1 /* 2 * zswap.c - zswap driver file 3 * 4 * zswap is a backend for frontswap that takes pages that are in the process 5 * of being swapped out and attempts to compress and store them in a 6 * RAM-based memory pool. This can result in a significant I/O reduction on 7 * the swap device and, in the case where decompressing from RAM is faster 8 * than reading from the swap device, can also improve workload performance. 9 * 10 * Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com> 11 * 12 * This program is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU General Public License 14 * as published by the Free Software Foundation; either version 2 15 * of the License, or (at your option) any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 */ 22 23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 24 25 #include <linux/module.h> 26 #include <linux/cpu.h> 27 #include <linux/highmem.h> 28 #include <linux/slab.h> 29 #include <linux/spinlock.h> 30 #include <linux/types.h> 31 #include <linux/atomic.h> 32 #include <linux/frontswap.h> 33 #include <linux/rbtree.h> 34 #include <linux/swap.h> 35 #include <linux/crypto.h> 36 #include <linux/mempool.h> 37 #include <linux/zpool.h> 38 39 #include <linux/mm_types.h> 40 #include <linux/page-flags.h> 41 #include <linux/swapops.h> 42 #include <linux/writeback.h> 43 #include <linux/pagemap.h> 44 45 /********************************* 46 * statistics 47 **********************************/ 48 /* Total bytes used by the compressed storage */ 49 static u64 zswap_pool_total_size; 50 /* The number of compressed pages currently stored in zswap */ 51 static atomic_t zswap_stored_pages = ATOMIC_INIT(0); 52 53 /* 54 * The statistics below are not protected from concurrent access for 55 * performance reasons so they may not be a 100% accurate. However, 56 * they do provide useful information on roughly how many times a 57 * certain event is occurring. 58 */ 59 60 /* Pool limit was hit (see zswap_max_pool_percent) */ 61 static u64 zswap_pool_limit_hit; 62 /* Pages written back when pool limit was reached */ 63 static u64 zswap_written_back_pages; 64 /* Store failed due to a reclaim failure after pool limit was reached */ 65 static u64 zswap_reject_reclaim_fail; 66 /* Compressed page was too big for the allocator to (optimally) store */ 67 static u64 zswap_reject_compress_poor; 68 /* Store failed because underlying allocator could not get memory */ 69 static u64 zswap_reject_alloc_fail; 70 /* Store failed because the entry metadata could not be allocated (rare) */ 71 static u64 zswap_reject_kmemcache_fail; 72 /* Duplicate store was encountered (rare) */ 73 static u64 zswap_duplicate_entry; 74 75 /********************************* 76 * tunables 77 **********************************/ 78 79 /* Enable/disable zswap (disabled by default) */ 80 static bool zswap_enabled; 81 module_param_named(enabled, zswap_enabled, bool, 0644); 82 83 /* Crypto compressor to use */ 84 #define ZSWAP_COMPRESSOR_DEFAULT "lzo" 85 static char zswap_compressor[CRYPTO_MAX_ALG_NAME] = ZSWAP_COMPRESSOR_DEFAULT; 86 static struct kparam_string zswap_compressor_kparam = { 87 .string = zswap_compressor, 88 .maxlen = sizeof(zswap_compressor), 89 }; 90 static int zswap_compressor_param_set(const char *, 91 const struct kernel_param *); 92 static struct kernel_param_ops zswap_compressor_param_ops = { 93 .set = zswap_compressor_param_set, 94 .get = param_get_string, 95 }; 96 module_param_cb(compressor, &zswap_compressor_param_ops, 97 &zswap_compressor_kparam, 0644); 98 99 /* Compressed storage zpool to use */ 100 #define ZSWAP_ZPOOL_DEFAULT "zbud" 101 static char zswap_zpool_type[32 /* arbitrary */] = ZSWAP_ZPOOL_DEFAULT; 102 static struct kparam_string zswap_zpool_kparam = { 103 .string = zswap_zpool_type, 104 .maxlen = sizeof(zswap_zpool_type), 105 }; 106 static int zswap_zpool_param_set(const char *, const struct kernel_param *); 107 static struct kernel_param_ops zswap_zpool_param_ops = { 108 .set = zswap_zpool_param_set, 109 .get = param_get_string, 110 }; 111 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_kparam, 0644); 112 113 /* The maximum percentage of memory that the compressed pool can occupy */ 114 static unsigned int zswap_max_pool_percent = 20; 115 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644); 116 117 /********************************* 118 * data structures 119 **********************************/ 120 121 struct zswap_pool { 122 struct zpool *zpool; 123 struct crypto_comp * __percpu *tfm; 124 struct kref kref; 125 struct list_head list; 126 struct rcu_head rcu_head; 127 struct notifier_block notifier; 128 char tfm_name[CRYPTO_MAX_ALG_NAME]; 129 }; 130 131 /* 132 * struct zswap_entry 133 * 134 * This structure contains the metadata for tracking a single compressed 135 * page within zswap. 136 * 137 * rbnode - links the entry into red-black tree for the appropriate swap type 138 * offset - the swap offset for the entry. Index into the red-black tree. 139 * refcount - the number of outstanding reference to the entry. This is needed 140 * to protect against premature freeing of the entry by code 141 * concurrent calls to load, invalidate, and writeback. The lock 142 * for the zswap_tree structure that contains the entry must 143 * be held while changing the refcount. Since the lock must 144 * be held, there is no reason to also make refcount atomic. 145 * length - the length in bytes of the compressed page data. Needed during 146 * decompression 147 * pool - the zswap_pool the entry's data is in 148 * handle - zpool allocation handle that stores the compressed page data 149 */ 150 struct zswap_entry { 151 struct rb_node rbnode; 152 pgoff_t offset; 153 int refcount; 154 unsigned int length; 155 struct zswap_pool *pool; 156 unsigned long handle; 157 }; 158 159 struct zswap_header { 160 swp_entry_t swpentry; 161 }; 162 163 /* 164 * The tree lock in the zswap_tree struct protects a few things: 165 * - the rbtree 166 * - the refcount field of each entry in the tree 167 */ 168 struct zswap_tree { 169 struct rb_root rbroot; 170 spinlock_t lock; 171 }; 172 173 static struct zswap_tree *zswap_trees[MAX_SWAPFILES]; 174 175 /* RCU-protected iteration */ 176 static LIST_HEAD(zswap_pools); 177 /* protects zswap_pools list modification */ 178 static DEFINE_SPINLOCK(zswap_pools_lock); 179 180 /* used by param callback function */ 181 static bool zswap_init_started; 182 183 /********************************* 184 * helpers and fwd declarations 185 **********************************/ 186 187 #define zswap_pool_debug(msg, p) \ 188 pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name, \ 189 zpool_get_type((p)->zpool)) 190 191 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle); 192 static int zswap_pool_get(struct zswap_pool *pool); 193 static void zswap_pool_put(struct zswap_pool *pool); 194 195 static const struct zpool_ops zswap_zpool_ops = { 196 .evict = zswap_writeback_entry 197 }; 198 199 static bool zswap_is_full(void) 200 { 201 return totalram_pages * zswap_max_pool_percent / 100 < 202 DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE); 203 } 204 205 static void zswap_update_total_size(void) 206 { 207 struct zswap_pool *pool; 208 u64 total = 0; 209 210 rcu_read_lock(); 211 212 list_for_each_entry_rcu(pool, &zswap_pools, list) 213 total += zpool_get_total_size(pool->zpool); 214 215 rcu_read_unlock(); 216 217 zswap_pool_total_size = total; 218 } 219 220 /********************************* 221 * zswap entry functions 222 **********************************/ 223 static struct kmem_cache *zswap_entry_cache; 224 225 static int __init zswap_entry_cache_create(void) 226 { 227 zswap_entry_cache = KMEM_CACHE(zswap_entry, 0); 228 return zswap_entry_cache == NULL; 229 } 230 231 static void __init zswap_entry_cache_destroy(void) 232 { 233 kmem_cache_destroy(zswap_entry_cache); 234 } 235 236 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp) 237 { 238 struct zswap_entry *entry; 239 entry = kmem_cache_alloc(zswap_entry_cache, gfp); 240 if (!entry) 241 return NULL; 242 entry->refcount = 1; 243 RB_CLEAR_NODE(&entry->rbnode); 244 return entry; 245 } 246 247 static void zswap_entry_cache_free(struct zswap_entry *entry) 248 { 249 kmem_cache_free(zswap_entry_cache, entry); 250 } 251 252 /********************************* 253 * rbtree functions 254 **********************************/ 255 static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset) 256 { 257 struct rb_node *node = root->rb_node; 258 struct zswap_entry *entry; 259 260 while (node) { 261 entry = rb_entry(node, struct zswap_entry, rbnode); 262 if (entry->offset > offset) 263 node = node->rb_left; 264 else if (entry->offset < offset) 265 node = node->rb_right; 266 else 267 return entry; 268 } 269 return NULL; 270 } 271 272 /* 273 * In the case that a entry with the same offset is found, a pointer to 274 * the existing entry is stored in dupentry and the function returns -EEXIST 275 */ 276 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry, 277 struct zswap_entry **dupentry) 278 { 279 struct rb_node **link = &root->rb_node, *parent = NULL; 280 struct zswap_entry *myentry; 281 282 while (*link) { 283 parent = *link; 284 myentry = rb_entry(parent, struct zswap_entry, rbnode); 285 if (myentry->offset > entry->offset) 286 link = &(*link)->rb_left; 287 else if (myentry->offset < entry->offset) 288 link = &(*link)->rb_right; 289 else { 290 *dupentry = myentry; 291 return -EEXIST; 292 } 293 } 294 rb_link_node(&entry->rbnode, parent, link); 295 rb_insert_color(&entry->rbnode, root); 296 return 0; 297 } 298 299 static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry) 300 { 301 if (!RB_EMPTY_NODE(&entry->rbnode)) { 302 rb_erase(&entry->rbnode, root); 303 RB_CLEAR_NODE(&entry->rbnode); 304 } 305 } 306 307 /* 308 * Carries out the common pattern of freeing and entry's zpool allocation, 309 * freeing the entry itself, and decrementing the number of stored pages. 310 */ 311 static void zswap_free_entry(struct zswap_entry *entry) 312 { 313 zpool_free(entry->pool->zpool, entry->handle); 314 zswap_pool_put(entry->pool); 315 zswap_entry_cache_free(entry); 316 atomic_dec(&zswap_stored_pages); 317 zswap_update_total_size(); 318 } 319 320 /* caller must hold the tree lock */ 321 static void zswap_entry_get(struct zswap_entry *entry) 322 { 323 entry->refcount++; 324 } 325 326 /* caller must hold the tree lock 327 * remove from the tree and free it, if nobody reference the entry 328 */ 329 static void zswap_entry_put(struct zswap_tree *tree, 330 struct zswap_entry *entry) 331 { 332 int refcount = --entry->refcount; 333 334 BUG_ON(refcount < 0); 335 if (refcount == 0) { 336 zswap_rb_erase(&tree->rbroot, entry); 337 zswap_free_entry(entry); 338 } 339 } 340 341 /* caller must hold the tree lock */ 342 static struct zswap_entry *zswap_entry_find_get(struct rb_root *root, 343 pgoff_t offset) 344 { 345 struct zswap_entry *entry = NULL; 346 347 entry = zswap_rb_search(root, offset); 348 if (entry) 349 zswap_entry_get(entry); 350 351 return entry; 352 } 353 354 /********************************* 355 * per-cpu code 356 **********************************/ 357 static DEFINE_PER_CPU(u8 *, zswap_dstmem); 358 359 static int __zswap_cpu_dstmem_notifier(unsigned long action, unsigned long cpu) 360 { 361 u8 *dst; 362 363 switch (action) { 364 case CPU_UP_PREPARE: 365 dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu)); 366 if (!dst) { 367 pr_err("can't allocate compressor buffer\n"); 368 return NOTIFY_BAD; 369 } 370 per_cpu(zswap_dstmem, cpu) = dst; 371 break; 372 case CPU_DEAD: 373 case CPU_UP_CANCELED: 374 dst = per_cpu(zswap_dstmem, cpu); 375 kfree(dst); 376 per_cpu(zswap_dstmem, cpu) = NULL; 377 break; 378 default: 379 break; 380 } 381 return NOTIFY_OK; 382 } 383 384 static int zswap_cpu_dstmem_notifier(struct notifier_block *nb, 385 unsigned long action, void *pcpu) 386 { 387 return __zswap_cpu_dstmem_notifier(action, (unsigned long)pcpu); 388 } 389 390 static struct notifier_block zswap_dstmem_notifier = { 391 .notifier_call = zswap_cpu_dstmem_notifier, 392 }; 393 394 static int __init zswap_cpu_dstmem_init(void) 395 { 396 unsigned long cpu; 397 398 cpu_notifier_register_begin(); 399 for_each_online_cpu(cpu) 400 if (__zswap_cpu_dstmem_notifier(CPU_UP_PREPARE, cpu) == 401 NOTIFY_BAD) 402 goto cleanup; 403 __register_cpu_notifier(&zswap_dstmem_notifier); 404 cpu_notifier_register_done(); 405 return 0; 406 407 cleanup: 408 for_each_online_cpu(cpu) 409 __zswap_cpu_dstmem_notifier(CPU_UP_CANCELED, cpu); 410 cpu_notifier_register_done(); 411 return -ENOMEM; 412 } 413 414 static void zswap_cpu_dstmem_destroy(void) 415 { 416 unsigned long cpu; 417 418 cpu_notifier_register_begin(); 419 for_each_online_cpu(cpu) 420 __zswap_cpu_dstmem_notifier(CPU_UP_CANCELED, cpu); 421 __unregister_cpu_notifier(&zswap_dstmem_notifier); 422 cpu_notifier_register_done(); 423 } 424 425 static int __zswap_cpu_comp_notifier(struct zswap_pool *pool, 426 unsigned long action, unsigned long cpu) 427 { 428 struct crypto_comp *tfm; 429 430 switch (action) { 431 case CPU_UP_PREPARE: 432 if (WARN_ON(*per_cpu_ptr(pool->tfm, cpu))) 433 break; 434 tfm = crypto_alloc_comp(pool->tfm_name, 0, 0); 435 if (IS_ERR_OR_NULL(tfm)) { 436 pr_err("could not alloc crypto comp %s : %ld\n", 437 pool->tfm_name, PTR_ERR(tfm)); 438 return NOTIFY_BAD; 439 } 440 *per_cpu_ptr(pool->tfm, cpu) = tfm; 441 break; 442 case CPU_DEAD: 443 case CPU_UP_CANCELED: 444 tfm = *per_cpu_ptr(pool->tfm, cpu); 445 if (!IS_ERR_OR_NULL(tfm)) 446 crypto_free_comp(tfm); 447 *per_cpu_ptr(pool->tfm, cpu) = NULL; 448 break; 449 default: 450 break; 451 } 452 return NOTIFY_OK; 453 } 454 455 static int zswap_cpu_comp_notifier(struct notifier_block *nb, 456 unsigned long action, void *pcpu) 457 { 458 unsigned long cpu = (unsigned long)pcpu; 459 struct zswap_pool *pool = container_of(nb, typeof(*pool), notifier); 460 461 return __zswap_cpu_comp_notifier(pool, action, cpu); 462 } 463 464 static int zswap_cpu_comp_init(struct zswap_pool *pool) 465 { 466 unsigned long cpu; 467 468 memset(&pool->notifier, 0, sizeof(pool->notifier)); 469 pool->notifier.notifier_call = zswap_cpu_comp_notifier; 470 471 cpu_notifier_register_begin(); 472 for_each_online_cpu(cpu) 473 if (__zswap_cpu_comp_notifier(pool, CPU_UP_PREPARE, cpu) == 474 NOTIFY_BAD) 475 goto cleanup; 476 __register_cpu_notifier(&pool->notifier); 477 cpu_notifier_register_done(); 478 return 0; 479 480 cleanup: 481 for_each_online_cpu(cpu) 482 __zswap_cpu_comp_notifier(pool, CPU_UP_CANCELED, cpu); 483 cpu_notifier_register_done(); 484 return -ENOMEM; 485 } 486 487 static void zswap_cpu_comp_destroy(struct zswap_pool *pool) 488 { 489 unsigned long cpu; 490 491 cpu_notifier_register_begin(); 492 for_each_online_cpu(cpu) 493 __zswap_cpu_comp_notifier(pool, CPU_UP_CANCELED, cpu); 494 __unregister_cpu_notifier(&pool->notifier); 495 cpu_notifier_register_done(); 496 } 497 498 /********************************* 499 * pool functions 500 **********************************/ 501 502 static struct zswap_pool *__zswap_pool_current(void) 503 { 504 struct zswap_pool *pool; 505 506 pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list); 507 WARN_ON(!pool); 508 509 return pool; 510 } 511 512 static struct zswap_pool *zswap_pool_current(void) 513 { 514 assert_spin_locked(&zswap_pools_lock); 515 516 return __zswap_pool_current(); 517 } 518 519 static struct zswap_pool *zswap_pool_current_get(void) 520 { 521 struct zswap_pool *pool; 522 523 rcu_read_lock(); 524 525 pool = __zswap_pool_current(); 526 if (!pool || !zswap_pool_get(pool)) 527 pool = NULL; 528 529 rcu_read_unlock(); 530 531 return pool; 532 } 533 534 static struct zswap_pool *zswap_pool_last_get(void) 535 { 536 struct zswap_pool *pool, *last = NULL; 537 538 rcu_read_lock(); 539 540 list_for_each_entry_rcu(pool, &zswap_pools, list) 541 last = pool; 542 if (!WARN_ON(!last) && !zswap_pool_get(last)) 543 last = NULL; 544 545 rcu_read_unlock(); 546 547 return last; 548 } 549 550 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor) 551 { 552 struct zswap_pool *pool; 553 554 assert_spin_locked(&zswap_pools_lock); 555 556 list_for_each_entry_rcu(pool, &zswap_pools, list) { 557 if (strncmp(pool->tfm_name, compressor, sizeof(pool->tfm_name))) 558 continue; 559 if (strncmp(zpool_get_type(pool->zpool), type, 560 sizeof(zswap_zpool_type))) 561 continue; 562 /* if we can't get it, it's about to be destroyed */ 563 if (!zswap_pool_get(pool)) 564 continue; 565 return pool; 566 } 567 568 return NULL; 569 } 570 571 static struct zswap_pool *zswap_pool_create(char *type, char *compressor) 572 { 573 struct zswap_pool *pool; 574 gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN; 575 576 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 577 if (!pool) { 578 pr_err("pool alloc failed\n"); 579 return NULL; 580 } 581 582 pool->zpool = zpool_create_pool(type, "zswap", gfp, &zswap_zpool_ops); 583 if (!pool->zpool) { 584 pr_err("%s zpool not available\n", type); 585 goto error; 586 } 587 pr_debug("using %s zpool\n", zpool_get_type(pool->zpool)); 588 589 strlcpy(pool->tfm_name, compressor, sizeof(pool->tfm_name)); 590 pool->tfm = alloc_percpu(struct crypto_comp *); 591 if (!pool->tfm) { 592 pr_err("percpu alloc failed\n"); 593 goto error; 594 } 595 596 if (zswap_cpu_comp_init(pool)) 597 goto error; 598 pr_debug("using %s compressor\n", pool->tfm_name); 599 600 /* being the current pool takes 1 ref; this func expects the 601 * caller to always add the new pool as the current pool 602 */ 603 kref_init(&pool->kref); 604 INIT_LIST_HEAD(&pool->list); 605 606 zswap_pool_debug("created", pool); 607 608 return pool; 609 610 error: 611 free_percpu(pool->tfm); 612 if (pool->zpool) 613 zpool_destroy_pool(pool->zpool); 614 kfree(pool); 615 return NULL; 616 } 617 618 static struct zswap_pool *__zswap_pool_create_fallback(void) 619 { 620 if (!crypto_has_comp(zswap_compressor, 0, 0)) { 621 pr_err("compressor %s not available, using default %s\n", 622 zswap_compressor, ZSWAP_COMPRESSOR_DEFAULT); 623 strncpy(zswap_compressor, ZSWAP_COMPRESSOR_DEFAULT, 624 sizeof(zswap_compressor)); 625 } 626 if (!zpool_has_pool(zswap_zpool_type)) { 627 pr_err("zpool %s not available, using default %s\n", 628 zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT); 629 strncpy(zswap_zpool_type, ZSWAP_ZPOOL_DEFAULT, 630 sizeof(zswap_zpool_type)); 631 } 632 633 return zswap_pool_create(zswap_zpool_type, zswap_compressor); 634 } 635 636 static void zswap_pool_destroy(struct zswap_pool *pool) 637 { 638 zswap_pool_debug("destroying", pool); 639 640 zswap_cpu_comp_destroy(pool); 641 free_percpu(pool->tfm); 642 zpool_destroy_pool(pool->zpool); 643 kfree(pool); 644 } 645 646 static int __must_check zswap_pool_get(struct zswap_pool *pool) 647 { 648 return kref_get_unless_zero(&pool->kref); 649 } 650 651 static void __zswap_pool_release(struct rcu_head *head) 652 { 653 struct zswap_pool *pool = container_of(head, typeof(*pool), rcu_head); 654 655 /* nobody should have been able to get a kref... */ 656 WARN_ON(kref_get_unless_zero(&pool->kref)); 657 658 /* pool is now off zswap_pools list and has no references. */ 659 zswap_pool_destroy(pool); 660 } 661 662 static void __zswap_pool_empty(struct kref *kref) 663 { 664 struct zswap_pool *pool; 665 666 pool = container_of(kref, typeof(*pool), kref); 667 668 spin_lock(&zswap_pools_lock); 669 670 WARN_ON(pool == zswap_pool_current()); 671 672 list_del_rcu(&pool->list); 673 call_rcu(&pool->rcu_head, __zswap_pool_release); 674 675 spin_unlock(&zswap_pools_lock); 676 } 677 678 static void zswap_pool_put(struct zswap_pool *pool) 679 { 680 kref_put(&pool->kref, __zswap_pool_empty); 681 } 682 683 /********************************* 684 * param callbacks 685 **********************************/ 686 687 static int __zswap_param_set(const char *val, const struct kernel_param *kp, 688 char *type, char *compressor) 689 { 690 struct zswap_pool *pool, *put_pool = NULL; 691 char str[kp->str->maxlen], *s; 692 int ret; 693 694 /* 695 * kp is either zswap_zpool_kparam or zswap_compressor_kparam, defined 696 * at the top of this file, so maxlen is CRYPTO_MAX_ALG_NAME (64) or 697 * 32 (arbitrary). 698 */ 699 strlcpy(str, val, kp->str->maxlen); 700 s = strim(str); 701 702 /* if this is load-time (pre-init) param setting, 703 * don't create a pool; that's done during init. 704 */ 705 if (!zswap_init_started) 706 return param_set_copystring(s, kp); 707 708 /* no change required */ 709 if (!strncmp(kp->str->string, s, kp->str->maxlen)) 710 return 0; 711 712 if (!type) { 713 type = s; 714 if (!zpool_has_pool(type)) { 715 pr_err("zpool %s not available\n", type); 716 return -ENOENT; 717 } 718 } else if (!compressor) { 719 compressor = s; 720 if (!crypto_has_comp(compressor, 0, 0)) { 721 pr_err("compressor %s not available\n", compressor); 722 return -ENOENT; 723 } 724 } 725 726 spin_lock(&zswap_pools_lock); 727 728 pool = zswap_pool_find_get(type, compressor); 729 if (pool) { 730 zswap_pool_debug("using existing", pool); 731 list_del_rcu(&pool->list); 732 } else { 733 spin_unlock(&zswap_pools_lock); 734 pool = zswap_pool_create(type, compressor); 735 spin_lock(&zswap_pools_lock); 736 } 737 738 if (pool) 739 ret = param_set_copystring(s, kp); 740 else 741 ret = -EINVAL; 742 743 if (!ret) { 744 put_pool = zswap_pool_current(); 745 list_add_rcu(&pool->list, &zswap_pools); 746 } else if (pool) { 747 /* add the possibly pre-existing pool to the end of the pools 748 * list; if it's new (and empty) then it'll be removed and 749 * destroyed by the put after we drop the lock 750 */ 751 list_add_tail_rcu(&pool->list, &zswap_pools); 752 put_pool = pool; 753 } 754 755 spin_unlock(&zswap_pools_lock); 756 757 /* drop the ref from either the old current pool, 758 * or the new pool we failed to add 759 */ 760 if (put_pool) 761 zswap_pool_put(put_pool); 762 763 return ret; 764 } 765 766 static int zswap_compressor_param_set(const char *val, 767 const struct kernel_param *kp) 768 { 769 return __zswap_param_set(val, kp, zswap_zpool_type, NULL); 770 } 771 772 static int zswap_zpool_param_set(const char *val, 773 const struct kernel_param *kp) 774 { 775 return __zswap_param_set(val, kp, NULL, zswap_compressor); 776 } 777 778 /********************************* 779 * writeback code 780 **********************************/ 781 /* return enum for zswap_get_swap_cache_page */ 782 enum zswap_get_swap_ret { 783 ZSWAP_SWAPCACHE_NEW, 784 ZSWAP_SWAPCACHE_EXIST, 785 ZSWAP_SWAPCACHE_FAIL, 786 }; 787 788 /* 789 * zswap_get_swap_cache_page 790 * 791 * This is an adaption of read_swap_cache_async() 792 * 793 * This function tries to find a page with the given swap entry 794 * in the swapper_space address space (the swap cache). If the page 795 * is found, it is returned in retpage. Otherwise, a page is allocated, 796 * added to the swap cache, and returned in retpage. 797 * 798 * If success, the swap cache page is returned in retpage 799 * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache 800 * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated, 801 * the new page is added to swapcache and locked 802 * Returns ZSWAP_SWAPCACHE_FAIL on error 803 */ 804 static int zswap_get_swap_cache_page(swp_entry_t entry, 805 struct page **retpage) 806 { 807 bool page_was_allocated; 808 809 *retpage = __read_swap_cache_async(entry, GFP_KERNEL, 810 NULL, 0, &page_was_allocated); 811 if (page_was_allocated) 812 return ZSWAP_SWAPCACHE_NEW; 813 if (!*retpage) 814 return ZSWAP_SWAPCACHE_FAIL; 815 return ZSWAP_SWAPCACHE_EXIST; 816 } 817 818 /* 819 * Attempts to free an entry by adding a page to the swap cache, 820 * decompressing the entry data into the page, and issuing a 821 * bio write to write the page back to the swap device. 822 * 823 * This can be thought of as a "resumed writeback" of the page 824 * to the swap device. We are basically resuming the same swap 825 * writeback path that was intercepted with the frontswap_store() 826 * in the first place. After the page has been decompressed into 827 * the swap cache, the compressed version stored by zswap can be 828 * freed. 829 */ 830 static int zswap_writeback_entry(struct zpool *pool, unsigned long handle) 831 { 832 struct zswap_header *zhdr; 833 swp_entry_t swpentry; 834 struct zswap_tree *tree; 835 pgoff_t offset; 836 struct zswap_entry *entry; 837 struct page *page; 838 struct crypto_comp *tfm; 839 u8 *src, *dst; 840 unsigned int dlen; 841 int ret; 842 struct writeback_control wbc = { 843 .sync_mode = WB_SYNC_NONE, 844 }; 845 846 /* extract swpentry from data */ 847 zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO); 848 swpentry = zhdr->swpentry; /* here */ 849 zpool_unmap_handle(pool, handle); 850 tree = zswap_trees[swp_type(swpentry)]; 851 offset = swp_offset(swpentry); 852 853 /* find and ref zswap entry */ 854 spin_lock(&tree->lock); 855 entry = zswap_entry_find_get(&tree->rbroot, offset); 856 if (!entry) { 857 /* entry was invalidated */ 858 spin_unlock(&tree->lock); 859 return 0; 860 } 861 spin_unlock(&tree->lock); 862 BUG_ON(offset != entry->offset); 863 864 /* try to allocate swap cache page */ 865 switch (zswap_get_swap_cache_page(swpentry, &page)) { 866 case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */ 867 ret = -ENOMEM; 868 goto fail; 869 870 case ZSWAP_SWAPCACHE_EXIST: 871 /* page is already in the swap cache, ignore for now */ 872 page_cache_release(page); 873 ret = -EEXIST; 874 goto fail; 875 876 case ZSWAP_SWAPCACHE_NEW: /* page is locked */ 877 /* decompress */ 878 dlen = PAGE_SIZE; 879 src = (u8 *)zpool_map_handle(entry->pool->zpool, entry->handle, 880 ZPOOL_MM_RO) + sizeof(struct zswap_header); 881 dst = kmap_atomic(page); 882 tfm = *get_cpu_ptr(entry->pool->tfm); 883 ret = crypto_comp_decompress(tfm, src, entry->length, 884 dst, &dlen); 885 put_cpu_ptr(entry->pool->tfm); 886 kunmap_atomic(dst); 887 zpool_unmap_handle(entry->pool->zpool, entry->handle); 888 BUG_ON(ret); 889 BUG_ON(dlen != PAGE_SIZE); 890 891 /* page is up to date */ 892 SetPageUptodate(page); 893 } 894 895 /* move it to the tail of the inactive list after end_writeback */ 896 SetPageReclaim(page); 897 898 /* start writeback */ 899 __swap_writepage(page, &wbc, end_swap_bio_write); 900 page_cache_release(page); 901 zswap_written_back_pages++; 902 903 spin_lock(&tree->lock); 904 /* drop local reference */ 905 zswap_entry_put(tree, entry); 906 907 /* 908 * There are two possible situations for entry here: 909 * (1) refcount is 1(normal case), entry is valid and on the tree 910 * (2) refcount is 0, entry is freed and not on the tree 911 * because invalidate happened during writeback 912 * search the tree and free the entry if find entry 913 */ 914 if (entry == zswap_rb_search(&tree->rbroot, offset)) 915 zswap_entry_put(tree, entry); 916 spin_unlock(&tree->lock); 917 918 goto end; 919 920 /* 921 * if we get here due to ZSWAP_SWAPCACHE_EXIST 922 * a load may happening concurrently 923 * it is safe and okay to not free the entry 924 * if we free the entry in the following put 925 * it it either okay to return !0 926 */ 927 fail: 928 spin_lock(&tree->lock); 929 zswap_entry_put(tree, entry); 930 spin_unlock(&tree->lock); 931 932 end: 933 return ret; 934 } 935 936 static int zswap_shrink(void) 937 { 938 struct zswap_pool *pool; 939 int ret; 940 941 pool = zswap_pool_last_get(); 942 if (!pool) 943 return -ENOENT; 944 945 ret = zpool_shrink(pool->zpool, 1, NULL); 946 947 zswap_pool_put(pool); 948 949 return ret; 950 } 951 952 /********************************* 953 * frontswap hooks 954 **********************************/ 955 /* attempts to compress and store an single page */ 956 static int zswap_frontswap_store(unsigned type, pgoff_t offset, 957 struct page *page) 958 { 959 struct zswap_tree *tree = zswap_trees[type]; 960 struct zswap_entry *entry, *dupentry; 961 struct crypto_comp *tfm; 962 int ret; 963 unsigned int dlen = PAGE_SIZE, len; 964 unsigned long handle; 965 char *buf; 966 u8 *src, *dst; 967 struct zswap_header *zhdr; 968 969 if (!zswap_enabled || !tree) { 970 ret = -ENODEV; 971 goto reject; 972 } 973 974 /* reclaim space if needed */ 975 if (zswap_is_full()) { 976 zswap_pool_limit_hit++; 977 if (zswap_shrink()) { 978 zswap_reject_reclaim_fail++; 979 ret = -ENOMEM; 980 goto reject; 981 } 982 } 983 984 /* allocate entry */ 985 entry = zswap_entry_cache_alloc(GFP_KERNEL); 986 if (!entry) { 987 zswap_reject_kmemcache_fail++; 988 ret = -ENOMEM; 989 goto reject; 990 } 991 992 /* if entry is successfully added, it keeps the reference */ 993 entry->pool = zswap_pool_current_get(); 994 if (!entry->pool) { 995 ret = -EINVAL; 996 goto freepage; 997 } 998 999 /* compress */ 1000 dst = get_cpu_var(zswap_dstmem); 1001 tfm = *get_cpu_ptr(entry->pool->tfm); 1002 src = kmap_atomic(page); 1003 ret = crypto_comp_compress(tfm, src, PAGE_SIZE, dst, &dlen); 1004 kunmap_atomic(src); 1005 put_cpu_ptr(entry->pool->tfm); 1006 if (ret) { 1007 ret = -EINVAL; 1008 goto put_dstmem; 1009 } 1010 1011 /* store */ 1012 len = dlen + sizeof(struct zswap_header); 1013 ret = zpool_malloc(entry->pool->zpool, len, 1014 __GFP_NORETRY | __GFP_NOWARN, &handle); 1015 if (ret == -ENOSPC) { 1016 zswap_reject_compress_poor++; 1017 goto put_dstmem; 1018 } 1019 if (ret) { 1020 zswap_reject_alloc_fail++; 1021 goto put_dstmem; 1022 } 1023 zhdr = zpool_map_handle(entry->pool->zpool, handle, ZPOOL_MM_RW); 1024 zhdr->swpentry = swp_entry(type, offset); 1025 buf = (u8 *)(zhdr + 1); 1026 memcpy(buf, dst, dlen); 1027 zpool_unmap_handle(entry->pool->zpool, handle); 1028 put_cpu_var(zswap_dstmem); 1029 1030 /* populate entry */ 1031 entry->offset = offset; 1032 entry->handle = handle; 1033 entry->length = dlen; 1034 1035 /* map */ 1036 spin_lock(&tree->lock); 1037 do { 1038 ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry); 1039 if (ret == -EEXIST) { 1040 zswap_duplicate_entry++; 1041 /* remove from rbtree */ 1042 zswap_rb_erase(&tree->rbroot, dupentry); 1043 zswap_entry_put(tree, dupentry); 1044 } 1045 } while (ret == -EEXIST); 1046 spin_unlock(&tree->lock); 1047 1048 /* update stats */ 1049 atomic_inc(&zswap_stored_pages); 1050 zswap_update_total_size(); 1051 1052 return 0; 1053 1054 put_dstmem: 1055 put_cpu_var(zswap_dstmem); 1056 zswap_pool_put(entry->pool); 1057 freepage: 1058 zswap_entry_cache_free(entry); 1059 reject: 1060 return ret; 1061 } 1062 1063 /* 1064 * returns 0 if the page was successfully decompressed 1065 * return -1 on entry not found or error 1066 */ 1067 static int zswap_frontswap_load(unsigned type, pgoff_t offset, 1068 struct page *page) 1069 { 1070 struct zswap_tree *tree = zswap_trees[type]; 1071 struct zswap_entry *entry; 1072 struct crypto_comp *tfm; 1073 u8 *src, *dst; 1074 unsigned int dlen; 1075 int ret; 1076 1077 /* find */ 1078 spin_lock(&tree->lock); 1079 entry = zswap_entry_find_get(&tree->rbroot, offset); 1080 if (!entry) { 1081 /* entry was written back */ 1082 spin_unlock(&tree->lock); 1083 return -1; 1084 } 1085 spin_unlock(&tree->lock); 1086 1087 /* decompress */ 1088 dlen = PAGE_SIZE; 1089 src = (u8 *)zpool_map_handle(entry->pool->zpool, entry->handle, 1090 ZPOOL_MM_RO) + sizeof(struct zswap_header); 1091 dst = kmap_atomic(page); 1092 tfm = *get_cpu_ptr(entry->pool->tfm); 1093 ret = crypto_comp_decompress(tfm, src, entry->length, dst, &dlen); 1094 put_cpu_ptr(entry->pool->tfm); 1095 kunmap_atomic(dst); 1096 zpool_unmap_handle(entry->pool->zpool, entry->handle); 1097 BUG_ON(ret); 1098 1099 spin_lock(&tree->lock); 1100 zswap_entry_put(tree, entry); 1101 spin_unlock(&tree->lock); 1102 1103 return 0; 1104 } 1105 1106 /* frees an entry in zswap */ 1107 static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset) 1108 { 1109 struct zswap_tree *tree = zswap_trees[type]; 1110 struct zswap_entry *entry; 1111 1112 /* find */ 1113 spin_lock(&tree->lock); 1114 entry = zswap_rb_search(&tree->rbroot, offset); 1115 if (!entry) { 1116 /* entry was written back */ 1117 spin_unlock(&tree->lock); 1118 return; 1119 } 1120 1121 /* remove from rbtree */ 1122 zswap_rb_erase(&tree->rbroot, entry); 1123 1124 /* drop the initial reference from entry creation */ 1125 zswap_entry_put(tree, entry); 1126 1127 spin_unlock(&tree->lock); 1128 } 1129 1130 /* frees all zswap entries for the given swap type */ 1131 static void zswap_frontswap_invalidate_area(unsigned type) 1132 { 1133 struct zswap_tree *tree = zswap_trees[type]; 1134 struct zswap_entry *entry, *n; 1135 1136 if (!tree) 1137 return; 1138 1139 /* walk the tree and free everything */ 1140 spin_lock(&tree->lock); 1141 rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode) 1142 zswap_free_entry(entry); 1143 tree->rbroot = RB_ROOT; 1144 spin_unlock(&tree->lock); 1145 kfree(tree); 1146 zswap_trees[type] = NULL; 1147 } 1148 1149 static void zswap_frontswap_init(unsigned type) 1150 { 1151 struct zswap_tree *tree; 1152 1153 tree = kzalloc(sizeof(struct zswap_tree), GFP_KERNEL); 1154 if (!tree) { 1155 pr_err("alloc failed, zswap disabled for swap type %d\n", type); 1156 return; 1157 } 1158 1159 tree->rbroot = RB_ROOT; 1160 spin_lock_init(&tree->lock); 1161 zswap_trees[type] = tree; 1162 } 1163 1164 static struct frontswap_ops zswap_frontswap_ops = { 1165 .store = zswap_frontswap_store, 1166 .load = zswap_frontswap_load, 1167 .invalidate_page = zswap_frontswap_invalidate_page, 1168 .invalidate_area = zswap_frontswap_invalidate_area, 1169 .init = zswap_frontswap_init 1170 }; 1171 1172 /********************************* 1173 * debugfs functions 1174 **********************************/ 1175 #ifdef CONFIG_DEBUG_FS 1176 #include <linux/debugfs.h> 1177 1178 static struct dentry *zswap_debugfs_root; 1179 1180 static int __init zswap_debugfs_init(void) 1181 { 1182 if (!debugfs_initialized()) 1183 return -ENODEV; 1184 1185 zswap_debugfs_root = debugfs_create_dir("zswap", NULL); 1186 if (!zswap_debugfs_root) 1187 return -ENOMEM; 1188 1189 debugfs_create_u64("pool_limit_hit", S_IRUGO, 1190 zswap_debugfs_root, &zswap_pool_limit_hit); 1191 debugfs_create_u64("reject_reclaim_fail", S_IRUGO, 1192 zswap_debugfs_root, &zswap_reject_reclaim_fail); 1193 debugfs_create_u64("reject_alloc_fail", S_IRUGO, 1194 zswap_debugfs_root, &zswap_reject_alloc_fail); 1195 debugfs_create_u64("reject_kmemcache_fail", S_IRUGO, 1196 zswap_debugfs_root, &zswap_reject_kmemcache_fail); 1197 debugfs_create_u64("reject_compress_poor", S_IRUGO, 1198 zswap_debugfs_root, &zswap_reject_compress_poor); 1199 debugfs_create_u64("written_back_pages", S_IRUGO, 1200 zswap_debugfs_root, &zswap_written_back_pages); 1201 debugfs_create_u64("duplicate_entry", S_IRUGO, 1202 zswap_debugfs_root, &zswap_duplicate_entry); 1203 debugfs_create_u64("pool_total_size", S_IRUGO, 1204 zswap_debugfs_root, &zswap_pool_total_size); 1205 debugfs_create_atomic_t("stored_pages", S_IRUGO, 1206 zswap_debugfs_root, &zswap_stored_pages); 1207 1208 return 0; 1209 } 1210 1211 static void __exit zswap_debugfs_exit(void) 1212 { 1213 debugfs_remove_recursive(zswap_debugfs_root); 1214 } 1215 #else 1216 static int __init zswap_debugfs_init(void) 1217 { 1218 return 0; 1219 } 1220 1221 static void __exit zswap_debugfs_exit(void) { } 1222 #endif 1223 1224 /********************************* 1225 * module init and exit 1226 **********************************/ 1227 static int __init init_zswap(void) 1228 { 1229 struct zswap_pool *pool; 1230 1231 zswap_init_started = true; 1232 1233 if (zswap_entry_cache_create()) { 1234 pr_err("entry cache creation failed\n"); 1235 goto cache_fail; 1236 } 1237 1238 if (zswap_cpu_dstmem_init()) { 1239 pr_err("dstmem alloc failed\n"); 1240 goto dstmem_fail; 1241 } 1242 1243 pool = __zswap_pool_create_fallback(); 1244 if (!pool) { 1245 pr_err("pool creation failed\n"); 1246 goto pool_fail; 1247 } 1248 pr_info("loaded using pool %s/%s\n", pool->tfm_name, 1249 zpool_get_type(pool->zpool)); 1250 1251 list_add(&pool->list, &zswap_pools); 1252 1253 frontswap_register_ops(&zswap_frontswap_ops); 1254 if (zswap_debugfs_init()) 1255 pr_warn("debugfs initialization failed\n"); 1256 return 0; 1257 1258 pool_fail: 1259 zswap_cpu_dstmem_destroy(); 1260 dstmem_fail: 1261 zswap_entry_cache_destroy(); 1262 cache_fail: 1263 return -ENOMEM; 1264 } 1265 /* must be late so crypto has time to come up */ 1266 late_initcall(init_zswap); 1267 1268 MODULE_LICENSE("GPL"); 1269 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>"); 1270 MODULE_DESCRIPTION("Compressed cache for swap pages"); 1271