1 #include <linux/skbuff.h> 2 #include <linux/netdevice.h> 3 #include <linux/if_vlan.h> 4 #include <linux/netpoll.h> 5 #include <linux/export.h> 6 #include "vlan.h" 7 8 bool vlan_do_receive(struct sk_buff **skbp) 9 { 10 struct sk_buff *skb = *skbp; 11 __be16 vlan_proto = skb->vlan_proto; 12 u16 vlan_id = skb_vlan_tag_get_id(skb); 13 struct net_device *vlan_dev; 14 struct vlan_pcpu_stats *rx_stats; 15 16 vlan_dev = vlan_find_dev(skb->dev, vlan_proto, vlan_id); 17 if (!vlan_dev) 18 return false; 19 20 skb = *skbp = skb_share_check(skb, GFP_ATOMIC); 21 if (unlikely(!skb)) 22 return false; 23 24 skb->dev = vlan_dev; 25 if (unlikely(skb->pkt_type == PACKET_OTHERHOST)) { 26 /* Our lower layer thinks this is not local, let's make sure. 27 * This allows the VLAN to have a different MAC than the 28 * underlying device, and still route correctly. */ 29 if (ether_addr_equal_64bits(eth_hdr(skb)->h_dest, vlan_dev->dev_addr)) 30 skb->pkt_type = PACKET_HOST; 31 } 32 33 if (!(vlan_dev_priv(vlan_dev)->flags & VLAN_FLAG_REORDER_HDR) && 34 !netif_is_macvlan_port(vlan_dev) && 35 !netif_is_bridge_port(vlan_dev)) { 36 unsigned int offset = skb->data - skb_mac_header(skb); 37 38 /* 39 * vlan_insert_tag expect skb->data pointing to mac header. 40 * So change skb->data before calling it and change back to 41 * original position later 42 */ 43 skb_push(skb, offset); 44 skb = *skbp = vlan_insert_tag(skb, skb->vlan_proto, 45 skb->vlan_tci); 46 if (!skb) 47 return false; 48 skb_pull(skb, offset + VLAN_HLEN); 49 skb_reset_mac_len(skb); 50 } 51 52 skb->priority = vlan_get_ingress_priority(vlan_dev, skb->vlan_tci); 53 skb->vlan_tci = 0; 54 55 rx_stats = this_cpu_ptr(vlan_dev_priv(vlan_dev)->vlan_pcpu_stats); 56 57 u64_stats_update_begin(&rx_stats->syncp); 58 rx_stats->rx_packets++; 59 rx_stats->rx_bytes += skb->len; 60 if (skb->pkt_type == PACKET_MULTICAST) 61 rx_stats->rx_multicast++; 62 u64_stats_update_end(&rx_stats->syncp); 63 64 return true; 65 } 66 67 /* Must be invoked with rcu_read_lock. */ 68 struct net_device *__vlan_find_dev_deep_rcu(struct net_device *dev, 69 __be16 vlan_proto, u16 vlan_id) 70 { 71 struct vlan_info *vlan_info = rcu_dereference(dev->vlan_info); 72 73 if (vlan_info) { 74 return vlan_group_get_device(&vlan_info->grp, 75 vlan_proto, vlan_id); 76 } else { 77 /* 78 * Lower devices of master uppers (bonding, team) do not have 79 * grp assigned to themselves. Grp is assigned to upper device 80 * instead. 81 */ 82 struct net_device *upper_dev; 83 84 upper_dev = netdev_master_upper_dev_get_rcu(dev); 85 if (upper_dev) 86 return __vlan_find_dev_deep_rcu(upper_dev, 87 vlan_proto, vlan_id); 88 } 89 90 return NULL; 91 } 92 EXPORT_SYMBOL(__vlan_find_dev_deep_rcu); 93 94 struct net_device *vlan_dev_real_dev(const struct net_device *dev) 95 { 96 struct net_device *ret = vlan_dev_priv(dev)->real_dev; 97 98 while (is_vlan_dev(ret)) 99 ret = vlan_dev_priv(ret)->real_dev; 100 101 return ret; 102 } 103 EXPORT_SYMBOL(vlan_dev_real_dev); 104 105 u16 vlan_dev_vlan_id(const struct net_device *dev) 106 { 107 return vlan_dev_priv(dev)->vlan_id; 108 } 109 EXPORT_SYMBOL(vlan_dev_vlan_id); 110 111 __be16 vlan_dev_vlan_proto(const struct net_device *dev) 112 { 113 return vlan_dev_priv(dev)->vlan_proto; 114 } 115 EXPORT_SYMBOL(vlan_dev_vlan_proto); 116 117 /* 118 * vlan info and vid list 119 */ 120 121 static void vlan_group_free(struct vlan_group *grp) 122 { 123 int i, j; 124 125 for (i = 0; i < VLAN_PROTO_NUM; i++) 126 for (j = 0; j < VLAN_GROUP_ARRAY_SPLIT_PARTS; j++) 127 kfree(grp->vlan_devices_arrays[i][j]); 128 } 129 130 static void vlan_info_free(struct vlan_info *vlan_info) 131 { 132 vlan_group_free(&vlan_info->grp); 133 kfree(vlan_info); 134 } 135 136 static void vlan_info_rcu_free(struct rcu_head *rcu) 137 { 138 vlan_info_free(container_of(rcu, struct vlan_info, rcu)); 139 } 140 141 static struct vlan_info *vlan_info_alloc(struct net_device *dev) 142 { 143 struct vlan_info *vlan_info; 144 145 vlan_info = kzalloc(sizeof(struct vlan_info), GFP_KERNEL); 146 if (!vlan_info) 147 return NULL; 148 149 vlan_info->real_dev = dev; 150 INIT_LIST_HEAD(&vlan_info->vid_list); 151 return vlan_info; 152 } 153 154 struct vlan_vid_info { 155 struct list_head list; 156 __be16 proto; 157 u16 vid; 158 int refcount; 159 }; 160 161 static bool vlan_hw_filter_capable(const struct net_device *dev, 162 const struct vlan_vid_info *vid_info) 163 { 164 if (vid_info->proto == htons(ETH_P_8021Q) && 165 dev->features & NETIF_F_HW_VLAN_CTAG_FILTER) 166 return true; 167 if (vid_info->proto == htons(ETH_P_8021AD) && 168 dev->features & NETIF_F_HW_VLAN_STAG_FILTER) 169 return true; 170 return false; 171 } 172 173 static struct vlan_vid_info *vlan_vid_info_get(struct vlan_info *vlan_info, 174 __be16 proto, u16 vid) 175 { 176 struct vlan_vid_info *vid_info; 177 178 list_for_each_entry(vid_info, &vlan_info->vid_list, list) { 179 if (vid_info->proto == proto && vid_info->vid == vid) 180 return vid_info; 181 } 182 return NULL; 183 } 184 185 static struct vlan_vid_info *vlan_vid_info_alloc(__be16 proto, u16 vid) 186 { 187 struct vlan_vid_info *vid_info; 188 189 vid_info = kzalloc(sizeof(struct vlan_vid_info), GFP_KERNEL); 190 if (!vid_info) 191 return NULL; 192 vid_info->proto = proto; 193 vid_info->vid = vid; 194 195 return vid_info; 196 } 197 198 static int __vlan_vid_add(struct vlan_info *vlan_info, __be16 proto, u16 vid, 199 struct vlan_vid_info **pvid_info) 200 { 201 struct net_device *dev = vlan_info->real_dev; 202 const struct net_device_ops *ops = dev->netdev_ops; 203 struct vlan_vid_info *vid_info; 204 int err; 205 206 vid_info = vlan_vid_info_alloc(proto, vid); 207 if (!vid_info) 208 return -ENOMEM; 209 210 if (vlan_hw_filter_capable(dev, vid_info)) { 211 if (netif_device_present(dev)) 212 err = ops->ndo_vlan_rx_add_vid(dev, proto, vid); 213 else 214 err = -ENODEV; 215 if (err) { 216 kfree(vid_info); 217 return err; 218 } 219 } 220 list_add(&vid_info->list, &vlan_info->vid_list); 221 vlan_info->nr_vids++; 222 *pvid_info = vid_info; 223 return 0; 224 } 225 226 int vlan_vid_add(struct net_device *dev, __be16 proto, u16 vid) 227 { 228 struct vlan_info *vlan_info; 229 struct vlan_vid_info *vid_info; 230 bool vlan_info_created = false; 231 int err; 232 233 ASSERT_RTNL(); 234 235 vlan_info = rtnl_dereference(dev->vlan_info); 236 if (!vlan_info) { 237 vlan_info = vlan_info_alloc(dev); 238 if (!vlan_info) 239 return -ENOMEM; 240 vlan_info_created = true; 241 } 242 vid_info = vlan_vid_info_get(vlan_info, proto, vid); 243 if (!vid_info) { 244 err = __vlan_vid_add(vlan_info, proto, vid, &vid_info); 245 if (err) 246 goto out_free_vlan_info; 247 } 248 vid_info->refcount++; 249 250 if (vlan_info_created) 251 rcu_assign_pointer(dev->vlan_info, vlan_info); 252 253 return 0; 254 255 out_free_vlan_info: 256 if (vlan_info_created) 257 kfree(vlan_info); 258 return err; 259 } 260 EXPORT_SYMBOL(vlan_vid_add); 261 262 static void __vlan_vid_del(struct vlan_info *vlan_info, 263 struct vlan_vid_info *vid_info) 264 { 265 struct net_device *dev = vlan_info->real_dev; 266 const struct net_device_ops *ops = dev->netdev_ops; 267 __be16 proto = vid_info->proto; 268 u16 vid = vid_info->vid; 269 int err; 270 271 if (vlan_hw_filter_capable(dev, vid_info)) { 272 if (netif_device_present(dev)) 273 err = ops->ndo_vlan_rx_kill_vid(dev, proto, vid); 274 else 275 err = -ENODEV; 276 if (err) { 277 pr_warn("failed to kill vid %04x/%d for device %s\n", 278 proto, vid, dev->name); 279 } 280 } 281 list_del(&vid_info->list); 282 kfree(vid_info); 283 vlan_info->nr_vids--; 284 } 285 286 void vlan_vid_del(struct net_device *dev, __be16 proto, u16 vid) 287 { 288 struct vlan_info *vlan_info; 289 struct vlan_vid_info *vid_info; 290 291 ASSERT_RTNL(); 292 293 vlan_info = rtnl_dereference(dev->vlan_info); 294 if (!vlan_info) 295 return; 296 297 vid_info = vlan_vid_info_get(vlan_info, proto, vid); 298 if (!vid_info) 299 return; 300 vid_info->refcount--; 301 if (vid_info->refcount == 0) { 302 __vlan_vid_del(vlan_info, vid_info); 303 if (vlan_info->nr_vids == 0) { 304 RCU_INIT_POINTER(dev->vlan_info, NULL); 305 call_rcu(&vlan_info->rcu, vlan_info_rcu_free); 306 } 307 } 308 } 309 EXPORT_SYMBOL(vlan_vid_del); 310 311 int vlan_vids_add_by_dev(struct net_device *dev, 312 const struct net_device *by_dev) 313 { 314 struct vlan_vid_info *vid_info; 315 struct vlan_info *vlan_info; 316 int err; 317 318 ASSERT_RTNL(); 319 320 vlan_info = rtnl_dereference(by_dev->vlan_info); 321 if (!vlan_info) 322 return 0; 323 324 list_for_each_entry(vid_info, &vlan_info->vid_list, list) { 325 err = vlan_vid_add(dev, vid_info->proto, vid_info->vid); 326 if (err) 327 goto unwind; 328 } 329 return 0; 330 331 unwind: 332 list_for_each_entry_continue_reverse(vid_info, 333 &vlan_info->vid_list, 334 list) { 335 vlan_vid_del(dev, vid_info->proto, vid_info->vid); 336 } 337 338 return err; 339 } 340 EXPORT_SYMBOL(vlan_vids_add_by_dev); 341 342 void vlan_vids_del_by_dev(struct net_device *dev, 343 const struct net_device *by_dev) 344 { 345 struct vlan_vid_info *vid_info; 346 struct vlan_info *vlan_info; 347 348 ASSERT_RTNL(); 349 350 vlan_info = rtnl_dereference(by_dev->vlan_info); 351 if (!vlan_info) 352 return; 353 354 list_for_each_entry(vid_info, &vlan_info->vid_list, list) 355 vlan_vid_del(dev, vid_info->proto, vid_info->vid); 356 } 357 EXPORT_SYMBOL(vlan_vids_del_by_dev); 358 359 bool vlan_uses_dev(const struct net_device *dev) 360 { 361 struct vlan_info *vlan_info; 362 363 ASSERT_RTNL(); 364 365 vlan_info = rtnl_dereference(dev->vlan_info); 366 if (!vlan_info) 367 return false; 368 return vlan_info->grp.nr_vlan_devs ? true : false; 369 } 370 EXPORT_SYMBOL(vlan_uses_dev); 371