1 /* 2 BlueZ - Bluetooth protocol stack for Linux 3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved. 4 5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com> 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License version 2 as 9 published by the Free Software Foundation; 10 11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. 14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY 15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES 16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, 21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS 22 SOFTWARE IS DISCLAIMED. 23 */ 24 25 /* Bluetooth HCI connection handling. */ 26 27 #include <linux/export.h> 28 #include <linux/debugfs.h> 29 30 #include <net/bluetooth/bluetooth.h> 31 #include <net/bluetooth/hci_core.h> 32 #include <net/bluetooth/l2cap.h> 33 34 #include "hci_request.h" 35 #include "smp.h" 36 #include "a2mp.h" 37 38 struct sco_param { 39 u16 pkt_type; 40 u16 max_latency; 41 u8 retrans_effort; 42 }; 43 44 static const struct sco_param esco_param_cvsd[] = { 45 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000a, 0x01 }, /* S3 */ 46 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x0007, 0x01 }, /* S2 */ 47 { EDR_ESCO_MASK | ESCO_EV3, 0x0007, 0x01 }, /* S1 */ 48 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0x01 }, /* D1 */ 49 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0x01 }, /* D0 */ 50 }; 51 52 static const struct sco_param sco_param_cvsd[] = { 53 { EDR_ESCO_MASK | ESCO_HV3, 0xffff, 0xff }, /* D1 */ 54 { EDR_ESCO_MASK | ESCO_HV1, 0xffff, 0xff }, /* D0 */ 55 }; 56 57 static const struct sco_param esco_param_msbc[] = { 58 { EDR_ESCO_MASK & ~ESCO_2EV3, 0x000d, 0x02 }, /* T2 */ 59 { EDR_ESCO_MASK | ESCO_EV3, 0x0008, 0x02 }, /* T1 */ 60 }; 61 62 /* This function requires the caller holds hdev->lock */ 63 static void hci_connect_le_scan_cleanup(struct hci_conn *conn) 64 { 65 struct hci_conn_params *params; 66 struct hci_dev *hdev = conn->hdev; 67 struct smp_irk *irk; 68 bdaddr_t *bdaddr; 69 u8 bdaddr_type; 70 71 bdaddr = &conn->dst; 72 bdaddr_type = conn->dst_type; 73 74 /* Check if we need to convert to identity address */ 75 irk = hci_get_irk(hdev, bdaddr, bdaddr_type); 76 if (irk) { 77 bdaddr = &irk->bdaddr; 78 bdaddr_type = irk->addr_type; 79 } 80 81 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, bdaddr, 82 bdaddr_type); 83 if (!params || !params->explicit_connect) 84 return; 85 86 /* The connection attempt was doing scan for new RPA, and is 87 * in scan phase. If params are not associated with any other 88 * autoconnect action, remove them completely. If they are, just unmark 89 * them as waiting for connection, by clearing explicit_connect field. 90 */ 91 params->explicit_connect = false; 92 93 list_del_init(¶ms->action); 94 95 switch (params->auto_connect) { 96 case HCI_AUTO_CONN_EXPLICIT: 97 hci_conn_params_del(hdev, bdaddr, bdaddr_type); 98 /* return instead of break to avoid duplicate scan update */ 99 return; 100 case HCI_AUTO_CONN_DIRECT: 101 case HCI_AUTO_CONN_ALWAYS: 102 list_add(¶ms->action, &hdev->pend_le_conns); 103 break; 104 case HCI_AUTO_CONN_REPORT: 105 list_add(¶ms->action, &hdev->pend_le_reports); 106 break; 107 default: 108 break; 109 } 110 111 hci_update_background_scan(hdev); 112 } 113 114 static void hci_conn_cleanup(struct hci_conn *conn) 115 { 116 struct hci_dev *hdev = conn->hdev; 117 118 if (test_bit(HCI_CONN_PARAM_REMOVAL_PEND, &conn->flags)) 119 hci_conn_params_del(conn->hdev, &conn->dst, conn->dst_type); 120 121 hci_chan_list_flush(conn); 122 123 hci_conn_hash_del(hdev, conn); 124 125 if (hdev->notify) 126 hdev->notify(hdev, HCI_NOTIFY_CONN_DEL); 127 128 hci_conn_del_sysfs(conn); 129 130 debugfs_remove_recursive(conn->debugfs); 131 132 hci_dev_put(hdev); 133 134 hci_conn_put(conn); 135 } 136 137 static void le_scan_cleanup(struct work_struct *work) 138 { 139 struct hci_conn *conn = container_of(work, struct hci_conn, 140 le_scan_cleanup); 141 struct hci_dev *hdev = conn->hdev; 142 struct hci_conn *c = NULL; 143 144 BT_DBG("%s hcon %p", hdev->name, conn); 145 146 hci_dev_lock(hdev); 147 148 /* Check that the hci_conn is still around */ 149 rcu_read_lock(); 150 list_for_each_entry_rcu(c, &hdev->conn_hash.list, list) { 151 if (c == conn) 152 break; 153 } 154 rcu_read_unlock(); 155 156 if (c == conn) { 157 hci_connect_le_scan_cleanup(conn); 158 hci_conn_cleanup(conn); 159 } 160 161 hci_dev_unlock(hdev); 162 hci_dev_put(hdev); 163 hci_conn_put(conn); 164 } 165 166 static void hci_connect_le_scan_remove(struct hci_conn *conn) 167 { 168 BT_DBG("%s hcon %p", conn->hdev->name, conn); 169 170 /* We can't call hci_conn_del/hci_conn_cleanup here since that 171 * could deadlock with another hci_conn_del() call that's holding 172 * hci_dev_lock and doing cancel_delayed_work_sync(&conn->disc_work). 173 * Instead, grab temporary extra references to the hci_dev and 174 * hci_conn and perform the necessary cleanup in a separate work 175 * callback. 176 */ 177 178 hci_dev_hold(conn->hdev); 179 hci_conn_get(conn); 180 181 /* Even though we hold a reference to the hdev, many other 182 * things might get cleaned up meanwhile, including the hdev's 183 * own workqueue, so we can't use that for scheduling. 184 */ 185 schedule_work(&conn->le_scan_cleanup); 186 } 187 188 static void hci_acl_create_connection(struct hci_conn *conn) 189 { 190 struct hci_dev *hdev = conn->hdev; 191 struct inquiry_entry *ie; 192 struct hci_cp_create_conn cp; 193 194 BT_DBG("hcon %p", conn); 195 196 conn->state = BT_CONNECT; 197 conn->out = true; 198 conn->role = HCI_ROLE_MASTER; 199 200 conn->attempt++; 201 202 conn->link_policy = hdev->link_policy; 203 204 memset(&cp, 0, sizeof(cp)); 205 bacpy(&cp.bdaddr, &conn->dst); 206 cp.pscan_rep_mode = 0x02; 207 208 ie = hci_inquiry_cache_lookup(hdev, &conn->dst); 209 if (ie) { 210 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) { 211 cp.pscan_rep_mode = ie->data.pscan_rep_mode; 212 cp.pscan_mode = ie->data.pscan_mode; 213 cp.clock_offset = ie->data.clock_offset | 214 cpu_to_le16(0x8000); 215 } 216 217 memcpy(conn->dev_class, ie->data.dev_class, 3); 218 if (ie->data.ssp_mode > 0) 219 set_bit(HCI_CONN_SSP_ENABLED, &conn->flags); 220 } 221 222 cp.pkt_type = cpu_to_le16(conn->pkt_type); 223 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER)) 224 cp.role_switch = 0x01; 225 else 226 cp.role_switch = 0x00; 227 228 hci_send_cmd(hdev, HCI_OP_CREATE_CONN, sizeof(cp), &cp); 229 } 230 231 int hci_disconnect(struct hci_conn *conn, __u8 reason) 232 { 233 BT_DBG("hcon %p", conn); 234 235 /* When we are master of an established connection and it enters 236 * the disconnect timeout, then go ahead and try to read the 237 * current clock offset. Processing of the result is done 238 * within the event handling and hci_clock_offset_evt function. 239 */ 240 if (conn->type == ACL_LINK && conn->role == HCI_ROLE_MASTER && 241 (conn->state == BT_CONNECTED || conn->state == BT_CONFIG)) { 242 struct hci_dev *hdev = conn->hdev; 243 struct hci_cp_read_clock_offset clkoff_cp; 244 245 clkoff_cp.handle = cpu_to_le16(conn->handle); 246 hci_send_cmd(hdev, HCI_OP_READ_CLOCK_OFFSET, sizeof(clkoff_cp), 247 &clkoff_cp); 248 } 249 250 return hci_abort_conn(conn, reason); 251 } 252 253 static void hci_add_sco(struct hci_conn *conn, __u16 handle) 254 { 255 struct hci_dev *hdev = conn->hdev; 256 struct hci_cp_add_sco cp; 257 258 BT_DBG("hcon %p", conn); 259 260 conn->state = BT_CONNECT; 261 conn->out = true; 262 263 conn->attempt++; 264 265 cp.handle = cpu_to_le16(handle); 266 cp.pkt_type = cpu_to_le16(conn->pkt_type); 267 268 hci_send_cmd(hdev, HCI_OP_ADD_SCO, sizeof(cp), &cp); 269 } 270 271 bool hci_setup_sync(struct hci_conn *conn, __u16 handle) 272 { 273 struct hci_dev *hdev = conn->hdev; 274 struct hci_cp_setup_sync_conn cp; 275 const struct sco_param *param; 276 277 BT_DBG("hcon %p", conn); 278 279 conn->state = BT_CONNECT; 280 conn->out = true; 281 282 conn->attempt++; 283 284 cp.handle = cpu_to_le16(handle); 285 286 cp.tx_bandwidth = cpu_to_le32(0x00001f40); 287 cp.rx_bandwidth = cpu_to_le32(0x00001f40); 288 cp.voice_setting = cpu_to_le16(conn->setting); 289 290 switch (conn->setting & SCO_AIRMODE_MASK) { 291 case SCO_AIRMODE_TRANSP: 292 if (conn->attempt > ARRAY_SIZE(esco_param_msbc)) 293 return false; 294 param = &esco_param_msbc[conn->attempt - 1]; 295 break; 296 case SCO_AIRMODE_CVSD: 297 if (lmp_esco_capable(conn->link)) { 298 if (conn->attempt > ARRAY_SIZE(esco_param_cvsd)) 299 return false; 300 param = &esco_param_cvsd[conn->attempt - 1]; 301 } else { 302 if (conn->attempt > ARRAY_SIZE(sco_param_cvsd)) 303 return false; 304 param = &sco_param_cvsd[conn->attempt - 1]; 305 } 306 break; 307 default: 308 return false; 309 } 310 311 cp.retrans_effort = param->retrans_effort; 312 cp.pkt_type = __cpu_to_le16(param->pkt_type); 313 cp.max_latency = __cpu_to_le16(param->max_latency); 314 315 if (hci_send_cmd(hdev, HCI_OP_SETUP_SYNC_CONN, sizeof(cp), &cp) < 0) 316 return false; 317 318 return true; 319 } 320 321 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency, 322 u16 to_multiplier) 323 { 324 struct hci_dev *hdev = conn->hdev; 325 struct hci_conn_params *params; 326 struct hci_cp_le_conn_update cp; 327 328 hci_dev_lock(hdev); 329 330 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 331 if (params) { 332 params->conn_min_interval = min; 333 params->conn_max_interval = max; 334 params->conn_latency = latency; 335 params->supervision_timeout = to_multiplier; 336 } 337 338 hci_dev_unlock(hdev); 339 340 memset(&cp, 0, sizeof(cp)); 341 cp.handle = cpu_to_le16(conn->handle); 342 cp.conn_interval_min = cpu_to_le16(min); 343 cp.conn_interval_max = cpu_to_le16(max); 344 cp.conn_latency = cpu_to_le16(latency); 345 cp.supervision_timeout = cpu_to_le16(to_multiplier); 346 cp.min_ce_len = cpu_to_le16(0x0000); 347 cp.max_ce_len = cpu_to_le16(0x0000); 348 349 hci_send_cmd(hdev, HCI_OP_LE_CONN_UPDATE, sizeof(cp), &cp); 350 351 if (params) 352 return 0x01; 353 354 return 0x00; 355 } 356 357 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand, 358 __u8 ltk[16], __u8 key_size) 359 { 360 struct hci_dev *hdev = conn->hdev; 361 struct hci_cp_le_start_enc cp; 362 363 BT_DBG("hcon %p", conn); 364 365 memset(&cp, 0, sizeof(cp)); 366 367 cp.handle = cpu_to_le16(conn->handle); 368 cp.rand = rand; 369 cp.ediv = ediv; 370 memcpy(cp.ltk, ltk, key_size); 371 372 hci_send_cmd(hdev, HCI_OP_LE_START_ENC, sizeof(cp), &cp); 373 } 374 375 /* Device _must_ be locked */ 376 void hci_sco_setup(struct hci_conn *conn, __u8 status) 377 { 378 struct hci_conn *sco = conn->link; 379 380 if (!sco) 381 return; 382 383 BT_DBG("hcon %p", conn); 384 385 if (!status) { 386 if (lmp_esco_capable(conn->hdev)) 387 hci_setup_sync(sco, conn->handle); 388 else 389 hci_add_sco(sco, conn->handle); 390 } else { 391 hci_connect_cfm(sco, status); 392 hci_conn_del(sco); 393 } 394 } 395 396 static void hci_conn_timeout(struct work_struct *work) 397 { 398 struct hci_conn *conn = container_of(work, struct hci_conn, 399 disc_work.work); 400 int refcnt = atomic_read(&conn->refcnt); 401 402 BT_DBG("hcon %p state %s", conn, state_to_string(conn->state)); 403 404 WARN_ON(refcnt < 0); 405 406 /* FIXME: It was observed that in pairing failed scenario, refcnt 407 * drops below 0. Probably this is because l2cap_conn_del calls 408 * l2cap_chan_del for each channel, and inside l2cap_chan_del conn is 409 * dropped. After that loop hci_chan_del is called which also drops 410 * conn. For now make sure that ACL is alive if refcnt is higher then 0, 411 * otherwise drop it. 412 */ 413 if (refcnt > 0) 414 return; 415 416 /* LE connections in scanning state need special handling */ 417 if (conn->state == BT_CONNECT && conn->type == LE_LINK && 418 test_bit(HCI_CONN_SCANNING, &conn->flags)) { 419 hci_connect_le_scan_remove(conn); 420 return; 421 } 422 423 hci_abort_conn(conn, hci_proto_disconn_ind(conn)); 424 } 425 426 /* Enter sniff mode */ 427 static void hci_conn_idle(struct work_struct *work) 428 { 429 struct hci_conn *conn = container_of(work, struct hci_conn, 430 idle_work.work); 431 struct hci_dev *hdev = conn->hdev; 432 433 BT_DBG("hcon %p mode %d", conn, conn->mode); 434 435 if (!lmp_sniff_capable(hdev) || !lmp_sniff_capable(conn)) 436 return; 437 438 if (conn->mode != HCI_CM_ACTIVE || !(conn->link_policy & HCI_LP_SNIFF)) 439 return; 440 441 if (lmp_sniffsubr_capable(hdev) && lmp_sniffsubr_capable(conn)) { 442 struct hci_cp_sniff_subrate cp; 443 cp.handle = cpu_to_le16(conn->handle); 444 cp.max_latency = cpu_to_le16(0); 445 cp.min_remote_timeout = cpu_to_le16(0); 446 cp.min_local_timeout = cpu_to_le16(0); 447 hci_send_cmd(hdev, HCI_OP_SNIFF_SUBRATE, sizeof(cp), &cp); 448 } 449 450 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 451 struct hci_cp_sniff_mode cp; 452 cp.handle = cpu_to_le16(conn->handle); 453 cp.max_interval = cpu_to_le16(hdev->sniff_max_interval); 454 cp.min_interval = cpu_to_le16(hdev->sniff_min_interval); 455 cp.attempt = cpu_to_le16(4); 456 cp.timeout = cpu_to_le16(1); 457 hci_send_cmd(hdev, HCI_OP_SNIFF_MODE, sizeof(cp), &cp); 458 } 459 } 460 461 static void hci_conn_auto_accept(struct work_struct *work) 462 { 463 struct hci_conn *conn = container_of(work, struct hci_conn, 464 auto_accept_work.work); 465 466 hci_send_cmd(conn->hdev, HCI_OP_USER_CONFIRM_REPLY, sizeof(conn->dst), 467 &conn->dst); 468 } 469 470 static void le_conn_timeout(struct work_struct *work) 471 { 472 struct hci_conn *conn = container_of(work, struct hci_conn, 473 le_conn_timeout.work); 474 struct hci_dev *hdev = conn->hdev; 475 476 BT_DBG(""); 477 478 /* We could end up here due to having done directed advertising, 479 * so clean up the state if necessary. This should however only 480 * happen with broken hardware or if low duty cycle was used 481 * (which doesn't have a timeout of its own). 482 */ 483 if (conn->role == HCI_ROLE_SLAVE) { 484 u8 enable = 0x00; 485 hci_send_cmd(hdev, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), 486 &enable); 487 hci_le_conn_failed(conn, HCI_ERROR_ADVERTISING_TIMEOUT); 488 return; 489 } 490 491 hci_abort_conn(conn, HCI_ERROR_REMOTE_USER_TERM); 492 } 493 494 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst, 495 u8 role) 496 { 497 struct hci_conn *conn; 498 499 BT_DBG("%s dst %pMR", hdev->name, dst); 500 501 conn = kzalloc(sizeof(*conn), GFP_KERNEL); 502 if (!conn) 503 return NULL; 504 505 bacpy(&conn->dst, dst); 506 bacpy(&conn->src, &hdev->bdaddr); 507 conn->hdev = hdev; 508 conn->type = type; 509 conn->role = role; 510 conn->mode = HCI_CM_ACTIVE; 511 conn->state = BT_OPEN; 512 conn->auth_type = HCI_AT_GENERAL_BONDING; 513 conn->io_capability = hdev->io_capability; 514 conn->remote_auth = 0xff; 515 conn->key_type = 0xff; 516 conn->rssi = HCI_RSSI_INVALID; 517 conn->tx_power = HCI_TX_POWER_INVALID; 518 conn->max_tx_power = HCI_TX_POWER_INVALID; 519 520 set_bit(HCI_CONN_POWER_SAVE, &conn->flags); 521 conn->disc_timeout = HCI_DISCONN_TIMEOUT; 522 523 if (conn->role == HCI_ROLE_MASTER) 524 conn->out = true; 525 526 switch (type) { 527 case ACL_LINK: 528 conn->pkt_type = hdev->pkt_type & ACL_PTYPE_MASK; 529 break; 530 case LE_LINK: 531 /* conn->src should reflect the local identity address */ 532 hci_copy_identity_address(hdev, &conn->src, &conn->src_type); 533 break; 534 case SCO_LINK: 535 if (lmp_esco_capable(hdev)) 536 conn->pkt_type = (hdev->esco_type & SCO_ESCO_MASK) | 537 (hdev->esco_type & EDR_ESCO_MASK); 538 else 539 conn->pkt_type = hdev->pkt_type & SCO_PTYPE_MASK; 540 break; 541 case ESCO_LINK: 542 conn->pkt_type = hdev->esco_type & ~EDR_ESCO_MASK; 543 break; 544 } 545 546 skb_queue_head_init(&conn->data_q); 547 548 INIT_LIST_HEAD(&conn->chan_list); 549 550 INIT_DELAYED_WORK(&conn->disc_work, hci_conn_timeout); 551 INIT_DELAYED_WORK(&conn->auto_accept_work, hci_conn_auto_accept); 552 INIT_DELAYED_WORK(&conn->idle_work, hci_conn_idle); 553 INIT_DELAYED_WORK(&conn->le_conn_timeout, le_conn_timeout); 554 INIT_WORK(&conn->le_scan_cleanup, le_scan_cleanup); 555 556 atomic_set(&conn->refcnt, 0); 557 558 hci_dev_hold(hdev); 559 560 hci_conn_hash_add(hdev, conn); 561 if (hdev->notify) 562 hdev->notify(hdev, HCI_NOTIFY_CONN_ADD); 563 564 hci_conn_init_sysfs(conn); 565 566 return conn; 567 } 568 569 int hci_conn_del(struct hci_conn *conn) 570 { 571 struct hci_dev *hdev = conn->hdev; 572 573 BT_DBG("%s hcon %p handle %d", hdev->name, conn, conn->handle); 574 575 cancel_delayed_work_sync(&conn->disc_work); 576 cancel_delayed_work_sync(&conn->auto_accept_work); 577 cancel_delayed_work_sync(&conn->idle_work); 578 579 if (conn->type == ACL_LINK) { 580 struct hci_conn *sco = conn->link; 581 if (sco) 582 sco->link = NULL; 583 584 /* Unacked frames */ 585 hdev->acl_cnt += conn->sent; 586 } else if (conn->type == LE_LINK) { 587 cancel_delayed_work(&conn->le_conn_timeout); 588 589 if (hdev->le_pkts) 590 hdev->le_cnt += conn->sent; 591 else 592 hdev->acl_cnt += conn->sent; 593 } else { 594 struct hci_conn *acl = conn->link; 595 if (acl) { 596 acl->link = NULL; 597 hci_conn_drop(acl); 598 } 599 } 600 601 if (conn->amp_mgr) 602 amp_mgr_put(conn->amp_mgr); 603 604 skb_queue_purge(&conn->data_q); 605 606 /* Remove the connection from the list and cleanup its remaining 607 * state. This is a separate function since for some cases like 608 * BT_CONNECT_SCAN we *only* want the cleanup part without the 609 * rest of hci_conn_del. 610 */ 611 hci_conn_cleanup(conn); 612 613 return 0; 614 } 615 616 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, uint8_t src_type) 617 { 618 int use_src = bacmp(src, BDADDR_ANY); 619 struct hci_dev *hdev = NULL, *d; 620 621 BT_DBG("%pMR -> %pMR", src, dst); 622 623 read_lock(&hci_dev_list_lock); 624 625 list_for_each_entry(d, &hci_dev_list, list) { 626 if (!test_bit(HCI_UP, &d->flags) || 627 hci_dev_test_flag(d, HCI_USER_CHANNEL) || 628 d->dev_type != HCI_PRIMARY) 629 continue; 630 631 /* Simple routing: 632 * No source address - find interface with bdaddr != dst 633 * Source address - find interface with bdaddr == src 634 */ 635 636 if (use_src) { 637 bdaddr_t id_addr; 638 u8 id_addr_type; 639 640 if (src_type == BDADDR_BREDR) { 641 if (!lmp_bredr_capable(d)) 642 continue; 643 bacpy(&id_addr, &d->bdaddr); 644 id_addr_type = BDADDR_BREDR; 645 } else { 646 if (!lmp_le_capable(d)) 647 continue; 648 649 hci_copy_identity_address(d, &id_addr, 650 &id_addr_type); 651 652 /* Convert from HCI to three-value type */ 653 if (id_addr_type == ADDR_LE_DEV_PUBLIC) 654 id_addr_type = BDADDR_LE_PUBLIC; 655 else 656 id_addr_type = BDADDR_LE_RANDOM; 657 } 658 659 if (!bacmp(&id_addr, src) && id_addr_type == src_type) { 660 hdev = d; break; 661 } 662 } else { 663 if (bacmp(&d->bdaddr, dst)) { 664 hdev = d; break; 665 } 666 } 667 } 668 669 if (hdev) 670 hdev = hci_dev_hold(hdev); 671 672 read_unlock(&hci_dev_list_lock); 673 return hdev; 674 } 675 EXPORT_SYMBOL(hci_get_route); 676 677 /* This function requires the caller holds hdev->lock */ 678 void hci_le_conn_failed(struct hci_conn *conn, u8 status) 679 { 680 struct hci_dev *hdev = conn->hdev; 681 struct hci_conn_params *params; 682 683 params = hci_pend_le_action_lookup(&hdev->pend_le_conns, &conn->dst, 684 conn->dst_type); 685 if (params && params->conn) { 686 hci_conn_drop(params->conn); 687 hci_conn_put(params->conn); 688 params->conn = NULL; 689 } 690 691 conn->state = BT_CLOSED; 692 693 /* If the status indicates successful cancellation of 694 * the attempt (i.e. Unkown Connection Id) there's no point of 695 * notifying failure since we'll go back to keep trying to 696 * connect. The only exception is explicit connect requests 697 * where a timeout + cancel does indicate an actual failure. 698 */ 699 if (status != HCI_ERROR_UNKNOWN_CONN_ID || 700 (params && params->explicit_connect)) 701 mgmt_connect_failed(hdev, &conn->dst, conn->type, 702 conn->dst_type, status); 703 704 hci_connect_cfm(conn, status); 705 706 hci_conn_del(conn); 707 708 /* Since we may have temporarily stopped the background scanning in 709 * favor of connection establishment, we should restart it. 710 */ 711 hci_update_background_scan(hdev); 712 713 /* Re-enable advertising in case this was a failed connection 714 * attempt as a peripheral. 715 */ 716 hci_req_reenable_advertising(hdev); 717 } 718 719 static void create_le_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode) 720 { 721 struct hci_conn *conn; 722 723 hci_dev_lock(hdev); 724 725 conn = hci_lookup_le_connect(hdev); 726 727 if (!status) { 728 hci_connect_le_scan_cleanup(conn); 729 goto done; 730 } 731 732 bt_dev_err(hdev, "request failed to create LE connection: " 733 "status 0x%2.2x", status); 734 735 if (!conn) 736 goto done; 737 738 hci_le_conn_failed(conn, status); 739 740 done: 741 hci_dev_unlock(hdev); 742 } 743 744 static bool conn_use_rpa(struct hci_conn *conn) 745 { 746 struct hci_dev *hdev = conn->hdev; 747 748 return hci_dev_test_flag(hdev, HCI_PRIVACY); 749 } 750 751 static void set_ext_conn_params(struct hci_conn *conn, 752 struct hci_cp_le_ext_conn_param *p) 753 { 754 struct hci_dev *hdev = conn->hdev; 755 756 memset(p, 0, sizeof(*p)); 757 758 /* Set window to be the same value as the interval to 759 * enable continuous scanning. 760 */ 761 p->scan_interval = cpu_to_le16(hdev->le_scan_interval); 762 p->scan_window = p->scan_interval; 763 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 764 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 765 p->conn_latency = cpu_to_le16(conn->le_conn_latency); 766 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 767 p->min_ce_len = cpu_to_le16(0x0000); 768 p->max_ce_len = cpu_to_le16(0x0000); 769 } 770 771 static void hci_req_add_le_create_conn(struct hci_request *req, 772 struct hci_conn *conn, 773 bdaddr_t *direct_rpa) 774 { 775 struct hci_dev *hdev = conn->hdev; 776 u8 own_addr_type; 777 778 /* If direct address was provided we use it instead of current 779 * address. 780 */ 781 if (direct_rpa) { 782 if (bacmp(&req->hdev->random_addr, direct_rpa)) 783 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, 784 direct_rpa); 785 786 /* direct address is always RPA */ 787 own_addr_type = ADDR_LE_DEV_RANDOM; 788 } else { 789 /* Update random address, but set require_privacy to false so 790 * that we never connect with an non-resolvable address. 791 */ 792 if (hci_update_random_address(req, false, conn_use_rpa(conn), 793 &own_addr_type)) 794 return; 795 } 796 797 if (use_ext_conn(hdev)) { 798 struct hci_cp_le_ext_create_conn *cp; 799 struct hci_cp_le_ext_conn_param *p; 800 u8 data[sizeof(*cp) + sizeof(*p) * 3]; 801 u32 plen; 802 803 cp = (void *) data; 804 p = (void *) cp->data; 805 806 memset(cp, 0, sizeof(*cp)); 807 808 bacpy(&cp->peer_addr, &conn->dst); 809 cp->peer_addr_type = conn->dst_type; 810 cp->own_addr_type = own_addr_type; 811 812 plen = sizeof(*cp); 813 814 if (scan_1m(hdev)) { 815 cp->phys |= LE_SCAN_PHY_1M; 816 set_ext_conn_params(conn, p); 817 818 p++; 819 plen += sizeof(*p); 820 } 821 822 if (scan_2m(hdev)) { 823 cp->phys |= LE_SCAN_PHY_2M; 824 set_ext_conn_params(conn, p); 825 826 p++; 827 plen += sizeof(*p); 828 } 829 830 if (scan_coded(hdev)) { 831 cp->phys |= LE_SCAN_PHY_CODED; 832 set_ext_conn_params(conn, p); 833 834 plen += sizeof(*p); 835 } 836 837 hci_req_add(req, HCI_OP_LE_EXT_CREATE_CONN, plen, data); 838 839 } else { 840 struct hci_cp_le_create_conn cp; 841 842 memset(&cp, 0, sizeof(cp)); 843 844 /* Set window to be the same value as the interval to enable 845 * continuous scanning. 846 */ 847 cp.scan_interval = cpu_to_le16(hdev->le_scan_interval); 848 cp.scan_window = cp.scan_interval; 849 850 bacpy(&cp.peer_addr, &conn->dst); 851 cp.peer_addr_type = conn->dst_type; 852 cp.own_address_type = own_addr_type; 853 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval); 854 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval); 855 cp.conn_latency = cpu_to_le16(conn->le_conn_latency); 856 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout); 857 cp.min_ce_len = cpu_to_le16(0x0000); 858 cp.max_ce_len = cpu_to_le16(0x0000); 859 860 hci_req_add(req, HCI_OP_LE_CREATE_CONN, sizeof(cp), &cp); 861 } 862 863 conn->state = BT_CONNECT; 864 clear_bit(HCI_CONN_SCANNING, &conn->flags); 865 } 866 867 static void hci_req_directed_advertising(struct hci_request *req, 868 struct hci_conn *conn) 869 { 870 struct hci_dev *hdev = req->hdev; 871 u8 own_addr_type; 872 u8 enable; 873 874 if (ext_adv_capable(hdev)) { 875 struct hci_cp_le_set_ext_adv_params cp; 876 bdaddr_t random_addr; 877 878 /* Set require_privacy to false so that the remote device has a 879 * chance of identifying us. 880 */ 881 if (hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL, 882 &own_addr_type, &random_addr) < 0) 883 return; 884 885 memset(&cp, 0, sizeof(cp)); 886 887 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND); 888 cp.own_addr_type = own_addr_type; 889 cp.channel_map = hdev->le_adv_channel_map; 890 cp.tx_power = HCI_TX_POWER_INVALID; 891 cp.primary_phy = HCI_ADV_PHY_1M; 892 cp.secondary_phy = HCI_ADV_PHY_1M; 893 cp.handle = 0; /* Use instance 0 for directed adv */ 894 cp.own_addr_type = own_addr_type; 895 cp.peer_addr_type = conn->dst_type; 896 bacpy(&cp.peer_addr, &conn->dst); 897 898 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp); 899 900 if (own_addr_type == ADDR_LE_DEV_RANDOM && 901 bacmp(&random_addr, BDADDR_ANY) && 902 bacmp(&random_addr, &hdev->random_addr)) { 903 struct hci_cp_le_set_adv_set_rand_addr cp; 904 905 memset(&cp, 0, sizeof(cp)); 906 907 cp.handle = 0; 908 bacpy(&cp.bdaddr, &random_addr); 909 910 hci_req_add(req, 911 HCI_OP_LE_SET_ADV_SET_RAND_ADDR, 912 sizeof(cp), &cp); 913 } 914 915 __hci_req_enable_ext_advertising(req); 916 } else { 917 struct hci_cp_le_set_adv_param cp; 918 919 /* Clear the HCI_LE_ADV bit temporarily so that the 920 * hci_update_random_address knows that it's safe to go ahead 921 * and write a new random address. The flag will be set back on 922 * as soon as the SET_ADV_ENABLE HCI command completes. 923 */ 924 hci_dev_clear_flag(hdev, HCI_LE_ADV); 925 926 /* Set require_privacy to false so that the remote device has a 927 * chance of identifying us. 928 */ 929 if (hci_update_random_address(req, false, conn_use_rpa(conn), 930 &own_addr_type) < 0) 931 return; 932 933 memset(&cp, 0, sizeof(cp)); 934 cp.type = LE_ADV_DIRECT_IND; 935 cp.own_address_type = own_addr_type; 936 cp.direct_addr_type = conn->dst_type; 937 bacpy(&cp.direct_addr, &conn->dst); 938 cp.channel_map = hdev->le_adv_channel_map; 939 940 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp); 941 942 enable = 0x01; 943 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), 944 &enable); 945 } 946 947 conn->state = BT_CONNECT; 948 } 949 950 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst, 951 u8 dst_type, u8 sec_level, u16 conn_timeout, 952 u8 role, bdaddr_t *direct_rpa) 953 { 954 struct hci_conn_params *params; 955 struct hci_conn *conn; 956 struct smp_irk *irk; 957 struct hci_request req; 958 int err; 959 960 /* Let's make sure that le is enabled.*/ 961 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 962 if (lmp_le_capable(hdev)) 963 return ERR_PTR(-ECONNREFUSED); 964 965 return ERR_PTR(-EOPNOTSUPP); 966 } 967 968 /* Since the controller supports only one LE connection attempt at a 969 * time, we return -EBUSY if there is any connection attempt running. 970 */ 971 if (hci_lookup_le_connect(hdev)) 972 return ERR_PTR(-EBUSY); 973 974 /* If there's already a connection object but it's not in 975 * scanning state it means it must already be established, in 976 * which case we can't do anything else except report a failure 977 * to connect. 978 */ 979 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); 980 if (conn && !test_bit(HCI_CONN_SCANNING, &conn->flags)) { 981 return ERR_PTR(-EBUSY); 982 } 983 984 /* When given an identity address with existing identity 985 * resolving key, the connection needs to be established 986 * to a resolvable random address. 987 * 988 * Storing the resolvable random address is required here 989 * to handle connection failures. The address will later 990 * be resolved back into the original identity address 991 * from the connect request. 992 */ 993 irk = hci_find_irk_by_addr(hdev, dst, dst_type); 994 if (irk && bacmp(&irk->rpa, BDADDR_ANY)) { 995 dst = &irk->rpa; 996 dst_type = ADDR_LE_DEV_RANDOM; 997 } 998 999 if (conn) { 1000 bacpy(&conn->dst, dst); 1001 } else { 1002 conn = hci_conn_add(hdev, LE_LINK, dst, role); 1003 if (!conn) 1004 return ERR_PTR(-ENOMEM); 1005 hci_conn_hold(conn); 1006 conn->pending_sec_level = sec_level; 1007 } 1008 1009 conn->dst_type = dst_type; 1010 conn->sec_level = BT_SECURITY_LOW; 1011 conn->conn_timeout = conn_timeout; 1012 1013 hci_req_init(&req, hdev); 1014 1015 /* Disable advertising if we're active. For master role 1016 * connections most controllers will refuse to connect if 1017 * advertising is enabled, and for slave role connections we 1018 * anyway have to disable it in order to start directed 1019 * advertising. 1020 */ 1021 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) { 1022 u8 enable = 0x00; 1023 hci_req_add(&req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), 1024 &enable); 1025 } 1026 1027 /* If requested to connect as slave use directed advertising */ 1028 if (conn->role == HCI_ROLE_SLAVE) { 1029 /* If we're active scanning most controllers are unable 1030 * to initiate advertising. Simply reject the attempt. 1031 */ 1032 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) && 1033 hdev->le_scan_type == LE_SCAN_ACTIVE) { 1034 hci_req_purge(&req); 1035 hci_conn_del(conn); 1036 return ERR_PTR(-EBUSY); 1037 } 1038 1039 hci_req_directed_advertising(&req, conn); 1040 goto create_conn; 1041 } 1042 1043 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type); 1044 if (params) { 1045 conn->le_conn_min_interval = params->conn_min_interval; 1046 conn->le_conn_max_interval = params->conn_max_interval; 1047 conn->le_conn_latency = params->conn_latency; 1048 conn->le_supv_timeout = params->supervision_timeout; 1049 } else { 1050 conn->le_conn_min_interval = hdev->le_conn_min_interval; 1051 conn->le_conn_max_interval = hdev->le_conn_max_interval; 1052 conn->le_conn_latency = hdev->le_conn_latency; 1053 conn->le_supv_timeout = hdev->le_supv_timeout; 1054 } 1055 1056 /* If controller is scanning, we stop it since some controllers are 1057 * not able to scan and connect at the same time. Also set the 1058 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete 1059 * handler for scan disabling knows to set the correct discovery 1060 * state. 1061 */ 1062 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { 1063 hci_req_add_le_scan_disable(&req); 1064 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED); 1065 } 1066 1067 hci_req_add_le_create_conn(&req, conn, direct_rpa); 1068 1069 create_conn: 1070 err = hci_req_run(&req, create_le_conn_complete); 1071 if (err) { 1072 hci_conn_del(conn); 1073 return ERR_PTR(err); 1074 } 1075 1076 return conn; 1077 } 1078 1079 static bool is_connected(struct hci_dev *hdev, bdaddr_t *addr, u8 type) 1080 { 1081 struct hci_conn *conn; 1082 1083 conn = hci_conn_hash_lookup_le(hdev, addr, type); 1084 if (!conn) 1085 return false; 1086 1087 if (conn->state != BT_CONNECTED) 1088 return false; 1089 1090 return true; 1091 } 1092 1093 /* This function requires the caller holds hdev->lock */ 1094 static int hci_explicit_conn_params_set(struct hci_dev *hdev, 1095 bdaddr_t *addr, u8 addr_type) 1096 { 1097 struct hci_conn_params *params; 1098 1099 if (is_connected(hdev, addr, addr_type)) 1100 return -EISCONN; 1101 1102 params = hci_conn_params_lookup(hdev, addr, addr_type); 1103 if (!params) { 1104 params = hci_conn_params_add(hdev, addr, addr_type); 1105 if (!params) 1106 return -ENOMEM; 1107 1108 /* If we created new params, mark them to be deleted in 1109 * hci_connect_le_scan_cleanup. It's different case than 1110 * existing disabled params, those will stay after cleanup. 1111 */ 1112 params->auto_connect = HCI_AUTO_CONN_EXPLICIT; 1113 } 1114 1115 /* We're trying to connect, so make sure params are at pend_le_conns */ 1116 if (params->auto_connect == HCI_AUTO_CONN_DISABLED || 1117 params->auto_connect == HCI_AUTO_CONN_REPORT || 1118 params->auto_connect == HCI_AUTO_CONN_EXPLICIT) { 1119 list_del_init(¶ms->action); 1120 list_add(¶ms->action, &hdev->pend_le_conns); 1121 } 1122 1123 params->explicit_connect = true; 1124 1125 BT_DBG("addr %pMR (type %u) auto_connect %u", addr, addr_type, 1126 params->auto_connect); 1127 1128 return 0; 1129 } 1130 1131 /* This function requires the caller holds hdev->lock */ 1132 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst, 1133 u8 dst_type, u8 sec_level, 1134 u16 conn_timeout) 1135 { 1136 struct hci_conn *conn; 1137 1138 /* Let's make sure that le is enabled.*/ 1139 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { 1140 if (lmp_le_capable(hdev)) 1141 return ERR_PTR(-ECONNREFUSED); 1142 1143 return ERR_PTR(-EOPNOTSUPP); 1144 } 1145 1146 /* Some devices send ATT messages as soon as the physical link is 1147 * established. To be able to handle these ATT messages, the user- 1148 * space first establishes the connection and then starts the pairing 1149 * process. 1150 * 1151 * So if a hci_conn object already exists for the following connection 1152 * attempt, we simply update pending_sec_level and auth_type fields 1153 * and return the object found. 1154 */ 1155 conn = hci_conn_hash_lookup_le(hdev, dst, dst_type); 1156 if (conn) { 1157 if (conn->pending_sec_level < sec_level) 1158 conn->pending_sec_level = sec_level; 1159 goto done; 1160 } 1161 1162 BT_DBG("requesting refresh of dst_addr"); 1163 1164 conn = hci_conn_add(hdev, LE_LINK, dst, HCI_ROLE_MASTER); 1165 if (!conn) 1166 return ERR_PTR(-ENOMEM); 1167 1168 if (hci_explicit_conn_params_set(hdev, dst, dst_type) < 0) 1169 return ERR_PTR(-EBUSY); 1170 1171 conn->state = BT_CONNECT; 1172 set_bit(HCI_CONN_SCANNING, &conn->flags); 1173 conn->dst_type = dst_type; 1174 conn->sec_level = BT_SECURITY_LOW; 1175 conn->pending_sec_level = sec_level; 1176 conn->conn_timeout = conn_timeout; 1177 1178 hci_update_background_scan(hdev); 1179 1180 done: 1181 hci_conn_hold(conn); 1182 return conn; 1183 } 1184 1185 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst, 1186 u8 sec_level, u8 auth_type) 1187 { 1188 struct hci_conn *acl; 1189 1190 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { 1191 if (lmp_bredr_capable(hdev)) 1192 return ERR_PTR(-ECONNREFUSED); 1193 1194 return ERR_PTR(-EOPNOTSUPP); 1195 } 1196 1197 acl = hci_conn_hash_lookup_ba(hdev, ACL_LINK, dst); 1198 if (!acl) { 1199 acl = hci_conn_add(hdev, ACL_LINK, dst, HCI_ROLE_MASTER); 1200 if (!acl) 1201 return ERR_PTR(-ENOMEM); 1202 } 1203 1204 hci_conn_hold(acl); 1205 1206 if (acl->state == BT_OPEN || acl->state == BT_CLOSED) { 1207 acl->sec_level = BT_SECURITY_LOW; 1208 acl->pending_sec_level = sec_level; 1209 acl->auth_type = auth_type; 1210 hci_acl_create_connection(acl); 1211 } 1212 1213 return acl; 1214 } 1215 1216 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst, 1217 __u16 setting) 1218 { 1219 struct hci_conn *acl; 1220 struct hci_conn *sco; 1221 1222 acl = hci_connect_acl(hdev, dst, BT_SECURITY_LOW, HCI_AT_NO_BONDING); 1223 if (IS_ERR(acl)) 1224 return acl; 1225 1226 sco = hci_conn_hash_lookup_ba(hdev, type, dst); 1227 if (!sco) { 1228 sco = hci_conn_add(hdev, type, dst, HCI_ROLE_MASTER); 1229 if (!sco) { 1230 hci_conn_drop(acl); 1231 return ERR_PTR(-ENOMEM); 1232 } 1233 } 1234 1235 acl->link = sco; 1236 sco->link = acl; 1237 1238 hci_conn_hold(sco); 1239 1240 sco->setting = setting; 1241 1242 if (acl->state == BT_CONNECTED && 1243 (sco->state == BT_OPEN || sco->state == BT_CLOSED)) { 1244 set_bit(HCI_CONN_POWER_SAVE, &acl->flags); 1245 hci_conn_enter_active_mode(acl, BT_POWER_FORCE_ACTIVE_ON); 1246 1247 if (test_bit(HCI_CONN_MODE_CHANGE_PEND, &acl->flags)) { 1248 /* defer SCO setup until mode change completed */ 1249 set_bit(HCI_CONN_SCO_SETUP_PEND, &acl->flags); 1250 return sco; 1251 } 1252 1253 hci_sco_setup(acl, 0x00); 1254 } 1255 1256 return sco; 1257 } 1258 1259 /* Check link security requirement */ 1260 int hci_conn_check_link_mode(struct hci_conn *conn) 1261 { 1262 BT_DBG("hcon %p", conn); 1263 1264 /* In Secure Connections Only mode, it is required that Secure 1265 * Connections is used and the link is encrypted with AES-CCM 1266 * using a P-256 authenticated combination key. 1267 */ 1268 if (hci_dev_test_flag(conn->hdev, HCI_SC_ONLY)) { 1269 if (!hci_conn_sc_enabled(conn) || 1270 !test_bit(HCI_CONN_AES_CCM, &conn->flags) || 1271 conn->key_type != HCI_LK_AUTH_COMBINATION_P256) 1272 return 0; 1273 } 1274 1275 if (hci_conn_ssp_enabled(conn) && 1276 !test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1277 return 0; 1278 1279 return 1; 1280 } 1281 1282 /* Authenticate remote device */ 1283 static int hci_conn_auth(struct hci_conn *conn, __u8 sec_level, __u8 auth_type) 1284 { 1285 BT_DBG("hcon %p", conn); 1286 1287 if (conn->pending_sec_level > sec_level) 1288 sec_level = conn->pending_sec_level; 1289 1290 if (sec_level > conn->sec_level) 1291 conn->pending_sec_level = sec_level; 1292 else if (test_bit(HCI_CONN_AUTH, &conn->flags)) 1293 return 1; 1294 1295 /* Make sure we preserve an existing MITM requirement*/ 1296 auth_type |= (conn->auth_type & 0x01); 1297 1298 conn->auth_type = auth_type; 1299 1300 if (!test_and_set_bit(HCI_CONN_AUTH_PEND, &conn->flags)) { 1301 struct hci_cp_auth_requested cp; 1302 1303 cp.handle = cpu_to_le16(conn->handle); 1304 hci_send_cmd(conn->hdev, HCI_OP_AUTH_REQUESTED, 1305 sizeof(cp), &cp); 1306 1307 /* If we're already encrypted set the REAUTH_PEND flag, 1308 * otherwise set the ENCRYPT_PEND. 1309 */ 1310 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1311 set_bit(HCI_CONN_REAUTH_PEND, &conn->flags); 1312 else 1313 set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags); 1314 } 1315 1316 return 0; 1317 } 1318 1319 /* Encrypt the the link */ 1320 static void hci_conn_encrypt(struct hci_conn *conn) 1321 { 1322 BT_DBG("hcon %p", conn); 1323 1324 if (!test_and_set_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) { 1325 struct hci_cp_set_conn_encrypt cp; 1326 cp.handle = cpu_to_le16(conn->handle); 1327 cp.encrypt = 0x01; 1328 hci_send_cmd(conn->hdev, HCI_OP_SET_CONN_ENCRYPT, sizeof(cp), 1329 &cp); 1330 } 1331 } 1332 1333 /* Enable security */ 1334 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type, 1335 bool initiator) 1336 { 1337 BT_DBG("hcon %p", conn); 1338 1339 if (conn->type == LE_LINK) 1340 return smp_conn_security(conn, sec_level); 1341 1342 /* For sdp we don't need the link key. */ 1343 if (sec_level == BT_SECURITY_SDP) 1344 return 1; 1345 1346 /* For non 2.1 devices and low security level we don't need the link 1347 key. */ 1348 if (sec_level == BT_SECURITY_LOW && !hci_conn_ssp_enabled(conn)) 1349 return 1; 1350 1351 /* For other security levels we need the link key. */ 1352 if (!test_bit(HCI_CONN_AUTH, &conn->flags)) 1353 goto auth; 1354 1355 /* An authenticated FIPS approved combination key has sufficient 1356 * security for security level 4. */ 1357 if (conn->key_type == HCI_LK_AUTH_COMBINATION_P256 && 1358 sec_level == BT_SECURITY_FIPS) 1359 goto encrypt; 1360 1361 /* An authenticated combination key has sufficient security for 1362 security level 3. */ 1363 if ((conn->key_type == HCI_LK_AUTH_COMBINATION_P192 || 1364 conn->key_type == HCI_LK_AUTH_COMBINATION_P256) && 1365 sec_level == BT_SECURITY_HIGH) 1366 goto encrypt; 1367 1368 /* An unauthenticated combination key has sufficient security for 1369 security level 1 and 2. */ 1370 if ((conn->key_type == HCI_LK_UNAUTH_COMBINATION_P192 || 1371 conn->key_type == HCI_LK_UNAUTH_COMBINATION_P256) && 1372 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW)) 1373 goto encrypt; 1374 1375 /* A combination key has always sufficient security for the security 1376 levels 1 or 2. High security level requires the combination key 1377 is generated using maximum PIN code length (16). 1378 For pre 2.1 units. */ 1379 if (conn->key_type == HCI_LK_COMBINATION && 1380 (sec_level == BT_SECURITY_MEDIUM || sec_level == BT_SECURITY_LOW || 1381 conn->pin_length == 16)) 1382 goto encrypt; 1383 1384 auth: 1385 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags)) 1386 return 0; 1387 1388 if (initiator) 1389 set_bit(HCI_CONN_AUTH_INITIATOR, &conn->flags); 1390 1391 if (!hci_conn_auth(conn, sec_level, auth_type)) 1392 return 0; 1393 1394 encrypt: 1395 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) { 1396 /* Ensure that the encryption key size has been read, 1397 * otherwise stall the upper layer responses. 1398 */ 1399 if (!conn->enc_key_size) 1400 return 0; 1401 1402 /* Nothing else needed, all requirements are met */ 1403 return 1; 1404 } 1405 1406 hci_conn_encrypt(conn); 1407 return 0; 1408 } 1409 EXPORT_SYMBOL(hci_conn_security); 1410 1411 /* Check secure link requirement */ 1412 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level) 1413 { 1414 BT_DBG("hcon %p", conn); 1415 1416 /* Accept if non-secure or higher security level is required */ 1417 if (sec_level != BT_SECURITY_HIGH && sec_level != BT_SECURITY_FIPS) 1418 return 1; 1419 1420 /* Accept if secure or higher security level is already present */ 1421 if (conn->sec_level == BT_SECURITY_HIGH || 1422 conn->sec_level == BT_SECURITY_FIPS) 1423 return 1; 1424 1425 /* Reject not secure link */ 1426 return 0; 1427 } 1428 EXPORT_SYMBOL(hci_conn_check_secure); 1429 1430 /* Switch role */ 1431 int hci_conn_switch_role(struct hci_conn *conn, __u8 role) 1432 { 1433 BT_DBG("hcon %p", conn); 1434 1435 if (role == conn->role) 1436 return 1; 1437 1438 if (!test_and_set_bit(HCI_CONN_RSWITCH_PEND, &conn->flags)) { 1439 struct hci_cp_switch_role cp; 1440 bacpy(&cp.bdaddr, &conn->dst); 1441 cp.role = role; 1442 hci_send_cmd(conn->hdev, HCI_OP_SWITCH_ROLE, sizeof(cp), &cp); 1443 } 1444 1445 return 0; 1446 } 1447 EXPORT_SYMBOL(hci_conn_switch_role); 1448 1449 /* Enter active mode */ 1450 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active) 1451 { 1452 struct hci_dev *hdev = conn->hdev; 1453 1454 BT_DBG("hcon %p mode %d", conn, conn->mode); 1455 1456 if (conn->mode != HCI_CM_SNIFF) 1457 goto timer; 1458 1459 if (!test_bit(HCI_CONN_POWER_SAVE, &conn->flags) && !force_active) 1460 goto timer; 1461 1462 if (!test_and_set_bit(HCI_CONN_MODE_CHANGE_PEND, &conn->flags)) { 1463 struct hci_cp_exit_sniff_mode cp; 1464 cp.handle = cpu_to_le16(conn->handle); 1465 hci_send_cmd(hdev, HCI_OP_EXIT_SNIFF_MODE, sizeof(cp), &cp); 1466 } 1467 1468 timer: 1469 if (hdev->idle_timeout > 0) 1470 queue_delayed_work(hdev->workqueue, &conn->idle_work, 1471 msecs_to_jiffies(hdev->idle_timeout)); 1472 } 1473 1474 /* Drop all connection on the device */ 1475 void hci_conn_hash_flush(struct hci_dev *hdev) 1476 { 1477 struct hci_conn_hash *h = &hdev->conn_hash; 1478 struct hci_conn *c, *n; 1479 1480 BT_DBG("hdev %s", hdev->name); 1481 1482 list_for_each_entry_safe(c, n, &h->list, list) { 1483 c->state = BT_CLOSED; 1484 1485 hci_disconn_cfm(c, HCI_ERROR_LOCAL_HOST_TERM); 1486 hci_conn_del(c); 1487 } 1488 } 1489 1490 /* Check pending connect attempts */ 1491 void hci_conn_check_pending(struct hci_dev *hdev) 1492 { 1493 struct hci_conn *conn; 1494 1495 BT_DBG("hdev %s", hdev->name); 1496 1497 hci_dev_lock(hdev); 1498 1499 conn = hci_conn_hash_lookup_state(hdev, ACL_LINK, BT_CONNECT2); 1500 if (conn) 1501 hci_acl_create_connection(conn); 1502 1503 hci_dev_unlock(hdev); 1504 } 1505 1506 static u32 get_link_mode(struct hci_conn *conn) 1507 { 1508 u32 link_mode = 0; 1509 1510 if (conn->role == HCI_ROLE_MASTER) 1511 link_mode |= HCI_LM_MASTER; 1512 1513 if (test_bit(HCI_CONN_ENCRYPT, &conn->flags)) 1514 link_mode |= HCI_LM_ENCRYPT; 1515 1516 if (test_bit(HCI_CONN_AUTH, &conn->flags)) 1517 link_mode |= HCI_LM_AUTH; 1518 1519 if (test_bit(HCI_CONN_SECURE, &conn->flags)) 1520 link_mode |= HCI_LM_SECURE; 1521 1522 if (test_bit(HCI_CONN_FIPS, &conn->flags)) 1523 link_mode |= HCI_LM_FIPS; 1524 1525 return link_mode; 1526 } 1527 1528 int hci_get_conn_list(void __user *arg) 1529 { 1530 struct hci_conn *c; 1531 struct hci_conn_list_req req, *cl; 1532 struct hci_conn_info *ci; 1533 struct hci_dev *hdev; 1534 int n = 0, size, err; 1535 1536 if (copy_from_user(&req, arg, sizeof(req))) 1537 return -EFAULT; 1538 1539 if (!req.conn_num || req.conn_num > (PAGE_SIZE * 2) / sizeof(*ci)) 1540 return -EINVAL; 1541 1542 size = sizeof(req) + req.conn_num * sizeof(*ci); 1543 1544 cl = kmalloc(size, GFP_KERNEL); 1545 if (!cl) 1546 return -ENOMEM; 1547 1548 hdev = hci_dev_get(req.dev_id); 1549 if (!hdev) { 1550 kfree(cl); 1551 return -ENODEV; 1552 } 1553 1554 ci = cl->conn_info; 1555 1556 hci_dev_lock(hdev); 1557 list_for_each_entry(c, &hdev->conn_hash.list, list) { 1558 bacpy(&(ci + n)->bdaddr, &c->dst); 1559 (ci + n)->handle = c->handle; 1560 (ci + n)->type = c->type; 1561 (ci + n)->out = c->out; 1562 (ci + n)->state = c->state; 1563 (ci + n)->link_mode = get_link_mode(c); 1564 if (++n >= req.conn_num) 1565 break; 1566 } 1567 hci_dev_unlock(hdev); 1568 1569 cl->dev_id = hdev->id; 1570 cl->conn_num = n; 1571 size = sizeof(req) + n * sizeof(*ci); 1572 1573 hci_dev_put(hdev); 1574 1575 err = copy_to_user(arg, cl, size); 1576 kfree(cl); 1577 1578 return err ? -EFAULT : 0; 1579 } 1580 1581 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg) 1582 { 1583 struct hci_conn_info_req req; 1584 struct hci_conn_info ci; 1585 struct hci_conn *conn; 1586 char __user *ptr = arg + sizeof(req); 1587 1588 if (copy_from_user(&req, arg, sizeof(req))) 1589 return -EFAULT; 1590 1591 hci_dev_lock(hdev); 1592 conn = hci_conn_hash_lookup_ba(hdev, req.type, &req.bdaddr); 1593 if (conn) { 1594 bacpy(&ci.bdaddr, &conn->dst); 1595 ci.handle = conn->handle; 1596 ci.type = conn->type; 1597 ci.out = conn->out; 1598 ci.state = conn->state; 1599 ci.link_mode = get_link_mode(conn); 1600 } 1601 hci_dev_unlock(hdev); 1602 1603 if (!conn) 1604 return -ENOENT; 1605 1606 return copy_to_user(ptr, &ci, sizeof(ci)) ? -EFAULT : 0; 1607 } 1608 1609 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg) 1610 { 1611 struct hci_auth_info_req req; 1612 struct hci_conn *conn; 1613 1614 if (copy_from_user(&req, arg, sizeof(req))) 1615 return -EFAULT; 1616 1617 hci_dev_lock(hdev); 1618 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &req.bdaddr); 1619 if (conn) 1620 req.type = conn->auth_type; 1621 hci_dev_unlock(hdev); 1622 1623 if (!conn) 1624 return -ENOENT; 1625 1626 return copy_to_user(arg, &req, sizeof(req)) ? -EFAULT : 0; 1627 } 1628 1629 struct hci_chan *hci_chan_create(struct hci_conn *conn) 1630 { 1631 struct hci_dev *hdev = conn->hdev; 1632 struct hci_chan *chan; 1633 1634 BT_DBG("%s hcon %p", hdev->name, conn); 1635 1636 if (test_bit(HCI_CONN_DROP, &conn->flags)) { 1637 BT_DBG("Refusing to create new hci_chan"); 1638 return NULL; 1639 } 1640 1641 chan = kzalloc(sizeof(*chan), GFP_KERNEL); 1642 if (!chan) 1643 return NULL; 1644 1645 chan->conn = hci_conn_get(conn); 1646 skb_queue_head_init(&chan->data_q); 1647 chan->state = BT_CONNECTED; 1648 1649 list_add_rcu(&chan->list, &conn->chan_list); 1650 1651 return chan; 1652 } 1653 1654 void hci_chan_del(struct hci_chan *chan) 1655 { 1656 struct hci_conn *conn = chan->conn; 1657 struct hci_dev *hdev = conn->hdev; 1658 1659 BT_DBG("%s hcon %p chan %p", hdev->name, conn, chan); 1660 1661 list_del_rcu(&chan->list); 1662 1663 synchronize_rcu(); 1664 1665 /* Prevent new hci_chan's to be created for this hci_conn */ 1666 set_bit(HCI_CONN_DROP, &conn->flags); 1667 1668 hci_conn_put(conn); 1669 1670 skb_queue_purge(&chan->data_q); 1671 kfree(chan); 1672 } 1673 1674 void hci_chan_list_flush(struct hci_conn *conn) 1675 { 1676 struct hci_chan *chan, *n; 1677 1678 BT_DBG("hcon %p", conn); 1679 1680 list_for_each_entry_safe(chan, n, &conn->chan_list, list) 1681 hci_chan_del(chan); 1682 } 1683 1684 static struct hci_chan *__hci_chan_lookup_handle(struct hci_conn *hcon, 1685 __u16 handle) 1686 { 1687 struct hci_chan *hchan; 1688 1689 list_for_each_entry(hchan, &hcon->chan_list, list) { 1690 if (hchan->handle == handle) 1691 return hchan; 1692 } 1693 1694 return NULL; 1695 } 1696 1697 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle) 1698 { 1699 struct hci_conn_hash *h = &hdev->conn_hash; 1700 struct hci_conn *hcon; 1701 struct hci_chan *hchan = NULL; 1702 1703 rcu_read_lock(); 1704 1705 list_for_each_entry_rcu(hcon, &h->list, list) { 1706 hchan = __hci_chan_lookup_handle(hcon, handle); 1707 if (hchan) 1708 break; 1709 } 1710 1711 rcu_read_unlock(); 1712 1713 return hchan; 1714 } 1715