980 if (!qos->latency) 1981 qos->latency = conn->le_conn_latency; 1982 } 1983 1984 static struct hci_conn *hci_bind_bis(struct hci_conn *conn, 1985 struct bt_iso_qos *qos) 1986 { 1987 /* Update LINK PHYs according to QoS preference */ 1988 conn->le_tx_phy = qos->out.phy; 1989 conn->le_tx_phy = qos->out.phy; 1990 conn->iso_qos = *qos; 1991 conn->state = BT_BOUND; 1992 1993 return conn; 1994 } 1995 1996 static int create_big_sync(struct hci_dev *hdev, void *data) 1997 { 1998 struct hci_conn *conn = data; 1999 struct bt_iso_qos *qos = &conn->iso_qos; 2000 u16 interval, sync_interval = 0; 2001 u32 flags = 0; 2002 int err; 2003 2004 if (qos->out.phy == 0x02) 2005 flags |= MGMT_ADV_FLAG_SEC_2M; 2006 2007 /* Align intervals */ 2008 interval = qos->out.interval / 1250; 2009 2010 if (qos->bis) 2011 sync_interval = qos->sync_interval * 1600; 2012 2013 err = hci_start_per_adv_sync(hdev, qos->bis, conn->le_per_adv_data_len, 2014 conn->le_per_adv_data, flags, interval, 2015 interval, sync_interval); 2016 if (err) 2017 return err; 2018 2019 return hci_le_create_big(conn, &conn->iso_qos); 2020 } 2021 2022 static void create_pa_complete(struct hci_dev *hdev, void *data, int err) 2023 { 2024 struct hci_cp_le_pa_create_sync *cp = data; 2025 2026 bt_dev_dbg(hdev, ""); 2027 2028 if (err) 2029 bt_dev_err(hdev, "Unable to create PA: %d", err); 2030 2031 kfree(cp); 2032 } 2033 2034 static int create_pa_sync(struct hci_dev *hdev, void *data) 2035 { 2036 struct hci_cp_le_pa_create_sync *cp = data; 2037 int err; 2038 2039 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_CREATE_SYNC, 2040 sizeof(*cp), cp, HCI_CMD_TIMEOUT); 2041 if (err) { 2042 hci_dev_clear_flag(hdev, HCI_PA_SYNC); 2043 return err; 2044 } 2045 2046 return hci_update_passive_scan_sync(hdev); 2047 } 2048 2049 int hci_pa_create_sync(struct hci_dev *hdev, bdaddr_t *dst, __u8 dst_type, 2050 __u8 sid) 2051 { 2052 struct hci_cp_le_pa_create_sync *cp; 2053 2054 if (hci_dev_test_and_set_flag(hdev, HCI_PA_SYNC)) 2055 return -EBUSY; 2056 2057 cp = kzalloc(sizeof(*cp), GFP_KERNEL); 2058 if (!cp) { 2059 hci_dev_clear_flag(hdev, HCI_PA_SYNC); 2060 return -ENOMEM; 2061 } 2062 2063 cp->sid = sid; 2064 cp->addr_type = dst_type; 2065 bacpy(&cp->addr, dst); 2066 2067 /* Queue start pa_create_sync and scan */ 2068 return hci_cmd_sync_queue(hdev, create_pa_sync, cp, create_pa_complete); 2069 } 2070 2071 int hci_le_big_create_sync(struct hci_dev *hdev, struct bt_iso_qos *qos, 2072 __u16 sync_handle, __u8 num_bis, __u8 bis[]) 2073 { 2074 struct _packed { 2075 struct hci_cp_le_big_create_sync cp; 2076 __u8 bis[0x11]; 2077 } pdu; 2078 int err; 2079 2080 if (num_bis > sizeof(pdu.bis)) 2081 return -EINVAL; 2082 2083 err = qos_set_big(hdev, qos); 2084 if (err) 2085 return err; 2086 2087 memset(&pdu, 0, sizeof(pdu)); 2088 pdu.cp.handle = qos->big; 2089 pdu.cp.sync_handle = cpu_to_le16(sync_handle); 2090 pdu.cp.num_bis = num_bis; 2091 memcpy(pdu.bis, bis, num_bis); 2092 2093 return hci_send_cmd(hdev, HCI_OP_LE_BIG_CREATE_SYNC, 2094 sizeof(pdu.cp) + num_bis, &pdu); 2095 } 2096 2097 static void create_big_complete(struct hci_dev *hdev, void *data, int err) 2098 { 2099 struct hci_conn *conn = data; 2100 2101 bt_dev_dbg(hdev, "conn %p", conn); 2102 2103 if (err) { 2104 bt_dev_err(hdev, "Unable to create BIG: %d", err); 2105 hci_connect_cfm(conn, err); 2106 hci_conn_del(conn); 2107 } 2108 } 2109 2110 struct hci_conn *hci_connect_bis(struct hci_dev *hdev, bdaddr_t *dst, 2111 __u8 dst_type, struct bt_iso_qos *qos, 2112 __u8 base_len, __u8 *base) 2113 { 2114 struct hci_conn *conn; 2115 int err; 2116 2117 /* We need hci_conn object using the BDADDR_ANY as dst */ 2118 conn = hci_add_bis(hdev, dst, qos); 2119 if (IS_ERR(conn)) 2120 return conn; 2121 2122 conn = hci_bind_bis(conn, qos); 2123 if (!conn) { 2124 hci_conn_drop(conn); 2125 return ERR_PTR(-ENOMEM); 2126 } 2127 2128 /* Add Basic Announcement into Peridic Adv Data if BASE is set */ 2129 if (base_len && base) { 2130 base_len = eir_append_service_data(conn->le_per_adv_data, 0, 2131 0x1851, base, base_len); 2132 conn->le_per_adv_data_len = base_len; 2133 } 2134 2135 /* Queue start periodic advertising and create BIG */ 2136 err = hci_cmd_sync_queue(hdev, create_big_sync, conn, 2137 create_big_complete); 2138 if (err < 0) { 2139 hci_conn_drop(conn); 2140 return ERR_PTR(err); 2141 } 2142 2143 hci_iso_qos_setup(hdev, conn, &qos->out, 2144 conn->le_tx_phy ? conn->le_tx_phy : 2145 hdev->le_tx_def_phys); 2146 2147 return conn; 2148 } 2149 2150 struct hci_conn *hci_connect_cis(struct hci_dev *hdev, bdaddr_t *dst, 2151 __u8 dst_type, struct bt_iso_qos *qos) 2152 { 2153 struct hci_conn *le; 2154 struct hci_conn *cis; 2155 2156 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) 2157 le = hci_connect_le(hdev, dst, dst_type, false, 2158 BT_SECURITY_LOW, 2159 HCI_LE_CONN_TIMEOUT, 2160 HCI_ROLE_SLAVE); 2161 else 2162 le = hci_connect_le_scan(hdev, dst, dst_type, 2163 BT_SECURITY_LOW, 2164 HCI_LE_CONN_TIMEOUT, 2165 CONN_REASON_ISO_CONNECT); 2166 if (IS_ERR(le)) 2167 return le; 2168 2169 hci_iso_qos_setup(hdev, le, &qos->out, 2170 le->le_tx_phy ? le->le_tx_phy : hdev->le_tx_def_phys); 2171 hci_iso_qos_setup(hdev, le, &qos->in, 2172 le->le_rx_phy ? le->le_rx_phy : hdev->le_rx_def_phys); 2173 2174 cis = hci_bind_cis(hdev, dst, dst_type, qos); 2175 if (IS_ERR(cis)) { 2176 hci_conn_drop(le); 2177 return cis; 2178 } 2179 2180 le->link = cis; 2181 cis->link = le; 2182 2183 hci_conn_hold(cis); 2184 2185 /* If LE is already connected and CIS handle is already set proceed to 2186 * Create CIS immediately. 2187 */ 2188 if (le->state == BT_CONNECTED && cis->handle != HCI_CONN_HANDLE_UNSET) 2189 hci_le_create_cis(le); 2190 2191 return cis; 2192 } 2193 2194 /* Check link security requirement */ 2195 int hci_conn_check_link_mode(struct hci_conn *conn) 2196 { 2197 BT_DBG("hcon %p", conn); 2198 2199 /* In Secure Connections Only mode, it is required that Secure 2200 * Connections is used and the link is encrypted with AES-CCM 2201 * using a P-256 authenticated combination key. 2202 */ 2203 if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) { 2204 if (!hci_conn_sc_enabled(conn) || 2205 !test_bit(HCI_CONN_AES_CCM, &conn->flags) || 2206 conn->key_type != HCI_LK_AUTH_COMBINATION_P256) 2207 return 0; 2208 } 2209 2210 /* AES encryption is required for Level 4: 2211 * 2212 * BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 3, Part C 2213 * page 1319: 2214 * 2215 * 128-bit equivalent strength for link and encryption keys 2216 * required using FIPS approved algorithms (E0 not allowed, 2217 * SAFER+ not allowed, and P-192 not allowed; encryption key 2218 * not shortened) 2219 */ 2220 if (conn->sec_level == BT_SECURITY_FIPS && 2221 !test_bit(HCI_CONN_AES_CCM, &conn->flags)) { 2222 bt_dev_err(conn->hdev, 2223 "Invalid security: Missing AES-CCM usage"); 2224 return 0; 2225 } 2226 2227 if (hci_conn_ssp_enabled(conn) && 2228 !test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 2229 return 0; 2230 2231 return 1; 2232 } 2233 2234 /* Authenticate remote device */ 2235 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type) 2236 { 2237 BT_DBG("hcon %p", conn); 2238 2239 if (conn->pending_sec_level > sec_level) 2240 sec_level = conn->pending_sec_level; 2241 2242 if (sec_level > conn->sec_level) 2243 conn->pending_sec_level = sec_level; 2244 else if (test_bit(HCI_CONN_AUTH, &conn->flags)) 2245 return 1; 2246 2247 /* Make sure we preserve an existing MITM requirement*/ 2248 auth_type |= (conn->auth_type & 0x01); 2249 2250 conn->auth_type = auth_type; 2251 2252 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) { 2253 struct hci_cp_auth_requested cp; 2254 2255 cp.handle = cpu_to_le16(conn->handle); 2256 hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED, 2257 sizeof(cp), &cp); 2258 2259 /* If we're already encrypted set the REAUTH_PEND flag, 2260 * otherwise set the ENCRYPT_PEND. 2261 */ 2262 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 2263 set_bit(HCI_CONN_REAUTH_PEND, &conn->flags); 2264 else 2265 set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); 2266 } 2267 2268 return 0; 2269 } 2270 2271 /* Encrypt the link */ 2272 static void hci_conn_encrypt(struct hci_conn *conn) 2273 { 2274 BT_DBG("hcon %p", conn); 2275 2276 if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) { 2277 struct hci_cp_set_conn_encrypt cp; 2278 cp.handle = cpu_to_le16(conn->handle); 2279 cp.encrypt = 0x01; 2280 hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp), 2281 &cp); 2282 } 2283 } 2284 2285 /* Enable security */ 2286 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type, 2287 bool initiator) 2288 { 2289 BT_DBG("hcon %p", conn); 2290 2291 if (conn->type == LE_LINK) 2292 return smp_conn_security(conn, sec_level); 2293 2294 /* For sdp we don't need the link key. */ 2295 if (sec_level == BT_SECURITY_SDP) 2296 return 1; 2297 2298 /* For non 2.1 devices and low security level we don't need the link 2299 key. */ 2300 if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn)) 2301 return 1; 2302 2303 /* For other security levels we need the link key. */ 2304 if (!test_bit(HCI_CONN_AUTH, &conn->flags)) 2305 goto auth; 2306 2307 /* An authenticated FIPS approved combination key has sufficient 2308 * security for security level 4. */ 2309 if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256 && 2310 sec_level == BT_SECURITY_FIPS) 2311 goto encrypt; 2312 2313 /* An authenticated combination key has sufficient security for 2314 security level 3. */ 2315 if ((conn->key_type == HCI_LK_AUTH_COMBINATION_P192 || 2316 conn->key_type == HCI_LK_AUTH_COMBINATION_P256) && 2317 sec_level == BT_SECURITY_HIGH) 2318 goto encrypt; 2319 2320 /* An unauthenticated combination key has sufficient security for 2321 security level 1 and 2. */ 2322 if ((conn->key_type == HCI_LK_UNAUTH_COMBINATION_P192 || 2323 conn->key_type == HCI_LK_UNAUTH_COMBINATION_P256) && 2324 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW)) 2325 goto encrypt; 2326 2327 /* A combination key has always sufficient security for the security 2328 levels 1 or 2. High security level requires the combination key 2329 is generated using maximum PIN code length (16). 2330 For pre 2.1 units. */ 2331 if (conn->key_type == HCI_LK_COMBINATION && 2332 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW || 2333 conn->pin_length == 16)) 2334 goto encrypt; 2335 2336 auth: 2337 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) 2338 return 0; 2339 2340 if (initiator) 2341 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags); 2342 2343 if (!hci_conn_auth(conn, sec_level, auth_type)) 2344 return 0; 2345 2346 encrypt: 2347 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) { 2348 /* Ensure that the encryption key size has been read, 2349 * otherwise stall the upper layer responses. 2350 */ 2351 if (!conn->enc_key_size) 2352 return 0; 2353 2354 /* Nothing else needed, all requirements are met */ 2355 return 1; 2356 } 2357 2358 hci_conn_encrypt(conn); 2359 return 0; 2360 } 2361 EXPORT_SYMBOL(hci_conn_security); 2362 2363 /* Check secure link requirement */ 2364 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level) 2365 { 2366 BT_DBG("hcon %p", conn); 2367 2368 /* Accept if non-secure or higher security level is required */ 2369 if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS) 2370 return 1; 2371 2372 /* Accept if secure or higher security level is already present */ 2373 if (conn->sec_level == BT_SECURITY_HIGH || 2374 conn->sec_level == BT_SECURITY_FIPS) 2375 return 1; 2376 2377 /* Reject not secure link */ 2378 return 0; 2379 } 2380 EXPORT_SYMBOL(hci_conn_check_secure); 2381 2382 /* Switch role */ 2383 int hci_conn_switch_role(struct hci_conn *conn, __u8 role) 2384 { 2385 BT_DBG("hcon %p", conn); 2386 2387 if (role == conn->role) 2388 return 1; 2389 2390 if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) { 2391 struct hci_cp_switch_role cp; 2392 bacpy(&cp.bdaddr, &conn->dst); 2393 cp.role = role; 2394 hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp); 2395 } 2396 2397 return 0; 2398 } 2399 EXPORT_SYMBOL(hci_conn_switch_role); 2400 2401 /* Enter active mode */ 2402 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active) 2403 { 2404 struct hci_dev *hdev = conn->hdev; 2405 2406 BT_DBG("hcon %p mode %d", conn, conn->mode); 2407 2408 if (conn->mode != HCI_CM_SNIFF) 2409 goto timer; 2410 2411 if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active) 2412 goto timer; 2413 2414 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 2415 struct hci_cp_exit_sniff_mode cp; 2416 cp.handle = cpu_to_le16(conn->handle); 2417 hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp); 2418 } 2419 2420 timer: 2421 if (hdev->idle_timeout > 0) 2422 queue_delayed_work(hdev->workqueue, &conn->idle_work, 2423 msecs_to_jiffies(hdev->idle_timeout)); 2424 } 2425 2426 /* Drop all connection on the device */ 2427 void hci_conn_hash_flush(struct hci_dev *hdev) 2428 { 2429 struct hci_conn_hash *h = &hdev->conn_hash; 2430 struct hci_conn *c, *n; 2431 2432 BT_DBG("hdev %s", hdev->name); 2433 2434 list_for_each_entry_safe(c, n, &h->list, list) { 2435 c->state = BT_CLOSED; 2436 2437 hci_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM); 2438 hci_conn_del(c); 2439 } 2440 } 2441 2442 /* Check pending connect attempts */ 2443 void hci_conn_check_pending(struct hci_dev *hdev) 2444 { 2445 struct hci_conn *conn; 2446 2447 BT_DBG("hdev %s", hdev->name); 2448 2449 hci_dev_lock(hdev); 2450 2451 conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2); 2452 if (conn) 2453 hci_acl_create_connection(conn); 2454 2455 hci_dev_unlock(hdev); 2456 } 2457 2458 static u32 get_link_mode(struct hci_conn *conn) 2459 { 2460 u32 link_mode = 0; 2461 2462 if (conn->role == HCI_ROLE_MASTER) 2463 link_mode |= HCI_LM_MASTER; 2464 2465 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 2466 link_mode |= HCI_LM_ENCRYPT; 2467 2468 if (test_bit(HCI_CONN_AUTH, &conn->flags)) 2469 link_mode |= HCI_LM_AUTH; 2470 2471 if (test_bit(HCI_CONN_SECURE, &conn->flags)) 2472 link_mode |= HCI_LM_SECURE; 2473 2474 if (test_bit(HCI_CONN_FIPS, &conn->flags)) 2475 link_mode |= HCI_LM_FIPS; 2476 2477 return link_mode; 2478 } 2479 2480 int hci_get_conn_list(void __user *arg) 2481 { 2482 struct hci_conn *c; 2483 struct hci_conn_list_req req, *cl; 2484 struct hci_conn_info *ci; 2485 struct hci_dev *hdev; 2486 int n = 0, size, err; 2487 2488 if (copy_from_user(&req, arg, sizeof(req))) 2489 return -EFAULT; 2490 2491 if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci)) 2492 return -EINVAL; 2493 2494 size = sizeof(req) + req.conn_num * sizeof(*ci); 2495 2496 cl = kmalloc(size, GFP_KERNEL); 2497 if (!cl) 2498 return -ENOMEM; 2499 2500 hdev = hci_dev_get(req.dev_id); 2501 if (!hdev) { 2502 kfree(cl); 2503 return -ENODEV; 2504 } 2505 2506 ci = cl->conn_info; 2507 2508 hci_dev_lock(hdev); 2509 list_for_each_entry(c, &hdev->conn_hash.list, list) { 2510 bacpy(&(ci + n)->bdaddr, &c->dst); 2511 (ci + n)->handle = c->handle; 2512 (ci + n)->type = c->type; 2513 (ci + n)->out = c->out; 2514 (ci + n)->state = c->state; 2515 (ci + n)->link_mode = get_link_mode(c); 2516 if (++n >= req.conn_num) 2517 break; 2518 } 2519 hci_dev_unlock(hdev); 2520 2521 cl->dev_id = hdev->id; 2522 cl->conn_num = n; 2523 size = sizeof(req) + n * sizeof(*ci); 2524 2525 hci_dev_put(hdev); 2526 2527 err = copy_to_user(arg, cl, size); 2528 kfree(cl); 2529 2530 return err ? -EFAULT : 0; 2531 } 2532 2533 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg) 2534 { 2535 struct hci_conn_info_req req; 2536 struct hci_conn_info ci; 2537 struct hci_conn *conn; 2538 char __user *ptr = arg + sizeof(req); 2539 2540 if (copy_from_user(&req, arg, sizeof(req))) 2541 return -EFAULT; 2542 2543 hci_dev_lock(hdev); 2544 conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr); 2545 if (conn) { 2546 bacpy(&ci.bdaddr, &conn->dst); 2547 ci.handle = conn->handle; 2548 ci.type = conn->type; 2549 ci.out = conn->out; 2550 ci.state = conn->state; 2551 ci.link_mode = get_link_mode(conn); 2552 } 2553 hci_dev_unlock(hdev); 2554 2555 if (!conn) 2556 return -ENOENT; 2557 2558 return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0; 2559 } 2560 2561 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg) 2562 { 2563 struct hci_auth_info_req req; 2564 struct hci_conn *conn; 2565 2566 if (copy_from_user(&req, arg, sizeof(req))) 2567 return -EFAULT; 2568 2569 hci_dev_lock(hdev); 2570 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr); 2571 if (conn) 2572 req.type = conn->auth_type; 2573 hci_dev_unlock(hdev); 2574 2575 if (!conn) 2576 return -ENOENT; 2577 2578 return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0; 2579 } 2580 2581 struct hci_chan *hci_chan_create(struct hci_conn *conn) 2582 { 2583 struct hci_dev *hdev = conn->hdev; 2584 struct hci_chan *chan; 2585 2586 BT_DBG("%s hcon %p", hdev->name, conn); 2587 2588 if (test_bit(HCI_CONN_DROP, &conn->flags)) { 2589 BT_DBG("Refusing to create new hci_chan"); 2590 return NULL; 2591 } 2592 2593 chan = kzalloc(sizeof(*chan), GFP_KERNEL); 2594 if (!chan) 2595 return NULL; 2596 2597 chan->conn = hci_conn_get(conn); 2598 skb_queue_head_init(&chan->data_q); 2599 chan->state = BT_CONNECTED; 2600 2601 list_add_rcu(&chan->list, &conn->chan_list); 2602 2603 return chan; 2604 } 2605 2606 void hci_chan_del(struct hci_chan *chan) 2607 { 2608 struct hci_conn *conn = chan->conn; 2609 struct hci_dev *hdev = conn->hdev; 2610 2611 BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan); 2612 2613 list_del_rcu(&chan->list); 2614 2615 synchronize_rcu(); 2616 2617 /* Prevent new hci_chan's to be created for this hci_conn */ 2618 set_bit(HCI_CONN_DROP, &conn->flags); 2619 2620 hci_conn_put(conn); 2621 2622 skb_queue_purge(&chan->data_q); 2623 kfree(chan); 2624 } 2625 2626 void hci_chan_list_flush(struct hci_conn *conn) 2627 { 2628 struct hci_chan *chan, *n; 2629 2630 BT_DBG("hcon %p", conn); 2631 2632 list_for_each_entry_safe(chan, n, &conn->chan_list, list) 2633 hci_chan_del(chan); 2634 } 2635 2636 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon, 2637 __u16 handle) 2638 { 2639 struct hci_chan *hchan; 2640 2641 list_for_each_entry(hchan, &hcon->chan_list, list) { 2642 if (hchan->handle == handle) 2643 return hchan; 2644 } 2645 2646 return NULL; 2647 } 2648 2649 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle) 2650 { 2651 struct hci_conn_hash *h = &hdev->conn_hash; 2652 struct hci_conn *hcon; 2653 struct hci_chan *hchan = NULL; 2654 2655 rcu_read_lock(); 2656 2657 list_for_each_entry_rcu(hcon, &h->list, list) { 2658 hchan = __hci_chan_lookup_handle(hcon, handle); 2659 if (hchan) 2660 break; 2661 } 2662 2663 rcu_read_unlock(); 2664 2665 return hchan; 2666 } 2667 2668 u32 hci_conn_get_phy(struct hci_conn *conn) 2669 { 2670 u32 phys = 0; 2671 2672 /* BLUETOOTH CORE SPECIFICATION Version 5.2 | Vol 2, Part B page 471: 2673 * Table 6.2: Packets defined for synchronous, asynchronous, and 2674 * CPB logical transport types. 2675 */ 2676 switch (conn->type) { 2677 case SCO_LINK: 2678 /* SCO logical transport (1 Mb/s): 2679 * HV1, HV2, HV3 and DV. 2680 */ 2681 phys |= BT_PHY_BR_1M_1SLOT; 2682 2683 break; 2684 2685 case ACL_LINK: 2686 /* ACL logical transport (1 Mb/s) ptt=0: 2687 * DH1, DM3, DH3, DM5 and DH5. 2688 */ 2689 phys |= BT_PHY_BR_1M_1SLOT; 2690 2691 if (conn->pkt_type & (HCI_DM3 | HCI_DH3)) 2692 phys |= BT_PHY_BR_1M_3SLOT; 2693 2694 if (conn->pkt_type & (HCI_DM5 | HCI_DH5)) 2695 phys |= BT_PHY_BR_1M_5SLOT; 2696 2697 /* ACL logical transport (2 Mb/s) ptt=1: 2698 * 2-DH1, 2-DH3 and 2-DH5. 2699 */ 2700 if (!(conn->pkt_type & HCI_2DH1)) 2701 phys |= BT_PHY_EDR_2M_1SLOT; 2702 2703 if (!(conn->pkt_type & HCI_2DH3)) 2704 phys |= BT_PHY_EDR_2M_3SLOT; 2705 2706 if (!(conn->pkt_type & HCI_2DH5)) 2707 phys |= BT_PHY_EDR_2M_5SLOT; 2708 2709 /* ACL logical transport (3 Mb/s) ptt=1: 2710 * 3-DH1, 3-DH3 and 3-DH5. 2711 */ 2712 if (!(conn->pkt_type & HCI_3DH1)) 2713 phys |= BT_PHY_EDR_3M_1SLOT; 2714 2715 if (!(conn->pkt_type & HCI_3DH3)) 2716 phys |= BT_PHY_EDR_3M_3SLOT; 2717 2718 if (!(conn->pkt_type & HCI_3DH5)) 2719 phys |= BT_PHY_EDR_3M_5SLOT; 2720 2721 break; 2722 2723 case ESCO_LINK: 2724 /* eSCO logical transport (1 Mb/s): EV3, EV4 and EV5 */ 2725 phys |= BT_PHY_BR_1M_1SLOT; 2726 2727 if (!(conn->pkt_type & (ESCO_EV4 | ESCO_EV5))) 2728 phys |= BT_PHY_BR_1M_3SLOT; 2729 2730 /* eSCO logical transport (2 Mb/s): 2-EV3, 2-EV5 */ 2731 if (!(conn->pkt_type & ESCO_2EV3)) 2732 phys |= BT_PHY_EDR_2M_1SLOT; 2733 2734 if (!(conn->pkt_type & ESCO_2EV5)) 2735 phys |= BT_PHY_EDR_2M_3SLOT; 2736 2737 /* eSCO logical transport (3 Mb/s): 3-EV3, 3-EV5 */ 2738 if (!(conn->pkt_type & ESCO_3EV3)) 2739 phys |= BT_PHY_EDR_3M_1SLOT; 2740 2741 if (!(conn->pkt_type & ESCO_3EV5)) 2742 phys |= BT_PHY_EDR_3M_3SLOT; 2743 2744 break; 2745 2746 case LE_LINK: 2747 if (conn->le_tx_phy & HCI_LE_SET_PHY_1M) 2748 phys |= BT_PHY_LE_1M_TX; 2749 2750 if (conn->le_rx_phy & HCI_LE_SET_PHY_1M) 2751 phys |= BT_PHY_LE_1M_RX; 2752 2753 if (conn->le_tx_phy & HCI_LE_SET_PHY_2M) 2754 phys |= BT_PHY_LE_2M_TX; 2755 2756 if (conn->le_rx_phy & HCI_LE_SET_PHY_2M) 2757 phys |= BT_PHY_LE_2M_RX; 2758 2759 if (conn->le_tx_phy & HCI_LE_SET_PHY_CODED) 2760 phys |= BT_PHY_LE_CODED_TX; 2761 2762 if (conn->le_rx_phy & HCI_LE_SET_PHY_CODED) 2763 phys |= BT_PHY_LE_CODED_RX; 2764 2765 break; 2766 } 2767 2768 return phys; 2769 } 2770 2771 int hci_abort_conn(struct hci_conn *conn, u8 reason) 2772 { 2773 int r = 0; 2774 2775 switch (conn->state) { 2776 case BT_CONNECTED: 2777 case BT_CONFIG: 2778 if (conn->type == AMP_LINK) { 2779 struct hci_cp_disconn_phy_link cp; 2780 2781 cp.phy_handle = HCI_PHY_HANDLE(conn->handle); 2782 cp.reason = reason; 2783 r = hci_send_cmd(conn->hdev, HCI_OP_DISCONN_PHY_LINK, 2784 sizeof(cp), &cp); 2785 } else { 2786 struct hci_cp_disconnect dc; 2787 2788 dc.handle = cpu_to_le16(conn->handle); 2789 dc.reason = reason; 2790 r = hci_send_cmd(conn->hdev, HCI_OP_DISCONNECT, 2791 sizeof(dc), &dc); 2792 } 2793 2794 conn->state = BT_DISCONN; 2795 2796 break; 2797 case BT_CONNECT: 2798 if (conn->type == LE_LINK) { 2799 if (test_bit(HCI_CONN_SCANNING, &conn->flags)) 2800 break; 2801 r = hci_send_cmd(conn->hdev, 2802 HCI_OP_LE_CREATE_CONN_CANCEL, 0, NULL); 2803 } else if (conn->type == ACL_LINK) { 2804 if (conn->hdev->hci_ver < BLUETOOTH_VER_1_2) 2805 break; 2806 r = hci_send_cmd(conn->hdev, 2807 HCI_OP_CREATE_CONN_CANCEL, 2808 6, &conn->dst); 2809 } 2810 break; 2811 case BT_CONNECT2: 2812 if (conn->type == ACL_LINK) { 2813 struct hci_cp_reject_conn_req rej; 2814 2815 bacpy(&rej.bdaddr, &conn->dst); 2816 rej.reason = reason; 2817 2818 r = hci_send_cmd(conn->hdev, 2819 HCI_OP_REJECT_CONN_REQ, 2820 sizeof(rej), &rej); 2821 } else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) { 2822 struct hci_cp_reject_sync_conn_req rej; 2823 2824 bacpy(&rej.bdaddr, &conn->dst); 2825 2826 /* SCO rejection has its own limited set of 2827 * allowed error values (0x0D-0x0F) which isn't 2828 * compatible with most values passed to this 2829 * function. To be safe hard-code one of the 2830 * values that's suitable for SCO. 2831 */ 2832 rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; 2833 2834 r = hci_send_cmd(conn->hdev, 2835 HCI_OP_REJECT_SYNC_CONN_REQ, 2836 sizeof(rej), &rej); 2837 } 2838 break; 2839 default: 2840 conn->state = BT_CLOSED; 2841 break; 2842 } 2843 2844 return r; 2845 } 2846