xref: /openbmc/linux/net/8021q/vlan_dev.c (revision 25985edc)
1 /* -*- linux-c -*-
2  * INET		802.1Q VLAN
3  *		Ethernet-type device handling.
4  *
5  * Authors:	Ben Greear <greearb@candelatech.com>
6  *              Please send support related email to: netdev@vger.kernel.org
7  *              VLAN Home Page: http://www.candelatech.com/~greear/vlan.html
8  *
9  * Fixes:       Mar 22 2001: Martin Bokaemper <mbokaemper@unispherenetworks.com>
10  *                - reset skb->pkt_type on incoming packets when MAC was changed
11  *                - see that changed MAC is saddr for outgoing packets
12  *              Oct 20, 2001:  Ard van Breeman:
13  *                - Fix MC-list, finally.
14  *                - Flush MC-list on VLAN destroy.
15  *
16  *
17  *		This program is free software; you can redistribute it and/or
18  *		modify it under the terms of the GNU General Public License
19  *		as published by the Free Software Foundation; either version
20  *		2 of the License, or (at your option) any later version.
21  */
22 
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/skbuff.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/ethtool.h>
29 #include <net/arp.h>
30 
31 #include "vlan.h"
32 #include "vlanproc.h"
33 #include <linux/if_vlan.h>
34 
35 /*
36  *	Rebuild the Ethernet MAC header. This is called after an ARP
37  *	(or in future other address resolution) has completed on this
38  *	sk_buff. We now let ARP fill in the other fields.
39  *
40  *	This routine CANNOT use cached dst->neigh!
41  *	Really, it is used only when dst->neigh is wrong.
42  *
43  * TODO:  This needs a checkup, I'm ignorant here. --BLG
44  */
45 static int vlan_dev_rebuild_header(struct sk_buff *skb)
46 {
47 	struct net_device *dev = skb->dev;
48 	struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data);
49 
50 	switch (veth->h_vlan_encapsulated_proto) {
51 #ifdef CONFIG_INET
52 	case htons(ETH_P_IP):
53 
54 		/* TODO:  Confirm this will work with VLAN headers... */
55 		return arp_find(veth->h_dest, skb);
56 #endif
57 	default:
58 		pr_debug("%s: unable to resolve type %X addresses.\n",
59 			 dev->name, ntohs(veth->h_vlan_encapsulated_proto));
60 
61 		memcpy(veth->h_source, dev->dev_addr, ETH_ALEN);
62 		break;
63 	}
64 
65 	return 0;
66 }
67 
68 static inline struct sk_buff *vlan_check_reorder_header(struct sk_buff *skb)
69 {
70 	if (vlan_dev_info(skb->dev)->flags & VLAN_FLAG_REORDER_HDR) {
71 		if (skb_cow(skb, skb_headroom(skb)) < 0)
72 			skb = NULL;
73 		if (skb) {
74 			/* Lifted from Gleb's VLAN code... */
75 			memmove(skb->data - ETH_HLEN,
76 				skb->data - VLAN_ETH_HLEN, 12);
77 			skb->mac_header += VLAN_HLEN;
78 		}
79 	}
80 
81 	return skb;
82 }
83 
84 static inline void vlan_set_encap_proto(struct sk_buff *skb,
85 		struct vlan_hdr *vhdr)
86 {
87 	__be16 proto;
88 	unsigned char *rawp;
89 
90 	/*
91 	 * Was a VLAN packet, grab the encapsulated protocol, which the layer
92 	 * three protocols care about.
93 	 */
94 
95 	proto = vhdr->h_vlan_encapsulated_proto;
96 	if (ntohs(proto) >= 1536) {
97 		skb->protocol = proto;
98 		return;
99 	}
100 
101 	rawp = skb->data;
102 	if (*(unsigned short *)rawp == 0xFFFF)
103 		/*
104 		 * This is a magic hack to spot IPX packets. Older Novell
105 		 * breaks the protocol design and runs IPX over 802.3 without
106 		 * an 802.2 LLC layer. We look for FFFF which isn't a used
107 		 * 802.2 SSAP/DSAP. This won't work for fault tolerant netware
108 		 * but does for the rest.
109 		 */
110 		skb->protocol = htons(ETH_P_802_3);
111 	else
112 		/*
113 		 * Real 802.2 LLC
114 		 */
115 		skb->protocol = htons(ETH_P_802_2);
116 }
117 
118 /*
119  *	Determine the packet's protocol ID. The rule here is that we
120  *	assume 802.3 if the type field is short enough to be a length.
121  *	This is normal practice and works for any 'now in use' protocol.
122  *
123  *  Also, at this point we assume that we ARE dealing exclusively with
124  *  VLAN packets, or packets that should be made into VLAN packets based
125  *  on a default VLAN ID.
126  *
127  *  NOTE:  Should be similar to ethernet/eth.c.
128  *
129  *  SANITY NOTE:  This method is called when a packet is moving up the stack
130  *                towards userland.  To get here, it would have already passed
131  *                through the ethernet/eth.c eth_type_trans() method.
132  *  SANITY NOTE 2: We are referencing to the VLAN_HDR frields, which MAY be
133  *                 stored UNALIGNED in the memory.  RISC systems don't like
134  *                 such cases very much...
135  *  SANITY NOTE 2a: According to Dave Miller & Alexey, it will always be
136  *  		    aligned, so there doesn't need to be any of the unaligned
137  *  		    stuff.  It has been commented out now...  --Ben
138  *
139  */
140 int vlan_skb_recv(struct sk_buff *skb, struct net_device *dev,
141 		  struct packet_type *ptype, struct net_device *orig_dev)
142 {
143 	struct vlan_hdr *vhdr;
144 	struct vlan_pcpu_stats *rx_stats;
145 	struct net_device *vlan_dev;
146 	u16 vlan_id;
147 	u16 vlan_tci;
148 
149 	skb = skb_share_check(skb, GFP_ATOMIC);
150 	if (skb == NULL)
151 		goto err_free;
152 
153 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
154 		goto err_free;
155 
156 	vhdr = (struct vlan_hdr *)skb->data;
157 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
158 	vlan_id = vlan_tci & VLAN_VID_MASK;
159 
160 	rcu_read_lock();
161 	vlan_dev = vlan_find_dev(dev, vlan_id);
162 
163 	/* If the VLAN device is defined, we use it.
164 	 * If not, and the VID is 0, it is a 802.1p packet (not
165 	 * really a VLAN), so we will just netif_rx it later to the
166 	 * original interface, but with the skb->proto set to the
167 	 * wrapped proto: we do nothing here.
168 	 */
169 
170 	if (!vlan_dev) {
171 		if (vlan_id) {
172 			pr_debug("%s: ERROR: No net_device for VID: %u on dev: %s\n",
173 				 __func__, vlan_id, dev->name);
174 			goto err_unlock;
175 		}
176 		rx_stats = NULL;
177 	} else {
178 		skb->dev = vlan_dev;
179 
180 		rx_stats = this_cpu_ptr(vlan_dev_info(skb->dev)->vlan_pcpu_stats);
181 
182 		u64_stats_update_begin(&rx_stats->syncp);
183 		rx_stats->rx_packets++;
184 		rx_stats->rx_bytes += skb->len;
185 
186 		skb->priority = vlan_get_ingress_priority(skb->dev, vlan_tci);
187 
188 		pr_debug("%s: priority: %u for TCI: %hu\n",
189 			 __func__, skb->priority, vlan_tci);
190 
191 		switch (skb->pkt_type) {
192 		case PACKET_BROADCAST:
193 			/* Yeah, stats collect these together.. */
194 			/* stats->broadcast ++; // no such counter :-( */
195 			break;
196 
197 		case PACKET_MULTICAST:
198 			rx_stats->rx_multicast++;
199 			break;
200 
201 		case PACKET_OTHERHOST:
202 			/* Our lower layer thinks this is not local, let's make
203 			 * sure.
204 			 * This allows the VLAN to have a different MAC than the
205 			 * underlying device, and still route correctly.
206 			 */
207 			if (!compare_ether_addr(eth_hdr(skb)->h_dest,
208 						skb->dev->dev_addr))
209 				skb->pkt_type = PACKET_HOST;
210 			break;
211 		default:
212 			break;
213 		}
214 		u64_stats_update_end(&rx_stats->syncp);
215 	}
216 
217 	skb_pull_rcsum(skb, VLAN_HLEN);
218 	vlan_set_encap_proto(skb, vhdr);
219 
220 	if (vlan_dev) {
221 		skb = vlan_check_reorder_header(skb);
222 		if (!skb) {
223 			rx_stats->rx_errors++;
224 			goto err_unlock;
225 		}
226 	}
227 
228 	netif_rx(skb);
229 
230 	rcu_read_unlock();
231 	return NET_RX_SUCCESS;
232 
233 err_unlock:
234 	rcu_read_unlock();
235 err_free:
236 	atomic_long_inc(&dev->rx_dropped);
237 	kfree_skb(skb);
238 	return NET_RX_DROP;
239 }
240 
241 static inline u16
242 vlan_dev_get_egress_qos_mask(struct net_device *dev, struct sk_buff *skb)
243 {
244 	struct vlan_priority_tci_mapping *mp;
245 
246 	mp = vlan_dev_info(dev)->egress_priority_map[(skb->priority & 0xF)];
247 	while (mp) {
248 		if (mp->priority == skb->priority) {
249 			return mp->vlan_qos; /* This should already be shifted
250 					      * to mask correctly with the
251 					      * VLAN's TCI */
252 		}
253 		mp = mp->next;
254 	}
255 	return 0;
256 }
257 
258 /*
259  *	Create the VLAN header for an arbitrary protocol layer
260  *
261  *	saddr=NULL	means use device source address
262  *	daddr=NULL	means leave destination address (eg unresolved arp)
263  *
264  *  This is called when the SKB is moving down the stack towards the
265  *  physical devices.
266  */
267 static int vlan_dev_hard_header(struct sk_buff *skb, struct net_device *dev,
268 				unsigned short type,
269 				const void *daddr, const void *saddr,
270 				unsigned int len)
271 {
272 	struct vlan_hdr *vhdr;
273 	unsigned int vhdrlen = 0;
274 	u16 vlan_tci = 0;
275 	int rc;
276 
277 	if (!(vlan_dev_info(dev)->flags & VLAN_FLAG_REORDER_HDR)) {
278 		vhdr = (struct vlan_hdr *) skb_push(skb, VLAN_HLEN);
279 
280 		vlan_tci = vlan_dev_info(dev)->vlan_id;
281 		vlan_tci |= vlan_dev_get_egress_qos_mask(dev, skb);
282 		vhdr->h_vlan_TCI = htons(vlan_tci);
283 
284 		/*
285 		 *  Set the protocol type. For a packet of type ETH_P_802_3/2 we
286 		 *  put the length in here instead.
287 		 */
288 		if (type != ETH_P_802_3 && type != ETH_P_802_2)
289 			vhdr->h_vlan_encapsulated_proto = htons(type);
290 		else
291 			vhdr->h_vlan_encapsulated_proto = htons(len);
292 
293 		skb->protocol = htons(ETH_P_8021Q);
294 		type = ETH_P_8021Q;
295 		vhdrlen = VLAN_HLEN;
296 	}
297 
298 	/* Before delegating work to the lower layer, enter our MAC-address */
299 	if (saddr == NULL)
300 		saddr = dev->dev_addr;
301 
302 	/* Now make the underlying real hard header */
303 	dev = vlan_dev_info(dev)->real_dev;
304 	rc = dev_hard_header(skb, dev, type, daddr, saddr, len + vhdrlen);
305 	if (rc > 0)
306 		rc += vhdrlen;
307 	return rc;
308 }
309 
310 static netdev_tx_t vlan_dev_hard_start_xmit(struct sk_buff *skb,
311 					    struct net_device *dev)
312 {
313 	struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data);
314 	unsigned int len;
315 	int ret;
316 
317 	/* Handle non-VLAN frames if they are sent to us, for example by DHCP.
318 	 *
319 	 * NOTE: THIS ASSUMES DIX ETHERNET, SPECIFICALLY NOT SUPPORTING
320 	 * OTHER THINGS LIKE FDDI/TokenRing/802.3 SNAPs...
321 	 */
322 	if (veth->h_vlan_proto != htons(ETH_P_8021Q) ||
323 	    vlan_dev_info(dev)->flags & VLAN_FLAG_REORDER_HDR) {
324 		u16 vlan_tci;
325 		vlan_tci = vlan_dev_info(dev)->vlan_id;
326 		vlan_tci |= vlan_dev_get_egress_qos_mask(dev, skb);
327 		skb = __vlan_hwaccel_put_tag(skb, vlan_tci);
328 	}
329 
330 	skb_set_dev(skb, vlan_dev_info(dev)->real_dev);
331 	len = skb->len;
332 	ret = dev_queue_xmit(skb);
333 
334 	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
335 		struct vlan_pcpu_stats *stats;
336 
337 		stats = this_cpu_ptr(vlan_dev_info(dev)->vlan_pcpu_stats);
338 		u64_stats_update_begin(&stats->syncp);
339 		stats->tx_packets++;
340 		stats->tx_bytes += len;
341 		u64_stats_update_begin(&stats->syncp);
342 	} else {
343 		this_cpu_inc(vlan_dev_info(dev)->vlan_pcpu_stats->tx_dropped);
344 	}
345 
346 	return ret;
347 }
348 
349 static int vlan_dev_change_mtu(struct net_device *dev, int new_mtu)
350 {
351 	/* TODO: gotta make sure the underlying layer can handle it,
352 	 * maybe an IFF_VLAN_CAPABLE flag for devices?
353 	 */
354 	if (vlan_dev_info(dev)->real_dev->mtu < new_mtu)
355 		return -ERANGE;
356 
357 	dev->mtu = new_mtu;
358 
359 	return 0;
360 }
361 
362 void vlan_dev_set_ingress_priority(const struct net_device *dev,
363 				   u32 skb_prio, u16 vlan_prio)
364 {
365 	struct vlan_dev_info *vlan = vlan_dev_info(dev);
366 
367 	if (vlan->ingress_priority_map[vlan_prio & 0x7] && !skb_prio)
368 		vlan->nr_ingress_mappings--;
369 	else if (!vlan->ingress_priority_map[vlan_prio & 0x7] && skb_prio)
370 		vlan->nr_ingress_mappings++;
371 
372 	vlan->ingress_priority_map[vlan_prio & 0x7] = skb_prio;
373 }
374 
375 int vlan_dev_set_egress_priority(const struct net_device *dev,
376 				 u32 skb_prio, u16 vlan_prio)
377 {
378 	struct vlan_dev_info *vlan = vlan_dev_info(dev);
379 	struct vlan_priority_tci_mapping *mp = NULL;
380 	struct vlan_priority_tci_mapping *np;
381 	u32 vlan_qos = (vlan_prio << VLAN_PRIO_SHIFT) & VLAN_PRIO_MASK;
382 
383 	/* See if a priority mapping exists.. */
384 	mp = vlan->egress_priority_map[skb_prio & 0xF];
385 	while (mp) {
386 		if (mp->priority == skb_prio) {
387 			if (mp->vlan_qos && !vlan_qos)
388 				vlan->nr_egress_mappings--;
389 			else if (!mp->vlan_qos && vlan_qos)
390 				vlan->nr_egress_mappings++;
391 			mp->vlan_qos = vlan_qos;
392 			return 0;
393 		}
394 		mp = mp->next;
395 	}
396 
397 	/* Create a new mapping then. */
398 	mp = vlan->egress_priority_map[skb_prio & 0xF];
399 	np = kmalloc(sizeof(struct vlan_priority_tci_mapping), GFP_KERNEL);
400 	if (!np)
401 		return -ENOBUFS;
402 
403 	np->next = mp;
404 	np->priority = skb_prio;
405 	np->vlan_qos = vlan_qos;
406 	vlan->egress_priority_map[skb_prio & 0xF] = np;
407 	if (vlan_qos)
408 		vlan->nr_egress_mappings++;
409 	return 0;
410 }
411 
412 /* Flags are defined in the vlan_flags enum in include/linux/if_vlan.h file. */
413 int vlan_dev_change_flags(const struct net_device *dev, u32 flags, u32 mask)
414 {
415 	struct vlan_dev_info *vlan = vlan_dev_info(dev);
416 	u32 old_flags = vlan->flags;
417 
418 	if (mask & ~(VLAN_FLAG_REORDER_HDR | VLAN_FLAG_GVRP |
419 		     VLAN_FLAG_LOOSE_BINDING))
420 		return -EINVAL;
421 
422 	vlan->flags = (old_flags & ~mask) | (flags & mask);
423 
424 	if (netif_running(dev) && (vlan->flags ^ old_flags) & VLAN_FLAG_GVRP) {
425 		if (vlan->flags & VLAN_FLAG_GVRP)
426 			vlan_gvrp_request_join(dev);
427 		else
428 			vlan_gvrp_request_leave(dev);
429 	}
430 	return 0;
431 }
432 
433 void vlan_dev_get_realdev_name(const struct net_device *dev, char *result)
434 {
435 	strncpy(result, vlan_dev_info(dev)->real_dev->name, 23);
436 }
437 
438 static int vlan_dev_open(struct net_device *dev)
439 {
440 	struct vlan_dev_info *vlan = vlan_dev_info(dev);
441 	struct net_device *real_dev = vlan->real_dev;
442 	int err;
443 
444 	if (!(real_dev->flags & IFF_UP) &&
445 	    !(vlan->flags & VLAN_FLAG_LOOSE_BINDING))
446 		return -ENETDOWN;
447 
448 	if (compare_ether_addr(dev->dev_addr, real_dev->dev_addr)) {
449 		err = dev_uc_add(real_dev, dev->dev_addr);
450 		if (err < 0)
451 			goto out;
452 	}
453 
454 	if (dev->flags & IFF_ALLMULTI) {
455 		err = dev_set_allmulti(real_dev, 1);
456 		if (err < 0)
457 			goto del_unicast;
458 	}
459 	if (dev->flags & IFF_PROMISC) {
460 		err = dev_set_promiscuity(real_dev, 1);
461 		if (err < 0)
462 			goto clear_allmulti;
463 	}
464 
465 	memcpy(vlan->real_dev_addr, real_dev->dev_addr, ETH_ALEN);
466 
467 	if (vlan->flags & VLAN_FLAG_GVRP)
468 		vlan_gvrp_request_join(dev);
469 
470 	if (netif_carrier_ok(real_dev))
471 		netif_carrier_on(dev);
472 	return 0;
473 
474 clear_allmulti:
475 	if (dev->flags & IFF_ALLMULTI)
476 		dev_set_allmulti(real_dev, -1);
477 del_unicast:
478 	if (compare_ether_addr(dev->dev_addr, real_dev->dev_addr))
479 		dev_uc_del(real_dev, dev->dev_addr);
480 out:
481 	netif_carrier_off(dev);
482 	return err;
483 }
484 
485 static int vlan_dev_stop(struct net_device *dev)
486 {
487 	struct vlan_dev_info *vlan = vlan_dev_info(dev);
488 	struct net_device *real_dev = vlan->real_dev;
489 
490 	if (vlan->flags & VLAN_FLAG_GVRP)
491 		vlan_gvrp_request_leave(dev);
492 
493 	dev_mc_unsync(real_dev, dev);
494 	dev_uc_unsync(real_dev, dev);
495 	if (dev->flags & IFF_ALLMULTI)
496 		dev_set_allmulti(real_dev, -1);
497 	if (dev->flags & IFF_PROMISC)
498 		dev_set_promiscuity(real_dev, -1);
499 
500 	if (compare_ether_addr(dev->dev_addr, real_dev->dev_addr))
501 		dev_uc_del(real_dev, dev->dev_addr);
502 
503 	netif_carrier_off(dev);
504 	return 0;
505 }
506 
507 static int vlan_dev_set_mac_address(struct net_device *dev, void *p)
508 {
509 	struct net_device *real_dev = vlan_dev_info(dev)->real_dev;
510 	struct sockaddr *addr = p;
511 	int err;
512 
513 	if (!is_valid_ether_addr(addr->sa_data))
514 		return -EADDRNOTAVAIL;
515 
516 	if (!(dev->flags & IFF_UP))
517 		goto out;
518 
519 	if (compare_ether_addr(addr->sa_data, real_dev->dev_addr)) {
520 		err = dev_uc_add(real_dev, addr->sa_data);
521 		if (err < 0)
522 			return err;
523 	}
524 
525 	if (compare_ether_addr(dev->dev_addr, real_dev->dev_addr))
526 		dev_uc_del(real_dev, dev->dev_addr);
527 
528 out:
529 	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
530 	return 0;
531 }
532 
533 static int vlan_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
534 {
535 	struct net_device *real_dev = vlan_dev_info(dev)->real_dev;
536 	const struct net_device_ops *ops = real_dev->netdev_ops;
537 	struct ifreq ifrr;
538 	int err = -EOPNOTSUPP;
539 
540 	strncpy(ifrr.ifr_name, real_dev->name, IFNAMSIZ);
541 	ifrr.ifr_ifru = ifr->ifr_ifru;
542 
543 	switch (cmd) {
544 	case SIOCGMIIPHY:
545 	case SIOCGMIIREG:
546 	case SIOCSMIIREG:
547 		if (netif_device_present(real_dev) && ops->ndo_do_ioctl)
548 			err = ops->ndo_do_ioctl(real_dev, &ifrr, cmd);
549 		break;
550 	}
551 
552 	if (!err)
553 		ifr->ifr_ifru = ifrr.ifr_ifru;
554 
555 	return err;
556 }
557 
558 static int vlan_dev_neigh_setup(struct net_device *dev, struct neigh_parms *pa)
559 {
560 	struct net_device *real_dev = vlan_dev_info(dev)->real_dev;
561 	const struct net_device_ops *ops = real_dev->netdev_ops;
562 	int err = 0;
563 
564 	if (netif_device_present(real_dev) && ops->ndo_neigh_setup)
565 		err = ops->ndo_neigh_setup(real_dev, pa);
566 
567 	return err;
568 }
569 
570 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
571 static int vlan_dev_fcoe_ddp_setup(struct net_device *dev, u16 xid,
572 				   struct scatterlist *sgl, unsigned int sgc)
573 {
574 	struct net_device *real_dev = vlan_dev_info(dev)->real_dev;
575 	const struct net_device_ops *ops = real_dev->netdev_ops;
576 	int rc = 0;
577 
578 	if (ops->ndo_fcoe_ddp_setup)
579 		rc = ops->ndo_fcoe_ddp_setup(real_dev, xid, sgl, sgc);
580 
581 	return rc;
582 }
583 
584 static int vlan_dev_fcoe_ddp_done(struct net_device *dev, u16 xid)
585 {
586 	struct net_device *real_dev = vlan_dev_info(dev)->real_dev;
587 	const struct net_device_ops *ops = real_dev->netdev_ops;
588 	int len = 0;
589 
590 	if (ops->ndo_fcoe_ddp_done)
591 		len = ops->ndo_fcoe_ddp_done(real_dev, xid);
592 
593 	return len;
594 }
595 
596 static int vlan_dev_fcoe_enable(struct net_device *dev)
597 {
598 	struct net_device *real_dev = vlan_dev_info(dev)->real_dev;
599 	const struct net_device_ops *ops = real_dev->netdev_ops;
600 	int rc = -EINVAL;
601 
602 	if (ops->ndo_fcoe_enable)
603 		rc = ops->ndo_fcoe_enable(real_dev);
604 	return rc;
605 }
606 
607 static int vlan_dev_fcoe_disable(struct net_device *dev)
608 {
609 	struct net_device *real_dev = vlan_dev_info(dev)->real_dev;
610 	const struct net_device_ops *ops = real_dev->netdev_ops;
611 	int rc = -EINVAL;
612 
613 	if (ops->ndo_fcoe_disable)
614 		rc = ops->ndo_fcoe_disable(real_dev);
615 	return rc;
616 }
617 
618 static int vlan_dev_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
619 {
620 	struct net_device *real_dev = vlan_dev_info(dev)->real_dev;
621 	const struct net_device_ops *ops = real_dev->netdev_ops;
622 	int rc = -EINVAL;
623 
624 	if (ops->ndo_fcoe_get_wwn)
625 		rc = ops->ndo_fcoe_get_wwn(real_dev, wwn, type);
626 	return rc;
627 }
628 
629 static int vlan_dev_fcoe_ddp_target(struct net_device *dev, u16 xid,
630 				    struct scatterlist *sgl, unsigned int sgc)
631 {
632 	struct net_device *real_dev = vlan_dev_info(dev)->real_dev;
633 	const struct net_device_ops *ops = real_dev->netdev_ops;
634 	int rc = 0;
635 
636 	if (ops->ndo_fcoe_ddp_target)
637 		rc = ops->ndo_fcoe_ddp_target(real_dev, xid, sgl, sgc);
638 
639 	return rc;
640 }
641 #endif
642 
643 static void vlan_dev_change_rx_flags(struct net_device *dev, int change)
644 {
645 	struct net_device *real_dev = vlan_dev_info(dev)->real_dev;
646 
647 	if (change & IFF_ALLMULTI)
648 		dev_set_allmulti(real_dev, dev->flags & IFF_ALLMULTI ? 1 : -1);
649 	if (change & IFF_PROMISC)
650 		dev_set_promiscuity(real_dev, dev->flags & IFF_PROMISC ? 1 : -1);
651 }
652 
653 static void vlan_dev_set_rx_mode(struct net_device *vlan_dev)
654 {
655 	dev_mc_sync(vlan_dev_info(vlan_dev)->real_dev, vlan_dev);
656 	dev_uc_sync(vlan_dev_info(vlan_dev)->real_dev, vlan_dev);
657 }
658 
659 /*
660  * vlan network devices have devices nesting below it, and are a special
661  * "super class" of normal network devices; split their locks off into a
662  * separate class since they always nest.
663  */
664 static struct lock_class_key vlan_netdev_xmit_lock_key;
665 static struct lock_class_key vlan_netdev_addr_lock_key;
666 
667 static void vlan_dev_set_lockdep_one(struct net_device *dev,
668 				     struct netdev_queue *txq,
669 				     void *_subclass)
670 {
671 	lockdep_set_class_and_subclass(&txq->_xmit_lock,
672 				       &vlan_netdev_xmit_lock_key,
673 				       *(int *)_subclass);
674 }
675 
676 static void vlan_dev_set_lockdep_class(struct net_device *dev, int subclass)
677 {
678 	lockdep_set_class_and_subclass(&dev->addr_list_lock,
679 				       &vlan_netdev_addr_lock_key,
680 				       subclass);
681 	netdev_for_each_tx_queue(dev, vlan_dev_set_lockdep_one, &subclass);
682 }
683 
684 static const struct header_ops vlan_header_ops = {
685 	.create	 = vlan_dev_hard_header,
686 	.rebuild = vlan_dev_rebuild_header,
687 	.parse	 = eth_header_parse,
688 };
689 
690 static const struct net_device_ops vlan_netdev_ops;
691 
692 static int vlan_dev_init(struct net_device *dev)
693 {
694 	struct net_device *real_dev = vlan_dev_info(dev)->real_dev;
695 	int subclass = 0;
696 
697 	netif_carrier_off(dev);
698 
699 	/* IFF_BROADCAST|IFF_MULTICAST; ??? */
700 	dev->flags  = real_dev->flags & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
701 					  IFF_MASTER | IFF_SLAVE);
702 	dev->iflink = real_dev->ifindex;
703 	dev->state  = (real_dev->state & ((1<<__LINK_STATE_NOCARRIER) |
704 					  (1<<__LINK_STATE_DORMANT))) |
705 		      (1<<__LINK_STATE_PRESENT);
706 
707 	dev->features |= real_dev->features & real_dev->vlan_features;
708 	dev->features |= NETIF_F_LLTX;
709 	dev->gso_max_size = real_dev->gso_max_size;
710 
711 	/* ipv6 shared card related stuff */
712 	dev->dev_id = real_dev->dev_id;
713 
714 	if (is_zero_ether_addr(dev->dev_addr))
715 		memcpy(dev->dev_addr, real_dev->dev_addr, dev->addr_len);
716 	if (is_zero_ether_addr(dev->broadcast))
717 		memcpy(dev->broadcast, real_dev->broadcast, dev->addr_len);
718 
719 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
720 	dev->fcoe_ddp_xid = real_dev->fcoe_ddp_xid;
721 #endif
722 
723 	dev->needed_headroom = real_dev->needed_headroom;
724 	if (real_dev->features & NETIF_F_HW_VLAN_TX) {
725 		dev->header_ops      = real_dev->header_ops;
726 		dev->hard_header_len = real_dev->hard_header_len;
727 	} else {
728 		dev->header_ops      = &vlan_header_ops;
729 		dev->hard_header_len = real_dev->hard_header_len + VLAN_HLEN;
730 	}
731 
732 	dev->netdev_ops = &vlan_netdev_ops;
733 
734 	if (is_vlan_dev(real_dev))
735 		subclass = 1;
736 
737 	vlan_dev_set_lockdep_class(dev, subclass);
738 
739 	vlan_dev_info(dev)->vlan_pcpu_stats = alloc_percpu(struct vlan_pcpu_stats);
740 	if (!vlan_dev_info(dev)->vlan_pcpu_stats)
741 		return -ENOMEM;
742 
743 	return 0;
744 }
745 
746 static void vlan_dev_uninit(struct net_device *dev)
747 {
748 	struct vlan_priority_tci_mapping *pm;
749 	struct vlan_dev_info *vlan = vlan_dev_info(dev);
750 	int i;
751 
752 	free_percpu(vlan->vlan_pcpu_stats);
753 	vlan->vlan_pcpu_stats = NULL;
754 	for (i = 0; i < ARRAY_SIZE(vlan->egress_priority_map); i++) {
755 		while ((pm = vlan->egress_priority_map[i]) != NULL) {
756 			vlan->egress_priority_map[i] = pm->next;
757 			kfree(pm);
758 		}
759 	}
760 }
761 
762 static int vlan_ethtool_get_settings(struct net_device *dev,
763 				     struct ethtool_cmd *cmd)
764 {
765 	const struct vlan_dev_info *vlan = vlan_dev_info(dev);
766 	return dev_ethtool_get_settings(vlan->real_dev, cmd);
767 }
768 
769 static void vlan_ethtool_get_drvinfo(struct net_device *dev,
770 				     struct ethtool_drvinfo *info)
771 {
772 	strcpy(info->driver, vlan_fullname);
773 	strcpy(info->version, vlan_version);
774 	strcpy(info->fw_version, "N/A");
775 }
776 
777 static u32 vlan_ethtool_get_rx_csum(struct net_device *dev)
778 {
779 	const struct vlan_dev_info *vlan = vlan_dev_info(dev);
780 	return dev_ethtool_get_rx_csum(vlan->real_dev);
781 }
782 
783 static u32 vlan_ethtool_get_flags(struct net_device *dev)
784 {
785 	const struct vlan_dev_info *vlan = vlan_dev_info(dev);
786 	return dev_ethtool_get_flags(vlan->real_dev);
787 }
788 
789 static struct rtnl_link_stats64 *vlan_dev_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
790 {
791 
792 	if (vlan_dev_info(dev)->vlan_pcpu_stats) {
793 		struct vlan_pcpu_stats *p;
794 		u32 rx_errors = 0, tx_dropped = 0;
795 		int i;
796 
797 		for_each_possible_cpu(i) {
798 			u64 rxpackets, rxbytes, rxmulticast, txpackets, txbytes;
799 			unsigned int start;
800 
801 			p = per_cpu_ptr(vlan_dev_info(dev)->vlan_pcpu_stats, i);
802 			do {
803 				start = u64_stats_fetch_begin_bh(&p->syncp);
804 				rxpackets	= p->rx_packets;
805 				rxbytes		= p->rx_bytes;
806 				rxmulticast	= p->rx_multicast;
807 				txpackets	= p->tx_packets;
808 				txbytes		= p->tx_bytes;
809 			} while (u64_stats_fetch_retry_bh(&p->syncp, start));
810 
811 			stats->rx_packets	+= rxpackets;
812 			stats->rx_bytes		+= rxbytes;
813 			stats->multicast	+= rxmulticast;
814 			stats->tx_packets	+= txpackets;
815 			stats->tx_bytes		+= txbytes;
816 			/* rx_errors & tx_dropped are u32 */
817 			rx_errors	+= p->rx_errors;
818 			tx_dropped	+= p->tx_dropped;
819 		}
820 		stats->rx_errors  = rx_errors;
821 		stats->tx_dropped = tx_dropped;
822 	}
823 	return stats;
824 }
825 
826 static int vlan_ethtool_set_tso(struct net_device *dev, u32 data)
827 {
828        if (data) {
829 		struct net_device *real_dev = vlan_dev_info(dev)->real_dev;
830 
831 		/* Underlying device must support TSO for VLAN-tagged packets
832 		 * and must have TSO enabled now.
833 		 */
834 		if (!(real_dev->vlan_features & NETIF_F_TSO))
835 			return -EOPNOTSUPP;
836 		if (!(real_dev->features & NETIF_F_TSO))
837 			return -EINVAL;
838 		dev->features |= NETIF_F_TSO;
839 	} else {
840 		dev->features &= ~NETIF_F_TSO;
841 	}
842 	return 0;
843 }
844 
845 static const struct ethtool_ops vlan_ethtool_ops = {
846 	.get_settings	        = vlan_ethtool_get_settings,
847 	.get_drvinfo	        = vlan_ethtool_get_drvinfo,
848 	.get_link		= ethtool_op_get_link,
849 	.get_rx_csum		= vlan_ethtool_get_rx_csum,
850 	.get_flags		= vlan_ethtool_get_flags,
851 	.set_tso                = vlan_ethtool_set_tso,
852 };
853 
854 static const struct net_device_ops vlan_netdev_ops = {
855 	.ndo_change_mtu		= vlan_dev_change_mtu,
856 	.ndo_init		= vlan_dev_init,
857 	.ndo_uninit		= vlan_dev_uninit,
858 	.ndo_open		= vlan_dev_open,
859 	.ndo_stop		= vlan_dev_stop,
860 	.ndo_start_xmit =  vlan_dev_hard_start_xmit,
861 	.ndo_validate_addr	= eth_validate_addr,
862 	.ndo_set_mac_address	= vlan_dev_set_mac_address,
863 	.ndo_set_rx_mode	= vlan_dev_set_rx_mode,
864 	.ndo_set_multicast_list	= vlan_dev_set_rx_mode,
865 	.ndo_change_rx_flags	= vlan_dev_change_rx_flags,
866 	.ndo_do_ioctl		= vlan_dev_ioctl,
867 	.ndo_neigh_setup	= vlan_dev_neigh_setup,
868 	.ndo_get_stats64	= vlan_dev_get_stats64,
869 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
870 	.ndo_fcoe_ddp_setup	= vlan_dev_fcoe_ddp_setup,
871 	.ndo_fcoe_ddp_done	= vlan_dev_fcoe_ddp_done,
872 	.ndo_fcoe_enable	= vlan_dev_fcoe_enable,
873 	.ndo_fcoe_disable	= vlan_dev_fcoe_disable,
874 	.ndo_fcoe_get_wwn	= vlan_dev_fcoe_get_wwn,
875 	.ndo_fcoe_ddp_target	= vlan_dev_fcoe_ddp_target,
876 #endif
877 };
878 
879 void vlan_setup(struct net_device *dev)
880 {
881 	ether_setup(dev);
882 
883 	dev->priv_flags		|= IFF_802_1Q_VLAN;
884 	dev->priv_flags		&= ~IFF_XMIT_DST_RELEASE;
885 	dev->tx_queue_len	= 0;
886 
887 	dev->netdev_ops		= &vlan_netdev_ops;
888 	dev->destructor		= free_netdev;
889 	dev->ethtool_ops	= &vlan_ethtool_ops;
890 
891 	memset(dev->broadcast, 0, ETH_ALEN);
892 }
893