1 /* 2 * AARP: An implementation of the AppleTalk AARP protocol for 3 * Ethernet 'ELAP'. 4 * 5 * Alan Cox <Alan.Cox@linux.org> 6 * 7 * This doesn't fit cleanly with the IP arp. Potentially we can use 8 * the generic neighbour discovery code to clean this up. 9 * 10 * FIXME: 11 * We ought to handle the retransmits with a single list and a 12 * separate fast timer for when it is needed. 13 * Use neighbour discovery code. 14 * Token Ring Support. 15 * 16 * This program is free software; you can redistribute it and/or 17 * modify it under the terms of the GNU General Public License 18 * as published by the Free Software Foundation; either version 19 * 2 of the License, or (at your option) any later version. 20 * 21 * 22 * References: 23 * Inside AppleTalk (2nd Ed). 24 * Fixes: 25 * Jaume Grau - flush caches on AARP_PROBE 26 * Rob Newberry - Added proxy AARP and AARP proc fs, 27 * moved probing from DDP module. 28 * Arnaldo C. Melo - don't mangle rx packets 29 * 30 */ 31 32 #include <linux/if_arp.h> 33 #include <net/sock.h> 34 #include <net/datalink.h> 35 #include <net/psnap.h> 36 #include <linux/atalk.h> 37 #include <linux/delay.h> 38 #include <linux/init.h> 39 #include <linux/proc_fs.h> 40 #include <linux/seq_file.h> 41 42 int sysctl_aarp_expiry_time = AARP_EXPIRY_TIME; 43 int sysctl_aarp_tick_time = AARP_TICK_TIME; 44 int sysctl_aarp_retransmit_limit = AARP_RETRANSMIT_LIMIT; 45 int sysctl_aarp_resolve_time = AARP_RESOLVE_TIME; 46 47 /* Lists of aarp entries */ 48 /** 49 * struct aarp_entry - AARP entry 50 * @last_sent - Last time we xmitted the aarp request 51 * @packet_queue - Queue of frames wait for resolution 52 * @status - Used for proxy AARP 53 * expires_at - Entry expiry time 54 * target_addr - DDP Address 55 * dev - Device to use 56 * hwaddr - Physical i/f address of target/router 57 * xmit_count - When this hits 10 we give up 58 * next - Next entry in chain 59 */ 60 struct aarp_entry { 61 /* These first two are only used for unresolved entries */ 62 unsigned long last_sent; 63 struct sk_buff_head packet_queue; 64 int status; 65 unsigned long expires_at; 66 struct atalk_addr target_addr; 67 struct net_device *dev; 68 char hwaddr[6]; 69 unsigned short xmit_count; 70 struct aarp_entry *next; 71 }; 72 73 /* Hashed list of resolved, unresolved and proxy entries */ 74 static struct aarp_entry *resolved[AARP_HASH_SIZE]; 75 static struct aarp_entry *unresolved[AARP_HASH_SIZE]; 76 static struct aarp_entry *proxies[AARP_HASH_SIZE]; 77 static int unresolved_count; 78 79 /* One lock protects it all. */ 80 static DEFINE_RWLOCK(aarp_lock); 81 82 /* Used to walk the list and purge/kick entries. */ 83 static struct timer_list aarp_timer; 84 85 /* 86 * Delete an aarp queue 87 * 88 * Must run under aarp_lock. 89 */ 90 static void __aarp_expire(struct aarp_entry *a) 91 { 92 skb_queue_purge(&a->packet_queue); 93 kfree(a); 94 } 95 96 /* 97 * Send an aarp queue entry request 98 * 99 * Must run under aarp_lock. 100 */ 101 static void __aarp_send_query(struct aarp_entry *a) 102 { 103 static unsigned char aarp_eth_multicast[ETH_ALEN] = 104 { 0x09, 0x00, 0x07, 0xFF, 0xFF, 0xFF }; 105 struct net_device *dev = a->dev; 106 struct elapaarp *eah; 107 int len = dev->hard_header_len + sizeof(*eah) + aarp_dl->header_length; 108 struct sk_buff *skb = alloc_skb(len, GFP_ATOMIC); 109 struct atalk_addr *sat = atalk_find_dev_addr(dev); 110 111 if (!skb) 112 return; 113 114 if (!sat) { 115 kfree_skb(skb); 116 return; 117 } 118 119 /* Set up the buffer */ 120 skb_reserve(skb, dev->hard_header_len + aarp_dl->header_length); 121 skb_reset_network_header(skb); 122 skb_reset_transport_header(skb); 123 skb_put(skb, sizeof(*eah)); 124 skb->protocol = htons(ETH_P_ATALK); 125 skb->dev = dev; 126 eah = aarp_hdr(skb); 127 128 /* Set up the ARP */ 129 eah->hw_type = htons(AARP_HW_TYPE_ETHERNET); 130 eah->pa_type = htons(ETH_P_ATALK); 131 eah->hw_len = ETH_ALEN; 132 eah->pa_len = AARP_PA_ALEN; 133 eah->function = htons(AARP_REQUEST); 134 135 memcpy(eah->hw_src, dev->dev_addr, ETH_ALEN); 136 137 eah->pa_src_zero = 0; 138 eah->pa_src_net = sat->s_net; 139 eah->pa_src_node = sat->s_node; 140 141 memset(eah->hw_dst, '\0', ETH_ALEN); 142 143 eah->pa_dst_zero = 0; 144 eah->pa_dst_net = a->target_addr.s_net; 145 eah->pa_dst_node = a->target_addr.s_node; 146 147 /* Send it */ 148 aarp_dl->request(aarp_dl, skb, aarp_eth_multicast); 149 /* Update the sending count */ 150 a->xmit_count++; 151 a->last_sent = jiffies; 152 } 153 154 /* This runs under aarp_lock and in softint context, so only atomic memory 155 * allocations can be used. */ 156 static void aarp_send_reply(struct net_device *dev, struct atalk_addr *us, 157 struct atalk_addr *them, unsigned char *sha) 158 { 159 struct elapaarp *eah; 160 int len = dev->hard_header_len + sizeof(*eah) + aarp_dl->header_length; 161 struct sk_buff *skb = alloc_skb(len, GFP_ATOMIC); 162 163 if (!skb) 164 return; 165 166 /* Set up the buffer */ 167 skb_reserve(skb, dev->hard_header_len + aarp_dl->header_length); 168 skb_reset_network_header(skb); 169 skb_reset_transport_header(skb); 170 skb_put(skb, sizeof(*eah)); 171 skb->protocol = htons(ETH_P_ATALK); 172 skb->dev = dev; 173 eah = aarp_hdr(skb); 174 175 /* Set up the ARP */ 176 eah->hw_type = htons(AARP_HW_TYPE_ETHERNET); 177 eah->pa_type = htons(ETH_P_ATALK); 178 eah->hw_len = ETH_ALEN; 179 eah->pa_len = AARP_PA_ALEN; 180 eah->function = htons(AARP_REPLY); 181 182 memcpy(eah->hw_src, dev->dev_addr, ETH_ALEN); 183 184 eah->pa_src_zero = 0; 185 eah->pa_src_net = us->s_net; 186 eah->pa_src_node = us->s_node; 187 188 if (!sha) 189 memset(eah->hw_dst, '\0', ETH_ALEN); 190 else 191 memcpy(eah->hw_dst, sha, ETH_ALEN); 192 193 eah->pa_dst_zero = 0; 194 eah->pa_dst_net = them->s_net; 195 eah->pa_dst_node = them->s_node; 196 197 /* Send it */ 198 aarp_dl->request(aarp_dl, skb, sha); 199 } 200 201 /* 202 * Send probe frames. Called from aarp_probe_network and 203 * aarp_proxy_probe_network. 204 */ 205 206 static void aarp_send_probe(struct net_device *dev, struct atalk_addr *us) 207 { 208 struct elapaarp *eah; 209 int len = dev->hard_header_len + sizeof(*eah) + aarp_dl->header_length; 210 struct sk_buff *skb = alloc_skb(len, GFP_ATOMIC); 211 static unsigned char aarp_eth_multicast[ETH_ALEN] = 212 { 0x09, 0x00, 0x07, 0xFF, 0xFF, 0xFF }; 213 214 if (!skb) 215 return; 216 217 /* Set up the buffer */ 218 skb_reserve(skb, dev->hard_header_len + aarp_dl->header_length); 219 skb_reset_network_header(skb); 220 skb_reset_transport_header(skb); 221 skb_put(skb, sizeof(*eah)); 222 skb->protocol = htons(ETH_P_ATALK); 223 skb->dev = dev; 224 eah = aarp_hdr(skb); 225 226 /* Set up the ARP */ 227 eah->hw_type = htons(AARP_HW_TYPE_ETHERNET); 228 eah->pa_type = htons(ETH_P_ATALK); 229 eah->hw_len = ETH_ALEN; 230 eah->pa_len = AARP_PA_ALEN; 231 eah->function = htons(AARP_PROBE); 232 233 memcpy(eah->hw_src, dev->dev_addr, ETH_ALEN); 234 235 eah->pa_src_zero = 0; 236 eah->pa_src_net = us->s_net; 237 eah->pa_src_node = us->s_node; 238 239 memset(eah->hw_dst, '\0', ETH_ALEN); 240 241 eah->pa_dst_zero = 0; 242 eah->pa_dst_net = us->s_net; 243 eah->pa_dst_node = us->s_node; 244 245 /* Send it */ 246 aarp_dl->request(aarp_dl, skb, aarp_eth_multicast); 247 } 248 249 /* 250 * Handle an aarp timer expire 251 * 252 * Must run under the aarp_lock. 253 */ 254 255 static void __aarp_expire_timer(struct aarp_entry **n) 256 { 257 struct aarp_entry *t; 258 259 while (*n) 260 /* Expired ? */ 261 if (time_after(jiffies, (*n)->expires_at)) { 262 t = *n; 263 *n = (*n)->next; 264 __aarp_expire(t); 265 } else 266 n = &((*n)->next); 267 } 268 269 /* 270 * Kick all pending requests 5 times a second. 271 * 272 * Must run under the aarp_lock. 273 */ 274 static void __aarp_kick(struct aarp_entry **n) 275 { 276 struct aarp_entry *t; 277 278 while (*n) 279 /* Expired: if this will be the 11th tx, we delete instead. */ 280 if ((*n)->xmit_count >= sysctl_aarp_retransmit_limit) { 281 t = *n; 282 *n = (*n)->next; 283 __aarp_expire(t); 284 } else { 285 __aarp_send_query(*n); 286 n = &((*n)->next); 287 } 288 } 289 290 /* 291 * A device has gone down. Take all entries referring to the device 292 * and remove them. 293 * 294 * Must run under the aarp_lock. 295 */ 296 static void __aarp_expire_device(struct aarp_entry **n, struct net_device *dev) 297 { 298 struct aarp_entry *t; 299 300 while (*n) 301 if ((*n)->dev == dev) { 302 t = *n; 303 *n = (*n)->next; 304 __aarp_expire(t); 305 } else 306 n = &((*n)->next); 307 } 308 309 /* Handle the timer event */ 310 static void aarp_expire_timeout(unsigned long unused) 311 { 312 int ct; 313 314 write_lock_bh(&aarp_lock); 315 316 for (ct = 0; ct < AARP_HASH_SIZE; ct++) { 317 __aarp_expire_timer(&resolved[ct]); 318 __aarp_kick(&unresolved[ct]); 319 __aarp_expire_timer(&unresolved[ct]); 320 __aarp_expire_timer(&proxies[ct]); 321 } 322 323 write_unlock_bh(&aarp_lock); 324 mod_timer(&aarp_timer, jiffies + 325 (unresolved_count ? sysctl_aarp_tick_time : 326 sysctl_aarp_expiry_time)); 327 } 328 329 /* Network device notifier chain handler. */ 330 static int aarp_device_event(struct notifier_block *this, unsigned long event, 331 void *ptr) 332 { 333 int ct; 334 335 if (event == NETDEV_DOWN) { 336 write_lock_bh(&aarp_lock); 337 338 for (ct = 0; ct < AARP_HASH_SIZE; ct++) { 339 __aarp_expire_device(&resolved[ct], ptr); 340 __aarp_expire_device(&unresolved[ct], ptr); 341 __aarp_expire_device(&proxies[ct], ptr); 342 } 343 344 write_unlock_bh(&aarp_lock); 345 } 346 return NOTIFY_DONE; 347 } 348 349 /* Expire all entries in a hash chain */ 350 static void __aarp_expire_all(struct aarp_entry **n) 351 { 352 struct aarp_entry *t; 353 354 while (*n) { 355 t = *n; 356 *n = (*n)->next; 357 __aarp_expire(t); 358 } 359 } 360 361 /* Cleanup all hash chains -- module unloading */ 362 static void aarp_purge(void) 363 { 364 int ct; 365 366 write_lock_bh(&aarp_lock); 367 for (ct = 0; ct < AARP_HASH_SIZE; ct++) { 368 __aarp_expire_all(&resolved[ct]); 369 __aarp_expire_all(&unresolved[ct]); 370 __aarp_expire_all(&proxies[ct]); 371 } 372 write_unlock_bh(&aarp_lock); 373 } 374 375 /* 376 * Create a new aarp entry. This must use GFP_ATOMIC because it 377 * runs while holding spinlocks. 378 */ 379 static struct aarp_entry *aarp_alloc(void) 380 { 381 struct aarp_entry *a = kmalloc(sizeof(*a), GFP_ATOMIC); 382 383 if (a) 384 skb_queue_head_init(&a->packet_queue); 385 return a; 386 } 387 388 /* 389 * Find an entry. We might return an expired but not yet purged entry. We 390 * don't care as it will do no harm. 391 * 392 * This must run under the aarp_lock. 393 */ 394 static struct aarp_entry *__aarp_find_entry(struct aarp_entry *list, 395 struct net_device *dev, 396 struct atalk_addr *sat) 397 { 398 while (list) { 399 if (list->target_addr.s_net == sat->s_net && 400 list->target_addr.s_node == sat->s_node && 401 list->dev == dev) 402 break; 403 list = list->next; 404 } 405 406 return list; 407 } 408 409 /* Called from the DDP code, and thus must be exported. */ 410 void aarp_proxy_remove(struct net_device *dev, struct atalk_addr *sa) 411 { 412 int hash = sa->s_node % (AARP_HASH_SIZE - 1); 413 struct aarp_entry *a; 414 415 write_lock_bh(&aarp_lock); 416 417 a = __aarp_find_entry(proxies[hash], dev, sa); 418 if (a) 419 a->expires_at = jiffies - 1; 420 421 write_unlock_bh(&aarp_lock); 422 } 423 424 /* This must run under aarp_lock. */ 425 static struct atalk_addr *__aarp_proxy_find(struct net_device *dev, 426 struct atalk_addr *sa) 427 { 428 int hash = sa->s_node % (AARP_HASH_SIZE - 1); 429 struct aarp_entry *a = __aarp_find_entry(proxies[hash], dev, sa); 430 431 return a ? sa : NULL; 432 } 433 434 /* 435 * Probe a Phase 1 device or a device that requires its Net:Node to 436 * be set via an ioctl. 437 */ 438 static void aarp_send_probe_phase1(struct atalk_iface *iface) 439 { 440 struct ifreq atreq; 441 struct sockaddr_at *sa = (struct sockaddr_at *)&atreq.ifr_addr; 442 443 sa->sat_addr.s_node = iface->address.s_node; 444 sa->sat_addr.s_net = ntohs(iface->address.s_net); 445 446 /* We pass the Net:Node to the drivers/cards by a Device ioctl. */ 447 if (!(iface->dev->do_ioctl(iface->dev, &atreq, SIOCSIFADDR))) { 448 (void)iface->dev->do_ioctl(iface->dev, &atreq, SIOCGIFADDR); 449 if (iface->address.s_net != htons(sa->sat_addr.s_net) || 450 iface->address.s_node != sa->sat_addr.s_node) 451 iface->status |= ATIF_PROBE_FAIL; 452 453 iface->address.s_net = htons(sa->sat_addr.s_net); 454 iface->address.s_node = sa->sat_addr.s_node; 455 } 456 } 457 458 459 void aarp_probe_network(struct atalk_iface *atif) 460 { 461 if (atif->dev->type == ARPHRD_LOCALTLK || 462 atif->dev->type == ARPHRD_PPP) 463 aarp_send_probe_phase1(atif); 464 else { 465 unsigned int count; 466 467 for (count = 0; count < AARP_RETRANSMIT_LIMIT; count++) { 468 aarp_send_probe(atif->dev, &atif->address); 469 470 /* Defer 1/10th */ 471 msleep(100); 472 473 if (atif->status & ATIF_PROBE_FAIL) 474 break; 475 } 476 } 477 } 478 479 int aarp_proxy_probe_network(struct atalk_iface *atif, struct atalk_addr *sa) 480 { 481 int hash, retval = -EPROTONOSUPPORT; 482 struct aarp_entry *entry; 483 unsigned int count; 484 485 /* 486 * we don't currently support LocalTalk or PPP for proxy AARP; 487 * if someone wants to try and add it, have fun 488 */ 489 if (atif->dev->type == ARPHRD_LOCALTLK || 490 atif->dev->type == ARPHRD_PPP) 491 goto out; 492 493 /* 494 * create a new AARP entry with the flags set to be published -- 495 * we need this one to hang around even if it's in use 496 */ 497 entry = aarp_alloc(); 498 retval = -ENOMEM; 499 if (!entry) 500 goto out; 501 502 entry->expires_at = -1; 503 entry->status = ATIF_PROBE; 504 entry->target_addr.s_node = sa->s_node; 505 entry->target_addr.s_net = sa->s_net; 506 entry->dev = atif->dev; 507 508 write_lock_bh(&aarp_lock); 509 510 hash = sa->s_node % (AARP_HASH_SIZE - 1); 511 entry->next = proxies[hash]; 512 proxies[hash] = entry; 513 514 for (count = 0; count < AARP_RETRANSMIT_LIMIT; count++) { 515 aarp_send_probe(atif->dev, sa); 516 517 /* Defer 1/10th */ 518 write_unlock_bh(&aarp_lock); 519 msleep(100); 520 write_lock_bh(&aarp_lock); 521 522 if (entry->status & ATIF_PROBE_FAIL) 523 break; 524 } 525 526 if (entry->status & ATIF_PROBE_FAIL) { 527 entry->expires_at = jiffies - 1; /* free the entry */ 528 retval = -EADDRINUSE; /* return network full */ 529 } else { /* clear the probing flag */ 530 entry->status &= ~ATIF_PROBE; 531 retval = 1; 532 } 533 534 write_unlock_bh(&aarp_lock); 535 out: 536 return retval; 537 } 538 539 /* Send a DDP frame */ 540 int aarp_send_ddp(struct net_device *dev, struct sk_buff *skb, 541 struct atalk_addr *sa, void *hwaddr) 542 { 543 static char ddp_eth_multicast[ETH_ALEN] = 544 { 0x09, 0x00, 0x07, 0xFF, 0xFF, 0xFF }; 545 int hash; 546 struct aarp_entry *a; 547 548 skb_reset_network_header(skb); 549 550 /* Check for LocalTalk first */ 551 if (dev->type == ARPHRD_LOCALTLK) { 552 struct atalk_addr *at = atalk_find_dev_addr(dev); 553 struct ddpehdr *ddp = (struct ddpehdr *)skb->data; 554 int ft = 2; 555 556 /* 557 * Compressible ? 558 * 559 * IFF: src_net == dest_net == device_net 560 * (zero matches anything) 561 */ 562 563 if ((!ddp->deh_snet || at->s_net == ddp->deh_snet) && 564 (!ddp->deh_dnet || at->s_net == ddp->deh_dnet)) { 565 skb_pull(skb, sizeof(*ddp) - 4); 566 567 /* 568 * The upper two remaining bytes are the port 569 * numbers we just happen to need. Now put the 570 * length in the lower two. 571 */ 572 *((__be16 *)skb->data) = htons(skb->len); 573 ft = 1; 574 } 575 /* 576 * Nice and easy. No AARP type protocols occur here so we can 577 * just shovel it out with a 3 byte LLAP header 578 */ 579 580 skb_push(skb, 3); 581 skb->data[0] = sa->s_node; 582 skb->data[1] = at->s_node; 583 skb->data[2] = ft; 584 skb->dev = dev; 585 goto sendit; 586 } 587 588 /* On a PPP link we neither compress nor aarp. */ 589 if (dev->type == ARPHRD_PPP) { 590 skb->protocol = htons(ETH_P_PPPTALK); 591 skb->dev = dev; 592 goto sendit; 593 } 594 595 /* Non ELAP we cannot do. */ 596 if (dev->type != ARPHRD_ETHER) 597 return -1; 598 599 skb->dev = dev; 600 skb->protocol = htons(ETH_P_ATALK); 601 hash = sa->s_node % (AARP_HASH_SIZE - 1); 602 603 /* Do we have a resolved entry? */ 604 if (sa->s_node == ATADDR_BCAST) { 605 /* Send it */ 606 ddp_dl->request(ddp_dl, skb, ddp_eth_multicast); 607 goto sent; 608 } 609 610 write_lock_bh(&aarp_lock); 611 a = __aarp_find_entry(resolved[hash], dev, sa); 612 613 if (a) { /* Return 1 and fill in the address */ 614 a->expires_at = jiffies + (sysctl_aarp_expiry_time * 10); 615 ddp_dl->request(ddp_dl, skb, a->hwaddr); 616 write_unlock_bh(&aarp_lock); 617 goto sent; 618 } 619 620 /* Do we have an unresolved entry: This is the less common path */ 621 a = __aarp_find_entry(unresolved[hash], dev, sa); 622 if (a) { /* Queue onto the unresolved queue */ 623 skb_queue_tail(&a->packet_queue, skb); 624 goto out_unlock; 625 } 626 627 /* Allocate a new entry */ 628 a = aarp_alloc(); 629 if (!a) { 630 /* Whoops slipped... good job it's an unreliable protocol 8) */ 631 write_unlock_bh(&aarp_lock); 632 return -1; 633 } 634 635 /* Set up the queue */ 636 skb_queue_tail(&a->packet_queue, skb); 637 a->expires_at = jiffies + sysctl_aarp_resolve_time; 638 a->dev = dev; 639 a->next = unresolved[hash]; 640 a->target_addr = *sa; 641 a->xmit_count = 0; 642 unresolved[hash] = a; 643 unresolved_count++; 644 645 /* Send an initial request for the address */ 646 __aarp_send_query(a); 647 648 /* 649 * Switch to fast timer if needed (That is if this is the first 650 * unresolved entry to get added) 651 */ 652 653 if (unresolved_count == 1) 654 mod_timer(&aarp_timer, jiffies + sysctl_aarp_tick_time); 655 656 /* Now finally, it is safe to drop the lock. */ 657 out_unlock: 658 write_unlock_bh(&aarp_lock); 659 660 /* Tell the ddp layer we have taken over for this frame. */ 661 return 0; 662 663 sendit: 664 if (skb->sk) 665 skb->priority = skb->sk->sk_priority; 666 dev_queue_xmit(skb); 667 sent: 668 return 1; 669 } 670 671 /* 672 * An entry in the aarp unresolved queue has become resolved. Send 673 * all the frames queued under it. 674 * 675 * Must run under aarp_lock. 676 */ 677 static void __aarp_resolved(struct aarp_entry **list, struct aarp_entry *a, 678 int hash) 679 { 680 struct sk_buff *skb; 681 682 while (*list) 683 if (*list == a) { 684 unresolved_count--; 685 *list = a->next; 686 687 /* Move into the resolved list */ 688 a->next = resolved[hash]; 689 resolved[hash] = a; 690 691 /* Kick frames off */ 692 while ((skb = skb_dequeue(&a->packet_queue)) != NULL) { 693 a->expires_at = jiffies + 694 sysctl_aarp_expiry_time * 10; 695 ddp_dl->request(ddp_dl, skb, a->hwaddr); 696 } 697 } else 698 list = &((*list)->next); 699 } 700 701 /* 702 * This is called by the SNAP driver whenever we see an AARP SNAP 703 * frame. We currently only support Ethernet. 704 */ 705 static int aarp_rcv(struct sk_buff *skb, struct net_device *dev, 706 struct packet_type *pt, struct net_device *orig_dev) 707 { 708 struct elapaarp *ea = aarp_hdr(skb); 709 int hash, ret = 0; 710 __u16 function; 711 struct aarp_entry *a; 712 struct atalk_addr sa, *ma, da; 713 struct atalk_iface *ifa; 714 715 /* We only do Ethernet SNAP AARP. */ 716 if (dev->type != ARPHRD_ETHER) 717 goto out0; 718 719 /* Frame size ok? */ 720 if (!skb_pull(skb, sizeof(*ea))) 721 goto out0; 722 723 function = ntohs(ea->function); 724 725 /* Sanity check fields. */ 726 if (function < AARP_REQUEST || function > AARP_PROBE || 727 ea->hw_len != ETH_ALEN || ea->pa_len != AARP_PA_ALEN || 728 ea->pa_src_zero || ea->pa_dst_zero) 729 goto out0; 730 731 /* Looks good. */ 732 hash = ea->pa_src_node % (AARP_HASH_SIZE - 1); 733 734 /* Build an address. */ 735 sa.s_node = ea->pa_src_node; 736 sa.s_net = ea->pa_src_net; 737 738 /* Process the packet. Check for replies of me. */ 739 ifa = atalk_find_dev(dev); 740 if (!ifa) 741 goto out1; 742 743 if (ifa->status & ATIF_PROBE && 744 ifa->address.s_node == ea->pa_dst_node && 745 ifa->address.s_net == ea->pa_dst_net) { 746 ifa->status |= ATIF_PROBE_FAIL; /* Fail the probe (in use) */ 747 goto out1; 748 } 749 750 /* Check for replies of proxy AARP entries */ 751 da.s_node = ea->pa_dst_node; 752 da.s_net = ea->pa_dst_net; 753 754 write_lock_bh(&aarp_lock); 755 a = __aarp_find_entry(proxies[hash], dev, &da); 756 757 if (a && a->status & ATIF_PROBE) { 758 a->status |= ATIF_PROBE_FAIL; 759 /* 760 * we do not respond to probe or request packets for 761 * this address while we are probing this address 762 */ 763 goto unlock; 764 } 765 766 switch (function) { 767 case AARP_REPLY: 768 if (!unresolved_count) /* Speed up */ 769 break; 770 771 /* Find the entry. */ 772 a = __aarp_find_entry(unresolved[hash], dev, &sa); 773 if (!a || dev != a->dev) 774 break; 775 776 /* We can fill one in - this is good. */ 777 memcpy(a->hwaddr, ea->hw_src, ETH_ALEN); 778 __aarp_resolved(&unresolved[hash], a, hash); 779 if (!unresolved_count) 780 mod_timer(&aarp_timer, 781 jiffies + sysctl_aarp_expiry_time); 782 break; 783 784 case AARP_REQUEST: 785 case AARP_PROBE: 786 787 /* 788 * If it is my address set ma to my address and reply. 789 * We can treat probe and request the same. Probe 790 * simply means we shouldn't cache the querying host, 791 * as in a probe they are proposing an address not 792 * using one. 793 * 794 * Support for proxy-AARP added. We check if the 795 * address is one of our proxies before we toss the 796 * packet out. 797 */ 798 799 sa.s_node = ea->pa_dst_node; 800 sa.s_net = ea->pa_dst_net; 801 802 /* See if we have a matching proxy. */ 803 ma = __aarp_proxy_find(dev, &sa); 804 if (!ma) 805 ma = &ifa->address; 806 else { /* We need to make a copy of the entry. */ 807 da.s_node = sa.s_node; 808 da.s_net = da.s_net; 809 ma = &da; 810 } 811 812 if (function == AARP_PROBE) { 813 /* 814 * A probe implies someone trying to get an 815 * address. So as a precaution flush any 816 * entries we have for this address. 817 */ 818 struct aarp_entry *a; 819 820 a = __aarp_find_entry(resolved[sa.s_node % 821 (AARP_HASH_SIZE - 1)], 822 skb->dev, &sa); 823 824 /* 825 * Make it expire next tick - that avoids us 826 * getting into a probe/flush/learn/probe/ 827 * flush/learn cycle during probing of a slow 828 * to respond host addr. 829 */ 830 if (a) { 831 a->expires_at = jiffies - 1; 832 mod_timer(&aarp_timer, jiffies + 833 sysctl_aarp_tick_time); 834 } 835 } 836 837 if (sa.s_node != ma->s_node) 838 break; 839 840 if (sa.s_net && ma->s_net && sa.s_net != ma->s_net) 841 break; 842 843 sa.s_node = ea->pa_src_node; 844 sa.s_net = ea->pa_src_net; 845 846 /* aarp_my_address has found the address to use for us. 847 */ 848 aarp_send_reply(dev, ma, &sa, ea->hw_src); 849 break; 850 } 851 852 unlock: 853 write_unlock_bh(&aarp_lock); 854 out1: 855 ret = 1; 856 out0: 857 kfree_skb(skb); 858 return ret; 859 } 860 861 static struct notifier_block aarp_notifier = { 862 .notifier_call = aarp_device_event, 863 }; 864 865 static unsigned char aarp_snap_id[] = { 0x00, 0x00, 0x00, 0x80, 0xF3 }; 866 867 void __init aarp_proto_init(void) 868 { 869 aarp_dl = register_snap_client(aarp_snap_id, aarp_rcv); 870 if (!aarp_dl) 871 printk(KERN_CRIT "Unable to register AARP with SNAP.\n"); 872 init_timer(&aarp_timer); 873 aarp_timer.function = aarp_expire_timeout; 874 aarp_timer.data = 0; 875 aarp_timer.expires = jiffies + sysctl_aarp_expiry_time; 876 add_timer(&aarp_timer); 877 register_netdevice_notifier(&aarp_notifier); 878 } 879 880 /* Remove the AARP entries associated with a device. */ 881 void aarp_device_down(struct net_device *dev) 882 { 883 int ct; 884 885 write_lock_bh(&aarp_lock); 886 887 for (ct = 0; ct < AARP_HASH_SIZE; ct++) { 888 __aarp_expire_device(&resolved[ct], dev); 889 __aarp_expire_device(&unresolved[ct], dev); 890 __aarp_expire_device(&proxies[ct], dev); 891 } 892 893 write_unlock_bh(&aarp_lock); 894 } 895 896 #ifdef CONFIG_PROC_FS 897 struct aarp_iter_state { 898 int bucket; 899 struct aarp_entry **table; 900 }; 901 902 /* 903 * Get the aarp entry that is in the chain described 904 * by the iterator. 905 * If pos is set then skip till that index. 906 * pos = 1 is the first entry 907 */ 908 static struct aarp_entry *iter_next(struct aarp_iter_state *iter, loff_t *pos) 909 { 910 int ct = iter->bucket; 911 struct aarp_entry **table = iter->table; 912 loff_t off = 0; 913 struct aarp_entry *entry; 914 915 rescan: 916 while(ct < AARP_HASH_SIZE) { 917 for (entry = table[ct]; entry; entry = entry->next) { 918 if (!pos || ++off == *pos) { 919 iter->table = table; 920 iter->bucket = ct; 921 return entry; 922 } 923 } 924 ++ct; 925 } 926 927 if (table == resolved) { 928 ct = 0; 929 table = unresolved; 930 goto rescan; 931 } 932 if (table == unresolved) { 933 ct = 0; 934 table = proxies; 935 goto rescan; 936 } 937 return NULL; 938 } 939 940 static void *aarp_seq_start(struct seq_file *seq, loff_t *pos) 941 { 942 struct aarp_iter_state *iter = seq->private; 943 944 read_lock_bh(&aarp_lock); 945 iter->table = resolved; 946 iter->bucket = 0; 947 948 return *pos ? iter_next(iter, pos) : SEQ_START_TOKEN; 949 } 950 951 static void *aarp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 952 { 953 struct aarp_entry *entry = v; 954 struct aarp_iter_state *iter = seq->private; 955 956 ++*pos; 957 958 /* first line after header */ 959 if (v == SEQ_START_TOKEN) 960 entry = iter_next(iter, NULL); 961 962 /* next entry in current bucket */ 963 else if (entry->next) 964 entry = entry->next; 965 966 /* next bucket or table */ 967 else { 968 ++iter->bucket; 969 entry = iter_next(iter, NULL); 970 } 971 return entry; 972 } 973 974 static void aarp_seq_stop(struct seq_file *seq, void *v) 975 { 976 read_unlock_bh(&aarp_lock); 977 } 978 979 static const char *dt2str(unsigned long ticks) 980 { 981 static char buf[32]; 982 983 sprintf(buf, "%ld.%02ld", ticks / HZ, ((ticks % HZ) * 100 ) / HZ); 984 985 return buf; 986 } 987 988 static int aarp_seq_show(struct seq_file *seq, void *v) 989 { 990 struct aarp_iter_state *iter = seq->private; 991 struct aarp_entry *entry = v; 992 unsigned long now = jiffies; 993 994 if (v == SEQ_START_TOKEN) 995 seq_puts(seq, 996 "Address Interface Hardware Address" 997 " Expires LastSend Retry Status\n"); 998 else { 999 seq_printf(seq, "%04X:%02X %-12s", 1000 ntohs(entry->target_addr.s_net), 1001 (unsigned int) entry->target_addr.s_node, 1002 entry->dev ? entry->dev->name : "????"); 1003 seq_printf(seq, "%02X:%02X:%02X:%02X:%02X:%02X", 1004 entry->hwaddr[0] & 0xFF, 1005 entry->hwaddr[1] & 0xFF, 1006 entry->hwaddr[2] & 0xFF, 1007 entry->hwaddr[3] & 0xFF, 1008 entry->hwaddr[4] & 0xFF, 1009 entry->hwaddr[5] & 0xFF); 1010 seq_printf(seq, " %8s", 1011 dt2str((long)entry->expires_at - (long)now)); 1012 if (iter->table == unresolved) 1013 seq_printf(seq, " %8s %6hu", 1014 dt2str(now - entry->last_sent), 1015 entry->xmit_count); 1016 else 1017 seq_puts(seq, " "); 1018 seq_printf(seq, " %s\n", 1019 (iter->table == resolved) ? "resolved" 1020 : (iter->table == unresolved) ? "unresolved" 1021 : (iter->table == proxies) ? "proxies" 1022 : "unknown"); 1023 } 1024 return 0; 1025 } 1026 1027 static struct seq_operations aarp_seq_ops = { 1028 .start = aarp_seq_start, 1029 .next = aarp_seq_next, 1030 .stop = aarp_seq_stop, 1031 .show = aarp_seq_show, 1032 }; 1033 1034 static int aarp_seq_open(struct inode *inode, struct file *file) 1035 { 1036 struct seq_file *seq; 1037 int rc = -ENOMEM; 1038 struct aarp_iter_state *s = kmalloc(sizeof(*s), GFP_KERNEL); 1039 1040 if (!s) 1041 goto out; 1042 1043 rc = seq_open(file, &aarp_seq_ops); 1044 if (rc) 1045 goto out_kfree; 1046 1047 seq = file->private_data; 1048 seq->private = s; 1049 memset(s, 0, sizeof(*s)); 1050 out: 1051 return rc; 1052 out_kfree: 1053 kfree(s); 1054 goto out; 1055 } 1056 1057 const struct file_operations atalk_seq_arp_fops = { 1058 .owner = THIS_MODULE, 1059 .open = aarp_seq_open, 1060 .read = seq_read, 1061 .llseek = seq_lseek, 1062 .release = seq_release_private, 1063 }; 1064 #endif 1065 1066 /* General module cleanup. Called from cleanup_module() in ddp.c. */ 1067 void aarp_cleanup_module(void) 1068 { 1069 del_timer_sync(&aarp_timer); 1070 unregister_netdevice_notifier(&aarp_notifier); 1071 unregister_snap_client(aarp_dl); 1072 aarp_purge(); 1073 } 1074